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Abstract

A solution to the problem of computing a finite semigroup generating the intersection of
two finitely generated exact Rees-Sushkevich varieties is presented. This solution uses the
generalization of the concept of critical groups to the context of completely simple semi-
groups and the characterization of critical semigroups that are central completely simple.
Next, the lattice of subvarieties of a non-exact variety generated by a semigroup of order
four is completely characterized. This lattice is infinite and semi-modular, and it contains

only finitely based varieties.
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Chapter 1

Introduction

A semigroup with zero (respectively, without zero) is said to be completely 0-simple (respec-
tively, completely simple) if it contains a nonzero primitive idempotent and has no nonzero
proper ideals. Completely (0-)simple semigroups were one of the very first semigroups to
be studied and they remain one of the most interesting semigroups due to their frequent
occurrence in many areas. For example, it is well known that minimal nonzero ideals and
non-null principal factors of finite semigroups are completely O-simple semigroups. The
theorem of Rees [16], representing each completely (0-)simple semigroup as a semigroup
of matrices over a group with a zero possibly adjoined, has played a dominant role in the
developement of the theory.

Let CSQ denote the class of all completely 0-simple semigroups with subgroups of expo-
nent dividing n, and let CS? denote the class of all finite completely 0-simple semigroups.
A subvariety of the variety generated by CS? is called a Rees-Sushkevich variety, and a
Rees-Sushkevich pseudovariety is similarly defined. A Rees-Sushkevich variety or pseudova-
riety is ezxact if it is generated by completely (0-)simple semigroups. Exact (pseudo)varieties
have recently been investigated by Kublanovsky [7, 9], and Reilly [17].

Most of the background material that is required in this thesis is contained in Chapter 2,
while the main results are contained in Chapters 3 and 4. The contents of Chapters 3 and 4
are related since they both concern aspects of the lattice of Rees-Sushkevich varieties, but
they can almost be read independently.

In [7], Kublanovsky showed that the set of all exact pseudovarieties, each of which is
generated by a single finite semigroup, forms a lattice; this result led him to pose the problem

of finding a finite completely (0-)simple semigroup that will generate the intersection of two
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such pseudovarieties. This problem shall be called Kublanovsky’s Intersection Problem.
Chapter 3 is a join work by Reilly and the author, and it contains a solution to
Kublanovsky’s Intersection Problem within the context of CCS VvV NB5, where CCS is the
variety of central completely simple semigroups, and NBg is the variety generated by the
semigroups L, R and By. The concept of critical groups is essential in the proof of the famous
theorem of Oates and Powell [12], which states that the variety generated by a finite group is
a Cross variety and therefore finitely based. Although most properties of groups do not hold
for completely simple semigroups in general, the correspondence between congruences with
admissible triples of the form (e : N : €) on a completely simple semigroup M (I, G, A; P)
and the normal subgroups N of G enables certain results concerning critical groups to be
generalized to the context of completely simple semigroups (Theorems 3.1.11, 3.1.12 and
Corollary 3.1.13). These generalizations permit the characterization of central completely
simple semigroups that are critical (Theorem 3.2.5). By using an isomorphism from the
lattice LE (CCS,, V NB2) onto a sublattice of L (RB) x L (A,) X L (Gy) X {T,Y,B2}, aso-
lution of Kublanovsky’s Intersection Problem within the context of CCSVNBs5 can be con-
structed from semigroups generating intersections of varieties from £ (RB), L (A,), L (Gy)
and {T,Y,B3} individually (see Section 5). Examples of critical semigroups are presented
in the last section of the chapter. These examples show that there is no immediate re-
lationship between the criticality of a completely simple semigroup and the criticality of
its subgroups. It will also be shown that the monoid obtained from adjoining an identity
element to a critical central completely simple semigroup is also critical (Proposition 3.6.9).
The variety Ao generated by a well-known semigroup Ay of order four is aperiodic
and non-exact, and it figures prominently in the study of exact and non-exact varieties
(see [9], [17]). Chapter 4 contains a complete characterization of the lattice £ (Ag) of
subvarieties of Ag. The non-exact variety Ao contains several infinite families of varieties.
(By way of contrast, Reilly [17] showed that there are only 13 exact aperiodic varieties).
For each introduced semigroup S in Ag, a set of identities for § and a canonical form for
words in S will be presented. It will be shown that each word can be reduced to one in
canonical form using these identities, and that two words form an identity of S if and only if
their canonical forms are identical. These results effectively imply that the set of identities
initially presented constitutes a basis for S, that two words have the same interpretation in
S if and only if their canonical forms are identical, and that the elements of the relatively

free semigroup of S can be taken to be exactly those words in canonical form with an
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appropriate law of composition.

It turns out that £ (Ag) contains a complete sublattice L0R* (Corollary 4.8.8), and
each subvariety of Ag that is not in £0R* is the intersection of a variety in £NR* and
a permutation variety (Propositions 4.9.2 and 4.9.5). Important properties, such as joins,
intersections, and coverings of varieties in £ (Ap) will be fully described. It will be shown
that all varieties in L (Ag) are finitely based (Corollary 4.9.6). But L (Ag) contains an
infinite interval all members of which are non-finitely generated (Proposition 4.12.1); the
least variety from this interval is thus minimal with respect to being locally finite and

non-finitely generated.



Chapter 2

Preliminaries

2.1 Semigroups

A semigroup is a nonempty set S with an associative binary operation -, which we often call
maultiplication. For each pair of elements a, b from S, the product a - b will be abbreviated
to ab. Associativity allows products of any finite length in a semigroup to be written
unambiguously without the need for parentheses. In this thesis, S stands for an arbitrary
semigroup unless otherwise specified.

An element e of S is an identity if ea = ae = a for all a € S. An element z of S is a
zero if S # {z} and za = az = z for all a € S. If a semigroup contains an identity or zero,
then they are unique and are usually denoted by 1 and 0 respectively. A semigroup with an
identity is called a monoid. If S has no identity, then an extra element 1 can be adjoined
to S to form the monoid S U {1} with obvious multiplication. For convenience, define

St

S if § has an identity,
SU{1} otherwise.

A subset T of S is a subsemigroup of S (written as T < S) if T is closed under multi-
plication. A subsemigroup T of S is proper (written as T < §) if T # S. If A C S then (A)
denotes the subsemigroup of S generated by elements of A. A subsemigroup which is also
a group is called a subgroup. As usual, if G is a group, then we write H < G (respectively,
H < G) when H is a subgroup (respectively, normal subgroup) of G.

An element e of S is an idempotent if €2 = e, and the set of idempotents of S is denoted
by E(S). For any e,f € E(S), we write e > f if ef = fe = f. It is straightforward
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to show that > is a partial order on E (S). A nonzero idempotent that is minimal with
respect to > is called primitive. The subsemigroup of S generated by E (S) is called the
core of S and is denoted by C (S). A semigroup in which all its elements are idempotents
is called a band, and a commutative band is called a semilattice. The set {0,1} under usual
multiplication is a semilattice and is denoted by Y. A semigroup the idempotents of which
form a subsemigroup is called orthodoz.

Note that a group G is just a semigroup with an identity and in which every element
of G has an inverse in G. Therefore group theoretic definitions (which do not involve the
identity) such as direct products, subdirect products, homomorphisms etc., can be carried
over to the context of semigroups. Let T be a semigroup. We say S is a factor of T if
S is a homomorphic image of a subsemigroup of T. A direct product P of semigroups S;
(i € I) is written as [[,c; S;. If I = {1,...,n} then we may write P = 851 X --- X S,. The
projective homomorphism from P onto S; is denoted by #;. If a € P, then a; denotes the

i*" component of a, that is, a; = m;a.

2.2 Congruences and Lattice Homomorphisms

Let £ and £’ be lattices. A mapping o : L — L' is a (lattice) homomorphism if it preserves

meets and joins, that is,
a(z Ay) =az A ay, a(zVy)=azVaoy

for all z,y € L. If « is also a bijection, then it is a (lattice) isomorphism. If £ and
L' are complete lattices and o preserves arbitrary meets and joins, then « is a complete
homomorphism. It is straightforward to show that if o is a homomorphism, then it also
preserves ordering in the sense that x < y implies az < ay. For any z,y € L, we say z
covers y (and write z > y ) if £ > y and there is no z € £ such that z > z > y.

Let p be an equivalence relation on S and let a,b € S. We often consider relations on S
as subsets of § x S. The p-class of a will be denoted by ap. If a and b are p-related, then
we write apb or (a,b) € p. We say that p is a congruence if apb implies capchb and acpbc for
all a,b,c € S. Equivalently, p is a congruence if and only if apb and cpd imply acpbd. The
trivial congruence {(a,a) | a € S} is denoted by ¢.

Let p be a congruence on S. It is easy to show that (ap) (bp) = (ab) p for all a,b € S so

that the set S/p of all p-classes forms a semigroup called the quotient semigroup induced
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by p. If T is a subsemigroup of S, then p induces the congruence [p];, =pN (T xT) on T.
Let Con (S) denote the collection of all congruences on S. Note that Con (S) is closed
under arbitrary intersection. Hence for each subset A of §x .S, there exists a least congruence

pa on S containing A. Consequently, Con (S) is a complete lattice under N and V, where

\/{pi|i€I}=ﬂ{p€Con(S)|pi§pforalli€I}.

Define a relation H on § as follows: (a,b) € H if S'a = S'b and aS! = bS!. It is easy to
see that H is an equivalence relation. Furthermore, it is well-known that if H is a H-class,
then either H2 N H = () or H is a subgroup of S.

Lemma 2.2.1 ([14], Corollary 1.7.10) The mazimal subgroups of a semigroup coincide with
the H-classes containing idempotents. Any two distinct mazimal subgroups are disjoint and

any H-class can contain at most one idempotent.
A semigroup is completely regular if all its H-classes are subgroups.

Lemma 2.2.2 (Lallement [10]) Let S,T be completely regular semigroups and ¢ : S — T
be a surjective homomorphism. If f € E(T), then there exists e € E (S) with pe = f.

Lallement’s original result is more general than the preceding, but it is sufficient for our

purposes. We refer the reader to [14] for more information on completely regular semigroups.

2.3 Rees Matrix Semigroups

A semigroup S with zero is 0-simple if SaS = S for all nonzero a € S. A 0-simple semigroup
is completely 0-simple if it has a primitive idempotent. Let I, A be nonempty sets, G be a
group and P = [p);] be a A x I matrix with entries from G° = G U {0} such that it has no

row or column consisting entirely of zeros. Define an operation on (I x G x A) U {0} by

(7:7 ap)\jb,l‘) if Drj 7é 07

i,a,\) (7,b,u) =
( ) (4, b, 1) {0 if pay = 0,

(i,a,A) 0 = 0 (,a,\) = 00 = 0.

Then (I x G x A) U {0} is a completely 0-simple semigroup called a Rees matriz semigroup
(over G° with sandwich matriz P) and is denoted by M (I, G, A; P). The fundamental Rees



CHAPTER 2. PRELIMINARIES 7

Theorem establishes that a semigroup is completely O-simple if and only if it is isomorphic to
a Rees matrix semigroup of the form M? (I, G, A; P). The following Rees matrix semigroups

of order five are required later in this thesis:

Bz=M°({1,2},{1},{L2};[; ‘;D

Ay = MO ({1,2},{1},{1,2}; [ i ;D

A semigroup S without zero is simple if Sa§ = S for all a € S, and a simple semigroup
is completely simple if it has a primitive idempotent. A Rees matix semigroup construction
also exists for completely simple semigroups. Let I, A be nonempty sets and P = [py;] be a
A x I matrix with entries from a group G. Then the set I x G x A with operation defined
by

(i,a,A) (4,b, 1) = (4, apzb, 1)

is a completely simple semigroup. This semigroup is called a Rees matriz semigroup (over
G with sandwich matrix P) and is denoted by M (I, G, A; P). A semigroup is completely
simple if and only if it is isomorphic to a Rees matrix semigroup of the form M (I, G, A; P).
Furthermore, for any Rees matrix semigroup of the form M (I, G, A; P), we may assume
the matrix P to be normalized in the sense that entries in the first row and column are all
equal to the identity 1 of G (see [14], Theorem III.2.6).

Note that groups are examples of completely simple semigroups. A left zero band is a
semigroup that obeys the multiplication rule ab = a. Right zero bands are defined dually.
A direct product of a left zero and a right zero band is a rectangular band, and a direct
product of a rectangular band and a group is a rectangular group. Left zero, right zero and
rectangular bands are the only bands that are completely simple. Denote by L (respectively,
R) the left zero (respectively, right zero) band with exactly two elements.

Let S = M (I, G, A; P) be a Rees matrix semigroup. It is straightforward to show that
(4,a,A) H (j,b, ) if and only if i = j and A = u. Therefore S is partitioned into the #-
classes H;y = {i} x G x {)}, each containing the idempotent (s, p;il, )\). Consequently each
completely simple semigroup is completely regular. But a completely 0-simple semigroup
may contain a non-group H-class and so may not be completely regular.

Let P be the matrix of a Rees matrix semigroup over G or G°. Then (P) denotes the

subgroup of G generated by the nonzero entries of P. The core of a completely simple Rees
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matrix semigroup then has a very simple form:

Lemma 2.3.1 ([14], Lemma II1.2.10) Let S = M (I,G,A; P) with P normalized. Then
C(S) = M(I,(P),A; P).

Lemma 2.3.2 ([14], Theorem II1.5.2) Let S = M (I,G,A; P) with P normalized. Then
the following statements are equivalent.

(1) S is orthodox;

(2) S is a rectangular group;

(3) All entries of P are 1.

In view of Lemma 2.3.2, rectangular groups are the only orthodox completely simple
semigroups. Other classes of completely simple semigroups will be introduced later when

they are required.

2.4 Congruences on a Rees Matrix Semigroup

Let S = M (I,G, A; P) with P normalized. Let £ (I) (respectively, £ (A)) denote the set of
all equivalence relations on I (respectively, A), and let N (G) denote the set of all normal
subgroups of G. A triple (r, N, ) € £(I) x N (G) x € (A) is admissible for S if

(i,j) er = p,\ip;\j1 € N for all A € A,
(Mp)emn ==>p,\ip;i1 € Nforaliel

Theorem 2.4.1 ([14], Theorem I11.4.6) If (r, N, ) is an admissible triple for S, then the
relation p; n.x) on S defined by

(ia a, )‘) P(r,N,x) (.7’ b,,u) Zf (Za.?) er, ab_l € N} ()‘a,u') S1

is a congruence on S. Conversely, if p is a congruence on S, then p = p( N.x) for a unique

admissible triple (r, N, ) for S. Moreover,
S/p('I‘,N,’/T) =M (I/TaG/NaA/ﬂ'aP/N)

where P/N is the (A/7) x (I/r) matriz with (Ar,ir)-entry equal to py;N.
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We write p «— (r, N,7) to mean that the congruence p is induced by the admissible
triple (r, N, ), that is, p = p(, n,»). For convenience, py denotes the congruence induced by
the admissible triple (e, N,e). Note that H is the congruence pg on S. Recall that Con (5)
is a complete lattice. If congruences on a completely simple semigroup are expressed as

admissible triples, then joins and meets can be found as follows:

Lemma 2.4.2 ([14], Lemma I11.4.10) The set of admissible triples for a completely simple

semigroup is a complete lattice under the operations

/\aeA (TaaNa,"ra) = (ﬂaeATmﬂaeANa’ﬂaeAﬂa) 3
\/aeA (o Nay o) = (vaeA Ta’VaEA Na’vaEA 7r"‘) '

For more information on congruences on Rees matrix semigroups, see [14].

2.5 Semigroup Varieties

This section summarizes some important facts concerning varieties of semigroups. All the
statements here generalize to algebras and we refer the reader to [2] for a general treatment.
A wvariety is a class of semigroups that is closed under the formation of homomorphic images,
subsemigroups, and direct products. A subclass of a variety V which is also a variety is
a subvariety of V. Let € be a class of semigroups throughout this section. The variety
generated by € (written as V (€)) is the least variety containing € and is just the intersection
of all varieties containing €. When € is {S1,...,S,} or {S | S has property X}, then we
also write V (S1,...,8,) or V(S| S has property X) for V (€) respectively. Furthermore,
if it is clear from the context that €4,...,€,, are classes of semigroups and that S;,...,S,
are semigroups, then we may write V (€y,...,€,,51,...,Sy,) for the variety generated by
all semigroups in €; U--- U &y, U{S1,..., 5.}

If V =V (€) then the semigroups in € are called generators of V. For any variety V,

the lattice £ (V) of subvarieties of V is a complete lattice with operations given by
/\iel Vi= niEI Vi
\/ielv,- =(V{WeL(V)|V;CW foralli € I}.

Note that if €; and €, are classes of semigroups, then

V(€)VV(€) =V (€ UE,).
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But in general, it is very difficult to find a generating set of semigroups for the intersection
V(&) NV (T,).
Let U and V be varieties such that U C V. The interval [U, V] is defined to be the set

{(Wel(V)|[UCWCV}

Note that £(V) = [T, V] where T is the variety generated by the trivial semigroup. For

convenience, let

[U,V)={WeL(V)|UCWCV}
=[U,VI\{V}.

Let H(€),S(€) and P (€) represent, respectively, the classes of all semigroups that may
be obtained as homomorphic images, subsemigroups and direct products from semigroups
in €. Then

Theorem 2.5.1 (Tarski) V (€) = HSP(¢).

In view of Theorem 2.5.1, if S is in V' (€), then it is a factor of some product of semigroups
S; € € (i € I). Equivalently, there exist a subsemigroup T of [];.; S; and a homomorphism
¢ from T onto S:
(p .
se—1<]],, 5

Let X be a countable alphabet whose elements we refer to as variables and let X+ denote
the set of all words formed from the alphabet X with concatenation as operation. Then
X is the free semigroup on X in the sense that for any semigroup S and any mapping

¢ : X — S, there exists a unique homomorphism % : X* — S such that P|y = ¢, where

®|x is the restriction of @ to X. If u = u(z1,...,2,) is a word in X* and S denotes the
substitution z; — a; into a semigroup A, then u(S) denotes the element u(ay,...,a,) in
A.

An identity is a pair (u,v) in Xt x X7, usually written as u = v. A semigroup S
satisfies an identity u = v and we write S F u = v if pu = v for all homomorphism
¢ : Xt — S. Equivalently, if zi,...,x, are the variables in u and v, then S F u = v if
and only if u(ay,...,as) = v(ay,...,a,) for all a1,...,a, € S. For a set ¥ of identities,
wewrite CFYX if SFu=vforallSeCandu=veX.
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The set of all identities on X satisfied by all semigroups of a class € is denoted by
Ide (X). It is not difficult to show that Ide (X) is a fully invariant congruence on X,
that is, a congruence on X* such that (u,v) € Ide (X) implies (pu,pv) € Ide (X) for
all endomorphism ¢ of X*. Hence for simplicity, we also write =¢ for Id¢ (X) and call
it the fully invariant congruence over €. The mapping V =y is an anti-isomorphism
between the lattice of semigroup varieties and the lattice of fully invariant congruences ([14],
Theorem 1.8.14). The semigroup Fx (€) = X /Id¢ (X) is called the €-free semigroup on
X. This semigroup has the universal mapping property for € over X, that is, for any S € €
and function ¢ : X — S, there exists a unique homomorphism @ : Fx (€) — S such that
?|x = ¢. Note that X+ = Fx (S) where S is the variety of all semigroups. If |[X| = n then
we write F, (€) instead of Fx (€). For any set X and variety V, the semigroup Fx (V) is
subdirectly embeddable in a direct product of semigroups in V. Therefore (Fx (V)) = V.

Lemma 2.5.2 Let S be an m-generated semigroup and let Sy,...,Sy be finite semigroups
such that S € V.=V (Sy,...,S,). Then S divides a finite direct product of semigroups from
{S1,...,5n} and is finite. In particular, Fp, (V) is finite.

PROOF. Let P = §) x --- x S, and |P| = k (whence V = V (P)). Then S is a
homomorphic image of Fy,, (V), and Fy,, (V) can be embedded in a product of k™ copies of
P since that is the number of possible mappings of the m generators into P. Therefore S

divides a direct product of nk™ semigroups from {Si,...,S,}. W

A semigroup (respectively, group) is locally finite if each of its finitely generated sub-
semigroups (respectively, subgroups) is finite, and a variety is locally finite if all its members

are locally finite. In view of Lemma 2.5.2, we have

Corollary 2.5.3 The variety generated by a finite semigroup or a finite group is locally
finite.

Given a set ¥ of identities, let [£] denote the class of all semigroups that satisfy all
identities in 3. A class of semigroups of the form [3] for some set ¥ of identities is said to

be an equational class. The following is a very special case of a Theorem by Birkhoff.

Theorem 2.5.4 (Birkhoff) A class of semigroups is equational if and only if it is a variety.
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Let V = [E]. Then we say V is defined by ¥ (or X defines V), and X is called a basis of
V. If ¥ is finite then V is said to be finitely based. A semigroup is also said to be finitely
based if the variety it generates is finitely based. A semigroup S (respectively, variety V) is
non-finitely based if V (S) (respectively, V) cannot be defined by any finite set of identities.

For any sets X, IT of identities, it is clear that
Zln]=[xul].

But it is very difficult in general to find a set of identities that defines [X] V [I].

Let £ U {u = v} be a set of identities on X. We say u = v is a consequence of & (or X
implies u = v) and write £ - u = v if u = v can be deduced from identities in ¥. If II is
a set of identities on X, then we write LF I if X F u=v for all u = v € II. It is easy to
show that SF X Fu=v implies SEu=v.

A pseudovariety is a class of finite semigroups that is closed under the formation of ho-
momorphic images, subsemigroups, and finite direct products. The pseudovariety generated
by € is the least pseudovariety containing €, namely the intersection of all pseudovarieties
containing €. The pseudovariety generated by € is denoted by Ps (€). Further information
regarding varieties and pseudovarieties can be found in [1].

The following list contains notation for specific varieties that will be required in later
chapters. In some cases, well known characterizations by bases of identities and semigroup
generators are provided (see [1] or [14]). Since we are concerned only with semigroups in
this thesis, it is more convenient to assume the identity (zy) z = z (yz) without including it

in the basis of each variety.

T = [z = y] : trivial semigroups
L =[zy = z] = V(L) : left zero bands
R = [zy = y] = V (R) : right zero bands
RB = [:r2 = z,zyz = 72] = V (L, R) : rectangular bands
Y = [2? = 3,2y = yz] = V (Y) : semilattices
B =V (By)
A =V (4y)

The variety of groups (respectively, abelian groups) is denoted by G (respectively, A).
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2.6 Rees-Sushkevich Varieties

Let CS denote the class of all completely simple semigroups, and CSP the class of all
completely 0-simple semigroups. For each n € N and subclass V of completely (0-)simple
semigroups, let V,, denote the class of all semigroups from V with subgroups of exponent
dividing n. It is straightforward to show that CS and CS,, are varieties contained in cs’
and CS? respectively. But CS0 and CS? are not varieties since the direct product of two
completely 0-simple semigroups is not completely 0-simple in general.

Let RS, be the variety generated by CS2. Any variety in £ (RS,) is called a Rees-
Sushkevich variety. A Rees-Sushkevich variety is ezact if it is generated by completely
0-simple semigroups. If V is exact, then V is clearly generated by a single semigroup in
Cs?o.

Proposition 2.6.1 (Kublanovsky [9], Corollary 2) The ezact subvarieties of L (RSy,) con-

stitute a sublattice.

In the light of Proposition 2.6.1, let £LE (RS,,) denote the sublattice of £ (RS,) consisting
of the exact subvarieties of RS,. For any exact Rees-Sushkevich variety V, let LE (V)
denote the sublattice of £ (V) consisting of the exact subvarieties of V. Examples of exact

varieties include RS,, and B..

Proposition 2.6.2 (Hall et al., [5]) The identities

mn+2 —_ 51:2,

(2y)" & = zyz,
(zy2)" 2wz = Twz (zyz)"

constitute a basis for RS,,.

Proposition 2.6.3 (Trakhtman, [18]) The identities

z3 = 22,
(29)*z = zyz,
z2y2 — y2$2

constitute a basis for Ba.
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Proposition 2.6.4 ([17], Corollary 5.10) A2 = RS;.

Let CS? denote the class of all finite completely 0-simple semigroups. Then a pseu-
dovariety in £ (PS (CS?)) is called a Rees-Sushkevich pseudovariety. A Rees-Sushkevich
pseudovariety is ezact if it is generated by completely 0-simple semigroups.

Let FB(n) (respectively, NFB (n)) denote the number of finitely based (respectively,
non-finitely based) semigroups with n elements. It has been shown that

nl_lg)lo (NFB(n) /FB(n)) =0
(see [20]). Therefore a randomly chosen semigroup is more likely to be finitely based than
non-finitely based. But Volkov [21] provided a recipe for constructing non-finitely based

completely 0-simple semigroups.

Proposition 2.6.5 ([21], Proposition 7) Let § = M°(I,G,A;P) be a Rees matriz semi-
group with matriz P = [py;]. If G has finite ezponent and does not belong to V ((P)), and
if there exist j,k € I, 0,7 € A such that pyj, pok,prk # 0 but p;; = 0, then S is non-finitely
based.

Therefore the varieties generated by semigroups described in Proposition 2.6.5 are all

exact and non-finitely based. A simple example of such a semigroup is

MO <{1’2}aGa{1a2}; l: ; ¢ ])

where G is the cyclic group of order two with identity e; this semigroup has nine elements.
A semigroup S is periodic if there exists n > 1 such that a” is an idempotent of S for

all a € S. Note that 2° = z? implies (:152)2 = g2, and that "2 = 2?2 implies

(xn)2 = zn—2xn+2 - .’En_2$2 B

for n > 2. Therefore in view of Proposition 2.6.2, all semigroups in RS,, are periodic. The
semigroups given by the following presentations play an important role in determining the

exactness of a variety:

N1=<a|a2=0>;
Ag={(e,f|e® =¢,f =f,fe=0).

Let N; and Ag be the varieties generated by N; and Ag respectively.
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Theorem 2.6.6 ([9], Theorem 2) A wariety V of periodic semigroups is ezact if and only

if V is a Rees-Sushkevich variety and one of the following conditions holds:

(1) M¢V;
(2) By €V and Ap ¢ V;
(3) AyeV.

A semigroup S is uniformly periodic if it satisfies an identity "tk = z" for some n, k > 1;
if k = 1 then S is said to be aperiodic. Reilly [17] proved that there are precisely 13 aperiodic

exact varieties, and these varieties form a lattice as shown in Figure 2.1.

Figure 2.1: The lattice of aperiodic exact varieties.

Generators of previously undefined varieties in Figure 2.1 are given below. For their

bases of identities, see [17].

LNB=V(LY)=LVY;
RNB=V (R,Y)=RVY;

NB =V (L,RY)=RBVY;
LNB; =V (L,B;) =L VBy;
RNB, = V (R, B;) = RV By;

NB, =V (L,R, B;) = RBV Bs.
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In contrast to the 13 aperiodic exact varieties, Reilly [17] showed that the aperiodic

non-exact varieties are precisely contained in the two intervals
[Nl, ANCBz] R [Ao V Ba, ANCAz]

where ANCB; (respectively, ANCA3) is the largest aperiodic non-exact variety not con-
taining By (respectively, Az). Furthermore, both intervals are infinite. In Chapter 4, we

present a complete description of the lattice £ (Ag).

