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Abstract

AdaBoost is a well-studied and widely used ensemble method that improves classification
performance iteratively by focusing on misclassified samples through reweighting. It assigns
higher weights to misclassified samples in each training iteration and makes the final pre-
dictions through voting of all base classifiers learned from all iterations. This reweighting,
however, can lead to a disproportionate focus on properly classified samples in early itera-
tions, resulting in many inferior classifiers for such samples in the final voting. In this work,
we propose LinearBoost, a competing ensemble approach, to address this issue. Instead of
voting by multiple classifiers, LinearBoost classifies a sample by the first “promising” clas-
sifier learned in the iterative process, where “promising” means a prediction having a high
enough confidence of being correct. The next iteration of training will focus on the remaining
samples that do not have a promising prediction. Therefore, LinearBoost can maintain the
performance of properly classified samples in early iterations (by identifying their promising
classifiers) while improving the performance of misclassified samples iteratively. LinearBoost
is a general boosting strategy that can work with any type of base classifiers. Experiments
on datasets with different characteristics and different types of base classifiers show that
LinearBoost usually does better than AdaBoost and its variations, achieving higher Macro
and Weighted F1 scores.
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Chapter 1

Introduction

Classification is the task of assigning predetermined classes to data samples based on their
features. In real-world classification tasks, classifiers are not always successful across all
classes in a dataset. Class competition, i.e., numerous classes that are readily misclassified
from one another, such as shirt and T-shirt picture classification, may explain poor per-
formance in certain classes [24]. Another factor is an imbalanced-class distribution, which
causes model training to favor majority classes with a higher share of data, resulting in poor
minority class performance [38]. Improving the performance of under-performed classes is
critical for obtaining a generally well-performed classifier.

Ensemble methods achieve accurate results by combining the predictions of multiple base
classifiers, which leverages these base classifiers’ collective knowledge and diversity [28]. Ad-
aBoost [14], which sequentially trains a group of base classifiers in multiple iterations, is one
of the most researched ensemble methods. AdaBoost trains a base classifier in each iteration
and utilizes the base classifier’s error rate to raise the weight of misclassified samples in the
following iteration. The final prediction for each sample is determined by a weighted major-
ity voting from all base classifiers. AdaBoost is a general boosting methodology that can be
applied to different kinds of base classifiers, such as support vector machine, decision tree,
and neural network, to outperform a single base classifier’s performance [23, 15, 32, 37].

AdaBoost boosts the performance of under-performed samples by paying more attention
(i.e., weights) to misclassified samples in the next iteration. However, this inevitably hurts
the samples that were correctly classified in the current iteration because their weights will
be reduced relatively in the next iteration. Consequently, the final predictions for such sam-
ples is determined by the vote of many weaker base classifiers (due to reduced weights). The
principle underlying AdaBoost is that aggregating several weak learners (i.e., performing
slightly better than random guessing) can yield a final learner that has a better perfor-
mance than any of the input weak learners used for the aggregation [31]. However, this does
not answer the question of whether this aggregation outperforms the alternative approach
of choosing a “strong” base classifier individually for each sample. Instead of involving all
learned weak base classifiers in the final voting, the latter approach “locks in” a single, usu-
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ally strong, base classifier for each sample. This thesis aims to investigate this competing
ensemble approach.

Our observation is that if a sample has a high likelihood of being correctly classified by
the base classifier in the current iteration, this prediction should be reserved as the final
prediction for the sample, rather than the voting by a number of weaker base classifiers
learned from small weights given to this sample. Based on this observation, we propose
LinearBoost, an ensemble method that, like AdaBoost, iteratively learns a sequence of
base classifiers, but unlike AdaBoost, and classifies a sample using the first base classifier
that has a “confident prediction” for that sample. See more details below.

At each iteration, the proposed method identifies and removes the samples that are
classified by the current base classifier with high confidence. Such samples are removed as
subsequent iterations do not need to make predictions for such samples (because they have
already been classified by the current base classifier), and subsequent iterations should focus
on the remaining samples that are difficult to classify.

The objective of the thesis: The objective of this thesis is to study the proposed solo
confident base classifier for each samples, i.e., LinearBoost, vs AdaBoost’s aggregation of
all base classifiers. Like AdaBoost, LinearBoost can be applied to any learning algorithm
Alg for base classifiers by calling Alg as a black-box during training. This property allows
LinearBoost to be used to boost the performance of any existing Alg. In particular, let
LinearBoost(Alg, Data, M) and AdaBoost(Alg, Data, M) denote the resulting ensemble
classifiers learned by applying LinearBoost and AdaBoost to training data Data, respec-
tively, where Alg is the learning algorithm applied at each iteration to generate a base classi-
fier and M is the number of iterations. Our main claim is that LinearBoost(Alg, Data, M)
can get a better performance than Alg and AdaBoost(Alg, Data, M) for different Data and
Alg in terms of generalization.

