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Abstract

Due to their collection of rich information over time, administrative databases have become
a popular data source to conduct population-based health research. Motivated by estimating
the long-term effect of an opioid agonist treatment (OAT) on mortality risk, this disser-
tation develops methodology for estimating effects of health service utilization on survival
times. We frame the health service utilization of interest as an internal covariate under ex-
tended Cox regression models. An internal covariate obstructs the conventional relationship
between the hazard and survivor functions. This not only invalidates likelihood methods to
infer model parameters, but also makes the associated survival probabilities redundant. We
review two general approaches to overcome challenges brought on by internal covariates:
avoid all inference procedures that rely on the survivor function, or somehow rectify the
relationship between the hazard and survivor functions.

We conduct a preliminary analysis with the motivating data by jointly modelling time-to-
death and the health service utilization records. This is done by summarizing the health
records with either one-jump processes, functional principal scores, or a random effect.
We demonstrate how this approach greatly reduces the computational complexity that
currently plagues traditional joint models, and is capable of providing survival predictions.
Our results not only reveal the OAT dispensation effect to be time-varying, but younger
individuals receive the greatest protective effect of OAT against mortality, despite having
the smallest OAT dispensation rates.

To utilize the entire observed internal covariate history in a survival model, we propose
a generalized Cox regression model and conduct time-dependent stratification, where the
strata are defined by the history of health records. An estimating equation based procedure
is adopted to estimate model parameters, and a testing procedure is proposed to update the
the stratification variable. The proposed approach is examined both asymptotically through
modern empirical process theory, and numerically via simulation. Our analysis shows the
effect on mortality risk decreases in successive OAT attempts, in which two risk classes
based on an individual’s treatment episode number are established: (i) 1-3 OAT episodes,
and (ii) 4+ OAT episodes.
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We revisit our modelling from the preliminary analysis to address the apparent bias upon
directly replacing an internal covariate process with a model based summary. Specifically,
we extend the conditional score approach of Tsiatis and Davidian (2001) by allowing succes-
sive observations in the health service utilization process to be correlated. Moreover, since
the conventional relationship between the hazard and survivor functions is held intact, the
proposed method is also capable of producing model based survival predictions. Through
a simulation study, our proposed method is demonstrated to produce consistent estimates,
whereas naively ignoring the autocorrelation within the data underestimates the true ef-
fect. We additionally address confounding by age within our data application by weighting
birth generation specific estimates by their relative group size. This procedure up-weights
contributions made by younger individuals, which reveals an overall protective treatment
effect against mortality.

We then extend our developed methodology to allow the health service utilization process
to be multivariate. Specifically, we estimate the effect of a multivariate internal covariate
process on the mortality hazard, and extend the conditional score approach in hopes of
obtaining survival predictions. In the context of our data application, we extract the OAT
dispensation indicator, OAT type, and dosage level from the OAT dispensation process,

Although the proposed research is motivated within the context of opioid use disorder
management through health service utilization records, we anticipate the methodology to
have broad applications, and the proposed methods are intuitive and simple to implement.

Keywords: Administrative service utilization records; Cox regression; Internal covariate;
Joint modelling; Opioid agonist treatment; Time-dependent stratification
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Chapter 1

Introduction

Administrative databases have become an increasingly popular data source to conduct
population-based health research (Hinds et al. 2016) due in part to its rich collection of
service utilization records (Iron and Manuel 2007). Although these databases were not ini-
tially intended for research purposes, the wealth of information provides researchers an
opportunity to explore how a clinically meaningful event is associated with service utiliza-
tion records; see, for example, Bharat et al. (2021), Barbieri et al. (2022), and Clair et al.
(2022). When risk factors are time-independent, the conventional approach to do this is to
specify a Cox regression model (Cox 1972) that relates the risk factors to the instantaneous
rate of the event, that is, the conditional hazard function of the event time. The analysis
results would typically be summarized by the fitted regression model, and survival predic-
tions are readily available. However, as many risk factors from administrative databases are
derived from an individual’s service utilization, these risk factors are not only time-varying,
but their mere existence implies an individual’s survivorship. This obstructs the standard
relationship between the hazard and survivor functions, and traditional methods from sur-
vival analysis are no longer applicable. This thesis explores methods to overcome this hurdle,
and develops procedures to estimate effects of time-varying risk factors on an event time of
interest. This provides a tool to assess effects of different medical decisions, and the analysis
outcome can guide clinicians to optimally select an action that best addresses their patient’s
specific needs.

1.1 Background and Motivation

1.1.1 Motivating Example

Due to a rise of opioid-related deaths following the introduction of fentanyl and its ana-
logues into the illicit drug supply, a public health emergency was declared in April of 2016,
in British Columbia (BC), Canada (Province of British Columbia 2018). One of the ma-
jor public health responses to this emergency was the increased delivery of opioid agonist
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treatments (OATs) for individuals with an opioid use disorder. An OAT is the first-line
treatment for moderate to severe opioid use disorders, and works to eliminate withdrawal
symptoms and block euphoric effects of other opioids. Methadone, a synthetic opioid ag-
onist with high µ-opioid receptor binding affinity (Tetrault and Fiellin 2012), has been
the most commonly prescribed OAT since its introduction in Canada in 1959 (Paulus and
Halliday 1967). The primary alternative to methadone is buprenorphine, a partial ago-
nist with high affinity at the µ-opioid receptor and an antagonist at the κ-opioid receptor
(Lewis 1985), and was first prescribed in Canada in 2007 (Sud et al. 2022). Compared to
methadone, prior studies have shown buprenorphine to have a shorter induction period,
milder side effects and withdrawal symptoms, fewer drug interactions, a decreased risk of
overdose due to a partial agonist “ceiling effect”, and reduced risks of respiratory depression
(British Columbia Centre on Substance Use 2017). Other OAT types that have recently been
introduced in British Columbia include slow-release oral morphine (Government of British
Columbia 2018, Laing et al. 2018) in 2014, and injectable forms of OAT, such as diacetyl-
morphine (pharmaceutical-grade heroin) and hydromorphone in 2016 and 2019, respectively
(Health Canada 2016, Health Canada 2019).

Randomized controlled trials and observational studies have consistently demonstrated
protective effects of OAT usage against mortality; see Sordo et al. (2017) and Santo Jr et al.
(2021) for systematic reviews and meta-analyses, and Larney et al. (2023) for a recent exam-
ple. Nonetheless, a consensus study report from National Academies of Sciences, Engineer-
ing, Medicine (2019) highlighted the need to determine the most appropriate medication for
key population subgroups, and the comparative effectiveness between medications over long
term exposure. In an ideal setting, these questions can be addressed by designing an experi-
ment where individuals are randomly assigned to treatment arms, and survival outcomes are
then contrasted in order to estimate treatment effects. This approach however encounters
many challenges arising from ethical and economic constraints; however, administrative ser-
vice utilization records provides an alternative data source that bypasses such hurdles. The
health economic research unit at St. Paul’s Hospital led by Bohdan Nosyk extracted all the
administrative service utilization records between 01/01/1996 to 10/01/2018 in BC, Canada.
The data include drug dispensations (British Columbia Ministry of Health 2018c), hospi-
tal and emergency department admissions (British Columbia Ministry of Health 2018a),
physician billing records (British Columbia Ministry of Health 2018b), incarceration records
(Ministry of Public Safety and Solicitor General 2018), and deaths (British Columbia Vital
Statistics Agency 2018), for individuals identified with an opioid use disorder. These health
records provide valuable information on the overall quality of care for this population, and
in particular, to help address clinical questions pertaining to OAT usage within a real-world
setting (Piske et al. 2020). Since prescribed treatments were based on treatment availability,
current clinical guidelines, and individual clinician expertise, we cannot deduce any form of
treatment randomization taking place. Instead, the data can be viewed as if it were collected
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from a hypothetical observational study, wherein the type of OAT and dosage can vary over
time based on a clinician’s discretion. Furthermore, even an individual’s OAT dispensation
indicator is time-varying, as it is dependent on them interacting with the healthcare system.
Given an individual’s OAT dispensation indicator implies their survivorship, estimating the
association between the OAT dispensation process and mortality risk is challenging.

1.1.2 Survival Analysis: Cox Regression with Time-Independent Covari-
ates

Let T be a nonnegative random variable representing the time to an event of interest (e.g.
death). For our purpose, assume that T is a continuous random variable. Suppose we are
interested in q ≥ 1 time-independent risk factors, denoted by X = (X1, · · · , Xq)′. The
objective is to quantify the association of T with X. The standard approach to accomplish
this task is to (i) obtain a random sample of size n from the target population, {(Ti, Xi) :
i = 1, · · · , n}, and then (ii) proceed to estimate the conditional distribution of T given X.
In survival analysis however, we do not typically observe Ti for all i, but instead, observe
the pair (T ∗

i , δi), where T ∗
i = Ti ∧ Ci is the minimum between Ti and a non-informative

censoring time Ci, and δi = I(Ti ≤ Ci) indicates if the event of interest is observed. In
other words, the available data takes the form {(T ∗

i , δi, Xi) : i = 1, · · · , n}. Furthermore, it
is conventional to estimate the conditional hazard function of T :

λ(t; X) = lim
∆t→0+

1
∆t

P (t ≤ T < t + ∆t|T ≥ t, X), (1.1)

which is interpreted as the expected instantaneous rate of the event occurring, given that
the event has not yet occurred at time t and X. For fixed t > 0, we can show that λ(t; X)
is connected to P (T > t|X) by partitioning the interval [0, t] as 0 = u0 < u1 < · · · < uR = t

with ∆ur−1 = ur − ur−1 such that max{∆ur−1} → 0 as R → ∞. From (1.1), we have

P (T ∈ [t, t + ∆t)|T ≥ t, X) = λ(t; X)∆t + o(∆t)

P (T /∈ [t, t + ∆t)|T ≥ t, X) = 1 − λ(t; X)∆t + o(∆t), (1.2)

where we use “little-o” notation to represent o(a)/a → 0 as a → 0. It follows that

P (T > t|X) = lim
R→∞

R∏
r=1

P (T /∈ [ur−1, ur)|T ≥ ur−1, X) (1.3)

= lim
R→∞

R∏
r=1

(1 − λ(ur−1; X)∆ur−1 + o(∆ur−1)) (1.4)

= exp{−
∫ t

0
λ(u; X)du}, (1.5)
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where (1.3) is obtained from the joint probability of the event not occurring in any [ur−1, ur)
interval (r = 1, · · · , R), (1.4) follows from (1.2), and (1.5) is the so-called product limit of
(1.4). The relationship between the hazard and survivor functions in (1.5) shows us that
we can naturally estimate survival probabilities upon estimating the conditional hazard
function in (1.1). This is often done with a Cox proportional hazards model (Cox 1972):

λ(t; X) = λ0(t) exp{θ′X}, (1.6)

where λ0(t) = λ(t; 0) is an unspecified function referred to as the baseline hazard function,
and θ = (θ1, · · · , θq)′ is an unknown parameter that quantifies the association of T with
X. The model in (1.6) is referred to as a proportional hazards model since the hazard ratio
between individuals i and j

λ(t; Xi)
λ(t; Xj) = exp{θ′(Xi − Xj)}, (1.7)

which we see is constant over time. In fact, if Xj = 0 so that (1.7) becomes exp{θ′Xi}, θk

being positive or negative implies a heightened or reduced risk of the event occurring if the
kth variable in X is increased from zero, respectively.

With the available data {(T ∗
i , δi, Xi) : i = 1, · · · , n}, we can estimate λ0(·) and θ by

maximizing the observed data likelihood function

L(λ0(·), θ) =
n∏

i=1
λ(T ∗

i ; Xi)δi exp{−
∫ T ∗

i

0
λ(u; Xi)du}, (1.8)

where we used the result from (1.5) to obtain (1.8). Since λ0(·) is an infinite-dimensional
“parameter”, one may specify it as a piece-wise constant function between uncensored failure
times observed in the data, so that there are only a finite number of “parameters” attributed
to this function. Letting Ni(t) = I(Ti ≤ t) and Yi(t) = I(T ∗

i ≥ t), and Λ0(t) =
∫ t

0 λ0(u)du,
we can differentiate the logarithm of (1.8) with respect to the unknown “parameters” in
Λ0(·). This process yields the following estimator for dΛ0(t):

dΛ̂0(t; θ) =
n∑

i=1

Yi(t)dNi(t)
E0(t, θ) , (1.9)

where

Er(t, θ) =
n∑

j=1
Erj(t, θ) =

n∑
j=1

Yj(t) exp{θ′Xj}X⊗r
j ,

with a⊗0 = 1, and a⊗1 = a. By differentiating the logarithm of (1.8) with respect to θ and
substituting (1.9) for the unknown term dΛ0(t), we obtain the following score function for
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θ:

U(θ) =
n∑

i=1

∫ ∞

0
Yi(t)

(
Xi − E1(t, θ)

E0(t, θ)

)
dNi(t). (1.10)

We can then estimate θ with θ̂, which is the solution to U(θ) = 0, and estimate dΛ0(t) with
dΛ̂0(t; θ̂). Note that we could have obtained U(θ) as the derivative of the so-called partial
likelihood function of θ, in which large sample properties of the estimators θ̂ and dΛ̂0(t; θ̂)
have been established from this aspect (Tsiatis 1981, Andersen and Gill 1982).

1.1.3 Survival Analysis: Cox Regression with Time-Varying Covariates

In addition to X, suppose we observe a risk factor changing over time, denoted by Z(·),
and the history of Z(·) up to time t is denoted by Z(t) = {Z(u) : 0 ≤ u ≤ t}. The available
data can be represented as {(T ∗

i , δi, Xi, Zi(T ∗
i )) : i = 1, · · · , n}. Consider the following

conditional hazard function of T :

λ(t; Z(t), X) = lim
∆t→0+

1
∆t

P (t ≤ T < t + ∆t|T ≥ t, Z(t), X). (1.11)

Note that (1.11) conditions on the event not occurring before time t, the covariates X,
and the history of the time-varying covariate up to t. Before proceeding as in Section
1.1.2 and specifying a model for (1.11), it is important to distinguish two types of time-
varying covariates: external and internal. A time-varying covariate Z(·) with history Z(·)
that satisfies the following equation (Kalbfleisch and Prentice 2002) is an external (time-
varying) covariate:

P (T ∈ [u, u + ∆u)|T ≥ u, Z(t)) = P (T ∈ [u, u + ∆u)|T ≥ u, Z(u)) (1.12)

for all u and t with 0 < u < t. Since the left- and right-hand side of (1.12) conditions on
the covariate history up to time t and u, respectively, (1.12) allows us to deduce Z(·) to be
external if the future path of Z(·) is not affected by the occurrence of the event at time u.
Generally, external covariates belong to one of the following three categories.

Time-Independent: Although redundant to introduce an index over time, a time-
independent covariate can be viewed as a time-dependent covariate, in which Z(t) ≡
Z(0) ≡ Z for all t > 0. Note that Z(t) = Z, (1.11) is then λ(t; Z, X), and it is trivial
that (1.12) holds.

Defined: For any time t > 0, suppose we can construct Z(t) solely based on time t,
and information at time t = 0. For example, let Z(t) denote an individual’s age at
time t. We can write Z(t) = a0 + t, where a0 is the age of the individual at time t = 0,
and in principle, Z(t) can be computed for any t > 0, provided that a0 is known.
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Since an individual’s future age at time t would not affect their current mortality risk
at time u, Z(·) satisfies (1.12).

Ancillary: Suppose the time-varying covariate is a realization of a stochastic process
that is external to individuals. For example, suppose Z(t) is the temperature at time t.
Suppose Z(t) is available, and we are interested in assessing an individual’s mortality
risk at time u < t. We would conclude that (1.12) holds since only the temperature
by time u could have an effect on the event occurring at time u.

A time-varying covariate Z(·) with history Z(·) is internal if (1.12) does not hold. The
interpretation of an internal covariate of an event is that the future path of Z(·) is influenced
by the occurrence of the event of interest at time u, say if Z(·) can only be measured
whenever the event has not yet occurred. In our application, this becomes pertinent when
considering T as an individual’s time to death since their initial OAT dispensation record
in the administrative database, and Z(t) as the individual’s OAT dispensation indicator
at time t. We can deduce that Z(·) is an internal covariate since having knowledge of an
individual’s OAT dispensation indicator at time t implies their survivorship up to that
point. Consequently, the left-hand side of (1.12) must be zero, whereas the right-hand side
of (1.12) lies in the interval (0, 1). As we will discuss further, this fact presents challenges
when applying conventional survival analysis approaches in the application.

To elaborate the distinction between external and internal covariates, suppose we are
interested in measuring the association between Z(·) and T . The natural strategy following
Section 1.1.2 would be to specify an extended Cox regression model, such as

λ(t; Z(t), X) = λ0(t) exp{γZ(t) + θ′X}, (1.13)

where λ0(·), γ, and θ are unknown. We note that (1.13) explicitly assumes that Z(t) is the
only quantity from Z(t) that effects the conditional hazard. Given the observed data
{(T ∗

i , δi, Xi, Zi(T ∗
i )) : i = 1, · · · , n}, one might naively follow our reasoning from Section

1.1.2, and deduce that the likelihood function of λ0(·), γ, θ is

L(λ0(·), γ, θ) =
n∏

i=1
λ(T ∗

i ; Z(T ∗
i ), Xi)δi exp{−

∫ T ∗
i

0
λ(u; Z(u), Xi)du}. (1.14)

For some fixed t > 0 however, consider the following partition of [0, t]: let 0 = u0 < u1 <

· · · < uR = t with ∆ur−1 = ur − ur−1 such that max{∆ur−1} → 0 as R → ∞. From (1.11),
we have

P (T ∈ [t, t + ∆t)|T ≥ t, Z(t), X) = λ(t; Z(t), X)∆t + o(∆t), and

P (T /∈ [t, t + ∆t)|T ≥ t, Z(t), X) = 1 − λ(t; Z(t), X)∆t + o(∆t).
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Letting R → ∞, it follows that

P (T > t|Z(t), X) = lim
R→∞

R∏
r=1

P (T /∈ [ur−1, ur)|T ≥ ur−1, Z(t), X)

=


lim

R→∞

R∏
r=1

P (T /∈ [ur−1, ur)|T ≥ ur−1, Z(ur−1), X) if Z(·) is external

lim
R→∞

R∏
r=1

P (T /∈ [ur−1, ur)|T ≥ ur−1, Z(t), X) if Z(·) is internal

(1.15)

=


lim

R→∞

R∏
r=1

1 − λ(ur−1; Z(ur−1), X)∆ur−1 + o(∆ur−1) if Z(·) is external

1 if Z(·) is internal

=

exp
{

−
∫ t

0 λ(u; Z(u), X)du
}

if Z(·) is external

1 if Z(·) is internal
. (1.16)

In the case where Z(·) is external, the result in (1.16) essentially follows the same derivation
to obtain (1.5). In fact, (1.16) shows that L(λ0(·), γ, θ) takes the form presented in (1.14)
if Z(·) is an external covariate; if Z(·) is internal however, the conventional relationship
between the hazard and survivor functions no longer holds. In particular, (1.15) conditions
on both Z(t) and the event {T ≥ ur−1}, but since observing Z(t) implies {T ≥ uR}, the
probability shown in (1.15) must be one. Consequently, the likelihood function is not as
presented in (1.14), but rather

L(λ0(·), γ, θ) =
n∏

i=1
λ(T ∗

i ; Z(T ∗
i ), Xi)δi , (1.17)

where only non-surviving individuals contribute to the likelihood function. As it is well
known that non-survivors form a biased representation of a population, directly maximizing
(1.17) to estimate the model parameters will result in biased estimates for λ0(·), γ, and θ.
Therefore, alternative strategies and inference procedures are required whenever Z(·) is
internal.

1.2 Literature Review

The discussion from Section 1.1.3 reveals that we cannot adopt the standard likelihood
based procedure to estimate parameters in a regression model for the hazard when internal
time-varying covariates are included in the model. The core issue is that internal covariates
obstruct the conventional relationship between the hazard and survivor functions, and this
thesis is to develop an inference procedure that overcomes this issue. There are two general
approaches we can adopt to infer parameters in (1.11): (i) adopt a procedure that does not
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rely the survivor function; or (ii) “modify” either the response process or Z(t) in some way
to ensure the conventional relationship between the hazard and survivor function holds, in
order to apply a likelihood inference procedure. We review relevant literature that adopts
these two general approaches.

1.2.1 Non-Likelihood Based Estimation Procedures in Survival Analysis

Following Godambe (1991) suppose W has a probability model f(w; θ), where θ = (θ1, · · · , θq)′

is a parameter vector, and U(θ; w) is a q × 1 estimating function of θ for a given w. Define

Ψ(θ) = E
{

∂U(θ; W )
∂θ

}
, Φ(θ) = E{U(θ; W )U(θ; W )′},

where E{A} is the expected value of A, taken with respect to f(w; θ). Let θ0 denote the true
value of θ, and assume that E{U(θ; W )} = 0. Given a random sample {Wi : i = 1, · · · , n}
from the population, suppose the following equation has a unique solution, denoted by θ̂:

U(θ) =
n∑

i=1
U(θ; Wi) = 0. (1.18)

Then under regularity conditions, θ̂
p−−−→

n→∞
θ0, and

√
n(θ̂−θ0) d−−−→

n→∞
N (0, Ψ−1(θ0)Φ(θ0)Ψ−1(θ0)).

The function U(θ) is referred to as an estimating function for θ, and (1.18) is an estimating
equation. The estimator θ̂ is referred to as a Z-estimator for θ, as U(θ̂) = 0.

When specifying a Cox regression model with time-independent covariates, as in (1.6),
we again solve the equation U(θ) = 0 to obtain the Z-estimator θ̂, where U(θ) is shown
in (1.10), the partial score function of θ associated with the likelihood function. However,
the conventional justification in using U(θ) = 0 is problematic when we consider internal
time-varying covariates.

Robins and Tsiatis (1992) considered an accelerated failure time model with time-
dependent covariates, in which the parameter θ is estimated by solving U(θ) = 0, where
U(θ) takes the form of a weighted log rank test that conducts the test θ = θ0. The large
sample properties of the resulting estimators were then established by Lin and Ying (1995).
Since then, this approach seems to have fallen out of favour within the literature, but
time-varying covariates in accelerated failure time models has remained relevant particu-
larly within the causal inference literature. Hernan et al. (2005) consider a popular model
termed a structural nested accelerated failure time model, and estimate model parameters
with the solution to U(θ) = 0 where U(θ) is derived by semiparametric efficiency the-
ory (Tsiatis 2006, Yang et al. 2020). Its theoretical complexity and general lack of imple-
mentation in available software programs has hindered its adoption among statisticians
(Vansteelandt and Joffe 2014, Simoneau et al. 2020).
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Instead, one may consider the model in (1.13), and consider the following estimating
function

U(γ, θ) =
n∑

i=1

∫ ∞

0
Yi(t)

(
(Zi(t), X ′

i)′ − E1(t, γ, θ)
E0(t, γ, θ)

)
dNi(t),

where

Er(t, γ, θ) =
n∑

j=1
Erj(t, γ, θ) =

n∑
j=1

Yj(t) exp{γZj(t) + θ′Xj}(Zj(t), X ′
j)′⊗r.

Under (1.13), U(γ, θ) = 0 is an unbiased estimating equation, regardless if Z(·) is external
or internal, and it is reasonable to estimate (γ, θ′)′ with the solution to U(γ, θ) = 0. In
fact, we could show that U(γ, θ) corresponds to the partial score function of (γ, θ′)′ if Z(·)
is external. When Z(·) is internal, we view U(γ, θ) simply as an estimating function of
(γ, θ′)′. Unfortunately, U(γ, θ) is commonly (naively) regarded as the partial score function
of (γ, θ′)′, as the asymptotic results of Tsiatis (1981) and Andersen and Gill (1982) are
based on the partial likelihood function. By viewing U(γ, θ) as an estimating function, we
can leverage modern empirical process theory to establish its large sample properties (Lin
et al. 2000); this concept will be further explored in Chapter 3.

1.2.2 Rectifying the Relationship Between the Hazard and Survivor Func-
tions

We review existing methods on how researchers summarize Z(·) or the event of interest
in some fashion in order to make likelihood based approaches applicable. Compared to
adopting a non-likelihood inference procedure, this has been the more popular strategy. We
review the relevant strategies within the literature.

1.2.2.1 Modelling the Joint Distribution of the Event Time and Covariate Pro-
cess

In principle, if we can avoid specifying how the event time is directly associated with the
entire internal covariate process up to the current time as in (1.11), we are able to bypass
the associated challenges. The most natural way is to model the joint distribution of T and
Z(·) given X, which we denote as [T, Z(·)|X]. If Z(·) is a categorical variable, researchers
have proposed to model [T, Z(·)|X] within a multistate framework, where transient states
of the process jointly correspond to different levels of Z(·) and the event not occurring, and
an absorbing state corresponds to the event occurring (Beyersmann and Schumacher 2008,
Cortese and Andersen 2009, Brookmeyer and Abdalla 2019, Cook et al. 2022). Models for
the intensity functions between states are then specified, and a likelihood based inference
can be implemented due to X being an external covariate.
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In the situation where Z(·) is not a categorical variable, note that the joint distribution
of T and Z(·) can be expressed as [T, Z(·)|X] = [T |Z(·), X] × [Z(·)|X]. Here, a sub-model
for [T |Z(·), X] could then be specified, and another sub-model is specified for [Z(·)|X]. By
linking the two sub-models together, this approach has been referred to as joint-modelling,
and was first used as a tool to infer parameters in (1.13) whenever Z(·) is measured with
error. That is, rather than observing the process Z(·), the process Z∗(t) = {Z∗(u) : 0 ≤
u ≤ t} is observed instead, where

Z∗(t) = Z(t) + e(t), (1.19)

and e(t) is the measurement error at time t with mean zero. By specifying the hazard model
(1.13), Tsiatis et al. (1995) showed that

λ(t; Z∗(t), X) = λ0(t) exp{θ′X}E{exp{γZ(t)}|Z∗(t)}. (1.20)

They proposed the following two-stage inference approach to conduct their statistical infer-
ence:

Step 1: Specify the evolution of Z(t)’s realization associated with subject i over time,
for example, as

Zi(t) = νi0 + νi1t. (1.21)

Suppose the available observations on Z∗
i (·) are {Z∗

i (tij) : j = 1, · · · , mi}, in which (1.19)
is a linear mixed effect model (Laird and Ware 1982). Assume that for any given i

(νi0, νi1)′ iid∼ N
(

(ν0, ν1)′,

[
σν0ν0 σν0ν1

σν1ν0 σν1ν1

])
,

ei(t) ∼ N(0, σ2), ei(s) ⊥⊥ ei(t) for t ̸= s, and {νi0, νi1} ⊥⊥ ei(t).

Step 2: Calculate E{·} in (1.20), estimate γ and θ by constructing a partial likelihood
function, and estimate Λ0(t) =

∫ t
0 λ0(u)du with a Breslow-like estimator.

Further developments in joint modelling have been made to improve either the modelling
of Zi(t) in Step 1, or the inference procedure in Step 2. Wulfsohn and Tsiatis (1997)
modified Step 2 by viewing (νi0, νi1)′ as “missing” and estimated parameters in (1.13) with
the expectation-maximization (EM) algorithm. Wang and Taylor (1997) specified {ei(tij) :
j = 1, · · · , mi} to follow an integrated Ornstein-Uhlenbeck process in Step 1, and took a
Bayesian approach and developed a Markov chain Monte Carlo (MCMC) algorithm for Step
2. Henderson et al. (2000) and Xu and Zeger (2001) both specified {ei(tij) : j = 1, · · · , mi}
to be a stationary Gaussian process in Step 1, and in Step 2, Henderson et al. (2000) used
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the EM algorithm, whereas Xu and Zeger (2001) proposed an MCMC algorithm. Tsiatis
and Davidian (2001) avoided to specify the distribution of (νi0, νi1)′ in Step 1 by estimating
them with (ν̂i0, ν̂i1)′ under the model (1.21) based on subject i’s available information. By
viewing the estimates as “noisy measurements” of (νi0, νi1)′, they extended the conditional
score approach for regression under generalized linear models of Stefanski and Carroll (1987)
to the Cox regression model (1.13).

Perhaps unknowingly at the time, considering a certain model for Z(·) may address
the problem brought on by internal covariates. This is because a model such as in (1.21)
essentially defines Zi(t) over time (see Section 1.1.3). This has motivated researchers to
utilize joint modelling as a tool to conduct so-called “dynamic prediction”, which is to
construct Zi(t) for all t > 0 with (1.21), and estimate

P (Ti ≥ t + s|Ti > t, Zi(t + s), Xi) = exp
{

−
∫ t+s

t
λ(u; Zi(u), Xi)du

}
. (1.22)

Rizopoulos (2011) considered the procedure developed by Wulfsohn and Tsiatis (1997) to
estimate parameters under the joint model, and adopted a Bayesian framework to predict
(1.22). More of the recent literature has gone towards improving the accuracy of prediction
for (1.22). Rizopoulos et al. (2014) specified multiple longitudinal sub-models in the form
(1.21) with different covariance structures for (νi0, νi1)′, and then conduct Bayesian model
averaging. Other improvements have been made by specifying a more flexible model than
(1.21), such as using spline functions (Barrett and Su 2017, Andrinopoulou et al. 2018).

1.2.2.2 Partly Conditional Modelling

Rather than conditioning on Z(t) in (1.11), consider “freezing” the process at some time
point s < t, so that the mortality hazard function becomes

λ(t; Z(s), X) = lim
∆t→0+

1
∆t

P (t ≤ T < t + ∆t|T ≥ t, Z(s), X). (1.23)

Since the covariate process no longer varies over time (after time s), then clearly (1.12) must
hold for any t > s. The idea is to specify a model for (1.23), select K landmark time points
{s1, · · · , sK} to obtain K datasets {(T ∗

i − sk, δi, Zi(sk), X) : i = 1, · · · , n}, and conduct
statistical inference by pooling the K datasets together. Note that because (1.12) holds,
estimating functions can then be derived from the likelihood function. Specifying a model
for (1.23) is referred to as a partly conditional model, for only part of the covariate history is
being conditioned on. Zheng and Heagerty (2005) specified landmarks as observation times
of the time-dependent covariate, whereas Schaubel et al. (2009) specified landmarks based
on the observed time points a categorical time-dependent covariate changed its value. Gong
and Schaubel (2013) specified landmarks to be equally spaced out in time, and proposed an
inverse probability weighting method to address dependent censoring in T . Since the con-
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ventional relationship between the hazard and survivor function holds, survival probabilities
can be computed as

P (T > t|T > s, Z(s), X) = P (T > t|Z(s), X)
P (T > s|Z(s), X) = exp

{
−
∫ t

s
λ(u; Z(s), X)du

}
(1.24)

(van Houwelingen 2007). Noting the similarities between (1.24) and (1.22) has led re-
searchers to compare the predictive performance between partly conditional modelling and
joint modelling. Generally, researchers have declared joint modelling as the preferred ap-
proach (Rizopoulos et al. 2017, Suresh et al. 2017). Nevertheless, there has been a recent
attempt to improve partly conditional modelling (Putter and van Houwelingen 2022). It
is intuitive to understand the inferiority of partly conditional modelling relative to joint
modelling: (1.23) is inherently different from (1.11). The reason why partly conditional
modelling gained popularity in the first place is mainly to its simplicity, compared to high
computational costs that joint modelling suffers from. This issue is further discussed in
Chapter 2. Our proposed methodology overcomes the challenge.

1.3 Notation and Framework

This section presents notation to be used throughout this dissertation. Additional notation
will be introduced at the beginning of each chapter when needed.

Keeping consistent with Section 1.1, let T denote an individual’s event time, where the
time scale is generic. Specific time scales we consider will be discussed in later chapters. We
do not necessarily observe T , but rather the pair (T ∗, δ), where C is a right-censoring time,
T ∗ = T ∧ C is the minimum of T and C, and δ = I(T ≤ C).

We let Z(t) denote internal covariates at time t, and Z(t) = {Z(u) : 0 ≤ u ≤ t}
denote its history up to (and including) time t. With regards to the OAT dispensation
records that motivated this research, Z(t) denotes all relevant information pertaining to
the OAT dispensation at time t, including (i) dispensation indicator, (ii) OAT type, (iii)
OAT dosage, (iv) pharmaceutical formulation of the dispensed OAT, (v) relevant prescriber
factors, etc. When having one element pertaining to Z(·), we instead replace Z(t) with Z(t),
and let Z(t) = {Z(u) : 0 ≤ u ≤ t} denote its history up to time t. This will be relevant
in the forthcoming chapters when we focus on individuals’ OAT dispensation indicators
over time t. We let X(t) = (X1(t), · · · , Xq(t))′ denote external time-varying covariates and
time-independent characteristics of an individual, and X (t) = {X(u) : 0 ≤ u ≤ t}. For
fixed k = 1, · · · , q, the covariate Xk(t) is time-independent if Xk(0) ≡ Xk(t), for all t > 0.
Covariates included in our real data analyses will be specified in Chapter 2, when we further
explore the relevant information captured from the administrative databases pertaining to
individuals identified with an opioid use disorder.

12



The general objective of this thesis is to develop methods to estimate the effect of Z(·)
in the presence of X (·) on T . This is typically done by modelling the hazard function

λ(t; Z(t), X (t)) = lim
∆t→0+

1
∆t

P (t ≤ T < t + ∆t|T ≥ t, Z(t), X (t)).

The specific model we choose will depend on the specific objective we aim to achieve, and
the inference procedure will be developed to overcome challenges brought on by internal
covariates. We aim to develop approaches that are easy to implement in practice, and in
the same time, adequately capturing complex relationships between Z(·) and T .

1.4 Thesis Outline

When the objective is to investigate the association of a response with a set of predictor
variables, the traditional strategy is to specify a model for their association, and then obtain
a random sample from the target population to estimate model parameters. The approaches
can be applied when the response is a time-to-event, but challenges arise when predictors are
internal time-varying covariates. Methods referenced in Section 1.2 have been developed to
achieve this objective, but their implementation has been lacking due to restrictive assump-
tions or heavy computation costs. Motivated by addressing a real-world problem, this thesis
aims to overcome challenges in estimating effects of internal covariate(s) on time-to-death.

We specify our objective into the following three aims:

Aim 1: To estimate the effect of an internal covariate process on the mortality hazard.

Aim 2: To develop a predictive survival model based on information of an internal
covariate.

Aim 3: To extend Aim 1 and Aim 2 to accommodate situations with multivariate
internal covariate(s).

Our methodology is motivated and illustrated with administrative service utilization records
pertaining to opioid use disorder management. The proposed methods can in principle be
implemented to any setting that shares the same aims specified above.

The remainder of this thesis is organized as follows. In Chapter 2, we provide a further
description of the administrative service utilization records, and a preliminary analysis. The
analysis jointly models time-to-death and the OAT dispensation indicator process. Chapter
3 proposes an estimating equation based procedure for estimating the OAT dispensation
indicator process effect on the mortality hazard. In order to utilize the entire observed co-
variate history, we propose a generalized Cox regression model and conduct time-dependent
stratification, where the strata are defined by the overall treatment history. Chapter 4 revis-
its the joint model from Chapter 2, and adapts the conditional score approach of Tsiatis and
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Davidian (2001) to allow for correlated successive observations in the OAT dispensation in-
dicator process. Chapter 5 extends the methods developed in Chapters 3 and 4 to situations
with multivariate internal covariate(s), where we include OAT type and dose as additional
features of the OAT dispensation process. A summary of this dissertation’s contribution and
discussions about future investigation are provided in Chapter 6. All relevant figures and
tables are provided at the end of each respective chapter. All datasets were constructed by
SAS (SAS Institute Inc. 2013). Analyses were conducted by R (R Core Team 2022), where
estimating functions were coded in C++ and exported into R with the Rcpp R package to
improve the computation speed (Eddelbuettel and François 2011, Eddelbuettel 2013, Ed-
delbuettel and Balamuta 2018).
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Chapter 2

Preliminary Analysis of
Administrative Service Utilization
Records Pertaining to the
Management of Opioid Use
Disorder

2.1 Introduction

This chapter provides further details of the administrative service utilization records that
motivated this research, and describes how the available information will be used in the
forthcoming analyses. Descriptive statistics of follow-up times and potential risk factors are
presented, as well as a preliminary data analysis based on a joint model of mortality risk
and the OAT dispensation process. The required assumptions and analysis results will serve
as a motivation for the methodological development in the forthcoming chapters.

2.2 Description of Administrative Service Utilization Records
for Individuals Identified with Opioid Use Disorders

To address the 2016 public health emergency declared in BC, the Ministry of Mental Health
and Addictions has requested the Health Economic Research Unit (PI: B. Nosyk) at St.
Paul’s Hospital to assess the quality of care for people identified with opioid use disorders.
Administrative service utilization records, as discussed in Section 1.1.1, were provided to
the research group to assess the service utilization for this cohort. Specifically, during a data
extraction window, health service records for any individual with an OAT dispensation in
BC-PharmaNet (see Table 2.1 for drug identification numbers) or a health record attributed
to opioid use (see Table 2.2 for ICD-CA-9/10 codes) were provided.
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The beginning of the data extraction window pertains to the start date of data collection
(01/01/1996) but the end date varies, as the linked administrative records are updated
biannually; the closing date of the data extraction window used in the forthcoming analyses
is 10/01/2018. In total, 91,876 individuals were identified to have an opioid use disorder if
they had at least (i) one OAT dispensation, (ii) one OAT-related hospitalization, or (iii)
three opioid use disorder related physician claims. By removing the individuals without a
recorded OAT dispensation, this reduces the cohort to 55,347 individuals. Furthermore, the
adult (≥ 18 years old) cohort with at least one OAT dispensation in BC from 01/01/1996
to 10/01/2018 includes n = 54,739 individuals.

To illustrate the information present in the database, Figure 2.1 illustrates the date of
a hypothetical adult’s (≥ 18 years old) first recorded OAT dispensation in BC-PharmaNet,
between the data extraction window. In terms of an individual’s death date, there are two
scenarios that can occur: (a) it is recorded in BC Vital Statistics and taken as evidence
that they died on a particular date, or (b) it is not recorded and the death time is treated
as right-censored, where the individual’s drop-out date is taken as the date following their
final record in any of the administrative databases. The OAT type and dosage dispensed
on a particular date an individual received is derived from the drug identification numbers
pertaining to OATs are presented in Table 2.1. We emphasize that the dispensation records
have limited information on individuals adhering to their dispensed treatment. In the sit-
uation where the drug identification number in Table 2.1 implies an “interaction” with a
medical personnel or pharmacist, or if the number of days the recorded dispensation is low
(e.g. 1 or 2 days), we can confidently assume that the individual adhered to the dispensation
record. This confidence diminishes as the number of days a recorded dispensation covers
increases, especially if the number of days is large (e.g. ≥ 7 days). Although the majority of
dispensation records are daily, interpreting the OAT dispensation indicator as the on OAT
indicator explicitly assumes individuals perfectly adhere to their prescription. Wherever
possible, we refer the OAT usage process as the OAT dispensation process.

Inpatient hospitalization is a setting where an individual likely received OAT, especially
if their past or future dispensation records indicate potential OAT use, but the dispensation
record is unavailable. We follow Pearce et al. (2020), and assume that an individual was
dispensed OAT during their (entire) hospitalization if they either have an OAT dispensation
record within five days (i) before their admission date, or (ii) after their discharge date.
This issue also brings up another issue: the initial recorded OAT dispensation date may not
necessarily be the individual’s actual first OAT dispensation date. For example, the available
dispensation records (i) do not include records outside the data extraction window, (ii) may
not record dispensations outside of British Columbia, and as referenced before, (iii) do
not record dispensations within acute care settings. This highlights the difference between
two time scales regarding the definition of time zero. The first recorded OAT dispensation
date is dependent on the collected data, whereas the first true OAT dispensation date is
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a clinically relevant event. To circumvent issues related to the definition of time zero, we
consider age as the time scale, in which time zero is defined as the time of birth. In the
forthcoming analyses, we present our results under both age and the time since first recorded
OAT dispensation time scales. Unless otherwise stated, the default time scale within our
methodological development is the time since first recorded OAT dispensation, and the
default time unit is in days.

As mentioned in Chapter 1, administrative databases have the advantage of recording
a broad range of clinical characteristics. This allows us to include a variety of risk factors
in our analysis that might otherwise be difficult or expensive to obtain, such as an individ-
ual’s characteristics or factors related to their interaction with the BC healthcare system.
Measured characteristics on an individual’s first recorded OAT dispensation date can be
considered as baseline covariates in our regression models. These characteristics include sex
(male vs. female), birth generation (indicators of birth year intervals: 1901-1945 vs. 1946-
1964 vs. 1965-1980 vs. 1981+), health authority (indicators of residence region: Fraser Health
vs. Interior vs. Vancouver Coastal vs. Vancouver Island vs. Northern), and year category
(category corresponding to first recorded OAT dispensation date: 1996-2000 vs. 2001-2006
vs. 2007-2012 vs. 2013-2018). Although the variable health authority can in principle change
over time, this variable is rather stable, and therefore treated as a time-independent cat-
egorical variable. Some individuals had changes in their reported sex over time, but we
found that most of the observed changes were due to data entry errors. Therefore, we kept
sex as a time-independent variable in our analyses. In terms of other risk factors, Table
2.3 displays codes used to identify if certain conditions are satisfied. We identify an indi-
vidual satisfying a particular condition if (i) their purpose of hospitalization matches the
condition, (ii) they have at least three physician claims that matches the condition, or (iii)
they have a pharmaceutical dispensation pertaining to the condition. Since it is difficult to
gauge the severity of conditions strictly from these health records, we restrict our attention
to the presence of these conditions. That is, each condition listed in Table 2.3 is specified as
time-varying one-jump binary processes, where the change of such a process corresponds to
the first observed date when the condition is satisfied. Individuals that do not have a health
record pertaining to a condition are classified to not satisfying the condition in question.
We incorporate information pertaining to an individual’s socioeconomic status by assessing
if they ever received financial assistance, through BC PharmaCare Plans C or G to cover
medication costs, as well as incarceration records through their incarceration status.