2.7 Permutation Varieties

For p,q € N such that p < ¢, let I} = {p,...,q}. Let Sg denote the group of permutations
on I%. Tt is well known that each permutation can be written as a product of disjoint cycles.
Let (a1 am) be an m-cycle with a; € H’f. Note that (aj---ap) can be interpreted as an
element in S, for any n > k. To avoid this ambiguity, we write (a1 ---an), if we want
to specify that the permutation {(a;---ay,) is an element of S,. For example, the cycles

(13)5,(13), denote the permutations

1 2 3 1 2 3 4
3 21/ 321 4

respectively. When necessary, commas will be used to seperate the entries in a cycle for
clarity. For example, we write (n — 1,n,n + 1) instead of (n —1 n n+1).

A permutation 7 € Sy corresponds uniquely to the identity
L1 Tk = Tr(1) * Tn(k)- (2.1)

Let Idm denote the identity in (2.1) and call it the permutation identity (associated with
7). Whenever we write Idn, it is understood that 7 is a permutation in S for some k,
and that Idw is the permutation identity associated with w. A variety defined only by
permutation identities is called a permutation variety. For any set II of permutations, let
IdIl = {Idw | = € II}.

For each w € S; and I, > 0, define the permutation (I : 7 : ) € Sj4k+r by

(l:m:r)(i) =

l+nm(i-1) ifl+1<i<l+k,
1 otherwise.
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Note that Id (I : 7 : r) denotes the identity

L1 TITI41 " LUk Tl4k+1 " Titk+r

=T BTppn(1) 0 Tl (k) Tl+k+1 """ Titk+r-
For example,

Id (0: (123)5: 0) : z12223 = Z22321,
I
I

d(2:(12), : 1) : 212273%4T5 = T1T2T4237T5,
d(2:(12)5: 1) : 21Z923T4T5%6 = T1T2T4TIT5T6.
Whenever we write (! : 7 : 7), it is understood that « is a permutation and [, > 0. Note
that if 7 (1) # 1 and 7 (k) # k then (I : 7 : r) is a permutation that fixes exactly the first [
and the last r variables.

We writeId (l; ta:r;) =1d(l2: 8:72) whenId (l; : «: 1) and Id (I3 : B : 7o) are, letter
for letter, the same identities. For example, Id (2:(23),:1) = Id(3:(12),:2). IfII is a
subset of permutations, then let

(:M:er)y={(l:7:7)| 7 e},

Id(:I:r)y={Id(l:7:7r) |7 €l}.

The following are summarized results of Polldk [15].

Proposition 2.7.1 ([19], Corollary 2.3) Let II be a subgroup of Sy, that fizes neither 1 nor
n. Then IdII - IdSy,.

Corollary 2.7.2 ([19], Corollary 2.4) Each permutation variety is finitely based.

In this section, we present a bound on the number of variables required to define an

arbitrary permutation variety.
Lemma 2.7.3 Let o, 8 € Sg. Then {Ide, IdB8} F1Id (a0 B).
PROOF. Substituting z; — ;) for the variables in Idf, we obtain

Ta(1) " Talk) = To(B(1) """ Ta(B(k))-
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Hence
{Ide,1dB8} + { L1 Tk = Ta(1) """ Talk) }
Ta(1) " La(k) = Ta(p(1)) """ Ta(B())
F {212k = zae)  Zagsee)) )
~ (14 (a0 B)}.
n

Lemma 2.7.4 Let o € S, B € Sy, and I, 1,1y, r9 > 0 be such that
(1) W<y
(2)
3) a(l)#1 and a(m) #m;
(4) B(1)#1 and B(n) #n.
Then

rg <73

{Id(lo:a:7),Id(l: B:mo)} FId(lo: v : 7o)
for some v € S; witht =m +n+1+7r such that y(1) # 1 and v(t) # t.
PROOF. Let p=1ly+m+r and ¢ =1+ n+ry. It is easy to show that
{Id(lo:a:r),Id(:B:ro)} F{ld(lp:a:7+q),Id(l+p:B:70)}

where (lo: oo : 7+ ¢) and (I +p: B : rp) are both in Sp44. By Lemma 2.7.3, the two identities

associated with these permutations imply
Id{(lp:a:r+qo(l+p:8:m)],

and it is straightforward to show that (lp:a:r+q)o(I+p:B:19) = (lp:y: 7o) where
yESiwitht=m+n+1l+r, and that y(1) #1 and y(¢) #t. B

Now let II be a set of permutations. Without loss of generality express each permutation
in IT in the form (I : 7 : ) where m does not fix the first and last symbol in its domain. Then

there exist (Ip: a:7r),(l: B:ry) € II with least possible [y and rg, that is,

(lim:r)ell = I[p<l and g <7
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Assume a € Sy, and B € S,. By Lemma 2.7.4, there exists vy € Sy t =m+n+1+71)
with (1) # 1 and 7 (t) # t such that Id (lp : v : o) is a consequence of IdII. Hence by
Proposition 2.7.1, IdII implies Id (I : St : 7¢). But for any (I : 7 : r) € II,

d(:m:r)=Id(lg: (I =lp:7:7—10): 70)

so that all permutation consequences of IdIl can be expressed in the form Id (lg : 7 : o).
Thus
(Idl] = [Id(lp: m: 7o) € 1AL | w € So U -+ - U Soy],

and the variety [IdII] has a basis that requires at most Iy + 2t + 7o variables.



Chapter 3

Intersections of Exact

Pseudovarieties

Kublanovsky’s Intersection Problem concerns the computation of a finite completely
(0-)simple semigroup that will generate the intersection of two given singly generated ex-
act pseudovarieties. This chapter contains a solution to this problem within the class
CCS v NB3. Section 1 generalizes the concept of critical groups to completely simple
semigroups. This generalization enables the characterization of critical central completely
simple semigroups in Section 2 (Theorem 3.2.5). Section 3 solves Kublanovsky’s Intersec-
tion Problem to within the class G and Section 4 extends this solution to the class CCS
(Corollary 3.4.4). This solution is then further extended in Section 5 to a solution in the
class CCS V NB;. Section 6 presents several examples of critical semigroups, including an

infinite class of critical monoids (Proposition 3.6.9).

3.1 Critical Semigroups

Let S be a finite nontrivial semigroup. Recall that a quotient (or homomorphic image) of a
subsemigroup of S is called a factor of S. A factor of S is proper if it is not isomorphic to S.
If S is not contained in the variety generated by its proper factors then it is critical. Critical
semigroups play an important role in the varieties that are generated by finite semigroups.
This section contains generalizations of some results of critical groups in [12] to completely

simple semigroups.

20
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Lemma 3.1.1 A wvariety generated by a finite semigroup is generated by its critical semi-

groups.

PROOF. Let A be a finite semigroup and V = V (S € V (A4) | S is critical). Suppose
V # V (A). Since A ¢ V there exists a semigroup T' € V (4) \'V of minimal order. Then T
is not critical so that it is contained in the variety generated by its proper factors. But by

the minimality of |T|, all proper factors of T' are in V, so that T is contradictorily in V. Il

Lemma 3.1.2 A finite nontrivial subdirectly irreducible rectangular band is either L or R.

Consequently a finite rectangular band is critical if and only if it is subdirectly irreducible.

PROOF. Let S be a nontrivial rectangular band. Then S = L' x R’ for some left zero
band L' and right zero band R'. In order for S to be subdirectly irreducible one of L', R’
must be trivial. Without loss of generality assume R’ is trivial so that S = L. For each pair
of distinct elements z,y € L', let n;y be the equivalence relation on L' that only identifies
z and y:

Toy = (o0} x {25 U{(2,2) | 2 € L'}

It is straightforward to show that every equivalence relation on L' is a congruence, whence
T,y 18 also a congruence. If L' contains three distinct elements a,b and ¢, then 7g N7y = €
so that L’ has no minimal nontrivial congruence and is subdirectly reducible. Therefore L'

has exactly two elements. Il

Unless otherwise stated, let S = M (I,G, A; P) be a finite nontrivial completely simple
semigroup with normalized m by n matrix P throughout this section.

Lemma 3.1.2 characterized finite completely simple bands that are critical. Therefore
we will assume that S is not a band, whence |G| > 1. For convenience, if p is the minimum
nontrivial congruence on S, then it is called the monolith congruence on S. Similarly, if M
is the minimum nontrivial normal subgroup of G then it is called the monolith subgroup of
G. For example, the subgroup Z, of a cyclic p-group is monolithic, and clearly each simple
group is a monolith subgroup of itself. A proof of the following well-known result can be
found in [14].
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Lemma 3.1.3 ([14], Lemma 1.5.8) A semigroup is subdirectly irreducible if and only if it
has a monolith congruence. In particular, a group is subdirectly irreducible if and only if it

has a monolith subgroup.

A subdirectly reducible semigroup is embeddable in a direct product of its homomor-
phic images. Therefore a critical semigroup is subdirectly irreducible and has a monolith
congruence. The following lemma describes how S being subdirectly irreducible affects its

monolith congruence and the group G.

Lemma 3.1.4 If S is subdirectly irreducible, then
(1) G has a monolith subgroup M;

(2)  pap is the monolith congruence on S.

PRrOOF. (1) If A and B are nontrivial normal subgroups of G such that AN B = {1},
then S can be embedded into S/pa x S/pp because paNpp = €. So for S to be subdirectly
irreducible, G must contain a monolith subgroup M.

(2) Let o be a nontrivial congruence on S with o «— (r,N,x). If N = {1}, then §

contradictorily has no monolith congruence since

onppm < (T,{l},ﬂ)ﬂ(&M,S)

= (¢,{1},¢) «+—e.
If N # {1} then M C N since M is monolithic. Therefore
PM (EaMaE) C (’I‘,N,ﬂ') o,

whence pps C o. Since o is arbitrary and nontrivial, pys is monolithic. Il

In order that S be critical, it is clearly necessary that S be subdirectly irreducible. But
that is by no means sufficient. Examples of subdirectly irreducible semigroups that are
non-critical will be given in Section 6. Furthermore it will be shown that there is no direct
relationship between the criticality of § and G.

An m by n matrix P is diverse if any one of the following conditions holds.

(D) m=n=1,;

(D2) m,n > 2, no two rows of P are identical, and no two columns of P are identical.
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Lemma 3.1.5 Let M be a normal subgroup of G. Then:

(1)  The congruence par on S is monolithic if and only if M is monolithic and P is
diverse.

(2) S is subdirectly irreducible if and only if G is subdirectly irreducible and P is
diverse.

(3) If S is critical and not a group then it is not orthodoz.

PROOF. (1) Suppose that pjs is the monolith congruence on S, whence M is nontrivial.
Then clearly M is monolithic. If P is not diverse, then one of the following holds:

(a) l=m<m
(b) l=n<m
(¢) P has two identical rows;
(d) P has two identical columns.

Suppose (a). Then P is a row matrix. But since P is normalized, all entries of P are 1.
The congruence induced by the admissible triple (¢, {1} ,A x A) is nontrivial but intersects
pu trivially, contradicting pps being monolithic. Therefore (a) is impossible. By symmetry,
(b) is also impossible.

Now suppose (c). Let the A™ and u'® rows of P be identical, and let 7, be the
equivalence relation on A which identifies A and u. Then the congruence induced by the
admissible triple (e,{1},7) ) is nontrivial but intersects pas trivially, contradicting pp
being monolithic. Therefore (c) is impossible. By symmetry, (d) is also impossible.

Conversely, assume that M is monolithic and P is diverse. Let o be a congruence on S
with ¢ «— (r, N, ). If N # {1}, then clearly pas C 0. Therefore it suffices to assume that
N = {1}. By the definition of an admissible triple,

(t,7) er =>p>\ip;j1 =1forallAe€A
= py=pyjforallAeA

= i® and j** columns of P are identical.

Therefore r = ¢ since P is diverse; by a similar argument, 7 = €. Consequently, ¢ is trivial.
(2) By Lemmas 3.1.3, 3.1.4 and (1),
S is subdirectly irreducible <= S has a monolith congruence ps
<= @ has a monolith subgroup and P is diverse

<= @ is subdirectly irreducible and P is diverse.
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(3) Suppose S = M (I,G,A;P) is critical and not a group. Then either m > 2
or n > 2. But if S is orthodox, then by Theorem 2.3.2, all entries of P are 1 so that
8 = ] x G x A where G and either I or A are nontrivial. Therefore S is contradictorily

non-critical. W

Let © be a finite set of finite completely simple semigroups which is factor closed in
the sense that each factor of a semigroup in D is isomorphic to a semigroup in ©. If S is
in V(D) then by Theorem 2.5.1 and Lemma 2.5.2, it can be represented as a factor of a
finite direct product of semigroups Dy, ..., D, in D. In general the choice of the semigroups
Dq,...,D, is not unique. But every such choice determines a non-increasing sequence of
integers consisting of their orders. Ordered lexicographically — one sequence is smaller than
another if its entry in the first place where they differ is the smaller of the two — the set of
these sequences has a minimum. The representations of S corresponding to this minimum
sequence are the minimal representations.

All subsequent statements in this section refer to a fixed minimal representation of the
finite semigroup S = M (I, G, A; P) (with P normalized) in V (D), that is,

S =T/k suchthat T < H?_l D; and & € Con(T)

where (|Di}|,...,|Dx|) is minimal. Since each D; is finite completely simple, T is also finite

completely simple, whence we can adopt the following notation:

T = M(x,H,*; %),
Di:M(*vG'ia*;*)7
7
Kk +— (r,K,n) where K < H < ]:—L:1 Gi.

A subgroup U; of G, is isomorphic to a subgroup U; of [[[-,G;:

T={acll_, @

Similarly, a congruence p; on D; corresponds to a congruence p; on [, D;:

r={@well_pixI[_ D

Lemma 3.1.6 Each semigroup D; is critical, and if any D; is replaced by one of its proper

g; € U; and (Héjigz:l)}-

zjpjy; and (i #j = @ = yi)} :

factors, then the resulting direct product has no factor isomorphic to S.
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PROOF. If D; is not critical then it is a factor of [];D;,; where each D; ; is a proper factor
of D;. Hence each D;; belongs to D and has order smaller than D;. But then S is a factor
of [ Dk x [1;Di,; and this representation is contradictorily smaller than the original
minimal representation. If D; is replaced by one of its proper factors then the sequence
of integers is replaced by a smaller one which again by minimality cannot correspond to a

representation of S.

Lemma 3.1.7 The semigroup T is a subdirect product of [[,_,D;. Consequently H is a
subdirect product of [}, G;.

Proor. If n;T were a proper subsemigroup of D; then m;T could have been chosen in

place of D; to represent S in V (D), contradicting the minimality assumption. ll

Lemma 3.1.8 A subgroup of G; is normal in G; if and only if it is normalized by H. If
pi € Con (D;)\ {e} with p; +— (%, N;,*), then N;N H # {1}.

PROOF. The first part is immediate from Lemma 3.1.7. Suppose N; N H = {1}. Let
o € Con (D;) with 0 — (¢, N;, ) and define a mapping ¥ : T — [],.,;,D; x D;/o by

z; ifj#i,
(‘I’m)j = { ’ .
z;0 otherwise.
Clearly ¥ is a homomorphism. Let £ = (s,a,a) and y = (¢,b, 8) be in T'. Since
Z; =Yy lfj ;é 1

Uy =¥y =
(zi,9i) € 0 otherwise

= s=t,a=fandab e N,NH = {1}

==y,

¥ is injective. But now D; (j # 1) and D;/o form a smaller representation of S in V (D).
[

Lemma 3.1.9 The normal subgroup K of H intersects each G; trivially.
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PROOF. By Lemma 3.1.8, K N G; is normal in both G; and H. Identifying K N G;
as a normal subgroup in G;, let o; € Con(D;) with o; +— (s, KNG, z—:). Then define a
mapping 2 : T — []; ., D; x Difo; by

x; ifj#1i
(Qz) i = ! 77 .
x;0; otherwise.
Clearly € is a homomorphism. Since, for z,y € T,

Tj = Y; ifj#i

Qr =Qy = ]
(zi,y;) € 0; otherwise

= (-’an) € [Fi.]T’
T/ 73]y is embeddable into [];,D; X D;/o;, and since

[ilr +— (e, K N Gie)

- (TaKaﬂ') TR,

S = T'/k is a homomorphic image of T'/ [7]p. If 0; # € then D; (j # 1) and D;/o; will form
a smaller representation of S in V (D). Hence 0; = £ and K N G; = {1} as required. W

Lemma 3.1.10 If S is subdirectly irreducible then
S/p eV (Difpi|1<i<n)
where p and p; (1 < 1 < n) are the monolith congruences of S and D; (1 < i < n) respectively.

PROOF. Since each D; is critical (Lemma 3.1.6) it can be assumed non-band; for if D;
is a band then it is either L or R by Lemma 3.1.2, whence D;/u; is trivial. Furthermore,
each D; is subdirectly irreducible and so by Lemma 3.1.3 has a monolith congruence ;. By
Lemma 3.1.4,

pi — (&, My, €)

where M; is the monolith subgroup of G;. Since y is the monolith congruence of S = T'/k,
there exists u' in Con (T') such that y'/x is the monolith congruence of T'/k. Note that

' is necessarily the smallest congruence on T strictly containing s, say u' «— (', M',7')
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with r C 7', K C M' and « C «'. If K = M' then p'/k +— (x,{1},*) is the monolith
congruence of T'/x = S, contradicting Lemma 3.1.4(2). Therefore K # M’ and
K+ (r,K,m) C (r,M',7) C (', M' 7).
Hence ' = r, 7/ = 7 and
p'— (r,M' ),
where K <« M’ < H and any normal subgroup of H that contains K as a proper subgroup
also contains M’.

Now consider the monolith M; of G;. Then M; is normal in G; and, by Lemma 3.1.8, M;N
H is nontrivial in H;-lzl G so that 7 (M NH ) is nontrivial in G;. Again by Lemma 3.1.8,
M; is normalized by H so that M; N H < H. Consequently m; (]\—4;0 H ) 4 m (H) = G;.
Hence M; C m; (M; N H). Since

M < |mi (0 B)| < [T A
we have M; N H = M;, whence M; < H.

Suppose that A is a nontrivial normal subgroup of H contained in M;. Then n; (4) < M;
and m; (A) < m; (H) = G;. Since A C M;, m; (A) is nontrivial. Consequently m; (A) = M;
by the minimality of M;, whence A = M;. Thus we have shown M; is a minimal normal
subgroup of H.

By Lemma 3.1.9, K intersects M; trivially so that K_JVI;/K =~ M;. Since the normal
subgroup M; of H is minimal, the normal subgroup K M;/K of H/K must also be minimal,
whence KM;/K must coincide with the monolith subgroup M'/K of H/K. Therefore
M' = KM; and

M =KM,-KM,---KM,
= K (0 -7 - Tfy) = KT\ M,
which implies that
p— (r,M',m)
= (r, K[}, Mi,7)
= (r,K,m)V (e, []= Mi,e)

— &V [Ty
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Now

S/u=(T/x) [ (4'/x)
=T/W =T/ (& V[[Timiplr)

where the last quotient is a homomorphic image of T/ [[[i- 4}y, which in turn is a sub-
semigroup of [[%"; D; /T ps = [Tie; (Di/p:). W

For a semigroup S, let

Ss={T/p|T < S,p € Con(T),(T,p) # (S )}
be the set of proper factors of 5.

Theorem 3.1.11 A finite completely simple semigroup is subdirectly irreducible if and only

if it is not contained in the variety generated by its proper quotients.

PROOF. Let S be a finite completely simple semigroup that is subdirectly irreducible.
If S is a band then the result holds by Lemma 3.1.2. So assume that S is not a band.

Let p be the monolith congruence on S. The result is immediate if S is critical. So
suppose that S is non-critical, that is, S € V (Fs). Let D be a finite subset of Fs which
is minimal with respect to being factor closed and generating S. Since Fs satisfies these
conditions except for minimality, the existence of © is guaranteed. Let D have maximal
order in © and let Dy = D\ {D}. Then S ¢ V (Dy). But Dy is still factor closed and
every proper factor of a semigroup in ® is isomorphic to some semigroup in ©g. Therefore
S/u € V (Dg) by Lemma 3.1.10. Since each proper quotient of S is a homomorphic image
of §/u, the variety generated by all proper quotients of S is contained in V (Dg) and so
cannot contain S.

Conversely, if S is subdirectly reducible then it belongs to the variety generated by its
proper quotients. ll

Theorem 3.1.12 A finite subdirectly irreducible completely simple semigroup that is not

critical is contained in the variety generated by its proper subsemigroups.
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PROOF. Let S be a finite subdirectly irreducible completely simple semigroup that is
not critical, and let i be its monolith congruence. Suppose S is not contained in the variety

V generated by its proper subsemigroups. Let
Hs={T/p|T < S,p€Con(T)}.
Then

§s={T/p|T < S,p € Con(T),(T,p) # (S,€)}
={T/p|T < S,p€Con(T)}U{S/p| p € Con(S)\{e}}
=HsU{5/p|p € Con(S)\{e}}.

By assumption S € V (§s) and S ¢ V = V($g). Clearly Hs C Fg, so let D be a
subset of §s which is minimal with respect to being factor closed, generating S and strictly
containing f)s. Since Fgs satisfies these conditions except for minimality, the existence
of © is guaranteed. Since D\Hg # 0 there exists a semigroup D of maximal order in
D\Ag; let D9 = D\ {D}. Then S ¢ V (Dp) by the minimality of D. Furthermore every
proper factor of every semigroup in ® is isomorphic to some semigroup in ®g so that
S/u €V (Dg) by Lemma 3.1.10. Consequently every proper quotient of S is in V (D), that
is, §5\Hs C V (Dy). Now the inclusions Hs C Dy C Fs imply that

Fs = (Fs5\Hs)UHs CV (Dy),

whence S € V (§Fs) C V (Dy), a contradiction. Il

Corollary 3.1.13 If a finite completely simple semigroup is contained neither in the variety
generated by its proper subsemigroups nor in the variety generated by its proper quotients,

then it is critical.

ProoF. If S is not contained in the variety generated by its proper quotients, then it is
subdirectly irreducible by Theorem 3.1.11. Furthermore if S is not contained in the variety

generated by its proper subsemigroups, then it is critical by Theorem 3.1.12. H
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3.2 Critical Semigroups in CCS

The material from this section to Section 5 inclusively are join work by Reilly and the
author. Let N (respectively, P) denote the set of all positive (respectively, prime) integers.
A completely simple semigroup S is central if the product of any two idempotents of S lies in
the center of the maximal subgroup containing it. The class CCS of all central completely
simple semigroups is a variety (see [14], Proposition IIL.6.7(ii)). This section characterizes

central completely simple semigroups that are critical.

Proposition 3.2.1 ([14], Proposition 111.6.2) Let S = M(I,G,A;P) € CS, with P
normalized. Then the following are equivalent.

(1) S is central;

(2) (P) is contained in the centre Z (G) of G;

(3) S satisfies the identity z™y"x = xy™z™.

From Proposition 3.2.1, the class CCS,, of all central completely simple semigroups
with subgroups of exponent dividing 7 is a variety. Let J denote the class of all idempotent

generated completely simple semigroups:
J={Se€CS|5=C(S)}.

Lemma 3.2.2 Let V =V (€) be such that € = {Sy | « € T'} is a collection of finite central
completely simple semigroups Sq = M (Iy, G, Ao; Py) with P, normalized. Then

(1) VNRB=V (I, xAy|a€eTl);

(2) VNG=V(Gy|ael);

3) VEONVINA=V({(Py)|ael).

PROOF. (1) Suppose S € VNRB. Then there exist S, € € (0 € X), a subsemigroup
T of [],c5 S and a homomorphism % from T onto S. It is straightforward to show that
aHb implies YaHb for all a,b € T. But since S is a band, the congruence H is trivial on

S. Therefore aHb implies 1pa = 1)b for all a,b € T. Hence S is a homomorphic image of
T/H L [1pes (So/H), and

SeV(S;/H|o€eL)CV(Se/H|a€eT)
=V (IaxAy|ael).
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Consequently, VNRB C V (I, X A, | @ € T'), and the reverse inclusion is obvious.

(2) This is ([14], Lemma VIII.1.2).

(3) Suppose S € 3N V. Then there exist S, € € (o € X¥), a subsemigroup T of
[T,es So and a homomorphism % from T onto S. Since S € J, S is generated by E (S) so
that by Lemma 2.2.2, there exists a subset U of E (T) such that ¢ (U) = S. It is easy to
see that (U) is a subsemigroup of [] .5 C (S5), whence

SeV(C(S)|cel)CV(C(Sy) |ael).
Hence V(INV) CV(C(Sy) | @ €T). By (2) and Lemma 2.3.1,

V(@NV)NAC

V(C(Ss)|aeT)NA
V(M (Is, (Pa),Aa; Po) @ €T)NA
V((Pa) | €T).

The inclusion V ({P,) |a € T) CV (INV)N A is obvious. Bl

The following is a special case of ([14], Theorem VIII.8.4).
Theorem 3.2.3 The mapping
VS (VARB,V(INV)NA, VNG)

is an isomorphism of L(CCS,,) onto the sublattice 3 (L (CCS,)) of L(RB) x L(Ay) X
L(Gn).

For any p € P and n € N, let Z,» be the cyclic group of order p” generated by a. Define

the Rees matrix semigroup

Cpn =M ({1’2}’ZP”7{1’2}§ l: 1 ! ]) .

Note that the sandwich matrix of Cp ,, is normalized.

Lemma 3.2.4 The completely simple semigroup Cp, is central and generated by its

idempotents.



CHAPTER 3. INTERSECTIONS OF EXACT PSEUDOVARIETIES 32

ProOF. By Proposition 3.2.1, Cp 5, is central. By Lemma 2.3.1,

C(Cpm ({12}( 1,2} [1 1D
:M({l,?},ZPn,{l,Q};[i 1}>=Cp’n.

Therefore C, p, is generated by its idempotents. Hll

We are now ready to characterize critical central completely simple semigroups.

Theorem 3.2.5 A finite central completely simple semigroup
S =M(I,G,A;P)

with normalized matriz P is critical if and only if exactly one of the following holds:
(1) S is isomorphic to L or R;
(2) S is a critical group;
(3) 8=0Cpy, for some (p,n) €Px N

PROOF. Let S be critical. Since S is central and P is normalized, we have (P) C Z (G).
If |G| = 1 then S is a band so that (1) holds by Lemma 3.1.2. Thus suppose that |G| > 1.
Since P is diverse by Lemma 3.1.5(2), either |I| = |A| = 1 or |I|,|A| > 2. The former
implies (2), so assume that |I|,|A| > 2, whence (P) # {1} because P has distinct rows and
distinct columns, and therefore Z (G) # {1}. Since G is subdirectly irreducible, Z (G) must
be a cyclic p-group so that (P) is a cyclic p-subgroup of Z (G), say (P) = Z,» for some
n € N. Therefore (P) = (py;) for some (i,A) € I x A. Now

)
P

is a subsemigroup of S. By Lemma 3.2.2 and Theorem 3.2.3,

- M ({1,z'},(P),{1,/\};

V(T,G) = (V({L,3} x{L,A}),V {{(pxi)) , V ({(P) , G))
= (VI xA),V({P),V(G))
»V (S).
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Since » is injective, V (S) = V (T, G). But § is critical and not a group (since |I],[A] > 2).
Consequently S = T and (3) follows.

Conversely, if either (1) or (2) prevails then S is obviously critical. So it suffices to assume
S = Cp,p, for some (p,n) € P x N. By Lemma 3.1.5(2), S is subdirectly irreducible and by
Lemma 2.3.2, S is not orthodox. Seeking a contradiction, suppose S is not critical. Then
by Theorem 3.1.12, S is contained in the variety V generated by its proper subsemigroups.
But it is straightforward to show that each proper subsemigroup of S is orthodox and thus
a rectangular group by Lemma 2.3.2. Since the class ReG of all rectangular groups is a
variety ([14], Corollary I11.5.3), S € V C ReG is contradictorily orthodox. I

3.3 Intersection of Singly Generated Subvarieties of Groups

A (pseudo)variety is singly generated if it is generated by a single finite semigroup. In [7],

Kublanovsky announced the following interesting result:

Theorem 3.3.1 For any pair of finite completely 0-simple semigroups A and B, there exists

a finite completely 0-simple semigroup C such that
Ps(A)NPs(B) = Ps(C).