The contributions of this thesis are as follows: (1) We propose LinearBoost to address
the reweighting of samples in AdaBoost that creates weaker base classifiers for samples
that were already well-classified. LinearBoost is a general boosting strategy that, similar
to AdaBoost, can be applied to any learning algorithm Alg for learning the base classifier
in each iteration. (2) To implement LinearBoost, we address several technical concerns,
including the formalization of “confident prediction”, promoting confident prediction, and
over-fitting caused by decreased training size in later iterations. (3) We compare the effi-
cacy of LinearBoost vs AdaBoost and its variants on datasets with varying features and
discuss our findings. The study demonstrates that LinearBoost can sustain the performance
of well-performed samples while improving the performance of under-performed samples. In
particular, LinearBoost improves the single base classifier Macro F1 by 2.8% and 9.6% on
average for balanced-class and imbalanced-class datasets, respectively, compared to 0.4%
and 5.1% improvements by the best-performing AdaBoost’s variants.
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The structure of the thesis is organized as follows: Chapter 2 introduces AdaBoost algo-
rithm, AdaBoost’s variants and other ensemble methods, as well as the evaluation metrics
of classifiers. Chapter 3 presents the technical details of LinearBoost. Chapter 4 considers
the parameter settings of LinearBoost and analyzes time complexity. Chapter 5 reports the
experimental evaluation of LinearBoost and our analysis. Finally, we conclude the thesis.
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Chapter 2

Related Work

For comparison purposes, we present several ensemble methods in this chapter, including
the original AdaBoost and its variants, as well as the evaluation metric in this chapter.

2.1 AdaBoost

The original AdaBoost proposed by [14] was for binary-class classification tasks. Algorithm
1 (SAMME) is the generalization for K-class classification tasks from [18]. When K = 2,
Algorithm 1 performs the same as the original AdaBoost. AdaBoost’s core principle is
to train a base classifier using current sample weights w and then increase the weights
of misclassified samples in the following iterations. AdaBoost progressively trains M base
classifiers on the whole training set S and adjusts the sample weights w in each iteration.
In the first iteration, AdaBoost uniformly initializes the sample weights, i.e., wi = 1

n for all
samples, i = 1, . . . , n, where n is the total number of training samples.

At iteration m, the base classifier T (m) is fitted to minimize a weighted loss function
based on the current sample weights w (Equation 2.1):

min
n∑

i=1
wi · Loss(yi, T (m)(xi)) (2.1)

where yi and T (m)(xi) are the true and predicted class for the sample xi respectively, and
Loss(·, ·) is the loss function that measures the difference between the true class and the
predicted class. Line 4 calculates the error rate ϵ(m) of the current base classifier T (m), where
1 is the indicator function, and Line 5 computes the base classifier T (m)’s weight α(m) based
on the error rate. A base classifier T (m) with a low error rate ϵ(m) will get a large classifier
weight α(m), which is used in Line 6 for updating the sample weights wi of all training
samples. Importantly, a larger α(m) leads to a larger weight for the base classifier T (m) and
the misclassified samples xi. The normalized weights w (Line 7) are used in the next base
classifier training iteration. The final ensemble classifier is given by Line 9 as the weighted
aggregation of T (m), for m = 1, · · · , M , with α(m) as the weights.
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Algorithm 1 AdaBoost-SAMME [18]
Input: Training set S = {(xi, yi)}, i = 1, . . . , n; and yi ∈ C, a set of classes C = {1, . . . , K};
M : number of iterations; T : model.
Output: Predicted classes H(x).

1: Initialize the training set S weights wi = 1
n , i = 1, . . . , n.

2: for m = 1 to M do
3: Fit a base classifier T (m)(x) with the training set S using weights w.
4: ϵ(m) = ∑n

i=1 wi · 1
(
yi ̸= T (m)(xi)

)
.

5: α(m) = log 1−ϵ(m)

ϵ(m) + log(K − 1).
6: wi ← wi · exp

(
α(m) · 1

(
yi ̸= T (m)(xi)

))
.

7: Re-normalize w.
8: end for
9: return H(x) = argmax

k

∑M
m=1 α(m) · 1(T (m)(x) = k).

AdaBoost has the convergence property as stated in Theorem 1.