In terms of the notation provided in Section 1.3, the available information we have
can be expressed as {(T ∗

i , δi, Z i(T ∗
i ), X i(T ∗

i )) : i = 1, · · · , n}. Our aim is to estimate the
parameters in a regression model using the available data to assess the association of T with
Z(·) while controlling for additional factors in X (·).
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2.3 Preliminary Analysis with Joint Modelling the OAT Dis-
pensation and Mortality Risk Processes

To simplify our task, we restrict the OAT dispensation process to be the OAT dispensation
indicator. Our objective is to quantify the association of T with Z(·) while controlling
for additional factors in X (·). The conventional approach to achieve this is to model the
conditional hazard function of T (at time t), given the processes Z(t) and X (t):

λ(t; Z(t), X (t)) = lim
∆t→0+

1
∆t

P (t ≤ T < t + ∆t|T ≥ t, Z(t), X (t)). (2.1)

Before specifying an appropriate model, we need to address two questions: (a) “what infor-
mation from Z(t) do we want to include in the hazard model at time t?” and (b) “how do
we infer model parameters when conditioning on an internal covariate?” Regarding (a), the
two extreme quantities are (i) only Z(t) from Z(t), the current OAT dispensation indicator
for an individual at time t is used, and (ii) R(t) =

∫ t
0 Z(u)du/t, the average proportion

of time an individual is dispensed OAT from their first recorded OAT dispensation up to
time t, which summarizes the information from Z(t). Given the conviction that a more
comprehensive summary of the data is preferable, we proceed to work with R(t). Following
the discussion in Chapter 1, our options to address (b) are to (i) adopt a non-likelihood
inference procedure, or to (ii) summarize Z(t) in some way so that the conventional rela-
tionship between the hazard and survivor functions is preserved. We proceed with the latter
option and summarize the internal covariate with some quantity that does not imply an
individual’s survival status. That is the popular approach in the literature.

For example, consider the following model:

Rij = νi + εij for i = 1, · · · , n and j = 1, · · · , mi, (2.2)

where {tij : j = 1, · · · , mi} are observation times of the OAT dispensation process with
T ∗

i = ti,mi , Rij ≡ Ri(tij), νi is a subject-specific (unknown) quantity, and εij is a mean-zero
error term. If we are willing to make the assumption that Ti ⊥⊥ Zi(∞) | νi, we can then
replace Zi(·) with νi in the conditional hazard function (2.1). The following specification of
(2.1) could then be used to achieve our objective:

λ(t; Zi(t), X i(t)) = λ0(t) exp{γνi + θ′Xi(t)} for i = 1, · · · , n, (2.3)

where λ0(t) is an unspecified baseline hazard function, and θ = (θ1, · · · , θq)′ and γ are
unknown regression parameters with γ being the parameter of primary interest. Since νi is
time-independent, the conventional relationship between the hazard and survivor functions
is thus preserved. We can therefore estimate λ0(·), θ, and γ with a likelihood based inference
procedure. The main challenge we face is that νi is unobservable. Since νi is a summary
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of Z(·), it is natural to estimate νi under (2.2) with ν̂i =
mi∑
j=1

Rij/mi, the sample mean of

dispensation proportions. We refer νi and ν̂i as the OAT dispensation rate and the observed
OAT dispensation rate for individual i, respectively.

Table 2.4 provides descriptive statistics of T ∗, age on first recorded OAT dispensation
date, and potential time-independent risk factors to include in (2.3). Of the n = 54,739
individuals from our study, there are 7,008 (12.8%) deaths. By stratifying individuals into
survivors and non-survivors, Table 2.4 showcases some characteristics that differ between
the groups. In particular, non-survivors were generally older than survivors on their first
recorded OAT dispensation date and had a higher observed OAT dispensation rate compared
to survivors. This latter observation will be further discussed shortly. As the incarceration
status over time is also an alternating-binary process, we used a strategy similar to summa-
rizing the OAT dispensation process with (2.2) to summarize an individual’s incarceration
process. However, since the majority of individuals were never incarcerated during the study
period, specifying a model as in (2.2) to summarize someone’s incarceration process is chal-
lenging. This motivated us to summarize this process in an alternative way by pooling all
of the incarceration processes together, and then let the data identify important features
by conducting a dimension reduction procedure. By viewing each individual’s incarceration
process as a realization from a functional binary process, we applied sparse logistic func-
tional principal component (FPC) analysis for binary data (Zhong et al. 2021, Zhong and
Zhang 2022), in which 94.1% of the overall variability is attributed to the first principal
component.

In terms of potential time-varying covariates to include in (2.3), we first examined for
potential multicollinearity within the one-jump processes. In Table 2.5, we present the
proportion of individuals who meet one condition compared to another. This motivated us
to merge processes that appear to be highly correlated, specifically, (i) alcohol use disorder
and other substance use disorders, (ii) poor mental health and chronic pain, and (iii) Hepatitis
C Virus and HIV/AIDS. Table 2.6 summarizes the one-jump processes and the number of
observed incarcerations (to be used in Chapters 3 & 5) by the end of follow-up. We can
see the proportion of individuals satisfying the listed conditions are higher in the non-
survivor cohort, relative to survivors. We would hence anticipate the estimated effect for
these variables in (2.3) to be positive.

With the available data {(T ∗
i , δi, X i(T ∗

i )) : i = 1, · · · , n}, we estimate the parameters in
(2.3) by maximizing the following likelihood function:

L(λ0(·), θ, γ)

=
n∏

i=1

∫
(λ0(T ∗

i ) exp{γνi + θ′Xi(T ∗
i )})δi exp{−

∫ T ∗
i

0
λ0(t) exp{γνi + θ′Xi(t)}dt}dF (νi),

(2.4)
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where we assume νi ∼ F (·). Often, νi is specified to follow a normal distribution, and a
numerical integration technique, such as Monte Carlo or Gaussian quadrature, is imple-
mented to evaluate (2.4) (Tsiatis and Davidian 2004, Rizopoulos 2011). We can see that the
resulting estimator under (2.4) not only depends on the correct specification of F (·), but
is also computationally expensive to obtain, especially if the dimension of νi is large. Prior
research has shown the resulting estimator under (2.4) to be fairly robust against misspeci-
fying νi to follow a normal distribution (Song et al. 2002, Tsiatis and Davidian 2004, Hsieh
et al. 2006), while attempts to reduce the computational costs with joint modelling (e.g.
Ding and Wang (2008)) cannot avoid the integration in (2.4). If we can avoid integrating
out νi in (2.4) however, this would solve the computational challenge. If we knew νi for each
i = 1, · · · , n, the likelihood function is

L(λ0(·), θ, γ)

=
n∏

i=1
(λ0(T ∗

i ) exp{γνi + θ′Xi(T ∗
i )})δi exp{−

∫ T ∗
i

0
λ0(t) exp{γνi + θ′Xi(t)}dt}.

Evaluating its associated maximum likelihood estimate of the parameters clearly has a lower
computational cost compared to (2.4). If we replace νi with its estimate ν̂i, the likelihood
function becomes

L(λ0(·), θ, γ)

=
n∏

i=1
(λ0(T ∗

i ) exp{γν̂i + θ′Xi(T ∗
i )})δi exp{−

∫ T ∗
i

0
λ0(t) exp{γν̂i + θ′Xi(t)}dt}. (2.5)

Note that (2.5) is a special case of (2.4) with F (νi) = I(νi ≥ ν̂i), which places all the mass
on the estimate ν̂i for νi. The function in (2.5) is similar to that of (1.14), and with X(·)
being an external covariate vector, one may proceed to estimate the model parameters by
maximizing (2.5).

Table 2.7 presents the resulting estimates of γ and θ under the model (2.3). The esti-
mates are presented under two time scales: (i) time since first recorded OAT dispensation
record, and (ii) age. The purpose of including age as a time scale is to overcome the sub-
jectivity of time zero under time since first recorded OAT dispensation record. Generally,
the estimates under both time scales corroborate with the descriptive statistics presented
in Tables 2.4 and 2.6. However, we anticipated the effects of ill mental health or chronic
pain and ever on PharmaCare plans C or G to be positive in the hazard model. These
discrepancies are likely due to additional multicollinearity within the one-jump processes,
where we display two-way contingency tables for each combination of the processes in Table
2.5. Since the effect of primary interest is the OAT dispensation rate, we do not make any
further attempts to address this issue. One approach to address the serial correlation within
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the one-jump processes is to maximize a penalized likelihood function that would jointly
estimate model parameters and conduct variable selection (Fan and Li 2002).

The estimated effect of OAT dispensation rate is positive (and significant). It indicates
that individuals with a higher observed OAT dispensation rate have a higher risk of mor-
tality relative to individuals with a lower dispensation rate. Although this agrees with the
descriptive summary in Table 2.4, it surprised us nonetheless. As it is known that opioid
tolerance varies with age (Zubieta et al. 1999, Zhao et al. 2012), Table 2.8 presents summary
statistics for ν̂ across birth generations, in which we see the OAT dispensation pattern varies
between survival groups. In particular, survivors have a lower observed OAT dispensation
rate within the older generations, and the opposite is true for the younger generations. This
finding discloses that the analysis results in Table 2.7 are likely confounded by age. We
were then motivated to stratify individuals according to their respective birth generations,
and obtain stratum-specific estimates under (2.2). The regression estimates are presented
in Table 2.9 and the cumulative baseline hazard estimates are illustrated in Figure 2.2. We
can see in Table 2.9 that the estimated effects of OAT dispensation rate decrease by birth
generation, and align with the descriptive statistics in Table 2.8. We can also see in Figure
2.2 that the mortality risks, as expected, are higher for older birth generations.

We extended (2.3) to accommodate potential time-varying effect for the OAT dispensa-
tion rate:

λ(t; Zi(t), X i(t)) = λ0(t) exp{γ(t)νi + θ′Xi(t)}, (2.6)

where γ(t) is an unknown function of time. One may approximate γ(·) with a linear com-
bination of natural cubic spline basis functions with percentile-based knots (Green and
Silverman 1994),

γ(t) ≈
s∑

k=0
ϕkCk(t).

Here, s determines the number of interior knots in the spline. Figure 2.3 shows the estimates
of γ(·) in both time since first recorded OAT dispensation and age time scales, where the
value of s was selected by the Bayesian information criterion (Rice and Wu 2001). Since
the estimates of θ̂ are similar to those presented in Table 2.7, we omit displaying the
corresponding estimates under (2.6). In principle, the patterns in Figure 2.3 can provide
important insights towards the observed OAT dispensation rate effect, we do not want to
read too much into them due to not adjusting the estimates for the confounding variable,
age. Figures 2.4 and 2.5 show the observed OAT dispensation rate effects and smoothed
estimated baseline hazard functions, where we stratified individuals according to their birth
generation. In the age time scale, the estimated effects are linear over time, where we note
that only the effect corresponding to Millennials & Generation Z has a decreasing trend.
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Using these estimates alongside the estimated baseline hazard functions, we can predict an
individual’s survival probability with t > Ci, analogous to (1.22) as

P̂ (Ti ≥ Ci + t|T > Ci, νi, X i(Ci)) = exp
{

−
∫ Ci+t

Ci

exp{γ̂b(u)νi + θ̂′
bXi(Ci)}dΛ̂0b(u)

}
if individual i belongs to birth generation group b ∈ {1, 2, 3, 4}.

(2.7)

The survival probabilities are under (2.6) for individuals stratified by birth generation first.
We condition on the available information from Zi(·) and X i(·). In particular, we need
to summarize Zi(·) by the rate νi, and keep the one-jump binary processes static at their
observed value at time Ci. We illustrate such predicted survival probabilities for eight ran-
domly selected survivors (two from each of the four birth generation groups) in Figure 2.6.
Overall, our analysis indicates that individuals belonging to the Greatest & Silent Genera-
tions are subject to the largest mortality risk among the four birth generation groups.

2.4 Outlook for Chapter 3

The approach taken within our preliminary data analysis jointly models the OAT dispen-
sation process and mortality hazard risk. As discussed in Chapter 1, this has been the
most popular approach within the literature towards handling challenges induced by inter-
nal time-varying covariates. This approach requires us to specify a longitudinal sub-model,
the one specified in (2.2), or summarize the process with a dimension reduction procedure,
such as obtaining functional principal component scores (Spreafico and Ieva 2021, Zhong
et al. 2021). However, what if we want to directly estimate an internal covariate’s effect on
the mortality hazard? As shown in Section 1.1.3, the conventional relationship between the
hazard and survivor functions is obstructed, and we hence need to consider an alternative
procedure to conduct our statistical inference. This will be the focus and main contribution
of Chapter 3.
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Figure 2.1: A hypothetical study individual with their date of death is (a) recorded in the dataset, and (b) right-censored.
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Figure 2.2: Estimates of the cumulative baseline hazard function under the Cox model (2.3), upon
stratifying by birth generation levels, where the time scales are (a) time since first recorded OAT
dispensation or (b) age.
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Figure 2.3: Estimates and 95% confidence intervals for the OAT dispensation rate estimate under
the model (2.6), where the time scales are (a) time since first recorded OAT dispensation or (b)
age. The average of the estimated curve (in blue) and corresponding estimate and 95% confidence
interval under the Cox regression model from Table 2.7 (in red) are included as references. The AIC
and BIC values are relative to the corresponding AIC and BIC values under model (2.3).
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Figure 2.4: Estimates and 95% confidence intervals for the OAT dispensation rate under the model (2.6), upon stratifying by birth generations,
where the time scales are (a) time since first recorded OAT dispensation or (b) age. The average of the estimated curve (in blue) and corresponding
estimate and 95% confidence interval under the (stratified) Cox regression model from Table 2.9 (in red) are included as references. The AIC and
BIC values are relative to the corresponding AIC and BIC values under model (2.3).

−2

0

2

0 5 10 15 20

Number of Interior Knot(s): 3

Greatest & Silent Generations

0 5 10 15 20

Number of Interior Knot(s): 3

Baby Boomers

0 5 10 15 20

Number of Interior Knot(s): 0

Generation X

0 5 10 15

Number of Interior Knot(s): 3

Millennials & Generation Z

Time Since First Recorded OAT Dispensation (in years)

E
st

im
at

ed
 E

ffe
ct

(a)

−2

0

2

30 60 90

Number of Interior Knot(s): 0

Greatest & Silent Generations

30 60 90

Number of Interior Knot(s): 0

Baby Boomers

30 60 90

Number of Interior Knot(s): 0

Generation X

30 60 90

Number of Interior Knot(s): 0

Millennials & Generation Z

Age (in years)

   
   

   
   

   
 

(b)

Legend

Cox Estimate

Averaged Curve

26



Figure 2.5: LOESS smoothed estimates of the baseline hazard functions under the Cox model
(2.6), stratified by birth generations, where the time scales are (a) time since first recorded OAT
dispensation or (b) age.
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Figure 2.6: Predicted survival probabilities for eight randomly selected survivors (two from each of the four birth generation groups) from (2.7),
where the time scale is specified as (a) time since first recorded OAT dispensation or (b) age.
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Table 2.1: Drug identification numbers (DINs) in BC-PharmaNet, and descriptions of the various OATs. The colours correspond to specific OATs:
Methadone, Buprenorphine & Naloxone, Buprenorphine (only), Slow-Release Oral Morphine, and Injectable Hydromorphone.

Drug Identification Number Description
999792 METHADONE (MAINTENANCE): 1 MG / ML
999793 METHADONE (MAINTENANCE): 2 MG / ML

66999990 METHADONE (MAINTENANCE): 1 MG / ML
66999991 METHADONE (MAINTENANCE): 1 MG / ML
66999992 METHADONE (MAINTENANCE): 2 MG / ML
66999993 METHADONE (MAINTENANCE): 2 MG / ML
66999997 METHADONE (METHADOSE): 10 MG / ML - DIRECT INTERACTION
66999998 METHADONE (METHADOSE): 10 MG / ML - DIRECT INTERACTION
66999999 METHADONE (METHADOSE): 10 MG / ML - DIRECT INTERACTION & DELIVERY
67000000 METHADONE (METHADOSE): 10 MG / ML - NO DIRECT INTERACTION & DELIVERY
67000001 METHADONE (SUGAR-FREE METHADOSE): 10 MG / ML - DIRECT INTERACTION
67000002 METHADONE (SUGAR-FREE METHADOSE): 10 MG / ML - NO DIRECT INTERACTION
67000003 METHADONE (SUGAR-FREE METHADOSE): 10 MG / ML - DIRECT INTERACT & DELIVERY
67000004 METHADONE (SUGAR-FREE METHADOSE): 10 MG / ML - NO DIRECT INTERACT & DELIVERY
67000005 METADOL-D: 10 MG / ML LIQUID METHADONE - DIRECT INTERACTION
67000006 METADOL-D: 10 MG / ML LIQUID METHADONE - NO DIRECT INTERACTION
67000007 METADOL-D: 10 MG / ML LIQUID METHADONE - DIRECT INTERACTION & DELIVERY
67000008 METADOL-D: 10 MG / ML LIQUID METHADONE - NO DIRECT INTERACTION & DELIVERY
2295695 SUBOXONE: 2 MG / 0.5 MG
2295709 SUBOXONE: 8 MG / 2 MG
2408090 MYLAN - BUPRENORPHINE / NALOXONE: 2 MG / 0.5 MG
2408104 MYLAN - BUPRENORPHINE / NALOXONE: 8 MG / 2 MG
2424851 PMS - BUPRENORPHINE / NALOXONE: 2 MG / 0.5 MG
2424878 PMS - BUPRENORPHINE / NALOXONE: 8 MG / 2 MG
2453908 ACT - BUPRENORPHINE / NALOXONE: 2 MG / 0.5 MG
2453916 ACT - BUPRENORPHINE / NALOXONE: 8 MG / 2 MG
2468085 SUBOXONE: 12 MG / 3 MG
2468093 SUBOXONE: 16 MG / 4 MG
2242962 SUBUTEX: 0.4 MG - TABLET
2242963 SUBUTEX: 2 MG - TABLET
2242964 SUBUTEX: 8 MG - TABLET

66999994 BUPRENORPHINE: 0.4 MG - TABLET
66999995 BUPRENORPHINE: 2 MG - TABLET
66999996 BUPRENORPHINE: 8 MG - TABLET
22123346 KADIAN: 20 MG - CAPSULE
22123347 KADIAN: 50 MG - CAPSULE
22123348 KADIAN: 100 MG - CAPSULE
22123349 KADIAN: 10 MG - CAPSULE
22123340 HYDROMORPHONE: 50 MG / ML - COMPOUNDED INJECTION (SALOME CLINICAL TRIAL)
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Table 2.2: ICD-CA-9/10 codes affiliated with an opioid use disorder.

ICD-CA-9 Code Description ICD-CA-10 Code Description
304.0 Opioid type dependence F11 Mental and behavioural disorders due to use of opioids
304.7 Combinations of opioid type drug with any other drug dependence T40.0 Poisoning by opium
305.5 Nondependent opioid abuse T40.1 Poisoning by heroin
965.0 Poisoning by opiates and related narcotics T40.2 Poisoning by other opioids

E850.0 Accidental poisoning by heroin T40.3 Poisoning by methadone
E850.1 Accidental poisoning by methadone T40.4 Poisoning by other synthetic narcotics
E850.2 Accidental poisoning by other opiates and related narcotics T40.6 Poisoning by other and unspecified narcotics

X42 Accidental poisoning by and exposure to
narcotics and psychodysleptics (hallucinogens)

X62 Intentional self-poisoning by and exposure to
narcotics and psychodysleptics (hallucinogens)

Y12 Poisoning by and exposure to
narcotics and psychodysleptics (hallucinogens)
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Table 2.3: ICD-CA-9/10 codes, drug identification numbers, and other codes used for classification.
Abbreviations: MSP: Medical Services Plan; AHFS: American Hospital Formulary Service.

Condition \ Diagnostic Codes ICD-CA-9 ICD-CA-10 Drug Identification Number Other

Alcohol Use Disorder

291, 303, 305.0,
357.5, 425.5, 535.3,
571.0-571.3, 655.4,
760.71,V65.42

F10, G31.2, G62.1,
G72.1, I42.6, K29.2,
K70, K86.0, O35.4,
P04.3, Q86.0, Z50.2,
Z71.4, Z72.1

2534, 2542,
2041375, 2041391, 2158655,
2213826, 2293269, 2444275, 2451883,
66124085, 66124087, 66124089

NA

Other Substance Use Disorders

292, 304.1-304.6, 304.8,
304.9, 305.2-305.4, 305.6-305.9,
648.3, 760.73, 760.75,
779.5, 969.4, 969.6,
969.7, 970.81,
E853.2, E854.1, E854.2,

F12-F16, F19, P04.4, P96.1, T40.5,
T40.7-T40.9, T42.4, T43.6, X42, X62,
Y12, Z50.3, Z71.5, Z72.2

NA NA

Mental Ill Health 295-298, 300, 301, 308, 309,
311, 314

F20-F25, F28-F34, F38-F43, F48.8,
F48.9, F60-F61, F69, F90 NA Additional MSP diagnostic code:

50B

Chronic Pain

307.80, 307.89, 338.0,
338.2, 338.4, 344.0,
344.1, 350, 352-357,
719.41, 719.45-719.47,
719.49, 720.0, 720.2,
720.9, 721.0-721.4,
721.6, 721.8, 721.9,
722, 723.0, 723.1,
723.3-723.9, 724.0-724.6,
724.70, 724.79, 724.8,
724.9, 729.0-729.2, 729.4,
729.5, 733.0, 733.7,
733.9, 781, 997.0

F45.4, G50, G52-G64,
G82, G89.0, G89.2,
G89.4, G97, M08.1,
M25.50, M25.51, M25.55-M25.57,
M43.2-M43.6, M45, M46.1,
M46.3, M46.4, M46.9,
M47, M48.0, M48.1,
M48.8, M48.9, M50.8,
M50.9, M51, M53.1-M53.3,
M53.8, M53.9, M54,
M60.8, M60.9, M63.3,
M79.0-M79.2, M79.6, M79.7,
M89, M96.1, R29

NA NA

Hepatitis C Virus 70.41, 70.44, 70.51,
70.54, 70.7 B17.1, B18.2, B19.2 B20-B24, B97.35,

F02.4, O98.7, Z21 NA

HIV/AIDS 042-044, 079.53,
795.8, V08

B20-B24, B97.35,
F02.4, O98.7, Z21 NA MSP fee item:

13015, 13105, 33645, 36370

Sedative Use NA NA NA AHFS category:
281204, 281208, 282404, 282408, 282492
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Table 2.4: Descriptive Statistics of T ∗, age on first recorded OAT dispensation date (t = 0), and potential time-independent covariates in (2.3).
Abbreviations:
S.D.: Sample standard deviation.

Follow-up Time (Time Since First Recorded OAT Dispensation Date) & Age
Follow-up Time (in years) Survivors Non-Survivors Age at t = 0 (in years) Survivors Non-Survivors Total

Minimum 0.0027 0.0027 Minimum 18 18.0082 18
1st Quartile 1.4110 2.1856 1st Quartile 26.3671 32.6534 26.8384
Median 4.6055 5.9712 Median 32.8685 41.0932 33.7973
3rd Quartile 10.4055 11.4281 3rd Quartile 41.5644 48.9274 42.8411
Maximum 22.7644 22.7315 Maximum 99.9726 96.0712 99.9726
Mean 6.7950 7.3446 Mean 34.9387 41.7456 35.8102
S.D. 6.5416 5.9288 S.D. 11.0564 12.6521 11.5003
N (%) 47,731 (87.20) 7,008 (12.8)

Risk Factors
Observed OAT Dispensation Rate: ν̂ Survivors Non-Survivors Total Sex Survivors Non-Survivors Total
Minimum 0.0012 0.0014 0.0012 N (%) N (%) N (%)
1st Quartile 0.2699 0.2979 0.2731 Female 16,226 (33.99) 2,258 (32.22) 18,484 (33.77)
Median 0.6233 0.6700 0.6290 Male 31,505 (66.01) 4,750 (67.78) 36,255 (66.23)
3rd Quartile 0.9169 0.9439 0.9208 Health Authority Survivors Non-Survivors Total
Maximum 1 1 1 N (%) N (%) N (%)
Mean 0.5804 0.6066 0.5837 Fraser Health 18,437 (33.11) 2,136 (30.48) 20,573 (37.58)
S.D. 0.3370 0.3376 0.3372 Interior 7,620 (15.96) 997 (14.23) 8,617 (15.74)

Incarcerated Rate Survivors Non-Survivors Total Vancouver Coastal 11,593 (24.29) 2,412 (34.42) 14,005 (25.59)
Median 0 0 0 Vancouver Island 8,085 (16.94) 1,217 (17.37) 9,302 (16.99)
75th Percentile 0.0010 0.0033 0.0013 Northern 1,996 (4.18) 246 (3.51) 2,242 (4.10)
85th Percentile 0.0201 0.0224 0.0205 Year Category Survivors Non-Survivors Total
95th Percentile 0.2203 0.1531 0.2101 N (%) N (%) N (%)
Maximum 1 1 1 1996-2000 6,827 (14.30) 3,039 (43.36) 9,866 (18.02)
Mean 0.0358 0.0262 0.0345 2001-2006 6,337 (13.28) 1,656 (23.63) 7,993 (14.60)
S.D. 0.3370 0.3376 0.3372 2007-2013 12,150 (25.46) 1,373 (19.59) 13,523 (24.70)

2013-2018 22,417 (46.97) 940 (13.41) 23,357 (42.67)
Birth Generation Survivors Non-Survivors Total

N (%) N (%) N (%)
Greatest & Silent: (1901-1945) 447 (0.94) 654 (9.33) 1,101 (2.01)
Baby Boomers: (1946-1964) 9,904 (20.75) 3,575 (51.01) 13,479 (24.62)
Generation X: (1965-1980) 18,861 (39.52) 1,998 (28.51) 20,859 (38.11)
Millennials & Generation Z: (1981+) 18,519 (38.80) 781 (11.14) 19,300 (35.26)
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Table 2.5: Proportions of individuals identified with the listed condition by the end of follow-up. Bolded cells specify processes that were merged
together to fit the model in (2.3).
Abbreviations:
AUD: Alcohol use disorder;
SUD: Other substance use disorders;
MH: Ill mental health;
CP: Chronic pain;
HCV: Hepatitis C virus;
HIV: HIV/AIDS;
SED: Ever received a sedative;
Plan CG: Ever on PharmaCare plans C or G.

AUD SUD MH CP HCV HIV SED Plan CG
No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes

AUD No 0.7096 0
Yes 0 0.2904

SUD No 0.2346 0.0160 0.2506 0
Yes 0.4750 0.2744 0 0.7494

MH No 0.2067 0.0183 0.1432 0.0819 0.2251 0
Yes 0.5028 0.2721 0.1074 0.6675 0 0.7749

CP No 0.2837 0.0510 0.1540 0.1807 0.1611 0.1736 0.3347 0
Yes 0.4259 0.2394 0.0966 0.5687 0.0640 0.6013 0 0.6653

HCV No 0.6471 0.2265 0.2428 0.6308 0.2129 0.6607 0.3155 0.5582 0.8737 0
Yes 0.0625 0.0639 0.0078 0.1186 0.0121 0.1142 0.0192 0.1071 0 0.1263

HIV No 0.6854 0.2679 0.2491 0.7041 0.2181 0.7351 0.3242 0.6291 0.8514 0.1018 0.9533 0
Yes 0.0242 0.0225 0.0015 0.0453 0.0069 0.0398 0.0105 0.0362 0.0222 0.0245 0 0.0467

SED No 0.6610 0.2250 0.2506 0.6354 0.2213 0.6647 0.3184 0.5676 0.7869 0.0991 0.8501 0.0359 0.8860 0
Yes 0.0486 0.0654 < 0.0001 0.1140 0.0038 0.1102 0.0163 0.0977 0.0868 0.0272 0.1032 0.0108 0 0.1140

Plan CG No 0.2576 0.0680 0.1524 0.1732 0.1258 0.1997 0.1467 0.1788 0.3062 0.0194 0.3205 0.0050 0.3056 0.0199 0.3256 0
Yes 0.4520 0.2224 0.0982 0.5762 0.0992 0.5752 0.1880 0.4865 0.5675 0.1070 0.6328 0.0417 0.5804 0.0941 0 0.6744
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Table 2.6: Summary statistics of demographic and clinical characteristics of study subjects by the
end of follow-up.

Survivors Non-Survivors Total
N % N % N %

Demographic/Clinical Characteristics
(by end of follow-up) 47,731 87.2 7,008 12.8 54,739 100.0

Other Substance Use or Alcohol Use Disorders 35,641 74.7 6,244 89.1 41,885 76.5
Ill Mental Health or Chronic Pain 39,595 83.0 6,326 90.3 45,921 83.9
Hepatitis C Virus or HIV/AIDS 5,760 12.1 2,418 34.5 8,178 14.9

Ever Received a Sedative 5,052 10.6 1,180 16.8 6,232 11.4
Ever on PharmaCare Plans C or G 31,753 66.5 5,165 73.7 36,918 67.4

Number of Incarcerations 0 35,445 74.3 4,799 68.5 40,244 73.5
1 3,924 8.2 659 9.4 4,583 8.4

2-3 3,392 7.1 619 8.8 4,011 7.3
4-9 3,193 6.7 616 8.8 3,809 7.0

10-20 1,337 2.8 238 3.4 1575 2.9
21-30 292 0.6 53 0.8 345 0.6
31+ 143 0.3 24 0.3 172 0.3
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Table 2.7: Parameter and standard error (S.E.) estimates under model (2.3) by maximizing the
likelihood function in (2.5). Bolded estimates are statistically significant with the type 1 error rate
set at 5%.

Time Scale Time Since First Observed
OAT Dispensation Age

Covariate Name Estimate S.E. Estimate S.E.
OAT Dispensation Rate 0.2471 0.0379 0.2569 0.0380
Incarceration FPC Score 0.0283 0.0072 0.0318 0.0072
Sex (vs. Female) - - - -
Male 0.1842 0.0260 0.1686 0.0262
Birth Generation (vs Greatest & Silent Generations) - - - -
Baby Boomers -1.3143 0.0440 -0.5687 0.0653
Generation X -2.0660 0.0473 -0.8268 0.0804
Millennials & Generation Z -2.1523 0.0587 -0.5277 0.1057
Heath Authority (vs Fraser Health) - - - -
Interior 0.2048 0.0387 0.1744 0.0388
Vancouver Coastal 0.1058 0.0302 0.0944 0.0302
Vancouver Island 0.0806 0.0361 0.0626 0.0361
Northern 0.0499 0.0677 0.0532 0.0677
Year Category (vs. 1996-2000 ) - - - -
2001-2006 0.1629 0.0331 0.0350 0.0315
2007-2012 0.2432 0.0391 0.0037 0.0359
2013-2018 0.5914 0.0491 0.3576 0.0433
Alcohol or Other Substance Use Disorders 0.3588 0.0423 0.4049 0.0431
Ill Mental Health or Chronic pain -0.1812 0.0431 -0.3047 0.0428
Hepatitis C Virus or HIV/AIDS 1.1533 0.0273 1.0923 0.0271
Ever Received a Sedative 0.4866 0.0332 0.4648 0.0331
Ever on PharmaCare Plans C or G -0.2174 0.0300 -0.1599 0.0306
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Table 2.8: Summary statistics of the observed OAT dispensation rate, ν̂i, across birth generations
and survival status.
Abbreviations:
S.D.: Sample standard deviation.

Greatest & Silent Generations: 1901-1945 Baby Boomers: 1946-1964
Survivors Non-Survivors Total Survivors Non-Survivors Total

Minimum 0.0012 0.0014 0.0012 Minimum 0.0012 0.0022 0.0012
1st Quartile 0.1009 0.2539 0.1677 1st Quartile 0.2857 0.4067 0.3123
Median 0.4244 0.7972 0.6648 Median 0.6991 0.8005 0.7244
3rd Quartile 0.9272 0.9855 0.9756 3rd Quartile 0.9550 0.9704 0.9610
Maximum 1 1 1 Maximum 1 1 1
Mean 0.4900 0.6360 0.5768 Mean 0.6121 0.6731 0.6282
S.D. 0.3836 0.3707 0.3826 S.D. 0.3483 0.3271 0.3439
N 447 654 1,101 N 9,904 3,575 13,479

Generation X: 1965-1980 Millennials & Generation Z: 1981+
Survivors Non-Survivors Total Survivors Non-Survivors Total

Minimum 0.0013 0.0036 0.0013 Minimum 0.0014 0.0023 0.0014
1st Quartile 0.2750 0.2503 0.2727 1st Quartile 0.2631 0.1415 0.2574
Median 0.6146 0.5510 0.6076 Median 0.6001 0.4199 0.5929
3rd Quartile 0.9042 0.8322 0.8978 3rd Quartile 0.8998 0.7500 0.8951
Maximum 1 1 1 Maximum 1 1 1
Mean 0.5767 0.5375 0.5729 Mean 0.5693 0.4546 0.5647
S.D. 0.3320 0.3174 0.3308 S.D. 0.3335 0.3227 0.3338
N 18,861 1,998 20,859 N 18,519 781 19,300
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Table 2.9: Parameter and standard error (S.E.) estimates under model (2.3) by maximizing the likelihood function in (2.5), upon stratifying
individuals according to their birth generation. Bolded estimates are statistically significant with the type 1 error rate set at 5%.

Greatest & Silent Generations: 1901-1945 Baby Boomers: 1946-1964

Time Scale Time Since First Observed
OAT Dispensation Age Time Since First Observed

OAT Dispensation Age

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
On OAT Rate 1.2411 0.1309 1.5154 0.1347 0.4634 0.0545 0.4200 0.0543
Incarceration FPC Score 0.2709 0.1385 0.3570 0.1400 0.0225 0.0119 0.0260 0.0118
Sex (vs. Female) - - - - - - - -
Male 0.0269 0.0859 0.0787 0.0882 0.1540 0.0369 0.1078 0.0370
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.3651 0.1216 0.2658 0.1237 0.1505 0.0569 0.1332 0.0569
Vancouver Coastal 0.1911 0.0999 0.1625 0.1007 0.0572 0.0426 0.0535 0.0425
Vancouver Island 0.0837 0.1278 0.1045 0.1282 0.0917 0.0498 0.0666 0.0498
Northern -0.2900 0.2822 -0.1673 0.2833 0.1642 0.0937 0.1858 0.0937
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.5293 0.1068 0.4964 0.1051 0.1696 0.0438 0.0616 0.0419
2007-2012 0.1327 0.1452 -0.0173 0.1444 0.1897 0.0568 -0.0836 0.0532
2013-2018 0.0067 0.1710 0.1698 0.1648 0.4959 0.0790 0.1615 0.0727
Alcohol or Other Substance Use Disorders -0.3996 0.0959 -0.4165 0.0988 0.2540 0.0621 0.2492 0.0619
Ill Mental Health or Chronic pain 0.1898 0.1375 -0.1238 0.1339 -0.1961 0.0619 -0.3272 0.0614
Hepatitis C Virus or HIV/AIDS 0.9876 0.0997 0.9033 0.0978 1.2545 0.0359 1.1909 0.0356
Ever Received a Sedative 0.3941 0.1529 0.4136 0.1529 0.3473 0.0468 0.3296 0.0467
Ever on PharmaCare Plans C or G -0.5742 0.0973 -0.4854 0.1019 -0.2051 0.0445 -0.1177 0.0450

Generation X: 1964-1980 Millennials & Generation Z: 1981+

Time Scale Time Since First Observed
OAT Dispensation Age Time Since First Observed

OAT Dispensation Age

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
On OAT Rate -0.0034 0.0737 -0.0143 0.0735 -0.5978 0.1156 -0.6176 0.1156
Incarceration FPC Score 0.0251 0.0200 0.0276 0.0199 0.0416 0.0147 0.0405 0.0149
Sex (vs. Female) - - - - - - - -
Male 0.1684 0.0480 0.1400 0.0481 0.5124 0.0790 0.4881 0.0793
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.2387 0.0726 0.2274 0.0726 0.3091 0.1034 0.2942 0.1034
Vancouver Coastal 0.1495 0.0557 0.1385 0.0557 0.2062 0.0941 0.1972 0.0941
Vancouver Island 0.0599 0.0687 0.0599 0.0687 0.1888 0.1082 0.1706 0.1082
Northern -0.0767 0.1263 -0.0841 0.1262 0.0224 0.1908 -0.0058 0.1909
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.0865 0.0616 0.0011 0.0586 0.7932 0.4694 0.7795 0.4622
2007-2012 0.3967 0.0682 0.2256 0.0613 0.9263 0.4698 0.8534 0.4530
2013-2018 0.7952 0.0895 0.5286 0.0786 1.5084 0.4728 1.3604 0.4522
Alcohol or Other Substance Use Disorders 1.0797 0.1146 1.0791 0.1146 1.2189 0.1514 1.2356 0.1512
Ill Mental Health or Chronic pain -0.3302 0.0810 -0.3795 0.0809 -0.4210 0.1219 -0.4297 0.1217
Hepatitis C Virus or HIV/AIDS 1.0655 0.0515 1.0141 0.0519 0.6221 0.1414 0.5876 0.1413
Ever Received a Sedative 0.6509 0.0578 0.6274 0.0578 0.7652 0.0971 0.7584 0.0970
Ever on PharmaCare Plans C or G -0.0871 0.0581 -0.0897 0.0581 -0.3577 0.0784 -0.3543 0.0784
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Chapter 3

Estimating Effects of Time-Varying
Exposures on Mortality Hazard
Function

3.1 Introduction

This chapter focuses on estimating the effect of an internal covariate process on the mortality
hazard. As likelihood inference procedures are no longer applicable, we consider estimating
equation procedures. The statistical presentation is within the context of opioid use disorder
management; we focus our attention to estimate the effect of a binary alternating process on
mortality risk. Section 3.2 introduces notation used throughout this chapter. As individuals
frequently changed their OAT dispensation indicator over time, we allow the association of
mortality time with risk factors to depend on prior dispensation history. This motivates a
generalized Cox regression model with time-dependent stratification (e.g. Hu et al. (2011)).
We detail our estimation procedure in Section 3.3, and provide a straightforward testing
procedure to dynamically update the time-dependent strata. We derive the asymptotic
properties of our proposed estimator in Section 3.4, and apply the proposed approach to the
provincial administrative service utilization records in Section 3.5. Section 3.6 summarizes
the results from a simulation study based on the main findings from the data analysis. We
conclude this chapter with further discussions in Section 3.8.

3.2 Notation and Modelling

3.2.1 Notation

Let T denote an individual’s survival time since their first recorded OAT dispensation, and
Z(t) ∈ {0, 1} be an individual’s OAT dispensation indicator at time t ≥ 0. Let Z(t) =
{Z(u) : 0 ≤ u ≤ t}. Additional covariates are denoted by X(t) with X (t) = {X(u) : 0 ≤
u ≤ t} denoting its history up to time t. Let W (t) = (Z(t), X(t)′)′ denote all covariates
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at time t. Consider a study with observations on T subject to a right-censoring time C.
That is, the available information of T is (T ∗, δ), where T ∗ = T ∧ C is the follow-up time
of an individual, and δ = I(T ≤ C) is the indicator for whether the survival time T is
observed. Assume the study collects n independent and identically distributed realizations
of (T ∗, δ, Z(T ∗), X (T ∗)). Our objective is to estimate the association of T with Z(·) upon
adjusting for X (·). We assume that T and C are independent conditional on Z(·) and X (·).

3.2.2 Modelling Mortality Hazard

Consider the following generalized Cox regression model for the hazard function of T : for
t > 0,

λ(t; Z(t), X (t)) = lim
∆t→0+

1
∆t

P (t ≤ T < t + ∆t|T ≥ t, Z(t), X (t))

= λ0(t; Z(t)) exp{θ(Z(t))′W (t)}, (3.1)

where λ0(t; Z(t)) is an arbitrary baseline hazard function, and θ(Z(t)) is a known function
up to finite dimensional parameters with the dimension of θ(Z(t)) being the same as W (t).
We explicitly permit both the regression parameter and baseline hazard function in (3.1)
to vary in accordance with an individual’s OAT dispensation history.

In an attempt to adequately quantify the association between the dispensation process
and mortality risk, we stratify individuals into groups based on their dispensation history,
which makes the stratification time-dependent. Let g(Z(t)) ∈ {1, 2, · · · , G} denote a strati-
fication variable that is fully determined by an individual’s dispensation history up to time
t > 0, where G < ∞ is known. This naturally leads us to consider the following three
specifications:

Model A: Suppose λ0(t; Z(t)) = λ0g(t) and θ(Z(t)) = θg = (α′
g, β′)′ when g(Z(t)) =

g, where θg is a vector of unknown regression parameters, αg is a qA-dimensional
vector of stratum-specific effects, and β is a qB-dimensional vector of shared ef-
fects across strata. Without loss of generality, we partition the covariates as W (t) =
(W A(t)′, W B(t)′)′, where W A(t) and W B(t) have the same dimensions as αg and β,
respectively. The model in (3.1) then becomes for g(Z(t)) = g,

λ(t; Z(t), X (t)) = λ0g(t) exp{θ′
gW (t)}. (3.2)

The model resembles an extended Cox regression model with a time-varying covariate
W (t) and time-dependent strata (Hu et al. 2011).
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Model B: Suppose λ0(t; Z(t)) ≡ λ0(t) and θ(Z(t)) = θg = (α′
g, β′)′ when g(Z(t)) =

g. The model in (3.1) then becomes for g(Z(t)) = g,

λ(t; Z(t), X (t)) = λ0(t) exp{θ′
gW (t)}. (3.3)

Clearly, (3.3) arises as a special case of (3.2) if λ0g(t) ≡ λ0(t) for g = 1, · · · , G. This
can be done by fitting the model (3.2), plotting the estimates of λ01(t), · · · , λ0G(t)
over time, and visually assess if (3.3) is a better fit to the data. Alternatively, we
could specify λ0g(t) = λ01(t) exp{γg} for g = 2, · · · , G, and test whether γg = 0 for
all g = 2, · · · , G.

Model C: Suppose λ0(t; Z(t)) ≡ λ0(t) and θ(Z(t)) ≡ θ. The model in (3.1) reduces
to the Cox regression model (Cox 1972) with time-varying covariates:

λ(t; Z(t), X (t)) = λ0(t) exp{θ′W (t)}. (3.4)

Clearly, (3.4) is a special case of (3.3), when α1 = · · · = αG.

We take (3.2) as the primary model, since it is the most general of the three models pre-
sented. The forthcoming estimation procedure is developed with model (3.2). It can estimate
parameters under (3.4) by fixing G ≡ 1, and can estimate parameters under (3.3) by in-
cluding time-dependent dummy variables pertaining to the original levels of g(·) in W (·)
and carrying out the inference procedure under (3.4).

3.3 Estimation Procedure

Let Ni(t) = I(Ti ≤ t), Yi(t) = I(T ∗
i ≥ t), and Θ = (α′

1, · · · , α′
G, β′)′ be all the regression

parameters in model (3.2), with Θ0 denoting the true value of Θ.
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3.3.1 Estimating Regression Parameters

Under (3.2), consider the estimating functions for Θ; U(Θ) = (UA
1 (θ1)′, · · · , UA

G (θG)′, UB(Θ)′)′,
where

UA
g (θg) =

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[
W A

i (t) −
EA

g (t, θg)
Eg(t, θg)

]
dNi(t), g = 1, · · · , G,

UB(Θ) =
G∑

g=1

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[
W B

i (t) −
EB

g (t, θg)
Eg(t, θg)

]
dNi(t),

Eg(t, θ) =
∑

j:g(Zj(t))=g

Yj(t) exp{θ′Wj(t)}, and

EA
g (t, θ) =

∑
j:g(Zj(t))=g

Yj(t) exp{θ′Wj(t)}W A
j (t), and

EB
g (t, θ) =

∑
j:g(Zj(t))=g

Yj(t) exp{θ′Wj(t)}W B
j (t).