Hence the set of all pseudovarieties singly generated by finite completely 0-simple semigroups

forms a sublattice of the lattice of semigroup pseudovarieties.
This result led Kublanovsky to pose the following problem in [8].

Problem 3.3.2 Find (in terms of Rees matriz representation) an operation o which given
two finite completely 0-simple semigroups A and B returns a finite completely 0-simple
semigroup Ao B with

Ps(A)ﬂps(B) = PS(AOB).

The remainder of this chapter is devoted to a partial solution to this problem.

Lemma 3.3.3 Let A, B and C be finite semigroups. Then the following statements are
equivalent:

(1) Ps(A)NPs(B)= Ps(C);

2y V(@A)NnV(B)=V(C).
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PROOF. Assume that (1) holds and let W = V (4)NV (B). By Corollary 2.5.3, V (A) is
locally finite since A is finite. Thus F,, (V (A4)) is finite and belongs to Ps (A) for all n € N.
Since F,, (W) is a homomorphic image of F,, (V (A)), it also belongs to Ps (A). Similarly,
F, (W) € Ps(B), whence F, (W) € Ps(A) N Ps(B) = Ps(C). Therefore W C V (C).
Now since C € Ps(C) = Ps(A) N Ps(B) C W it follows that V (C) C W and equality
prevails.

Now assume that (2) holds. Let S € Ps(A) N Ps (B). Then S is finite and S € V (4) N
V (B) = V (C). Hence S is a homomorphic image of Fy, (V (C)) with m = |S|. But since
C is finite, we have Fy, (V (C)) € Ps (C) and S € Ps (C). Consequently Ps (A) N Ps(B) C
Ps (C).

Conversely, consider any S € Ps (C) and let m = |S|. Then

SePs(C)CV(C)CV(4)NV(B)

so that S is a homomorphic image of F,, (V (4)) and of F,, (V (B)). As before Fp,, (V (4)) €
Ps(A) and F,, (V(B)) € Ps(B). Consequently, S € Ps(A) N Ps(B) and so Ps(C) C
Pg (A) N Ps (B). n

In the light of Lemma, 3.3.3, it is immaterial whether we deal with varieties or pseudova-
rieties in solving Problem 3.3.2.

In this section we solve Problem 3.3.2 within the context of groups. Fortunately, in
this case it is a matter of piecing together known results about varieties generated by finite
groups that can all be found in [12].

A variety of groups is a Cross variety if it is locally finite, finitely based, and contains

finitely many non-isomorphic critical groups.
Lemma 3.3.4 ([12], 51.52) FEach subvariety of a Cross variety is a Cross variety.

The key to this whole discussion is the following famous result due to Oates and Powell.
Theorem 3.3.5 ([12], 52.11) The variety generated by a finite group is a Cross variety.

Now by Lemma 3.1.1, any locally finite variety of groups is generated by its critical mem-
bers so that, in particular, any Cross variety is so generated. In addition, every subvariety

of a Cross variety is again a Cross variety.
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So suppose that G and H are finite groups. Then U =V (G) and V =V (H) are Cross
varieties whence W = U NV is also a Cross variety and therefore generated by its critical
groups. The next step is to find a bound on the size of the critical groups in W.

It so happens that there is a computable function f (z,y) such that if A is a group of
exponent e4 and if c4 is the maximal class of any of its nilpotent factors then the order of
any critical group in V (A) is bounded by f (es,ca). For details see ([12], Chapter 5).

Thus the order of any critical group in W is bounded by

m= mlIl(f (eG,CG) ’f(eH7CH)) .

Now every group in W that has a set of k generators (with £ < m) is a homomorphic image
of the W-free group F,,, (W) in W on m generators. In particular, the critical groups in
W are all homomorphic images of F,, (W). Consequently Fy, (W) generates W and, since
W is a Cross variety and so locally finite, F,, (W) is finite. Thus F,,, (W) is a finite group
that generates W. The next question is how to compute Fp, (W).

Since F,, (W) € W = UNV, it follows that F,, (W) is a homomorphic image of both
F,;, (U) and Fy, (V) where Fp, (U) and F, (V) can be computed as subgroups of the direct
product of |G|™ copies of G and |H|™ copies of H, respectively. Now any group that is a
homomorphic image of both F, (U) and F,,, (V) must be m-generated and liein UNV =W
and therefore be a homomorphic image of F,, (W). Hence F,, (W) is (isomorphic to)
F,, (U) /N where N is the smallest normal subgroup of Fy, (U) such that F, (U) /N is a
homomorphic image of Fy, (V). Equivalently, N is the smallest normal subgroup of F,,, (U)
such that the mapping z; — Nz; (1 <1 < m) extends to a homomorphism of F, (V) to
F, (U)/N.

First note that since W C U, every critical group in W also belongs to U so that
we may assume that n = f(eg,cg) > m. Next, we know that U is generated by the
U-free semigroup on generators zi,...,z,. Moreover Fy, (U) and F, (V) are computable
as subgroups of the direct product of |G|" copies of G and |H|" copies of H, respectively.
It is then possible to compute the normal subgroups of F,, (U). There must be a smallest
normal subgroup N of F, (U) such that F,, (U) /N € V. It is possible to identify N as
it is the smallest normal subgroup such that the identity mapping on {z1,...,2,} extends
to a homomorphism of F, (V) onto F, (U) /N. We then have F,, (U) /N € UNV and so
F, (U) /N must, in fact, be isomorphic to the free group in UNV on n generators. Since
n > m, F, (U) /N generates UNV and is computable.
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3.4 Intersection of Singly Generated Subvarieties of CCS

This section extends the solution from the previous section to the larger variety CCS of

central completely simple semigroups. Recall from Theorem 3.2.5 that the semigroup

Cp,n =M ({1,2},an,{1,2}; I: i ! jl)

(where Zy» = (a)) are, up to isomorphism, precisely all the critical central completely simple
semigroups that are not orthodox. Let C = {Cpn | (p,n) € P x N}. If A is a semigroup then
let

Bs =V (A)Nn{L, R}, Ca=V(A)NC.

Clearly if A € CCS is finite then By is computable. But C4 is also computable by the

following.

Lemma 3.4.1 Let A= M (I,G,A;P) be a finite central completely simple semigroup with
P normalized. Then
Ca=A{Cpn | Zp is a factor of (P)}.

Consequently C4 is a finite computable set of semigroups.

PROOF. Let E = {Cpn | Zpn is a factor of (P)}. Note that since P is normalized, E is
empty if |I| or |A] is 1. So assume |I|, [A] > 2. Next note that V (E)NG =V ({(P)) C V (G).
By Lemma 3.2.2 and Theorem 3.2.3,

#xV(IxAGE)=(V({IxA),V(Zp|Zy is a factor of (P)),V (G))
= (VI xA),V(P),V(G))
= xV (A)

so that V (I x A,G,E) =V (A). Hence
ECV(A)NC =Ca.

Conversely, if Cp , € V (A) NC, then by Theorem 3.2.3, Zyn € V ({P)) so that Zyn is a
factor of (P). Hence Cpp, € E so that C4 C E and equality prevails. l
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Lemma 3.4.2 If A = M (x,G,*;%) is a finite central completely simple semigroup with

normalized sandwich matriz, then
V(4) =V (Ba,Ca,G).

PROOF. Let S be a critical semigroup in V (A). By Theorem 3.2.5, either S €
{L,R},S € Cor S € G. The first and second imply S € B4 and S € C4, respectively.
If S € G then by Lemma 3.2.1, § € V(A) NG = V(G). So V (B4,C4,G) contains all
the critical semigroups of V (A). By Lemma 3.1.1, V (A) C V (Ba,Ca,G). The inclusion
V (B4,Ca,G) C V (A) is obvious. I

Theorem 3.4.3 If A = M (x,G,x;%) and B = M (%, H,*;*) are finite central completely

simple semigroups with normalized sandwich matrices, then
VANV (B)=V(B4sNBp,CaNCp,Go H).

ProoF. Let V =V (B4NBp,C4NCp,G o H). Then by invoking Theorem 3.3.1 and
Lemma 3.3.3, V(A) NV (B) = V (S) for some finite semigroup S, which clearly must be
central completely simple. Suppose that S = M (x, K, x;*). By Lemma 3.2.2,

V(K)=V(8)nG =V (4)NV(B)NG
=V(G)NV (H) =V (GoH).

Note that
Bs=V(S)N{L,R}=V(A) NV (B)Nn{L,R} =B4NBp

and similarly, Cs = C4 N Cp. Therefore by Lemma 3.4.2,

If

V(S) =V (Bs,Cs, K)
V (Bs,Cs,G o H)
1%

(BAQBB,CAQCB,GOH).
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Corollary 3.4.4 Let A= M (,G,*;x) and B =M (*, H, x; %) be finite central completely

simple semigroups with normalized sandwich matrices. Then
V(A NV (B)=V (Ao B)

where Ao B=Go H x[[[(B4NBg)U(CaNCg)] is a computable finite central completely

simple semigroup.

3.5 Intersection of Singly Generated Subvarieties of CCS V
NB.

Recall that NB is the variety generated by L, R and the completely 0-simple semigroup
B; of order five. This section presents a solution to Problem 3.3.2 within the context of
completely (0-)simple semigroups from CCS VNBs. It is an extension of the solution in the
previous section which concerned semigroups from the variety CCS of all central completely
simple semigroups.

The following two results, the justifications of which are very lengthy, are dependent on
results from a paper of Kublanovsky waiting for publication. Therefore their proofs have

been omitted.

Proposition 3.5.1 ([11], Theorem 6.3) Let S = M° (I, G, A; P) € CSY. Then the follow-
ing statements are equivalent.
(1) S e€CCS,VNBy;

(2) S satisfies the identities
z2nyn — (x2ny2n)n+1 ’ g = gy,

Recall that for any exact Rees-Sushkevich variety V, the set L€ (V) denote the sublattice
of L (V) consisting of the exact subvarieties of V.

Theorem 3.5.2 ([11], Theorem 7.3) The mappings
U4 (UNCS,, UNB,)

and
(V,W) -5 VVW

are inverse isomorphisms between LE (CCS, V NB3) and L(CCS,,) x {T,Y,B2}.
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Lemma 3.5.3 ([17], Lemma 4.2(1)) If S is a finite semigroup in CS9, then
V(S)NCS,=V(T<S|TeCS).
Consequently, there ezists a finite computable semigroup S’ in V (S) such that
V(S)nCS, =V (5).

Let S be a finite Rees matrix semigroup with sandwich matrix P. It is straightforward to
find the completely simple subsemigroups of S; the direct product S’ of these subsemigroups
of §, by Lemma 3.5.3, is a completely simple semigroup such that V (S) N CS,, = V (5').

Next we find a generator for the variety V (S) N Bg. Since S is completely (0-)simple,
V (S) is exact. Therefore V (S)NBy is exact and must be one of T, Y or B2 by Figure 2.1. It
follows from ([17], Corollary 6.3) that V (S)NRS; =V (S/H). Therefore, since Bz C RS;,

V(S)NBa = (V(S)NRS;)NBy =V (S/H) N Ba.

If S is completely simple then V (S/H) N B2 C RBN B = T. If S is completely 0-simple
but P has no zero entries, then V (S/H) N Bz = Y. Hence it remains to consider the case

when S is completely 0-simple with P having a zero entry. Note that by Theorem 2.4.1,
S/H = S/pc = M°(I,{1} ,A; P/G).

Since P has no row or column consisting entirely of zeros, P/G must have a submatrix of

one of the following forms

Lol L ] e

where a € {0,1}. It is obvious that rearranging rows and columns of a Rees matrix semigroup
does not change the semigroup isomorphically. Therefore rearranging the rows and columns
appropriately, S/H is guaranteed to contain either A; or B; as a subsemigroup, whence
V (S/#H) N B2 = Ba. For convenience, let S; be the semigroup in {{1},Y, B2} such that
V(S)NBz =V (Sy).

We are now ready to present a solution to Problem 3.3.2 for semigroups in CCS v NB,

by using the operation o from the previous section. Suppose A, B are finite Rees matrix
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semigroups in CCS V NBa. Then there exists n € N such that 4,B € CCS, V NB2. Let
A', Ay, B', B; be semigroups such that

V(A)NCS, =V (4), V(A)NB2 =V (4;),

V(B)nCS, =V (B'), V(B)NBy =V (B)).
Since A’ and B’ are central completely simple semigroups, A’ o B’ is computable by Corol-

lary 3.4.4. Clearly, A; o B; is computable by Figure 2.1 since Ay, By € {{1},Y, B2}. There-
fore, with ¢ and x as in Theorem 3.5.2,

p(V(A) NV (B)) =V (4) NyV (B)

= (V (A) N CS,,V (4) NBa) N (V (B) N CSy, V (B) N By)
= (V(4).V () n (v (B),V (B)

= (v (4)n ( NV (A) NV (BY)

= (V (40 B'),V (4 0 B)))

and

V(A NV (B)=x(V (A oB'),V (A0 B))
= V((AIOBI) X (Al OBl)) .

3.6 Examples of Critical Semigroups

Examples of subdirectly irreducible semigroups that are not critical will be presented first.
Then examples will be given to demonstrate that there is no direct relation between the
criticality of a finite completely simple semigroup M (I, G, A; P) and its underlying structure

group G. The section will end by showing all monoids Cz}’n are critical.

Example 3.6.1 ([12], 51.33) Let Q = {1, +i,%j, £k} be the Quaternion group and let

QxQ
N ’

Gg =

where N = {(1,1),(-1,-1)} is a normal subgroup of @ x Q. Then G is subdirectly irre-

ducible but not critical.



CHAPTER 3. INTERSECTIONS OF EXACT PSEUDOVARIETIES 41

Proor. Note that M = {N,(1,~1) N} is a normal subgroup of Gg. It is easy to show
that if (a,b) N # N then ((a,b) N)? = (1,—1) N. Hence each nontrivial normal subgroup
of G contains M so that G is subdirectly irreducible with monolith subgroup M. Now
the mapping a — (a,1) N is an embedding of @ into Gg so that @ is a proper factor of
Gg. But by definition, Gg € V (Q) so that G is not critical. W

Example 3.6.2 Let

a

T1=M<{1»2a3}’ZP’{1’2};|ii 1 12])

where Zp = (a), p € P and p > 3. Then T is subdirectly irreducible and not critical.

PROOF. Since T possesses the monolith congruence pz, it is subdirectly irreducible.
But V (T1) = V (Cp,1) by Lemma 3.2.2 and Theorem 3.2.3, where Cp 1 is clearly a proper

subsemigroup of T;. Therefore T is not critical.

A completely simple semigroup S = M (I, G, A; P) is overabelian if G is abelian. By the
following lemma, the class of all completely simple semigroups in CS,, the cores of which are

overabelian form a semigroup variety.

Lemma 3.6.3 ([14], PropositionII1.6.1) Let S = M (I,G,A; P) € CS,, with P normalized.
Then the following statements are equivalent.

(1) C(9) is overabelian;

(2)  The entries of P commute;

(3) S satisfies the identity zy"z" 2"z = z2"z"y"z.
Example 3.6.4 Let T, = M ({1,2,3},Gq,{1,2,3}; P) where

N N N
P=|N (G1)N (1, N
N (L,))N (G1N

Then T is critical.
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PROOF. Suppose Tb is not critical. Then since T is subdirectly irreducible (with
monolith congruence pps, where M is defined as in Example 3.6.1) it belongs to the variety
generated by its proper subsemigroups (Theorem 3.1.12). Now (P) = G¢ implies that each
proper subsemigroup of 7> must have the form M (I, H,A; R) where H < Gg and R is a
proper submatrix of P. It is then routine to show that the core of each proper subsemigroup
of T» is overabelian. This would imply that C (T3) is also overabelian by Lemma 3.6.3, which

is impossible because P is normailized and its entries do not commute. ll

Corollary 3.6.5 (1) Gq is a subdirectly irreducible group that is non-critical;

(2) T is a subdirectly irreducible semigroup that is non-critical,

(3) Cppn is critical with critical structure group Zpr;
(4) T» is critical with non-critical structure group;
(5) L x G is non-critical for any structure group G.

For any congruence p on a semigroup S, let p! be the congruence p U {(1,1)} on the

monoid S'. For the remainder of this section, fix a prime integer p and let

c. = { Con  ifn>1,

LxR ifn=0.
For i, A € {1,2}, let e;) denote the idempotent of the H-class {i} x Zpn x {A} of Cp. Note
that C} is coinpletely regular since each of its five #-classes is a subgroup. Since C} satisfies
the identity zP" ! = z, each semigroup S in V (C}) also satisfies this identity so that a?"
is an idempotent of S for all @ € S. For convenience, let Z denote p"‘Ian, the unique

subgroup of Z,» of order p.

Lemma 3.6.6 (1) If p is a congruence on C. then either 1p = {1} or p=C} x C}.
(2) Ifn>1 then the monolith congruence on Cy is py,.

PrOOF. (1) Let 4,5, A p € {1,2} be such that i # j and X\ # u. Suppose 1p # {1}.
Then apl for some a € C, so that a?"pl where a?" is an idempotent. Without loss of
generality assume a?” = e;). Then

lpein = (eirein)” p(1-€n)"" = ejx

1peir = (eiwenn)” plew 1) = eiy,

lpeinp (ejrein)’ = ejp -
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Hence epl for all e € E (Cy), whence zpl for all z € C (Cy). The result now follows since
C, = C(C,) by Lemma 3.2.4.
(2) This follows from (1) and the fact that pz is the monolith congruence on Cy. B

Lemma 3.6.7 Forn > 1, the variety generated by the proper factors of C} is V (Cn,CL_,) .

PROOF. Let V be the variety generated by the proper factors of C}. Since Cl/p} =
Cl_,, it follows from Lemma 3.6.6 that C._, is the maximum proper quotient of C,. It
is easy to show that each maximal proper subsemigroup of C} is isomorphic to either
Chr, (Zpn x L)' ot (Zyn x R)!. Hence

V=V (Cl1,Cn, (2 x L)', (Zpn x B)')

p™

1%
V(C:_,,Cn, 2k, L' RY)
V(Ch_1,Cn),

where the last equality holds because letting L = {e, f}, we have

Zh 2 {(12,0,1) } U (Zpr x {€}) < Cp x L.

Lemma 3.6.8 Let S be a completely regular semigroup. Then
V(S)NCS=V(T<S|TeCS).

PRrOOF. This follows from ([14], Theorem 1X.9.1). W

Proposition 3.6.9 The monoid C} is critical for n > 1.

PROOF. Suppose that C} is not critical. Then C} € V (Cn,C}l_l) by Lemma 3.6.7.
Hence there exist a completely simple semigroup A, a monoid B and a homomorphism %
from a subsemigroup T of A x B onto C}. By Lemma 2.2.2 there exists e € E (T) such
that 1e = 1, whence M = eTe is a monoid with identity e and ¥ M = CL. Suppose that
e = (u,*). Then e > (a,b) for any other idempotent (a,b) of M, whence u > a. But u and a
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are idempotents of A so that u = a since all idempotents in a completely simple semigroup

are primitive. Hence
E(M) € {(u,b) | b€ E(B)},

from which it follows that 71 M is a subgroup of A € V (Cy,). Therefore C} divides 1M x B
so that C} € V (Zyn,CL_,). Now by Lemma 3.6.8,
V(Cn) =V (Ci)NCS
V(Zp,Cr_) NCS
= (an, Cn—l) >

which is a contradiction because by Lemma 3.2.2 and Theorem 3.2.3,

»V (Cn) = (*a Vv (Zp") ) *)
# (*’ |14 (Zp"‘l) ’*)
=xV (an, Cn—l) .



Chapter 4

The Lattice of Subvarieties of Ay

This chapter characterizes the lattice £ (Ag) of subvarieties of Ag. Sections 2 to 8 introduce
some infinite classes of semigroups in Ag; the varieties generated by these semigroups form
the complete sublattice LNR* of L (Ap) (Corollary 4.8.8). Subvarieties of Ag that are not
in £91R* are investigated in Sections 9 to 11; each of these subvarieties are the intersection
of a variety in £9TR* and a permutation variety (Propositions 4.9.2 and 4.9.5). It will also
be shown that the subvarieties of Ag are all finitely based (Corollary 4.9.6). Sections 10 to
12 describe how intersections and joins of varieties in £ (Ag) can be found. The chapter
ends by showing that the non-finitely generated subvarieties of A constitute a subinterval
in £(Ap) (Proposition 4.12.1).

4.1 Notation

Let X be a countably infinite alphabet. Our description of canonical forms will depend
on an ordering of the elements of X; when such an ordering is required then we let X =
{z1,22,...}. Throughout this chapter let small letters a,b,...,z,y, z be variables and bold
letters a,b,...,x,y,z be words over X. Let |w| be the number of variables (counting
multiplicity) in w. If u,v € XT, then we write u = v when u and v are identical words in
X™, and write u = v to stand for a semigroup identity. The head (respectively, tail) of u
is the first (respectively, last) variable to appear in u and is denoted by b (u) (respectively,
t(u)). The content of u is the set of variables that appear in u and is denoted by ¢ (u).
An identity u = v is balanced if ¢(u) = ¢(v). Recall that the variety defined by a set &

of identities is denoted by [Z]. For the two element semilattice Y, it is well known that

45
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Y Eu=v ifand only if ¢ (u) = ¢ (v).

If U,V are varieties and T is a set of identities, then we write UN[Z] = U® = [=)Y. I
U is nontrivial and it has no proper nontrivial subvarieties, then U is an atom. If V. C U
and there is no subvariety W such that V. C W C U, then V is an anti-atom of L (U).

The main semigroup under investigation is Ag. Recall that

Ao =(e,f | & =¢,f* =f,fe =0)
= {Oa eafa Cf}

This chapter examines semigroups in the variety Ag = V (A4p) and the subvarieties they
generate. The investigation of each semigroup in each section follows a similar approach.
For each semigroup S € Ag targeted for investigation, canonical forms for words in V' (S)
will be defined; words that are in these canonical forms are called V (S)-words. We show
that each word u € X7 is equivalent in V (S) to a (necessary unique) V (S)-word, which
will be denoted by u"(5),

4.2 The Variety Ay
In [3], Edmunds established a finite basis for Ag:
2 =22, zyz = 2Pyz = zy’e = zys® = Tyzy = yov. (4.1)

He accomplished the task by showing each word is equivalant to one in canonical form,
and that no two distinct canonical words constitute an identity of Ag. By examining these
canonical words, we are able to show (in the next section) that all balanced identities
not satisfied by Ag have a common consequence which is also not satisfied by Ag. This
common consequence hence defines an anti-atom of [Y, Ag], and it will be shown to be the
only anti-atom of £ (Ag) (Proposition 4.6.13), a result which is extremely important in the
characterization of the lattice £ (Ap).

We could begin immediately by working with the canonical words defined by Edmunds to
find the anti-atom of £ (Ag). But for the sake of completeness and clarity for the reader who
refers to Edmunds’s work [3], we present and elaborate completely on Edmunds’s method
to establish a basis for Ag, although the basis we find will be slightly different than the one
in (4.1).
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Theorem 4.2.1 The following identities are satisfied by Ay.

11: zyz = yzy,

111 : z2yz = zy’z = Yz’ = zyz.

PROOF. Verification of this theorem is straightforward. ll

Define
M={zy, 25, | 01 <+ < Op,k EN}.

Note that because of the ordering of the indices, if two words in M have the same content

then they must be identical. The following simple observations will be useful in the sequel.

Corollary 4.2.2 Let a,z,y € X and b,c € X U{0}. Then:

(1) {IL,III} + abz?ca = abzca;

(2) {ILIII} + abzyca = abyzca;

(3) {ILIII} F zbycz = ybxey;

(4) Leta =D be a balanced identity involving at least two distinct variables. If h (a) =
t(a) and h(b) =t(b), then Ag =a=Db.

PROOF. (1) The following argument holds for b,¢ € X U {0}:
a (bz’c) a = ba’cabz®c by II
= (bzc) a (bzc) by III
= abzca by II.

(2) The following argument holds for b,c € X U {0}:

abzyca = ab (zyz) yca by (1)
= ab (yzy) yca by 11
= aby (yzy) ca by I1I
= abyzyzca by II
= abyzca by (1).

(3) Clearly (3) holds if b,c = 0.
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Case (i) Suppose b,c # 0. Then

z (byc) z = b (yezby) ¢ by II
= (byb)z (cyc) by (2)
= ybyxycy by 11
= ybrcy by (2) and II.

Case (ii) Suppose exactly one of b,c is empty. By symmetry, it suffices to consider
b=10#c. Then

zycx = z (zYyc) by III
=y(zzc)y by Case (i)
= yzcy by III

(4) There exist 7,y € X and u,v € X such that
a = zuzr, b = yvy.

By (1), (2), (3) and III we may assume that u,v € M with z ¢ ¢(u) and y ¢ c¢(v). There
are two cases to consider: z = y and z # v.

Case (i) If z =y then c¢(u) = c¢(v) so that u = v. Hence
a=zur =zvz =b.

Case (ii) If z # y then we have y € ¢ (u). Hence u = ugyu; for some ug, u; € MU{0}.
Note that y ¢ ¢ (upu;). Now by (3),

a=ryyur = yuoru y

and ¢ (upzu;) = c(a) \ {y} = ¢(b)\ {y} = ¢(v). We may then use (1), (2) and III to reduce
upzru; to a word in M, which reduces this case to (i) and thus the result follows. ll

The following subsets of X are required for the definition of canonical forms in Ag:

P={221--28% | 0,...,0% are distinct, o; € {1,2}, k € N} U {0},

*Az{zﬂ"'zakzal |0'1<"'<Uk, kZZ}
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A word u € X1 will be called an Ag-word if either u € P or

u = poaipPi1 - - axPk (4.2)

where p; € P, a; € A, and ¢(po),..-,¢(px),c(ai),...,c(ag) are pairwise disjoint. By
definition each word in P or A is an Ag-word, as is any word in M since M C P. For
convenience, whenever we say an expression written in the form (4.2) is an Ag-word, then
it is understood that those conditions on p;,a; will be assumed. Furthermore, p and q
(possibly with subscripts) always denote elements from P, while a and b (possibly with
subscripts) denote elements from A. Note that P contains § but A does not.

Let D = [I,II,III} in this section. Recall that for a variety V, the fully invariant
congruence on X+ over V is denoted by =v. By Theorem 4.2.1, it is clear that Ag C D, or
equivalently, that =p C =a,. We now proceed to show that each word in X * is =p-related
to a unique Ag-word. It will then be shown that no two distinct Ag-words are =4 ,-related,
thus establishing that =p = =4, and D = A,.

Let u =z ---2p* € X be such that z; # z;1, and let z € X. We say z appears n
times in u if it shows up n times in the list =1, ..., zs. The multiplicity my () of z is the
number of occurences of z in u. For example, = appears three times in v = z2yzz23 while

my (z) = 6.
Proposition 4.2.8 Each word in X is =p-related to an Ag-word.

PROOF. Let u = z'--- 2% € Xt be such that z; # z;41 (1 <i<n-—1). We may
assume by I that a; € {1,2} for all 5. If all z; are distinct then u € P. Otherwise there

exists a variable y € ¢ (u) that is the first (from the left) to appear twice in u. Then
- 81 002
u =p poy°lviyiwi (4.3)
for some pg € P, vi € Xt, wy € (X\ {y})T U {0} and 1 < §;,82 < 2 such that
¢(po) Ne(v1) = c(po) Nc(wy) =0.