Theorem 1 ([3]). Let D be a distribution over X × {−1, 1}, and let S be a training set
of n samples chosen independently at random according to D. Suppose the base learning
algorithm, when called by AdaBoost f, generates base classifiers with weighted training errors
ϵ(1) . . . ϵ(M). Then for any θ, we have a probability on S that:

PS [yf(x) ≤ θ] ≤ 2M
M∏

m=1

√(
ϵ(m))1−θ (1− ϵ(m))1+θ (2.2)

yf(x) is the margin of the sample x with the true class y. For binary-class classification,
y is from {−1, 1} and f(x) is the predicted value in the range [−1, 1], so yf(x) ≤ 0 represents
an incorrect prediction of the sample x where the predicted value f(x) and the true class
y have the opposite signs. The theorem implies that if ϵ(m) ≤ 1

2 − γ for some γ > 0 and
θ < γ in all M iterations (i.e., the base classifier in every iteration performs better than the
binary-class random guessing), PS [yf(x) ≤ θ] will decrease and approach 0 as M increases.

Theorem 2 gives a bound on the generalization error of AdaBoost when the task is
binary-class classification (the generalization error theorems for K-class classification is in
Theorem 6 of [3]):

Theorem 2 ([3]). Suppose the base classifier space H has VC-dimension d, and let δ > 0.
Assume that n ≥ d ≥ 1. Then with the probability at least 1− δ over the random choice of
the training set S, every weighted average function f satisfies the following bound for all
θ > 0:

PD[yf(x) ≤ 0] ≤ PS [yf(x) ≤ θ] + O

 1√
n

(
d log2(n/d)

θ2 + log(1/δ)
)1/2

 (2.3)
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According to Theorem 1, as M increases, the term PS [yf(x) ≤ θ] goes to 0 when
ϵ(m) ≤ 1

2 − γ (with γ > 0 and θ < γ) in all M iterations, and the second term O(·) doesn’t
depend on M . Therefore, the generalization error PD[yf(x) ≤ 0] is bounded and decreases
as M increases.

However, we need to take the above with a grain of salt. As pointed out by the authors
of AdaBoost [3], this generalization bound is very loose and only until the training set size is
in the tens of thousands then the bound becomes useful. Also, Theorem 2 assumes that the
VC-dimension d of the base classifier space is not greater than the training sample size n,
i.e., n ≥ d ≥ 1. This implies that Theorem 2 cannot be applied in many practical cases. For
example, the VC-dimension of a neural network has the worst case O(|E|2 · |V |2), where |E|
is the number of edges and |V | is the number of nodes in the network [39]. Take the image
recognition deep CNN VGG16 as an example, where the last two fully connected hidden
layers have 4,096 nodes each [34]. So for the last two hidden layers alone, |V | = 8, 192 and
|E| = 4, 0962. The VC-dimension in this case is a large number, i.e., O(|E|2 · |V |2), and
Theorem 2 applies only for training data of size larger than this VC-dimension.

In addition, Theorem 2 considers a given base classifier space. It remains an open ques-
tion of how to choose the base classifier space so that these bounds are tight. A complex
base classifier space would lead to a large VC-dimension d, thus, a loose bound, on the other
hand, a simple base classifier space would lead to under-fitting, i.e., ϵ(m) ≤ 1

2 − γ may not
hold, as required for the convergence of binary-class classification. Thus, the choice of the
base classifier space will affect the generalization, and how to choose a good base classifier
space is not addressed by Theorem 2.

For the above reasons, Theorem 2 is more of a theoretical value than a practical one.
In practice, the authors of AdaBoost suggest using a validation set to select the number of
iterations, M , to reduce the generalization error [14].

2.2 Variants for Multi-class Data

SAMME. The original AdaBoost is for binary-class classification. Algorithm 1 SAMME is
from [18], a multi-class variant of AdaBoost. SAMME uses the same structure as AdaBoost
with a minor but subtle difference. Compared with the original AdaBoost, SAMME has an
extra term log(K − 1), where K is the number of classes (Algorithm 1 Line 5). This term
ensures that α(m) is positive as long as the base classifier is better than the K-class random
guessing, i.e., ϵ(m) < K−1

K .
SAMME.R. SAMME.R is a variant of SAMME [46]. SAMME.R updates the sample

weights using real-valued confidence-rated predictions, while SAMME just uses classifica-
tions. Compared with SAMME, SAMME.R method uses the base classifier’s prediction
confidence to update the weights, thus, it usually converges quicker and has a smaller test
error.
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2.3 Variants for Imbalanced-class Data

AdaBoost and its multi-class variants above prioritize misclassified samples to minimize
the classification error [22]. In many imbalanced-class classifications, the focus is more on
the prediction accuracy of some target classes. For example, an important binary-class
classification aims to correctly classify the positive class (as the target class), and the positive
class is usually the minority class, e.g., buyer (positive) vs non-buyer (negative), malware
(positive) vs benign software (negative). In such problems, the classification should pay
more attention to the False Negative samples as its potential cost of misclassification is
high, i.e., misclassifying malware as benign software, or misclassifying a buyer as non-buyer.
Three AdaBoost’s variants have been designed for imbalanced-class distribution, all of which
assign a higher Cost to misclassified minority class samples to increase their weights during
training.