Note that W (t) may have internal or external covariate components, and U(Θ) is well-
defined regardless. In the case where all of the covariates are external, U(Θ) corresponds
to the partial score function of Θ (Prentice et al. 1981). One can then adopt the inference
procedure presented in Hu et al. (2011) to estimate model parameters. We show in Section
3.4.1 that U(Θ0) is centred at zero asymptotically under (3.2). A reasonable estimator
for Θ is therefore the solution to the equation U(Θ) = 0. In fact, we show in Section
3.4.2 that the estimator Θ̂ converges almost surely to Θ0 under some regularity condi-
tions. We further establish the asymptotic distribution of

√
n(Θ̂ − Θ0) in Section 3.4.3, in

which the corresponding asymptotic variance can be consistently estimated with a Huber-
like sandwich estimator ÂV (Θ̂) = Ψ̂−1(Θ̂)Φ̂(Θ̂)Ψ̂−1(Θ̂) with Ψ̂(Θ) = − 1

n
∂

∂ΘU(Θ) and
Φ̂(Θ) = 1

n

n∑
i=1

Ω̂i(Θ)Ω̂i(Θ)′, where

Ω̂i(Θ) = (Ω̂A
i1(θ1)′, · · · , Ω̂A

iG(θG)′, Ω̂B
i (Θ)′)′,

Ω̂A
ig(θ) =

∫ ∞

0
Yi(t)I(g(Zi(t)) = g)

[
W A

i (t) −
EA

g (t, θ)
Eg(t, θ)

]
dM̂ig(t, θ),

Ω̂B
i (Θ) =

G∑
g=1

∫ ∞

0
Yi(t)I(g(Zi(t)) = g)

[
W B

i (t) −
EB

g (t, θg)
Eg(t, θg)

]
dM̂ig(t, θg), and

M̂ig(t, θ) = Ni(t)I(g(Zi(t)) = g) −
∫ t

0
Yi(u)I(g(Zi(u)) = g) exp{θ′Wi(u)}dΛ̂0g(u)

and Λ̂0g(·) is a consistent estimator for Λ0g(·). If all of the covariates are indeed external,
we recognize Ψ̂(Θ̂) as the observed information matrix under (3.2), so the corresponding
variance estimator would simplify to ÂV (Θ̂) = Ψ̂−1(Θ̂).
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3.3.2 Estimating Baseline Hazard Function

For fixed g ∈ {1, · · · , G}, we view dΛ0g(t) = λ0g(t)dt as a finite-dimensional parameter
upon treating λ0g(·) as a piece-wise constant function with the jumps at the uncensored
survival times. With θg fixed, the following estimating equation is unbiased under (3.2):

∑
i:g(Zi(t))=g

Yi(t)[dNi(t) − exp{θ′
gWi(t)}dΛ0g(t)] = 0.

By solving the above equation for dΛ0g(t), this promotes the estimator

dΛ̂0g(t; θg) =
∑

i:g(Zi(t))=g

Yi(t)dNi(t)∑
j:g(Zj(t))=g

Yj(t) exp{θ′
gWj(t)} . (3.5)

Here, we take the convention that 0/0 = 0. By replacing the unknown θg with its corre-
sponding estimate, θ̂g = (α̂′

g, β̂′)′, the baseline hazard function is estimated with a Breslow-
type estimator dΛ̂0g(t; θ̂g). Under the regularity conditions in Section 3.4, we show that
dΛ̂0g(t; θ̂g) converges almost surely to dΛ0g(t). Furthermore, we establish the weak conver-
gence of dΛ̂0g(t; θ̂g). Either 1 − α∗ pointwise confidence intervals or 1 − α∗ confidence bands
for dΛ0g(t) can be constructed accordingly.

3.3.3 Dynamic Grouping Based on Wald-Type Testing

When the stratification variable is ordinal, one may question if the difference between suc-
cessive groups are statistically significant. If the difference is not significant, we can simplify
the model in (3.2) (or (3.3)) by merging groups g − 1 and g together and re-estimate Θ
with the updated groups; otherwise, we keep these two groups separate from each other.
Proceeding in this manner would result in identifying H ≤ G data driven risk classes. This
would provide a gain of efficiency by reducing the number of parameters to estimate.

To carry out the idea, we consider the following hypothesis test for a fixed g ∈ {2, · · · , G}:

H0 : αg = αg−1 vs. Ha : αg ̸= αg−1. (3.6)

Here, we assume that λ0g(·) ≡ λ0,g−1(·) under (3.2), so that group specific effects for groups
g − 1 and g are captured by αg−1 and αg, respectively. Based on the asymptotic normality
of Θ̂, we construct a Wald test statistic

Jg = (α̂g − α̂g−1)′
[
Var(α̂g − α̂g−1)

]−1
(α̂g − α̂g−1). (3.7)

With the variance of Θ̂ estimated with ÂV (Θ̂), we can therefore estimate Var(α̂g − α̂g−1)
by CgÂV (Θ̂)C ′

g, where Cg is the constant vector such that CgΘ = αg − αg−1. Under H0
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in (3.6), Jg ∼̇ FqA(·), where FqA(·) denotes the χ2-distribution function with qA degrees of
freedom. We reject H0 if Jg > F −1

qA
(1−α∗), where α∗ is the predetermined type I error rate.

3.4 Asymptotic Properties

Assuming that the study collects n independent and identically distributed realizations of
(T ∗, δ, Z(T ∗), X (T ∗)), we proceed to establish the large sample properties claimed in Section
3.3. To do so, we impose the following regularity conditions:

(a) P (C ≥ τ) > 0, where τ is a predetermined constant. In our application, we can view
τ as the largest follow-up time.

(b) Ng/n ↛ 0 as n → ∞, where Ng = max
t>0

#{i : g(Zi(t)) = g}.

(c) There exists a constant K such that |Wij(0)| +
∫∞

0 |Yi(t)dWij(t)| ≤ K, for all i =
1, · · · , n and j = 1, · · · , p + q, where Wij(·) is the jth component of Wi(·). That is,
Wi(·) has a bounded total variation.

(d) Let Θ0 = (α′
10, · · · , α′

G0, β′
0)′ denote the true value of Θ under the model in (3.2).

We assume that Ψ(Θ0) is positive-definite, where

Ψ(Θ) =



Ψ1(θ1) 0 · · · 0 Ψ∗
1(θ1)

0 Ψ2(θ2) · · · 0 Ψ∗
2(θ2)

...
... . . . ...

...
0 0 · · · ΨG(θG) Ψ∗

G(θG)
Ψ∗

1(θ1)′ Ψ∗
2(θ2)′ · · · Ψ∗

G(θG)′ Ψ∗(Θ)


,

Ψg(θ) =
∫ ∞

0

[
E{EAA

g (t, θ)}
E{Eg(t, θ)} −

E{EA
g (t, θ)}⊗2

E{Eg(t, θ)}2

]
E{Y (t)λ(t; Z(t), X (t))} dt,

Ψ∗(Θ) =
G∑

g=1

∫ ∞

0

[
E{EBB

g (t, θg)}
E{Eg(t, θg)} −

E{EB
g (t, θg)}⊗2

E{Eg(t, θg)}2

]
E{Y (t)λ(t; Z(t), X (t))} dt,

Ψ∗
g(θ) =

∫ ∞

0

[
E{EAB

g (t, θ)}
E{Eg(t, θ)} −

E{EA
g (t, θ)}

E{Eg(t, θ)}

{
E{EB

g (t, θ)}
E{Eg(t, θ)}

}′]
E{Y (t)λ(t; Z(t), X (t))} dt, and

EQR
g (t, θ) =

∑
j:g(Zj(t))=g

Yj(t) exp{θ′Wj(t)}W Q
j (t)W R

j (t)′ Q, R ∈ {A, B}.

Here, Eg(·), EA
g (·), and EB

g (·) are as presented in Section 3.3, and E{A} denotes the
expected value of A.

Essentially, condition (b) states that the size of group g ∈ {1, · · · , G} can be large enough if
n is sufficiently large. Condition (d) holds if, at least for some interval of t, the distribution
of W (t) conditional on Y (t) = 1 does not concentrate on a (qAG + qB − 1)-dimensional
hyperplane.
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3.4.1 Weak Convergence of Estimating Functions

Let θg0 = (α′
g0, β′

0)′ denote the true value θg under the model in (3.2). We proceed to
establish the weak convergence of UA

g (t, θg), where

UA
g (t, θ) =

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)
[
W A

i (u) −
EA

g (u, θ)
Eg(u, θ)

]
dNi(u),

so that UA
g (θ) ≡ UA

g (∞, θ). Letting

Mig(t, θg0) = Ni(t)I(g(Zi(t)) = g) −
∫ t

0
Yi(u)I(g(Zi(u)) = g) exp{θ′

g0Wi(u)}dΛ0g(u),

we see after some algebra that

UA
g (t, θg0) =

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)
[
W A

i (u) −
EA

g (u, θg0)
Eg(u, θg0)

]
dMig(u, θg0)

=
∫ t

0

∑
i:g(Zi(u))=g

Yi(u)W A
i (u)dMig(u, θg0) −

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)
EA

g (u, θg0)
Eg(u, θg0) dMig(u, θg0)

= M̄A
g (t, θg0) −

∫ t

0

EA
g (u, θg0)

Eg(u, θg0) dM̄g(u, θg0), (3.8)

where M̄g(t, θ) = ∑
i:g(Zi(t))=g

Yi(t)Mig(t, θ). Under the model in (3.2), both terms of (3.8) for

fixed t are sums of independent and identically distributed zero-mean terms. Applying the
multivariate central limit theorem, (n−1/2M̄g(·), n−1/2M̄A

g (·)) converges in finite dimensional
distributions to a zero-mean Gaussian process, say (GMg (·), GMA

g
(·)).

Note that individuals may change their OAT dispensation indicator throughout the
study period. Consider a partition of the study period [0, τ ]: 0 = u0 < u1 < · · · <

uR = τ , such that an individual can change their OAT dispensation indicator at most
once in (ur−1, uR], for r = 1, · · · , R. For a fixed r, regularity condition (c) implies that for
t ∈ (ur−1, ur], W (t) is bounded, and W (t) has finite variation since Z(t) can change at
most once. Without loss of generality, we assume that each component of W A(t) is non-
negative, so that for t ∈ (ur−1, ur], each of the qA components of

∫ t
ur−1

W A(u)dMg(u, θg0)
is the difference between two monotonic functions in t. Since monotone functions have a
pseudo-dimension of one (Pollard (1990), Lemma A.2 of Bilias et al. (1997)), the processes
{Mig(t, θg0); i = 1, · · · , n; t ∈ (ur−1, ur]} and {

∫ t
ur−1

W A
i (u)dMig(u, θg0); i = 1, · · · , n} are

manageable (Pollard (1990), Lemma A.1 of Bilias et al. (1997)). It then follows from the
functional central limit theorem (Pollard 1990) that (n−1/2M̄g(·), n−1/2M̄A

g (·)) is tight and
converges weakly to (GMg (·), GMA

g
(·)) for t ∈ (ur−1, ur].
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Furthermore, it can be shown that

E{GMg (t) − GMg (s)}4 ≤ K̃g(Λ0g(ur−1, t) − Λ0g(ur−1, s))2, s < t

for some constant K̃g > 0, where Λ0g(ur−1, t) =
∫ t

ur−1
dΛ0g(u). By the Kolmogorov-Centsov

Theorem (Karatzas and Shreve 1988), GMg has continuous sample paths under Euclidean
distance, and similarly, GMA

g
also has continuous sample paths.

By the strong embedding theorem (Shorack and Wellner 1986), we see that almost surely,
(n−1/2M̄g(·), n−1/2M̄A

g (·), Eg(·), EA
g (·)) converges to (GMg (·), GMA

g
(·),E{Eg(·)},E{EA

g (·)})
in a new probability space. By noting that Eg(t, θg0) and EA

g (t, θg0) are monotonic functions
in t, for t ∈ (ur−1, ur], all of the conditions of Lemma A.1 of Lin et al. (2000) are satisfied.
By applying the lemma, we have

n−1/2
∫ t

ur−1

EA
g (u, θg0)

Eg(u, θg0) dM̄g(u) →
∫ t

ur−1

E{EA
g (u, θg0)}

E{Eg(u, θg0)} dGMg (u)

uniformly in t almost surely. Since this result holds for every r = 1, · · · , R, we see that

n−1/2
∫ t

0

EA
g (u, θg0)

Eg(u, θg0) dM̄g(u) →
∫ t

0

E{EA
g (u, θg0)}

E{Eg(u, θg0)} dGMg (u)

uniformly in t almost surely. Therefore, we have that n−1/2UA
g (t, θg0) uniformly converges

to

GMA
g

(t) −
∫ t

0

E{EA
g (u, θg0)}

E{Eg(u, θg0)} dGMg (u)

almost surely in the new probability space, and thus weakly converges in the original prob-
ability space. Similar arguments apply to establish the weak convergence of

UB(t, Θ0) =
G∑

g=1

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)
[
W B

i (u) −
EB

g (u, θg0)
Eg(u, θg0)

]
dMg

i (u).

Therefore, we conclude that n−1/2U(t, Θ0) weakly converges to a Gaussian process with
mean zero and covariance function Φ(s, t, Θ0) = E {Ω(s, Θ0)Ω(t, Θ0)′}, for 0 ≤ s ≤ t,
where

Ω(t, Θ) = (ΩA
1 (t, θ1)′, · · · , ΩA

G(t, θg)′, ΩB(t, Θ)′)′,

ΩA
g (t, θ) =

∫ t

0
Y (u)I(g(Z(u)) = g)

[
W A(u) −

E{EA
g (u, θ)}

E{Eg(u, θ)}

]
dM(u, θ), and

ΩB(t, Θ) =
G∑

g=1

∫ t

0
Y (u)I(g(Z(u)) = g)

[
W B(u) −

E{EB
g (u, θ)}

E{Eg(u, θ)}

]
dM(u, θg).
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3.4.2 Consistency of Regression Parameter Estimator

To show the strong consistency of Θ̂, we extend the presentation from Appendix A.1 of Lin
et al. (2000). By again letting θg0 = (α′

g0, β′
0)′ denote the true value θg under (3.2), define

πn(Θ) as

1
n

G∑
g=1

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)(θg − θg0)′Wi(t)dNi(t) −
∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t) log
(

Eg(t, θg)
Eg(t, θg0)

)
dNi(t)

 .

Since Eg(t, θg) has bounded variation by regularity condition (c), then by the strong law of
large numbers,

πn(Θ) a.s.−−−→
n→∞

Π(Θ) ≡
G∑

g=1
E
{∫ ∞

0
Y (t)(θg − θg0)′W (t)dN(t) −

∫ ∞

0
log

(
E{Eg(t, θg)}
E{Eg(t, θg0)}

)
dN(t)

}

for every Θ. By examining ∂2πn(Θ)/∂Θ2 with components

∂2πn(Θ)
∂α2

g

= − 1
n

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[

EAA
g (t, θg)

Eg(t, θg) −
EA

g (t, θg)
Eg(t, θg)

{
EA

g (t, θg)
Eg(t, θg)

}′]
dNi(t)

 ,

∂2πn(Θ)
∂β2 = −

G∑
g=1

1
n

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[

EBB
g (t, θg)

Eg(t, θg) −
EB

g (t, θg)
Eg(t, θg)

{
EB

g (t, θg)
Eg(t, θg)

}′]
dNi(t)

 ,

∂2πn(Θ)
∂αg∂αh

= 0, for h ̸= g,

∂2πn(Θ)
∂αg∂β

= − 1
n

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[

EAB
g (t, θg)

Eg(t, θg) −
EA

g (t, θg)
Eg(t, θg)

{
EB

g (t, θg)
Eg(t, θg)

}′]
dNi(t)

 ,

∂2πn(Θ)
∂β∂αg

=
(

∂2πn(Θ)
∂αg∂β

)′

,

we can show that ∂2πn(Θ)/∂Θ2 is negative semi-definite, and thus, πn(Θ) is concave. This
implies the uniform convergence of πn(Θ) to Π(Θ) on any compact set of Θ (Theorem 10.8
of Rockafeller (1970)). In particular, for Tε = {Θ : |Θ − Θ0| ≤ ε} for ε > 0, we have

sup
Θ∈Tε

∥πn(Θ) − Π(Θ)∥ a.s.−−−→
n→∞

0. (3.9)

In total, we have under (3.2) that (i) Π(Θ) is a concave function, (ii) ∂
∂ΘΠ(Θ0) = 0,

and (iii) ∂2Π(Θ0)/∂Θ2 = −Ψ(Θ0), where Ψ(Θ) is as defined in regularity condition (d).
Since Ψ(Θ0) is assumed to be positive definite, Θ0 must then be the unique maximum of
Π(Θ). Using the result from (3.9), this implies that πn(Θ) ≤ πn(Θ0), for all Θ ∈ Tε and
n >> 1. Therefore, there must be a maximizer of πn(Θ), and a solution to ∂πn(Θ)/∂Θ = 0.
Letting Θ̂ denote the solution to this equation, it must lie in the interior of Tε. Due to
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regularity condition (d), we can apply the arguments of Jacobsen (1989) to show the (global)
uniqueness of Θ̂. Since ε can be chosen arbitrarily small, we conclude that Θ̂ must converge
to Θ0 almost surely.

3.4.3 Asymptotic Normality of Regression Parameter Estimator

Taking the first-order Taylor expansion of U(Θ̂) around Θ0 yields

U(Θ̂) = U(Θ0) + ∂

∂ΘU(Θ̃) × (Θ̂ − Θ0) = 0,

where Θ̃ is on the line segment between Θ̂ and Θ0. Thus
√

n(Θ̂−Θ0) = Ψ̂−1(Θ̃) 1√
n

U(Θ0).
Specifically, we see that Ψ̂(Θ) = − 1

n
∂

∂ΘU(Θ) with components

∂

∂αg
UA

g (θg) = ∂

∂αg

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[
W A

i (t) −
EA

g (t, θg)
Eg(t, θg)

]
dNi(t)


= −

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[

EAA
g (t, θg)

Eg(t, θg) −
EA

g (t, θg)
Eg(t, θg)

{
EA

g (t, θg)
Eg(t, θg)

}′]
dNi(t),

∂

∂β
UB(Θ) = ∂

∂β

 G∑
g=1

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[
W B

i (t) −
EB

g (t, θg)
Eg(t, θg)

]
dNi(t)


= −

G∑
g=1

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[

EBB
g (t, θg)

Eg(t, θg) −
EB

g (t, θg)
Eg(t, θg)

{
EB

g (t, θg)
Eg(t, θg)

}′]
dNi(t),

∂

∂β
UA

g (θg) = ∂

∂β

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[
W A

i (t) −
EA

g (t, θg)
Eg(t, θg)

]
dNi(t)


= −

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[

EAB
g (t, θg)

Eg(t, θg) −
EA

g (t, θg)
Eg(t, θg)

{
EB

g (t, θg)
Eg(t, θg)

}′]
dNi(t),

∂

∂αg
UB(Θ) = ∂

∂αg

 G∑
h=1

∫ ∞

0

∑
i:g(Zi(t))=h

Yi(t)
[
W B

i (t) − EB
h (t, θh)

Eh(t, θh)

]
dNi(t)


= −

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[

EBA
g (t, θg)

Eg(t, θg) −
EB

g (t, θg)
Eg(t, θg)

{
EA

g (t, θg)
Eg(t, θg)

}′]
dNi(t)

=
(

∂

∂β
UA

g (θg)
)′

.

Recall that Θ̂ and Ψ̂(Θ0) almost surely converge to Θ0 and Ψ(Θ0), respectively. That
implies the almost sure convergence of Ψ̂(Θ̂) to Ψ(Θ0) due to the continuity of Ψ(·).
Furthermore, the result from Section 3.4.1 implies that n−1/2U(Θ0) weakly converges to a
Gaussian process with mean zero and covariance function Φ(Θ0) ≡ Φ(∞, ∞, Θ0). Then,
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by Slutsky’s Theorem,
√

n(Θ̂ − Θ0) converges in distribution to a normal random vector
with mean 0 and variance AV (Θ0) = Ψ−1(Θ0)Φ(Θ0)Ψ−1(Θ0).

A natural estimator for AV (Θ0) is

ÂV (Θ̂) = Ψ̂−1(Θ̂)Φ̂(Θ̂)Ψ̂−1(Θ̂),

where

Φ̂(Θ) = 1
n

n∑
i=1

Ω̂i(Θ̂)Ω̂i(Θ̂)′,

Ω̂i(Θ) = (Ω̂A
i1(θ1)′, · · · , Ω̂A

iG(θG)′, Ω̂B
i (Θ)′)′,

Ω̂A
ig(θ) =

∫ ∞

0
Yi(t)I(g(Zi(t)) = g)

[
W A

i (t) −
EA

g (t, θ)
Eg(t, θ)

]
dM̂ig(t, θ), and

Ω̂B
i (Θ) =

G∑
g=1

∫ ∞

0
Yi(t)I(g(Zi(t)) = g)

[
W B

i (t) −
EB

g (t, θg)
Eg(t, θg)

]
dM̂ig(t, θg)

with M̂ig(t, θ) equal to

Ni(t)I(g(Zi(t)) = g) −
∫ t

0
Yi(u)I(g(Zi(u)) = g) exp{θ′Wi(u)}dΛ̂0g(u).

We show in Section 3.4.4 that dΛ̂0g(·) converges almost surely to dΛ0g(·), so that Φ̂(Θ̂)
converges almost surely to Φ(Θ0). Therefore, since Ψ̂(Θ0) almost surely converges to Ψ(Θ0)
by the uniform strong law of large numbers (Pollard 1990), and Θ̂ almost surely converges
to Θ0 as shown in Section 3.4.2, we conclude that ÂV (Θ̂) converges almost surely to
AV (Θ0).

3.4.4 Consistency of Baseline Hazard Function Estimator

For a fixed g ∈ {1, · · · , G}, we have by the uniform strong law of large numbers (Pollard
1990) that

n−1 ∑
i:g(Zi(t))=g

Yi(t)dNi(t) −−−→
n→∞

E{Y (t)dN(t)}

n−1 ∑
j:g(Zj(t))=g

Yj(t) exp{θ′
gWj(t)} −−−→

n→∞
E{Y (t) exp{θ′

gW (t)}}

almost surely. This entails that as n → ∞, dΛ̂0g(t, θg) uniformly converges to

E{Eg(t, θg0)}
E{Eg(t, θg)} dΛ0g(t)
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under (3.2). Since θ̂g converges almost surely to θg0, this hence implies that dΛ̂0g(t; θ̂g)
converges almost surely to dΛ0g(t) uniformly in t.

3.4.5 Weak Convergence of Baseline Hazard Function Estimator

We start by establishing the weak convergence of
√

n(Λ̂0g(t; θ̂g)−Λ0g(t)), where Λ̂0g(t; θ) =∫ t
0 dΛ̂0g(u; θ). Let θg0 = (α′

g0, β′
0)′ denote the true value θg under (3.2), and

Λ0(t) = (Λ01(t), · · · , Λ0G(t))′

Λ̂0(t, Θ) = (Λ̂01(t; θ1), · · · , Λ̂0G(t, θg))′.

Consider the gth element of
√

n(Λ̂0(t; Θ̂) − Λ0(t)), which can be expressed as

√
n(Λ̂0g(t; θ̂g) − Λ0g(t))

=
√

n

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dNi(u)
Eg(u, θ̂g)

− Λ0g(t)


=

√
n

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dNi(u)
Eg(u, θg0) − Λ0g(t)


+

√
n

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dNi(u)
Eg(u, θ̂g)

−
∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dNi(u)
Eg(u, θg0)


=

√
nQg(t) +

√
nRg(t, θ̂g),

where

Qg(t) =

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dNi(u)
Eg(u, θg0) − Λ0g(t)


Rg(t, θ) =

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dNi(u)
Eg(u, θ) −

∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dNi(u)
Eg(u, θ0)

 .

It can be shown for τ as specified in regularity condition (a) and t ≤ τ ,

Qg(t) = n−1/2
∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dMig(u)
Eg(u, θg0) ,

where

Mig(t) = Ni(t) −
∫ t

0
Yi(u) exp{θ′

g0Wi(u)}dΛ0g(u).
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By the arguments presented in Section 3.4.1, Qg(t) is tight and uniformly converges to

Qg0(t) = n−1/2
∫ t

0

∑
i:g(Zi(u))=g

Yi(u)dMig(u)
E{Eg(u, θg0)} + op(1).

Now consider R(t, Θ̂), where

R(t, Θ) = (R1(t, θ1), · · · , RG(t, θg))′.

By taking a (first-order) Taylor expansion of R(t, Θ̂) around Θ0, we have

R(t, Θ̂) = −ξ(t, Θ†)′√n(Θ̂ − Θ0),

ξ(t, θ) =



∂
∂α1

R1(t, θ1) 0 · · · 0
0 ∂

∂α2
R2(t, θ2) · · · 0

...
... . . . ...

0 0 · · · ∂
∂αG

RG(t, θg)
∂

∂β R1(t, θ1) ∂
∂β R2(t, θ2) · · · ∂

∂β RG(t, θg)


∂

∂αg
Rg(t, θ) =

∫ t

0

∑
i:g(Zi(u))=g

EA
g (u, θ)

(Eg(u, θ))2 Yi(u)dNi(u),

∂

∂β
Rg(t, θ) =

∫ t

0

∑
i:g(Zi(u))=g

EB
g (u, θ)

(Eg(u, θ))2 Yi(u)dNi(u),

where Θ† is on the line segment between Θ̂ and Θ0. By considering a partition of the study
period into finite intervals as in Section 3.4.1, we can apply the uniform strong law of large
numbers (Pollard (1990) page 41) to show that ξ(t, Θ0) converges almost surely to Ξ(t, Θ0)
uniformly on t, where

Ξ(t, θ) =



SA
1 (t, θ1) 0 · · · 0

0 SA
2 (t, θ2) · · · 0

...
... . . . ...

0 0 · · · SA
G(t, θg)

SB
1 (t, θ1) SB

2 (t, θ2) · · · SB
G (t, θg)


SA

g (t, θ) =
∫ t

0

E{EA
g (u, θ)}

E{Eg(u, θ)} dΛ0g(u),

SB
g (t, θ) =

∫ t

0

E{EB
g (u, θ)}

E{Eg(u, θ)} dΛ0g(u).
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Furthermore, we established in Section 3.4.3 that

√
n(Θ̂ − Θ0) = Ψ−1(Θ0)

√
n

n∑
i=1

Ωi(∞, Θ) + op(1),

Ωi(t, Θ) = (ΩA
i1(t, θ1)′, · · · , ΩA

iG(t, θG)′, ΩB
i (t, Θ)′)′,

ΩA
ig(t, θ) =

∫ t

0
Yi(u)I(g(Zi(u)) = g)

[
W A

i (u) −
E{EA

g (u, θ)}
E{Eg(u, θ)}

]
dMi(u), and

ΩB
i (t, Θ) =

G∑
g=1

∫ t

0
Yi(u)I(g(Zi(u)) = g)

[
W B

i (u) −
E{EB

g (u, θg)}
E{Eg(u, θg)}

]
dMi(u),

where Ψ(Θ0) is as defined in regularity condition (d). This implies that R(t, Θ0) is tight,
and

R(t, Θ0) = −Ξ(t, Θ0)′Ψ−1(Θ0)
√

n
n∑

i=1
Ωi(t, Θ0) + op(1).

Hence,
√

n(Λ̂0(t; Θ̂) − Λ0(t)) = n−1/2
n∑

i=1
∆i(t) + op(1), where

∆i(t) = Ki(t) − Ξ(t, Θ0)′Ψ−1(θ0)Ωi(t, Θ0) + op(1),

with the gth element of Ki(t) being

n−1/2
∫ t

0

Yi(u)I(g(Zi(u)) = g)dMig(u)
E{Eg(u, θg0)} + op(1).

That is,
√

n(Λ̂0(t; Θ̂) − Λ0(t)) converges weakly to a zero-mean Gaussian process with
covariance function ζ(s, t) = E{∆(s)∆(t)′} for 0 < s ≤ t. A natural estimator for ζ(s, t) is

ζ̂(s, t) = 1
n

n∑
i=1

∆̂i(s, Θ̂)∆̂i(t, Θ̂)′,
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where

∆̂i(t, Θ) = K̂i(t, Θ) − ξ(t, Θ)′Ψ̂−1(Θ)Ω̂i(t, Θ),

K̂i(t, Θ) = (K̂i1(t, θ1), · · · , K̂iG(t, θg))′

K̂ig(t, θ) =
∫ t

0

Yi(u)I(g(Zi(u)) = g)dM̂ig(u, θ)
Eg(u, θ)

M̂ig(t, θ) = Ni(t)I(g(Zi(t)) = g) −
∫ t

0
Yi(u)I(g(Zi(u)) = g) exp{θ′Wi(u)}dΛ̂0g(u; θ̂)

Ψ̂(Θ) = − 1
n

∂

∂ΘU(Θ),

Ω̂i(t, Θ) = (Ω̂A
i1(t, θ1)′, · · · , Ω̂A

iG(t, θg)′, Ω̂B
i (t, Θ)′)′,

Ω̂A
ig(t, θ) =

∫ t

0
Yi(u)I(g(Zi(u)) = g)

[
W A

i (u) −
EA

g (u, θ)
Eg(u, θ)

]
dM̂ig(u, θ), and

Ω̂B
i (t, Θ) =

G∑
g=1

∫ t

0
Yi(u)I(g(Zi(u)) = g)

[
W B

i (u) −
EB

g (u, θg)
Eg(u, θg)

]
dM̂ig(u, θg).

Based on the asymptotic normality of Λ̂0g(·) and consistency of ζ̂(·, ·), we can construct
pointwise confidence intervals for Λ0g(t), for each g = 1, · · · , G. Since Λ0g(t) is non-negative,
we consider the transformed random variable

√
n(log Λ̂0g(t; θ̂) − log Λ0g(t)), so that an

approximate 1 − α∗ pointwise confidence interval for Λ0g(t) is

Λ̂0g(t; θ̂g) exp

±n−1/2ϕα∗/2

√
ζ̂(g,g)(t, t)

Λ̂0g(t; θ̂g)

 ,

where ϕα∗/2 is the (1 − α∗) critical point of the standard normal distribution, and ζ̂(g,g)(t, t)
is the (g, g) element of ζ̂(t, t).

To construct simultaneous confidence bands for Λ0g(t) over a time interval of inter-
est for [t1, t2] (0 < t1 < t2), we need to approximate the distribution of the supremum of
√

n(Λ̂0g(t; θ̂g)−Λ0g(t)) for t ∈ [t1, t2]. As this distribution is challenging to evaluate analyti-
cally, we can approximate the distribution of

√
n(Λ̂0g(t; θ̂g)−Λ0(t)) with n−1/2

n∑
i=1

∆̂ig(t, θ̂g)ϕi,

where (ϕ1, · · · , ϕn) are independent and identically distributed standard normal random
variables, and ∆̂ig(t, θ̂g) is the gth element of ∆̂i(t, Θ̂). We can then repeatedly generate
random variables (ϕ1, · · · , ϕn), and determine an approximate value of ϕ∗

α∗/2 which satisfies

P

 sup
t1≤t≤t2

∣∣∣∣∣∣∣∣
n−1/2

n∑
i=1

∆̂ig(t, θ̂g)ϕi√
ζ̂(g,g)(t, t)

∣∣∣∣∣∣∣∣ < ϕ∗
α∗/2

 = 1 − α∗.
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Hence, an approximate 1 − α∗ simultaneous confidence band of Λ0g(t) for t ∈ [t1, t2] is

Λ̂0g(t; θ̂g) exp

±n−1/2ϕ∗
α∗/2

√
ζ̂(g,g)(t, t)

Λ̂0g(t; θ̂g)

 .

By the multivariate central limit theorem, the process n−1/2
n∑

i=1
∆̂ig(t, θ̂g)ϕi weakly con-

verges to a zero-mean Gaussian process with covariance function ζ̂(g,g)(s, t). Since ζ̂(g,g)(s, t)

converges to ζ(g,g)(s, t) almost surely uniformly in s and t, then provided that n−1/2
n∑

i=1
∆̂ig(t, θ̂g)ϕi

is tight, it converges to a zero-mean Gaussian process with covariance function ζ(g,g)(s, t).
Thus, the weak convergence of

√
n(Λ̂0g(t; θ̂g) − Λ0g(t)) establishes the weak convergence of

√
n(dΛ̂0g(t; θ̂g) − dΛ0g(t)).

3.5 Analysis of the Provincial OAT Dispensation Records (I)

We started our analysis by fitting the extended Cox regression model (3.4) with the observed
data. The same set of covariates from our preliminary analysis in Chapter 2 were included,
except we omitted the OAT dispensation rate and incarceration FPC score, and included
the following time-varying covariates: OAT dispensation indicator at time t, incarceration
status at time t, and the number of (observed) incarcerations by time t. The parameter
estimates are displayed in Table 3.1, in which we again considered both time since first
recorded OAT dispensation and age as time scales. For the variables that are present in
both our preliminary and current analysis, we see the estimates are quite similar. However,
the effect pertaining to the OAT dispensation process is quite different, where our current
analysis implies that individuals dispensed OAT have a significantly lower mortality risk (at
time t) relative to those not dispensed OAT. To shed some light on this discrepancy, we note
that 31.34% of individuals that died had an OAT dispensation covering their date of death.
Since the average (and median) OAT dispensation rate reported in Table 2.4 is larger than
50%, we would anticipate the OAT dispensation indicator to be negatively associated with
mortality risk. On the other hand, since Table 2.4 reveals OAT dispensation rate to have
a positive association with mortality risk, this highlights individuals modifying their OAT
dispensation indicator shortly before their date of death; a phenomenon further investigated
by Pearce et al. (2020).

We proceeded to fit a stratified Cox regression model (3.2), in which we stratified in-
dividuals (at time t) according to their OAT episode number. An OAT episode number at
time t can loosely be conceived as the number of (long-term) “not dispensed OAT” to “dis-
pensed OAT” transitions by time t, as illustrated in Figure 3.1. We specified G = 9 levels for
the stratification variable: (i) 1 OAT episode; (ii) 2-3 OAT episodes; (iii) 4-5 OAT episodes;
(iv) 6-7 OAT episodes; (v) 8-10 OAT episodes; (vi) 11-15 OAT episodes; (vii) 16-20 OAT
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episodes; (viii) 21-30 OAT episodes; and (ix) 31+ OAT episodes. The G levels were selected
based on a combination of summary statistics for the number of OAT episodes individuals
experienced by their end of follow-up date, as well as expert opinion. The estimates of Θ,
in which we started by specifying each θg = αg when g(Z(t)) = g, are illustrated in Figures
3.2 and 3.3, where the time scales are time since first recorded OAT dispensation and age,
respectively. We can see that the OAT dispensation indicator, the birth generation indica-
tors, and the ever on PharmaCare plans C or G indicator have varying effects across strata,
whereas the other effects are static. This motivates us to update our modelling by specifying
the variables with a grey background in Figures 3.2 and 3.3 to have a constant effect, β.
This reduces the number of parameters needed to estimate, and thus serves to improve the
statistical efficiency. The updated parameter estimates illustrated in Figures 3.4 and 3.5 are
upon specifying θg = (α′

g, β′)′ when g(Z(t)) = g. We can see that the estimates that vary
across strata are quite similar to their corresponding estimates in Figures 3.2 and 3.3, and
the estimates with a constant effect are similar to the estimates shown in Table 3.1. We
also estimated the baseline hazard functions with (3.5), and illustrate the LOESS-smoothed
estimates in the top row of Figure 3.6. Under the time since first recorded OAT dispensation
time scale, Figure 3.6 shows us that individuals with higher OAT episodes have a higher
mortality risk, whereas the estimates in the age time scale shows us that older individu-
als have a higher mortality risk compared to younger individuals, regardless of their OAT
episode number. The fact that older individuals generally experienced fewer OAT episodes
compared to younger individuals is a byproduct of older individuals having a higher OAT
dispensation rate, as shown in Table 2.8.

We proceeded to conduct the Wald test, where the results of the eight tests are shown in
Tables 3.2 and 3.3. For each test, we displayed the estimates of both αg−1 and αg, the test
statistic Jg in (3.7), and the resulting p-value. By applying a Bonferonni correction for the
multiple testing, we specified the type I error rate to be α∗ = 0.05/(G − 1). The results of
the test under both time since first recorded OAT dispensation and age time scales reveals
that the stratification variable should be updated to the following H = 2 levels: (i) 1-3
OAT episodes; and (ii) 4+ OAT episodes. The results with the updated stratification are
illustrated in Figures 3.7 and 3.8, in which we see the OAT dispensation indicator effect has
a higher protective effect against mortality for individuals with more OAT episodes, whereas
the opposite is true for the birth generation indicator and ever on PharmaCare plans C or
G effects. The bottom row of Figure 3.6 illustrates the LOESS-smoothed estimates of the
baseline hazard function estimates (3.5), in which we see the two baseline hazard functions
highly overlap when the time scale is age. This finding would give us reason to further
improve the efficiency by updating our model to (3.3), where we specify the two baseline
hazard functions to be the same.
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3.6 Simulation Study

We conducted three simulation studies to examine the finite-sample performance of the
proposed estimator and assess the performance of the Wald testing procedure. Specifically,
we generated data based on the Cox regression model (3.4) in the first simulation study,
generated data based on the stratified Cox regression model in (3.2) in the second simulation
study, and assessed the robustness of the Wald test against model misspecification in the
third simulation study. We also provide a discussion on the required sample size needed for
the test for the Wald test to achieve a certain power.

3.6.1 Data Generation

We simulated a study with n = 10,000 independent units, where we generated right-censored
observations of an event time, and an alternating binary process that affects the event time’s
hazard. For each study unit, we generated observations as follows:

(i) Generate two baseline covariates, X1 and X2, where X1 ∼ Uniform(0, 1), and X2 ∼
Bernoulli(0.5).

(ii) Generate a time-varying alternating binary indicator, Z(t). To be consistent with our
data application, we specified Z(0) ≡ 1, g(Z(0)) ≡ 1, and g(Z(t)) is determined by
the number zero-to-one changes up to time t, as a way to mimic the role of OAT
episode numbers. We specified G = 10, and keep units with more than 10 zero-to-one
changes in group G. To generate Z(t), we simulated the time an individual changes
their binary indicator status from the exponential distribution, where ρ0g and ρ1g are
the rates for the time Z(t) transitions to zero and one, respectively, when g(Z(t)) = g.
Here, we specified

ρ0g =



20 if g ∈ {1, 2, 3}

30 if g ∈ {4, 5, 6}

50 if g = 7

10 if g ∈ {8, 9, 10}

and ρ1g =



10 if g ∈ {1, 2, 3}

20 if g ∈ {4, 5, 6}

50 if g = 7

5 if g ∈ {8, 9, 10}

.

(iii) With W (t) = (Z(t), X1, X2)′ as the vector of covariates at time t, we specify group
specific parameter vector θg, and baseline hazard λg in order to compute the event
hazard

λ†(t; Z(t), X1, X2) = λ0gf(θ′
gW (t)),

for some function f(·) > 0 which depends on the simulation setting. We discretized
the time interval for which Z(t) is constant into subintervals of length ∆t = 0.0001,
and simulated the event occurrence at time t as a Bernoulli random variable with
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success probability λ†(t; Z(t), X1, X2)×∆t. This procedure continues until we observe
a success.

(iv) Generate censoring times from the exponential distribution with rate λC ∈ {0.5, 1.5}
to produce right-censored event times.

Overall, this data generation procedure produces the following independent observations

{(T ∗
i , δi, Zi(T ∗

i ), Xi1, Xi2) : i = 1, · · · , n},

with T ∗
i = Ti ∧Ci, and δi = I(Ti ≤ Ci). With a simulated dataset, we proceeded to estimate

Θ and conduct the Wald test. We replicated the data generation and inference procedure
150 times.

3.6.2 Simulation Outcome 1: Reduction to the Cox Regression Model

We first conducted a simulation study where we generated event times under the Cox
regression model with the baseline hazard function specified as a constant over time. The
data generation procedure is as presented in Section 3.6.1, but we take λ0g ≡ λ0, θg ≡ θ,
and f(x) = exp{x}. That is, we generated event times under the hazard model

λ†(t; Z(t), X1, X2) = λ0 exp{θ′W (t)},

with λ0 = 1.75 and θ = (−1, 0, −0.5)′. Based on the two specifications of λC , this resulted
in (on average) approximately 29% and 52% of event times being right-censored.

Table 3.4 summarizes the estimation results upon fitting the Cox regression model to the
data, where we consider two parameter settings for λC : Censoring Parameter Setting
I specifies λC = 0.5 and Censoring Parameter Setting II specifies λC = 1.5. We
considered two approaches to estimate θ: (a) solve U(θ) = 0 in which we fix G ≡ 1, and (ii)
implement the coxph function in the survival (Therneau 2015) R package. As expected,
we the estimates of θ and V ar(θ̂) are practically identical across the two procedures. The
similarity of the estimated standard errors between the two approaches is likely due to fitting
the appropriate data generating model to the data, which is resulting in Ψ−1(θ) ≈ Φ(θ).

We fit a stratified Cox regression model (3.2) to the simulated data, where we summa-
rized the parameter estimates in Table 3.5. We see that the standard error estimates are
larger relative to the standard error estimates under the Cox regression model, due to less
information being used to estimate θg, for g = 1, · · · , G. Moreover, the largest standard
error corresponds to Group 7, which is attributed to the relatively large values specified
for ρ07 and ρ17. We also note that Censoring Parameter Setting II results in larger
standard error estimates of Θ̂, which is due to the larger censoring rate.

We then proceeded to conduct the Wald test from Section 3.3.3, and assess its perfor-
mance in correctly recovering the Cox regression model. Table 3.6 presents a matrix for
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each of the four parameter specifications, where the (g, g′) element is the proportion that
groups g and g′ are classified to the same class, with α∗ = 0.05. The matrices inform us
that there is approximately a 95% chance of group g − 1 (correctly) being merged together
with group g. To address the multiple testing issue, we propose a Bonferonni correction
and specify α∗ = 0.05/(G − 1). Table 3.7 shows the results of the risk classes identified by
the Wald test, with and without a Bonferonni correction. Overall, we see that the test can
adequately recover the Cox regression model.

3.6.3 Simulation Outcome 2: Correctly Identifying the Number of Risk
Classes in the Stratified Cox Model

We conducted a simulation study where we generated event times under the stratified Cox
regression model with constant baseline hazards. That is, we generated event times under
the hazard model

λ†(t; Z(t), X1, X2) = λ0g exp{θ′
gW (t)},

so that f(x) = exp{x}, and we specified λ0g and θg as

λ0g =


0.5 if g ∈ {1, 2, 3}

1.75 if g ∈ {4, 5, 6}

3 if g ∈ {7, 8, 9, 10}

and θg =


(−0.5, −2, −2)′ if g ∈ {1, 2, 3}

(−1, 0, −0.5)′ if g ∈ {4, 5, 6}

(−2, 2, 1.5)′ if g ∈ {7, 8, 9, 10}

.