Note that y ¢ ¢(po). We show that u is =p-related to an expression of the same form as
in (4.3) with the stronger condition that ¢ (py), ¢(v1) and ¢ (w;) are pairwise disjoint. We
proceed by defining v;, w; € X inductively such that

— By 0
U =p Py Viy > W;
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and

¢(po) Ne(vi) = c(po) N¢(w;) = 0.
If ¢ (v;) Nc(w;) = 0 then v;;1 and w;41 are not defined. Otherwise, there exists a variable
z common to both v; and w;. Moreover, this 2z can be chosen to be the last variable in w;
that is also in ¢ (v;), whence there exist v}, v}, wh, w! € X+ U {0} such that

t

h_e1,t h t
Xl

v = v 2V, w; = w;'z2%w

where €1,€2 € {1,2} and ¢ (v;) Nc(w) = 0. Then

u=p poy‘slvg1 (z“vfy‘szw?ze"’) wg

=p poy’' v} (zv§y"2w§‘z) w! by III
=D Po (ydlv?yd“’vzt-ZW?y's?) w; by Corollary 4.2.2(3)
=p poy”! (v?z“v%) wly®2w! by Corollary 4.2.2(4)
= pay (viw?) oo,

Define

— h — <t
Vitl = ViW,, Wiyl = W,

Since v;+1 and w;; are subwords of v;w; and that ¢ (pg) N ¢ (v;w;) = 0, we have
¢(Po) N¢(Vit1) = ¢(Po) Ne(Wit1) = 0.

Now whenever w; and w;,; are defined, then |w;,1| < |w;| because w;,; is a proper
subword of w;. Hence there must exists k such that wy, is defined but wg.; is not. Therefore
we have

u =p poy” iy wi
such that ¢ (pg) , ¢ (vk) and ¢ (wy) are pairwise disjoint. If ¢ (yvg) = {zi,,..., 2, } with i; <
-+ < i, then by Corollary 4.2.2(4), y®'viy® =p 2z;, -~ 2 2%, € A Let a; = z;, --- 2, 2,
and u; = wy. Then
u =p Ppaiy
with ¢ (pg) , ¢ (a1) and ¢ (u;) pairwise disjoint. If u; # () then repeat the procedure from the

beginning of this proof on the word u; and we will have the desired result. ll

Note that the proof of Proposition 4.2.3 is an algorithm that outputs an Ag-word for
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each word in X*; let u®° denote the Ag-word that is obtained from u by this algorithm.

Some immediate consequences of Proposition 4.2.3 are included in the following corollary.

Corollary 4.2.4 Let u be an Ag-word and h,t € X+ U {0}. Then:
(1) Ifz €c(u) then my(z) < 2;
(2) If u=hxvat then zv € M;
(3) If u=havat then c(h), c(v) and c(t) are pairwise disjoint.

The next goal (achieved in Theorem 4.2.10) is to show that no two distinct Ag-words

are =p,-related. Before proceeding, note that by II and I respectively,
(yzmzyz) (z 2:1:2) y2a? = oh2e?.
Hence {I,I1} implies (and Ay satisfies) the identity
IV : 2%y%22y? = 22y%2?
But since ¢2§%e? # 2§ # ¢2§2¢22, we have

Ag ¥ 22?2 = 22, 2?20 %? = 222 (4.4)

In the next few results, we investigate what properties two Ag-words u, v must possess if
they are to form an identity of Ag. Of course, we will eventually show that they must
be identical. There are many ways in which u, v can be distinct: ¢(u) # c(v), my (z) #
my (), etc. But note that in each of these cases when u, v are distinct, we will show that
{L,ILIII,u = v} implies one or both identities in (4.4). This fact is crucial in the following
sections for finding the anti-atom of £ (Ag). '

Lemma 4.2.5 Ifu,v are Ag-words such that Ay = u = v, then c(u) = c(v),h(u) = h(v)
and t(u) = t(v).

PROOF. SinceY € Ag |= u = v, the identity u = v is satisfied by Y so that ¢ (u) = ¢ (v).
If ¢(u) = {z} then u,v € {z,22}. Since Ay is not a band it does not satisfy 22 = =,
whence u and v are identical. Therefore we may assume |c (u)| > 2. It suffices just to prove

b (u) = b (v) because to prove t (u) = t(v) is symmetrical. Seeking a contradiction, suppose

b (u) # b (v), whence

u € {po,PoaipP1 - - aPr}, V€ {qo,qbiqi---biq},
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with b (u) = z., h(v) = z,. Without loss of generality assume r > s. Let S denote the
following substitution into X *:

2 fw =z,

z
w— ¢ z2 ifpy=0and we c(a),
y?

otherwise.

Note that if pg = @, then z, = b (u) = h(a;). Since s < r, this means that z; ¢ c(a;). In
any case, u(S) =p z2y? by I. Note that z, = y* under S, whence v (S)y% =p vy z%y? by L.
Therefore Ay satisfies

1‘2y2$2 — y2$2y2 by I
=v(8)y’ =u(S)y’
= z2y? by I,

which contradicts (4.4). l

Lemma 4.2.6 Let

u = poap1 - APk, v =qob1q; - - biq

be Ag-words. If Ag |=u=v, then:
(1) po=~01ifand only if qo = 0;
(2) pr =20 if and only if q = 0.

PROOF. By symmetry it suffices just to prove (1). Suppose pg = @ and qg # @. Then
u=api - 8Pk, v =qob1q: - - biq.

By Lemma 4.2.5, we have h(a;) = h(qp). Let S denote the the following substitution into

X*:
{z2 if w=h(a),
w — 9

y“ otherwise.
Then u (S) =p z?y?z? by I and IV, and v (S) =p z?y? by I. Now
Ao Eu(S) =v(S) F 2?y2z? = %?

contradicts (4.4). W
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Lemma 4.2.7 Let
u = hpat,, v = hqgbt,,

where
(1)  h,ty,tp € XTU{0};
(2) p,a€P,abec A
(3) c(h),c(p),c(a),c(t1) are pairwise disjoint;

(4) c(h),c(q),c(b),c(ts) are pairwise disjoint.
IfAyEu=vthenp=aq.

PRrooF. By assumption

Qp

= P Bi
Ok q=2; "z

v 2 o

P =z

where ¢ # j implies 0; # o0; and 7; # 7;. Without loss of generality assume k < I. For
convenience let

Dij =23 gl, Q= b
for ¢+ < j. Suppose p1, = qi, for some r < k. If 6,41 # 7r41, then let S be the following

substitution into X:

y?  otherwise.

2 .

z¢ ifwéec(h

W —s { ( P1,r+1),

Note that we may assume h # () because otherwise we can always premultiply both u and v
by any word h such that ¢ (h) N¢(uv) = 0. Furthermore, since 2, ¢ ¢ (hq, ) = ¢ (hp, ,)
and 27, # Zo,.,, We have 2z, ,, ¢ ¢ (hpl,,_,_l) so that z,,,, — y? under S. Since z,,,, €

2

¢ (qr42,bt2), the word (qgr4+2;bt2) (S) contains z* as a subword. Hence Ay satisfies

2y’ =u(S) byl
=v(S)
= (hay,) (S) 2741 (S) (Ar42,:bt2) (S)

= zy%e? by I and IV,
which contradicts (4.4). Therefore 0,41 = 7r41. Next, letting T be the substitution

2?2 ifwec(hp,,),
w— 4 oy ifw=2z2,,

y?> otherwise.
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into X*, we have
z? (zy)or+! ¥=u(T)=v(T) = 22 (:L‘y)ﬂ“r‘ 2

by L. If ay 41 # Bry1 then the above identity implies #2xyy? = z? (zy)? 32 so that Ag satisfies

z?y? = 22zyy? by I
= r’ryzyy?
= z2yzy? by 1
= x2y2m2y2 by III,

contradicting (4.4). Therefore o1 = Br+1, whence zgr) = zf:jll and p1r+1 = qir+1. By

induction, p1 % = Q1.
It remains to show that k = [. Suppose k < . Then since a = za; 2 for some z € X and
a; € X*, we have

u = hpza;zt;, v = hpqyq bta.

Let U denote the following substitution in Ag:

2

2 .
wosd @ if w € ¢ (hpzr,,,),
y° otherwise.

2

Then z — y? under U. Also, since 2z, € ¢(a1t;), one of a; (U),t; (U) contains z? as a

subword. Hence Ag satisfies

r2y? = v (U) by I
=u(U)
= (hpza;zt;) (U)
=z?---ya; (U) yt1 (V)
= z%y2x? by I and IV,

contradicting (4.4). Consequently k &£ [ as required. Il

Lemma 4.2.8 Let
u = hat,, v = hbt,,

where
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(1) h,ty,t2 € XTU{0};
(2) a,beA;
(83) c¢(h),c(a),c(t1) are pairwise disjoint;

(4) c(h),c(b),c(ty) are pairwise disjoint.
If Agl=u=v thena=bh.

PRrROOF. By assumption

a = zpa1 2, b= zlblzl

for some 2, z; € X. Since a, b are Ag-words, z;a;, z;b; € M by Corollary 4.2.4(2). Without

loss of generality we may assume k¥ < ![. Then
u = hziagz;tq, v = hzby zte.

Using a similar argument as in the proof of Lemma 4.2.7, we may assume h # (. Sup-
pose that k < I. Let ¢(by) = {z,,...,2,}- Then by Corollary 4.2.4(2) we have [ <
min {i1,...,i,}. Hence 2z ¢ c(by). Since 2z ¢ c¢(h) by assumption, it follows that
2, ¢ ¢ (hz;by). However z; € c(ajt;). Let S denote the following substitution in X +:

{ z? if w € c(hzyby),
w —

y?> otherwise.

2

Note that since z; € c(ajty), at least one of a; (S),t; (S) must contain z*“ as subword.

Therefore u (S) = z?y?a; (S)y*t1 (S) is a product of z2 and y? which must contain the

subword z?y?z?, whence Ay satisfies

22yt a? by I and IV,
contradicting (4.4). Therefore k = [ and
u = hzia; 2, ty, v = hz; b2 to.

Now let w € ¢(a;) and suppose w ¢ ¢(by). Then w € ¢(t3) and so w — 32 under S,
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whence Ag satisfies

H
8
<
8

= z2y%2? by I and IV,

again a contradiction. Therefore w € ¢(b;) and ¢(a;) C ¢(b1). To show that ¢(b;) C c(a;)

is symmetrical so that ¢ (a;) = ¢(b;). Consequently zx = z; and
c(a) = c(zrar2r) = ¢ (z/b12) = ¢ (b),

which implies a = b because a,b € 4. B

Corollary 4.2.9 Let u,v be Ag-words such that Ay =u =v. Then
(1) uwePifand onlyif veP;
(2) ueAifandonlyifve A

Furthermore, u = v in both cases.

PrOOF. (1) Suppose u € P and v ¢ P. Then
u=p, v = gbt

for some p,q € P, b € Aand t € X+ U {0} such that c(q),c(b) and ¢ (t) are pairwise
disjoint. Choose a € A such that ¢(a) Nc¢(uv) = . Then Ay = pa = gbta, which by
Lemma 4.2.7 implies p = q. But now the contents of u and v are distinct, contrary to
Lemma 4.2.5. Consequently u € P implies v € P.

By symmetry v € P also implies u € P. Now choose a € A such that ¢ (a) Nc(uv) = 0.
Then Ag = ua = va implies u = v by Lemma 4.2.7.

(2) Supposeu € A and v ¢ A. Then by Lemma 4.2.6, v begins and ends with a word
from A. Hence

u = a, v = bgwb,

for some a,bg,b; € A and w € X+ U {0} such that c(bg),c(w) and c(b;) are pairwise
disjoint. Then a = by by Lemma 4.2.8. Since ¢ (u) = ¢(v) by Lemma 4.2.5, b; is contra-
dictorily empty. Therefore u € 4 implies v € A.
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By symmetry v € A also implies u € A. Now u = v by Lemma 4.2.8. il

Theorem 4.2.10 If u,v are Ag-words such that Ay Eu=v, then u=v.

PROOF. The cases when u,v € P or u,v € A are covered in Corollary 4.2.9. So suppose
that

u = poaip1 - - 8Pk, v = qob1q: - - biq

are Ag-words that are not in P U A. Without loss of generality assume k < [. Choose
a € A such that ¢(a)Nc(uv) = 0. Then Ay = ua = va. By Lemma 4.2.7 and Lemma 4.2.8

alternately, we deduce successively that

Po = qo,
poa: = qobs,
Poaip1 = qobiqu,

P0a1P1 ‘- - 8kPk = qob1q - - - brqy,

that is, u = qob1q1 - - bgqx. Since ¢(u) = ¢(v) by Lemma 4.2.5, we must have k = [,

whenceu=v. i

Theorem 4.2.11 Letu,ve X™.
(1)  Ag |Eu=v if and only if uo = vAo,
(2)  The set of all Ag-words constitutes the Ag-free semigroup with the operation -

given by

u-v=(uv)t;

(3) Ag=[I,ILIII].

Proo¥F. It suffices to prove that =p = =a,. Suppose that u =4, v. Since u =p uho

Ao

and v =p vA° by Proposition 4.2.3, and since =p C =a,, we have u? =, vA°. Hence

Ao Ao

uAo = vAo by Theorem 4.2.10, whence u =p u®° = vAo = v, that is, u =p v. Therefore

=A, C =p and by Proposition 4.2.3, we have equality. li
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4.3 The Variety B,

B2:M0 ({172}a{1}?{1,2}; |:(1) (:: ])

is a completely 0-simple semigroup with five elements. Letting a = (1,1,2) and b = (2,1,1)

Recall that

in By, this semigroup has the following presentation:

By = (a,b | a® = b = 0,aba = a,bab = b)
= {0,a,b,ab,ba}.

It is easy to show that By = {0,a,ab,ba} is a subsemigroup of B,. It is helpful to note
that ab, ba and 0 are the idempotents in Bs. Following the same approach employed to find
a basis for Ap, Edmunds [3] established a finite basis for the variety B; =V (B3 ):

2 =22, zyr = 2%y = 2y’ = zyx? = zycy = 2%y% = yy.

In this section, we show that all balanced identities not satisfied by Ay have a common
consequence which is also not satisfied by Ag (Lemma 4.3.9). By investigating Edmunds’s
canonical words for B;, we also show that all balanced identities not satisfied by B have
a common consequence which is not satisfied by B, (Lemma 4.3.10). Similar to the case
for A, this common consequence not satisfied by B, defines an anti-atom of [Y, B, ], and
it will eventually be shown to be the unique anti-atom of £ (B; ) (Proposition 4.8.11).

Following the approach taken in the previous section, we first present and elaborate on

Edmunds’s method to establish a basis for B, .

Theorem 4.3.1 The semigroup B, satisfies the identities I, 11, III and

Consequently, By belongs to Ayg.

PROOF. Verification of this theorem is straightforward. ll

Recall that

P={z -+ 28% | 01,..., 0} are distinct, o; € {1,2}, k € N} U {0}.



CHAPTER 4. THE LATTICE OF SUBVARIETIES OF Ag 59

A word u € X+ will be called a B3 -word if u = 25! --- 23* € P such that
=41 =2 = 0; < 0it1. (4.5)

Whenever we say u = 257 --- z5* is a By -word, then it will be understood that o1,...,0%
are all distinct, a; € {1,2}, and the condition in (4.5) is satisfied.

Ifa=z{" mz’“ is a word such that z; # z;11 and a; € N, then define a = a:% .. x%
For each m € N, define the identities

Em: (22 28m) 2P = 28 (221 ... 20m) = 22... 22,

where a1, ..., an, f € N. Throughout this chapter, let
VvV = {I,ILIII ,V}. (4.6)
and let =v be the fully invariant congruence over [V].

Lemma 4.3.2 Let u,v € Xt and m € N. Then:
(1) Vikuw=m;
(2) VFEg;
B) Vrul=z?...22 ifc(u)={z1,...,2m};
(4) VEu2=v?ifc(u)=c(v).

PRrROOF. (1) We may assume u = 3! a:Z’“ where o; € Nand z; € X with z; # z;41.
Then

2 — @) 02 o 01 2 Qp
v’ = (20125 -zt adt) 232 - 2

= 2313 (zh2ias? - - - Tp*) by I, III and Corollary 4.2.2(1)
=g223 .- rixixd . 2l by I, III and Corollary 4.2.2(1)

= (mlml) (x%x%) (m%zﬁ) by V

= z{Ty " T by 1

(2) Clearly V - E;, so suppose that m > 2. Then

1 79? .. glmgh = (z2z3---22) 2} by L III and Corollary 4.2.2(1)

= (m%x%) m% . xfn by V

= 323 12, by I.
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To show z4, (28 ... x8%m) = 22... 12, is similar. Therefore V I Ey,.

(3) This is a consequence of (1) and V.
(4) This is a consequence of (3). W

For the rest of this thesis, all other varieties introduced will be subvarieties of B .

Lemma 4.3.2 will be used very frequently in their investigation.
Proposition 4.3.3 Each word in X is =y-related to a B3 -word.

PROOF. By Lemma 4.3.2(2), it is easy to show that each word u € X+ is =v-related to
aword 23} -+ zg* in P. If o; = 041 = 2 and 03 > 0441, then V can be invoked to replace

O
3i + (2” +1zgi. Hence the condition in (4.5) can be achieved by V so that

the subword zgiz by z

u is =y-related to a By -word. W

The B3 -word that is obtained from u by the method in the above proof is denoted by
uB2. The following two lemmas are required to prove the uniqueness of each B3 -word in
B;.

Lemma 4.3.4 Let u,v be B, -words such that B = u = v. Then ¢(u) = c(v) and

my (z) = my (z) for all z € X.

PROOF. Clearly ¢ (u) = c(v) since Y € B;. By the definition of a B3-word my (z) =
my (z) € {0,1,2}. Clearly m, (z) = 0 if and only if my () = 0. So suppose that my (z) = 1

and my (z) = 2. Then

u =uruy, V= V1.’L‘2V2

for some uy,u,vy,ve € Xt U {0} such that z ¢ ¢ (uyuav;vsy) and
c(u) Ne(ug) = c(vy)Ne(ve) =0.
Letting S denote the substitution

a fw=uz,
w— < ab ifwec(u),

ba if w € c(ug),

into By, we contradictorily have u (S) = a # 0 = v (S). Therefore my (z) = my (z). B



CHAPTER 4. THE LATTICE OF SUBVARIETIES OF Agq 61

Lemma 4.3.5 Let

Qn

- ﬁl Bn
o, v=azleez

=0 ...
u=z;l -z o

be B -words. If B, =u = v, then o; = 7; for all i.

PROOF. Seeking a contradiction, suppose that k is the least integer such that ox # 7.
Then
u = wgkuizziuy, v= wzf:vlzgfcv;g

for some words w,uy,uz,v1,ve € (X\{25,,2r,})T U {0} with pairwise disjoint contents.
Without loss of generality assume oy > 7. If the multiplicity of each variable in zg*u;27?
is two, then by condition (4.5), we contradictorily have oy < 75x. Therefore there must be a
variable z,,,, the multiplicity of which in z3*u;27* (and hence u) is one. Let S denote the

following substitution into Bj:

a ifi=m,

Rg; — ab ifi <m,

K

ba ifi>m.
Then u (S) = a. It is straightforward to see that aB; a = {0}. Therefore, since
Zr, (S) € {a,ba}, 2o, (S) € {a,ab},

we contradictorily have v (S) € By aB; aB; = {0}. B

Theorem 4.3.6 If u,v are B; -words such that B; Fu=v, thenu=v.

PROOF. The result follows easily from Lemma 4.3.4 and Lemma 4.3.5. B

Theorem 4.3.7 (1) Bj = u=v if and only if uP2 = vBz;
(2)  The set of all B; -words constitutes the B -free semigroup with the operation -
given by

u-v=(uv)Bz;
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PROOF. Proving (1), (2) and By = [V] is similar to proving Theorem 4.2.11. By
definition,
[V] = [V]N[LILII] = [V] N Ag = [V]*°.

Thus it remains to prove the last equality in (3). Now by Lemma 4.3.2(3) and III respec-
tively,

(zy)?z = z%y’c = zyz
so that V + (zy)? z = zyz. Hence, by Proposition 2.6.3,
AoN By = [LILIII] N [I, V, (zy)?z = :I:y:v]

= vIn [’z = zya] = [V].

In view of Theorem 4.3.7(3), a semigroup S € Ag belongs to B3 if and only if it satisfies
V. But in order to show that § satisfies V, it suffices (by the following lemma) just to verify
that its generators satisfy V.

Lemma 4.3.8 Let S = (s; | i € I) € Ag. If s7s3 = s2s? for alli,j € I, then S = V.

PROOF. Since Ay = [L,II,II]] it only remains to show that S |=V. Let a = s;, -+ 5;,,
and b = sj, - - 8;,. By assumption and since § € Ao, the generators {s; | i € I'} satisfy the
identities I, II, III and V. Hence they also satisfy the identity in Lemma 4.3.2(3), and

2p2 _ 2 ... 42 L2 ... 42

a”b = S Sim s]l 8]71
=62 ...g% .42 ...52
~3j1 SJn S'Ll sh-n
= b%a?

We shall end this section by presenting the identity that is a common consequence
within Ag (respectively, B3 ) of each balanced identity not satisfied by Ag (respectively,
B3 ). These results play important roles in determining anti-atoms of £ (Ag) and L (B3)

in later sections.
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Lemma 4.3.9 If 7 is a balanced identity not satisfied by Ag, then
{LILIIL, 7} F V.

PRroOOF. Since Ag does not satisfy 7, there must be two distinct Ag-words u,v with
{LILII,x} F u = v. From the proofs of Lemmas 4.2.5, 4.2.6, 4.2.7, 4.2.8, and Corol-
lary 4.2.9, it is straightforward to deduce that {I,II,III,u = v} implies one or both of

2,22 2,2 2,22 2 2,2,
ryr =1y, ryry =Ty

let (A), (B) denote these identities respectively. Now {(A),II} F V since
2% = 2222 by (A)
= y2z?y? by II
=y’a® by (4),
and {(B),I,1I} F V since
22 = (z2%%)y® by (B)
= 1222 (y2%?) by 11
=y’z’y’® byl
= g%y2e? by II
= (:c2y2x2) z? by I
= y?z?y%e? by 11
= y2x? by (B).

Therefore {1, ILIII, 7z} + V. A

Lemma 4.3.10 If 7 is a balanced identity not satisfied by B, then
VU {r} + 2?y?w? = 2%yu’.

PROOF. Note that the pair of words forming 7 are each =[yy(.)-related to a B, -word,
say u, Vv, whence the variety defined by VU {u = v} is identical to that defined by V U {r}.

Therefore we may assume 7 to be u = v, where

Ok

= ,01 = ﬂl... Bk
u_Zal Za.k, V-ZT1 ZT)C
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with {o1,...,0k} = {m1,...,7}. Suppose o; = 7; for all i. Then «; # f; for some i, say
(o, 85) = (1,2). Letting S be the following substitution
22 ifi < j,
Zg; — Yy ifi= Js
w? ifi>j,

2

into X+, we have 22u (S) w? = 22yw? and z?v (S) w? = £%y?w? by I, so that

{Lu=v}F {I,z%u(S)w? = 2?v (S) w?}

F 2?yw? = 2?yw?.
Y y

Therefore it remains to consider when o; # 7; for some i. Let j be the least such that
oj # 7j. Then

= 01, ., 1,0, L — B, Pi-1 B B
u =z 2gj_1 Z0; U127, U, vV =25 Zgj_1 %1; V125, V2

for some uy,uz, vi,ve € (X\ {zt,j,zT].})Jr U {0}, o, B € {1,2}, and

c(up) Ne(ug) =c(vy)Ne(ve) =0.
Now

u = h2zgf u; 27 Uy, v = hzzfjjvlzgj Vo
are obtained from u and v, respectively, by either making the substitutions z,, = -+ =
zg;_, = h? into X T if j > 1, or premultiplication by h? if j = 1. Without any loss of
generality assume o; > 7;. If the multiplicity of each variable in z?j ulzgj is two, then by
condition (4.5), we contradictorily have o; < 7;. Therefore there must be a variable ¢ in
zgj ulz% the multiplicity of which is one. There are two cases: t € ¢ (z?j u1) or t = 2.
Case (i) Supposet € ¢ (z:j uy). Then postmultiplying u’ and v’ each by 2r;, We have
u’z.,]. = hzzgjul (z% ungj)

=y h2z?j ulzzj u3 by Lemma 4.3.2(2)

=v hQng ulzzju_z by Lemma 4.3.2(1),
and

Ve, = h? (zfjj vlz{ijQsz)
=v h2z3j (vlzgjv2>2 by Lemma, 4.3.2(2)

=y thfjvlszjw by Lemma 4.3.2(1).
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Let u” = h2z;’ w27 @ and v" = h%22 v zfj v,. Consider the following substitution T into
X+

2

z? if s preceeds ¢ in u”,

s— sy ifs=1,

w? if s follows ¢ in u”.

Since the multiplicity of ¢ in z?j u; is one, its multiplicity in u” is also one, whence u” (T) =
z2yw? by invoking I if necessary. Note that v” is a product of squares so that v”(T) =

z?y?w? by I and V. Hence

Vu{u=v}kvu{u =v"}
- :1:21/21112 = m2yw2.

Case (ii) Suppose that t = z,, (whence & = 1). Then premultiplying u’ and v’ by z,;,

we have
2o, 0 = (24, h?z5!) uytuy
=y thf.j ujtug by Lemma, 4.3.2(2)
and

~

2g;V = (zgjh2tﬁfvlz£j) Vo
=y h2t2v%z§jv2 by Lemma 4.3.2(2)
=y h*t*V1z5va by Lemma 4.3.2(1).
Let u" = h2zng1tU2 and v = h2t2v_1z(2,jv2. Consider the following substitution U into
Xt: :
z2 ifs€c (hzzgjul) ,
s — y ifs=t,
w? ifs€c(uy).
Then u” (U) w? = z%yw? by I and V. But note that v"" (U) w? is a product of words from
{z?,y%,w?} so that v" (U) w? = z2y?w? by I and V. Therefore
VU{u=v}Fvu{u" =v"}

F m2y2w2 = :B2yw2.
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Corollary 4.3.11 (1) IfU€[Y,Ay) then U C By;
(2) IfUE€e[Y,B;) then U C [2%)*w® = z2yw2]B2 .

PrOOF. (1) Suppose U € [Y,Ap). Then there exists some balanced identity 7 such
that U =7 and Ag ¥ 7. By Lemma 4.3.9, U € [I,IL,III, 7] C [V] = B;.
(2)  This is similar to (1) but by invoking Lemma 4.3.10 instead of Lemma 4.3.9. l

4.4 The Semigroup U, in Ay

In this short section, we present an infinite subsemigroup Uy, of AF°, the cartesian product
of countably infinite copies of Ag. It will be shown that Uy actually generates Ag (Proposi-
tion 4.6.15). Therefore we record only those observations that are required in later sections.
Being infinite, U, is obviously not a very convenient generator of Ag. But its size has other
advantages, one of which is the ability to possess infinitely many proper factors generating
infinitely many subvarieties of Ag (which will be introduced later in the chapter). Further-
more, the proper factors of Uy, serve as infinite models for identities involving arbitrarily
many variables to test against, a task for which the four elements of Ag are less well suited.