AdaCost. The idea of AdaCost is assigning higher costs Cost (range [0, 1]) to minority
class samples and adjusting the sample weight during training to emphasize the minority
class classification accuracy [13]. Specifically, during the weight updating, AdaCost increases
the weights of misclassified minority class samples more than misclassified majority class
samples. Furthermore, the weights of correctly classified minority class samples decrease less
compared with the correctly classified majority class samples. Equation 2.4 can combine
with the sample weights w updating to achieve the requirements mentioned above

βi =

−0.5Costi + 0.5, yi = T (m)(xi)

0.5Costi + 0.5, yi ̸= T (m)(xi)
(2.4)

where Costi is the cost term value of sample xi and updating the sample weight in Algorithm
1 Line 6: wi ← wi · exp

(
βi · α(m) · 1

(
yi ̸= T (m)(xi)

))
.

Asymmetric AdaBoost. Asymmetric AdaBoost imposes various cost values depend-
ing on sample types, leading to asymmetrically updating to the weights of different misclas-
sified samples, i.e., False Positive and False Negative samples update asymmetrically [40].
The cost setting of Asymmetric AdaBoost is shown in Equation 2.5

Costi =


√

G, yi is positive class
1√
G

, yi is negative class
(2.5)

where False Negative samples’ cost value is G times more than False Positive samples’. The
users can base on the actual cost of False Positive samples and False Negative samples in
real-world applications to determine the value of G. The sample weight update formula
in Asymmetric AdaBoost is: wi ← exp( 1

M log(Costi)) · wi · exp
(
α(m) · 1

(
yi ̸= T (m)(xi)

))
where M is the number of iterations.
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AdaC. Same as AdaCost, AdaC series adds cost terms into the learning procedure to
increase the minority class impact [36]. The cost of each sample demonstrates the signifi-
cance of accurately identifying that sample. It uses a higher cost for minority class samples
and a lower cost for majority class samples, thus enhancing minority class sample weights.
For example, the total number of samples divided by the number of samples in each class
can be used as a cost term to achieve the above requirement (Equation 2.6)

Costk = n

nk
, for k = 1 . . . K (2.6)

where n is the total number of samples and nk is the number of samples in a class k. So a
class with a smaller sample size has a larger cost term. AdaC has three variants, AdaC1,
AdaC2 and AdaC3. The difference between them is how to add cost terms into the sample
weight update, for example, AdaC2 introduces the cost term outside the exponential term:
wi ← Costk · wi · exp

(
α(m) · 1

(
yi ̸= T (m)(xi)

))
where xi’s true class is k.

These algorithms use a framework similar to AdaBoost, with the distinction being how
the cost term is included in the weighting scheme. It is worth noting that when the Cost

setting is the same for all xi, these methods reduce to standard AdaBoost. All of these
methods need the user to input the cost term, which is not straightforward in practice [44].
For example, what is the cost term for False Negative where the positive class represents
malware software and the negative class represents benign software?

2.4 Other Ensemble Methods

The ensemble strategy of AdaBoost and its variants are based on sample reweighting to
assign larger weights to misclassified samples. Other ensemble strategies exist as well. Below,
we briefly review some popular ensemble methods.

Bagging. The goal of Bagging is to reduce the variance of a base classifier’s predictions,
i.e., reduce overfitting, by introducing randomness into the training process [5]. Compared
with AdaBoost, Bagging’s ensemble strategy assigns the same weights to all training samples
and votes the predictions with the majority from the multiple base classifiers that have been
trained on different subsets of the training samples, while AdaBoost iteratively adjusts the
weights of training samples to train each base classifier with the same set of samples and
votes their predictions weighted on the base classifiers’ performance. The training samples
for each base classifier in Bagging are randomly selected from the whole training set with
replacements. This training sample randomness introduces variation in the training process
and helps Bagging to learn more robust and generalized patterns.

Random Forest. Random Forest builds upon Bagging by introducing additional fea-
ture randomness in the training process [6]. Feature randomness can reduce overfitting by
reducing the correlation between decision trees in the forest, as the whole set of features
may contain some correlated features which may provide duplicate information and produce
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trees with high correlation. Using a random subset of features for each tree can break up
the correlation between the features and create more diverse trees.