With the two specifications of λC , this resulted in (on average) approximately 38% and 73%
of event times being right-censored.

We started by naively fitting the Cox regression model in (3.4), where Table 3.8 presents
the estimation results. We can see the resulting estimates resemble a weighted average of the
θg parameters across the G groups. Furthermore, we see that our standard error estimates
are generally larger relative to the standard error estimates reported by the coxph function,
which is to be expected.

We proceeded to fit the true data generating model in (3.2) to the simulated data, where
the parameter estimates are presented in Table 3.9. We can see the estimates Θ̂ and ÂV (Θ̂)
appear to consistently estimate Θ and AV (Θ), respectively. Similar to Section 3.6.2, we
generally see the standard error estimates under Censoring Parameter Setting I to be
smaller than the standard error estimates under Censoring Parameter Setting II due
to the smaller censoring rate.

We then conducted the Wald test to assess its performance in correctly recovering the
three data-generating treatment classes. Table 3.10 presents a matrix for each parameter
specification, where the (g, g′) element is the proportion that groups g and g′ are classified
to the same class, with α∗ = 0.05. The matrices inform us that there is approximately a
95% chance that group g − 1 is merged together with group g if they belong to the same

57



class. We present the risk classes identified by the Wald test in Table 3.11. By applying a
Bonferonni correction, we can see that the test performs adequately in recovering the three
risk classes.

3.6.4 Simulation Outcome 3: Robustness to Model Misspecification

We conducted a simulation study where we generated event times under a misspecified
stratified Cox regression model. Specifically, we generated event times under the hazard
model

λ†(t; Z(t), X1, X2) = λ0gf(θ′
gW (t)),

where f(x) = (1 + x)I(x ≥ 0) + (1 − x)I(x < 0), for g = 1, · · · , 10. Upon specifying
λC = 0.5 and λC = 1.5, this resulted in (on average) approximately 29% and 62% of
individuals having right-censored death times, respectively. The purpose of this simulation
study is to assess if the Wald test is robust to model misspecification.

By estimating the model parameters under the stratified Cox regression model (3.2),
Table 3.12 shows that the Wald test is robust to model misspecification upon applying a
Bonferonni correction.

3.7 On Sample Size Determination

Our simulation study demonstrates that we can adequately recover the true risk classes with
our specification of Θ, where the type I error rate is α∗ = 0.05/(G − 1), and n = 10,000.
We anticipate a larger sample size is required to correctly identify the correct risk classes
if we instead specify difference between stratum-specific effects across successive groups to
be “small”. We now consider the minimum sample size needed for the Wald test to achieve
a certain power, 1 − β∗ given α∗, and effect difference αg − αg−1. In other words, consider
the following simple hypothesis for a fixed g ∈ {2, · · · , G}:

H0 : αg − αg−1 = 0 vs. Ha : αg − αg−1 = γg ̸= 0. (3.10)

Here, γg is the smallest value in which we view the difference in effects to be meaningful.
In order for the Wald test to conduct the hypothesis test in (3.10) adequately, we want to
reject H0 with probability 1 − β∗ when Ha is true, and reject H0 with probability α∗ when
H0 is true. Here, β∗ is referred to as the type II error rate, and 1 − β∗ is referred to as
the power of the test. Recall in Section 3.3.3 that under H0 in (3.10), Jg ∼̇ FqA(·), where
FqA(·) denotes the χ2-distribution function with qA degrees of freedom. However, under Ha

in (3.10), Jg ∼̇ FqA,νg (·), where FqA,νg (·) denotes the non-central χ2-distribution with qA
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degrees of freedom with non-centrality parameter νg, with

νg = γ ′
g

[Var(α̂g − α̂g−1)
n

]−1
γg. (3.11)

Then for α∗ and β∗ given, we want to find νg such that

FqA,νg (F −1
qA

(1 − α∗)) = β∗.

Hence, we can proceed to solve for n in (3.11) as

ng = νg

[
γ ′

gVar(α̂g − α̂g−1)−1γg

]−1
.

But since we considered the test (3.10) for a fixed g, we iterate over g to obtain n2, · · · , nG,
and conclude that the sample size needed to correctly recover the correct group structure
with type I error α∗ and type II error β∗ is

n = max{ng : g = 2, · · · , G}.

3.8 Discussion and Outlook for Chapter 4

We proposed a generalized Cox regression model, under which we conducted time-dependent
stratification, where the strata are defined in terms of the history of the OAT dispensation
process. To accommodate for internal time-varying covariates, we adopted an estimating-
equation based inference procedure that bypasses interpretation challenges brought on by
constructing the likelihood function. Large sample properties of the proposed estimators
were established, and our simulation study shows that we are able to consistently estimate
both the regression parameters and their estimate’s standard errors. To determine if the
effects between groups are significant, we proposed a Wald test that sequentially tests if
successive groups should be merged. Upon applying a Bonferonni correction, we showed
through a simulation study that this test can correctly recover the true grouping structure
in a satisfactory manner, and is robust to model misspecification. We applied the proposed
methodology to provincial OAT dispensation records, in which two risk classes based on
an individual’s history of OAT use were identified. We summarized an individual’s history
of the OAT dispensation process with their OAT episode number, which can loosely be
conceived as the number of observed long term “not dispensed OAT” to “dispensed OAT”
transitions. Other summaries, such as proportion of time dispensed OAT, can seamlessly
be used as an alternative stratification variable.

Note that the models specified in this chapter are for the hazard functions of the survival
times conditioning on the internal covariate process at time t. Although we are able to
estimate the mortality hazard function, the conventional relationship between the hazard
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and survivor functions does not hold. The models presented in this chapter cannot provide
survival predictions. This differs from the approach taken in Chapter 2, which specifies
a model for λ(t; Zi(∞), X (t)) by summarizing the entire internal covariate process with
a (time-independent) latent variable. This is the key difference between the modelling in
Chapters 2 and 3. In fact, as this chapter models λ(t; Zi(t), X (t)), there is generally no
connection between these models with joint modelling.

Thus far, we have presented two different approaches to properly handle internal covari-
ates within hazard regression modelling, where each method has their own set of advan-
tages and disadvantages. To further establish desirable features of the approach presented
in Chapter 2, we proceed to modify the inference procedure to produce consistent estimates
in Chapter 4.
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Figure 3.1: A multistate representation of the OAT dispensation process. The OAT episode of an individual at time t is the number of (long-term)
not dispensed OAT to dispensed OAT transitions they experience by time t, where individuals initialize in OAT episode 1.
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Slow Release Oral Morphine:  5 days
Buprenorphine (only):              6 days
Injectable Hydromorphone:     3 days

Number of Transitions = OAT Episode Number
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Figure 3.2: Estimates of regression coefficients under the stratified Cox regression model (3.2), where the time scale is time since first recorded
OAT dispensation, and θg = αg. Variables with a grey background appear to have a constant effect across strata. As a reference, we illustrate the
estimated effect under the Cox model (3.4) with a red line.
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Figure 3.3: Estimates of regression coefficients under the stratified Cox regression model (3.2), where the time scale is age, and θg = αg. Variables
with a grey background appear to have a constant effect across strata. As a reference, we illustrate the estimated effect under the Cox model (3.4)
with a red line.
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Figure 3.4: Estimates of regression coefficients under the stratified Cox regression model (3.2), where the time scale is time since first recorded
OAT dispensation, and θg = (α′

g, β′)′. Variables with effect αg and β are illustrated and tabulated below, respectively.
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Group 9: 31+ OAT Episodes

Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2340 0.0260
Heath Authority (vs Fraser Health) - -
Interior 0.1535 0.0385
Vancouver Coastal 0.1079 0.0301
Vancouver Island 0.0723 0.0366
Northern 0.0114 0.0675
Year Category (vs. 1996-2000 ) - -
2001-2006 0.0791 0.0338
2007-2012 0.1430 0.0387
2013-2018 0.4619 0.0498
Alcohol or Other Substance Use Disorders 0.4329 0.0447
Ill Mental Health or Chronic pain -0.1887 0.0434
Hepatitis C Virus or HIV/AIDS 1.1704 0.0273
Ever Received a Sedative 0.4791 0.0335
Incarceration Status -1.6286 0.1726
Number of Incarcerations 0.0014 0.0030
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Figure 3.5: Estimates of regression coefficients under the stratified Cox regression model (3.2), where the time scale is age, and θg = (α′
g, β′)′.

Variables with effect αg and β are illustrated and tabulated below, respectively.
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Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2071 0.0261
Heath Authority (vs Fraser Health) - -
Interior 0.1249 0.0388
Vancouver Coastal 0.0975 0.0301
Vancouver Island 0.0467 0.0367
Northern 0.0100 0.0677
Year Category (vs. 1996-2000 ) - -
2001-2006 -0.0259 0.0320
2007-2012 -0.0404 0.0380
2013-2018 0.3658 0.0462
Alcohol or Other Substance Use Disorders 0.4770 0.0443
Ill Mental Health or Chronic pain -0.3222 0.0425
Hepatitis C Virus or HIV/AIDS 1.1188 0.0273
Ever Received a Sedative 0.4534 0.0336
Incarceration Status -1.5387 0.1742
Number of Incarcerations 0.0034 0.0030
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Figure 3.6: Smoothed estimates of λ0g(·), where we stratify by the OAT episode number at time t, where the time scale is time since first recorded
OAT dispensation and age.
Top Row: Estimates prior to the Wald test.
Bottom Row: Estimates following the Wald test.
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Figure 3.7: Estimates of regression coefficients under the stratified Cox regression model (3.2) following the Wald test, where the time scale is time
since first recorded OAT dispensation, and θg = (α′

g, β′)′. Variables with effect αg and β are illustrated and tabulated below, respectively.
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Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2327 0.0262
Heath Authority (vs Fraser Health) - -
Interior 0.1517 0.0387
Vancouver Coastal 0.1062 0.0302
Vancouver Island 0.0706 0.0362
Northern 0.0062 0.0676
Year Category (vs. 1996-2000 ) - -
2001-2006 0.0819 0.0329
2007-2012 0.1488 0.0391
2013-2018 0.4706 0.0492
Alcohol or Other Substance Use Disorders 0.4457 0.0423
Ill Mental Health or Chronic pain -0.1904 0.0430
Hepatitis C Virus or HIV/AIDS 1.1725 0.0273
Ever Received a Sedative 0.4768 0.0333
Incarceration Status -1.6244 0.1793
Number of Incarcerations 0.0023 0.0029
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Figure 3.8: Estimates of regression coefficients under the stratified Cox regression model (3.2) following the Wald test, where the time scale is age,
and θg = (α′

g, β′)′. Variables with effect αg and β are illustrated and tabulated below, respectively.

−1.2

−0.8

−0.4

0.0

1 2 3 4 5 6 7 8 9
Group

E
st

im
at

e

OAT Dispensation Indicator

−0.75

−0.50

−0.25

0.00

1 2 3 4 5 6 7 8 9
Group

E
st

im
at

e

Birth Generation Indicator: 
 Baby Boomers

−1.5

−1.0

−0.5

0.0

1 2 3 4 5 6 7 8 9
Group

E
st

im
at

e

Birth Generation Indicator: 
 Generation X

−1.2

−0.8

−0.4

0.0

1 2 3 4 5 6 7 8 9
Group

E
st

im
at

e

Birth Generation Indicator: 
 Millennials or Generation Z

−0.1

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9
Group

E
st

im
at

e

Ever on PharmaCare Plans C or G Indicator

Estimate

95% Confidence Interval

Estimate Under 
 Cox−PH Model

Group 1: 1 OAT Episode

Group 2: 2−3 OAT Episodes

Group 3: 4−5 OAT Episodes

Group 4: 6−7 OAT Episodes

Group 5: 8−10 OAT Episodes

Group 6: 11−15 OAT Episodes

Group 7: 16−20 OAT Episodes

Group 8: 21−30 OAT Episodes

Group 9: 31+ OAT Episodes

Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2089 0.0263
Heath Authority (vs Fraser Health) - -
Interior 0.1251 0.0389
Vancouver Coastal 0.0990 0.0302
Vancouver Island 0.0471 0.0362
Northern 0.0089 0.0677
Year Category (vs. 1996-2000 ) - -
2001-2006 -0.0267 0.0316
2007-2012 -0.0418 0.0366
2013-2018 0.3606 0.0447
Alcohol or Other Substance Use Disorders 0.4851 0.0435
Ill Mental Health or Chronic pain -0.3249 0.0429
Hepatitis C Virus or HIV/AIDS 1.1129 0.0273
Ever Received a Sedative 0.4515 0.0332
Incarceration Status -1.5313 0.1787
Number of Incarcerations 0.0031 0.0029
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Table 3.1: Estimates of regression coefficients under the Cox regression model (3.4). The reported standard-error (S.E.) estimates of Θ̂ correspond
to the square-root of the diagonal elements of ÂV (Θ̂). The bolded estimates are statistically significant with the type 1 error rate set at α∗ = 5%.

Time Scale Time Since First Observed
OAT Dispensation Age

Covariate Name Estimate S.E. Estimate S.E.
OAT Dispensation Indicator -1.0182 0.0265 -0.9696 0.0264
Sex (vs. Female) - - - -
Male 0.2239 0.0261 0.2055 0.0263
Birth Generation (vs Greatest & Silent Generations) - - - -
Baby Boomers -1.3215 0.0443 -0.6661 0.0662
Generation X -2.1372 0.0478 -1.0006 0.0812
Millennials & Generation Z -2.2044 0.0591 -0.6663 0.1066
Heath Authority (vs Fraser Health) - - - -
Interior 0.1455 0.0387 0.1179 0.0388
Vancouver Coastal 0.1041 0.0302 0.0989 0.0302
Vancouver Island 0.0674 0.0362 0.0465 0.0362
Northern 0.0015 0.0677 0.0018 0.0677
Year Category (vs. 1996-2000 ) - - - -
2001-2006 0.0789 0.0330 -0.0360 0.0314
2007-2012 0.1509 0.0391 -0.0516 0.0361
2013-2018 0.4733 0.0492 0.3416 0.0435
Alcohol or Other Substance Use Disorders 0.4492 0.0424 0.4864 0.0434
Ill Mental Health or Chronic pain -0.1898 0.0431 -0.3255 0.0428
Hepatitis C Virus or HIV/AIDS 1.1748 0.0272 1.1109 0.0272
Ever Received a Sedative 0.4756 0.0332 0.4497 0.0331
Ever on PharmaCare Plans C or G 0.0290 0.0299 0.0748 0.0305
Incarceration Status -1.6318 0.1782 -1.5358 0.1784
Number of Incarcerations 0.0061 0.0028 0.0045 0.0028
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Table 3.2: Results of the Wald test when we stratify by the number of OAT episode by time t, where the time scale is time since first recorded OAT
dispensation, and we applied a Bonferonni correction so that the type 1 error rate is α∗ = 0.05/(G − 1). For each test, the estimates on the left- and
right-hand side correspond to α̂g−1 and α̂g and their estimated standard errors, respectively. Bolded test statistic(s) and p-value(s) indicate tests
that rejected the null hypothesis in (3.6).

Test 1: Group 1 vs. Group 2 Test 2: Groups 1,2 vs. Group 3 Test 3: Group 3 vs. Group 4
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
OAT Dispensation Indicator -0.9324 0.0498 -0.9369 0.0493 -0.9252 0.0350 -1.1679 0.0720 -1.1679 0.0720 -1.1974 0.0908
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -1.3298 0.0656 -1.3999 0.0850 -1.3467 0.0510 -1.2268 0.1399 -1.2268 0.1399 -1.1164 0.2156
Generation X -2.3404 0.0756 -2.2593 0.0911 -2.2719 0.0573 -1.9749 0.1454 -1.9749 0.1454 -1.6300 0.2188
Millennials & Generation Z -2.3416 0.0873 -2.3219 0.1070 -2.3014 0.0695 -2.0543 0.1691 -2.0543 0.1691 -1.7708 0.2487
Ever on PharmaCare Plans C or G -0.1345 0.0467 -0.0086 0.0544 -0.0684 0.0357 0.1378 0.0864 0.1378 0.0864 0.1892 0.1183
Test Statistic 6.9201 20.8622 4.9197
p-value 0.2266 0.0009 0.4258

Test 4 Groups 3,4 vs. Group 5 Test 5: Groups 3,4,5 vs. Group 6 Test 6: Groups 3,4,5,6 vs. Group 7
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
OAT Dispensation Indicator -1.1757 0.0565 -1.2442 0.0999 -1.1914 0.0492 -1.1171 0.1025 -1.1802 0.0440 -0.9477 0.1595
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -1.1922 0.1169 -0.9751 0.2286 -1.1446 0.1044 -1.3471 0.2510 -1.1691 0.0957 -0.5234 0.5948
Generation X -1.8458 0.1204 -1.9299 0.2354 -1.8694 0.1081 -2.1007 0.2536 -1.8919 0.0985 -1.0243 0.5912
Millennials & Generation Z -1.9514 0.1396 -1.8502 0.2663 -1.9287 0.1246 -2.1561 0.2873 -1.9478 0.1146 -2.0486 0.6715
Ever on PharmaCare Plans C or G 0.1537 0.0701 0.3017 0.1389 0.1882 0.0626 0.5313 0.1633 0.2397 0.0586 -0.0262 0.2342
Test Statistic 4.9197 4.7481 12.0358
p-value 0.4258 0.4474 0.0343

Test 7: Groups 3,4,5,6,7 vs. Group 8 Test 8: Groups 3,4,5,6,7,8 vs. Group 9
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
OAT Dispensation Indicator -1.1629 0.0419 -1.4455 0.1962 -1.1740 0.0416 -0.8097 0.2062
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers -1.1505 0.0944 -1.8798 0.4469 -1.1642 0.0915 -1.5463 0.7347
Generation X -1.8571 0.0974 -2.8373 0.4522 -1.8852 0.0948 -2.1605 0.7350
Millennials & Generation Z -1.9653 0.1113 -2.7166 0.5223 -1.9821 0.1120 -2.4673 0.9264
Ever on PharmaCare Plans C or G 0.2240 0.0554 -0.3222 0.2440 0.2035 0.0561 -0.1720 0.2796
Test Statistic 13.3683 5.1710
p-value 0.0202 0.3954
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Table 3.3: Results of the Wald test when we stratify by the number of OAT episode by time t, where the time scale is age, and we applied a
Bonferonni correction so that the type 1 error rate is α∗ = 0.05/(G − 1). For each test, the estimates on the left- and right-hand side correspond to
α̂g−1 and α̂g and their estimated standard errors, respectively. Bolded test statistic(s) and p-value(s) indicate tests that rejected the null hypothesis
in (3.6).

Test 1: Group 1 vs. Group 2 Test 2: Groups 1,2 vs. Group 3 Test 3: Group 3 vs. Group 4
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
OAT Dispensation Indicator -0.7465 0.0488 -0.9227 0.0494 -0.8342 0.0347 -1.1654 0.0721 -1.1654 0.0721 -1.2059 0.0911
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -0.7348 0.1008 -0.9134 0.1196 -0.7965 0.0762 -0.6379 0.2091 -0.6379 0.2091 0.0269 0.3486
Generation X -1.3052 0.1313 -1.2567 0.1458 -1.2510 0.0985 -0.8369 0.2396 -0.8369 0.2396 0.0520 0.3799
Millennials & Generation Z -0.9761 0.1755 -0.8363 0.1873 -0.8738 0.1324 -0.4016 0.2852 -0.4016 0.2852 0.2043 0.4243
Ever on PharmaCare Plans C or G -0.1107 0.0482 0.0262 0.0550 -0.0415 0.0363 0.1972 0.0886 0.1972 0.0886 0.3280 0.1231
Test Statistic 14.2582 26.2272 6.2905
p-value 0.0140 0.0001 0.2790

Test 4: Groups 3,4 vs. Group 5 Test 5: Group 3,4,5 vs. Group 6 Test 6: Groups 3,4,5,6 vs. Group 7
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
OAT Dispensation Indicator -1.1767 0.0565 -1.2292 0.1000 -1.1889 0.0491 -1.1557 0.1025 -1.1771 0.0440 -0.9389 0.1595
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -0.4268 0.1790 0.0591 0.3389 -0.3108 0.1585 0.0453 0.4162 -0.2494 0.1476 -0.5003 0.6999
Generation X -0.5340 0.2009 -0.5317 0.3784 -0.5296 0.1779 -0.0960 0.4562 -0.4537 0.1651 -0.5312 0.7468
Millennials & Generation Z -0.2066 0.2345 -0.1200 0.4425 -0.1863 0.2086 -0.1183 0.5059 -0.1714 0.1927 -1.3081 0.8538
Ever on PharmaCare Plans C or G 0.2468 0.0720 0.4018 0.1415 0.2798 0.0642 0.7422 0.1709 0.3433 0.0593 -0.0025 0.2318
Test Statistic 9.2871 9.8890 10.5314
p-value 0.0981 0.0784 0.0615

Test 7: Groups 3,4,5,6,7 vs. Group 8 Test 8: Groups 3,4,5,6,7,8 vs. Group 9
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
OAT Dispensation Indicator -1.1607 0.0421 -1.4405 0.1982 -1.1728 0.0416 -0.8083 0.2089
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers -0.2487 0.1427 -1.2555 0.9547 -0.2514 0.1419 NA NA
Generation X -0.4374 0.1607 -1.6023 0.9987 -0.4518 0.1616 NA NA
Millennials & Generation Z -0.2173 0.1874 -1.0918 1.1089 -0.2238 0.1900 NA NA
Ever on PharmaCare Plans C or G 0.3231 0.0586 -0.1875 0.2427 0.3039 0.0567 0.1821 0.2916
Test Statistic 8.3051 2.9938
p-value 0.1402 0.2238
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Table 3.4: Estimates of regression coefficients under (3.2) with G ≡ 1, and the extended Cox proportional hazards model via the survival::coxph
R function, across 150 datasets with n = 10,000 independent units for Simulation Outcome 1. The data is generated under the model in (3.4).
Abbreviations:
SM: Sample mean;
SSE: Sample standard error;
SMSE: Sample mean of the standard error estimator.

Censoring Parameter Setting I: λC = 0.5
Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

SM SSE SMSE SM SSE SMSE SM SSE SMSE
Parameter Z(·) Effect X1 Effect X2 Effect λ0 Our Method -1.0174 0.0289 0.0285 Our Method -0.0031 0.0364 0.0387 Our Method -0.4951 0.0233 0.0228
All Groups -1 0 -0.5 1.75 coxph -1.0174 0.0289 0.0286 coxph -0.0031 0.0364 0.0387 coxph -0.4951 0.0233 0.0228

Censoring Parameter Setting II λC = 1.5
Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

SM SSE SMSE SM SSE SMSE SM SSE SMSE
Parameter Z(·) Effect X1 Effect X2 Effect λ0 Our Method -1.0429 0.0339 0.0333 Our Method -0.0034 0.0448 0.0451 Our Method -0.4898 0.0264 0.0264
All Groups -1 0 -0.5 1.75 coxph -1.0429 0.0339 0.0333 coxph -0.0034 0.0448 0.0451 coxph -0.4898 0.0264 0.0264
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Table 3.5: Estimates of regression coefficients and true values for 150 simulations for Simulation Outcome 1. Each dataset has n = 10,000 independent
units, and the data is generated under the model in (3.4).
Abbreviations:
SM: Sample mean;
SSE: Sample standard error;
SMSE: Sample mean of the standard error estimator.

Censoring Parameter Setting I: λC = 0.5
Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

Parameter Z(·) Effect X1 Effect X2 Effect λ0 SM SSE SMSE SM SSE SMSE SM SSE SMSE
Group 1 -1 0 -0.5 1.75 -1.0129 0.0644 0.0618 -0.0130 0.0757 0.0734 -0.4959 0.0446 0.0433
Group 2 -1 0 -0.5 1.75 -1.0226 0.0659 0.0667 0.0036 0.0896 0.0868 -0.4933 0.0508 0.0507
Group 3 -1 0 -0.5 1.75 -1.0146 0.0794 0.0774 0.0010 0.1014 0.1025 -0.5013 0.0567 0.0596
Group 4 -1 0 -0.5 1.75 -1.0056 0.1161 0.1108 -0.0027 0.1507 0.1574 -0.4908 0.0948 0.0913
Group 5 -1 0 -0.5 1.75 -1.0239 0.1245 0.1218 0.0216 0.1868 0.1717 -0.5032 0.1009 0.0998
Group 6 -1 0 -0.5 1.75 -1.0170 0.1320 0.1334 -0.0080 0.1863 0.1890 -0.4938 0.0982 0.1095
Group 7 -1 0 -0.5 1.75 -1.0068 0.2148 0.1961 -0.0007 0.3153 0.3044 -0.5032 0.1629 0.1755
Group 8 -1 0 -0.5 1.75 -1.0323 0.0885 0.0921 -0.0007 0.1383 0.1282 -0.4857 0.0709 0.0750
Group 9 -1 0 -0.5 1.75 -1.0436 0.1233 0.1221 -0.0110 0.1724 0.1715 -0.5027 0.0996 0.1014
Group 10 -1 0 -0.5 1.75 -1.0149 0.0948 0.1035 -0.0047 0.1564 0.1466 -0.4902 0.0968 0.0939

Censoring Parameter Setting II: λC = 1.5
Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

Parameter Z(·) Effect X1 Effect X2 Effect λ0 SM SSE SMSE SM SSE SMSE SM SSE SMSE
Group 1 -1 0 -0.5 1.75 -1.0427 0.0658 0.0620 -0.0129 0.0737 0.0748 -0.4924 0.0470 0.0442
Group 2 -1 0 -0.5 1.75 -1.0513 0.0715 0.0712 0.0006 0.1004 0.0939 -0.4897 0.0535 0.0549
Group 3 -1 0 -0.5 1.75 -1.0418 0.0905 0.0877 0.0022 0.1157 0.1180 -0.4946 0.0647 0.0685
Group 4 -1 0 -0.5 1.75 -1.0223 0.1378 0.1334 0.0018 0.1878 0.1910 -0.4904 0.1154 0.1107
Group 5 -1 0 -0.5 1.75 -1.0262 0.1509 0.1522 0.0256 0.2289 0.2172 -0.4966 0.1286 0.1260
Group 6 -1 0 -0.5 1.75 -1.0145 0.1672 0.1725 0.0001 0.2505 0.2480 -0.4954 0.1232 0.1432
Group 7 -1 0 -0.5 1.75 -0.9961 0.2691 0.2657 -0.0388 0.4251 0.4144 -0.4941 0.2361 0.2392
Group 8 -1 0 -0.5 1.75 -1.0700 0.1227 0.1273 0.0076 0.1825 0.1815 -0.4719 0.1032 0.1058
Group 9 -1 0 -0.5 1.75 -1.0984 0.2007 0.1883 -0.0237 0.2625 0.2713 -0.4742 0.1549 0.1587
Group 10 -1 0 -0.5 1.75 -1.0641 0.1932 0.1996 -0.0062 0.3467 0.2930 -0.4738 0.1788 0.1790
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Table 3.6: Results of the Wald test pairing groups together with α∗ = 0.05 across 150 datasets and n = 10,000 for Simulation Outcome 1. The
data is generated under the Cox regression model (3.4). The (g, g′) element in each matrix is the proportion groups g and g′ were merged to the
same class.

Censoring Parameter Setting I: λC = 0.5

Parameter Z(·) Effect X1 Effect X2 Effect λ0 Group \ Group 1 2 3 4 5 6 7 8 9 10
All Groups -1 0 -0.5 1.75 1 1

2 0.9533 1
3 0.8733 0.9133 1
4 0.8400 0.8733 0.9400 1
5 0.7800 0.8067 0.8733 0.9200 1
6 0.7400 0.7667 0.8200 0.8667 0.9400 1
7 0.7133 0.7400 0.7933 0.8400 0.9067 0.9667 1
8 0.6867 0.7000 0.7400 0.7867 0.8400 0.8933 0.8933 1
9 0.6467 0.6533 0.6933 0.7400 0.7933 0.8333 0.8333 0.9067 1
10 0.6267 0.6333 0.6733 0.7200 0.7733 0.8133 0.8133 0.8867 0.9733 1
Censoring Parameter Setting II: λC = 1.5

Parameter Z(·) Effect X1 Effect X2 Effect λ0 Group \ Group 1 2 3 4 5 6 7 8 9 10
All Groups -1 0 -0.5 1.75 1 1

2 0.9467 1
3 0.8933 0.9467 1
4 0.8533 0.9067 0.9533 1
5 0.8067 0.8533 0.8933 0.9200 1
6 0.7600 0.8067 0.8467 0.8667 0.9333 1
7 0.6933 0.7400 0.7800 0.8000 0.8667 0.9200 1
8 0.6533 0.6800 0.7133 0.7267 0.7933 0.8400 0.8933 1
9 0.5667 0.5933 0.6200 0.6267 0.6933 0.7400 0.7867 0.8867 1
10 0.5133 0.5400 0.5667 0.5733 0.6400 0.6800 0.7267 0.8267 0.9333 1
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Table 3.7: Results of the risk classes identified by the Wald test with α∗ = 0.05 and α∗ = 0.05/(G−
1) for Simulation Outcome 1. The data is generated under the Cox regression model (3.4), and n =
10,000. The correct (data-generating) class is bolded.

α∗ = 0.05
Censoring Parameter Setting I: λC = 0.5 Censoring Parameter Setting II: λC = 1.5
Updated Groups Proportion Updated Groups Proportion
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0.6267 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0.5133
1, 1, 2, 2, 2, 2, 2, 2, 2, 2 0.0400 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0.0800
1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0.0400 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 0.0533
1, 1, 1, 1, 2, 2, 2, 2, 2, 2 0.0333 1, 1, 1, 1, 2, 2, 2, 2, 2, 2 0.0400
1, 1, 1, 1, 1, 2, 2, 2, 2, 2 0.0267 1, 1, 1, 1, 1, 1, 1, 2, 2, 2 0.0333
1, 1, 1, 2, 2, 2, 2, 2, 2, 2 0.0267 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 0.0333
1, 1, 1, 1, 1, 1, 2, 3, 3, 3 0.0267 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 0.0267
1, 1, 2, 3, 3, 3, 3, 3, 3, 3 0.0200 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 0.0267
1, 1, 1, 1, 1, 1, 1, 1, 1, 2 0.0200 1, 1, 1, 1, 1, 1, 2, 3, 3, 3 0.0267
1, 1, 1, 1, 1, 1, 1, 2, 3, 3 0.0200 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 0.0267
1, 1, 2, 2, 2, 2, 2, 3, 3, 3 0.0133 1, 2, 2, 2, 2, 2, 2, 3, 3, 3 0.0200
1, 2, 2, 2, 2, 2, 2, 3, 3, 3 0.0067 1, 1, 1, 2, 3, 3, 3, 3, 3, 3 0.0200
1, 2, 3, 3, 3, 4, 4, 4, 4, 4 0.0067 1, 1, 1, 1, 1, 2, 3, 3, 3, 3 0.0133
1, 1, 1, 1, 2, 2, 2, 3, 3, 3 0.0067 1, 2, 2, 2, 3, 4, 4, 4, 4, 4 0.0067
1, 1, 1, 1, 1, 2, 2, 2, 3, 3 0.0067 1, 1, 2, 2, 2, 2, 2, 3, 3, 3 0.0067
Other 0.0798 Other 0.0733

α∗ = 0.05/(G − 1)
Censoring Parameter Setting I: λC = 0.5 Censoring Parameter Setting II: λC = 1.5
Updated Groups Proportion Updated Groups Proportion
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0.9400 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0.9000
1, 2, 2, 2, 2, 2, 2, 2, 2, 2 0.0133 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0.0467
1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0.0133 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 0.0200
1, 1, 1, 1, 2, 2, 2, 2, 2, 2 0.0133 1, 2, 2, 2, 2, 2, 2, 3, 3, 3 0.0067
1, 1, 1, 2, 2, 2, 2, 2, 2, 2 0.0067 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 0.0067
1, 1, 1, 2, 3, 3, 3, 3, 3, 3 0.0067 1, 1, 1, 2, 2, 2, 2, 2, 2, 2 0.0067
1, 1, 1, 1, 1, 1, 2, 2, 2, 2 0.0067 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 0.0067

1, 1, 2, 2, 2, 2, 2, 2, 2, 2 0.0067
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Table 3.8: Estimates of regression coefficients under (3.2) with G ≡ 1, and the extended Cox proportional hazards model via the survival::coxph
R function, across 150 datasets with n = 10,000 independent units for Simulation Outcome 2. The data is generated under the model in (3.2).
Abbreviations:
SM: Sample mean;
SSE: Sample standard error;
SMSE: Sample mean of the standard error estimator.

Censoring Parameter Setting I: λC = 0.5
Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

SM SSE SMSE SM SSE SMSE SM SSE SMSE
Parameter Z(·) Effect X1 Effect X2 Effect λ0g Our Method -0.8802 0.0320 0.0299 Our Method 0.4700 0.0457 0.0431 Our Method 0.2422 0.0230 0.0246
Group 1 -0.5 -2 -2 0.5 coxph -0.8802 0.0320 0.0286 coxph 0.4700 0.0457 0.0417 coxph 0.2422 0.0230 0.0243
Group 2 -0.5 -2 -2 0.5
Group 3 -0.5 -2 -2 0.5
Group 4 -1 0 -0.5 1.75
Group 5 -1 0 -0.5 1.75
Group 6 -1 0 -0.5 1.75
Group 7 -2 2 1.5 3
Group 8 -2 2 1.5 3
Group 9 -2 2 1.5 3
Group 10 -2 2 1.5 3

Censoring Parameter Setting II: λC = 1.5
λC = 1.5 Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

SM SSE SMSE SM SSE SMSE SM SSE SMSE
Parameter Z(·) Effect X1 Effect X2 Effect λ0g Our Method -0.7935 0.0431 0.0404 Our Method 0.3245 0.0577 0.0587 Our Method 0.1202 0.0313 0.0334
Group 1 -0.5 -2 -2 0.5 coxph -0.7935 0.0431 0.0388 coxph 0.3245 0.0577 0.0571 coxph 0.1202 0.0313 0.0331
Group 2 -0.5 -2 -2 0.5
Group 3 -0.5 -2 -2 0.5
Group 4 -1 0 -0.5 1.75
Group 5 -1 0 -0.5 1.75
Group 6 -1 0 -0.5 1.75
Group 7 -2 2 1.5 3
Group 8 -2 2 1.5 3
Group 9 -2 2 1.5 3
Group 10 -2 2 1.5 3
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Table 3.9: Estimates of regression coefficients and true values for 150 simulations, where each dataset has n = 10,000 independent units for
Simulation Outcome 2. The data is generated under the model in (3.2).
Abbreviations:
SM: Sample mean;
SSE: Sample standard error;
SMSE: Sample mean of the standard error estimator.

Censoring Parameter Setting I: λC = 0.5
Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

Parameter Z(·) Effect X1 Effect X2 Effect λ0g SM SSE SMSE SM SSE SMSE SM SSE SMSE
Group 1 -0.5 -2 -2 0.5 -0.5495 0.2323 0.2286 -2.0103 0.3074 0.3096 -2.0112 0.2676 0.2548
Group 2 -0.5 -2 -2 0.5 -0.5061 0.2094 0.2112 -2.0135 0.3764 0.3264 -2.0234 0.2737 0.2657
Group 3 -0.5 -2 -2 0.5 -0.5574 0.2275 0.2204 -1.9973 0.3386 0.3420 -2.0449 0.3312 0.2805
Group 4 -1 0 -0.5 1.75 -1.0070 0.0982 0.0996 0.0290 0.1502 0.1403 -0.5088 0.0768 0.0825
Group 5 -1 0 -0.5 1.75 -1.0002 0.0988 0.1063 0.0026 0.1729 0.1500 -0.4972 0.0854 0.0880
Group 6 -1 0 -0.5 1.75 -1.0004 0.1202 0.1134 0.0047 0.1576 0.1597 -0.4931 0.0943 0.0932
Group 7 -2 2 1.5 3 -1.9971 0.0679 0.0598 1.9972 0.0849 0.0870 1.4937 0.0563 0.0560
Group 8 -2 2 1.5 3 -1.9871 0.0460 0.0472 1.9728 0.0810 0.0738 1.4773 0.0449 0.0422
Group 9 -2 2 1.5 3 -2.0034 0.1184 0.1171 1.9718 0.1850 0.1774 1.4793 0.1164 0.1093
Group 10 -2 2 1.5 3 -2.0231 0.1972 0.1917 1.9968 0.3030 0.3021 1.4970 0.2530 0.2429

Censoring Parameter Setting II: λC = 1.5
Z(·) Effect Estimate X1 Effect Estimate X2 Effect Estimate

Parameter Z(·) Effect X1 Effect X2 Effect λ0g SM SSE SMSE SM SSE SMSE SM SSE SMSE
Group 1 -0.5 -2 -2 0.5 -0.5842 0.2365 0.2292 -1.9990 0.3082 0.3152 -2.0060 0.2715 0.2594
Group 2 -0.5 -2 -2 0.5 -0.5557 0.2238 0.2278 -2.0309 0.3989 0.3569 -2.0327 0.3129 0.2937
Group 3 -0.5 -2 -2 0.5 -0.6080 0.2467 0.2558 -1.9849 0.3761 0.4001 -2.0342 0.4042 0.3315
Group 4 -1 0 -0.5 1.75 -1.0226 0.1288 0.1229 0.0191 0.1789 0.1746 -0.5094 0.0938 0.1026
Group 5 -1 0 -0.5 1.75 -1.0180 0.1219 0.1367 0.0030 0.2067 0.1940 -0.4902 0.1099 0.1138
Group 6 -1 0 -0.5 1.75 -1.0078 0.1638 0.1510 -0.0301 0.2181 0.2147 -0.5081 0.1271 0.1255
Group 7 -2 2 1.5 3 -1.9890 0.0863 0.0826 1.9958 0.1248 0.1213 1.4867 0.0805 0.0777
Group 8 -2 2 1.5 3 -1.9594 0.0664 0.0666 1.9240 0.1142 0.1063 1.4363 0.0664 0.0607
Group 9 -2 2 1.5 3 -2.0034 0.1929 0.1790 1.8914 0.2819 0.2788 1.4369 0.1727 0.1694
Group 10 -2 2 1.5 3 -2.0553 0.3921 0.3451 1.9406 0.5482 0.5394 1.5485 0.5169 0.4369
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Table 3.10: Results of the Wald test pairing groups together with α∗ = 0.05 across 150 datasets and n = 10,000 for Simulation Outcome 2. The
data is generated under the stratified Cox regression model (3.2). The (g, g′) element in each matrix is the proportion groups g and g′ were merged
to the same class.

Censoring Parameter Setting I: λC = 0.5

Parameter Z(·) Effect X1 Effect X2 Effect λ0g Group \ Group 1 2 3 4 5 6 7 8 9 10
Group 1 -0.5 -2 -2 0.5 1 1
Group 2 -0.5 -2 -2 0.5 2 0.9267 1
Group 3 -0.5 -2 -2 0.5 3 0.8800 0.9467 1
Group 4 -1 0 -0.5 1.75 4 0 0 0 1
Group 5 -1 0 -0.5 1.75 5 0 0 0 0.9600 1
Group 6 -1 0 -0.5 1.75 6 0 0 0 0.9000 0.9400 1
Group 7 -2 2 1.5 3 7 0 0 0 0 0 0 1
Group 8 -2 2 1.5 3 8 0 0 0 0 0 0 0.9000 1
Group 9 -2 2 1.5 3 9 0 0 0 0 0 0 0.8600 0.9533 1
Group 10 -2 2 1.5 3 10 0 0 0 0 0 0 0.7867 0.8667 0.9000 1

Censoring Parameter Setting II: λC = 1.5

Parameter Z(·) Effect X1 Effect X2 Effect λ0g Group \ Group 1 2 3 4 5 6 7 8 9 10
Group 1 -0.5 -2 -2 0.5 1 1
Group 2 -0.5 -2 -2 0.5 2 0.9333 1
Group 3 -0.5 -2 -2 0.5 3 0.8933 0.9467 1
Group 4 -1 0 -0.5 1.75 4 0 0 0 1
Group 5 -1 0 -0.5 1.75 5 0 0 0 0.9533 1
Group 6 -1 0 -0.5 1.75 6 0 0 0 0.9000 0.9467 1
Group 7 -2 2 1.5 3 7 0 0 0 0 0 0 1
Group 8 -2 2 1.5 3 8 0 0 0 0 0 0 0.9000 1
Group 9 -2 2 1.5 3 9 0 0 0 0 0 0 0.8333 0.9333 1
Group 10 -2 2 1.5 3 10 0 0 0 0 0 0 0.7133 0.8000 0.8533 1
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Table 3.11: Results of the risk classes identified by the Wald test with α∗ = 0.05 and α∗ = 0.05/(G − 1) for Simulation Outcome 2. The data is
generated under the stratified Cox regression model (3.2), and n = 10,000. The correct (data-generating) class is bolded.

α∗ = 0.05
Censoring Parameter Setting I: λC = 0.5 Censoring Parameter Setting II: λC = 1.5
Updated Groups Proportion Updated Groups Proportion
1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.6200 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.5733
1, 1, 1, 2, 2, 2, 3, 4, 4, 4 0.0667 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.1000
1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.0533 1, 1, 1, 2, 2, 2, 3, 4, 4, 4 0.0733
1, 2, 2, 3, 3, 3, 4, 4, 4, 4 0.0467 1, 1, 1, 2, 2, 3, 4, 4, 4, 4 0.0333
1, 1, 2, 3, 3, 3, 4, 4, 4, 4 0.0400 1, 1, 1, 2, 3, 3, 4, 4, 4, 4 0.0333
1, 1, 1, 2, 2, 3, 4, 4, 4, 4 0.0400 1, 1, 2, 3, 3, 3, 4, 4, 4, 4 0.0333
1, 1, 1, 2, 3, 3, 4, 4, 4, 4 0.0267 1, 1, 1, 2, 2, 2, 3, 3, 4, 4 0.0267
1, 1, 1, 2, 2, 2, 3, 3, 4, 4 0.0200 1, 2, 2, 3, 3, 3, 4, 4, 4, 4 0.0200
1, 1, 1, 2, 2, 2, 3, 4, 4, 5 0.0133 1, 1, 1, 2, 2, 2, 3, 4, 4, 5 0.0133
1, 1, 1, 2, 2, 3, 4, 5, 5, 5 0.0133 1, 2, 2, 3, 3, 3, 4, 4, 5, 5 0.0133
1, 1, 1, 2, 3, 3, 4, 4, 4, 5 0.0133 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 0.0133
1, 1, 1, 2, 2, 2, 3, 3, 4, 5 0.0067 1, 2, 3, 4, 4, 4, 5, 5, 5, 5 0.0133
1, 2, 2, 3, 3, 4, 5, 5, 5, 5 0.0067 1, 2, 2, 3, 3, 3, 4, 5, 5, 5 0.0067
1, 2, 3, 4, 4, 4, 5, 5, 5, 5 0.0067 1, 1, 1, 2, 2, 3, 4, 4, 4, 5 0.0067
1, 1, 2, 3, 3, 3, 4, 4, 5, 5 0.0067 1, 1, 1, 2, 2, 3, 4, 5, 5, 5 0.0067
Other 0.0199 Other 0.0335

α∗ = 0.05/(G − 1)
Censoring Parameter Setting I: λC = 0.5 Censoring Parameter Setting II: λC = 1.5
Updated Groups Proportion Updated Groups Proportion
1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.9533 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.9333
1, 1, 1, 2, 2, 2, 3, 4, 4, 4 0.0133 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.0267
1, 1, 1, 2, 3, 3, 4, 4, 4, 4 0.0133 1, 1, 1, 2, 2, 2, 3, 4, 4, 4 0.0133
1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.0067 1, 1, 1, 2, 2, 2, 3, 3, 4, 4 0.0133
1, 1, 1, 2, 2, 3, 4, 4, 4, 4 0.0067 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 0.0067
1, 1, 1, 2, 2, 2, 3, 3, 4, 4 0.0067 1, 1, 1, 2, 3, 3, 4, 4, 4, 4 0.0067
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Table 3.12: Results of the risk classes identified by the Wald test with α∗ = 0.05 and α∗ = 0.05/(G − 1) for Simulation Outcome 3. The data is
generated under a misspecified stratified Cox regression model, and n = 10,000. The correct (data-generating) class is bolded.