Let the components of A3° be indexed by N, that is, AJ° = 51 x Sy X -+ where S§; =

Sy = ... = Ayp. For each ¢ € N, define the element u; of A5° componentwise by
fifm<i,
(W), =4 of ifm=1,
e ifm>i,

and define 0 = (0,0,...). Then Uy, = (u; | ¢ € N) U{0} is a subsemigroup of AJ°. Note that
wu Uy = g if 1 < § < k, and that

a

u; =(f,---,f,(2f)a,e,e,,,_
i—1

)_ (fa"'afaefaeve,---) ifO.’:l,
- (f,"wfaoae,e,n-) lf0122

Lemma 4.4.1 A nonzero element of AL is in Us if and only if it is of the form

(fa"'7f’ml,"'amnaeyey---) (47)

m

where z1,...,2, € {0,¢f}, m >0 and n > 1.
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PROOF. It is straightforward to show that nonzero elements of Uy, are of the form (4.7).

Conversely, note that

upl eeeudn = (. () ()™ e, )
m
where
(ef)% = of ifon=1,
0 if Q; = 2.

Hence elements of the form in (4.7) are also in Uy,. l

The nonempty sequence (z1,...,T,) in (4.7) shall be called the nilpotent sequence of x.
The nilpotent sequence of 0 is defined to be itself. The following lemma, the verification of

which is straightforward, will be useful in later sections.

Lemma 4.4.2 Let z € Uy, U{0}. Then:
(1)  Ifi<j then (wuj), = ef fori <k < j;
(2)  Ifi>j then (wzy;), =0 fori <k <.

Let Ny = NU {0} and N = NU {0,00}. For convenience, a sequence si,...,8n
(respectively, word s;---sp,) is associated with the empty sequence (respectively, empty

word) whenever m = 0. For any [,n,r € N°, define the following identities:

(Ilim:r): xly,%_,_lw, = X¥nt1Wr ifn € Ny,
xiylewr = xyz®w,  if n = oo,

where

z2 ifl = o0,

{ zy-xp if 1€ N,

X =

and yn+1 and w, are defined analogously. These identities will be used extensively in later
sections to define the subvarieties generated by the proper factors of Uy,. The variety defined

by (I : n : r) shall simply be written as [l : n : r].

Lemma 4.4.3 For alll,r € N§° and n € Ny,

Qn+1

_ B-
[l:n:r]Bz = [xlytlxl"'yn+1 Wr =Xy1 - Yn1Wr | 1 <y SZ] 2.
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PROOF. Let U (respectively, V) denote the variety on the left (respectively, right) of

the above equality. Since

Qn —_— Qn41 2 . .
Xyt yan it we =ux (U upitt) we by (Linir)

=uxi (Y1 Yns1) Wr by Lemma 4.3.2(4)

=U X Yn+1Wr by (l:n:7),
we have U C V. Conversely, assuming the identities in U,

X|Yo i Wr SV Xy Y2 Wy by Lemma 4.3.2(3)

=V XY Un+1Wr = X(Yn+1 Wy

Therefore VC U. B

In view of Lemma 4.4.3, the identities
XYy W = X1 - Y1 W (1<a;<2)

and xlyfb +1Wr = X|¥n41W, define the same subvariety of B, whenever n € Ng. We shall
use both forms interchangeably as the former has wider applications while the latter has a

simpler expression.

4.5 The Varieties L; and R,

In this section, we introduce the semigroups L; and R, indexed by [, € N§°. As suggested
by the choice of notation, these semigroups are symmetrical duals of each other. Thus it
suffices (and we choose) to investigate L;, the approach for which follows very similarly
to that in Sections 2 and 3. It will also be shown that the varieties L; (respectively, R,)
generated by L; (respectively, R,) form a strictly increasing complete chain (Corollary 4.5.8
and Proposition 4.5.12).

We begin by presenting the foundations needed for the introduction of L;. Let z,y € U.
We write £ ~ y if the nilpotent sequences of z and y occur at the same coordinates, and
write zAy if the first 0 entry (if any) of  and y occur at the same coordinate. Let 2 denote
the intersection of the relations ~ and A. Note that by definition, z » 0 for all z € U\ {0}.

Proposition 4.5.1 The relations ~ and 2 are congruences on Ux.
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PROOF. It is easy to see that ~ and X are equivalence relations and so is 2. Tt is routine
to verify that if z ~ y (respectively, z 2 y), then u;z ~ w;y and zu; ~ yu; (respectively,

A by . by
w;z ~ u;y and 2u; ~ yu;) for all 4. Therefore both ~ and ~ are congruences on Us,. M

Note that for fixed 7,7,k > 0 and z1,...,z; € {0, ¢f},

by
(Fy.--,5,ef,...,ef,0,T1,..., 2k, e,8,...) ~ (f,...,f,ef,...,ef,0,0,...,0,¢e¢,...)
L N e e, risirar? e, g

i J 1 J k+1
Note also that the 2-class of each u; is singleton. Let [; denote the A-class of each u;. Then

for each I € Ng°,

{2,122} ifl1=0,
Li=4 (u,...,h,1,) ifleN,
(L|ieN) if I = oo,

is a subsemigroup of Uy, / . Note that Ly is isomorphic to the semilattice Y of order two.
Ifl €N, then ... 2 | is the zero element of L;, while Lo, has no zero. It is easy to show
A .
that u?u? ~ u?u? for all 4,5 € N so that (% = 212,
Let L; denote the variety generated by L;, and let £ = {L; |l € NJ°}. It is easy to see

that L, C Ly, whenever [,m € N° and [ < m. Therefore the varieties in £ form the chain
Y=LiCL; C--- C L. (4.8)

We now proceed to show that Ly = [I:0: O]B;. In this section, [ always denote an

element in Nj° unless otherwise specified.

Theorem 4.5.2 The semigroup L; satisfies the identities in VU{(l : 0: 0)}. Consequently,
Ly belongs to [1:0: 0Bz .

Proor. Clearly L; satisfies I, II, and III since it belongs to Ag. By the discussion
following the definition of L;, 2 [? = [? [? for all 7, 7 € N. Thus L; satisfies V by Lemma 4.3.8,
whence L; |= V. It remains to show that L; = ({ : 0: 0). There are two cases: [ € Ny and
l = o0.

Case (i) Suppose | € Ny. Then (I:0:0) is the identity x;y?> = x;y. Since L is
isomorphic to Y which satisfies the identity y? = y, we assume that [ > 1. We first show

A
that x;92 ~ xy for all z,...,2,,y € {ul,...,ul,ulz+1}. We may assume y # ul2+1 because
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u?,, is an idempotent. Since y? ~ y and ~ is a congruence on S, we have x;y° ~ xy.
Therefore it remains to show x;y2Ax;y.

Note that the nilpotent sequences of x;y? and x;y occur between the first and [ + 1%
coordinates inclusively. Seeking a contradiction, suppose x;y? and x;y are not A-related.
Then there exists a least integer m < I+ 1 such that (x;3%),  # (x1),,, whence one of
(xly2)m , (X1y),, is O while the other is ¢f. Since x;3% ~ x;y, the m'! coordinate is also the
first coordinate in which either x;y? or x;y is 0. If (x;3),, = 0, then we contradictorily have

(xly2)m = (x1Y),, (¥),, = 0. Hence we must have

W) =¢  (xy?),, =0. (4.9)

Now
0= (x®),, = *W)m W) = f @)
so that (y),, € {0,¢,¢f}. If (y),, = 0 then y = u?,; in violation of our assumption. If
(y),, = ¢ then y = u; for some j < m so that (xlyz)]. = (x1); (ef)2 = 0, contradicting the
minimality of m. Therefore (y),, = ef and y = u,, with m < necessarily.
Having shown that y can only be u,,, we proceed to show that any choices of z; from

{ul, .oy Uy, ul2 +1} will result in a contradiction. If z; = ul2 1 for some 4 then

(xly)m - ( "Uz2+1 . "um)m =0

by Lemma 4.4.2(2), which contradicts (4.9). Therefore z; # ul2+1 for all i. If zy,...,2; €

{u1,..., wm—1}, then u; will appear twice in x; for some ¢ € {1,...,m — 1} so that (x;y);, =0
by Lemma 4.9(2), contradicting the minimality of m. Hence z; € {up,...,u} for some i;
but

(le)m= ("'xi"'um)m’—‘o

by Lemma 4.4.2(2), contradicting (4.9). But that exhausts the possibilities and in all cases
we have a contradiction. Consequently x;y° 2 Xy, or equivalently, the identity x;3° = x;y
is satisfied by I1,..., 0, 2.

Now for any elements ay,...,a;,b € L;, we have b = by - - - by where b; € {[1,...,[1, [12_,,1}-
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Then

ar--ab® =ay--ap (b by)?

=ay---ab?- b} by Corollary 4.3.2(3)

ai--apby--- by by first part of the proof

=a1-~alb

Hence L; = x;9° = xpy.

Case (ii) Suppose ! = co. Then (00 : 0: 0) is the identity z%y? = zy. It is straightfor-
ward to show that z%y? = %y holds for all z,y € {I; | i € N}. Therefore if a,b € L, say
a=ay---ap and b= by --- b, with a;,b; € {I; | i € N}, then

a?b? = (a1~ ap)? (by - -+ b,)*
=a?... af,b% e bg by Corollary 4.3.2(3)
=a1--~a,2,b1---bq
=(ay--- a,,)2 by« by by Corollary 4.3.2(3)

= a?b.

Hence Ly = 2%y® = z%y. A

Lemma 4.5.3 [0:0:0/2 C[1:0:0/%2 C-.. C[00:0:0]Pz2.

PROOF. Clearly (0:0:0) F (1:0:0). Substituting z; — z;z;4; in the identity x;3% =
x;y yields the identity x;.14% = x;41y. Hence ({:0:0) - (1+1:0:0) for all [ € N.
If all z; in x;9° = x;y are replaced by z?, then we have X, y? = Xooy by I. Therefore
[1:0:0B2 Cloc:0:0/B2 forallieN. W

A B, -word u = 27} - - - 2% will be called an L;-word if
(L1) k2l+1= 41 =2
(L2) o=2=a;j=---=ap=2.

Note that condition (L1) is vacuous when ! = co. The following lemma contains a more

convenient description of L;-words.

Lemma 4.5.4 A word u is an L;-word if and only if one of the following statements hold:
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(1) u=2, -2, whereoy,...,ox are distinct and 1 <k <[;
(2) u=z, --'zap_lz?,p---zgk where o1,...,0% are distinct, 0p < -+ < op and 1 <

p<Il+1.

PROOF. Suppose u = 27} - 25* is an L;-word. If o; = 2 for some %, then there exists a

least p such that a, = 2. Note that p <1+ 1 by (L1). Hence

u = 2, ---zap_lzgng‘;’jf ezgh,
Now ap = --- = oy = 2 by (L2). Since u is also a B3 -word, it satisfies the condition in (2).
If ; = 1 for all 4, then k < [ by (L1), whence u satisfies the condition in (1).

Conversely, it is easy to see that the words in (1) and (2) are L;-words. H

For this section, let =(;.0.0) denote the fully invariant congruence over [V U {(l: 0: 0)}].
By Lemma 4.5.3,

VUu{(0:0:0}FVU{(1:0:0)}F---FVU{(c0:0:0)} V.
Proposition 4.5.5 Each word in X% is =.q.0)-related to an Lj-word.

PROOF. Let u € X*. Since V:0:0) I V(co:0:0), any word deduced from u by invoking
identities in VU {(/: 0:0), (00 : 0: 0)} is =(;0.0)-related to u. In particular, u =0, uBa
say uBz = 221 ... 22k,

Case (i) Suppose a; = 2 for some i. It is easy to see that (1 : 0: 0) and (0o : 0 : 0) can be
used to deduce from uBz a word of the form u; = 2,, - - z,,p_lz?,p ez2 withl1 <p<I+1.
The ordering o, < - -+ < 0k can be achieved by invoking V, so that by Lemma 4.5.4(2), u;
(and hence uP2) is =(;,q,9)-related to an L;-word.

Case (ii) Suppose a; = 1foralli. If k > [ + 1 then ;41 =2 by (1:0:0) so the result

follows from Case (i). If k < [ then uP2 is already an Lj-word by Lemma 4.5.4(1). B

The L;-word that is obtained from u by the method in the above proof is denoted by ul.
We need to introduce another concept on By -words to help show that =(;.o.0) distinguishes
distinct Lj-words. Let u = 271 ---27% be a By -word. Define the Il-left segment Tl ofuas
follows. If I = 0 or oy = 2, then ol = 0; if I > 1 and a3 = 1, then ! is the subword

[¢3 . . . .
zgl - - 25, of u where p is maximal in IIll such that o = -+ = o = 1. If we say 2z, e Zg, 18
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an [-left segment for some word, then it is understood that the subscripts o1,...,0p are all
distinct and that p < I. Recall (by Lemma 4.5.4) that an L;-word has one of the following

forms (with o1, ..., 0 distinct):
Ui = 2g; 2oy, 1§k§l,
uQEz(,ln-z%_lz?,p---zgk op<-+<opand1<p<Ii+1

(note: if p =1 then z,, -+ 25,_, = §). In this case, ! = 24, - - - 25,, where m = min {k, [},

m

and 15! = 25, - - 25, where n = min {p — 1,1}.

Lemma 4.5.6 Let u and v be B, -words such that ¢ (u) = c(v). If Tl £ ¥ then
Vu{u=v}t(s:0:00)

for some s < l. Furthermore, U = ¥* and e+l 2 ¥stl,

PROOF. Let u= 20! ---z0* and v = sz zT'B,f be B -words. Then there exist p,q <

ok
such that

\Tl‘:‘zal-nzap, V’Ezn---qu.

Without loss of generality assume that p < ¢. Note that (s : 0 : 0o) is the identity x;yw? =
xsy2w?.

Suppose ! £ . Then there are two cases: p=gqandp<q.

Case (i) Supposep = q. Then (0y,...,0p) # (71, ..., 7p), whence there exists a smallest
possible s < p such that (o1,...,05) = (11,...,7s) and 0541 # Ts4+1. Let S denote the

following substitution into X*:

T if 1 S ) S 8,
2 — S y ifi=s+1,
w? ifi>s+1.
Then u (S) w? =v x,yw? by I, and

v(S)w? =xw? -y w?

=v x.y°w? by Lemma 4.3.2(2).
Hence V U {u = v} implies x;yw? = x,y%w?.

Case (ii) Suppose p < ¢. If (01,...,0p) # (71,...,7p) then the result holds by

an identical argument to that in Case (i). Hence it remains to consider the case when
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(01,...,0p) = (71,...,7p). Note that since p < ¢, we must have Bp1; = 1. But if apy1 =1,
then ! would be Zgy *** Zo,4, *** instead of 24, -« 25, & contradiction. Therefore apy1 = 2.

Now let T denote the following substitution in X*:

zp, — Sy ifi=p+1,
w? ifi>p+1.

Then v (T) w? =y x,yw? by I, and

2, 2 2 :
Xpy“w® - - w ifop1 = 7p11
u(S)wzz{ P Pt p+h

xp'w2 ~.qy---w?  otherwise,

xpy2w2 by I,
=v

xpy2w? by Lemma 4.3.2(2).

Hence V U {u = v} I xpyw? = x,y?w? and the claim holds with p = 5. I

Proposition 4.5.7 Let u and v be B; -words. Then L; = u = v if and only if ¢ (u) = ¢ (v)
and Wl = VL.

PROOF. Suppose ¢(u) = ¢(v) and &' = ¥V, say W' = Zgy ** " Zg,. Then there exist
ui, vy € X U {0} such that

U =25, 00 Zg, Uy, V=25 0 Z0,V1-

Clearly u; = 0 if and only if v; = @, whence we may assume ui, vy # 0. There are two
cases: p<landp=1I.

Case (i) Suppose p < I. If the first variable a of u; has multiplicity one, then @' would
be z5, -+ z5,a- - - instead of 25, -+ 25,. Hence u; = a’uy for some uy € Xt U{0}. Similarly,
vi = bvy for some v, € X1 U {0} and b = b (v2). Note that ¢ (auz) = ¢ (bvy), therefore
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u; = a’uy
=(00:0:0) au? by (00:0:0)
=y (auy)? by Lemma 4.3.2(3)
=y (bv)? by Lemma 4.3.2(4)
=y b°vZ by Lemma 4.3.2(3)
=(00:0:0) b2vy by (00 :0:0)

= V3.
Consequently,

LiEVUu{(l:0:0)} by Theorem 4.5.2
FVU{(c0:0:0)} by Lemma 4.5.3

F u; =vi Fu=wv.
Case (ii) Suppose p =1[. Then

U2, 2o
=(1:0:0) %oy ---zaluf by (I:0:0)
=v 24, ---zapvf by Lemma 4.3.2(4)
=(1:0:0) %oy " 2o, V1 by ({:0:0)
=v.
Therefore Lj =V U{(l:0:0)} Fu=wv.
Conversely, suppose L; = u = v. Then clearly ¢ (u) = ¢(v) since L; contains Ly = Y.

Seeking a contradiction, suppose ! # ¥, Then by Lemma 4.5.6, VU{u = v} I (5: 0 : c0)

for some s < [. Thus L; satisfies

2

(s:O:oo):ml---msyzw =1 Toyw?.

But Iy L1212, 5 # 1+ [l41[2,, because the first 0 entry of the element on the left
occurs at the s+ 15 coordinate, while that on the right at the s+2°4, Hence L; ¥ (s: 0 : 00)
contradictorily. ll
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Corollary 4.5.8 The varieties in £ form the strictly increasing chain
LoCL; C+ - CLx.

PROOF. Suppose [ < m. By Proposition 4.5.7, L,, is a semigroup in L,, that does not
satisfy (I : 0: 0). Therefore Ly, ¢ L; and L; # L;,. The result now follows from (4.8). ll

Theorem 4.5.9 If u,v are Lj~words such that Ly Fu=v, then u = v.

PROOF. By Lemma 4.5.4, an L;-word has one of the following forms

Zgy 2y 1<k<l,
zt,l---z(,p_lzg---z2 1<p<i+1.

P Ok

It is easy to see that if two such words form an identity of L;, they must be identical by
Proposition 4.5.7. B

Theorem 4.5.10 (1) L; = u=v if and only if ult = v,

(2)  The set of all Lj-words constitutes the Ly-free semigroup with the operation - given
by
)Lz .

u-v=(uv)”;

(3) Ly=[VU{(l:0:0}]=[t:0:0]B:.

PROOF. The proof of this theorem follows closely to that of Theorem 4.2.11. Il

If I is finite then L; is finitely based and generated by the finite semigroup L;. Although

Lo is also finitely based, it is not generated by any finite semigroups.

Proposition 4.5.11 The variety Lo, is not generated by any finite semigroup. Consequently,

L, is generated by a finite semigroup if and only if | is finite.

PROOF. Suppose § = {s1,..., sk} is a nontrivial semigroup in Le,. Let z1,...,Zx11 € S.

Then z; = z; in S for some 4,5 with i < j. If j =k + 1, then

2
Ty Tt (Ti o ThTht1) = Ty o v Tio1%i 0+ Ty



CHAPTER 4. THE LATTICE OF SUBVARIETIES OF Ay [

by III. If j < k + 1 then

Ty Tio1 (Ti s Tj—1Z5) Tig1 - Tkt
2
:371"'Ii"'-Tj—l-’L'jCUj+1"'CL'k+1 byIII
2 2 n.
=xl"'wi"'wj—lxj(.’L"j+1"'$k+1) by (00.0.0)
2 2 \2
=Xy Tyt Tj-1T5 ($j+1 e xkka) by Corollary 4.3.2(4)
2 2 n.
:371"'(xi"'wj—lxj)wj+1"'$k$k+1 by (00:0:0)
2
=3"1‘"mi"'wj—lmjxj+1‘"$k$k+1 by III-

Therefore, S satisfies (k : 0 : 0) and is contained in L, whence by Corollary 4.5.8, it cannot
generate L,. ll

For a subset C of Ng°, let sup C denote the least upper bound (supremum) of C' in Ng°,
that is,
{ max C if |C| < o0,
supC =

o0 otherwise.

Proposition 4.5.12 The chain £ is complete. In particular, if C C Ng° then

ﬂleCleLminC» \/leCleLsupC-

PROOF. Clearly ;cc Li = Liminc and that V;co Ly = Ujcc Lt = Lmaxc if C is finite.
Hence suppose C' is infinite. Seeking a contradiction, assume \/,co Ly = V # L. Then
there exists an identity u = v such that V |5 u = v and Ly, # u = v. Note that ul~ = yleo
will still be an identity such that V |z ule = vleo and L, ¥ ul~ = vle. Since ul~ and
vl have the same finite content, say with m variables, they are indeed L,,-words. Now

there exists some k& € C such that £ > m. Since
Ly, C Ly €V Eule = vl

we have ul' = vl» by Theorem 4.5.9, whence ul> = vl'= is contradictorily satisfied by

L. Consequently ;- Ly = Lo and £ is complete. [ |

We now define the semigroup R, that is the dual of L,, for n € N§°. Let R,, = (Ly, ) be
the semigroup with L, as its underlying set of elements and * as binary operation defined
by

Txy =y,
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where the product on the right of this equality occurs within L,. Then the variety Ry,
generated by R, is defined by the dual basis of Ly:

R,=[VU{(0:0:n)}]=[0:0:n]P2.
It is more suggestive to use 7 as the subscript for R;, just as ! is dually used in L;. Define
R={R,|reNy’}.

It is clear that all the concepts and properties of L; and £ carry over symmetrically to R,
and R; we state some of these for the convenience of the reader.

A B;-word u = 23} - - 23 will be called an R,-word if
(R1) k>r+1= opr=2;

(R2) a=2=o1==0o;=2.
Note that condition (R1) is vacuous when r = oco. The R,-word that is =gr,-related to a
word v is denoted by v&r.

Let u = 23! --- 23* be a By -word. The r-right segment °" of u is defined as follows. If
r=0or a =2 then qur = 0; if r > 1 and o4 = 1, then U is the subword zgj <ezgk of u
where ¢ is minimal in Hﬁ_rﬂ such that ag = --- = a; = 1. If we say 2z, - - 25, is an r-right
segment for some word, then it is understood that the subscripts oy, ..., o0 are all distinct

and that k& — r + 1 < g necessarily.

As a dual to Lemma 4.5.4, an R,-word has one of the following forms (with o1,...,0k
distinct):
U1 = Zg, ' * 20y, 1<k<l,
2 2

Up =25 0 25 Zogyr " oy, o1<--<ogand k—r<q<k,
(note: if ¢ = k then 2z, 2, = 0). In this case, IT{’" = 2o, %0, Where m =

max {1,k —r+ 1}, and U3" = z,, - - 25, where n = max{g+ 1,k —r+1}.

Proposition 4.5.13 Letu and v be B3 -words. Then R, |=u = v if and only if ¢ (u) = ¢ (v)
and U™ = V.

Theorem 4.5.14 (1) R, Eu=v if and only if ulr = vBr;
(2)  The set of all R,-words constitutes the R,-free semigroup with the operation -
given by

u-v=(uv)R’;

3 R,=[0:0:7]B2.
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Proposition 4.5.15 The variety R, is generated by a finite semigroup if and only if r is
finite.

Proposition 4.5.16 The chain R is complete. In particular, if C C N§° then

R, = Ry R, =R .
ﬂrEC’ T minC' reC T sup C

4.6 The Varieties N,

In this section, we introduce the semigroups N,, indexed by n € N§°, and investigate them
with a similar approach to what we did for L; and R, in Section 5. For each n € N°,
the variety N,, generated by N, is contained in both L, and R, (Corollary 4.6.2(1)). But
the semigroups N,, do resemble L; and R, as we will show that the varieties N, also form
a strictly increasing complete chain (see Corollary 4.5.8 and Proposition 4.5.12), and that
N cannot be generated by any finite semigroup.

Let 1 be the relation on U, that only identifies elements that have at least one zero

coordinate. Equivalently,
vY=(ZxZ)U{(z,2) |z € Ux}

where Z is the set of all elements of Uy, with some zero coordinates. It is straightforward
to show that 7 is a congruence on Uy. For n € N, define the subsemigroup Ny, of U /%
by

Ny=(n|1<i<n)u{0}

where n; = u;/19. Note that if ¢ < j < k, then the element u;u;ury = u;ux has no 0
coordinates, so that ninjng = nyng. But if ¢ > j, then nan; = 0 for all a € Ny,. Therefore
all nonzero elements of Ny, are of the form n;n; with i < j. If we define (J) = (3) = (¥) =0,
then N, is a semigroup of order (3) +n+1 for all n € Ni°. In this section, n always denote
an element in N5° unless otherwise stated. |

Let N, denote the variety generated by Ny, and let M = {N, |n € N°}. Clearly

Ny, C Ny, whenever m,n € Nj° and m < n. Therefore the varieties in 91 form the chain
T=NoCN; C--- C Ng. (4.10)

Let u be a word that involves the variables z1,...,z,, and suppose z # z; for all 7. If

S is a semigroup satisfying the identities uz = zu = u, then u(ay,...,a,) is the zero in §
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for all a,...,a, € S, since
u(ag,...,a,)b=>bu(a,...,a,) =ula,...,an)

for all b € S. Hence it is unambiguous to write u = 0 in place of uz = zu = u. Recall from

Section 4 that

2

T1-- T, ifn €Ny,
X, = ]
x if n = oo.

For this section, let V,, = VU {xp41 = 0}. In particular, Voo = VU {z? = 0}.

Theorem 4.6.1 The semigroup N, satisfies the identities in Vy,. Consequently, Ny, belongs

to [Xn41 = 0]52 .

PROOF. It is easy to show that N, |= 22 = 0 = zyz F V. Also it is easy to show that
Np | Xnt1 = 0 if n € {0,00}. Therefore we may assume n € N. Now if ay,...,an41 € Np,
then some generator from {ny,...,n,} must appear twice in the factorization of a1 - - - an 1.

Since N, satisfies z2 = 0 = zyz, this product must be 0, whence N, = xp41 = 0. B

Corollary 4.6.2 (1) N, CL,NR, for all n € N°;
(2) Y ZN, foralln e N°.

Proor. (1) Since

Ti - TpZpe1 =0 ifneN
Xn+1=0}'
=0 if n=o00
1Tyl =0=2z1 -2,y ifneENy
z2y? =0 = 2%y ifn=o00

F(n:0:0),

N, C L, by Theorems 4.5.10(3) and 4.6.1. To show N,, C R,, is symmetrical.
(2) Clearly Y does not satisfy x,41 = 0. Therefore Y ¢ N,, by Theorem 4.6.1. Il

Lemma 4.6.3 VoV F ...V Foyz =0.
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ProOOF. Clearly x,4+1 = 0 F x40 = 0 for each n € Ny so that V, - V,,4q1. Forn > 1,
Xpt1 = 0 F 22 = z"! = 0 by 1. Hence V, F V4. Finally, 22 = 0 - zyz = z%yz = 0 by
III1. Hence Voo F zyz = 0. B

A word u € X+ will be called an N,-word if either u = 22, or

U=25 0 20,

for some distinct o1,...,0; € N and & < n. Let =, denote the fully invariant congruence
over [V,] in this section. As in previous sections, it will be shown that each word in X7 is
=,-related to an N,-word. Note that V,, F 2 = 0 by Lemma 4.6.3. Therefore the =,-class
of 22 is actually the zero of X*/ =,. Thus it is unambiguous and more convenient to write
0 instead of the Ny-word 2%. If we say u = z,, -+ 25, is a (nonzero) Np-word, then it is

understood that oq,..., 04 are all distinct with k& < n.
Proposition 4.6.4 Each word in Xt is =,,-related to an N,-word.

Proor. If u is linear with at most n variables, then it is already an N,-word by
definition. Otherwise u contains a variable with multiplicity two, or it is a product of at
least n + 1 variables. In the former case, u =, 0 since V,, F 22 = zyz = 0 by Lemma 4.6.3;

in the latter, u =, 0 by x,,.; = 0. B

The Ny-word that is obtained from u by the method in the above proof is denoted by
uN». Among all canonical words defined for different varieties in this thesis, N,-words are

the simplest and easiest to describe:

N, u if uis linear and |u| < m,
u"=
0 otherwise.