GradientBoost. Gradient Boosting combines several base classifiers, usually decision
trees, to form an ensemble classifier by progressively minimizing the residual of the ensemble
classifier in each iteration [17]. Residual refers to the difference between the actual observed
value and the predicted value of a sample. For example, in a classification task, if the true
class’ predicted probability value of a sample is 70%, then the residual of this sample is 30%
as the actual observed probability value of the true class is 100%. Instead of training the
base classifier on the sample observed value like AdaBoost, the base classifier generated by
GradientBoost is trained on the residual of the ensemble classifier which is the combination
of all base classifiers learned in previous iterations. Therefore, the base classifier can predict
the residual of the ensemble classifier so that adding this base classifier into the ensemble
classifier can make a more accurate prediction because it knows how far away is the observed
value via residual.

In order to minimize the residual of the ensemble classifier, GradientBoost uses a loss
function to measure the residual and minimizes this loss function by updating the predicted
values in the direction of the negative gradient of the loss function. Negative gradient points
to the steepest descent of the loss function, so updating the predicted values in this direction
can minimize the loss function values, i.e., residual. This learning process is repeated for
each base classifier in GradientBoost, therefore, the predicted value is iteratively updated
in the direction which can minimize the residual and it gradually approaches the observed
value through multiple base classifiers.

XGBoost. XGBoost is an advanced implementation of GradientBoost and it is one of
the state-of-the-art ensemble methods, with mitigating overfitting, split finding and handling
missing values in training [8]. Overfitting is handled by adding a regularization term in the
training and the split finding is based on approximation. Also, XGBoost is able to handle
missing values as the default path for missing values is constructed during the tree building.

There are many other ensemble methods that are not covered in this section, e.g., Logit-
Boost [16], SMOTEBoost [7], LightGBM [20]. As mentioned in Introduction, the objective
of this thesis is to study the effectiveness of the single base classifier’s prediction of Lin-
earBoost vs the aggregation prediction of AdaBoost. Because the boosting strategies of
the ensemble methods mentioned in this section are different from AdaBoost’s, our com-
parison focuses on LinearBoost and AdaBoost only, i.e., LinearBoost(Alg, Data, M) vs
AdaBoost(Alg, Data, M) with the same Alg, Data and M .

However, since LinearBoost can be applied to any existing learning algorithm Alg

through LinearBoost(Alg, Data, M), Alg can be any of the above ensemble methods. If
our objective that LinearBoost boosts the performance of any Alg can be achieved, i.e.,
LinearBoost(Alg, Data, M) has a better performance than Alg(Data, M), our work also

9



improves these ensemble methods’ performance and this is our way of LinearBoost surpass-
ing the state-of-the-art ensemble methods.

2.5 Evaluation Metrics

To assess model performance, we use Macro Average F1 score (Macro F1) and Weighted
Average F1 score (Weighted F1). In order to get these two metrics values, the following
three measures for each class k need to be collected:

True Positive (TPk): a collection of samples whose true classes are k and correctly
predicted as class k. In this case, class k is treated as the positive class. Same below.

False Positive (FPk): a collection of samples whose true classes are not k and incorrectly
predicted as class k.

False Negative (FNk): a collection of samples whose true classes are k and incorrectly
predicted as other classes.

Then, we define Precision, Recall and F1 score for each class k as following:
Precision (Precisionk): the proportion of samples whose true classes are k among the

samples predicted as class k (Equation 2.7).

Precisionk = TPk

TPk + FPk
(2.7)

Recall (Recallk): the proportion of samples predicted as class k among the samples
whose true classes are k (Equation 2.8).

Recallk = TPk

TPk + FNk
(2.8)

F1 (F 1k): the harmonic mean of precision and recall for class k (Equation 2.9).

F1k = 2 Precisionk ·Recallk
Precisionk + Recallk

(2.9)

Finally, Macro F1 and Weighted F1 for a set of samples are provided by:

Macro F 1 =
∑K

k=1 F1k

K
(2.10)

where K is the total number of classes.

Weighted F 1 =
K∑

k=1

nk

n
× F1k (2.11)

where nk is the number of samples in a class k and n is the total number of samples. In
other words, “Macro” is the simple average over all classes and “Weighted” is the weighted
average over all classes. Similarly, we can define Macro Precision.
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The difference between Macro F1 and Weighted F1 is minor for a balanced-class dis-
tribution (i.e., nk is comparable for all classes k). When the class distribution is skewed,
Macro F1 is generally less than Weighted F1 because a larger class usually has a higher F1
score than a smaller class. The key evaluation metric in this thesis is Macro F1 as it is
more robust than accuracy (the percentage of samples correctly classified) and Weighted
F1 because all classes are weighted equally.
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Chapter 3

Main Method

This chapter introduces the algorithms for LinearBoost, leaving the parameter settings and
time complexity analysis to the next chapter.