α∗ = 0.05
Censoring Parameter Setting I: λC = 0.5 Censoring Parameter Setting II: λC = 1.5
Updated Groups Proportion Updated Groups Proportion
1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.6667 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.6333
1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.1067 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.0733
1, 1, 1, 2, 2, 2, 3, 3, 4, 4 0.0467 1, 1, 1, 2, 2, 2, 3, 4, 4, 4 0.0600
1, 1, 1, 2, 2, 2, 3, 4, 4, 4 0.0467 1, 1, 2, 3, 3, 3, 4, 4, 4, 4 0.0600
1, 2, 2, 3, 3, 3, 4, 4, 4, 4 0.0267 1, 1, 1, 2, 2, 2, 3, 3, 4, 4 0.0533
1, 1, 1, 2, 2, 2, 3, 3, 4, 5 0.0200 1, 1, 1, 2, 3, 3, 4, 4, 4, 4 0.0333
1, 1, 1, 2, 3, 3, 4, 4, 4, 4 0.0200 1, 2, 2, 3, 3, 3, 4, 4, 4, 4 0.0200
1, 1, 1, 2, 2, 2, 3, 4, 5, 5 0.0133 1, 1, 1, 2, 2, 3, 4, 4, 4, 5 0.0133
1, 2, 2, 3, 3, 3, 4, 4, 4, 5 0.0067 1, 2, 3, 4, 4, 4, 5, 5, 5, 5 0.0133
1, 1, 1, 2, 2, 3, 4, 4, 4, 4 0.0067 1, 1, 2, 3, 3, 3, 4, 5, 5, 5 0.0067
1, 1, 1, 2, 3, 3, 4, 4, 4, 5 0.0067 1, 1, 1, 2, 3, 3, 4, 4, 4, 5 0.0067
1, 1, 2, 3, 3, 3, 4, 4, 4, 4 0.0067 1, 2, 2, 3, 3, 4, 5, 6, 6, 6 0.0067
1, 1, 2, 3, 3, 3, 4, 5, 5, 5 0.0067 1, 1, 2, 3, 4, 4, 5, 5, 5, 5 0.0067
1, 1, 2, 3, 3, 4, 5, 6, 6, 6 0.0067 1, 1, 1, 2, 3, 4, 5, 5, 5, 5 0.0067
1, 1, 1, 2, 3, 4, 5, 5, 5, 5 0.0067 1, 1, 1, 2, 2, 3, 4, 4, 4, 4 0.0067
Other 0.0063

α∗ = 0.05/(G − 1)
Censoring Parameter Setting I: λC = 0.5 Censoring Parameter Setting II: λC = 1.5
Updated Groups Proportion Updated Groups Proportion
1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.9400 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 0.9533
1, 1, 1, 2, 2, 2, 3, 3, 4, 4 0.0200 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.0333
1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.0133 1, 1, 1, 2, 2, 2, 2, 3, 3, 3 0.0067
1, 1, 1, 2, 3, 3, 4, 4, 4, 5 0.0067 1, 2, 3, 4, 4, 4, 5, 5, 5, 5 0.0067
1, 1, 1, 2, 3, 3, 4, 4, 4, 4 0.0067
1, 1, 1, 2, 2, 2, 3, 4, 4, 4 0.0067
1, 2, 3, 4, 4, 4, 5, 5, 5, 5 0.0067
1, 1, 1, 2, 2, 2, 3, 3, 3, 4 0.0333
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Chapter 4

Developing a Predictive Survival
Model with Administrative Service
Utilization Records

4.1 Introduction

To best target their patient’s specific needs, many clinicians utilize survival predictions as a
tool to find personalized treatment regimens. The challenge however is that the correspond-
ing survival probabilities are meaningless whenever internal covariates are included in the
hazard regression model. A popular strategy to overcome such challenges is to conduct joint
modelling, but implementing such an analysis can be challenging due to its heavy compu-
tation costs. As shown in Chapter 2, projecting the distribution of random effects to the
available data space and simplifying the distribution of the random effect greatly reduces
the computational costs, but it places a very restrictive parametric assumption. Unless the
assumption is satisfied, which is highly unlikely in practice, the resulting inference can be
misleading. In this chapter, we revisit our modelling from Chapter 2, and avoid placing
any parametric assumptions on the random effect’s distribution. We extend the conditional
score approach of Tsiatis and Davidian (2001) by allowing successive observations in the
longitudinal sub-model in the joint model to be correlated. This procedure retains the com-
putational simplicity from the approach presented in Chapter 2, and also provides consistent
estimates of model parameters. It naturally produces survival predictions by summarizing
an individual’s service utilization, such as OAT usage in our application.

This chapter is organized as follows. Section 4.2 presents the notation that will be
utilized, and presents the longitudinal and hazard sub-models that comprise the joint mod-
elling. Section 4.3 outlines the conditional score approach of Tsiatis and Davidian (2001),
and its extension for correlated observations. We also estimate correlation parameters, sum-
marize our proposed method through a two-stage inference procedure, and outline how to
obtain survival predictions. We also outline a promising inference procedure that can be
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more efficient than the proposed method in Section 4.3.6. The proposed conditional score
estimator is applied to an analysis of the provincial administrative database in Section 4.4.
We conduct a simulation study in Section 4.5 to verify our findings from our data analysis,
and to show the performance of our proposed estimator relative over naive approaches. We
conclude this chapter with a summary and discussion in Section 4.6.

4.2 Jointly Modelling OAT Dispensation and Mortality Risk
Processes

Adopting the notation used in Chapter 2, let T denote an individual’s survival time (mea-
sured in days) since their first recorded OAT dispensation record, which is subject to a
right-censoring time, C. The available information on T is (T ∗, δ), where T ∗ = T ∧ C is
the minimum between T and C, and δ = I(T ≤ C). Let Z(t) ∈ {0, 1} denote an indi-
vidual’s OAT dispensation indicator at time t ≥ 0, which is obtained from daily phar-
maceutical dispensation records, and Z(t) = {Z(u) : 0 ≤ u ≤ t}. We additionally let
X(t) = (X1(t), · · · , Xq(t))′ denote external time-varying covariates and time-independent
characteristics of an individual, and X (t) = {X(u) : 0 ≤ u ≤ t}. Here, the covariate Xk(t)
is time-independent if Xk(0) ≡ Xk(t), for all t > 0, and k = 1, · · · , q. Our statistical goal is
to estimate the conditional hazard function of T (at time t), given the processes Z(t) and
X (t):

λ(t; Z(t), X (t)) = lim
dt→0+

1
dt

P (t ≤ T < t + ∆t|T ≥ t, Z(t), X (t)). (4.1)

If we specify a model for (4.1) that is capable of providing survival predictions, we cannot
directly use Z(t), since this would obstruct the conventional relationship between the hazard
and survivor functions. The standard approach to overcome the problem is to model the joint
distribution of T and Z(t), given X (t). This is done by linking two sub-models together: one
sub-model is for the process Z(·), and the other sub-model is for (4.1). Since this eliminates
the direct use of internal covariates within the modelling, a likelihood based estimating
procedure can then be used to estimate the parameters of interest in the hazard sub-model.

To summarize the OAT dispensation process for individual i = 1, · · · , n, let Ri(t) =∫ t
0 Zi(u)du/t denote the proportion of time individual i is dispensed OAT over [0, t]. In

practice, one may choose to use {Ri(tij) : j = 1, · · · , mi}, where 0 ≤ ti,mi ≤ T ∗
i in their

analysis. Using the simplified notation Rij = Ri(tij), we specify the following model for the
OAT dispensation history of individual i:

h(Rij) = νi + εij , (4.2)
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for some function h(·), where νi is a subject-specific value that summarizes individual i’s
OAT dispensation history, and εij captures the deviation between νi and the transformed
measurements h(Rij), with E(εij) = 0 and Cov(εij , εi,j−k) = ρkσ2/(1 − ρ2). That is, {εij :
j = 1, · · · , mi} follows an AR(1) process. This specification will be justified in Section 4.4.

We model an individual’s mortality hazard function with

λ(t; Zi(t), X i(t)) = λ0(t) exp{γνi + θ′Xi(t)} (i = 1, · · · , n), (4.3)

where λ0(t) is an unspecified baseline hazard function, and γ and θ = (θ1, · · · , θq)′ are
unknown regression parameters. Note that the model in (4.3) explicitly assumes that Ti ⊥⊥
Zi(∞)|{νi, X i(t)}, meaning that we assume νi serves as an adequate summary of the process
Zi(·) in the presence of X i(t). As we summarize Zi(·) with νi in (4.3), this preserves the con-
ventional relationship between the hazard and survivor functions. Following the arguments
presented in Section 1.1.3, we can show that

P (Ti > t|Zi(t), X i(t)) = exp
{

−
∫ t

0
λ0(u) exp{γνi + θ′Xi(u)}du

}
.

A likelihood based procedure can be used to infer the unknown regression parameters. Here,
νi links the models (4.2) and (4.3) together. The challenge of inferring parameters in (4.3)
is that νi is an unknown quantity defined by (4.2). We proceed to outline the proposed
inference procedure under the model assumptions.

4.3 Inference Procedure

4.3.1 Conditional Score Based Approach

With reference to the likelihood function (2.4),Tsiatis and Davidian (2001) specified the
random effect distribution as F (νi) = I(νi ≥ ν̂i), where ν̂i =

mi∑
j=1

h(Rij)/mi is an unbiased

estimator of νi under (4.2). Since ν̂i can be viewed as a “noisy measurement” of νi, directly
replacing νi with ν̂i will generally produce biased estimates (Prentice 1982). To correct for
this bias, Tsiatis and Davidian (2001) extended the conditional score approach for general-
ized linear models (Stefanski and Carroll 1987) to the extended Cox proportional hazards
model, as in (4.3). This was done by deriving a sufficient statistic of νi, which depends
on either known or estimable quantities. Their derivation assumes that the error terms in
(4.2) are independent and identically distributed, which is an assumption likely violated
in practice. We extend the approach by allowing for the error terms to follow an AR(1)
process.
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By letting ni(t) = I(Ti ∈ [t, t + dt)) and Yi(t) = I(T ∗
i ≥ t), the conditional likelihood of

{ni(t), ν̂i} given {Yi(t) = 1, νi, X i(t)} can be expressed up to order dt as

exp{ νi

Vi(σ2, ρ)(ν̂i + γVi(σ2, ρ)ni(t))}
(λ0(t) exp{θ′Xi(t)}dt)ni(t)√

2πVi(σ2, ρ)
exp{ −ν̂2

i − ν2
i

2Vi(σ2, ρ)}, (4.4)

where

Vi(σ2, ρ) = V ar(ν̂i) = 1
m2

i

σ2

1 − ρ2

mi + 2ρ

1 − ρ

mi−1∑
j=1

(1 − ρmi−j)

 .

Here, it is assumed that (i) ni(t)⊥⊥ν̂i|{Yi(t) = 1, X i(t), νi}, and (ii) ν̂i⊥⊥{Yi(t) = 1, X i(t)}|νi.
The first assumption is essentially the “nondifferential measurement error mechanism” as-
sumption in the measurement error literature (Carroll et al. 2006, Yi 2017), and the second
assumption results from our modelling assumption in (4.2). We recognize (4.4) to be a
member of the exponential family of probability distributions. Thus

Si(t) ≡ Si(t, γ, σ2, ρ) = ν̂i + γVi(σ2, ρ)ni(t) (4.5)

is a sufficient statistic for νi. Following the arguments presented in Tsiatis and Davidian
(2001), we can show that

λ†(t; Si(t), X i(t)) = lim
∆t→0+

1
∆t

P (ni(t) = 1|Yi(t) = 1, Si(t), X i(t))

= λ0(t) exp{γSi(t) − γ2

2 Vi(σ2, ρ) + θ′Xi(t)}, (4.6)

where Si(t) = {Si(u) : 0 ≤ u ≤ t}. Note that (4.6) involves only known or estimable
quantities. Furthermore, the parameters in (4.6) are the same as in (4.3). This motivates us
to base our estimation of λ0(·), γ, and θ on (4.6).

4.3.2 Estimating Model Parameters

Let Ni(t) = I(Ti ≤ t), Yi(t) = I(T ∗
i ≥ t), and Er(t, γ, θ, σ2, ρ) =

n∑
j=1

Erj(t, γ, θ, σ2, ρ) with

Erj(t, γ, θ, σ2, ρ) = Yj(t) exp{γSj(t) − γ2

2 Vj(σ2, ρ) + θ′Xj(t)}(Sj(t), Xj(t)′)′⊗r,

where for a column-vector a, a⊗0 = 1 and a⊗1 = a. For the time being, assume that σ2

and ρ are known (see Section 4.3.3), so that we can compute the sufficient statistic in (4.5).
Under the model in (4.6), the following estimating equations are (conditionally) unbiased
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for all t > 0:
n∑

i=1
(Yi(t)dNi(t) − E0i(t, γ, θ, σ2, ρ)dΛ0(t)) = 0 and (4.7)

n∑
i=1

∫ ∞

0
(Si(t), Xi(t)′)′(Yi(t)dNi(t) − E0i(t, γ, θ, σ2, ρ)dΛ0(t)) = 0, (4.8)

where dΛ0(t) = λ0(t) dt. Solving for dΛ0(t) in (4.7) results in the following Breslow-like
estimator

dΛ̂0(t; γ, θ, σ2, ρ) =
n∑

i=1

Yi(t)dNi(t)
E0(t, γ, θ, σ2, ρ) . (4.9)

Inserting (4.9) in place of dΛ0(t) in (4.8) yields

U1(γ, θ; σ2, ρ) =
n∑

i=1

∫ ∞

0
Yi(t)

[
(Si(t), Xi(t)′)′ − E1(t, γ, θ, σ2, ρ)

E0(t, γ, θ, σ2, ρ)

]
dNi(t).

We propose to estimate (γ, θ′)′ with (γ̂, θ̂′)′, the solution to U1(γ, θ; σ2, ρ) = 0. To estimate
dΛ0(t), we can then use (4.9) after replacing γ and θ with γ̂ and θ̂, respectively.

4.3.3 Estimating Additional Parameters

By assuming that {εij : j = 1, · · · , mi} follows an AR(1) process for fixed i in (4.2), we
have

h(Rij) − νi = ρ[h(Ri,j−1) − νi] + eij . (4.10)

where E(eij) = 0 and V ar(eij) = σ2, and eij ⊥⊥ εi,j−1. Since νi is unavailable, we estimate it
with ν̂i, and proceed to estimate ρ with the least squares estimator, under (4.10), and esti-
mate σ2 based on the residual sum of squares under (4.10), upon pooling all the individual’s
information together. Specifically, ρ̂ is the solution to the following (unbiased) estimating
equation

U2(ρ) =
n∑

i=1

mi∑
j=2

{h(Rij) − ν̂i − ρ[h(Ri,j−1) − ν̂i][h(Ri,j−1) − ν̂i]} = 0, (4.11)

and σ̂2 is the solution to the following (unbiased) estimating equation

U3(σ2, ρ) = σ2 − 1
|I|

∑
i∈I

1
mi − 2

mi∑
j=2

{h(Rij) − ν̂i − ρ[h(Ri,j−1) − ν̂i]}2 = 0, (4.12)
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where I = {i : mi > 2} and |I| is the size of I. Essentially, (4.11) is proportional to the
derivative of

n∑
i=1

mi∑
j=2

e2
ij with respect to ρ, where eij is from (4.10). Solving (4.12) for σ2

results in an estimator that averages the conventional regression error variance estimator
among all individuals with at least two observations.

4.3.4 Two-Stage Estimation Procedure and Variance Estimation

By stacking the estimating functions, let U(γ, θ, σ2, ρ) = (U1(γ, θ, ; σ2, ρ)′, U23(σ2, ρ)′)′ with
U23(σ2, ρ) = (U2(ρ), U3(σ2, ρ))′, where we can express each estimating function as the sum
of each individual’s contribution

U1(γ, θ; σ2, ρ) =
n∑

i=1
Ui1(γ, θ; σ2, ρ)

U23(σ2, ρ) =
n∑

i=1
Ui,23(σ2, ρ).

Since σ̂2 and ρ̂ have analytic forms, we infer all of the parameters with the following two-
stage procedure:

Step 1: Under the model h(Rij) = νi + εij , estimate νi with ν̂i =
mi∑
j=1

h(Rij)/mi, and

proceed to estimate ρ and σ2 by solving the equation U23(σ2, ρ) = 0.

Step 2: Estimate γ and θ with the solutions to U1(γ, θ; σ̂2, ρ̂) = 0. Also, estimate dΛ0(t)
with dΛ̂0(t; γ̂, θ̂, σ̂2, ρ̂).

Letting Ω = (γ, θ′)′ and Ω̂ = (γ̂, θ̂′)′, the resulting estimate of Ω under our two-stage
inference procedure, it follows that V ar(Ω̂) = Ψ−1ΦΨ−1 (c.f. Chapter 1 of Yi (2017)),
where Ψ = E

(
∂

∂ΩU11(Ω; σ2, ρ)
)

and Φ = E(Q1(Ω, σ2, ρ)Q1(Ω, σ2, ρ)′) with

Qi(Ω, σ2, ρ) = Ui1(Ω; σ2, ρ) − E
(

∂

∂(σ2, ρ)′ Ui1(Ω; σ2, ρ)
)[

E
(

∂

∂(σ2, ρ)′ Ui,23(σ2, ρ)
)]−1

Ui,23(σ2, ρ).

By replacing Ψ and Φ with their empirical means: Ψ̂ = n−1
n∑

i=1
∂

∂ΩUi1(Ω; σ̂2, ρ̂)
∣∣∣∣
Ω=Ω̂

and

Φ̂ = n−1
n∑

i=1
Q̂i(Ω̂, σ̂2, ρ̂)Q̂i(Ω̂, σ̂2, ρ̂)′ with

Q̂i(Ω, σ2, ρ) = Ui1(Ω; σ2, ρ) −
[

∂

∂(σ2, ρ)′ U1(Ω; σ2, ρ)
] [

∂

∂(σ2, ρ)′ U23(σ2, ρ)
]−1

Ui,23(σ2, ρ),

we have V̂ ar(Ω̂) = Ψ̂−1Φ̂Ψ̂−1, a consistent estimator for V ar(Ω̂).
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4.3.5 Survival Prediction

Similar to (1.22), we can predict an individual’s survival risk based on the external covariate
Xi(·), and the observed process Si(Ci). Note that this individual does not necessarily need
to be a study subject. We can use (4.6) to show for any t > Ci that

π(t; Si(Ci), X i(t)) = P (Ti > t|Ti > Ci, Si(Ci), X i(t))

= exp{−
∫ t

Ci

λ†(u; Si(Ci), X i(u))du}, (4.13)

so that the model-based survival risk predictions are obtainable upon estimating λ0(·),
Ω = (γ, θ′)′, σ2, and ρ. Specifically, a point and interval estimate for individual i’s survival
probability at time t > Ci can be obtained with the following algorithm:

Step 1: Based on the observed information over [0, Ci], obtain ν̂i.

Step 2: Letting Ŝi(t) = Si(t, γ̂, σ̂2, ρ̂) and Ŝi(t) = {Ŝi(u) : 0 ≤ u ≤ t}, obtain survival
probabilities with (4.13), where we replace Si(t) with Ŝi(t), and the parameters in (4.6)
with their corresponding estimate.

Step 3: A 100(1 − α∗)% confidence interval for π(t; Si(Ci), X i(t)) can be obtained from
the α∗/2 and 1 − α∗/2 percentiles of {π̂(j)(t; Ŝ(j)

i (Ci), X i(t)) : j = 1, · · · , M} for some
M >> 1, where

Ω̂(j) = (γ̂(j), θ̂(j)′)′ ∼ N (Ω̂, V̂ ar(Ω̂)),

the baseline hazard function is estimated with (4.9) and Ω replaced with Ω̂(j), Ŝ
(j)
i (t) =

Si(t, γ̂(j), σ̂2, ρ̂), Ŝ(j)
i (t) = {Ŝ

(j)
i (u) : 0 ≤ u ≤ t}, and π̂(j)(t; Ŝ(j)

i (Ci), X i(t)) is the jth
estimate of (4.13). The asymptotic normality of the estimator Ω̂ carries over to our
setting from the results derived by Tsiatis and Davidian (2001).

Similar to so-called “dynamic predictions” (Rizopoulos 2011), the survival probability
predictions can be updated once more information from individual i becomes available at
time C∗

i > Ci, in which we simply repeat Steps 1-3 with C∗
i replacing Ci.

In addition to the survival probability predictions, we can directly predict when the
event will occur with

E(Ti|Ti > Ci, Si(Ci), X i(∞)) = Ci +
∫ ∞

Ci

P (Ti > t|Si(Ci), X i(t)) dt

P (Ti > Ci|Si(Ci), X i(Ci))

= Ci +
∫ ∞

Ci

exp{−
∫ t

Ci

λ†(u; Si(Ci), X i(u))du} dt, (4.14)

where the second term in (4.14) is the remaining life expectancy for individual i provided
that they survived up to time Ci (Zhou and Sun 2022). Similarly to the survival probability
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predictions, we can obtain a point and interval estimate for Ti with the following algorithm:

Step 1: Based on the observed information over [0, Ci], obtain ν̂i.

Step 2: Letting Ŝi(t) = Si(t, γ̂, σ̂2, ρ̂) and Ŝi(t) = {Ŝi(u) : 0 ≤ u ≤ t}, estimate (4.14) by
replacing Si(t) with Ŝi(t), and the parameters in (4.6) with their corresponding estimate.

Step 3: A 100(1 − α∗)% prediction interval for Ti can be obtained from the α∗/2 and
1 − α∗/2 percentiles of {Ê(j)(Ti|Ti > Ci, Ŝ(j)

i (Ci), X i(∞)) : j = 1, · · · , M} for some
M >> 1, where

Ω̂(j) = (γ̂(j), θ̂(j)′)′ ∼ N (Ω̂, V̂ ar(Ω̂)),

the baseline hazard function is estimated with (4.9) and Ω replaced with Ω̂(j), Ŝ
(j)
i (t) =

Si(t, γ̂(j), σ̂2, ρ̂), Ŝ(j)
i (t) = {Ŝ

(j)
i (u) : 0 ≤ u ≤ t}, and Ê(j)(Ti|Ti > Ci, Ŝ(j)

i (Ci), X i(∞)) is
the jth estimate of (4.14).

4.3.6 Alternative Procedure by Predicting the Random Effect

A drawback with estimating νi with ν̂i is that it only utilizes individual i’s information,
which can be problematic when mi is small. An alternative approach that pools all individ-
ual’s information together would hence be desirable.

In vector notation, we can express (4.2) as

hi = 1iνi + εi = 1iµ + 1iηi + εi, (4.15)

where hi = (hi(Ri1), · · · , hi(Ri,mi))′, εi = (εi1, · · · , εi,mi)′, and νi = µ + ηi. Suppose we
are willing to make the assumption that νi ∼ N (µ, σ2

ν), and εi ∼ N (0, Ci(σ2, ρ)), where
the (j, k) element of Ci(σ2, ρ) is Cov(εij , εik) = ρ|j−k|σ2/(1 − ρ2). Since (4.15) is a linear
mixed effect model (Laird and Ware 1982), we can estimate µ with its maximum likelihood
estimator

µ̂(σ2, ρ, σ2
ν) =

(
n∑

i=1
1′

iΣ−1
i (σ2, ρ, σ2

ν)1i

)−1( n∑
i=1

1′
iΣ−1

i (σ2, ρ, σ2
ν)hi

)
,
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where Σi(σ2, ρ, σ2
ν) = σ2

ν1i1′
i + Ci(σ2, ρ) and estimate (σ2, ρ, σ2

ν) via restricted maximum
likelihood estimation:

(σ̂2, ρ̂, σ̂2
ν) = argmax

(σ,ρ,σ2
ν)

{ℓR(σ2, ρ, σ2
ν)},

ℓR(σ2, ρ, σ2
ν) = −1

2

n∑
i=1

log det(Σi(σ2, ρ, σ2
ν)) − 1

2

n∑
i=1

log det(1′
iΣ−1

i (σ2, ρ, σ2
ν)1i)

− 1
2

n∑
i=1

[hi − 1iµ̂(σ2, ρ, σ2
ν)]′Σ−1

i (σ2, ρ, σ2
ν)[hi − 1iµ̂(σ2, ρ, σ2

ν)].

We can predict ηi with its best linear unbiased predictor

η̂i = σ̂2
ν1′

iΣ−1
i (σ̂2, ρ̂, σ̂2

ν)[hi − 1iµ̂(σ̂2, ρ̂, σ̂2
ν)].

This results in predicting νi with ν̃i = µ̂+η̂i. Since ν̃i uses information from other individuals
through σ̂2, ρ̂, and σ̂2

ν , we anticipate ν̃i to be more efficient compared to ν̂i, especially when
mi is small. We can then proceed with the conditional score inference procedure to estimate
the regression parameters in (4.3) by updating the sufficient statistic in (4.5) into

S∗
i (t) ≡ S∗

i (t, γ, σ2, ρ, σ2
ν) = ν̂i + γVi(σ2, ρ, σ2

ν)ni(t),

where

Vi(σ2, ρ, σ2
ν) = V ar(ηi) − V ar(η̂i)

= σ2
ν(1 − σ2

ν1′
iΣi(σ2, ρ, σ2

ν)1i)

is the extra variability induced by replacing ηi with η̂i. The two-stage inference procedure
and variance estimation procedure can be updated using the stacked estimating functions

U(γ, θ, σ2, ρ, σ2
ν) = (U1(γ, θ; σ2, ρ, σ2

ν)′, U2(σ2, ρ, σ2
ν)′)′,
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where

U1(γ, θ; σ2, ρ, σ2
ν) =

n∑
i=1

Ui1(γ, θ; σ2, ρ, σ2
ν)

=
n∑

i=1

∫ ∞

0
Yi(t)

(
(S∗

i (t), Xi(t)′)′ − E1(t, γ, θ, σ2, ρ, σ2
ν)

E0(t, γ, θ, σ2, ρ, σ2
ν)

)
dNi(t),

Er(t, γ, θ, σ2, ρ, σ2
ν) =

n∑
j=1

Erj(t, γ, θ, σ2, ρ, σ2
ν)

=
n∑

j=1
Yj(t) exp{γS∗

j (t) − γ2

2 Vj(σ2, ρ, σ2
ν) + θ′Xj(t)}(S∗

j (t), Xj(t)′)′⊗r for all t > 0,

U2(σ2, ρ, σ2
ν) = ∂

∂(σ2, ρ, σ2
ν)ℓR(σ2, ρ, σ2

ν) =
n∑

i=1
Ui2(σ2, ρ, σ2

ν)

Ψ̂ = 1
n

n∑
i=1

∂

∂ΩUi1(Ω; σ̂2, ρ̂, σ̂2
ν)
∣∣∣∣∣
Ω=Ω̂

, and

Φ̂ = 1
n

n∑
i=1

Q̂i(Ω̂, σ̂2, ρ̂, σ̂2
ν)Q̂i(Ω̂, σ̂2, ρ̂, σ̂2

ν)′

with Q̂i(Ω, σ2, ρ, σ2
ν) defined as

Ui1(Ω; σ2, ρ) −
[

∂

∂(σ2, ρ, σ2
ν)′ U1(Ω; σ2, ρ, σ2

ν)
] [

∂

∂(σ2, ρ, σ2
ν)′ U2(σ2, ρ, σ2

ν)
]−1

Ui2(σ2, ρ, σ2
ν).

Not only can this approach result in improving the statistical efficiency by estimating Ω,
but this framework allows us to consider alternative correlation structures, such as AR(p)
with p > 1, or exponential.

4.4 Analysis of the Provincial OAT Dispensation Records
(II)

We applied the proposed estimation procedure outlined in Section 4.3 to the provincial
administrative database pertaining to OAT dispensation records. We include the same set
of risk factors as in the analysis of Chapter 2.

We specified h(x) = logit(x) so that both sides of the equation in (4.2) is unconstrained,
and began our analysis by obtaining ν̂i under model (4.2) for each individual. Some indi-
viduals had OAT dispensations cover every day they were in the study, in which we defined
logit(1) := 20. To explore the potential autocorrelation within the error terms in (4.2),
Figure 4.1 illustrates the sample autocorrelation and partial autocorrelation functions of
the residuals êij = logit(Rij) − ν̂i for four randomly selected individuals. The time unit for
measurements in (4.2) was in months, as this resulted in the time series processes to be
approximately stationary. The findings from Figure 4.1 motivated the AR(1) specification
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in (4.2). Table 4.1 presents the resulting estimates of γ and θ, where we considered time
since first recorded OAT dispensation and age as time scales. The four sets of estimates
correspond to the following procedures:

(a) Estimates corresponding to maximizing the joint likelihood function (2.4) upon spec-
ifying νi ∼ N(µ, σ2

ν).

(b) Estimates obtained by directly replacing νi with ν̂i in (4.3).

(c) Estimates obtained from the conditional score approach as described in Section 4.3
with ρ ≡ 0.

(d) Estimates obtained from the conditional score approach as described in Section 4.3
with ρ ̸= 0.

For each of the two time scales, we can see the estimated effect of the average OAT dispen-
sation rate by using approach (d) is much larger than by approach (b), and the results of
using approach (a) are similar to those for approach (c). We remark that using the popular
R package JM (Rizopoulos 2010) to obtain estimates under approach (a) required notably
longer computation time relative to the other approaches. Obtaining estimates by approach
(a) can be computationally infeasible if either a more complex model than (4.2) is considered
or if there are several internal covariate processes to model.

We see the effect of the average OAT dispensation rate to be both positive and signif-
icant, which is similar to our results from Chapter 2. This suggests that individuals with
higher OAT usage proportions have higher risks of mortality. We again took the approach
from Chapter 2 and stratified individuals with respect to their corresponding birth gen-
eration, where Table 4.2 displays the summary statistics for ν̂i’s under (4.2). Just as in
Table 2.8, we see differing OAT usage patterns between survival groups varies across birth
generation. In particular, survivors have lower OAT dispensation rates within the older
generations, whereas nonsurvivors have lower OAT dispensation rates for the younger gen-
erations. This finding indicates that the results in Table 4.1 are likely confounded by age.
Upon stratifying individuals into their corresponding birth generations, we re-estimated the
model parameters in (4.3), where the estimates are presented in Tables 4.3-4.6. We see that
the estimated effect of ν decreases with birth generation, which corroborates with Table 4.2
and our preliminary analysis from Chapter 2.

Since the estimates in Table 4.1 were obtained by pooling all individuals together, we
can view the estimates in Table 4.1 as weighted averages of the estimates from Tables 4.3-
4.6, where the weights partially depend on the follow-up time. Figure 4.2 illustrates both
the distribution of first recorded OAT dispensation date and follow-up time (i.e. T ∗) across
birth generations, in which the majority of Millennials & Generation Z individuals had their
first recorded OAT dispensation record near the end of the data extraction window, and
hence contribute less information relative to individuals from the earlier birth generations.
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This result can explain why we see the estimated effect of the average OAT dispensation
rate to be positive on the hazard: larger weights are placed on older individuals due to their
relative longer follow-up times.

To obtain an overall effect estimate for our population, we weight the estimates from
Tables 4.3-4.6 based on the number of individuals within each of the four birth generations,
that is, the size of each birth generation stratum. Letting ng denote the number of individ-
uals that belong to the gth birth generation and (γ̂g, θ̂g) denote the estimates from Tables

4.3-4.6 (g = 1, 2, 3, 4), we computed the weighted estimates of γ and θ as γ̃ =
4∑

g=1

ng

n γ̂g, and

θ̃ =
4∑

g=1

ng

n θ̂g. The corresponding variances of γ̃ and θ̃ are

V ar(γ̃) = V ar

 G∑
g=1

ng

n
γ̂g

 ≈
G∑

g=1

(
ng

n

)2
V ar(γ̂g), and

V ar(θ̃) = V ar

 G∑
g=1

ng

n
θ̂g

 ≈
G∑

g=1

(
ng

n

)2
V ar(θ̂g).

Table 4.7 presents γ̃ and θ̃, as well as conditional score approach with AR(1) errors from
Table 4.1 as a reference. By up-weighting the Millennials & Generation Z estimates, the
resulting analysis indicates that individuals with a higher OAT dispensation rate have a
lower mortality risk.

4.5 Simulation Study

To verify the findings from our data analysis in Section 4.4, we conducted a simulation study
to assess the relative performance of the naive and conditional score inference procedures
presented in Table 4.1, compared to the “ideal” approach of fitting (4.3) with known νi.

4.5.1 Data Generation

We started by simulating n ∈ {5000, 20000, 50000} event times under (4.3) with h(x) =
logit(x). The true parameters were θ = (−2, −1.75, −2.5)′, γ ∈ {−0.5, 0, 0.5}, and λ0(t) ≡
λ0 = 1. The different specifications for γ are to reflect the varying signs of γ̂ in Tables
4.3-4.6, and also examine the performance of each method when the effect is insignifi-
cant. We generated three baseline covariates for each sample unit Xi = (Xi1, Xi2, Xi3)′,
where Xi1 ∼ Normal(0, 1), Xi2 ∼ Uniform(0, 1), and Xi3 ∼ Bernoulli(0.5). Upon gen-
erating νi ∼ Normal(0, 5), where the specification of the variance was based on findings
from our data application, event times were then generated as Ti ∼ Exponential(λi), where
λi = λ0 exp{γνi + θ′Xi}. Simulating right-censored event times Ci ∼ Exponential(3), we
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obtained observations {(T ∗
i , δi, Xi) : i = 1, · · · , n}, in which

n∑
i=1

δi ≈ 14% to roughly match
our data application.

We then generated longitudinal observations under (4.2), where we discretized [0, T ∗
i ]

into time units of length 0.003, and compute mi = ⌊T ∗
i /0.003⌋. We specified 0.003 as the

time unit so that the distribution of mi across individuals is roughly similar to the observed
distribution from our data application. As it is possible to generate mi = 0 (this pertains to
≈ 1% of the simulated sample units), we omit these units to be consistent with the analysis in
Section 4.4. We then generated observations under (4.2) upon simulating εij from a normal
distribution with E(εij) = 0, and Cov(εij , εi,j−k) = ρkσ2/(1 − ρ2), in which ρ ∈ {0, 0.5, 0.9}
to reflect varying levels of correlation within the error terms, and σ2/(1 − ρ2) ≡ 1.4, as
motivated by its estimate in Table 4.1. The entire data generation procedure was replicated
1,000 times.

4.5.2 Simulation Outcome 1: Bias Assessment

We summarized the average bias across the 1,000 data replicates for the “ideal”, naive, and
conditional score inference procedures in Table 4.8, across different specifications of n, γ,
and ρ. Key findings from Table 4.8 include the following:

• When γ ∈ {−0.5, 0.5} (the first and third columns of Table 4.8), we see that directly
replacing νi with ν̂ in (4.3) produces biased estimates, and is especially noticeable
when ρ > 0. Also, the conditional score approach with ρ ≡ 0 only performs well when
the data is generated with ρ = 0. This is because the sufficient statistic requires an
estimate for V ar(ν̂i), and is underestimated when ρ > 0 if one assumes the errors
are IID. Our proposed approach that allows for AR(1) errors is able to consistently
estimate γ and θ.

• When γ = 0 (the second column in Table 4.8), all four methods are able to consistently
estimate the model parameters. This indicates that under this setting, the parameter
estimates are not only robust to misspecification of the correlation structure in the
error terms, but are robust to the differences between ν̂ and ν themselves. This latter
result is due to γ generally being underestimated when ν is directly replaced with ν̂,
in the sense of being biased towards zero. When γ = 0 however, this seems to serve
as an advantage.

4.5.3 Simulation Outcome 2: Alternative Rate Modelling

For each simulated dataset, we also estimated the model parameters in (4.6) by linking it to
(4.2), except we specify (i) h(x) = x; and (ii) h(x) = − log x. Our objective is to assess the
implications on inferring parameters in (4.3), when using these alternative specifications of
h(·), since the left hand side of h(Rij) is constrained to (0, 1) and (0, ∞) when h(x) = x
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and h(x) = − log x, respectively. Figure 4.3 and Figure 4.4 illustrates the estimates of γ

for various levels of ρ and data-generating values of γ with h(x) = x and h(x) = − log x,
respectively, where we fixed n = 50,000. We see that

• Under h(x) = x, larger values of ν̂i would correspond to larger dispensation rates. The
results in Figure 4.3 indicate that this approach is robust to model misspecification
when γ = 0, and is able to identify the correct sign of γ when γ ∈ {−0.5, 0.5}.

• Under h(x) = − log x, larger values of ν̂i corresponds to smaller dispensation rates.
We obtain similar findings as before, in the sense that this approach is able to properly
identify whether the effect is positive or negative.

4.6 Discussion and Outlook for Chapter 5

Motivated by predicting an individual’s mortality risk given their OAT dispensation history,
we used a latent variable in the survival models to summarize an individual’s OAT dispen-
sation process. We predict the latent variable by projecting it to the available data space,
and extend the conditional score approach of Tsiatis and Davidian (2001) to account for
within-subject correlation in estimating parameters of an extended Cox regression model.
Results from our data application showcases the estimated effect of the OAT dispensation
rate varies with respect to time of birth in our population, in which the OAT protective
effect against mortality is strongest for Millennials and Generation Z individuals. This find-
ing suggests that more personalized approaches may be needed to effectively manage OAT
use within different age groups.

As older individuals generally have longer follow-up times relative to younger individuals,
this disparity induces a bias in the results if we conventionally pool all individuals together.
To overcome that, we implemented a weighted average of birth generation stratified es-
timates. This produced an overall estimate that demonstrates an overall OAT protective
effect for the population. Our simulation study verifies the findings from the data applica-
tion, where in particular, the proposed conditional score estimator is able to consistently
estimate model parameters, whereas the naive approaches fail.

Observe that the model in (4.2) explicitly assumes that h(Rij) does not depend on any
risk factors or time. We can overcome this limitation by extending (4.2) to

h(Rij) = νi(j, X i(tij); αi) + εij ,

where νi(j, X i(tij); αi) is a parametric function that depends on both time and other risk
factors Xi(·), and is parameterized by αi. Figure 4.5 illustrates logit(Rij) over time for
the same four randomly selected individuals from Figure 4.1, and appears to be reasonably
modelled by a quadratic model of time. Accounting for this relationship would likely provide
more accurate survival predictions than the ones obtained under (4.2). This extra step can
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be realized under our current setup if assume Ti ⊥⊥ Zi(∞)|αi, and use νi(j, X i(tij); α̂i) as a
“noisy measurement” of νi(·), where α̂i is the least squares estimate of αi. We could then
essentially proceed as before to estimate parameters in the hazard sub-model.