Lemma 4.6.5 Let u,v be nonzero Ny-words. Then N, = u = v impliesu=v.
PrOOF. We may assume that
uEzo_l--.za_p, VEZTI--;qu

where p,qg < n. If 0; ¢ {71,...,74}, then letting S be the following substitution

I if90=7"i,
0 otherwise,
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into Ny, we contradictorily have u(S) = 0 # ning = v (S). Therefore ¢(u) = ¢(v) and
p = q. Now the sequences (01,...,0p) and (71, ...,7,) must be the same because otherwise,

for some ¢ > j, we have

Theorem 4.6.6 If u,v are Nj-words such that N, Eu=v, thenu=v.

PROOF. It is obvious that if one of u,v is 0 then the other must also be 0. Therefore

assume both u, v to be nonzero, whence the result follows from Lemma 4.6.5. ll

Theorem 4.6.7 (1) N, E=u=v if and only if uN» = vN»;
(2)  The set of all Ny-words constitutes the Ny-free semigroup with the operation -
given by

u-v=(uv)N”;

(3) Np=[VU{Xpp1 =0} = [Xp41 = 0]2 = [Xpt1 =22 =2zyz =0].

PRrOOF. To prove (1), (2) and the first two equalities of (3) is similar to proving Theo-
rem 4.2.11. It remains to verify the last equality of (3). By Lemma 4.6.3,

[Xnt1 = 0]P2 C [Xnt1 = 2% = 2yz = 0],

and the reverse inclusion follows from the easy observation that z2 = zyz =0+ V. R

For the remainder of this section, we will establish some results for N,, that are common
to L; and R,, namely, that 91 is a complete chain and N, is not generated by any finite
semigroup. We will also characterize, with the help of N, all subvarieties of Ag that do not
contain Y. Some consequences of this characterization include a representation of £ (Ap)

as a disjoint union of two intervals, and that B, is the unique anti-atom of Ag.
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Corollary 4.6.8 The varieties in 9 form the strictly increasing chain
NoCN;C---C Ny

PROOF. Suppose m < n. By Theorem 4.6.7(3), N, is a semigroup in N,, that does not
satisfy x;m4+1 = 0. Therefore N, ¢ N,,, and N,,, # N,,. The result now follows from (4.10).
|

Proposition 4.6.9 The variety N, is not generated by any finite semigroup. Consequently,

N, is generated by a finite semigroup if and only if n is finite.

PROOF. Suppose that S is a nontrivial semigroup in N, with k£ elements and let
S1y---58k+1 € S. Then two of sq,...,8;41 must coincide so that since S satisfies 22 =
zyz = 0, we must have s;--- s,y = 0. Consequently S satisfies xx; = 0 and is in Nj.

Therefore by Corollary 4.6.8, S cannot generate N, Il

Proposition 4.6.10 The chain N is complete. In particular, if C C N3° then

nneanszinC, \/neCNn=NsupC-

Proor. Clearly ,cc Nn = Nuine and that V.o Np = Upce Nn = Nmaxe if C s
finite. Hence suppose C is infinite. Seeking a contradiction, assume Vaec Nn =V # N
Then there exists an identity u = v such that V = u = v and N ¥ u = v. Note that
ulNe = vNeo will still be an identity such that V |z uNe = vNeo and N, # uNeo = vNeo,

Suppose uNe is 0. Then vNe cannot be 0 and so must be linear. Hence V Ex,=0
where k = IVN°°|. But there exists s € C such that s > k, whence we have N, C V |
x; = 0, contradicting Corollary 4.6.8. Hence both u and v are different from 0; let n =
max {|[uNee |, |vNe|}. Then uMN~ and vNe are both N,-words. Now there exists some
t € C such that t > n. Since N, CN; C VE uNe = VN°°, we have uNe = yNeo by
Theorem 4.6.6, whence u = v is contradictorily satisfied by N,,. l

Lemma 4.6.11 Let V be a subvariety of Ag. Then Y € V if and only if V C N.
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PROOF. Suppose Y ¢ V. Then there exists an identity u = v of V such that ¢ (u) #
¢(v), say z € c(u) \c(v). Let S denote the following substitution into X*:

{y2 ifw=z¢g,
w =

z2 otherwise.

Then

2y?z? =4, 2?u(S) z? by I
=v z2v (8) z?

=a, T2 by I

so that V = z%y%2? = z2. But

z?y =v o (y’z%y)
=Ao (:1:2:152) y2z? by Corollary 4.2.2(4)
=A, z2y%a? by I

=V .’L‘2

2 2

and, by symmetry, yz? =v z2. Therefore V satisfies z?y = yz? = z
V k= 22 = 0. Furthermore,

, or equivalently,

TYT = A, x2y2m2 by III

=V 0.

Consequently, V C [x2 =0= :L'ym] = Ny by Theorem 4.6.7(3).
The converse clearly holds since Y ¢ No,. Bl

Corollary 4.6.12 The lattice L(Ao) is the disjoint union of the intervals [Y,Ap] and
[T, Noo) -

Proposition 4.6.13 The subvariety B; is the unique anti-atom of Ag.

PROOF. Suppose V € L(Ag). If Y C V then V C B by Lemma 4.3.11(1). fYZ V
then V € [T, N by Lemma 4.6.11 so that VC N, C B;. l



CHAPTER 4. THE LATTICE OF SUBVARIETIES OF Ay 85

Corollary 4.6.14 If Ag ¥ u=v then [u=v]*® = [u=v]®2.

PROOF. By Proposition 4.6.13, all proper subvarieties of Ag satisfies the identity V.
Therefore if Ag ¥ u = v, then [u = v]A° C B; and

u=v* =ju=vj*nNB; =[u=v|?2.

Except for By, all subvarieties of Ag that we have encountered so far and those that
will be investigated later are of the form [7]B2 for some identity 7 not satisfies by Ay.
Therefore in view of Corollary 4.6.14, all these subvarieties may actually be written as

[7]A4°. For example,
R, =[0:0:r]A°, N, = [xn41 = 040

But it is more suggestive to write [’R‘]B2_ since the important identity V can be “read off”

from B3 .
Corollary 4.6.15 The semigroup Uy, generates Ag.

PRrROOF. If V (Uy) # Ap then Uy € B, by Proposition 4.6.13. But it is easy to show

that the idempotents of Uy, do not commute so that Uy, ¥ V, a contradiction. l

4.7 'The Varieties L;N, R,

Having described the varieties L;, R, and N,, in previous sections, the next natural step is
to investigate the intersections and joins formed by these varieties. For simplicity, we write

UV =U VYV for any varieties U and V. In particular, we write
LN,R, =L; VN, VR,.
Note the following basic cases of joins and bases of identities:

LiNgRo =L, VTVY =L, =[l:0:052
LoNoR, =YVTVR, =R, =[0:0:7]B2 .
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It will be shown that the subscripts of the varieties L;N,R, correspond closely (but not
exactly) to the triples (I : n : r) in the defining identities.
Let
LRN = {LIN,, R, | [,n,r € N{°}.

Similar to the £, and 91, the sets £LRN and LRN U N are complete sublattices of £ (Ap);
these results will be verified in the next section.

In this section, we investigate the varieties LyN, R, for general [, n,r € N§° (with certain
necessary constraints), the approach follows closely to those taken in previous sections on
L;, R, and N,,. But we first consider L;N,R, with n =1+ m + r, where ({,m,r) € U and

U={(l,m,r) e NP xN° xN° | ({ =00 or r = 00) = m = 0}.
Note that if [ or r is infinite, then [+ m+r =141 = 0.

Theorem 4.7.1 If (I,m,r) € U, then the semigroup Ly X Ny, X R, satisfies the identities

I, II, IT1, V and (I : m : ). Consequently, L; X Niypir X R, belongs to [l :m: r]B; .
PRrOOF. It is easy to show that ([:0:0) and (0:0: r) each implies (I : m : r). Hence

Li,R, = (I:m:r). It is also easy to show that Ny pmir E ({:m:7) for l,r # co. If I = o0,

then m =0 and | + m + r = [, whence

Nijpam €1y by Corollary 4.6.2(1)
El:0:0F{:m:r).

Similarly, if r = oo then Nijiy4m = (I : m: 7). Therefore Niypim = (I :m:7) in all cases.
Consequently, Ly X Niypim X R E(l:m 7). B

Let n =1+ m +r with (I, m,r) € U. Then a B;-word u = 23} - - - 23* will be called an
L;N,R -word if all of the following statements hold.
(J1) If k> n, then aj41 = ag_r = 2;
(J2) Ifa; =2 withi>{+1, then oyq1 = 2;
(J3) Ifa;=2withi <k —r, then o_, = 2;
(J4) Ifoy=0;=2withi<j thenoy=-- =05 =2.
Note that conditions (J1) and (J2) (respectively, (J1) and (J3)) are vacuous when | = oo

(respectively, r = 0o).
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Lemma 4.7.2 Letn =1l+m+7r and (I,m,r) € U. A word u is an LiN,R,-word if and
only if one of the following statements hold:

(1) u=2z, 24 whereoi,...,or are distinct and 1 <k < mn;

(2) u=z- --zai_lzgi ---z?,jzng -+ 2g, where o1,...,04 are distinct, 0; < --- < 0y,
1<i<l4+1and0<k—-j5<r.

PROOF. Suppose u = 2§} -+ zg* is an LiN, R, -word. Then oy,..., 0 are distinct since

u is a B, -word. There are two cases: a; = 2 for some ¢, and oy = 1 for all ¢.

Case (i) Suppose a; = 2 for some t. Then there exists a least ¢ and greatest j such that
a; = a; = 2. Note that if ¢ > [ + 1, then o;4; = 2 by (J2), contradicting the minimality
of i. Hence 1 <[+ 1. By a symmetrical argument using (J3), we have j > k — r. Hence
a; =+ =05 =2 by (J4), and 0; < --- < g; because u is a B, -word. Therefore

2 2

uEzm“'Zai-1zai"'zajzaj+1"‘zak

with 1 <i<!+1and 0 <k —j <r. Thus u satisfies the conditions in (2).

Case (ii) Suppose a; = 1 for all t. Then k& < n by (J1) and u satisfies the conditions
in (1).

Conversely, it is easy to show that each word satisfying the conditions in (1) or (2) is a
L;N,.R,-word. I

Note the following conventions in Lemma 4.7.2(2):

1,:1:}20_1---zai_1=(b, g=k=>z,,j+1--~zgk=(b.
Whenever we say u = 24, --- 25, (respectively, u = z,, ---zgi_lzgi ---zgjz,,j+1 e Zg,) 18

an L;N,R,-word, it is understood that the conditions in Lemma 4.7.2(1) (respectively,
Lemma 4.7.2(2)) hold.

In the light of Lemma 4.7.2, an L;N,R,-word reduces to a L;-word (respectively, R,-
word) when m = r = 0 (respectively, { = m = 0).

Let =(;.;m.r) denote the fully invariant congruence over [V U {(I : m : 7)}]. As in previous
sections, we need to show that each word is =(;.;m.,)-related to some L;N,R,-word, a result

essential to the proof of the main theorem of this section.

Lemma 4.7.3 If (I,m,r) € U, then:
(1) Vu{(l:m:n)}+-{{l:0:00),(c0:0:7)};
(2) Vu{(l:m:r)}F(0:0:00).
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PrROOF. (1) If r = m = 0, then postmultiplying both sides of (: 0: 0) by w? yields
(1:0: 00). Moreover, if 7 = oo, then m =0 and (I : m : r) is exactly (/: 0 : 00). Therefore

assume r < oo and (r,m) # (0,0). Recall that

2 -
X w, =X w, ifm<oo
(l m ’I‘) : { 1Ym1Wr [ Ym+1Wr s

xylaw, = XYz w, if m = .
If m = oo, then letting S be the substitution 2z, wy,...,w, — w? into X1, we have
xitw? =v xpy*w? (w?)’ by I

= (xy?2wy) (S) S(mar) (xiw2?wr) (S)
=xy (wz)r+2 =y xyw? by I.

If m < oo, then letting T be the substitution o, ..., Ym+1, W1,..., Wr — w? into X, we

have

xyiw? =y x; (yiw 2) w” byl
=y x; (y1w ) ( )r by Lemma 4.3.2(3)

(XIYm-HwT) =(l:m: r) lem+1Wr) (T)

= xypw?™ W =y xy1w? by I.

Hence VU {(I:m:7)} F (1:0: 0c) in all cases. To prove VU{(l:m:r)} F(00:0:7)is
symmetrical.

(2) This is a consequence of (1). l

Proposition 4.7.4 If n =l +m+r and (I,m,r) € U, then each word in X is = m)-
related to an LyN,R,-word.

PROOF. Let u € X*. Since
VUu{(l:m:r)}F{{(l:0:00),(c0:0:7),(c0:0:00)}
by Lemma 4.7.3, any word deduced from u by invoking identities in

VU{(l:m:r),(1:0:00),(c0:0:7),(00:0:00)}
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i$ =(j.m:ry-Telated to u. In particular, u =,y uPz, say uBz = 221 ... 22, Therefore it
suffices to show uPz is =(1:m:r)-related to some LN, R,-word. There are two cases: a; = 2
for some %, or a; = 1 for all 4.

Case (i) Suppose o; = 2 for some i. Let p (respectively, ¢) be the least (respectively,
greatest) such that a, = 2 (respectively, ag = 2). If p > [ + 1, then

2 _ 2 2 .0 -
2oy " Zop1Zg, S(limir) Zo1 T 2oy (zﬂt+1 e z”p—l) Zop by (1:0:00)
- 2 2 2
=V 20, 20125, " a1 %oy by Lemma 4.3.2(3).

If g <k-—r,then

2

— 2 2 N
2 Zogs1 " Zop S(lmir) Zaq (Zogs1 " Zop—y) Zop_ppr " 2oy by (c0:0:7)

— 2,2 2
SV 25,%,,1 " Rop_ Bop_pgr " oy by Lemma 4.3.2(3).

B

Therefore u®Bz is =(1:m:r)-Telated to a word of the form

— 2 _Cp+1 Qg-1_2
V=25 zap_lzapz%H e zaq_l z(,qz,,ﬁ1 2y,

withl<p<Il/+land0<k-qg<r. Now

- 2 (,Op+1 ag-1\2 2 .0 -
V S(imir) 2oyt 2oy B, (Za,,+1 ezl ) Zg,%g4 " Zay, by (00:0: 00)
_ 2 2 2 .2
=V Zoy 2oy 120, %apr " Bag_1BagRagrs " Roy by Lemma 4.3.2(3),
and V can be invoked to arrange the sequence (oy,...,0,) into increasing order to obtain

an LN, R,-word (see Lemma 4.7.2(2)).

Case (ii) Suppose a; = 1 for all 5. If k£ > n, then by Lemma 4.4.3, u®2 is = (Lmer)-
related to a word 23} - - - z0% with oyq) = --+ = @g_r41 = 2 and the result follows from Case
(i). Therefore assume k < n, whence uB2 is an L;N,R,-word by Lemma 4.7.2(1). 1

Let ul“N»Rr denote the L;N,R,-word that is obtained from u by the method in the
above proof. Compared to canonical forms of words in other varieties introduced in previous
sections, the definition of a L;N,R,-word is more complicated relatively. However, it turns
out that we already have the required results to distinguish L;N,R,-words that are not

=(1m:r)-Telated.
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Lemma 4.7.5 Letn=10+m+7r and (I,m,r) € U. If

— 2 2
u =z, '”zo'p—lz(fp'“zaqzo'q+l'“szk’

— 2 2
vV = le . .sz—lsz .o .thth_H .o .zTn

are LiN,R,-words such that L;,R, Fu=v, thenu=v.

PRrOOF. Note that ¢(u) = ¢(v) because Y € L;,R,. Also, note that p—1,s —1 <!
and k — ¢g,k —t < r. Since L; F u = v by assumption, bt = ¢ by Proposition 4.5.7,

whence (01,...,0p-1) = (T1,...,7s—1). By a dual argument and Proposition 4.5.13, we also
have (0441, ---,0k) = (Te41,---,Tn). Now c(u) = ¢(v) so that {op,...,04} = {7s,...,Te}.
Hence (op,...,04) and (7, ..., 7;) must be identical sequences since they are increasing with

identical contents. Consequently u=v. l

Theorem 4.7.6 Letn=1+m+r and (I,m,r) € U. If u,v are LiN,R,-words such that
LIN,R, Fu=v, thenu=v.

PROOF. Suppose that u is linear. Then by Lemma 4.7.2, u = 2;, - - - 25, Where oq,...,0%
are distinct and 1 < k < n. Note then that u is actually a N,,-word and u = ulNr. Also, since
N, is a subvariety of L;N,R, we have N, F u = v. Hence uN»= vN» by Theorem 4.6.7(1).
Now

S S { v if v is linear,
0 otherwise.

N» = v. Therefore u = v. By symmetry, if v is

Since u # 0, v must also be linear and v
linear then u = v.
Therefore it remains to consider the case when both u and v are not linear, whence the

result follows from Lemma 4.7.5. B

Theorem 4.7.7 Letn=1+m+r and (l: m:r) € U Then:

(1) L;N,R, = u=v if and only if uliN2Rr = yLiNaR-,

(2)  The set of all LN, R,.-words constitutes the LiN,R,-free semigroup with the
operation - given by

u-v = (uv)iNeRr.

(3) LN,R, = [VU{(l:m:r)}]=[l:m:r]P2.
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PROOF. The proof of this theorem follows closely to that of Theorem 4.2.11. W

Note that Theorem 4.7.7 is only concerned with varieties of the form L;N;,,, R, where
(Il :m:7) € U; we will proceed to show that this is sufficient as all varieties in £ can be

expressed in this fashion. First consider L;N; 1, R,-words when m = 0.
Lemma 4.7.8 If u,v are LiN; R,-words such that LiIR, Eu=v, thenu=v.

PROOF. First note that ¢ (u) = ¢(v) because Y € LjR, |= u = v. There are two cases:
at least one of u, v is linear, or both u, v are not linear.

Case (i) By symmetry it suffices just to assume that u is linear. Then by Lemma 4.7.2,
U= 25 20,

where o01,...,0 are distinct and 1 < k <l+r. SinceLy Fu=vand R, Fu=v
by assumption, we must have tl=¥V'and dr = V7 by Propositions 4.5.7 and 4.5.13
respectively. But note that

ﬁlzzgl---zop, ﬁ’zzoq---z‘,k

where p = min {k,{} and ¢ = max {1,k —r + 1}.
Suppose p = k. Then u = ! = V! where ¥! is a subword of v. If v is not linear, then

Viisa proper subword of v with fewer variables involved, whence we contradictorily have
c(v) # c(vl) = c(‘El) =c(u).

Therefore v is linear and u= ¥! = v. Similarly, if g = 1 then u = v.
Hence it remains to assume p = [ and ¢ = k — r + 1, whence |tll = and |ﬂ’"| =
k—(g—1) =r. Since |u| = k <1+, the segments ! , U are either adjacent or overlapping

in u as shown in the following respectively:

u:{z(,l--~zt,,z¢,k_r+l---zo,,c ifk=1+r

(ZO'I'..[zak_r+1.“za'l)"'zO'k] ifk<l+7‘.

If v is not linear, then

c(v)#c (ﬁ?l‘v") = (ﬁlff’) =c(u)
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is a contradiction. Thus v is linear. Now since ¢ (v) = ¢ (u), ! = ¥ and " = V", the
segments VL V7 are adjacent or overlapping in v in the same way as T, ™" do so in u.
Consequently u = v.

Case (ii) Suppose both u, v are not linear. Then the result holds by Lemma 4.7.5 with
m=0. 1

Corollary 4.7.9 Letl,n,r € Ny°. Then:
(1) LR, = LN Ry
(2) Ifn<l+4r then N, CLiR,.

Proor. (1) Note that =(1:0:r) C =R, since iR, C LiN;;,R,. Let (u, V) € =LR,-
Then (u, uL’NHTRT) , (v,vL’NHTR’) € =(1.0:r) € =L,R,, Whence

— L/ N,..-R L;N,;..R —
(ll,V) € =LR, = (u’u i T) ? (V,V s T) € =LiR,
= (uL’N‘+TR",vL’N‘+’R’) € =L,R,
— LiR, | ulNerRr = yLiNi R

= plNirRe = LiNGeRe by Temma 4.7.8

LN, R = LN, R, =

=u Z@qoyy u =lor) V

= (ua V) € =(:0:r) -
Thus =LR, = =(1:0:7) and LR, = LlNl+TR7'-.
(2) Ifn<l+r then N, C LN, R, = LR, by (1). B

Recall that
LR = {LINL,R, | [,n,7r € N°}.

Let LN, R, € £91R. In view of Corollary 4.7.9, if n < | + r, then

LN,R, =N, (Ler) =N, (LlNl+rR'r)
=1L (Nan+r) R, = LlNl+rRr-

Therefore we have shown:
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Proposition 4.7.10

LR = {LIN,R, | l,n,r e Ng°,n > 1+ 7}
= {L\Niym+rRs | ({,m,r) € U}.

Recall that if (I,m,r) € U where either [ or r is infinite, then m = 0 by the definition
of U. The following result shows that no new subvarieties of Ag are defined by (I : m : r) if

either | or r is infinite with m > 1.

Lemma 4.7.11 Ifl = 0o or r = oo, then
[(:0:7)B2 =[1:1:7]B2 =... = [[:00:7]B2 = LiINGR,.

PROOF. By symmetry, it suffices to consider the case when r = co. Then

. X (Y1 Ymt1) W2 = X1 ymprw?® i m € N,
(l:m:o00): ) )

xjy22w? = xpy 2w if m = oo.

Let m € Ny. Then it is obvious that (I : m : 00) F (I : m + 1 : o0) when yp,+1 is replaced by

Ym+1Ym+2. For m > 1,
VU{(l:m:00)} F VU {xupf* - yprtiw? =%y Ymp1w? | 1 < oy < 2}
F {xyfye?w? = xinyew? | 1 < 0; < 2}
Fxyiyew® = xpyew? = xyyaw’
F xytyaw? = xpyyw?

F(l:00:00)

where the first deduction holds by Lemma 4.4.3, and the second by the substitution

Y3, -+, Yms1 —> w? into X T and then reducing excess powers of w by 1. Hence
VU{{l:0:00)}FVU{(l:1:00)}F---FVU{(l:00:00)}.

Now we have x;y2zw? = xyz2w? + x;52w? = x;yw? by the substitution z — w into X+
and reducing excess powers of w by I, so that VU{(l: 00:00)} FVU{(l:0:00)}. B

Since none of Ly, Ry and N, are generated by finite semigroups, it is natural that

L;N,R,; also has this property whenever one of I,n or r is infinite.
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Proposition 4.7.12 If one of I, n, or r is infinite, then LiN,R, is not generated by any

finite semigroup.

PROOF. Suppose S € LiN,R, is finite. Then S is a factor of W = L x N,l{ x Rt for
some a,b,c € N, whence there exists a surjecive homomorphism 1 from a subsemigroup T
of W onto S. Since S is finite, there exists a finitely generated subsemigroup Ty of T such
that 9Ty = S. Since Ay is locally finite, Tj is finite. Hence the projective images P;, P>
and P; of Ty onto L?,N}{ and R{ respectively are finite semigroups. Now if [ = oo, then
P, € Ly, for some ly < 0o (Proposition 4.5.11). Hence S € (P, P, P;) C L;;N,R, and S
cannot generate LiN,R;, since Lo, € LooNpR, and Ly ¢ LiyN,R,. Similar arguments
apply by Proposition 4.6.9 if n = oo, and by Proposition 4.5.11 if r = cc. W

4.8 The Lattice £91R"

In this section we show that £ITR* = LNRUMN forms a complete sublattice of £ (Ag). Note
that the sets £ and M are contained in [Y, Ag] and [T, N ] respectively and hence must
be disjoint in view of Corollary 4.6.12. More specifically, whether a variety V from £ITR*
belongs to £ or N is dependent on whether or not it contains Y.

Let Ny € Ot and LiN,R, € £0MR. Then clearly N, v L;N, R, = L;N,R, with s =
max {k,n}. f Kk >n =104+ m+r then

N, € N, nL;N,R,

— — 2 _ 2 _

= [xp1 =2 = zyz = 0, X;y% Wy = X Ym+1Wr| 2
2

C [ka =zr"=z2yz=0, 0= xlym_Hw,]

= [xk-i'l = 1'2 =zyz =0, Xn+1 = O:I - N'na

that is, Ny NI;N,R, = N,. If ¥ < n then Ny NL;,N,R, = N} because N; C L;N,R,.
Hence N; V LiN, R, and N; N L;N,R, both belong to £NR*. By Proposition 4.6.10, N
is a complete chain. Therefore to show that £0MR* is a complete lattice, it suffices to show
that £9R is a complete lattice.

It was shown in Proposition 4.7.10 that

£ = {L\Nyymir Ry | (I, m,r) € U} (4.11)
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and
LR = {LiN, R, | (I,n,7) € V} (4.12)

where

V= {(l,n,r) € N° x N° x N® | n > 1+r}.

The advantage of expressing varieties of £OUR in the form in (4.11) is that identity bases

can be read off easily from subscripts:
LiN iRy =[l:m: r]Bz— .
This is less convenient but still possible with expressions in (4.12):
LIN.R, =[l:n—(+r):r]B2

with the conventions co + 00 = 0o and co — 0o = 0. But it turns out that it is easier and
more convenient when calculating intersections and joins of varieties expressed in the form
(4.12).

Proposition 4.8.1 Suppose W CV. Then
v(l,n,r)EW LIN,R, = LloNn0R40

where
l0=sup{l|(l,n,r)€W}, 'r0=sup{7"|(l,n,r)€W},

no = max {ly + ro,n1}, ny =sup{n| ({,n,r) € W}.

Consequently (lo,no,70) € V and LNNR is closed under arbitrary joins.
PROOF. Since k1 < ky implies Ly, C Ly,, Ni, C Ny, and Ry, C Ry,, we have

\/(W)ew LN,R, = LN, Ry,

If ny > Iy + ro then n; = ng and we are done. If ny < lg + 7y, then by the remarks after
Corollary 4.7.9,
LlozN'nlzR'lo = LloNlo—H”oRlo = LloN'noRIO'

In Proposition 4.8.1, n; could be used instead of ng in the join L;;N,,R,,. The reason

for using ng = max {ly + 9,71} is to ensure a unique representation.
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It remains to investigate arbitrary intersections of varieties from £0R. Since by defini-
tion, elements in LR are joins (of varieties L;, N, and R,), it requires more effort to find

intersections because in general, intersection is not always distributive over joins, that is,
UNn(VVW)#(UNV)v(UNW).
Several lemmas will be proved before we tackle this problem.

Lemma 4.8.2 Let l,7 € Ng°. Then:
(1) {(1:0:0),(c0:0:7)}F(l:00:7);
(2) LiNowRo NLeoNoRy € LiNg R,

PROOF. (1) Recall that (I:0:00),(00:0:7) are
xiw?2? =xy2®, yP2we =ylaw,
respectively. Therefore
x; (YPzw,) = (xy®2?) wr = xiy2°wy,

which is (I : 00 : 7).

(2) This result is a consequence of (2). W

Corollary 4.8.3 Suppose (l1,n1,71),(l2,n9,79) € V. Then
Ll]anRn N LlQNngR’I‘z - LINOORT
where | = min{l1,l2} and r = min {r1,r9}.

PROOF. The last of the following inclusions holds by Lemma, 4.8.2(2):

= (L;; NooRoo NL;;NooRoo) N (LeoNooRy; N LooNooRy,)
= LiNowRx NLoNoR, € LiNR,.