3.1 Training Phase

AdaBoost reweights all samples in each training iteration such that correctly classified
samples have smaller weights and incorrectly classified samples have larger weights. In other
words, correctly classified samples get less attention in the next training iteration, which
results in a weaker base classifier T (m) in the next iteration for such samples in the final
majority vote. As discussed in Section 2.1, the theoretical bound on the generalization error
of AdaBoost holds only for a large training data set and it is too loose to be practically
useful. Furthermore, those bounds assume a given base classifier space, but how to choose
a base classifier space to have a tight bound is left unaddressed.

In this section, we present LinearBoost as an alternative to AdaBoost. Our observation
is that if a sample has a high likelihood of being correctly predicted, i.e., a confident
prediction, we should lock in the prediction as the final prediction for the sample and not
consider the sample in the next iteration of training. In this way, each sample is classified
by the first base classifier that can provide a confident prediction, and subsequent iterations
concentrate on the remaining samples that do not have confident predictions.

Firstly, we formalize the notion of “confident prediction”. For a threshold TH and a given
validation set V , if a class k’s precision, Precisionk, is at least TH on V , i.e., the portion of
true class k among those predicted as class k is at least TH (Equation 2.7), we consider that
the samples predicted as class k have confident predictions, with respect to TH. In this case,
we have at least TH confidence that the samples predicted as class k are correctly predicted.
If V is representative of unseen samples, we expect that this prediction confidence will hold
on unseen samples as well. While high precision of class k is enforced by confident prediction,
the recall of class k is improved iteratively by picking up the remaining samples of class k

over multiple iterations.
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In light of the above, we propose LinearBoost in Algorithm 2. LinearBoost has a struc-
ture similar to the multi-class AdaBoost, i.e., SAMME, although it varies from AdaBoost
in numerous significant aspects, as discussed below.

Algorithm 2 LinearBoost – Training phase
Input: Training set S′ = {(xi, yi)}, i = 1, . . . , ns′ ; Validation set V = {(xi, yi)}, i =
1, . . . , nv; and yi ∈ C, C = {1, . . . , K}; M : number of iterations; T : model; TH: precision
threshold.
Output: A list of M base classifiers.

1: Initialize the training and validation weights w separately and uniformly.
2: for m = 1 to M do
3: Fit a base classifier T (m)(x) with the training set S′ using weights w.
4: for class k ∈ C do
5: if Precisionk(V ) ≥ TH then
6: Add class k into confident classes list C(m).
7: end if
8: end for
9: for class k /∈ C(m) do

10: ϵ
(m)
k =

∑
(xi,yi)∈V

wi·1(yi ̸=T (m)(xi))·1(T (m)(xi)=k)∑
(xi,yi)∈V

wi·1(T (m)(xi)=k) .

11: α
(m)
k = log 1−ϵ

(m)
k

ϵ
(m)
k

+ log(K − 1).
12: end for
13: for ∀(xi, yi) ∈ S′ ∪ V do
14: if T (m)(xi) = k ∈ C(m) then
15: Remove xi from the corresponding S′ or V .
16: else
17: wi ← wi · exp

(
α

(m)
k · 1

(
yi ̸= T (m)(xi)

))
.

18: end if
19: end for
20: if S′ = ∅ or V = ∅ then
21: Set α(m+1) . . . α(M) = 0.
22: Exit the for loop of Line 2.
23: end if
24: Re-normalize training and validation weights w separately.
25: end for
26: return L = {(T (1), C(1), α(1)), . . . , (T (M), C(M), α(M))}.

Input. Compared with Algorithm 1, LinearBoost has two more inputs, a validation
set V and a precision threshold TH, which are used to identify confident prediction as we
mentioned above. We will discuss the choice of TH in Section 4.2. In LinearBoost training,
we divide the original n samples training set S into two disjoint sets. One set contains ns′

samples and we use it as the training set S′. The other set contains nv samples and we use
it as the validation set V (n = ns′ + nv).
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Determine confident prediction (Line 4-8). LinearBoost diverges significantly from
AdaBoost in that, in each iteration m, we find the classes that have confident predictions
by the current base classifier T (m) and use T (m) to predict such classes. These classes,
represented by C(m), are the classes k having Precisionk ≥ TH, calculated on the current
iteration validation set V . In other words, if a sample is predicted to have a class k from
C(m), the probability that k is the true class is at least TH.

Compute per-class weights (Line 9-12). Our weighting strategy is designed to push
the classes k /∈ C(m) into C(m+1) in the next iteration. This is done by increasing Precisionk

to pass TH in the next iteration. In order to maximize the number of such classes, we assign
more weights to the classes k /∈ C(m) that have a higher precision (i.e., closer to TH) because
it is easier for such classes to pass TH. With this in mind, Line 10 computes the class-
specific error rate ϵ

(m)
k for each predicted class k /∈ C(m). Note that we use the indicator

function 1
(
T (m)(xi) = k

)
to ensure that the error rate is calculated only using the samples

whose predicted classes are k. A class k /∈ C(m) having a precision closer to TH will have a
lower error rate ϵ

(m)
k and a larger α

(m)
k , which results in a larger weight wi for the samples

incorrectly classified as class k (Line 17), thus, helping the precision of class k to pass TH in
the next iteration (by correctly classifying such samples with larger weights).