To this point, we have developed methodology to conduct statistical inference when an
internal covariate is present in a hazard regression model. To simplify our task and better
understand the OAT dispensation process within our population, we neglected the type of
OAT, as well as its dosage. We are now in a position to lift this self-imposed restriction, and
extend the methods developed in Chapters 3 and 4 to include additional factors pertaining
to OAT usage.
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Figure 4.1: Sample autocorrelation and partial autocorrelation of the residuals under the model logit(Rij) = νi + εij , for four randomly selected
individuals, where the time unit (tij) is in months.
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Figure 4.2: Illustration of the distributions for date of first recorded OAT dispensations, and T ∗ (in years), across birth generation levels.
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Figure 4.3: Histograms of γ̂ from 1,000 simulated data replications upon specifying h(x) = x, for different specifications of γ and ρ. Here, the
number of study units in each simulated dataset is fixed at n = 50,000.
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Figure 4.4: Histograms of γ̂ from 1,000 simulated data replications upon specifying h(x) = − log x, for different specifications of γ and ρ. Here, the
number of study units in each simulated dataset is fixed at n = 50,000.
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Figure 4.5: Illustration of logit(Rij) vs. j or the four randomly selected individuals from Figure 4.1.
The red line is ν̂i under (4.2).
The blue curve is the LOESS fit.
The green curve is the fit under the model logit(Ri(t)) = νi0 + νi1t + νi2t2 + εi(t).
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Table 4.1: Estimates of regression coefficients under (a) a joint model where we specify νi ∼ N(µ, σ2
ν), (b) the Cox model that directly replaces νi

with ν̂i, (c) the conditional score method with independent errors, and (d) the conditional score method with AR(1) errors. The bolded estimates
are statistically significant with the type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.3711 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 1.3852 σ̂2/(1 − ρ̂2) = 1.3852
σ̂2

ν = 4.3374 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.7108
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.0515 0.0039 0.0499 0.0033 0.0510 0.0039 0.0539 0.0044
Incarceration FPCS 0.0310 0.0071 0.0310 0.0071 0.0310 0.0071 0.0311 0.0071
Sex (vs. Female) - - - - - - - -
Male 0.1778 0.0265 0.1774 0.0265 0.1771 0.0265 0.1763 0.0265
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers -1.2456 0.0459 -1.2448 0.0459 -1.2440 0.0459 -1.2419 0.0459
Generation X -1.9527 0.0495 -1.9507 0.0495 -1.9486 0.0495 -1.9431 0.0495
Millennials & Generation Z -2.0275 0.0613 -2.0250 0.0613 -2.0228 0.0613 -2.0166 0.0613
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.2105 0.0397 0.2109 0.0397 0.2114 0.0397 0.2127 0.0397
Vancouver Coastal 0.1130 0.0307 0.1132 0.0307 0.1134 0.0307 0.1138 0.0307
Vancouver Island 0.0810 0.0368 0.0809 0.0368 0.0809 0.0368 0.0809 0.0368
Northern 0.0533 0.0692 0.0535 0.0692 0.0538 0.0692 0.0546 0.0692
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.1518 0.0337 0.1523 0.0337 0.1528 0.0337 0.1541 0.0337
2007-2012 0.2443 0.0399 0.2443 0.0399 0.2444 0.0399 0.2446 0.0399
2013-2018 0.6137 0.0510 0.6117 0.0510 0.6108 0.0510 0.6084 0.0511
Alcohol or Other Substance Use Disorders 0.4235 0.0448 0.4236 0.0448 0.4234 0.0448 0.4229 0.0448
Ill Mental Health or Chronic pain -0.1907 0.0448 -0.1906 0.0448 -0.1905 0.0448 -0.1904 0.0448
Hepatitis C Virus or HIV/AIDS 1.1611 0.0275 1.1611 0.0275 1.1611 0.0275 1.1612 0.0276
Ever Received a Sedative 0.4802 0.0335 0.4802 0.0335 0.4802 0.0335 0.4803 0.0335
Ever on PharmaCare Plans C or G -0.2222 0.0306 -0.2238 0.0306 -0.2253 0.0306 -0.2296 0.0306

Age

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.3711 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 1.3852 σ̂2/(1 − ρ̂2) = 1.3852
σ̂2

ν = 4.3374 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.7108
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.0489 0.0043 0.0472 0.0033 0.0482 0.0039 0.0509 0.0046
Incarceration FPCS 0.0326 0.0071 0.0326 0.0071 0.0325 0.0071 0.0326 0.0071
Sex (vs. Female) - - - - - - - -
Male 0.1629 0.0266 0.1626 0.0266 0.1626 0.0266 0.1620 0.0266
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers -0.4444 0.0685 -0.4435 0.0685 -0.4423 0.0685 -0.4401 0.0684
Generation X -0.6298 0.0833 -0.6283 0.0833 -0.6265 0.0833 -0.6223 0.0833
Millennials & Generation Z -0.2779 0.1087 -0.2763 0.1087 -0.2749 0.1087 -0.2715 0.1087
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.1712 0.0398 0.1715 0.0398 0.1720 0.0398 0.1731 0.0398
Vancouver Coastal 0.0966 0.0307 0.0967 0.0307 0.0964 0.0307 0.0967 0.0307
Vancouver Island 0.0577 0.0368 0.0576 0.0368 0.0576 0.0368 0.0576 0.0368
Northern 0.0476 0.0692 0.0477 0.0692 0.0485 0.0692 0.0493 0.0692
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.0093 0.0320 0.0097 0.0320 0.0097 0.0320 0.0109 0.0320
2007-2012 -0.0330 0.0365 -0.0332 0.0365 -0.0344 0.0365 -0.0343 0.0365
2013-2018 0.2425 0.0449 0.2398 0.0449 0.2357 0.0449 0.2328 0.0449
Alcohol or Other Substance Use Disorders 0.5125 0.0459 0.5127 0.0459 0.5116 0.0459 0.5110 0.0458
Ill Mental Health or Chronic pain -0.2742 0.0446 -0.2736 0.0446 -0.2732 0.0446 -0.2726 0.0446
Hepatitis C Virus or HIV/AIDS 1.1088 0.0275 1.1090 0.0275 1.1088 0.0275 1.1092 0.0275
Ever Received a Sedative 0.4599 0.0335 0.4600 0.0335 0.4600 0.0335 0.4601 0.0335
Ever on PharmaCare Plans C or G -0.1433 0.0313 -0.1448 0.0313 -0.1471 0.0313 -0.1510 0.0313

101



Table 4.2: Summary statistics of ν̂ across birth generations and survival status.
(*): Among individuals with Rij ̸= 1 for all j = 1, · · · , mi.

Greatest & Silent Generations: 1901-1945 Baby Boomers: 1946-1964
Survivors Non-Survivors Total Survivors Non-Survivors Total

Minimum -7.9979 -7.8148 -7.9979 Minimum -7.9904 -7.3155 -7.9904
1st Quartile -2.8862 -1.6070 -2.2005 1st Quartile -1.1312 -0.2740 -0.9036
Median -0.4048 1.8379 0.9485 Median 1.2243 2.0777 1.4494
3rd Quartile 3.2339 5.5032 4.6510 3rd Quartile 3.7305 4.3637 3.9229
Maximum∗ 16.8276 19.4207 19.4207 Maximum∗ 19.7516 19.5262 19.7516
N 447 654 1,101 N 9,904 3,575 13,479

Generation X: 1965-1980 Millennials & Generation Z: 1981+
Survivors Non-Survivors Total Survivors Non-Survivors Total

Minimum -7.9126 -6.6852 -7.9126 Minimum -7.8369 -7.0285 -7.8369
1st Quartile -1.2177 -1.2753 -1.2265 1st Quartile -1.4127 -2.3128 -1.4576
Median 0.6233 0.4265 0.6080 Median 0.4660 -0.4127 0.4264
3rd Quartile 2.6975 2.2999 2.6571 3rd Quartile 2.7066 1.4970 2.6618
Maximum∗ 19.8185 18.0020 19.8185 Maximum∗ 19.7073 18.5611 19.7073
N 18,861 1,998 20,859 N 18,519 781 19,300
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Table 4.3: Estimates of regression coefficients under (a) a joint model where we specify νi ∼ N(µ, σ2
ν), (b) the Cox model that directly replaces

νi with ν̂i, (c) the conditional score method with independent errors, and (d) the conditional score method with AR(1) errors; for subjects born
between 1901-1945. The bolded estimates are statistically significant with the type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.8438 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 2.9872 σ̂2/(1 − ρ̂2) = 2.9872
σ̂2

ν = 5.4214 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.6306
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.0962 0.0095 0.0922 0.0087 0.0958 0.0101 0.1023 0.0112
Incarceration FPCS 0.3387 0.1407 0.3388 0.1407 0.3393 0.1408 0.3405 0.1410
Sex (vs. Female) - - - - - - - -
Male -0.0454 0.0904 -0.0475 0.0904 -0.0535 0.0904 -0.0645 0.0905
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.3273 0.1319 0.3289 0.1319 0.3365 0.1320 0.3499 0.1321
Vancouver Coastal 0.2459 0.1048 0.2460 0.1048 0.2468 0.1048 0.2483 0.1048
Vancouver Island 0.1417 0.1324 0.1420 0.1324 0.1447 0.1324 0.1490 0.1325
Northern -0.2293 0.2935 -0.2270 0.2935 -0.2169 0.2936 -0.1992 0.2938
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.4452 0.1118 0.4464 0.1117 0.4553 0.1118 0.4717 0.1120
2007-2012 0.1275 0.1538 0.1281 0.1539 0.1292 0.1539 0.1316 0.1539
2013-2018 0.1346 0.1839 0.1355 0.1839 0.1410 0.1840 0.1513 0.1841
Alcohol or Other Substance Use Disorders -0.2370 0.0994 -0.2375 0.0994 -0.2412 0.0993 -0.2476 0.0992
Ill Mental Health or Chronic pain 0.1859 0.1532 0.1872 0.1532 0.1869 0.1533 0.1862 0.1535
Hepatitis C Virus or HIV/AIDS 1.0347 0.1014 1.0351 0.1014 1.0346 0.1015 1.0343 0.1016
Ever Received a Sedative 0.3553 0.1543 0.3547 0.1543 0.3550 0.1544 0.3572 0.1544
Ever on PharmaCare Plans C or G -0.4774 0.1001 -0.4789 0.1000 -0.4890 0.1000 -0.5068 0.1000

Age

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.8438 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 2.9872 σ̂2/(1 − ρ̂2) = 2.9872
σ̂2

ν = 5.4214 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.6306
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.1039 0.0091 0.0996 0.0086 0.1032 0.0106 0.1098 0.0118
Incarceration FPCS 0.4018 0.1414 0.4016 0.1415 0.4016 0.1415 0.4011 0.1416
Sex (vs. Female) - - - - - - - -
Male 0.0237 0.0929 0.0214 0.0930 0.0155 0.0930 0.0041 0.0932
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.1839 0.1344 0.1855 0.1344 0.1916 0.1345 0.2037 0.1346
Vancouver Coastal 0.1718 0.1056 0.1716 0.1056 0.1713 0.1056 0.1707 0.1056
Vancouver Island 0.1201 0.1327 0.1201 0.1327 0.1231 0.1327 0.1269 0.1328
Northern -0.0988 0.2938 -0.0978 0.2939 -0.0863 0.2939 -0.0675 0.2942
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.3085 0.1100 0.3075 0.1100 0.3137 0.1100 0.3263 0.1102
2007-2012 -0.1233 0.1529 -0.1244 0.1529 -0.1304 0.1530 -0.1359 0.1533
2013-2018 -0.0319 0.1765 -0.0352 0.1766 -0.0420 0.1768 -0.0419 0.1771
Alcohol or Other Substance Use Disorders -0.0987 0.1041 -0.0981 0.1041 -0.1027 0.1039 -0.1089 0.1037
Ill Mental Health or Chronic pain -0.0133 0.1507 -0.0097 0.1507 -0.0097 0.1508 -0.0093 0.1509
Hepatitis C Virus or HIV/AIDS 0.9984 0.0997 1.0001 0.0998 1.0015 0.0997 1.0050 0.0998
Ever Received a Sedative 0.3273 0.1544 0.3255 0.1545 0.3236 0.1546 0.3241 0.1548
Ever on PharmaCare Plans C or G -0.2718 0.1062 -0.2720 0.1061 -0.2793 0.1060 -0.2938 0.1060

103



Table 4.4: Estimates of regression coefficients under (a) a joint model where we specify νi ∼ N(µ, σ2
ν), (b) the Cox model that directly replaces

νi with ν̂i, (c) the conditional score method with independent errors, and (d) the conditional score method with AR(1) errors; for subjects born
between 1946-1964. The bolded estimates are statistically significant with the type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.9122 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 2.5269 σ̂2/(1 − ρ̂2) = 2.5269
σ̂2

ν = 4.4554 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.7359
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.0731 0.0061 0.0717 0.0045 0.0738 0.0059 0.0808 0.0066
Incarceration FPCS 0.0250 0.0118 0.0250 0.0118 0.0250 0.0118 0.0252 0.0118
Sex (vs. Female) - - - - - - - -
Male 0.1484 0.0375 0.1480 0.0375 0.1474 0.0375 0.1454 0.0375
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.1771 0.0580 0.1778 0.0579 0.1795 0.0580 0.1849 0.0580
Vancouver Coastal 0.0648 0.0431 0.0651 0.0431 0.0655 0.0432 0.0669 0.0432
Vancouver Island 0.0952 0.0506 0.0953 0.0506 0.0958 0.0506 0.0973 0.0506
Northern 0.1529 0.0958 0.1527 0.0958 0.1529 0.0958 0.1536 0.0959
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.1675 0.0444 0.1679 0.0444 0.1689 0.0444 0.1720 0.0444
2007-2012 0.1814 0.0577 0.1816 0.0577 0.1821 0.0577 0.1837 0.0577
2013-2018 0.3886 0.0844 0.3832 0.0845 0.3792 0.0846 0.3661 0.0847
Alcohol or Other Substance Use Disorders 0.3333 0.0656 0.3338 0.0656 0.3338 0.0656 0.3340 0.0656
Ill Mental Health or Chronic pain -0.2160 0.0635 -0.2159 0.0635 -0.2158 0.0635 -0.2156 0.0635
Hepatitis C Virus or HIV/AIDS 1.2607 0.0362 1.2606 0.0362 1.2605 0.0362 1.2605 0.0362
Ever Received a Sedative 0.3457 0.0471 0.3456 0.0471 0.3454 0.0471 0.3447 0.0471
Ever on PharmaCare Plans C or G -0.2047 0.0455 -0.2066 0.0455 -0.2099 0.0455 -0.2206 0.0455

Age

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.9122 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 2.5269 σ̂2/(1 − ρ̂2) = 2.5269
σ̂2

ν = 4.4554 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.7359
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.0651 0.0060 0.0637 0.0045 0.0657 0.0059 0.0718 0.0066
Incarceration FPCS 0.0269 0.0118 0.0269 0.0118 0.0264 0.0117 0.0265 0.0118
Sex (vs. Female) - - - - - - - -
Male 0.1019 0.0375 0.1016 0.0375 0.1012 0.0375 0.0997 0.0376
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.1532 0.0579 0.1540 0.0579 0.1556 0.0579 0.1604 0.0579
Vancouver Coastal 0.0569 0.0431 0.0571 0.0431 0.0572 0.0431 0.0579 0.0431
Vancouver Island 0.0669 0.0506 0.0671 0.0506 0.0676 0.0506 0.0693 0.0506
Northern 0.1671 0.0958 0.1668 0.0958 0.1676 0.0958 0.1683 0.0958
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.0454 0.0423 0.0458 0.0423 0.0464 0.0423 0.0495 0.0423
2007-2012 -0.1225 0.0539 -0.1224 0.0539 -0.1227 0.0539 -0.1205 0.0539
2013-2018 -0.0560 0.0777 -0.0618 0.0778 -0.0671 0.0778 -0.0773 0.0779
Alcohol or Other Substance Use Disorders 0.3521 0.0655 0.3525 0.0655 0.3519 0.0655 0.3517 0.0655
Ill Mental Health or Chronic pain -0.3041 0.0633 -0.3034 0.0633 -0.3022 0.0633 -0.3000 0.0633
Hepatitis C Virus or HIV/AIDS 1.2063 0.0360 1.2064 0.0360 1.2062 0.0360 1.2069 0.0360
Ever Received a Sedative 0.3293 0.0470 0.3293 0.0470 0.3294 0.0470 0.3289 0.0470
Ever on PharmaCare Plans C or G -0.1074 0.0460 -0.1094 0.0460 -0.1133 0.0460 -0.1237 0.0460
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Table 4.5: Estimates of regression coefficients under (a) a joint model where we specify νi ∼ N(µ, σ2
ν), (b) the Cox model that directly replaces

νi with ν̂i, (c) the conditional score method with independent errors, and (d) the conditional score method with AR(1) errors; for subjects born
between 1956-1980. The bolded estimates are statistically significant with the type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.1519 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 1.4208 σ̂2/(1 − ρ̂2) = 1.4208
σ̂2

ν = 4.1112 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.7396
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.0338 0.0075 0.0312 0.0074 0.0321 0.0075 0.0353 0.0078
Incarceration FPCS 0.0284 0.0196 0.0285 0.0196 0.0285 0.0196 0.0287 0.0196
Sex (vs. Female) - - - - - - - -
Male 0.1769 0.0486 0.1770 0.0486 0.1770 0.0486 0.1772 0.0486
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.2285 0.0737 0.2286 0.0737 0.2286 0.0737 0.2287 0.0737
Vancouver Coastal 0.1471 0.0563 0.1472 0.0563 0.1473 0.0563 0.1474 0.0563
Vancouver Island 0.0407 0.0696 0.0403 0.0696 0.0400 0.0696 0.0389 0.0696
Northern -0.0776 0.1280 -0.0774 0.1280 -0.0772 0.1280 -0.0767 0.1280
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.0685 0.0621 0.0681 0.0621 0.0679 0.0621 0.0670 0.0621
2007-2012 0.3804 0.0690 0.3797 0.0690 0.3791 0.0690 0.3771 0.0691
2013-2018 0.8072 0.0921 0.8050 0.0921 0.8038 0.0921 0.7992 0.0922
Alcohol or Other Substance Use Disorders 1.0907 0.1181 1.0912 0.1181 1.0915 0.1181 1.0925 0.1181
Ill Mental Health or Chronic pain -0.3457 0.0825 -0.3462 0.0825 -0.3465 0.0825 -0.3477 0.0825
Hepatitis C Virus or HIV/AIDS 1.0698 0.0519 1.0700 0.0519 1.0700 0.0519 1.0704 0.0519
Ever Received a Sedative 0.6463 0.0585 0.6465 0.0585 0.6466 0.0585 0.6470 0.0585
Ever on PharmaCare Plans C or G -0.1081 0.0589 -0.1093 0.0589 -0.1101 0.0589 -0.1131 0.0590

Age

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.1519 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 1.4208 σ̂2/(1 − ρ̂2) = 1.4208
σ̂2

ν = 4.1112 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.7396
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν 0.0305 0.0078 0.0278 0.0074 0.0287 0.0075 0.0315 0.0078
Incarceration FPCS 0.0301 0.0196 0.0302 0.0196 0.0303 0.0196 0.0304 0.0196
Sex (vs. Female) - - - - - - - -
Male 0.1455 0.0487 0.1456 0.0487 0.1462 0.0487 0.1464 0.0487
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.2130 0.0737 0.2131 0.0737 0.2130 0.0737 0.2131 0.0737
Vancouver Coastal 0.1358 0.0563 0.1359 0.0563 0.1351 0.0563 0.1353 0.0563
Vancouver Island 0.0399 0.0696 0.0395 0.0696 0.0390 0.0696 0.0380 0.0696
Northern -0.0884 0.1279 -0.0883 0.1279 -0.0875 0.1280 -0.0869 0.1280
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 -0.0262 0.0591 -0.0265 0.0591 -0.0276 0.0591 -0.0283 0.0591
2007-2012 0.1797 0.0619 0.1791 0.0619 0.1766 0.0619 0.1750 0.0619
2013-2018 0.4409 0.0807 0.4387 0.0808 0.4332 0.0808 0.4291 0.0809
Alcohol or Other Substance Use Disorders 1.1135 0.1182 1.1141 0.1182 1.1138 0.1182 1.1147 0.1182
Ill Mental Health or Chronic pain -0.3785 0.0825 -0.3787 0.0825 -0.3791 0.0825 -0.3799 0.0825
Hepatitis C Virus or HIV/AIDS 1.0186 0.0523 1.0188 0.0523 1.0183 0.0523 1.0187 0.0524
Ever Received a Sedative 0.6240 0.0585 0.6242 0.0585 0.6247 0.0585 0.6252 0.0585
Ever on PharmaCare Plans C or G -0.1012 0.0589 -0.1023 0.0589 -0.1046 0.0589 -0.1073 0.0590
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Table 4.6: Estimates of regression coefficients under (a) a joint model where we specify νi ∼ N(µ, σ2
ν), (b) the Cox model that directly replaces νi

with ν̂i, (c) the conditional score method with independent errors, and (d) the conditional score method with AR(1) errors; for subjects born after
1980. The bolded estimates are statistically significant with the type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.0722 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 0.9634 σ̂2/(1 − ρ̂2) = 0.9634
σ̂2

ν = 4.5476 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.6646
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν -0.0458 0.0121 -0.0438 0.0120 -0.0452 0.0122 -0.0490 0.0128
Incarceration FPCS 0.0439 0.0145 0.0439 0.0145 0.0439 0.0145 0.0439 0.0145
Sex (vs. Female) - - - - - - - -
Male 0.5045 0.0808 0.5042 0.0808 0.5044 0.0808 0.5050 0.0808
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.3233 0.1053 0.3221 0.1053 0.3232 0.1053 0.3260 0.1054
Vancouver Coastal 0.2044 0.0966 0.2045 0.0966 0.2043 0.0966 0.2038 0.0966
Vancouver Island 0.1647 0.1116 0.1636 0.1116 0.1645 0.1116 0.1669 0.1117
Northern 0.0295 0.1973 0.0291 0.1973 0.0296 0.1973 0.0311 0.1973
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.7590 0.4704 0.7585 0.4704 0.7589 0.4704 0.7601 0.4704
2007-2012 0.9305 0.4711 0.9303 0.4711 0.9305 0.4711 0.9309 0.4711
2013-2018 1.5618 0.4744 1.5615 0.4744 1.5618 0.4744 1.5628 0.4744
Alcohol or Other Substance Use Disorders 1.2165 0.1605 1.2167 0.1605 1.2164 0.1605 1.2157 0.1605
Ill Mental Health or Chronic pain -0.3629 0.1302 -0.3630 0.1302 -0.3627 0.1302 -0.3622 0.1302
Hepatitis C Virus or HIV/AIDS 0.6425 0.1418 0.6428 0.1418 0.6423 0.1418 0.6411 0.1418
Ever Received a Sedative 0.7458 0.0993 0.7462 0.0993 0.7459 0.0993 0.7452 0.0993
Ever on PharmaCare Plans C or G -0.3532 0.0807 -0.3547 0.0807 -0.3534 0.0807 -0.3499 0.0808

Age

Frailty Model Cox Model Conditional Score
IID Errors

Conditional Score
AR(1) Errors

µ̂ = 1.0722 σ2/(1 − ρ2) ≡ 0 σ̂2/(1 − ρ2) = 0.9634 σ̂2/(1 − ρ̂2) = 0.9634
σ̂2

ν = 4.5476 ρ ≡ 0 ρ ≡ 0 ρ̂ = 0.6646
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
ν -0.0500 0.0121 -0.0480 0.0119 -0.0496 0.0122 -0.0537 0.0127
Incarceration FPCS 0.0419 0.0147 0.0419 0.0147 0.0420 0.0147 0.0420 0.0147
Sex (vs. Female) - - - - - - - -
Male 0.4751 0.0810 0.4749 0.0810 0.4757 0.0810 0.4761 0.0810
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.2992 0.1053 0.2981 0.1053 0.2992 0.1053 0.3020 0.1053
Vancouver Coastal 0.1932 0.0966 0.1933 0.0966 0.1914 0.0966 0.1908 0.0966
Vancouver Island 0.1356 0.1116 0.1346 0.1116 0.1354 0.1116 0.1378 0.1116
Northern -0.0187 0.1973 -0.0190 0.1973 -0.0175 0.1973 -0.0158 0.1973
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.7477 0.4628 0.7472 0.4628 0.7457 0.4628 0.7468 0.4628
2007-2012 0.8416 0.4532 0.8416 0.4532 0.8386 0.4532 0.8386 0.4532
2013-2018 1.3431 0.4525 1.3430 0.4525 1.3378 0.4525 1.3388 0.4525
Alcohol or Other Substance Use Disorders 1.2683 0.1607 1.2684 0.1607 1.2674 0.1607 1.2664 0.1607
Ill Mental Health or Chronic pain -0.3443 0.1303 -0.3443 0.1303 -0.3438 0.1303 -0.3435 0.1303
Hepatitis C Virus or HIV/AIDS 0.6174 0.1418 0.6177 0.1418 0.6168 0.1418 0.6152 0.1418
Ever Received a Sedative 0.7484 0.0992 0.7488 0.0992 0.7485 0.0992 0.7476 0.0992
Ever on PharmaCare Plans C or G -0.3372 0.0807 -0.3388 0.0806 -0.3404 0.0807 -0.3367 0.0808
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Table 4.7: Estimates of the conditional score approach with AR(1) errors from Table 4.1, and weighted estimates γ̃ and θ̃.

Time Since First Recorded OAT Dispensation
Conditional Score
AR(1) Errors

Weighted Average
(Birth Generation)

Covariate Name Estimate S.E. Estimate S.E.
ν 0.0539 0.0044 -0.0130 0.0055
Incarceration FPCS 0.0311 0.0071 0.0395 0.0099
Sex (vs. Female) - - - -
Male 0.1763 0.0265 0.2801 0.0352
Birth Generation (vs Greatest & Silent Generations) - - - -
Baby Boomers -1.2419 0.0459 - -
Generation X -1.9431 0.0495 - -
Millennials & Generation Z -2.0166 0.0613 - -
Heath Authority (vs Fraser Health) - - - -
Interior 0.2127 0.0397 0.2546 0.0488
Vancouver Coastal 0.1138 0.0307 0.1495 0.0417
Vancouver Island 0.0809 0.0368 0.1006 0.0491
Northern 0.0546 0.0692 0.0156 0.0884
Year Category (vs. 1996-2000 ) - - - -
2001-2006 0.1541 0.0337 0.3454 0.1679
2007-2012 0.2446 0.0399 0.5198 0.1688
2013-2018 0.6084 0.0511 0.9488 0.1722
Alcohol or Other Substance Use Disorders 0.4229 0.0448 0.9222 0.0741
Ill Mental Health or Chronic pain -0.1904 0.0448 -0.3096 0.0579
Hepatitis C Virus or HIV/AIDS 1.1612 0.0276 0.9651 0.0546
Ever Received a Sedative 0.4803 0.0335 0.6013 0.0432
Ever on PharmaCare Plans C or G -0.2296 0.0306 -0.2310 0.0380

Age
Conditional Score
AR(1) Errors

Weighted Average
(Birth Generation)

Covariate Name Estimate S.E. Estimate S.E.
ν 0.0509 0.0046 -0.0181 0.0055
Incarceration FPCS 0.0326 0.0071 0.0410 0.0100
Sex (vs. Female) - - - -
Male 0.1620 0.0266 0.2483 0.0353
Birth Generation (vs Greatest & Silent Generations) - - - -
Baby Boomers -0.4401 0.0684 - -
Generation X -0.6223 0.0833 - -
Millennials & Generation Z -0.2715 0.1087 - -
Heath Authority (vs Fraser Health) - - - -
Interior 0.1731 0.0398 0.2313 0.0488
Vancouver Coastal 0.0967 0.0307 0.1365 0.0417
Vancouver Island 0.0576 0.0368 0.0827 0.0491
Northern 0.0493 0.0692 0.0014 0.0884
Year Category (vs. 1996-2000 ) - - - -
2001-2006 0.0109 0.0320 0.2713 0.1651
2007-2012 -0.0343 0.0365 0.3300 0.1621
2013-2018 0.2328 0.0449 0.6157 0.1637
Alcohol or Other Substance Use Disorders 0.5110 0.0458 0.9557 0.0742
Ill Mental Health or Chronic pain -0.2726 0.0446 -0.3399 0.0579
Hepatitis C Virus or HIV/AIDS 1.1092 0.0275 0.9225 0.0546
Ever Received a Sedative 0.4601 0.0335 0.5893 0.0432
Ever on PharmaCare Plans C or G -0.1510 0.0313 -0.1959 0.0381
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Table 4.8: Averaged bias for parameter Ω:
1000∑
j=1

(Ω̂j − Ω)/1000, where Ω̂j is an estimate of Ω with the jth data replicate (j = 1, · · · , 1000).

Abbreviation: CS = Conditional Score.

n = 5000; γ = −0.5; ρ = 0 n = 5000; γ = 0; ρ = 0 n = 5000; γ = 0.5; ρ = 0
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0009 0.0073 -0.0041 -0.0041 γ̂ 0.0004 0.0004 0.0004 0.0004 γ̂ 0.0008 -0.0073 0.0053 0.0053
θ̂1 -0.0035 0.0091 0.0008 0.0008 θ̂1 -0.0067 -0.0067 -0.0067 -0.0067 θ̂1 -0.0052 0.0075 -0.0049 -0.0049
θ̂2 0.0030 0.0144 0.0070 0.0070 θ̂2 -0.0013 -0.0013 -0.0013 -0.0013 θ̂2 -0.0017 0.0094 -0.0016 -0.0016
θ̂3 -0.0033 0.0113 0.0001 < 0.0001 θ̂3 -0.0061 -0.0061 -0.0061 -0.0061 θ̂3 -0.0018 0.0131 -0.0025 -0.0025

n = 5000; γ = −0.5; ρ = 0.5 n = 5000; γ = 0; ρ = 0.5 n = 5000; γ = 0.5; ρ = 0.5
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0009 0.0176 0.0112 -0.0022 γ̂ 0.0004 0.0005 0.0005 0.0005 γ̂ 0.0008 -0.0172 -0.0103 0.0048
θ̂1 -0.0035 0.0237 0.0188 0.0090 θ̂1 -0.0067 -0.0067 -0.0067 -0.0067 θ̂1 -0.0052 0.0215 0.0148 -0.0007
θ̂2 0.0030 0.0268 0.0225 0.0139 θ̂2 -0.0013 -0.0013 -0.0013 -0.0013 θ̂2 -0.0017 0.0209 0.0149 0.0012
θ̂3 -0.0033 0.0280 0.0215 0.0085 θ̂3 -0.0061 -0.0061 -0.0061 -0.0061 θ̂3 -0.0018 0.0297 0.0212 0.0019

n = 5000; γ = −0.5; ρ = 0.9 n = 5000; γ = 0; ρ = 0.9 n = 5000; γ = 0.5; ρ = 0.9
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0009 0.0546 0.0542 -0.0005 γ̂ 0.0004 0.0001 0.0001 0.0001 γ̂ 0.0008 -0.0550 -0.0546 0.0082
θ̂1 -0.0035 0.0700 0.0697 0.0278 θ̂1 -0.0067 -0.0067 -0.0067 -0.0068 θ̂1 -0.0052 0.0685 0.0682 0.0021
θ̂2 0.0030 0.0672 0.0669 0.0302 θ̂2 -0.0013 -0.0012 -0.0012 -0.0012 θ̂2 -0.0017 0.0621 0.0618 0.0042
θ̂3 -0.0033 0.0842 0.0838 0.0301 θ̂3 -0.0061 -0.0061 -0.0061 -0.0062 θ̂3 -0.0018 0.0860 0.0855 0.0042

n = 20000; γ = −0.5; ρ = 0 n = 20000; γ = 0; ρ = 0 n = 20000; γ = 0.5; ρ = 0
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0004 0.0079 -0.0033 -0.0033 γ̂ < 0.0001 < 0.0001 < 0.0001 < 0.0001 γ̂ 0.0003 -0.0081 0.0046 0.0047
θ̂1 -0.0006 0.0122 0.0039 0.0039 θ̂1 -0.0006 -0.0006 -0.0006 -0.0006 θ̂1 < 0.0001 0.0129 0.0006 0.0006
θ̂2 0.0005 0.0120 0.0047 0.0047 θ̂2 0.0007 0.0007 0.0007 0.0007 θ̂2 -0.0004 0.0110 0.0001 0.0001
θ̂3 0.0002 0.0152 0.0039 0.0039 θ̂3 -0.0008 -0.0008 -0.0009 -0.0009 θ̂3 -0.0016 0.0133 -0.0023 -0.0023

n = 20000; γ = −0.5; ρ = 0.5 n = 20000; γ = 0; ρ = 0.5 n = 20000; γ = 0.5; ρ = 0.5
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0004 0.0180 0.0116 -0.0016 γ̂ < 0.0001 0.0001 0.0001 0.0001 γ̂ 0.0003 -0.0180 -0.0111 0.0040
θ̂1 -0.0006 0.0266 0.0217 0.0120 θ̂1 -0.0006 -0.0006 -0.0006 -0.0006 θ̂1 < 0.0001 0.0271 0.0204 0.0051
θ̂2 0.0005 0.0244 0.0201 0.0116 θ̂2 0.0007 0.0007 0.0007 0.0007 θ̂2 -0.0004 0.0235 0.0176 0.0041
θ̂3 0.0002 0.0322 0.0256 0.0127 θ̂3 -0.0008 -0.0008 -0.0008 -0.0008 θ̂3 -0.0016 0.0302 0.0218 0.0027

n = 20000; γ = −0.5; ρ = 0.9 n = 20000; γ = 0; ρ = 0.9 n = 20000; γ = 0.5; ρ = 0.9
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0004 0.0549 0.0546 < 0.0001 γ̂ < 0.0001 0.0001 0.0001 0.0001 γ̂ 0.0003 -0.0553 -0.0549 0.0070
θ̂1 -0.0006 0.0731 0.0728 0.0304 θ̂1 -0.0006 -0.0006 -0.0006 -0.0006 θ̂1 < 0.0001 0.0731 0.0728 0.0086
θ̂2 0.0005 0.0644 0.0642 0.0269 θ̂2 0.0007 0.0007 0.0007 0.0007 θ̂2 -0.0004 0.0632 0.0629 0.0065
θ̂3 0.0002 0.0882 0.0878 0.0334 θ̂3 -0.0008 -0.0009 -0.0009 -0.0009 θ̂3 -0.0016 0.0860 0.0855 0.0067

n = 50000; γ = −0.5; ρ = 0 n = 50000; γ = 0; ρ = 0 n = 50000; γ = 0.5; ρ = 0
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0002 0.0081 -0.0032 -0.0032 γ̂ -0.0002 -0.0002 -0.0002 -0.0002 γ̂ -0.0001 -0.0084 0.0042 0.0042
θ̂1 -0.0013 0.0118 0.0035 0.0035 θ̂1 -0.0008 -0.0008 -0.0008 -0.0008 θ̂1 -0.0007 0.0124 0.0001 0.0001
θ̂2 0.0008 0.0121 0.0047 0.0047 θ̂2 -0.0006 -0.0006 -0.0006 -0.0006 θ̂2 -0.0020 0.0095 -0.0014 -0.0014
θ̂3 -0.0008 0.0143 0.0031 0.0031 θ̂3 -0.0021 -0.0022 -0.0022 -0.0022 θ̂3 -0.0013 0.0139 -0.0016 -0.0017

n = 50000; γ = −0.5; ρ = 0.5 n = 50000; α = 0; ρ = 0.5 n = 50000; γ = 0.5; ρ = 0.5
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0002 0.0183 0.0119 -0.0013 γ̂ -0.0002 -0.0002 -0.0002 -0.0002 γ̂ -0.0001 -0.0186 -0.0117 0.0033
θ̂1 -0.0013 0.0262 0.0213 0.0118 θ̂1 -0.0008 -0.0008 -0.0008 -0.0008 θ̂1 -0.0007 0.0268 0.0201 0.0049
θ̂2 0.0008 0.0247 0.0204 0.0119 θ̂2 -0.0006 -0.0006 -0.0006 -0.0006 θ̂2 -0.0020 0.0223 0.0164 0.0030
θ̂3 -0.0008 0.0314 0.0248 0.0120 θ̂3 -0.0021 -0.0021 -0.0021 -0.0022 θ̂3 -0.0013 0.0310 0.0226 0.0035

n = 50000; γ = −0.5; ρ = 0.9 n = 50000; γ = 0; ρ = 0.9 n = 50000; γ = 0.5; ρ = 0.9
True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors) True ν ν̂ CS (IID Errors) CS (AR(1) Errors)

γ̂ -0.0002 0.0552 0.0549 -0.0013 γ̂ -0.0002 -0.0001 -0.0001 -0.0001 γ̂ -0.0001 -0.0554 -0.0550 0.0059
θ̂1 -0.0013 0.0725 0.0723 0.0288 θ̂1 -0.0008 -0.0008 -0.0008 -0.0008 θ̂1 -0.0007 0.0731 0.0727 0.0094
θ̂2 0.0008 0.0650 0.0647 0.0263 θ̂2 -0.0006 -0.0006 -0.0006 -0.0006 θ̂2 -0.0020 0.0622 0.0618 0.0064
θ̂3 -0.0008 0.0870 0.0867 0.0309 θ̂3 -0.0021 -0.0021 -0.0021 -0.0022 θ̂3 -0.0013 0.0869 0.0864 0.0084
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Chapter 5

Strategies to Handle a Multivariate
Internal Covariate Process in
Survival Analysis

5.1 Introduction

Chapters 2-4 considered the OAT dispensation indicator as the primary internal covariate
of interest, and omitted other factors pertaining to OAT usage. To better align with the
National Academies of Sciences, Engineering, Medicine (2019) study report, we incorporate
OAT type and dose into our modelling. Since the internal covariate is now multivariate, we
proceed to extend the methodologies developed in Chapters 3 and 4 to the current setting.

This chapter is organized as follows. Section 5.2 presents the notation that will be
utilized, and extend the modelling from the previous chapters to include a multivariate
internal covariate. In particular, we extend the AR(1) specification from (4.2) to a vector
autoregressive process of order 1 (V AR(1)), which accounts for potential correlation between
OAT usage factors. Section 5.3 extends the approaches presented in Sections 3.3 and 4.3.
The extended approaches are applied to analyzing the provincial administrative database
in Section 5.4. A summary and discussion is presented in Section 5.5.

5.2 Notation and Modelling

Let T denote an individual’s survival time (measured in days) since their first recorded OAT
dispensation record, on which the observations are subject to a right-censoring time, denoted
by C. The available information on T is (T ∗, δ), where T ∗ = T ∧C is the minimum between
T and C, and δ = I(T ≤ C). Let Z(t) represent a vector of relevant features pertaining
to an individual’s OAT dispensation at time t ≥ 0, and Z(t) = {Z(u) : 0 ≤ u ≤ t}.
We additionally let X(t) = (X1(t), · · · , Xq(t))′ denote external time-varying covariates and
time-independent characteristics of an individual, and X (t) = {X(u) : 0 ≤ u ≤ t}. Here,
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the covariate Xk(t) is time-independent if Xk(0) ≡ Xk(t), for all t > 0, and k = 1, · · · , q.
Our objective is to estimate the conditional hazard function of T (at time t), given the
processes Z(t) and X (t):

λ(t; Z(t), X (t)) = lim
∆t→0+

1
∆t

P (t ≤ T < t + ∆t|T ≥ t, Z(t), X (t)). (5.1)

In terms of OAT dispensation factors, we let Z(t) = (Z1(t), Z2(t), Z3(t))′, where Z1(t)
denotes an individual’s OAT dispensation indicator at time t, Z2(t) is a (time-varying)
categorical variable pertaining to the OAT type dispensed at time t, and Z3(t) is the dosage
dispensed at time t. Note that the values of Z2(t) and Z3(t) are only relevant if a person is
dispensed OAT at time t. Based on this information, we specify K + 1 OAT dispensation
classes. Thus we can reflect the information in Z(t) with the following categorical variable:

Z∗(t) =



1 if an individual belongs to OAT dispensation class 1 at time t

· · · · · ·

K if an individual belongs to OAT dispensation class K at time t

0 if an individual belongs to OAT dispensation class K + 1 at time t

.

For k = 1, · · · , K, let Z∗
k(t) = I(Z∗(t) = k) denote K dummy variables, where the (K +1)th

category is the reference category in our analyses.

5.2.1 Time-Varying Stratified Cox Regression Modelling

Let W (t) = (Z∗
1 (t), · · · , Z∗

K(t), X(t)′)′ denote all covariates at time t. The most natural
extension of (3.1) is the following generalized Cox regression model for the hazard function
of T : for t > 0,

λ(t; Z(t), X (t)) = λ0(t; Z(t)) exp{θ(Z(t))′W (t)}, (5.2)

where λ0(t; Z(t)) is an arbitrary baseline hazard function, and θ(Z(t)) is a known func-
tion up to finite dimensional parameters with the same dimension as W (t). We again let
g(Z(t)) ∈ {1, 2, · · · , G} denote a stratification variable that is fully determined by an in-
dividual’s dispensation history up to time t > 0, where G < ∞ is known. We assume
λ0(t; Z(t)) = λ0g(t) and θ(Z(t)) = θg = (α′

g, β′)′ when g(Z(t)) = g, where θg is a vector of
regression parameters. Here, αg is a qA-dimensional vector of stratum-specific effects, and
β is a qB-dimensional vector of shared effects across strata. Without loss of generality, we
partition the covariates as W (t) = (W A(t)′, W B(t)′)′, where W A(t) and W B(t) have the
same dimensions as αg and β, respectively. The model in (5.2) then becomes

λ(t; Z(t), X (t)) = λ0g(t) exp{θ′
gW (t)} (5.3)
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when g(Z i(t)) = g. That is, (5.3) is a direct extension to the model (3.2), where we have
now included multiple binary alternating covariates. By fixing G ≡ 1, we can simplify the
model in (5.3) into

λ(t; Z(t), X (t)) = λ0(t) exp{θ′W (t)}, (5.4)

which is similar to the model (3.4), without considering stratification.

5.2.2 Jointly Modelling OAT Dispensation Process and Mortality Risk

To extend our modelling from Chapter 4, let Rik(t) =
∫ t

0 Z∗
ik(u)du/t denote the proportion

of time individual i is in OAT dispensation class k during the study period up to time
t, for k = 1, · · · , K. Letting Rijk = Rik(tij), where {tij : j = 1, · · · , mi} is the set of
chosen discretization observation times, with 0 ≤ ti,mi ≤ T ∗

i . It is natural to extend (4.2)
by modelling each Rijk (k = 1, · · · , K). We consider the transformation Rijk to Yijk =

log(Rijk/(1 −
K∑

k=1
Rijk)) so that Yijk ∈ (−∞, ∞). To account for the correlation between

OAT factors, consider the following longitudinal sub-model

Yij = νi + εij , (5.5)

where Yij = (Yij1, · · · , YijK)′, νi = (νi1, · · · , νiK)′, εij = (εij1, · · · , εijK)′. Motivated by our
previous analysis in Chapter 4, {εij : j = 1, · · · , mi} is assumed to follow a mean zero
V AR(1) process. Specifically,

εij = P ϵi,j−1 + eij ,

where P is the K × K matrix with (k, ℓ) element ρkℓ, and eij = (eij1, · · · , eijK)′ satisfies
with E(eij) = 0, V ar(eij) = Ξ is a diagonal matrix with σ2

k along the main diagonal, and
eij ⊥⊥ εi,j−1. We assume that the V AR(1) process is stable, meaning that the eigenvalues of
P have modulus less than one. We can show that E(ϵijϵ′

i,j−ℓ) = P ℓ, and vec(V ar(ϵij)) =
(IK2×K2 −P ⊗P )−1vec(Ξ), where vec(A) is a vector that stacks the columns of the matrix
A, IP ×P is the P ×P identity matrix, and A⊗B is the kronecker product between matrices
A and B (Lütkepohl 2005).

By summarizing the OAT dispensation process with νi, that is, assuming
Ti ⊥⊥ Z i(∞)|{νi, X i(t)}, we specify model (5.1) into

λ(t; Z i(t), X i(t)) = λ0(t) exp{γ ′νi + θ′Xi(t)} for i = 1, · · · , n, (5.6)

where λ0(t) is an unspecified baseline hazard function, and γ = (γ1, · · · , γK)′ and θ =
(θ1, · · · , θq)′ are unknown regression parameters.
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5.3 Estimation Procedures

For the models presented in Sections 5.2.1 and 5.2.2, we proceed to extend the estimation
procedures developed in Chapters 3 and 4, respectively.

5.3.1 Estimating Equation Under the Time-Varying Stratified Cox Model
(5.3)

As in Chapter 3, let Ni(t) = I(Ti ≤ t), Yi(t) = I(T ∗
i ≥ t), and Θ = (α′

1, · · · , α′
G, β′)′ be all

the regression parameters in model (5.3), with Θ0 denoting the true value of Θ. Under (5.3),
consider the following estimating function for Θ: U(Θ) = (UA

1 (θ1)′, · · · , UA
G (θG)′, UB(Θ)′)′,

where

UA
g (θg) =

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[
W A

i (t) −
EA

g (t, θg)
Eg(t, θg)

]
dNi(t), g = 1, · · · , G,

UB(Θ) =
G∑

g=1

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)
[
W B

i (t) −
EB

g (t, θg)
Eg(t, θg)

]
dNi(t),

Eg(t, θ) =
∑

i:g(Zi(t))=g

Yi(t) exp{θ′Wi(t)},

EA
g (t, θ) =

∑
i:g(Zi(t))=g

Yi(t) exp{θ′Wi(t)}W A
i (t), and

EB
g (t, θ) =

∑
i:g(Zi(t))=g

Yi(t) exp{θ′Wi(t)}W B
i (t).