L;, Ny, R,, N L, Ny, Rr, € (L, NooRoo N LooNoo Ry, ) N (L NooRoo N LsoNoo R, )
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Lemma 4.8.4 If (I,m,r) € U, then
[L:m:r]B2 =[(l+m:0:r),(l:0:r+m)]B;.
Equivalently, LiNi Ry = LigmBr N LRy,

PROOF. Let Vyu = [(I+m:0:7),({:0: r+m)]B2. If either I = oo or r = oo, then
m = 0 and the result is immediate. Therefore assume that [,» < co and m > 0. We first
show that [l : m : 722 C V.. There are two cases: m < oo and m = oo.
Case (i) Suppose m < 0o. Then by Lemma 4.4.3,
[:m:r]B2 =[xy yom i we = Xy YmpaWr | L < os < 2]B2_
XYL YmYma1 Wr = XiY1 - Ymt 1 Wiy o
X1Y3Y2 - Ym1Wr = X1 * Yt 1 Wy

=Vn.

Case (ii) Suppose m = oo. Then (I : 00 : ) is xy22w, = x;yz>w,. Making the substi-

tutions zy,...,z;,5 — 2 into X* and then reducing excessive powers of z by I, we have

z2zw, = z2z°w,. Hence

[l : 00 : T]B; g [$2ZWT = z2z2Wr]B2 = [OO M 0 M T]Bz_ .

By a symmetrical argument, [l : 0o : 7Bz C [1:0: 00]B2. Hence,
[l:o0:7]B2 Cl(00:0:7),(I:0:00)]B2 = V.
We now show that V,, C [l : m: r]P2. Since
Vooz[(oo:O:r),(l:O:oo)]B;
Cll:oo: r]B;

by Lemma 4.8.2, it suffices to assume m < oco. Note that we have V,, | (00:0: 00) by
Lemma 4.7.3(2). Now

XY 1 Wr =V X095 (Y2 Ym) Y1 Wy by Lemma 4.3.2(3)
=V xly%w e ymyrQn+1Wr by (00:0: )
=v,, XiY1Y2° * * YmYm+1Wr by {+m:0:7) and (I:0:7+m)

= XiYm+1Wr.



CHAPTER 4. THE LATTICE OF SUBVARIETIES OF Ay 98

Therefore V,,, = (I : m : 7) as required. H

Lemma 4.8.5 If I,r,m,l1,71,m; € Ny are such that Iy > l,r1 > r and i + 71 +my =

l+7r+4+m, then
[(l1:m1:r1),(l:oo:'r)]B; Q[l:m:r]B;.

PROOF. Ifl{+r =!+rthenly =l and r, =, whence (I : m; :r;) and (I : m : ) are

the same identity. Therefore suppose l; +r; > | + r. Consider the identities:

2
(I1:0:r +my) oy Y WL Wrygmy = T1°° THYWL** Wrydmy

(lioo:r) oy mylews - wp = 21+ TYZ w1 - - Wy
First we show that
{(I1:0:r1+my),(l:00:7)}F({:0:7+m).

If I; = then ry + m1 = r +m so that the identities (I; : 0: 71 +my) and (I : 0: 7 + m) are

identical. Therefore assume I3 > I. Since

|1 Ty ywr - Wy | =+ 11+ my + 1
>U+1)+r+0+1

= |m1...xlyzrw1...wr[’

the identity (I : 0o : ) can be used to move the exponent “2” of the variable y in the identity

(l1 : 0: 7 4+ my) forward to the variable ;4 to obtain
B1 e DT T2 T YW Wry gy = T T YW Wry oy
This identity is exactly (I : 0 : r + m), since the number of variables that follow z;,; is
Lh-(+D)+1+m+mi=L+r+m—-l=r+m.
By a symmetrical argument we have

{(l1+m1:0:7),(l:o0:m)}H({l+m:0:7).
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Therefore,

[(ly :my i), (It o0 7))B2 = (ll—i-ml:Ozrl),(11:O:'r1+m1),(l:oo:r)]B;
Cli+m:0:7),(:0:7r+m)]P2
=[l:m:r]B2 by Lemma 4.8.4.

Proposition 4.8.6 Suppose (I1,n1,71),(la,n2,72) € V. Then
L;,N,,R,, NL,N,,R,, = LN, R,

where | = min{l1,lo},7 = min{ry,m2} and n = min{ni,ne}. Consequently (I,n,r) € V
and £NR is closed under N.

PROOF. It is obvious that L, N, R, NL;,N,,R,, O LiN,R,. By Corollary 4.8.3, we
have
L, N, R,, NL;,N,,,R,, C LiNoR,. (4.13)

Thus equality holds if n = oo. Therefore we may assume n = n; < oo and n; < na. Let
mi and m besuchthat ny =1 +r1+miandn=I[04+r+m. Sincel; >, r1 > r and

li+ri+m; =ny =n=1[+r+m, we have
[(y:my:r),(l:o0:r)]B2 Cll:m:r)B2
by Lemma 4.8.5. That is, L;, N,, R, NLiN R, C I;N,R,. Consequently,

LllN’anTl n Ll2Nn2R/r2 g LlanlR"'l N LlNooRr by (4.13)
- LanRfr-

Proposition 4.8.7 Suppose W CV. Then

(i ryew LNaRr = LigNug Ry,
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where

lo=min{l| (I,n,r) € W}, ro=min{r|(l,n,r)e W},
ng =min{n | ({,n,r) € W}.

Consequently (lp,ng,70) € V and £9NNR is closed under arbitrary meets.

PROOF. This is a consequence of Proposition 4.8.6. ll

Corollary 4.8.8 The set LNVR* is a complete sublattice of L (Ag).

PROOF. By Propositions 4.8.1 and 4.8.7, £0MR forms a complete sublattice of £ (Ag).
Hence by the remarks at the beginning of this section, £J1R* is also a complete sublattice
of L(Ag).- W

As mentioned in the beginning of this section, expressing varieties of £NR in the forms
of (4.12) allows us to compute intersections and joins in £0MR. It is easy to see that
the rfla,pping L;N,R, — (I,n,r) is an isomorphism of £ onto the sublattice V of
NJ° x N x NJ°, where the operations are obvious from Propositions 4.8.1 and 4.8.7. Apart
from these contexts, we may sometimes choose not to use expressions in the forms of (4.11)

or (4.12) for the sake of simplicity and convenience. For example we may write

LyN3 VLiRg = LoRy,
LoN; N LRy = LN,

instead of

LysN3Rgy VLiNsRy = LoNgRy,
LoNsRgNnLiNsRy = LiN3Ry

respectively. In particular, LgN,Ry = N,Y and Lo oRy = LogcNgRoo-

The greatest element in £IR* is LooRoo so that £9R* is a sublattice of £ (LooRoo).
Due to the completeness and large (infinite) order of £09R*, it was once conjectured by the
author that £9NR* = L (LRo). But this turns out to be far from the truth, as it will be

shown in the next section that there are still infinitely many more subvarieties of £ (LyoRoo)
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not captured by LOMR*. However, for the remainder of this section, we will investigate the
covering situation in £J1R* in the sense that for any given LyN,R, € £0R*, which varieties
in £0MR* (if any) are anti-atoms of £ (L;N,R;).

For each fixed n € Ni°, define

Hn = {LiNnR, | (I,r) € NI x Ni°, I+ 7 <n} U{N,}.

It is straightforward to show that 5, = {T, Y} and ), are complete sublattices of LIR*.
But if n € N then §,, is only a complete semilattice since it is not closed under taking joins.
For example, L,N,Rq,LoN,R,, € 9, but L,N,Ro V LeN,R,, = L,No,R,, € H,. The

following result describes the covering situation in $y,.

Lemma 4.8.9 If V € [N,,LiN,R;) with 1 <[+ r < n, then either V C LN, R, for
some s < I, or V C L)N,R; for somet <r.

ProoF. If V = N,, then the result follows immediately. Hence we may assume N, Y C
V by Corollary 4.6.12. By assumption, either Ly ¢ V or R, € V. Suppose that L; V.
Then there exists an identity u = v such that V = u = v and L ¥ u = v. Since
V C B;, the identity uP2 = vBz will still have the properties V |= uBz = vB2 and
L; ¥ uB2 = vBz. Since Y C V, the identity u = v is balanced. Hence ! Z v by
Proposition 4.5.7. Therefore [uBE = VB';]B2 = (s:0: 00) for some s < ! by Lemma 4.5.6,

whence
vV C [uBE — vB3 ]B"? NLN,R,
CL:NRs NLN,R,
= L,N,R,.

A symmetrical argument shows that R, ,Q_ V implies V C L;N,R; for some t < r. Il

Corollary 4.8.10 Letl,r € N and n € NU {oo}.
(1)  The only anti-atoms of LiN,R, in H, are Li_1N,R, and LiN,R,_1;
(2) The only anti-atom of LiNgRoo i1 Hoo 5 Lj—1NeoRoo;
(3)  The only anti-atom of LooNooRr in Hoo 8 LooNooRr_1;
(4)  The only anti-atom of LoN,Rg in 9, is N;
(5) LeoNgRy has no anti-atoms in Heo.

Consequently, there are at most two anti-atoms for each variety in $Hy.



CHAPTER 4. THE LATTICE OF SUBVARIETIES OF Ay 102

PROOF. (1) This is a consequence of Lemma 4.8.9.
(2) If LiNoR, is an anti-atom of L;NR, then since

LsNooRr g LsNooRr+1 g LsNooROOa

we must have r = oo. By Lemma 4.8.9, it is then straightforward to show that the only
anti-atom of LiN Ry in Heo 18 L1 NooRoo-

(3) This is symmetrical to (2).

(4) Suppose V € §, is such that V g L,N,Ry =N, Y. If Y C 'V then V must be
of the form L;N, R, so that it contradictorily contains LoIN,Rgy. Therefore we must have
Y ¢ V, whence V C N, by Lemma 4.6.11. Consequently, V € L (N ) N H, = {N,}.

(6) If LNy R, is an anti-atom of Lo N Reo, then since

LlNooR'r c Ll+1NooRr - LooNooROOa
LlNooRfr - LlNooR'r+1 - LooNooRom

we must have [ = r = 0o, a contradiction. ll

Having found all the anti-atoms (if any) of each variety in §),, we present in Figure 4.1
the diagrams of §),, for several values of n. Our convention for (semi)lattice diagrams are
as follows. A line joining a lower positioned variety to a higher positioned variety indicates
containment in the same order, and a bolded line indicates containment with covering.

It is easy to see from Figure 4.1 that £, is the union of the intervals [N,, L;N,R,]
with [ +r = n. We shall establish two more results before we present the diagram of the
sublattice £0R* U {Ag, Ao N B2} of L (Ag). '

| Proposition 4.8.11 The subvariety Lo Ry, is the unique anti-atom of B .

PRrROOF. Recall that LocReo = [00: 0 : oo]B5 where

(00:0:00) : 22yw? = ryw?.

Suppose V € L(B3). If Y C V then V C LRy by Lemma 4.3.11(2). If Y ¢ V then
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V € [T,Ny] by Lemma 4.6.11. Hence V C Ny, C LR by Corollary 4.7.9(2). B

Figure 4.1: Semilattices $), for n = 1,2, 3, co.

Corollary 4.8.12 IfB; Fu=1v then [u= v]B; =[u= V]L°°R°° :

PRrooOF. By Proposition 4.8.11, all proper subvarieties of B; are contained in LooRoo.
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=[u=v]B2 NLeRy = [u = v]t~R= N

2

Therefore [u = v]B

Figure 4.2: The sublattice LNR* U {Ag, Ag N By} of £ (Ap).
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For the verification of coverings in Figure 4.2, see Propositions 4.6.13, 4.8.11, and Corol-
lary 4.8.10. From this diagram, some basic lattice properties can be deduced easily.
A lattice L is modular if for all a,b,c € L,

a<c = (aVbAc=aV(bAc),
and it is semimodular if for all a,b € L,
a-aAbandb>aAb = aVb>aandaVb>b.

The lattice of congruences on a completely 0-simple semigroup is semimodular ([6], Theo-
rem 3.6.2), while the lattice of normal subgroups of a group [6] and the lattice of varieties of
completely regular semigroups [13] are modular. It is well known that each modular lattice

is semimodular ([6], Proposition 1.8.5).
Proposition 4.8.13 The lattice L(Ay) is non-semimodular.

PRrROOF. Note that L; and R; each covers N;Y = L; N R; by Corollary 4.8.10. But
LR covers neither L; nor R;. Therefore the sublattice of £ (Ag) shown in Figure 4.3 is

non-semimodular. Il

LR,

LN, N,R,

NY

Figure 4.3: A non-semimodular sublattice of £ (Ayp).

4.9 Varieties in £ (LRy) \LNR"

Since £9TR" is the union of all the semilattices ), and the covering aspect within each of

these semilattices has been fully described by Proposition 4.8.10, we shall investigate what
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varieties in £ (Ag) possibly lie outside of £NR*; since
L (AO) = {AOaBE} ucL (LooRoo) 3

these varieties can only exist in £ (LR ). Hence it suffices to investigate £ (LocReo)
instead of L({Ag). Furthermore, since by Proposition 4.6.12, £(L.R) is the disjoint
union of [T, Ny] and [Y, Lo Re), it suffices to investigate these intervals seperately. With
the results of M C [T, Ny] and £MR C [Y, Lo R found in previous sections, we show
that all varieties in £ (LyRyo) are of the form VNP with V € £0MR* and P a permutation
variety (Propositions 4.9.2 and 4.9.5).

Lemma 4.9.1 If u,v are Ny -words and ¢ (u) # c(v), then
[u= V]Nm = [xn = ':)]Noo
with n = min {|c(w)| | w € {u,v}\{0}}.

PrOOF. The result clearly holds if one of u,v is 0. So suppose u = 24, -+ 25, and

V = 2, -+~ 27, With c(u) # ¢(v) and p < g. Then there exists some 7; ¢ {01,...,0p}.
Substituting z;, by 0 we have u = 0. Therefore [u = v]N* C [u=0N> = [xp = 0]Nee,
But

X =0F{u=0,v=0}Fu=v.

Hence [u = v]N> = [x, = 0]N~. W

For each identity u = v, the words u,v are =n_-related to Ny-words. In view of
Lemma 4.9.1, if ¢ (u) # ¢(v), then

[u = v = [ = vN*]™® = [x, = 0= = N,

Otherwise, if ¢ (u) = ¢(v), then [u = v]N°° =N N [uNee = vNe] where uNe = vNe j5 3

permutation identity. More generally, we have
Proposition 4.9.2 Each variety in [T,N] is of the form
N,NP

where n € N§° and P is a permutation variety.
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PROOF. Let V € [T,Ny]. Then V = [&; UZ2]N°° for some (possibly empty) sets
31, Lo of identities formed by No.-words such that those in ¥; are balanced while those in
3, are not. We may omit the identity 0 = 0 from ¥; U X since it is trivial in No,. Let
P = [X;]. Since

P={ S i S #0,
[z=2z] if¥ =0,
P is always a permutation variety. If £y = § then [55]N® = N; otherwise [Zo]N® = N,

for some n (Lemma 4.9.1). Therefore
V=[N n[E]=N,NP

for some n € Ny°. I

We now extend the result in Proposition 4.9.2 to the context of [Y,LyRe]. Consider
a word of the form
US 2y Ty 80 B0t T
where 21, ...,z are distinct variables, 1 < p < ¢ < k and a € {1,2}. Then u is linear if
o =1, and it is quadratic otherwise. If @ = 2 then the subscripts p,...,q of variables of
exponent two form the integer interval I which we call the interval of u. Note that each
LoRo-word is either linear or quadratic, and conversely, a linear word is an Lo Roo-word.

But a quadratic word of the form

2 2
za_l .. Za-p—lzo'p e zo_q zo_q+1 .. zo_k

may not be a B;-word (and hence not an Lo Roc-word) since the sequence (oyp,...,04)

need not be increasing (see (4.5)).

Lemma 4.9.3 Let u, v be distinct quadratic LR -words with ¢(u) = c(v). Then
[u=v]B2 = L,N,R,

for some (I,n,r) € V such that at least one of I,n or r is infinite.

ProoF. Since u,v are quadratic LooRoo-words with ¢ (u) = ¢(v), we may assume by
Lemma 4.7.2 that

2 2
zo_lnnnza_p_lzo -.-Zaqzoq+1.-.za_k’

14

=1
1

— 2
vzzTI...sz—lsz..‘ thTt+1.'.sz,
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where o1, ...,0y are distinct with o, < -+ < gy, and 71,..., 7} are distinct with 7, < -+ <
7;. Moreover, {o1,...,0x} = {T1,...,7c} since ¢ (u) = ¢(v). Let m = min{p—1,s — 1}
and n = min{k — ¢,k - t}. If T® = ¥ and U® = V* then clearly u = v. Therefore
assume that either W™ # ¥ or T® 2 Vo,

Case (i) Suppose that TRl % ¥ and U™ = V*. By Lemma 4.5.6, [u= v]B; -
[1:0: 0ol for some | < oo with ! = ¥ and wi*! # ¥+ (note: | < m necessarily). Thus

(615.-.,01) = (11,...,n) and {0441,...,04} = {T141,..., Tt}, Whence
2 2 2
251 """ 2012014 " Zﬂp—lza'p te zaq_lzaq

2
=(1:0:00) Ty (zg,+1 ---zg,,_lz?,p e zgq_l) z(z,q by (1:0: 00)

=0 & 2 2 2

=y [(z01+1 gy 2 z,q_l) zaq] by Lemma 4.3.2(3)

=y V! [(zﬂ+1 -~-sz_1zzs ---zZt_l) th]Q by Lemma, 4.3.2(4)

2
=¢ V! (le+1 -~-zTS_1z3s ~--z3t_1) z?t by Lemma 4.3.2(3)

=(U:0:00) 211 " An ATy T sz—lzzs ot z%t_lz‘;)‘t by (l :0: OO) .
Thus [{ : 0: 00]P2 C [u=v], whence [u =v]P2 =[1:0: 00]B2 = L;NyRoo. By symmetry,

if W™ =¥ and U % V' then [u= v] 2 = Lo NoR, for some r < n.
Case (ii) Suppose that > # ¥ and ¥° # V®. By Lemma 4.5.6 and its dual
result, we have
u=v]B2 C[(l:0:00),(00:0:7))B2 C[l:00:7]

for some | < 00 and r < oo with ! = ¥! and U™ = ¥". Note that ] < m, r < n and

{0141, s0k—r} = {7131, .., Tk_r}. Therefore

= 2 2
U=z - zo'lza'l+1 e Zﬂ'p—lzap e Zaqzﬂq+1 e Zo'k—rzak—r+1 . zak

22 2,2 2 r ey -
= (liooir) iz Zg " a1 Zay R Ry zak_rﬁ by (l:00:7)
! 2 52 2.2 2 r
=y V22 ANRRRY S SALLRE = = ---sz_TV by V

— 2 2
S(loowr) Byt Ryt Bre 17, T B By T R BTk T BT by (l 100 r)

=V

and [I : 00 : B2 C [u = v]. Consequently, [u=v]B2 =[l:00:7]®2 =N R,. B
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Lemma 4.9.4 Let u,v be LooRoo-words with ¢ (u) = ¢(v) such that u is linear and v is
quadratic. If [u=v]Pz ¢ SNR* U {B;}, then

[u=v]B2 =[l:m:r]B2 n[ldn]
for some I, m,r € Ny and nontrivial permutation 7 € S withk =1l+m+r+1.

PROOF. Although u, v are Lo Ro-words by assumption, the ordering on their subscripts
is unnecessary in this proof. Therefore we assume that u = 21---2z; (instead of u =

Zgy +* - 20, ) for simplicity. Now since ¢ (u) = ¢ (v) and v is quadratic,

V= Zr(1) " Zn(p-1)%a(p) " Ze(q) Pr(a 1) T Fa(h)

for some permutation 7 € Sy and 1 <p<g<k. Let U=[u= V]B;. Suppose 7 (i) = 1 for

all i € IZ"'UT,,. Then r (If) = I§. Now

- 2 2
Z1t 2k SU 2L 2p-125(p) " Zn(q)2a+l " 2k

— 2 2

SV 21 2p-12p " ZgZg+l " 2k by V

=v 21 2Zp-1(2p - zq)2 Zg+1" " 2k by Lemma 4.3.2(3)
impliesthat UC[p—1:g—p: k—q]B;, and

_ 2
zl..-zk :(p—l:q——p:k—q) zlnnnzp_l (zp---zq) Zq+1-u.zk
_ 2 2
Sv 21 Zp-12p - ZgRq41 " 2k by Lemma, 4.3.2(3)

=y z]-"'zp—lzgr(p)"'zfr(q)ZQ’Fl"'ZIC byV
impliesthat [p—1:q—p: k- q]B5 C U. Therefore we have the contradiction
U=[p-1:q-p:k—qP2 c L.

. . . -1
Hence 7 () # ¢ for some 5 € I{7 U IF

g+l
Note that if B; |= u = v, then B |= uBz = vB2 50 that by Theorem 4.3.6 we must
have uB2 = vB2. But this is impossible since uBz = u is linear but vB2 is clearly not.

Thus B; ¥ u = v and [u=v]P2 = (00:0:00) by Lemma 4.8.11. Now consider a word

o7t -+ xp* with z1,..., 2 distinct and o; € {1,2}. Invoking u =v on z{ - - - zo* yields

al | Qr — Cr(1) | Or(p-1) 2 2 On(g+1) . On(k)
Ty T SU L) a1y Trp) T Tr(@) Ta(gr1) T Fik)
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Furthermore, by invoking (0o : 0: oo) and Lemma 4.3.2(3), the word on the right of this
equation is =y-related to a quadratic word, that is, a word such that
(aﬂ(i) = 2 for some ¢ € ]I{’”l) = Q) = 00 = Op(p-1) = 2,

(a,,(j) = 2 for some j € H’;_H) = Qr(g4+1) = *** = Qr(j) = 2.

Hence the identity u = v induces a mapping ¥ as follows:

ar o Y 0x) 0 Qx(p-1), 2 2 Qr(g+1)  , Or(k)
z; Ti” = Zo1y T Tap—1) Tap) " Tr(@)Fa(g1) T Talk)

Note that ¥ maps both linear and quadratic words to quadratic words. In particular,
¥(u)=v.
Now for each ¢ > 1, let I; be the interval of ¢ (u). It is clear that

[u=v]B;t=u=\Il(u)=\Ilz(u)=---,

and that I; C I, C ---. Since all I, are contained in H’f, there exists some sufficiently large
number h such that I = I, = - =1L with1 < s <t < k. Now 7% is just the trivial

permutation and Iy, = I%. Therefore

— kth

Z1"'Zk=U‘I/ (u)
— 2 2
:zl-.-zs_lzs.--ztzt+1..-zk

=y 2,251 (25 zt)2 Zg41 0 2, by Lemma 4.3.2(3),

which is exactly the identity ({:m:r) withl =s—-1, m =¢t—s and r = k —t. Thus

[u=v]®2 C[l:m:r]. Furthermore,

21+ 2k =U \I,k!h—f-l (U)

Zr(1) " Z7r(s—1)272r(s) ot z72r(t)z1r(t+1) * Zp(k)
=Zr(1) zw(l)zfr(m) e z72r(k—r)z7r(k—r+1)  Z(k)

=U Zr(1) " Zn(k) by ({:m:r).
Hence [u = v]B2 C [Idn]. Consequently,
[u=v]B2 C[l:m: 72 N[ldn], (4.14)

where m € S withk=Il+m+r+ 1.
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Now note that I = I; C I! implies
I+1=5<p, g<t=k—r.

Therefore by Lemma, 4.4.3,

Br—

B; Bi —
l:m:r]"2 & {21"'le;+4{1"'Zk_fzk—rﬂ“'zk—21'

}—zl...zp_lzz...zgzq+1...zk:zl...zk,
and VU {(l:m:r),Idr} F u = v because

u

21 2

1

{Idn] 2x(1) """ Zx(k)

1]

=V.

Consequently equality holds in (4.14). H

(I:m:er) Bw(1) " * Zvr(p—l)zz-(p) e z;zr(q)z‘fr((I+1) U

a|1< 8 <2}

The result of Proposition 4.9.2 can now be extented to [Y, LooRoo).

Proposition 4.9.5 Each variety in [Y,LoRoo] is of the form
LN, R, NP

where (I,n,r) € V and P is a permutation variety.

111

PROOF. Let V € [Y,LoRoo). Suppose V = u = v, and let U = [u = v]L=R~, Gince

U=u=v

[LooRoo _ [uLooRoo _ vLmRm}LwRoo

)

we may assume u,V t0 be LooRoo-words to begin with. If one of u, v is quadratic, then by
Lemmas 4.9.3 and 4.9.4, U = LiN,R, NP for some (/,n,7) € V and permutation variety P,
possibly defined by trivial permutations. If both u, v are linear, then U = LRy, N [u=v].
Hence each identity of V defines a variety of the form L;N, R, NP so that V itself also has

the same form. M

Corollary 4.9.6 Each variety in £ (Ag) is finitely based.
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Proor. Since
L(Ag) = {Ag,B; } U[T,Nu] U[Y,LReo],

the corollary is implied by Propositions 4.9.2, 4.9.5 and Corollary 2.7.2. W

Having identified all varieties in [T, Noo] U [Y,LooRoo] = £ (LooRoo), we will continue

the investigation with [T, N] and [Y, LoReo] respectively in the next three sections.

4.10 The Interval [T, N,]

In this section, we examine varieties in [T, Ny], their generating semigroups, and the in-
tersections and joins they form. Let V € [T,N]. Then by Proposition 4.9.2 and Corol-
lary 4.9.6,

V =N, N [IdI] = N4 (4.15)

for some n € N§° and finite set II of (possibly trivial) permutations. If n is finite, then the
defining identity x,4+1 = 0 of N, implies all permutations with at least n 4+ 1 variables.
Therefore we may assume throughout this section that each permutation in II involves at

most n variables.
Lemma 4.10.1 Suppose N9 |= u = v. Then uN~ = 0 if and only if v~ = 0.

PROOF. By Theorem 4.6.7(3), the variety NI is defined by the identities in
{xn+1 =2? = gyr = 0} and IdII. Suppose uN» = 0 and vN» # 0. Then u either con-
tains a variable with multiplicity at least two, or it is a word of length at least n + 1. But
v is a linear word with at most n variables so that it is impossible to deduce u from v by
the identities in {x,4+1 = 22 = zyz = 0} UIdII. Therefore u™N» and v are both zero or

nonzero simultaneously. ll

Proposition 4.10.2 NI & y = v if and only if IdIl F uN» = vN»,

ProoF. Suppose NI4T £y = v, Then since NI C N,,, we have N%dn EuNe = yN»
and

{xn+1 = 2% = gyz = 0} UIAII F uN» = vIn,
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If uN» = 0 then vI¥» = 0 by Lemma 4.10.1 so that IdIT - uN» = vN» vacuously. Otherwise,
both ulN» and vN» are not 0, whence they are linear with at most n variables. The identities
Xnt+1 = 22 = zyz = 0 clearly cannot be used to deduce new words from uN~ and vN».
Consequently they are unnecessary in the duduction of vIN» from uN» (and vice versa).
Hence IdIT F ulN» = vN»,

Conversely, suppose IdII - uN» = vNr, Then NI  yN» = yNr| By Lemma 4.10.1,

either uN» = vNr = 0 or uN» # 0 # vN». If uN» = vN» = 0 then
NUTE y = gNe = v = v,

If uN» # 0 2 vN~, then u = uM» and v = v are both linear with at most n variables,

whence we again have NI Fu=v. H

Since it is extremely straightforward to reduce words into N,-words, Proposition 4.10.2

provides an easy way to recognize identities of N1

Idnuan (X) = {(u,v) e Xt x X+ | NU |=u=v}
={(u,v) € Xt x XT |l F uNr = vNr},

In fact, it is easy to see that the congruence
Idnan (Xn) = {(u,v) € X} x X} | IdIT+ uN» = v~}

on X, x X with X, = {z1,...,2n}, is the restriction of Idnan (X) to X/ and so is also

fully invariant.
Proposition 4.10.3 NI = (F, (Nl4IT))

ProoF. Let V = NMI  Clearly F, (V) embeds into F (V) in the obvious way so
that F, (V) € (F(V)) = V. Therefore it remains to show F (V) € (F, (V)). Suppose
F, (V) Fu=v. We may assume u and v are distinct Ny-words. If ¢(u) # ¢(v) then by
Lemma 4.9.1, [u = v]N* =[x, = 0]N* for some ¢ < n so that F, (V) = x; = 0. But this
is impossible since IdII ¥ x; = 0. Therefore ¢ (u) = ¢(v), whence u = v is a permutation
involving at most n variables. By renaming variables we may assume u,v € X, so that
(u,v) € Idy (X,). Consequently (u,v) € Idy (X) and F(V)Fu=v. i
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Proposition 4.10.4 The semigroup NI is finitely generated if and only if n is finite.