One difference of Algorithm 2 from Algorithm 1 is that our ϵ
(m)
k and α

(m)
k are calculated

for each class k, since our goal is to push the classes not in C(m) into C(m+1). We use the
term per-class weight wi obtained from such α

(m)
k to distinguish from Algorithm 1’s weights

wi based on the class-blind α(m). Another difference is that ϵ
(m)
k and α

(m)
k are calculated

on the separate validation set V , as opposed to the training set as in Algorithm 1. This
allows us to determine the prediction confidence for class k based on its generalization error
instead of training error, to avoid over-fitting.

When the class distribution is imbalanced, the accuracy (in terms of precision and recall)
of the minority class is usually more important than that of the majority class, and our
per-class weighting can help with this goal. For example, in a training set for predicting the
buyer class, 5% of samples have the buyer class and 95% of samples have the non-buyer
class. For such datasets, the majority class k often has higher precision Precisionk than the
minority class due to the sample dominance, and our per-class weighting will assign a larger
weight wi to the minority class samples xi misclassified as the majority class, compared to
the weight assigned to the majority class samples misclassified as the minority class. This
help correctly classifies such samples xi through the larger weight wi in the next iteration,
thus, increasing the recall of the minority class. We will study the effect of our per-class
weighting in addressing this requirement of imbalanced-class distribution in Section 5.3.2.

Remove samples having confident predictions (Line 13-15). The current base
classifier T (m) is responsible for classifying the samples that are assigned to a class k from
C(m) by T (m). Therefore, such samples are considered “done” and should be removed from
the training set S′ and validation set V in the next iteration. Note that the remaining
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samples in S′ and V may still have a class k in C(m) as true class; we only remove samples
that are predicted to have the classes k in C(m). One special case is that C(m) = ∅, so no
sample is removed from S′ and V in the next iteration. In this instance, the iterative process
will still continue since the weights wi will be updated at Line 17 because the exponential
term is not equal to 1 (note that not all samples are correctly classified, otherwise we do
not have C(m) = ∅).

If S′ = ∅ or V = ∅ (Line 20-23), the training phase will be terminated and the remaining
iterations are ignored by setting α(m+1) . . . α(M) to the zero vector 0.

Return the list of base classifiers (Line 26). At the end of training, LinearBoost
returns a list L which contains M base classifiers, (T (m), C(m), α(m)), denoting the base
classifier, confident classes, and class weights for iteration m, 1 ≤ m ≤ M . The prediction
phase (i.e., inference phase) using these classifiers will be covered in Section 3.2.

The followings are two additional options to optimize Algorithm 2.

• Transfer learning. Transfer learning [47] is a learning technique that leverages knowl-
edge learned from a related task for a new task. To apply this technique, at iteration
m, instead of randomly initializing the base classifier T (m)’s parameters at Line 3 of
Algorithm 2, we can initialize T (m)’s parameters using the learned T (m−1)’s parame-
ters and obtain T (m) from fine-tuning T (m−1)’s parameters using the current training
set. With a better initialization than random initialization, the learning of T (m) can
converge faster and require less data.

• Weight resetting. As Compute per-class weights mentioned, LinearBoost algorithm
assigns greater weights w to the samples incorrectly classified into classes with low
error rates, to boost those classes’ precision to pass TH. Once the precision of these
classes passes TH, LinearBoost’s attention should be shifted away from them and give
all classes the same chance. Hence, the weights w (Algorithm 2 Line 17) should be reset
to uniform weights for the next iteration. This weight resetting serves the purpose of
giving all classes the same chance. The weight resetting can be applied every several
consecutive iterations. In experiments, we found that resetting weight after every 5
consecutive iterations works well for most datasets.

We will study the effectiveness of these options in Section 5.3.2.

3.2 Prediction Phase

Algorithm 2 returns a list of M base classifiers. Later base classifiers in the list are likely
over-fitting because they are trained on smaller training sets due to removing some training
samples after each iteration. We can identify an optimal l-length prefix of the list for making
prediction, where l ≤ M , and the optimal prefix that achieves a minimized generalization
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error will be discussed in Section 4.1. Algorithm 3 presents the prediction phase assuming
that a list of l base classifiers, {(T (1), C(1), α(1)), . . . , (T (l), C(l), α(l))}, is used for prediction.