We can again view U(Θ) as an estimating function for Θ, and by extending the derivation in
Section 3.4.1 we can show that U(Θ0) is centred at zero asymptotically under (5.3), so that
a consistent estimate for Θ is therefore the solution to the equation U(Θ) = 0. Furthermore,
we can extend the derivation in Section 3.4.3 to show that

√
n(Θ̂ − Θ0) converges in distri-

bution to a zero-mean normal random variable, in which the corresponding asymptotic vari-
ance of

√
n(Θ̂ − Θ0) can be consistently estimated with ÂV (Θ̂) = Ψ̂−1(Θ̂)Φ̂(Θ̂)Ψ̂−1(Θ̂),

where Ψ̂(Θ) = − 1
n

∂
∂ΘU(Θ), Φ̂(Θ) = 1

n

n∑
i=1

Ω̂i(Θ)Ω̂i(Θ)′,

Ω̂i(Θ) = (Ω̂A
i1(θ1)′, · · · , Ω̂A

iG(θG)′, Ω̂B
i (Θ)′)′,

Ω̂A
ig(θ) =

∫ ∞

0
Yi(t)I(g(Z i(t)) = g)

[
W A

i (t) −
EA

g (t, θ)
Eg(t, θ)

]
dM̂ig(t, θ),

Ω̂B
i (Θ) =

G∑
g=1

∫ ∞

0
Yi(t)I(g(Z i(t)) = g)

[
W B

i (t) −
EB

g (t, θg)
Eg(t, θg)

]
dM̂ig(t, θg),

M̂ig(t, θ) = Ni(t)I(g(Z i(t)) = g) −
∫ t

0
Yi(u)I(g(Z i(u)) = g) exp{θ′Wi(u)}dΛ̂0g(u),
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and

dΛ̂0g(t; θg) =
∑

i:g(Zi(t))=g

Yi(t)dNi(t)∑
j:g(Zj(t))=g

Yj(t) exp{θ′
gWj(t)} . (5.7)

Here, we take the convention that 0/0 = 0. By replacing the unknown θg with its correspond-
ing estimate, θ̂g = (α̂′

g, β̂′)′, the baseline hazard function is estimated with a Breslow-type
estimator dΛ̂0g(t; θ̂g). We can extend the argument in Section (3.4.4) to show that dΛ̂0g(t; θ̂g)
is a consistent estimator for dΛ0g(t). Moreover, we can adopt the Wald test from Section
3.3.3.

5.3.2 Estimating Parameters in the Joint Model

5.3.2.1 Multivariate Conditional Score Approach

We take the approach from Chapter 4 and estimate νi under (5.5) with

ν̂i = 1
mi

mi∑
j=1

Yij .

Viewing ν̂i as a “noisy measurement” of νi, Song et al. (2002) extended the conditional
score approach of Tsiatis and Davidian (2001) to the settings where multiple longitudinal
covariates are measured with errors. The idea is the same as if that we derive a sufficient
statistic of νi, which depends on either known or estimable quantities. Although Song et
al. (2002) allowed for possible correlation between multiple covariates, they assumed that
successive observations over time are independent. As shown by our data analysis in Chapter
4, this assumption is clearly violated. That motivated us to extend their derivation to allow
for autocorrelated errors.

By letting ni(t) = I(Ti ∈ [t, t + dt)) and Yi(t) = I(T ∗
i ≥ t), and

Σi = Σi(σ, P ) = V ar(ν̂i) = 1
m2

i

miV ar(εij) + 2
mi−1∑
j=1

mi∑
ℓ=j+1

E(εijε′
iℓ)

 ,

the conditional likelihood of {ni(t), ν̂i} given {Yi(t) = 1, νi, X i(t)} can be expressed up to
order dt as

[ni(t), ν̂i|Yi(t) = 1, X i(t), νi]

= exp{Si(t, γ, Σi)′Σ−1
i νi}

(λ0(t) exp{θ′Xi(t)}dt)ni(t)

(2π)k/2 det(Σi)1/2 exp{−ν̂ ′
iΣ−1

i ν̂i/2 − ν ′
iΣ−1

i νi/2},

(5.8)
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where σ = (σ2
1, · · · , σ2

K), Σi depends on i only through mi, and we assume
(i) ni(t)⊥⊥ ν̂i|{Yi(t) = 1, X i(t), νi}, and (ii) ν̂i ⊥⊥{Yi(t) = 1, X i(t)}|νi. The first assumption
is essentially the “nondifferential measurement error mechanism” assumption within the
measurement error literature (Carroll et al. 2006, Yi 2017), and the second assumption
follows from our model specification in (5.5). We recognize (5.8) to be a member of the
exponential family of probability distributions, so that

Si(t) ≡ Si(t, γ, Σi) = ν̂i + ni(t)Σiγ (5.9)

is a sufficient statistic for νi. Following along the arguments presented in Song et al. (2002),
we can show that

λ†(t; Si(t), X i(t)) = lim
∆t→0+

1
∆t

P (ni(t) = 1|Yi(t) = 1, Si(t), X i(t))

= λ0(t) exp{γ ′Si(t) − 1
2γ ′Σiγ + θ′Xi(t)}, (5.10)

where Si(t) = {Si(u) : 0 ≤ u ≤ t}. Since (5.10) involves known or estimable quantities, and
the parameters in (4.6) are the same as in (5.6). This motivates us to base our inference
around (5.10).

5.3.2.2 Estimating Model Parameters

Let Ni(t) = I(Ti ≤ t), Yi(t) = I(T ∗
i ≥ t), and Er(t, γ, θ, σ, P ) =

n∑
j=1

Erj(t, γ, θ, σ, P ) with

Erj(t, γ, θ, σ, P ) = Yj(t) exp{γ ′Sj(t) − 1
2γ ′Σjγ + θ′Xj(t)}(Sj(t)′, Xj(t)′)′⊗r.

For the time being, assume that σ and P are known, so that we can compute the suffi-
cient statistic in (5.9). Under the model in (5.10), the following estimating equations are
(conditionally) unbiased:

n∑
i=1

(Yi(t)dNi(t) − E0i(t, γ, θ, σ, P )dΛ0(t)) = 0 for t > 0 (5.11)

n∑
i=1

∫ ∞

0
(Si(t)′, Xi(t)′)′(Yi(t)dNi(t) − E0i(t, γ, θ, σ, P )dΛ0(t)) = 0, (5.12)

where dΛ0(t) = λ0(t) dt. Solving for dΛ0(t) in (5.11) results in the following Breslow-type
estimator

dΛ̂0(t; γ, θ, σ, P ) =
n∑

i=1

Yi(t)dNi(t)
n∑

j=1
E0j(t, γ, θ, σ, P )

. (5.13)
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Inserting (5.7) in place of dΛ0(t) in (5.12) yields

U1(γ, θ; σ, P ) =
n∑

i=1

∫ ∞

0
Yi(t)

(
(Si(t)′, Xi(t)′)′ − E1(t, γ, θ, σ, P )

E0(t, γ, θ, σ, P )

)
dNi(t)

We propose to estimate (γ ′, θ′)′ with (γ̂ ′, θ̂′)′, which is the solution to U1(γ, θ; σ, P ) = 0.
To estimate dΛ0(t), we can plug-in γ̂ and θ̂ in (5.13).

5.3.2.3 Estimating Additional Parameters

Letting Ey
i = (εi2, · · · , εi,mi), Ex

i = (εi1, · · · , εi,mi−1), and ei = (ei2, · · · , ei,mi), we can
express the V AR(1) model from (5.5) in matrix notation as

Ey
i = P Ex

i + ei,

vec(Ey
i ) = vec(P Ex

i ) + vec(ei)

= ((Ex
i )′ ⊗ IK×K)vec(P ) + vec(ei).

With known Ey
i and Ex

i , we could then estimate vec(P ) with

v̂ec(P ) = argmin
vec(P )

{
n∑

i=1
vec(ei)′vec(ei)

}

=
(

n∑
i=1

{Ex
i (Ex

i )′ ⊗ IK×K}
)−1( n∑

i=1
(Ex

i ⊗ IK×K)vec(Ey
i )
)

.

With Ey
i and Ex

i unknown, we replace them with Êy
i = (ε̂i2, · · · , ε̂i,mi) and Êx

i = (ε̂i1, · · · , ε̂i,mi−1),
where ε̂ij = Yij − ν̂i. Specifically, note that v̂ec(P ) is the solution to U2(P ) = 0, where

U2(P ) =
n∑

i=1
{Êx

i ⊗ IK×K}{((Êx
i )′ ⊗ IK×K)vec(P ) − vec(Êy

i )}.

Furthermore, it is natural to estimate σ under the following model

vec(Ey
i ) = ((Ex

i )′ ⊗ IK2×K2)vec(P ) + vec(ei).

By pooling all of the individuals together, we estimate σ with

σ̂ = 1
|I|

∑
i∈I

1
mi − 1 ê′

ij êij ,
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where I = {i : mi > 1}, and êij = ε̂ij −P̂ ε̂i,j−1. Note that σ̂ is the solution to U3(σ, P ) = 0,
where

U3(σ, P ) =
∑
i∈I

(
σ − 1

mi − 1(ε̂ij − P ε̂i,j−1)′(ε̂ij − P ε̂i,j−1)
)

.

5.3.2.4 Two-Stage Inference Procedure & Variance Estimation

Let U(γ, θ, σ, P ) = (U1(γ, θ, ; σ, P )′, U23(σ, P )′)′ with U23(σ, P ) = (U2(P )′, U3(σ, P )′)′,
where each estimating function as the sum of each individual’s contribution: U1(γ, θ; σ, P ) =
n∑

i=1
Ui1(γ, θ; σ, P ) and U23(σ, P ) =

n∑
i=1

Ui,23(σ, P ). Note that σ̂ and v̂ec(P ) have analytic
forms. We infer all of the parameters with the following two-stage procedure:

Step 1: Under the model Yij = νi + εij , estimate νi with ν̂i =
mi∑
j=1

Yij/mi, and proceed

to estimate vec(P ) and σ with v̂ec(P ) and σ̂, respectively.

Step 2: Estimate γ and θ with the solutions to U1(γ, θ; σ̂, P̂ ) = 0. Also, estimate dΛ0(t)
with dΛ̂0(t; γ̂, θ̂, σ̂, P̂ ).

Letting Ω = (γ ′, θ′)′ and Ω̂ = (γ̂ ′, θ̂′)′ denote the resulting estimate of Ω under our
two-stage inference procedure, it follows that V ar(Ω̂) = Ψ−1ΦΨ−1 (c.f. Chapter 1 of Yi
(2017)), where Ψ = E

(
∂

∂ΩU11(Ω; σ, P )
)

and Φ = E(Q1(Ω, σ, P )Q1(Ω, σ, P )′) with

Qi(Ω, σ, P ) = Ui1(Ω; σ, P ) − E
(

∂

∂(σ, P )′ Ui1(Ω; σ, P )
)[

E
(

∂

∂(σ, P )′ Ui,23(σ, P )
)]−1

Ui,23(σ, P ).

By replacing Ψ and Φ with their empirical means: Ψ̂ = 1
n

n∑
i=1

∂
∂ΩUi1(Ω; σ̂, P̂ )

∣∣∣∣
Ω=Ω̂

and

Φ̂ = 1
n

n∑
i=1

Q̂i(Ω̂, σ̂, P̂ )Q̂i(Ω̂, σ̂, P̂ )′ with

Q̂i(Ω, σ, P ) = Ui1(Ω; σ, P ) −
[

∂

∂(σ, P )′ U1(Ω; σ, P )
] [

∂

∂(σ, P )′ U23(σ, P )
]−1

Ui,23(σ, P ),

we have V̂ ar(Ω̂) = Ψ̂−1Φ̂Ψ̂−1 is consistent for V ar(Ω̂).
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5.4 Analysis of the Provincial OAT Dispensation Records
(III)

We proceed to apply the proposed inference procedures to the provincial OAT dispensation
records. We specify eight OAT dispensation classes, pertaining to OAT type and dosage
levels. In particular, we follow Piske et al. (2021) with the following dose levels for each
OAT type:

Dispensed Low Dose of Methadone: OAT type is methadone and the dose is
≤ 40 mg.

Dispensed Medium Dose of Methadone: OAT type is methadone and the dose
is in (40, 85) mg.

Dispensed High Dose of Methadone: OAT type is methadone and the dose is
≥ 85 mg.

Dispensed Low Dose of Buprenorphine: OAT type is buprenorphine and the
dose is ≤ 6 mg.

Dispensed Medium Dose of Buprenorphine: OAT type is buprenorphine and
the dose is in (6, 16) mg.

Dispensed High Dose of Buprenorphine: OAT type is buprenorphine and the
dose is ≥ 16 mg.

Dispensed Low Dose of Slow Release Oral Morphine: OAT type is slow release
oral morphine and the dose is ≤ 350 mg.

Dispensed Medium Dose of Slow Release Oral Morphine: OAT type is slow
release oral morphine and the dose is in (350, 750) mg.

Dispensed High Dose of Slow Release Oral Morphine: OAT type is slow release
oral morphine and the dose is ≥ 750 mg.

Dispensed Low Dose of Hydromorphone: OAT type is injectable hydromorphone
and the dose is ≤ 70 mg.

Dispensed Medium Dose of Hydromorphone: OAT type is injectable hydro-
morphone and the dose is in (70, 150) mg.

Dispensed High Dose of Hydromorphone: OAT type is injectable hydromor-
phone and the dose is ≥ 150 mg.
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However, due to slow release oral morphine and injectable hydromorphone being unavailable
throughout most of the data extraction window, the amount of information pertaining to
these OAT types is rather limited. This motivated us to specify the following K = 8 OAT
dispensation classes:

(i) Dispensed Low Dose of Methadone

(ii) Dispensed Medium Dose of Methadone

(iii) Dispensed High Dose of Methadone

(iv) Dispensed Low Dose of Buprenorphine

(v) Dispensed Medium Dose of Buprenorphine

(vi) Dispensed High Dose of Buprenorphine

(vii) Dispensed Low Dose of Other OAT Type

(viii) Dispensed Medium or High Dose of Other OAT Type

Here, “Other OAT Type” refers to slow release oral morphine and injectable hydromorphone.

5.4.1 Analysis Under Time-Varying Stratified Cox Regression Modelling
(5.3)

We started our analysis by fitting the extended Cox regression model (5.4) to the observed
data, where aside from the OAT dispensation process variables, we used the same set of
covariates from the analysis in Chapter 3. Table 5.1 displays the corresponding estimates
in both time since first recorded OAT dispensation and age time scales. We see that the
OAT dispensation indicator estimate in Table 3.1 resembles a weighted average of the OAT
dispensation class estimates in Table 5.1, and the other estimates in Table 5.1 are similar
to those in Table 3.1.

We then proceeded to fit a stratified Cox regression model (5.3), where we again stratified
individuals (at time t) according to their OAT episode number. As in Chapter 3, we initially
specified the following G = 9 levels for the stratification variable: (i) 1 OAT episode; (ii)
2-3 OAT episodes; (iii) 4-5 OAT episodes; (iv) 6-7 OAT episodes; (v) 8-10 OAT episodes;
(vi) 11-15 OAT episodes; (vii) 16-20 OAT episodes; (viii) 21-30 OAT episodes; and (ix) 31+
OAT episodes. By using the results from Chapter 3, we specified the OAT dispensation
class variables, the birth generation indicators, and the ever on PharmaCare plans C or G
indicator to have varying effects, and specify the effects for other variables to be constant
across strata. Figures 5.1 and 5.2 displays the estimates of θg for g = 1, · · · , G. We also
estimated the baseline hazard functions with (5.7), and illustrate the LOESS-smoothed
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estimates in the top row in Figure 5.3. The same conclusions apply from interpreting the
top row of Figure 3.6.

We conducted the Wald test, where the results of the eight tests are shown in Tables 5.2
and 5.3. For each test, we displayed the estimates of both αg−1 and αg, the test statistic
Jg in (3.7), and the resulting p-value. The difference from our Chapter 3 analysis comes
from age time scale, where the test reveals the following H = 3 levels for the stratification
variable (i) 1 OAT episode; (ii) 2-10 OAT episodes; (iii) 11+ OAT episodes. The results with
the updated stratification are illustrated in Figures 5.4 and 5.5. We can see the protective
effect of buprenorphine against mortality increases as individuals increase their OAT episode
number. The bottom row of Figure 5.3 illustrates the LOESS-smoothed estimates of the
baseline hazard function estimates (5.7), in which we see the baseline hazard functions do
not overlap, and promotes our model specification of having strata-specific baseline hazard
functions in (5.3).

5.4.2 Joint Modelling of OAT Dispensation (5.5) and Mortality Risk Pro-
cesses (5.6)

We began our analysis by obtaining ν̂i under our model (5.5), for each individual. Due
to the non-methadone OATs being introduced relatively late during the data extraction
period, there is a limited amount of information pertaining to the usage of these OAT
types, as revealed in Tables 5.4-5.8. We proceeded to instead consider K = 4 OAT usage
classes, where we merged all of the non-methadone OAT classes together. Furthermore,
to overcome some computational challenges, we defined Rijk = 1.0 × 10−10 if Rijk = 0
and Rijk = 1 − 1.0 × 10−10 if Rijk = 1. To be consistent with our analysis in Chapter 4,
we again specified the time unit for measurements in (5.5) to be in months. Compared to
the descriptive results in Chapter 4 however, it is less apparent that age is a confounding
variable, and difficult to assess how the OAT classes are associated with mortality risk.

Table 5.9 presents the resulting estimates of γ and θ, where we considered time since first
recorded OAT dispensation and age as time scales. The three sets of estimates correspond
to: (a) estimates obtained by directly replacing νi with ν̂i in (5.6), (b) estimates obtained
from the conditional score approach as described in Section 5.3 with ρkℓ = 0 when k ̸= ℓ,
and (c) estimates obtained from the conditional score approach as described in Section 5.3.
We see that the estimates pertaining to the OAT dispensation process from (b) & (c) varies
from the estimates in (a), which is to be expected. The fact that the estimates in (b) to (c)
is due to the correlation between processes, and based on the results from Chapter 4, we
anticipate the estimates in (b) to underestimate the parameters. The same conclusions apply
to Tables 5.10-5.13, where we stratified individuals according to their birth generation.

Letting ng denote the number of individuals that belong to the gth birth generation
and (γ̂g, θ̂g) denote the estimates from Tables 5.10-5.13 (g = 1, 2, 3, 4), we computed the
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weighted estimates of γ and θ as γ̃ =
4∑

g=1

ng

n γ̂g and θ̃ =
4∑

g=1

ng

n θ̂g. The corresponding

variances of γ̃ and θ̃ are V ar(γ̃) = V ar

(
G∑

g=1

Ng

N γ̂g

)
≈

G∑
g=1

(
Ng

N

)2
V ar(γ̂g) and V ar(θ̃) =

V ar

(
G∑

g=1

Ng

N θ̂g

)
≈

G∑
g=1

(
Ng

N

)2
V ar(θ̂g). Table 5.14 presents γ̃ and θ̃, as well as conditional

score estimates from Table 5.9 as a reference. Since age no longer appears to be a confounder,
the weighted average is similar to the conditional score estimates.

5.5 Discussion

To accommodate additional features present in the OAT dispensation process, we extend the
inference procedures developed in Chapters 3 and 4 to accommodate a multivariate internal
covariate process. Specifically, we introduced a set of dummy variables pertaining to different
combinations of OAT type and dosage levels. By directly estimating their effect on the
hazard function, our time-dependent stratified Cox regression model shows buprenorphine
to have the largest protective effect against mortality. This observation is less obvious when
we jointly model the OAT dispensation and mortality risk processes, but the proposed
extension accommodates for the correlation between the OAT dispensation processes. Using
the results from Chapter 4, omitting this correlation would underestimate the parameters.
Moreover, the results from the conditional score method can be used to provide survival
predictions.

Although our data application pertains to OAT dispensation records, we anticipate our
modelling to have broad applications where the effect of a high-dimensional internal covari-
ate process on mortality risk is of interest. For example, longitudinal metabolomics studies
can in principle adopt both modelling approaches, but the joint modelling approach might
be more appealing in order to accommodate for potential measurement error. Provided
that the researcher can adequately specify Σi in (5.10) and has collected enough data to
estimate it, we anticipate the proposed two-stage inference procedure from Section 5.3.2.4
to be computationally feasible.
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Figure 5.1: Estimates of regression coefficients under the stratified Cox regression model (5.3), where the time scale is time since first recorded
OAT dispensation, and θg = (α′

g, β′)′. Variables with effect αg and β are illustrated and tabulated below, respectively.
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Group 1: 1 OAT Episode

Group 2: 2−3 OAT Episodes

Group 3: 4−5 OAT Episodes

Group 4: 6−7 OAT Episodes

Group 5: 8−10 OAT Episodes

Group 6: 11−15 OAT Episodes

Group 7: 16−20 OAT Episodes

Group 8: 21−30 OAT Episodes

Group 9: 31+ OAT Episodes

Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2314 0.0260
Heath Authority (vs Fraser Health) - -
Interior 0.1611 0.0385
Vancouver Coastal 0.1056 0.0301
Vancouver Island 0.0794 0.0366
Northern 0.0137 0.0680
Year Category (vs. 1996-2000 ) - -
2001-2006 0.0635 0.0337
2007-2012 0.1270 0.0386
2013-2018 0.4784 0.0505
Alcohol or Other Substance Use Disorders 0.4320 0.0448
Ill Mental Health or Chronic pain -0.1893 0.0428
Hepatitis C Virus or HIV/AIDS 1.1690 0.0273
Ever Received a Sedative 0.4783 0.0335
Incarceration Status -1.6111 0.1729
Number of Incarcerations 0.0022 0.0030
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Figure 5.2: Estimates of regression coefficients under the stratified Cox regression model (5.3), where the time scale is age, and θg = (α′
g, β′)′.

Variables with effect αg and β are illustrated and tabulated below, respectively.
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Group 5: 8−10 OAT Episodes

Group 6: 11−15 OAT Episodes

Group 7: 16−20 OAT Episodes

Group 8: 21−30 OAT Episodes

Group 9: 31+ OAT Episodes

Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2053 0.0261
Heath Authority (vs Fraser Health) - -
Interior 0.1342 0.0389
Vancouver Coastal 0.0943 0.0301
Vancouver Island 0.0550 0.0367
Northern 0.0133 0.0680
Year Category (vs. 1996-2000 ) - -
2001-2006 -0.0399 0.0319
2007-2012 -0.0569 0.0369
2013-2018 0.3749 0.0466
Alcohol or Other Substance Use Disorders 0.4779 0.0461
Ill Mental Health or Chronic pain -0.3208 0.0425
Hepatitis C Virus or HIV/AIDS 1.1195 0.0273
Ever Received a Sedative 0.4537 0.0336
Incarceration Status -1.5239 0.1744
Number of Incarcerations 0.0043 0.0030
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Figure 5.3: Smoothed estimates of λ0g(·), where we stratify by the OAT episode number at time t, where the time scale is time since first recorded
OAT dispensation and age.
Top Row: Estimates prior to the Wald test.
Bottom Row: Estimates following the Wald test.
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Figure 5.4: Estimates of regression coefficients under the stratified Cox regression model (5.3) following the Wald test, where the time scale is time
since first recorded OAT dispensation, and θg = (α′

g, β′)′. Variables with effect αg and β are illustrated and tabulated below, respectively.
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Group 8: 21−30 OAT Episodes

Group 9: 31+ OAT Episodes

Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2311 0.0262
Heath Authority (vs Fraser Health) - -
Interior 0.1592 0.0387
Vancouver Coastal 0.1057 0.0302
Vancouver Island 0.0776 0.0362
Northern 0.0094 0.0676
Year Category (vs. 1996-2000 ) - -
2001-2006 0.0706 0.0330
2007-2012 0.1393 0.0392
2013-2018 0.4923 0.0497
Alcohol or Other Substance Use Disorders 0.4457 0.0423
Ill Mental Health or Chronic pain -0.1910 0.0431
Hepatitis C Virus or HIV/AIDS 1.1741 0.0273
Ever Received a Sedative 0.4784 0.0333
Incarceration Status -1.6067 0.1787
Number of Incarcerations 0.0031 0.0029
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Figure 5.5: Estimates of regression coefficients under the stratified Cox regression model (5.3) following the Wald test, where the time scale is age,
and θg = (α′

g, β′)′. Variables with effect αg and β are illustrated and tabulated below, respectively.
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Estimate Under 
 Cox−PH Model

Group 1: 1 OAT Episode

Group 2: 2−3 OAT Episodes

Group 3: 4−5 OAT Episodes

Group 4: 6−7 OAT Episodes

Group 5: 8−10 OAT Episodes

Group 6: 11−15 OAT Episodes

Group 7: 16−20 OAT Episodes

Group 8: 21−30 OAT Episodes

Group 9: 31+ OAT Episodes

Covariate Name Estimate S.E.
Sex (vs. Female) - -
Male 0.2071 0.0264
Heath Authority (vs Fraser Health) - -
Interior 0.1312 0.0389
Vancouver Coastal 0.1014 0.0302
Vancouver Island 0.0526 0.0363
Northern 0.0080 0.0677
Year Category (vs. 1996-2000 ) - -
2001-2006 -0.0379 0.0316
2007-2012 -0.0464 0.0367
2013-2018 0.3822 0.0452
Alcohol or Other Substance Use Disorders 0.4838 0.0436
Ill Mental Health or Chronic pain -0.3195 0.0429
Hepatitis C Virus or HIV/AIDS 1.1131 0.0273
Ever Received a Sedative 0.4513 0.0332
Incarceration Status -1.5132 0.1782
Number of Incarcerations 0.0036 0.0029
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Table 5.1: Estimates of regression coefficients under the Cox regression model (5.4). The reported standard-error (S.E.) estimates of Θ̂ correspond
to the square-root of the diagonal elements of ÂV (Θ̂). The bolded estimates are statistically significant with the type 1 error rate set at α∗ = 5%.

Time Scale Time Since First Observed
OAT Dispensation Age

Covariate Name Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone -0.5859 0.0448 -0.5079 0.0442
Dispensed Medium Dose of Methadone -1.1450 0.0430 -1.0689 0.0428
Dispensed High Dose of Methadone -1.1072 0.0375 -1.0971 0.0375
Dispensed Low Dose of Buprenorphine -1.5628 0.2369 -1.5126 0.2367
Dispensed Medium Dose of Buprenorphine -1.4500 0.1843 -1.3492 0.1839
Dispensed High Dose of Buprenorphine -1.2459 0.1663 -1.1953 0.1661
Dispensed Low Dose of Other OAT Type -0.2703 0.2685 -0.2928 0.2685
Dispensed Medium or High Dose of Other OAT Type -1.3395 0.4091 -1.3991 0.4090
Sex (vs. Female) - - - -
Male 0.2242 0.0261 0.2058 0.0263
Birth Generation (vs Greatest & Silent Generations) - - - -
Baby Boomers -1.3159 0.0444 -0.6610 0.0663
Generation X -2.1358 0.0478 -0.9975 0.0813
Millennials & Generation Z -2.2016 0.0591 -0.6531 0.1067
Heath Authority (vs Fraser Health) - - - -
Interior 0.1517 0.0387 0.1251 0.0388
Vancouver Coastal 0.1031 0.0302 0.0980 0.0302
Vancouver Island 0.0726 0.0362 0.0524 0.0362
Northern 0.0040 0.0677 0.0047 0.0677
Year Category (vs. 1996-2000 ) - - - -
2001-2006 0.0701 0.0330 -0.0451 0.0314
2007-2012 0.1452 0.0392 -0.0584 0.0361
2013-2018 0.4863 0.0497 0.3506 0.0439
Alcohol or Other Substance Use Disorders 0.4491 0.0424 0.4857 0.0434
Ill Mental Health or Chronic pain -0.1903 0.0431 -0.3239 0.0428
Hepatitis C Virus or HIV/AIDS 1.1764 0.0273 1.1141 0.0272
Ever Received a Sedative 0.4788 0.0332 0.4542 0.0332
Ever on PharmaCare Plans C or G 0.0339 0.0299 0.0808 0.0305
Incarceration Status -1.6159 0.1783 -1.5226 0.1784
Number of Incarcerations 0.0064 0.0028 0.0049 0.0028
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Table 5.2: Results of the Wald test when we stratify by the number of OAT episode by time t, where the time scale is time since first recorded OAT
dispensation, and we applied a Bonferonni correction so that the type 1 error rate is α∗ = 0.05/(G − 1). For each test, the estimates on the left- and
right-hand side correspond to α̂g−1 and α̂g and their estimated standard errors, respectively. Bolded test statistic(s) and p-value(s) indicate tests
that rejected the null hypothesis in (3.6).

Test 1: Group 1 vs. Group 2 Test 2: Groups 1,2 vs. Group 3 Test 3: Group 3 vs. Group 4
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone -0.4779 0.0863 -0.6797 0.0901 -0.5536 0.0626 -0.6824 0.1192 -0.6824 0.1192 -0.7460 0.1479
Dispensed Medium Dose of Methadone -1.1641 0.0812 -1.0130 0.0787 -1.0816 0.0563 -1.1356 0.1139 -1.1356 0.1139 -1.2521 0.1493
Dispensed High Dose of Methadone -0.8638 0.0671 -0.9337 0.0666 -0.8962 0.0472 -1.4256 0.1091 -1.4256 0.1091 -1.4347 0.1356
Dispensed Low Dose of Buprenorphine -1.7198 0.4332 -1.7925 0.5072 -1.7275 0.3390 -1.8113 0.7088 -1.8113 0.7088 -0.8417 0.5032
Dispensed Medium Dose of Buprenorphine -2.6802 0.5578 -1.4153 0.3618 -1.9252 0.3020 -1.7239 0.5799 -1.7239 0.5799 -1.0398 0.5037
Dispensed High Dose of Buprenorphine -1.9022 0.3689 -1.7586 0.4190 -1.8258 0.2799 -0.6109 0.3372 -0.6109 0.3372 -0.9263 0.5038
Dispensed Low Dose of Other OAT Type -0.4309 0.7054 0.0074 0.5844 -0.1560 0.4515 NA NA NA NA NA NA
Dispensed Medium or High Dose of Other OAT Type 0.1548 0.9845 -1.2073 0.9963 -0.6926 0.7068 NA NA NA NA -1.3620 1.0029
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -1.3271 0.0656 -1.3965 0.0848 -1.3445 0.0506 -1.1991 0.1398 -1.1991 0.1398 -1.0932 0.2156
Generation X -2.3379 0.0756 -2.2553 0.0911 -2.2698 0.0570 -1.9530 0.1454 -1.9530 0.1454 -1.6091 0.2188
Millennials & Generation Z -2.3283 0.0879 -2.3130 0.1074 -2.2918 0.0692 -2.0368 0.1693 -2.0368 0.1693 -1.7605 0.2490
Ever on PharmaCare Plans C or G -0.1376 0.0469 -0.0117 0.0546 -0.0709 0.0358 0.1425 0.0863 0.1425 0.0863 0.1960 0.1182
Test Statistic 17.4119 40.6295 7.8344
p-value 0.1347 < 0.0001 0.6450

Test 4: Groups 3,4 vs. Group 5 Test 5: Groups 3,4,5 vs. Group 6 Test 6: Groups 3,4,5,6 vs. Group 7
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone -0.7087 0.0930 -0.9746 0.1781 -0.7773 0.0844 -0.5304 0.1524 -0.7239 0.0702 -0.1304 0.2125
Dispensed Medium Dose of Methadone -1.1816 0.0909 -1.2765 0.1582 -1.2061 0.0791 -1.3904 0.1756 -1.2411 0.0734 -1.3885 0.2939
Dispensed High Dose of Methadone -1.4282 0.0850 -1.3365 0.1434 -1.4138 0.0718 -1.3768 0.1567 -1.4120 0.0656 -1.4779 0.2772
Dispensed Low Dose of Buprenorphine -1.2636 0.4166 -1.2926 0.7102 -1.2775 0.3546 -1.7810 1.0023 -1.3470 0.3294 NA NA
Dispensed Medium Dose of Buprenorphine -1.3923 0.3773 -0.7980 0.4517 -1.1828 0.2784 -1.5154 0.7102 -1.2432 0.2710 -0.5264 0.7162
Dispensed High Dose of Buprenorphine -0.7110 0.2867 -1.4975 0.7101 -0.8659 0.2609 -0.5640 0.5046 -0.8096 0.2254 -0.4340 0.7162
Dispensed Low Dose of Other OAT Type NA NA -1.0814 1.0050 -2.0775 1.1092 0.3639 0.5069 -0.7600 0.4672 0.7113 0.7188
Dispensed Medium or High Dose of Other OAT Type -2.0191 0.9891 NA NA -2.4051 0.8442 -1.2677 1.0032 -1.9837 0.7132 -0.7159 1.0111
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -1.1678 0.1186 -0.9684 0.2285 -1.1233 0.1055 -1.3289 0.2510 -1.1472 0.0940 -0.4608 0.5950
Generation X -1.8274 0.1219 -1.9259 0.2353 -1.8539 0.1093 -2.0737 0.2538 -1.8740 0.0969 -0.9758 0.5914
Millennials & Generation Z -1.9400 0.1413 -1.8512 0.2665 -1.9206 0.1258 -2.1422 0.2878 -1.9381 0.1131 -2.0039 0.6720
Ever on PharmaCare Plans C or G 0.1624 0.0700 0.2976 0.1388 0.1968 0.0632 0.5383 0.1634 0.2483 0.0599 0.0040 0.2338
Test Statistic 11.7750 12.7953 22.2579
p-value 0.3004 0.3841 0.0224

Test 7: Groups 3,4,5,6,7 vs. Group 8 Test 8: Groups 3,4,5,6,7,8 vs. Group 9
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone -0.6720 0.0630 -0.6410 0.2768 -0.6674 0.0647 -0.4513 0.3427
Dispensed Medium Dose of Methadone -1.2497 0.0723 -1.8284 0.3703 -1.2749 0.0672 -0.9407 0.3185
Dispensed High Dose of Methadone -1.4142 0.0659 -1.7767 0.3342 -1.4293 0.0644 -1.0890 0.3120
Dispensed Low Dose of Buprenorphine -1.3862 0.3348 NA NA -1.4325 0.3197 NA NA
Dispensed Medium Dose of Buprenorphine -1.1765 0.2315 -0.9104 1.0071 -1.1709 0.2299 0.7520 0.7257
Dispensed High Dose of Buprenorphine -0.7795 0.2095 NA NA -0.8384 0.2110 0.9031 0.5989
Dispensed Low Dose of Other OAT Type -0.5221 0.4079 -0.2193 1.0121 -0.4972 0.3338 0.2365 1.0181
Dispensed Medium or High Dose of Other OAT Type -1.7362 0.5412 -0.9864 1.0125 -1.5807 0.5008 NA NA
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers -1.1266 0.0943 -1.7527 0.4543 -1.1396 0.0947 -1.6993 0.7399
Generation X -1.8382 0.0961 -2.6970 0.4608 -1.8653 0.0980 -2.3245 0.7403
Millennials & Generation Z -1.9545 0.1105 -2.5740 0.5303 -1.9697 0.1148 -2.6947 0.9326
Ever on PharmaCare Plans C or G 0.2334 0.0552 -0.2525 0.2469 0.2133 0.0527 -0.1840 0.2807
Test Statistic 14.3567 16.4283
p-value 0.1573 0.0880
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Table 5.3: Results of the Wald test when we stratify by the number of OAT episode by time t, where the time scale is time since first recorded OAT
dispensation, and we applied a Bonferonni correction so that the type 1 error rate is α∗ = 0.05/(G − 1). For each test, the estimates on the left- and
right-hand side correspond to α̂g−1 and α̂g and their estimated standard errors, respectively. Bolded test statistic(s) and p-value(s) indicate tests
that rejected the null hypothesis in (3.6).

Test 1: Group 1 vs. Group 2 Test 2: Group 2 vs. Group 3 Test 3: Groups 2,3 vs. Group 4
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone -0.1279 0.0815 -0.6475 0.0902 -0.6475 0.0902 -0.6696 0.1195 -0.6578 0.0717 -0.7569 0.1483
Dispensed Medium Dose of Methadone -0.9182 0.0796 -0.9749 0.0787 -0.9749 0.0787 -1.1214 0.1141 -1.0258 0.0649 -1.2633 0.1508
Dispensed High Dose of Methadone -0.8255 0.0670 -0.9418 0.0664 -0.9418 0.0664 -1.4254 0.1100 -1.0917 0.0582 -1.4199 0.1353
Dispensed Low Dose of Buprenorphine -1.3866 0.4489 -1.7198 0.5107 -1.7198 0.5107 -1.7953 0.7167 -1.7679 0.4057 -0.8944 0.5040
Dispensed Medium Dose of Buprenorphine -2.2552 0.5842 -1.3723 0.3642 -1.3723 0.3642 -1.7385 0.5957 -1.5021 0.3097 -1.1575 0.5045
Dispensed High Dose of Buprenorphine -1.5775 0.3859 -1.7891 0.4210 -1.7891 0.4210 -0.6661 0.3489 -1.2819 0.2518 -1.0530 0.5052
Dispensed Low Dose of Other OAT Type -0.0843 0.7377 -0.0241 0.5924 -0.0241 0.5924 NA NA -0.7329 0.6337 NA NA
Dispensed Medium or High Dose of Other OAT Type 0.3570 1.0313 -1.3792 1.0090 -1.3792 1.0090 NA NA -2.0498 0.8503 -1.4200 1.0046
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -0.7368 0.1010 -0.8996 0.1192 -0.8996 0.1192 -0.6163 0.2105 -0.8316 0.1047 0.0385 0.3482
Generation X -1.2983 0.1320 -1.2320 0.1457 -1.2320 0.1457 -0.8272 0.2410 -1.1262 0.1256 0.0470 0.3798
Millennials & Generation Z -0.9375 0.1761 -0.7921 0.1873 -0.7921 0.1873 -0.3980 0.2871 -0.6904 0.1590 0.1833 0.4251
Ever on PharmaCare Plans C or G -0.1039 0.0483 0.0230 0.0553 0.0230 0.0553 0.2019 0.0878 0.0778 0.0472 0.3344 0.1231
Test Statistic 29.5934 23.7381 24.0573
p-value 0.0032 0.0083 0.0125

Test 4: Groups 2,3,4 vs. Group 5 Test 5: Groups 2,3,4,5 vs. Group 6 Test 6: Group 6 vs. Group 7
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone -0.6747 0.0651 -0.9791 0.1796 -0.7143 0.0621 -0.5677 0.1536 -0.5677 0.1536 -0.1310 0.2131
Dispensed Medium Dose of Methadone -1.0581 0.0610 -1.2428 0.1585 -1.0808 0.0564 -1.4414 0.1758 -1.4414 0.1758 -1.3645 0.2943
Dispensed High Dose of Methadone -1.1435 0.0535 -1.3096 0.1429 -1.1658 0.0494 -1.3848 0.1561 -1.3848 0.1561 -1.4557 0.2769
Dispensed Low Dose of Buprenorphine -1.5086 0.3098 -1.3465 0.7113 -1.4769 0.2818 -1.7786 1.0045 -1.7786 1.0045 NA NA
Dispensed Medium Dose of Buprenorphine -1.4086 0.2512 -0.7608 0.4538 -1.2867 0.2213 -1.6758 0.7304 -1.6758 0.7304 -0.4823 0.7170
Dispensed High Dose of Buprenorphine -1.2232 0.2224 -1.9015 0.7498 -1.2694 0.2157 -0.7543 0.5059 -0.7543 0.5059 -0.5607 0.7180
Dispensed Low Dose of Other OAT Type -1.0516 0.5891 -1.1402 1.0059 -1.0441 0.5054 0.3723 0.5099 0.3723 0.5099 0.5560 0.7325
Dispensed Medium or High Dose of Other OAT Type -1.7674 0.6798 NA NA -2.0183 0.7241 -1.3440 1.0053 -1.3440 1.0053 -0.5636 1.0121
Birth Generation (vs Greatest & Silent Generations) - - - - - - - - - - - -
Baby Boomers -0.7456 0.0976 0.0547 0.3390 -0.6680 0.0959 0.0692 0.4166 0.0692 0.4166 -0.5139 0.6995
Generation X -0.9844 0.1143 -0.5465 0.3786 -0.9488 0.1116 -0.0765 0.4568 -0.0765 0.4568 -0.5902 0.7471
Millennials & Generation Z -0.5954 0.1433 -0.1432 0.4435 -0.5572 0.1390 -0.1248 0.5071 -0.1248 0.5071 -1.4126 0.8556
Ever on PharmaCare Plans C or G 0.1152 0.0447 0.3947 0.1414 0.1456 0.0430 0.7551 0.1712 0.7551 0.1712 0.0343 0.2321
Test Statistic 19.4901 30.2368 13.6488
p-value 0.0528 0.0026 0.2530

Test 7: Groups 6,7 vs. Group 8 Test 8: Groups 6,7,8 vs. Group 9
Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone -0.4188 0.1212 -0.6328 0.2828 -0.4460 0.1153 -0.3863 0.3448
Dispensed Medium Dose of Methadone -1.4044 0.1514 -1.8659 0.3751 -1.4929 0.1395 -1.0012 0.3320
Dispensed High Dose of Methadone -1.4008 0.1379 -1.7295 0.3342 -1.4608 0.1303 -1.0773 0.3133
Dispensed Low Dose of Buprenorphine -2.0370 1.0136 NA NA -2.2816 0.9830 NA NA
Dispensed Medium Dose of Buprenorphine -1.1988 0.4857 -1.0722 1.0113 -1.1846 0.4347 0.5434 0.7318
Dispensed High Dose of Buprenorphine -0.6982 0.4108 NA NA -0.8868 0.3818 0.7163 0.6109
Dispensed Low Dose of Other OAT Type 0.4286 0.4160 -0.0565 1.0252 0.2809 0.3997 0.2700 1.0242
Dispensed Medium or High Dose of Other OAT Type -1.3482 0.7472 -0.6312 1.0134 -1.1894 0.5509 NA NA
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers 0.0161 0.3407 -1.3881 1.0502 -0.1122 0.3350 NA NA
Generation X -0.1010 0.3743 -1.7803 1.0914 -0.2831 0.3689 NA NA
Millennials & Generation Z -0.3224 0.4229 -1.2869 1.1937 -0.4004 0.4147 NA NA
Ever on PharmaCare Plans C or G 0.5295 0.1315 -0.1575 0.2442 0.4021 0.1122 0.1527 0.2942
Test Statistic 13.7540 10.8011
p-value 0.1845 0.1475
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Table 5.4: Summary statistics of ν̂ for all individuals.
Abbreviations:

S.D.: Sample standard deviation.