PROOF. If n is finite then by Proposition 4.10.3, NI is generated by the semigroup
F,, (NIIT) " Since Ag is locally finite (Corollary 2.5.3) and F, (NM1) = X} /Idnan (Xp) is
n-generated, Fy, (N%dn) is also finite. If n is infinite, then an argument similar to the one in

the proof of Proposition 4.6.9 shows that N}ldn cannot be generated by any finite semigroup.
[ |

We now turn our attention to finding intersections and joins of varieties in [T, N]. For
each 7 € I, let n; € N and II; be a nonempty finite set of (possibly trivial) permutations

so that { NI4T | € I} is an arbitrary collection of varieties in [T, Noo]. Then

1dIT; _ pgIdII
miel Nyt =Ny

where n = min{n; |i € I} and IT = {J;;II;. Clearly if I is finite then so is II. If I is
infinite, then II can be replaced by a subset of II involving at most k variables, where
k = min {n, T (II)} and T (TI) is a bound found in Section 7 of Chapter 2 on the number of
variables required to define [IdIT].

Finding joins of varieties in [T, N ] requires a little more preparation. For each k € N,
let Hl(-k) be the set of all permutations involving exactly k variables the associated identities
of which are satisfied by N1, that is, Hgk) = {r € Sk |NI3™ =1Idr }. Then

NI =N, 0 14|k e N] (4.16)

Note that each Hgk) is (necessarily) a subgroup of Si. In particular, if IT; contains only triv-

) is the trivial subgroup of S;. Since the subgroups HZ(-k) (k € N)

ial permutations then I'Iz(-’c
constitute all permutations the associated identities of which are satisfied by N}gni, the ex-

pression in (4.16) is maximal and thus unique; we shall called it the complete representation
of NI4T

Proposition 4.10.5 For each i € I, let n; € N and II; be a finite set of permutations.
Let

Ny, 0 [1a1° |k € N

be the complete representation of N}%nf. Then

V.o, (Nain [mng.k)] keN|) =Nan [Idn<k>| ken| (4.17)
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where n = sup {n; | i € I} and I*) = Nicr Hgk). In particular, if n < oo then
(k) — (k)
V., (Na, 0 [1a0P|k € N ) = N [ 14m k<.

PrOOF. Let U (respectively, V) denote the variety on the left (respectively, right) of
the equation in (4.17). The containment U C V can be verified easily. Thus it remains to
show V C U.

Suppose U E u = v. Since U C N,,, we may assume u and v to be distinct N,-words.
First suppose ¢ (u) # ¢ (v). Then by Lemma 4.9.1, [u = v|Ne =[x, = 0]N> for some finite
s < mnso that Uk x; = 0. If s < n, then there exist j € I with s < n;, whence F (N}gnj)
is contradictorily a semigroup in U that does not satisfy x; = 0. Therefore s = n and
[u=v]N* = [x, =0]N° = N, D V, whence V F u = v. Next, suppose ¢(u) = ¢(v).
Then u = v is a permutation identity, say in ¢ variables. Since u = v is satisfied by
Ny, 1 [1411(9| k € N] for all i € I, it belongs to Id (s 1)), whence VFu=v. W

Proposition 4.10.5 presented a basis of the arbitrary join of varieties from [T, Ny|. If I
and n = sup {n; | ¢ € I} are finite, then the basis of the join of varieties in Proposition 4.10.5
is computable. But this is possible even if n is infinite, as we shall demonstrate in the
following result. Note that it suffices to consider the join of just two varieties as the general

finite case is covered by induction.

Proposition 4.10.6 Let NI4Tt NI ¢ [T N ] where IT; and IIy are finite collections of

permutations, and let n = max {ni,na}. Then there exists m € N such that
NIy NI = N, 0 (141 0100 |k < m)]

PRrOOF. For i € {1,2}, there exist {;, 74, h; such that all nontrivial identities in IdII; are of
the form Id (J; : 7 : r;), and that IdIL; - Id (I; : Sk, : r;) (see Section 7 of Chapter 2). There-
fore Hz(.k) = (l; : Sk—t;—r; 1 75) forallk > l;+h;+r;. Let m = max {l; + hy + 71,10 + ha + 12},
By Proposition 4.10.5 it suffices to show

N, 0 [nf n mng'ﬂ\ keN| =N,n [1an¥ n Idng’“" k< m] .

Let U (respectively, V) denote the variety on the left (respectively, right) of the above
equation. It is easy to show U C V.
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Suppose u = v is an identity satisfied by U. We may assume the pair of words forming
u = v to be Ny-words. Clearly, U satisfies an identity of the form x; = 0 if and only if
V does. Therefore if u = v is not balanced, then V E u = v by Lemma 4.9.1. It remains
to consider when u = v is balanced, whence it is a permutation identity involving, say, q

variables. If ¢ < m then clearly V F u = v. Otherwise,

g>m = u=ve ML N
= u=veld(l;:S;_—r, :r)NId(lg: Sqety—r, : T2)
= Id(l1: Sm—ty—ry :1)Fu=v and Id(l2 : Spp—ty—p, :T2) FU=V
— u=v e LdIm™ nam™

= VEFu=v.

Hence in all cases, V F u = v. Consequently, VC U. Hi

Having investigated the intersections and joins of varieties in [T, N], we describe the
locations of varieties in [T, Ny,] with respect to one another by presenting a diagram.

Let o and 3 be identities. We say « is shorter than 8 if « involves fewer variables than
B. For each k € N, let 5 be the class of all nontrivial permutation varieties of the form

(IdII} such that the shortest nontrivial identities in IdII involve k variables. Equivalently,
B = {IdI|IIN S, € {1}, 1IN S; C {1} ifi < k}.

In particular, we have By = {[zy = yz]} since zy = yz implies all nontrivial permutation
identities. Letting P (n;k) = {N,NP|P € Py} and C = [zy = yz], a diagram of the
interval [T, Ny] can be seen in Figure 4.4. This diagram displays the location of each
variety N, NP in [T, N | to within the respective class P (n; k) it belongs to. It is possible
but too difficult to include each variety in each P (n;k) individually in the diagram. If n
and k are fixed, then it is easy to show that P (n;k) is closed under taking intersections
but not closed under taking joins. To illustrate these properties, consider the interval
N3N C,N3] = P(3;3) U {N3 N C,N3} as shown in Figure 4.5. For brevity, the varieties
in P(3;3) are represented by the permutations associated with their defining identities.
The justification of the intersections and joins of varieties in Figure 4.5 can be found in
Lemma 4.10.7.
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N.MNC

NsC

Figure 4.4: The interval [T, Ny].
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N3

(123); (23);

S3

N3mC

Figure 4.5: The interval [N3 N C, N3].

Lemma 4.10.7 Let a,b,c € {1,2,3} be distinct. Then:

(1) N;d(ab)3 Vv N:Izd(ac)a — N‘;d(ab)s vV N;d(123)3 = Njs;
2) N.;d(ab)3 n N;d(ac)3 — N;d(ab)s A :N;d(IQEI)3 _ N;d&".

PrRoOOF. (1) It suffice to assume ¢ = 1, b = 2 and ¢ = 3. We first show that
N2 NIO3s - N, Since

NYOs = Ny A [{x2 = %o}, {x3 = x3,1d (12),} ,1dSs, 1dSs, .. ],

N;d(ls)s =N3nN [{XQ = XQ} ) {X3 = x3,1d (13)3} ,1dSy4,1dSs, . . ]

are complete representations, we have, by Proposition 4.10.5,

1d(12)

N; 13)4

3y NEs = Ny 0 [{x2 = %o}, {x3 = x3,1d (12)3} N {x3 = x3,1d (13),}]

=N3nN [{XQ = Xg} s {X3 = X3}] = Nj.

To show N;d(u)s \ N;d(ms) 3 = N3 is similar.

(2) This follows from Lemma 2.7.3 and the fact that

S3 = ((ab)s, (be)s) = {(ab);, (123);)
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for any distinct a,b,c € {1,2,3}. B

4.11 The Interval [Y,L, R

This section extends the results in the previous section from [T, Ny to [Y,LooRoo]. Vari-
eties in £91R have already been completely described in Section 7. Therefore our emphasis
here is on varieties in [Y,LRoo] \£NMR; we begin with a few observations to help narrow

down the properties of such varieties.

Lemma 4.11.1 Let v € S and l,7r € Ny.
(1) Ifr(1)#1 then [Id(l:m:7)]P2 C LiNgR;
(2) Ifm(k)#k then [Id(l: 7:7)]P2 C LoNoR,.

PROOF. (1) Let U =[Id(l: 7 :r)[B2. By assumption, x (i) = 1 for some i > 1. Then
Xia1 - Qg Wr =U X(Qr(1) * ** Or(k)Wr by Id(l:m:7)
= X[Qq(1) " Ap(i—-1)21%7x(i+1) * " Cn(k)Wr-
Letting S be the substitution
PN y ift=aq,
w ift € {ag,....ax,w1,... Wk},

into X*, we have

xpyw? =y (xia1 - - agwr) (S) by I
=U (X16r(1) *** Gr(i=1)010x(i+1) * * * G (k)Wr) (S)
= xuwyuw? for some o, 8 > 1
=v xy°w? by Lemma 4.3.2(2).

Hence [Id (I : m:7)]®2 C[1:0: 00]®? = LiNyReo.
(2) This is symmetrical to (1). l
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Corollary 4.11.2 Let 7 € S, (l1,n,71) € V and I3, 79 € Ny.
(1) Ifr(l)#1 and!l=min{l;,l3}, then

LyNR,NId(lg:7:7)] =LiINR. N[Id(lg: 7:7)].
) Ifm(k)#k and r = min{ry,r}, then

LiN, R, N[Id(I: w:r)] = LN,R, N[Id (L : 7 : rg)].
Proor. (1) By Lemma 4.11.1 and Proposition 4.8.7,

L,N,R, N[Id(lo:7:7)] = L, N,R, N [Id (I : 7 : 7)]B2
=L, N,R, N (L12NC,<,Ro<> N[d{ly:7: r)]B;)
= (L, NyR, NL,NooRoo) N [Id (g : 7 : 7)) B2
=LIN R, N[Id{lg: 7:7)].

(2) This is symmetrical to (1). l

Proposition 4.11.3 Let V € [Y,LoRoo] \LNR. Then
V = L;N, R, N [IdI]]

for some (I,n,r) € V and a nonempty finite set Il of permutations (not all trivial).
Furthermore, | and r can be chosen to be finite such that each permutation in II has the

form (1: 7 : 1) with at most n variables.

PRrOOF. By Proposition 4.9.5, V = L,N,R, N [Id[I] where (I,n,r) € V and II is a
nonempty finite set of permutations. Since V € [Y,LyRoo] \LITR these permutations
cannot all be trivial. By Corollary 4.11.2, we may assume that [ and r are minimal in the
sense that for all (I': w: ') € II with 7 € S,

T(l)#1=1<1, n(k)£k=r<7r

In particular, I,r can always be chosen to be finite. Therefore each permutation in II can

be expressed as (I : 7 : ) (not necessarily having the properties = (1) # 1 or 7 (k) # k). Let



CHAPTER 4. THE LATTICE OF SUBVARIETIES OF Agq 121

m =n— (I +r). Consider a permutation (I : @ : ) that involve at least n+ 1 variables, say
o € Sgsothat [+ k+7>n+1. Since LN,R, = [l:m:r]B5 and k >m+1,

Xiyr e YeWr =(imer) X (yl T yk)2 Wi by (l ‘me 7‘)

=v x5 yiw, by Lemma 4.3.2(3)

=v xlil/i(l) e yi(k)wr by V
=v X| (ya(l) T ya(k))2 W, by Lemma 4.3.2(3)

Z(lmer) XYa(1) " Ya()Wr by (L:m:7).

Hence the identity Id (I : o : ) is implied by identities the of L;N,R,. Therefore the variety

V will be unchanged if all permutations from II involving at least n+1 variables are omitted.

The following result is crucial in finding generating semigroups, intersections and joins

of varieties in [Y, LooRoo)-

Proposition 4.11.4 Let (I,n,r) € V and II be a nonempty finite set of permutations. If

each permutation in II has the form (I: w : ) with at most n variables, then
L,N,R, N [Idl] = L,N4IR

PROOF. Let U (respectively, V) denote the variety on the left (respectively, right) of
the equation above. We first prove that U C V. Suppose u = v is an identity of V. Since
V C LiN,R,, we may assume u,v to be L;N,R,-words. Note that ¢ (u) = c(v) since
Y C V. There are two cases: u is linear and u is quadratic.

Case (i) Suppose u is linear. Then |u| < n by (J1), whence uN» = u is nonzero. By
assumption N}{m Fu=v sothat {x,+1 = 0} UIdII - u = v. Therefore by Lemma 4.10.1,
v = v is also linear. Since IdlIF u = v by Proposition 4.10.2, we have U = u = v.

Case (ii) Suppose u is quadratic. If v is linear then by an argument symmetrical to
Case (i), we deduce that u is contradictorily linear. Therefore v is also quadratic. Now
since L;, Ry = u = v, we have u = v by Lemma 4.7.5 so that U Fu=v.

It remains to prove V. C U. If u = v is the permutation identity Id (! : 7 : r) € IdII,
then &' = ¥! and W™ = V*. Thus L, R, = 1d (I : 7 : r) by Propositions 4.5.7 and 4.5.13,
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whence L;, R, C U. Clearly, N4 = N,, N [IdII] € U. Consequently, V C U. B

In view of Proposition 4.11.4, the variety L;N,R,N[IdII] is generated by L;x Fy, (N}ldn) X
R,. If II contains a nontrivial permutation, then [, < oc by Proposition 4.11.3, so that
L;N,R, N [IdII] is finitely generated whenever n is finite. But L;NR, N [IdII] cannot
be generated by any finite semigroup because by the argument in the proof of Proposi-
tion 4.7.12, any finite semigroup S € LiN R, N [IdI] is contained in L;N, R, N [IdII] for

some ng < co. Therefore we have shown:

Proposition 4.11.5 Suppose I,r < oo and let I be a nonempty finite set of permutations
containing some nontrivial permutation. Then LiN,R, N [IdII] is finitely generated if and
only if n is finite.

We now investigate the intersection and join of varieties from [Y,LyRoo]. Consider
a collection MM of varieties from [Y,L.Roo], which can be partitioned into 9t N LNR

and M\ LNNR. We may express varieties from these two sets respectively as follow:
LN,R, N[z = z], L;N,R, N [IdII],

for some (I,n,r) € V and a nonempty finite set II of permutations (not all trivial). By
Proposition 4.11.3, each permutation in IT has the form (I : 7 : r) with at most n variables.
Therefore { and r in LyN,R, N [IdII] are finite. The following is a method of indexing these
two types of varieties simultaneously.

For each i € I, let (I;,n;,7;) € V and II; be a nonempty finite set of permutations of the
form (I; : w : r;) with at most n; variables. Some II; can be trivial so that varieties in LR
will be captured by I for generality. If [; or r; is infinite, then obviously no permutation
can be of the form (/; : 7 : r;), thus we also include the requirement that IdIl; = {z = z} if

one of I; or r; is infinite. It is straightforward to check that
M = {L,Np,R,, N [IdIL] |i € I}
described above is an arbitrary collection of varieties from [Y, LoocRo]. By Proposition 4.8.7,

mfm = niEI (LliNniR"'i N [IdIL;])
= L;N,R, N [IdII]
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where
l=min{l; |1 €I}, n=min{n; | i € I},

r=min{r; |1 € I}, I = U, .
By an argument similar to the one following the proof of Corollary 4.10.4, the set IT can
be chosen to be finite. Note that

l=c0o =l =ccforalliel
= IdIl; = {z =z} forallie ]
= IdIl = {z = =},

and similarly, r = oo implies IdIIl = {z = z}. Therefore if one of /,r is infinite then
N9t = LN, R, is generated by the semigroups L;, R, and N,. But if I,r are finite, then
IT can be a nonempty set of permutations, each of which is of the form (I : 7 : r) so that by

Proposition 4.11.4, the intersection
(M = LN, R, N (1dM] = L,NY'R,

is generated by the semigroups L;, R, and F, (Nildn).
It remains to determine a basis for \/ 9. For each ¢ € I, consider the complete repre-

sentation
Ny = N, 0 [1a?

keN].

Note that if one of [;, r; is infinite, then by assumption Hgk) is the trivial subgroup of Sy for

each k. So assume all [;, r; are finite; in this case, invoking Proposition 4.10.5 yields:
IdM; _ (k)
Vo, NE™ = N, 1 [1an®)| & e ]
where n = sup{n; | i € I} and IF) =, ; Hgk). Therefore by Proposition 4.11.4,

Vo=V (LN, R, 1)
V.., (mN,)

- (Viel Ll") (viel Ngiini) (Viel R”)

— 1, (Nn N [IdH(k)l ke N]) R,

where | =sup{l; | i € I'} and r = sup{r; | ¢ € I'}. Then we have:
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Proposition 4.11.6

\Vom = LN RN [l |k eN] ifn>i+r,
" | LR, ifn<l+r.

PROOF. Note that if n <1 +7r, then N, N [IdH(k)| ke N] C L;R; so that \/ M = L)R,.
Therefore we may assume n > [ + r, whence I, < co. Now consider any a € II*¥). Then
o€ Hz(-k) for each i € I so that o can be expressed as (I; : * : r;) for all 1 € I. Consequently
a can also be expressed as (I: % : 7). Hence all permutations in II*) can be expressed as

(I:*:r). By the remarks above and Proposition 4.11.4,
Vo =L (Nan [1an® | k € N ) R,
= LN,R, N [141®| k € N] .

Hence finding a basis for the join of varieties from [Y, LooRoo] \£9R is very similar to
finding one for the join of varieties from [T, N] \9 (see Proposition 4.10.5). Theoretically,
a finite subset of IT can be chosen from |Jycy II®) so that \/ 9 = L;N, R, N [Id]. But if
|7} < oo, then the basis for \/ 9 is computable and finite since that of N,, N [[dI®)| k € N]
is also computable and finite by Proposition 4.10.6.

Following the direction of the previous section, we now describe the relative positions of
each varieties in [Y, LooRoo]. Due to the “larger” size of [Y, LooRoo] the task is necessarily
more complicated than but is similar to that of [T,N]. Note that by Proposition 4.11.3,
a typical variety in [Y, LooRoo] \£NR is of the form

V = L;N,R, N [IdII]

where (I,n,r) € V, IT is a nonempty finite set of permutations (not all trivial), and each
nontrivial permutation in II has the form (I: 7 :r) with at most n variables. From the
proof of the same proposition, it has been shown that the identities of L;N,R, imply all
identities of the form Id (I : 7 : r) involving at least n + 1 variables. Therefore a similar
argument shows that the identities of L;R, implies all identities in IdII. Hence

LR, C L;N,R, N [IdII] C L;NR,

and V € [LR;,L)NR,]. Clearly, if we began with V = L;N,R, € £NN (and I,r are
allowed to be infinite), then we also have V € [L;R,, L;N«R;]. Consequently,
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Proposition 4.11.7 The interval [Y,LooRoo| is the disjoint union of the intervals
[LiR,, LN, R;|, where l,r € N3°.

LN.R, .

T PUee,r;5)

: P(l,00,r; 4)

P(l,00,7;3)

L;Njs, R, ¢ P(l,00,r; 2)

P(,5,r;5)

.
’
.

I-‘1NI+4+rRr

P, 4,r;4) P(,5,r;2)

L1N1+3+rRr
P, 4,r;2)
P(,3,r;3)

P{,3,r;2)
LN+ R,

P(,2,r;2)

LINI+l+rRr

LR,

Figure 4.6: The interval [L;R,, LN R,].
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LNy, R,

(1:(123)5:7) (1:(23)3: 1)

(1:(12)4:p)

Figure 4.7: The interval [P ({,3,7;3),LiN; 3. ,.R,].

In view of Proposition 4.11.7, it suffices to divide the investigation of [Y,LoRo] by
investigating each interval [L;R,, L;NR,] individually. Note that if one of [, 7 is infinite,
then LR, = LN R, so that [L;R,,L;NyR,] = {L;R,}. Thus for the rest of this section,
we fix [ and r and assume them to be finite.

For k € N, let B r.x) be the class of all nontrivial permutation varieties of the form
[Id ({ : IT : 7)] such that the shortest nontrivial identity in IdII involves k variables. Equiva-
lently,

Brpy ={Id@:T:)]INS, € {1},1INS; C {1} ifi <k}.

In particular, B r,2) = {[Id (I : (12), : )]} since Id (I : (12), : 1) impliés all nontrivial permu-
tation identities of the form Id (! : 7 : r). Letting P (I,n,m; k) = {LanR, NP|Pe m(l,r;k)},
a diagram of the interval [L;R,, L;NR,] can be seen in Figure 4.6. This diagram displays
the location of each variety L;N,R, NP in [L;R,, ;N R,] to within the respective class
P (l,n,r; k) it belongs to. Similar to the interval [T, N, it is possible but too difficult to
include each variety in each P (I,n,r; k) individually in the diagram. If n and k are fixed,
then it is easy to show that P (l,n,r;k) is closed under taking intersections but not closed

under taking joins. By Proposition 4.11.4 and a result similar to Lemma 4.10.7, the interval
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[P (,3,7;3) ,LiN;y3+-R,] is described in Figure 4.7. For brevity, the varieties in P (1,3,7;2)

and P (l,3,7;3) are represented by the permutations associated with their defining identities.

4.12 The Lattice £ (LoRy)

In this short final section we investigate intersections and joins of varieties in £ (LooReo).
Fortunately, it is a matter of combining some observations with results from previous sec-
tions. Furthermore, we investigate the varieties in £ (LR o) that are not finitely generated.

Recall that £(LoRo) = [T,Ne] U [Y,LoRe), and a variety in this lattice is of
the form VNP where V € £NR* = LNRUN and P a permutation variety (possibly
defined by trivial permutations). Consider a collection 9 = {V; NP, | i € I} of varieties
in £ (LyoRoo). The previous two sections dealt with the cases when either all V; belong to
M, or all V; belong to £9R respectively. Therefore it remains to assume some V; belong
to £9R and some to N. Suppose LN, R, N [IdIT}, N N [IdX] € M. Then

(LN, R, N [IdI]) N (N, N [IdY]) = (L;N,R, N Ng) N [IdII]) N (N N [IdX])
= (N, N [IdII]) N (N} N [IdX]).
Therefore if just one V; is in N, the problem of finding [ M reduces to a problem in M.
Now there exist [1,7; € Ny such that all nontrivial permutations in ¥ are of the form

(I1 : m : r1). Since all nontrivial permutations in ¥ can also be expressed in form (g : 7 : rg)

whenever [y < [ and ry < r1, we may assume [; <[ and r; < r. Thus by Proposition 4.11.4,

(LiNR, N [1dI0)) v (N N [1d5)]) = LINTR, v N>
=L,NYIR v L, NYTR,,
= (LyNyR, N [IdII]) V (L, N¢R,, N [IdZ}).
Hence if just one V; is in £91R, the problem of finding \/ 9 reduces to a problem in £9TR.
We now consider the collection X of varieties in £ (LooRoo) that are not finitely gener-

ated. By Propositions 4.6.9, 4.7.12, 4.10.4 and 4.11.5, all these varieties are precisely those

of the forms

Noo,  Noo N I[IdII],
LlNcoR'r (l,?" S Ngo)a
LNoR, N[d(:M:7r)] (,reN).
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Clearly each of these varieties contains No, N'C. Hence X C [N N C,LoRoo]. Conversely,
let V € [Noo N C,LoRyo]. If V is of the form N, NP with permutation variety P (possibly
defined by trivial permutations), then by Proposition 4.10.6 and since Nooc N C C V, we

have

V = (N, NP)V (Ne N C)
=NoNQ

for some (possibly trivial) permutation variety Q. Therefore V is not finitely generated by
Proposition 4.10.4. If V is of the form L;N,R, NP then by the discussion at the end of the

previous section and the beginning of this section, we have

V = (LN,R, NP) V (No N C)
= (LN, R, NP) V (LiNRo N C)
=LiNoR,NQ

for some permutation variety Q. Thus V is not finitely generated by Proposition 4.11.5.
Therefore V € X in all cases, whence X = [Ny, N C,LoRy]. We have thus shown:

Proposition 4.12.1 The subvarieties of Ao that are not finitely generated are precisely
those varieties in [Ny N C,LocRoo]. Consequently, the variety No, N C is minimal with

respect to being locally finite and non-finitely generated.

Proposition 4.12.2 The interval [Ny N C,LooRo] is the disjoint union of the intervals
[Noo NC,Ny] and [N Y N C,LoRo] -

PROOF. Let V € [NooNC,LcRoo]. Y C V, then (N, NC)Y C V. But by
Proposition 4.11.4,
(N NC)Y = LyNE R,
= LN RsNC=N,,YNC

so that V € [N YNC,LooRe]. IfY ,Q_ V, then V € N, by Lemma 4.6.11. Thus
VeE[NoNC,Ny|. B



Appendix: Canonical Words

For a countably infinite alphabet X = {21, 29,...} define

P = {25122 | o,...,0 are distinct, o; € {1,2}, k € N} u {0},

A = {2, 25,25 |01 <+ <0k, k>2}.
Let I,m,r € Nj° and let (I,m,r) € U where
U={(l,m,r) e NP xN° xNg° | ({ = 00 or r = 00) = m = 0}.
1. A word u € X% is an Ag-word if either u € P or
u = poaip1 - 4Pk
where p; € P, a; € A, and ¢(py),...,c(px),c(a1),...,c(a) are pairwise disjoint.
2. A word u € Xt isa By-word if u= 23! - 23 € P such that

= iy = 2 = o0; <01,

3. A B;-word u = 23! - -+ 25* is an Lj-word if

ok
(L1) k>141=> a1 =2
(L2) ai:2=>ai="'=ak=2.
4. A B;-word u = 221 -+ 22 is an R,-word if
(Rl) k2r+l=ap,=2
(RZ) G=2=a;=-=0o; =2

5. A word u € X7 is an Ny-word if either u = 22, or
U= 2o, 0 2g,

for some distinct o1,...,0; € Nand k < n.

129
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6. Letn =l+m+r. ABj-word u = 27} -+ - 25* is an LN, Ry-word if all of the following
statements hold.
(J1) Ifk > n, then a4y = ag_, = 2;
(J2) IHfea;=2withe>1+1, then oy = 2;
(J3) Ifa; =2withi<k—r,then ay_, = 2;
)

(J4) Hfaj=aj=2withi<j thenoy=---=0a; =2
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