Methadone: Low Methadone: Medium Methadone: High
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -13.1900 -8.1302 -12.2352 1st Quartile -23.0259 -6.4733 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -2.6456 -2.6359 -2.6439 Median -2.7015 -0.7465 -2.3253 Median -23.0259 -11.9474 -21.4880
3rd Quartile -0.2898 -0.2251 -0.2808 3rd Quartile 0.5725 1.9642 0.7697 3rd Quartile -2.3585 -0.7344 -2.1096
Mean -6.3726 -5.5573 -6.2646 Mean -7.8501 -4.1490 -7.3598 Mean -13.4739 -11.3988 -13.1990
S.D. 10.1611 9.4681 10.0757 S.D. 11.4674 10.6042 11.4258 S.D. 11.0445 11.5089 11.1293
N 44,227 6,754 50,981 N 44,227 6,754 50,981 N 44,227 6,754 50,981

Buprenorphine: Low Dose Buprenorphine: Medium Dose Buprenorphine: Medium Dose
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -13.9601 -23.0259 -17.1870 3rd Quartile -23.0259 -23.0259 -23.0259
Mean -19.2809 -21.9246 -19.6311 Mean -17.3070 -21.5129 -17.8642 Mean -19.5458 -22.2000 -19.8974
S.D. 7.9108 4.4828 7.5997 S.D. 9.7487 5.3307 9.3938 S.D. 8.1749 4.0953 7.8106
N 44,227 6,754 50,981 N 44,227 6,754 50,981 N 44,227 6,754 50,981

Other OAT Types: Low Dose Non-Methadone
Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -4.7037 -23.0259 -7.0567
Mean -22.8057 -22.9820 -22.8290 Mean -15.4648 -20.9387 -16.1900
S.D. 1.8438 0.8258 1.7445 S.D. 10.8276 6.2716 10.5052
N 44,227 6,754 50,981 N 44,227 6,754 50,981
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Table 5.5: Summary statistics of ν̂ for individuals born between 1901-1945.
Abbreviations:

S.D.: Sample standard deviation.

Methadone: Low Methadone: Medium Methadone: High
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -4.0921 -3.4138 -3.6518 Median -23.0259 -2.0692 -8.3101 Median -23.0259 -23.0259 -23.0259
3rd Quartile -0.6917 < 0.0001 -0.2906 3rd Quartile -2.1526 3.2269 1.7492 3rd Quartile -23.0259 -3.4852 -6.1631
Mean -9.0202 -7.3077 -8.0205 Mean -14.5360 -6.8765 -10.0648 Mean -18.1257 -14.1370 -15.7973
S.D. 11.6014 11.8782 11.7883 S.D. 11.6678 13.5637 13.3483 S.D. 9.5471 11.6699 11.0091
N 420 589 1,009 N 420 589 1,009 N 420 589 1,009

Buprenorphine: Low Dose Buprenorphine: Medium Dose Buprenorphine: Medium Dose
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -23.0259 -23.0259 -23.0259
Mean -18.6140 -22.5730 -20.9251 Mean -19.9792 -22.6067 -21.5130 Mean -21.0623 -22.6925 -22.0139
S.D. 9.1697 3.1057 6.6626 S.D. 8.2743 2.9560 5.9359 S.D. 6.8538 2.8701 4.9978
N 420 589 1,009 N 420 589 1,009 N 420 589 1,009

Other OAT Types: Low Dose Non-Methadone
Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -5.6688 -23.0259 -23.0259
Mean -22.6470 -23.0259 -22.8681 Mean -16.5394 -22.2522 -19.8742
S.D. 2.9319 < 0.0001 1.8995 S.D. 11.0719 4.2089 8.3203
N 420 589 1,009 N 420 589 1,009

130



Table 5.6: Summary statistics of ν̂ for individuals born between 1946-1964.
Abbreviations:

S.D.: Sample standard deviation.

Methadone: Low Methadone: Medium Methadone: High
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -12.0065 -10.9269 -11.5050 1st Quartile -23.0259 -2.8832 -10.4448 1st Quartile -23.0259 -23.0259 -23.0259
Median -2.8033 -2.8027 -2.8033 Median -1.3032 0.2598 -0.8427 Median -12.2703 -6.2756 -10.1425
3rd Quartile -0.1337 -0.0312 -0.0977 3rd Quartile 1.5464 2.9144 1.9642 3rd Quartile -0.6584 0.5643 -0.3281
Mean -6.1864 -5.8754 -6.1019 Mean -5.7265 -1.9727 -4.7069 Mean -11.4929 -9.4699 -10.9434
S.D. 10.2567 9.8046 10.1365 S.D. 11.3023 9.7239 11.0231 S.D. 11.6287 11.6631 11.6723
N 9,311 3,472 12,783 N 9,311 3,472 12,783 N 9,311 3,472 12,783

Buprenorphine: Low Dose Buprenorphine: Medium Dose Buprenorphine: Medium Dose
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -23.0259 -23.0259 -23.0259
Mean -20.8109 -22.6606 -21.3133 Mean -20.1921 -22.4929 -20.8170 Mean -21.1738 -22.7343 -21.5976
S.D. 6.5601 2.5857 5.8170 S.D. 7.5471 3.2098 6.7329 S.D. 6.3964 2.5095 5.6561
N 9,311 3,472 12,783 N 9,311 3,472 12,783 N 9,311 3,472 12,783

Other OAT Types: Low Dose Non-Methadone
Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -21.7579 -23.0259 -23.0259
Mean -22.7282 -22.9808 -22.7968 Mean -18.6578 -22.2504 -19.6336
S.D. 2.4107 0.9404 2.1180 S.D. 9.2056 3.8913 8.2698
N 9,311 3,472 12,783 N 9,311 3,472 12,783
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Table 5.7: Summary statistics of ν̂ for individuals born between 1965-1980.
Abbreviations:

S.D.: Sample standard deviation.

Methadone: Low Methadone: Medium Methadone: High
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -5.7789 -4.6060 -5.5760 1st Quartile -20.4573 -5.3104 -17.9748 1st Quartile -23.0259 -23.0259 -23.0259
Median -2.2889 -2.2990 -2.2924 Median -1.8698 -1.2757 -1.7886 Median -14.8418 -11.7609 -14.4446
3rd Quartile -0.2379 -0.3145 -0.2452 3rd Quartile 0.6603 0.7697 0.6761 3rd Quartile -1.5745 -1.5055 -1.5668
Mean -5.2472 -4.0890 -5.1320 Mean -6.3717 -4.5557 -6.1910 Mean -12.2738 -11.8100 -12.2277
S.D. 9.3465 7.7190 9.2038 S.D. 10.7596 9.4156 10.6472 S.D. 11.0532 10.8494 11.0337
N 17,659 1,951 19,610 N 17,659 1,951 19,610 N 17,659 1,951 19,610

Buprenorphine: Low Dose Buprenorphine: Medium Dose Buprenorphine: Medium Dose
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -20.4650 -23.0259 -21.3859 3rd Quartile -23.0259 -23.0259 -23.0259
Mean -20.3045 -21.7602 -20.4493 Mean -18.7638 -21.2956 -19.0157 Mean -20.3359 -22.0126 -20.5027
S.D. 6.8387 4.7161 6.6720 S.D. 8.6517 5.6256 8.4336 S.D. 7.3471 4.5482 7.1357
N 17,659 1,951 19,610 N 17,659 1,951 19,610 N 17,659 1,951 19,610

Other OAT Types: Low Dose Non-Methadone
Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -15.4539 -23.0259 -16.7728
Mean -22.8215 -22.9799 -22.8373 Mean -17.3053 -20.6613 -17.6392
S.D. 1.7069 0.7512 1.6376 S.D. 9.8146 6.5483 9.5925
N 17,659 1,951 19,610 N 17,659 1,951 19,610
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Table 5.8: Summary statistics of ν̂ for individuals born after 1980.
Abbreviations:

S.D.: Sample standard deviation.

Methadone: Low Methadone: Medium Methadone: High
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -10.4705 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -3.0010 -2.8117 -2.9907 Median -8.1542 -8.8909 -8.1720 Median -23.0259 -23.0259 -23.0259
3rd Quartile -0.4347 -0.7971 -0.4487 3rd Quartile -0.2645 -0.7264 -0.2836 3rd Quartile -6.1038 -12.0887 -6.2314
Mean -7.5899 -6.5398 -7.5455 Mean -10.4082 -11.0982 -10.4373 Mean -15.7119 -17.1699 -15.7735
S.D. 10.7271 9.4001 10.6763 S.D. 11.7278 11.2117 11.7070 S.D. 10.2964 9.7427 10.2775
N 16,837 742 17,579 N 16,837 742 17,579 N 16,837 742 17,579

Buprenorphine: Low Dose Buprenorphine: Medium Dose Buprenorphine: Medium Dose
Survivors Non-Survivors Total Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259 Median -23.0259 -23.0259 -23.0259
3rd Quartile -11.3718 -17.0240 -11.5626 3rd Quartile -3.2324 -8.1029 -3.3266 3rd Quartile -16.6664 -23.0259 -17.0766
Mean -17.3777 -18.3990 -17.4208 Mean -14.1170 -16.6308 -14.2231 Mean -17.7790 -19.8019 -17.8643
S.D. 9.1337 8.3810 9.1053 S.D. 10.9891 9.5421 10.9433 S.D. 9.4785 7.4153 9.4092
N 16,837 742 17,579 N 16,837 742 17,579 N 16,837 742 17,579

Other OAT Types: Low Dose Non-Methadone
Survivors Non-Survivors Total Survivors Non-Survivors Total

1st Quartile -23.0259 -23.0259 -23.0259 1st Quartile -23.0259 -23.0259 -23.0259
Median -23.0259 -23.0259 -23.0259 Median -14.7063 -23.0259 -15.0702
3rd Quartile -23.0259 -23.0259 -23.0259 3rd Quartile -1.4259 -3.6129 -1.5064
Mean -22.8358 -22.9587 -22.8410 Mean -11.7419 -14.4871 -11.8577
S.D. 1.5628 0.7647 1.5377 S.D. 11.5735 10.4550 11.5414
N 16,837 742 17,579 N 16,837 742 17,579
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Table 5.9: Estimates of regression coefficients where the time unit is months, under (a) the Cox model that directly replaces νi with ν̂i, (b) the
conditional score method with K (univariate) AR(1) models are specified for the error term in (5.5), and (c) the conditional score method upon
fitting a V AR(1) model for the errors in (5.5); for all subjects. The bolded estimates are statistically significant with the type 1 error rate set at
5%.

Time Since First Recorded OAT Dispensation

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0198 0.0017 -0.0231 0.0019 -0.0248 0.0020
Dispensed Medium Dose of Methadone Rate 0.0013 0.0017 0.0016 0.0019 0.0017 0.0020
Dispensed High Dose of Methadone Rate -0.0214 0.0013 -0.0247 0.0014 -0.0269 0.0016
Dispensed Other OAT Rate -0.0335 0.0028 -0.0390 0.0031 -0.0422 0.0033
Incarceration FPCS 0.0289 0.0070 0.0289 0.0070 0.0289 0.0070
Sex (vs. Female) - - - - - -
Male 0.2130 0.0265 0.2131 0.0265 0.2131 0.0265
Birth Generation (vs Greatest & Silent Generations) - - - - - -
Baby Boomers -1.1951 0.0462 -1.1943 0.0462 -1.1946 0.0462
Generation X -1.9226 0.0496 -1.9213 0.0496 -1.9219 0.0496
Millennials & Generation Z -1.9581 0.0616 -1.9562 0.0616 -1.9571 0.0616
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.2275 0.0398 0.2277 0.0398 0.2277 0.0398
Vancouver Coastal 0.1167 0.0307 0.1169 0.0307 0.1168 0.0307
Vancouver Island 0.1189 0.0368 0.1191 0.0368 0.1191 0.0368
Northern 0.0138 0.0693 0.0135 0.0693 0.0137 0.0693
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.1781 0.0344 0.1791 0.0344 0.1784 0.0344
2007-2012 0.3272 0.0412 0.3288 0.0412 0.3278 0.0412
2013-2018 0.7807 0.0552 0.7832 0.0553 0.7820 0.0552
Alcohol or Other Substance Use Disorders 0.5341 0.0453 0.5348 0.0453 0.5346 0.0453
Ill Mental Health or Chronic pain -0.1579 0.0448 -0.1574 0.0448 -0.1576 0.0448
Hepatitis C Virus or HIV/AIDS 1.1902 0.0276 1.1903 0.0276 1.1903 0.0276
Ever Received a Sedative 0.5123 0.0335 0.5125 0.0335 0.5125 0.0335
Ever on PharmaCare Plans C or G -0.0410 0.0313 -0.0406 0.0313 -0.0406 0.0313

Age

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0200 0.0017 -0.0233 0.0018 -0.0251 0.0020
Dispensed Medium Dose of Methadone Rate 0.0026 0.0017 0.0031 0.0019 0.0033 0.0020
Dispensed High Dose of Methadone Rate -0.0214 0.0013 -0.0247 0.0014 -0.0269 0.0016
Dispensed Other OAT Rate -0.0327 0.0027 -0.0380 0.0030 -0.0411 0.0033
Incarceration FPCS 0.0309 0.0071 0.0309 0.0071 0.0309 0.0071
Sex (vs. Female) - - - - - -
Male 0.1949 0.0266 0.1950 0.0266 0.1950 0.0266
Birth Generation (vs Greatest & Silent Generations) - - - - - -
Baby Boomers -0.4136 0.0688 -0.4127 0.0688 -0.4131 0.0688
Generation X -0.6035 0.0835 -0.6019 0.0835 -0.6026 0.0835
Millennials & Generation Z -0.1861 0.1090 -0.1840 0.1091 -0.1848 0.1090
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.1908 0.0399 0.1910 0.0399 0.1910 0.0399
Vancouver Coastal 0.1044 0.0307 0.1046 0.0307 0.1045 0.0307
Vancouver Island 0.0936 0.0368 0.0938 0.0368 0.0938 0.0368
Northern 0.0080 0.0692 0.0077 0.0692 0.0079 0.0692
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.0431 0.0328 0.0441 0.0329 0.0434 0.0328
2007-2012 0.0536 0.0380 0.0552 0.0380 0.0542 0.0380
2013-2018 0.4209 0.0499 0.4234 0.0499 0.4222 0.0499
Alcohol or Other Substance Use Disorders 0.6186 0.0465 0.6192 0.0465 0.6190 0.0465
Ill Mental Health or Chronic pain -0.2479 0.0447 -0.2475 0.0447 -0.2478 0.0447
Hepatitis C Virus or HIV/AIDS 1.1358 0.0275 1.1358 0.0275 1.1358 0.0275
Ever Received a Sedative 0.4922 0.0335 0.4923 0.0335 0.4923 0.0335
Ever on PharmaCare Plans C or G 0.0250 0.0319 0.0254 0.0319 0.0254 0.0319
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Table 5.10: Estimates of regression coefficients where the time unit is months, under (a) the Cox model that directly replaces νi with ν̂i, (b) the
conditional score method with K (univariate) AR(1) models are specified for the error term in (5.5), and (c) the conditional score method upon
fitting a V AR(1) model for the errors in (5.5); for individuals born between 1901-1945. The bolded estimates are statistically significant with the
type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0062 0.0047 -0.0073 0.0050 -0.0084 0.0052
Dispensed Medium Dose of Methadone Rate 0.0064 0.0046 0.0064 0.0047 0.0069 0.0053
Dispensed High Dose of Methadone Rate -0.0089 0.0044 -0.0093 0.0045 -0.0102 0.0046
Dispensed Other OAT Rate -0.0243 0.0129 -0.0274 0.0138 -0.0350 0.0165
Incarceration FPCS 0.3763 0.1408 0.3785 0.1409 0.3814 0.1411
Sex (vs. Female) - - - - - -
Male 0.0771 0.0911 0.0790 0.0912 0.0792 0.0916
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.1981 0.1316 0.2000 0.1316 0.2054 0.1319
Vancouver Coastal 0.2009 0.1055 0.1995 0.1055 0.1975 0.1057
Vancouver Island 0.0912 0.1322 0.0925 0.1322 0.0955 0.1322
Northern -0.3994 0.2932 -0.3969 0.2932 -0.3906 0.2935
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.2752 0.1159 0.2799 0.1164 0.2867 0.1172
2007-2012 0.1133 0.1596 0.1218 0.1601 0.1369 0.1608
2013-2018 0.2336 0.2090 0.2532 0.2100 0.3048 0.2128
Alcohol or Other Substance Use Disorders -0.1037 0.1040 -0.1002 0.1042 -0.0950 0.1053
Ill Mental Health or Chronic pain 0.2170 0.1526 0.2200 0.1527 0.2236 0.1527
Hepatitis C Virus or HIV/AIDS 1.0625 0.1009 1.0636 0.1009 1.0651 0.1011
Ever Received a Sedative 0.3372 0.1541 0.3391 0.1542 0.3417 0.1542
Ever on PharmaCare Plans C or G -0.2224 0.1029 -0.2218 0.1031 -0.2191 0.1041

Age

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0072 0.0047 -0.0084 0.0050 -0.0089 0.0053
Dispensed Medium Dose of Methadone Rate 0.0107 0.0047 0.0110 0.0048 0.0130 0.0055
Dispensed High Dose of Methadone Rate -0.0067 0.0045 -0.0070 0.0045 -0.0078 0.0047
Dispensed Other OAT Rate -0.0192 0.0128 -0.0218 0.0137 -0.0262 0.0161
Incarceration FPCS 0.4506 0.1416 0.4525 0.1417 0.4530 0.1418
Sex (vs. Female) - - - - - -
Male 0.1387 0.0933 0.1402 0.0934 0.1353 0.0938
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.0800 0.1336 0.0825 0.1337 0.0914 0.1340
Vancouver Coastal 0.1561 0.1061 0.1557 0.1061 0.1570 0.1062
Vancouver Island 0.0706 0.1324 0.0720 0.1324 0.0758 0.1325
Northern -0.2690 0.2942 -0.2648 0.2943 -0.2497 0.2947
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.2127 0.1140 0.2193 0.1144 0.2339 0.1154
2007-2012 -0.0277 0.1559 -0.0191 0.1563 -0.0020 0.1569
2013-2018 0.2053 0.2016 0.2236 0.2029 0.2727 0.2066
Alcohol or Other Substance Use Disorders 0.0277 0.1097 0.0305 0.1099 0.0274 0.1109
Ill Mental Health or Chronic pain 0.0056 0.1504 0.0086 0.1505 0.0098 0.1506
Hepatitis C Virus or HIV/AIDS 0.9895 0.1006 0.9906 0.1007 0.9898 0.1008
Ever Received a Sedative 0.3172 0.1535 0.3194 0.1536 0.3207 0.1536
Ever on PharmaCare Plans C or G -0.0719 0.1083 -0.0730 0.1085 -0.0784 0.1090
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Table 5.11: Estimates of regression coefficients where the time unit is months, under (a) the Cox model that directly replaces νi with ν̂i, (b) the
conditional score method with K (univariate) AR(1) models are specified for the error term in (5.5), and (c) the conditional score method upon
fitting a V AR(1) model for the errors in (5.5); for individuals born between 1946-1964. The bolded estimates are statistically significant with the
type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0202 0.0021 -0.0243 0.0024 -0.0257 0.0026
Dispensed Medium Dose of Methadone Rate 0.0125 0.0025 0.0151 0.0029 0.0159 0.0031
Dispensed High Dose of Methadone Rate -0.0206 0.0017 -0.0242 0.0019 -0.0262 0.0021
Dispensed Other OAT Rate -0.0534 0.0059 -0.0633 0.0067 -0.0686 0.0073
Incarceration FPCS 0.0222 0.0118 0.0222 0.0118 0.0222 0.0118
Sex (vs. Female) - - - - - -
Male 0.1795 0.0375 0.1798 0.0375 0.1797 0.0375
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.2055 0.0583 0.2079 0.0583 0.2068 0.0583
Vancouver Coastal 0.0866 0.0431 0.0877 0.0431 0.0873 0.0431
Vancouver Island 0.1377 0.0507 0.1390 0.0507 0.1386 0.0507
Northern 0.1012 0.0959 0.0994 0.0959 0.1003 0.0959
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.2155 0.0456 0.2202 0.0456 0.2169 0.0456
2007-2012 0.3172 0.0599 0.3246 0.0599 0.3203 0.0599
2013-2018 0.8188 0.0891 0.8310 0.0891 0.8261 0.0891
Alcohol or Other Substance Use Disorders 0.4262 0.0662 0.4284 0.0662 0.4276 0.0662
Ill Mental Health or Chronic pain -0.1814 0.0636 -0.1798 0.0636 -0.1806 0.0636
Hepatitis C Virus or HIV/AIDS 1.2892 0.0364 1.2898 0.0364 1.2896 0.0364
Ever Received a Sedative 0.3980 0.0472 0.3992 0.0472 0.3988 0.0472
Ever on PharmaCare Plans C or G -0.0414 0.0463 -0.0415 0.0463 -0.0407 0.0463

Age

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0191 0.0021 -0.0229 0.0024 -0.0242 0.0026
Dispensed Medium Dose of Methadone Rate 0.0118 0.0025 0.0143 0.0028 0.0149 0.0030
Dispensed High Dose of Methadone Rate -0.0204 0.0017 -0.0239 0.0019 -0.0259 0.0021
Dispensed Other OAT Rate -0.0525 0.0059 -0.0622 0.0066 -0.0673 0.0072
Incarceration FPCS 0.0250 0.0113 0.0244 0.0117 0.0244 0.0117
Sex (vs. Female) - - - - - -
Male 0.1341 0.0375 0.1346 0.0375 0.1344 0.0375
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.1819 0.0582 0.1840 0.0582 0.1831 0.0582
Vancouver Coastal 0.0828 0.0430 0.0839 0.0430 0.0835 0.0430
Vancouver Island 0.1051 0.0507 0.1063 0.0507 0.1059 0.0507
Northern 0.1156 0.0959 0.1139 0.0959 0.1148 0.0959
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.0931 0.0437 0.0977 0.0438 0.0944 0.0437
2007-2012 0.0032 0.0563 0.0103 0.0564 0.0060 0.0564
2013-2018 0.3539 0.0835 0.3660 0.0836 0.3611 0.0836
Alcohol or Other Substance Use Disorders 0.4431 0.0660 0.4451 0.0660 0.4445 0.0660
Ill Mental Health or Chronic pain -0.2868 0.0634 -0.2855 0.0634 -0.2862 0.0634
Hepatitis C Virus or HIV/AIDS 1.2298 0.0361 1.2305 0.0361 1.2303 0.0361
Ever Received a Sedative 0.3818 0.0472 0.3831 0.0472 0.3827 0.0472
Ever on PharmaCare Plans C or G 0.0528 0.0468 0.0528 0.0468 0.0535 0.0468
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Table 5.12: Estimates of regression coefficients where the time unit is months, under (a) the Cox model that directly replaces νi with ν̂i, (b) the
conditional score method with K (univariate) AR(1) models are specified for the error term in (5.5), and (c) the conditional score method upon
fitting a V AR(1) model for the errors in (5.5); for individuals born between 1965-1980. The bolded estimates are statistically significant with the
type 1 error rate set at 5%.

Time Since First Recorded OAT Dispensation

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0245 0.0041 -0.0323 0.0048 -0.0328 0.0051
Dispensed Medium Dose of Methadone Rate -0.0006 0.0035 -0.0006 0.0040 -0.0007 0.0043
Dispensed High Dose of Methadone Rate -0.0237 0.0026 -0.0280 0.0028 -0.0301 0.0031
Dispensed Other OAT Rate -0.0392 0.0050 -0.0477 0.0056 -0.0504 0.0061
Incarceration FPCS 0.0285 0.0200 0.0289 0.0200 0.0289 0.0200
Sex (vs. Female) - - - - - -
Male 0.1725 0.0485 0.1819 0.0486 0.1724 0.0485
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.2494 0.0740 0.2471 0.0740 0.2493 0.0740
Vancouver Coastal 0.1545 0.0563 0.1549 0.0563 0.1547 0.0563
Vancouver Island 0.0866 0.0697 0.0852 0.0698 0.0868 0.0697
Northern -0.1062 0.1281 -0.1116 0.1282 -0.1075 0.1281
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.1500 0.0627 0.1579 0.0628 0.1523 0.0628
2007-2012 0.5263 0.0712 0.5399 0.0714 0.5305 0.0713
2013-2018 1.0196 0.0989 1.0368 0.0992 1.0262 0.0990
Alcohol or Other Substance Use Disorders 1.1951 0.1188 1.2051 0.1189 1.1984 0.1189
Ill Mental Health or Chronic pain -0.2917 0.0826 -0.2892 0.0827 -0.2907 0.0826
Hepatitis C Virus or HIV/AIDS 1.0954 0.0519 1.0950 0.0519 1.0956 0.0519
Ever Received a Sedative 0.6584 0.0586 0.6570 0.0586 0.6583 0.0586
Ever on PharmaCare Plans C or G 0.0584 0.0601 0.0639 0.0601 0.0609 0.0601

Age

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0232 0.0041 -0.0306 0.0047 -0.0312 0.0051
Dispensed Medium Dose of Methadone Rate -0.0006 0.0035 -0.0007 0.0040 -0.0007 0.0043
Dispensed High Dose of Methadone Rate -0.0240 0.0025 -0.0283 0.0028 -0.0305 0.0031
Dispensed Other OAT Rate -0.0390 0.0050 -0.0473 0.0056 -0.0500 0.0061
Incarceration FPCS 0.0306 0.0201 0.0310 0.0201 0.0308 0.0201
Sex (vs. Female) - - - - - -
Male 0.1406 0.0486 0.1402 0.0486 0.1405 0.0486
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.2347 0.0740 0.2326 0.0740 0.2347 0.0740
Vancouver Coastal 0.1414 0.0563 0.1418 0.0563 0.1416 0.0563
Vancouver Island 0.0847 0.0697 0.0835 0.0697 0.0850 0.0697
Northern -0.1190 0.1281 -0.1242 0.1281 -0.1202 0.1281
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.0457 0.0597 0.0532 0.0598 0.0478 0.0598
2007-2012 0.3063 0.0643 0.3190 0.0645 0.3100 0.0644
2013-2018 0.6318 0.0892 0.6481 0.0895 0.6380 0.0893
Alcohol or Other Substance Use Disorders 1.2131 0.1189 1.2223 0.1190 1.2160 0.1189
Ill Mental Health or Chronic pain -0.3300 0.0826 -0.3274 0.0827 -0.3291 0.0826
Hepatitis C Virus or HIV/AIDS 1.0448 0.0523 1.0449 0.0523 1.0452 0.0523
Ever Received a Sedative 0.6375 0.0586 0.6363 0.0586 0.6375 0.0586
Ever on PharmaCare Plans C or G 0.0604 0.0601 0.0658 0.0601 0.0628 0.0601
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Table 5.13: Estimates of regression coefficients where the time unit is months, under (a) the Cox model that directly replaces νi with ν̂i, (b) the
conditional score method with K (univariate) AR(1) models are specified for the error term in (5.5), and (c) the conditional score method upon
fitting a V AR(1) model for the errors in (5.5); for individuals born after 1980. The bolded estimates are statistically significant with the type 1
error rate set at 5%.

Time Since First Recorded OAT Dispensation

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0189 0.0067 -0.0225 0.0075 -0.0239 0.0082
Dispensed Medium Dose of Methadone Rate -0.0200 0.0051 -0.0229 0.0057 -0.0248 0.0062
Dispensed High Dose of Methadone Rate -0.0323 0.0050 -0.0374 0.0055 -0.0408 0.0061
Dispensed Other OAT Rate -0.0318 0.0056 -0.0374 0.0062 -0.0402 0.0067
Incarceration FPCS 0.0417 0.0148 0.0417 0.0148 0.0417 0.0148
Sex (vs. Female) - - - - - -
Male 0.5325 0.0812 0.5329 0.0812 0.5329 0.0812
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.3567 0.1054 0.3564 0.1054 0.3571 0.1054
Vancouver Coastal 0.2078 0.0966 0.2078 0.0966 0.2079 0.0966
Vancouver Island 0.2155 0.1121 0.2154 0.1121 0.2159 0.1121
Northern 0.0299 0.1975 0.0290 0.1975 0.0296 0.1975
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.7537 0.4699 0.7549 0.4699 0.7541 0.4699
2007-2012 0.9326 0.4713 0.9349 0.4713 0.9336 0.4713
2013-2018 1.4621 0.4762 1.4651 0.4762 1.4633 0.4762
Alcohol or Other Substance Use Disorders 1.2853 0.1607 1.2871 0.1608 1.2860 0.1608
Ill Mental Health or Chronic pain -0.3141 0.1302 -0.3131 0.1302 -0.3136 0.1302
Hepatitis C Virus or HIV/AIDS 0.6830 0.1419 0.6832 0.1419 0.6833 0.1419
Ever Received a Sedative 0.7788 0.0993 0.7791 0.0993 0.7791 0.0993
Ever on PharmaCare Plans C or G -0.1566 0.0828 -0.1543 0.0829 -0.1552 0.0828

Age

Cox Model Conditional Score
AR(1) Error Models

Conditional Score
VAR(1) Error Model

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0171 0.0067 -0.0204 0.0075 -0.0216 0.0081
Dispensed Medium Dose of Methadone Rate -0.0199 0.0051 -0.0228 0.0056 -0.0247 0.0061
Dispensed High Dose of Methadone Rate -0.0324 0.0050 -0.0375 0.0055 -0.0410 0.0060
Dispensed Other OAT Rate -0.0324 0.0056 -0.0380 0.0062 -0.0409 0.0067
Incarceration FPCS 0.0398 0.0149 0.0398 0.0149 0.0398 0.0149
Sex (vs. Female) - - - - - -
Male 0.5031 0.0814 0.5034 0.0814 0.5034 0.0814
Heath Authority (vs Fraser Health) - - - - - -
Interior 0.3258 0.1053 0.3256 0.1053 0.3262 0.1053
Vancouver Coastal 0.1930 0.0966 0.1930 0.0966 0.1931 0.0966
Vancouver Island 0.1828 0.1121 0.1829 0.1121 0.1834 0.1121
Northern -0.0270 0.1975 -0.0278 0.1975 -0.0272 0.1975
Year Category (vs. 1996-2000 ) - - - - - -
2001-2006 0.7275 0.4630 0.7284 0.4630 0.7276 0.4630
2007-2012 0.8211 0.4543 0.8231 0.4543 0.8216 0.4543
2013-2018 1.1975 0.4557 1.2003 0.4557 1.1984 0.4557
Alcohol or Other Substance Use Disorders 1.3418 0.1608 1.3433 0.1609 1.3423 0.1608
Ill Mental Health or Chronic pain -0.2893 0.1302 -0.2886 0.1302 -0.2890 0.1302
Hepatitis C Virus or HIV/AIDS 0.6663 0.1418 0.6665 0.1418 0.6665 0.1418
Ever Received a Sedative 0.7827 0.0993 0.7828 0.0993 0.7828 0.0993
Ever on PharmaCare Plans C or G -0.1589 0.0826 -0.1568 0.0826 -0.1575 0.0826
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Table 5.14: Weighted estimates α̃ and θ̃, where the time unit is months.

Time Since First Recorded OAT Dispensation
Conditional Score

AR(1) Error Models Weighted Average Conditional Score
VAR(1) Error Model Weighted Average

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0231 0.0019 -0.0264 0.0033 -0.0248 0.0020 -0.0270 0.0035
Dispensed Medium Dose of Methadone Rate 0.0016 0.0019 -0.0040 0.0026 0.0017 0.0020 -0.0049 0.0028
Dispensed High Dose of Methadone Rate -0.0247 0.0014 -0.0300 0.0023 -0.0269 0.0016 -0.0325 0.0025
Dispensed Other OAT Rate -0.0390 0.0031 -0.0475 0.0035 -0.0422 0.0033 -0.0510 0.0038
Incarceration FPCS 0.0289 0.0070 0.0394 0.0100 0.0289 0.0070 0.0388 0.0101
Sex (vs. Female) - - - - - - - -
Male 0.2131 0.0265 0.2993 0.0353 0.2131 0.0265 0.2995 0.0353
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers -1.1943 0.0462 - - -1.1946 0.0462 - -
Generation X -1.9213 0.0496 - - -1.9219 0.0496 - -
Millennials & Generation Z -1.9562 0.0616 - - -1.9571 0.0616 - -
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.2277 0.0398 0.2750 0.0489 0.2277 0.0398 0.2760 0.0489
Vancouver Coastal 0.1169 0.0307 0.1579 0.0417 0.1168 0.0307 0.1577 0.0417
Vancouver Island 0.1191 0.0368 0.1445 0.0493 0.1191 0.0368 0.1453 0.0493
Northern 0.0135 0.0693 -0.0158 0.0885 0.0137 0.0693 -0.0137 0.0885
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.1791 0.0344 0.3862 0.1678 0.1784 0.0344 0.3831 0.1678
2007-2012 0.3288 0.0412 0.6177 0.1691 0.3278 0.0412 0.6130 0.1690
2013-2018 0.7832 0.0553 1.1214 0.1736 0.7820 0.0552 1.1165 0.1735
Alcohol or Other Substance Use Disorders 0.5348 0.0453 1.0165 0.0744 0.5346 0.0453 1.0135 0.0744
Ill Mental Health or Chronic pain -0.1574 0.0448 -0.2605 0.0579 -0.1576 0.0448 -0.2613 0.0579
Hepatitis C Virus or HIV/AIDS 1.1903 0.0276 0.9971 0.0546 1.1903 0.0276 0.9974 0.0546
Ever Received a Sedative 0.5125 0.0335 0.6302 0.0432 0.5125 0.0335 0.6306 0.0432
Ever on PharmaCare Plans C or G -0.0406 0.0313 -0.0447 0.0389 -0.0406 0.0313 -0.0459 0.0389

Age
Conditional Score

AR(1) Error Models Weighted Average Conditional Score
VAR(1) Error Model Weighted Average

Covariate Name Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
Dispensed Low Dose of Methadone Rate -0.0233 0.0018 -0.0247 0.0033 -0.0251 0.0020 -0.0252 0.0035
Dispensed Medium Dose of Methadone Rate 0.0031 0.0019 -0.0042 0.0026 0.0033 0.0020 -0.0050 0.0028
Dispensed High Dose of Methadone Rate -0.0247 0.0014 -0.0300 0.0023 -0.0269 0.0016 -0.0326 0.0025
Dispensed Other OAT Rate -0.0380 0.0030 -0.0472 0.0035 -0.0411 0.0033 -0.0505 0.0038
Incarceration FPCS 0.0309 0.0071 0.0410 0.0101 0.0309 0.0071 0.0409 0.0101
Sex (vs. Female) - - - - - - - -
Male 0.1950 0.0266 0.2668 0.0355 0.1950 0.0266 0.2669 0.0355
Birth Generation (vs Greatest & Silent Generations) - - - - - - - -
Baby Boomers -0.4127 0.0688 - - -0.4131 0.0688 - -
Generation X -0.6019 0.0835 - - -0.6026 0.0835 - -
Millennials & Generation Z -0.1840 0.1091 - - -0.1848 0.1090 - -
Heath Authority (vs Fraser Health) - - - - - - - -
Interior 0.1910 0.0399 0.2504 0.0489 0.1910 0.0399 0.2514 0.0489
Vancouver Coastal 0.1046 0.0307 0.1459 0.0417 0.1045 0.0307 0.1458 0.0417
Vancouver Island 0.0938 0.0368 0.1239 0.0493 0.0938 0.0368 0.1247 0.0493
Northern 0.0077 0.0692 -0.0344 0.0885 0.0079 0.0692 -0.0322 0.0885
Year Category (vs. 1996-2000 ) - - - - - - - -
2001-2006 0.0441 0.0329 0.3056 0.1652 0.0434 0.0328 0.3027 0.1652
2007-2012 0.0552 0.0380 0.4139 0.1627 0.0542 0.0380 0.4093 0.1627
2013-2018 0.4234 0.0499 0.7648 0.1656 0.4222 0.0499 0.7601 0.1656
Alcohol or Other Substance Use Disorders 0.6192 0.0465 1.0496 0.0744 0.6190 0.0465 1.0467 0.0744
Ill Mental Health or Chronic pain -0.2475 0.0447 -0.2966 0.0579 -0.2478 0.0447 -0.2976 0.0579
Hepatitis C Virus or HIV/AIDS 1.1358 0.0275 0.9561 0.0546 1.1358 0.0275 0.9561 0.0546
Ever Received a Sedative 0.4923 0.0335 0.6192 0.0432 0.4923 0.0335 0.6196 0.0432
Ever on PharmaCare Plans C or G 0.0254 0.0319 -0.0187 0.0389 0.0254 0.0319 -0.0200 0.0389

139



Chapter 6

Final Discussion

Motivated by a real world health crisis, this dissertation develops methodology to overcome
challenges brought on by internal covariates in a survival analysis. In particular, we de-
veloped procedures that can directly estimate a covariate’s effect on the hazard function,
as well as methods that are capable of providing survival predictions. The proposed meth-
ods were illustrated with administrative service utilization records pertaining to opioid use
disorder management. However, the proposed methodology can be adapted to any setting
involving an event time and internal covariate(s). Furthermore, the proposed methods can
naturally be extended to situations with competing risks, or recurrent events.

6.1 Summary of Contributions

We started with a preliminary analysis in Chapter 2, in which we summarized the OAT dis-
pensation process with an OAT dispensation rate and other processes with either a binary
one-jump process or functional principle scores. This served to greatly reduce the compu-
tational complexity that plagues joint modelling methods. Our results led us to identify
age as a confounding variable, and the protective effect of OAT against mortality is most
prevalent for Millennials and Generation Z individuals.

To directly estimate the OAT dispensation process effect on the mortality hazard func-
tion, Chapter 3 considered a generalized Cox regression model, under which we conducted
time-dependent stratification. An estimating equation inference procedure was implemented
in order to overcome the inherent difficulties brought on by internal covariates. The estimat-
ing function proposed takes the familiar form of the partial score function when external
covariates are present in the model, and we used modern empirical process theory to estab-
lish large sample properties. Since the time-dependent stratification variable is an ordinal
variable, we utilized the asymptotic normality of the proposed estimator to update the
strata levels with a testing procedure. Our results revealed two risk classes: individuals ex-
periencing (i) 1-3 OAT episodes; and (ii) 4+ OAT episodes; in which the protective effect
against mortality for the OAT dispensation indicator is stronger in the second group. To
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the best of our knowledge, this is the first application to reveal a dynamic effect pertaining
to OAT usage.

In Chapter 4, we revisited our modelling from Chapter 2 to address two key issues: (a)
correct for the apparent bias induced by directly replacing the OAT dispensation rate with
an estimate, and (b) modify our estimates to account for confounding. For the first issue,
we adopted the conditional score approach to conduct our statistical inference, where we
accounted for the autocorrelation present within the OAT dispensation process. Our simu-
lation study, where the simulated data mimics the observed data, showed that the proposed
inference procedure is able to produce consistent estimates. We addressed the second issue
by weighting birth generation specific estimates by the relative size in each group, which
served to upweight the contributions made by younger individuals. This procedure was able
to reveal a significant protective effect against mortality pertaining to the OAT dispensation
rate, which corroborates with our Chapter 3 analysis.

We then considered a multivariate internal covariate process in Chapter 5, by addi-
tionally including OAT type and dosage from the OAT dispensation process. We expanded
upon the methodology presented in Chapters 3 and 4. While implementing the former
was relatively straightforward, the latter procedure required us to address for the apparent
correlation between OAT types and dosage levels.

6.2 Future Investigation

We list a few possibilities for future investigations.

6.2.1 Alternatives to the Wald Test

An alternative test procedure based on the estimating function U(Θ) worth exploring. Here,
one would consider two models: groups g − 1 and g are merged, and groups g − 1 and g

separated; and proceed to estimate Θ by solving U(Θ). Letting UM (Θ), Θ̂M and US(Θ),
Θ̂S denoting the estimating function U(Θ) and Θ̂ under the models when groups g −1 and
g are merged and separated, respectively, we have that Θ̂M is a consistent estimator for
Θ under the null hypothesis. Therefore, US(Θ̂M ) and US(Θ0) should be “close” under the
null hypothesis. This procedure is essentially the same idea behind the partial score test,
and although the Wald and score tests are asymptotically equivalent, it would be interesting
to see the benefits of using such a test in a dynamic fashion.

6.2.2 On Summarizing the Internal Covariate Process

The current modelling within Chapter 4 assumes that the quantity νi in (4.2) serves as
an adequate summary of the OAT dispensation process. Although νi is interpretable and
serves as a starting point, we can increase the model complexity in (4.2) to capture important
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features within the data. For example, as touched upon in Chapter 4.6, we could include
covariates X (·) into the model, or specify νi as a polynomial or non-parametric function of
time (e.g. splines).

Another extension would be to incorporate an additional layer to our modelling by
introducing latent classes, where the group membership distribution depends on the internal
covariate process. This approach was recently considered by Wong et al. (2022), where
they used the EM-algorithm to estimate model parameters. To improve the computational
complexity of their approach, one can again adopt the idea behind the conditional score
approach, where this time, the correction for “measurement error” is made in both the
hazard and latent group membership models. Depending on the number and nature of the
strata levels, be it ordinal or nominal, this can itself be an extension of the conditional score
approach of Stefanski and Carroll (1987) for generalized linear models.

6.2.3 Latent Treatment Usage States

Implementing classes into the modelling of OAT dispensation records can be valuable when
the focus is on estimating the effects of titrating, maintenance, or tapering dosage on mor-
tality risk. In principle, we can classify individuals into states based in conjunction with
clinical guidelines (British Columbia Centre on Substance Use 2017), and on the sign and
magnitude of the dose’s rate of change. In practice however, classifying individuals is a
challenge, as individuals may have an opioid tolerance level that is not adequately reflected
by clinical guidelines, and many dose trajectories are highly non-smooth. In other words,
there is potential for individuals to have their treatment usage state to be misclassified.

The approach adopted by Wong et al. (2022) referenced in Chapter 6.2.2 can also serve
as a potential solution, where a model is proposed to reflect titrating, maintenance, and
tapering dosage states. We can again view the states as “latent” and adopt the conditional
score approach as an alternative to the (computationally expensive) EM-algorithm.

6.2.4 Informative Censoring & Truncation Times

We briefly discussed in Chapter 2 that the time since first recorded OAT dispensation is
not necessarily the time since first OAT dispensation. For individuals with their first OAT
dispensation near the date of data collection (01/01/1996), it is very likely that their first
OAT dispensation occurred before the data collection period. In other words, their starting
date of treatment usage is left censored. Moreover, only individuals with an OAT dispensa-
tion during the data extraction period were included in our analysis; therefore, OAT users
with a death record prior to 1996 are omitted. It would be worthwhile to take into account
both the potentially informative left censoring and left truncation.
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6.2.5 Causal Inference

There has been much attention recently towards estimating causal effects from observational
data (Igelström et al. 2022). The basic idea is to account for all potential confounders in
the analysis so that individuals in both treatment arms are comparable.

The goal remains the same within our setting: to estimate the causal effect of the OAT
usage process on mortality risk. However, there are additional challenges present within our
setting. The “treatment assignment” is not truly random, as the prescribed treatment was
selected to best serve a patient’s individualized need. Adjusting for all possible confounders
is not only challenging to ensure the “no unmeasured confounding” assumption is satisfied,
but difficult to implement when the covariate / confounder space is high dimensional. There
is also the issue to account for the OAT status changing over time, which can be viewed
as a form of treatment non-compliance. This adds an additional level of complexity to the
problem.
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