To classify a sample x, this algorithm applies the list of l base classifiers (T (m), C(m), α(m))
sequentially starting with m = 1. If the current base classifier T (m) predicts a class k from
C(m), i.e., T (m)(x) = k ∈ C(m), the prediction H(x) for x is finalized to k. If T (m) predicts
a class k not from C(m), i.e., T (m)(x) = k /∈ C(m), for all 1 ≤ m ≤ l, the prediction H(x)
for sample x is determined by the weighted majority voting from all l base classifiers (Line
6). The weighted majority voting uses α

(m)
k as the weights, therefore, if the sample x is

predicted to a class k at iteration m and the base classifier T (m) has a lower error rate
ϵ
(m)
k on the class k, i.e., class k prediction is more confident, the class k prediction will be

weighted by a larger α
(m)
k in the final prediction.

Algorithm 3 LinearBoost – Prediction phase
Input: Sample = x; a list of base classifiers {(T (1), C(1), α(1)), . . . , (T (l), C(l), α(l))}.
Output: Predicted class H(x) for x.

1: for m = 1 to l do
2: if T (m)(x) = k ∈ C(m) then
3: return H(x) = k.
4: end if
5: end for
6: return H(x) = argmax

k

∑l
m=1 α

(m)
k · 1(T (m)(x) = k).

16



Chapter 4

Several Issues

In Chapter 3, M , the number of base classifiers in L, and TH, the threshold for confident
prediction, are provided as inputs.This section will address the question of how to determine
the number of base classifiers and how to set TH.

4.1 Prune the Classifier List

As mentioned in Section 2.1, the bound on the generalization error of AdaBoost is more
theoretical than practical. In particular, Theorem 2 assumes certain conditions, and if these
conditions are not satisfied, the generalization error is not guaranteed to decrease as the
number of base classifiers increases. In other words, using all M base classifiers in the
prediction phase may not result in a good generalization error. There is a similar issue with
LinearBoost.

To address the above issue, one practical solution is choosing a slightly larger M for
the list L of returned base classifiers and identifying a prefix of L to minimize the general-
ization error on a validation set V . This solution is given in Algorithm 4. Minimizing the
generalization error is performed by maximizing the Macro F1. Other performance metrics,
such as Weighted F1, can be used instead of Macro F1.

Algorithm 4 Prune the base classifier list
Input: Validation set V = {(xi, yi)}, i = 1, . . . , nv; and yi ∈ C, C = {1, . . . , K}; L: the list
of base classifiers; M : number of base classifiers in L.
Output: A prefix Ll of base classifiers.

1: for m = 1 to M do
2: Run Algorithm 3 with the length-m prefix Lm of L and validation set V to get the

classification results Hm, and calculate the Macro F1 F1m based on Hm.
3: end for
4: return Ll where l = argmax

m
F1m.

In Algorithm 4, we look for the optimum prefix of L that provides the best Macro F1
on the validation set V . For each length-m prefix Lm of L, where 1 ≤ m ≤ M , we collect
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the Macro F1, denoted F1m, by applying Lm to V using Algorithm 3. The final ensemble
classifier is given by the prefix Ll that has the maximum F1l. The time complexity of
Algorithm 4 is O(M2 · |V |): for each prefix of L, Algorithm 4 runs Algorithm 3 with the
validation set V , where each run has the time complexity O(M · |V |).

The O(M2 · |V |) time complexity of Algorithm 4 can be reduced to O(M · |V |) through
Algorithm 5 that computes H(x) for a prefix Lm incrementally from that of the prefix
Lm−1. Recall from Algorithm 3, either H(x) = k where k ∈ C(m) is returned by the first
base classifier that returns a class in C(m), or H(x) = argmax

k

∑l
m=1 α

(m)
k ·1(T (m)(x) = k) if

none of the base classifiers returns a class in C(m). To compute H(x) for Lm incrementally
from that for Lm−1, in the first case we set all of Hm(x), · · · , HM (x) to k (i.e., Line 5), and
in the second case we add α

(m)
k · 1(T (m)(x) = k) to the Fm−1(x) collected from Lm−1 (i.e.,

Line 8), where Fm(x) stores the H(x) for Lm. Note that each base classifier in the input L

is applied just once to V . Therefore, the time complexity of Algorithm 5 is O(M · |V |).

Algorithm 5 Prune the base classifier list (less time complexity)
Input: Validation set V = {(xi, yi)}, i = 1, . . . , nv; and yi ∈ C, C = {1, . . . , K}; L: the list
of classifiers {(T (1), C(1), α(1)), . . . , (T (M), C(M), α(M))}; M : number of base classifiers.
Output: A prefix Ll of base classifiers.

1: Initialize F0(x) = [0, . . . , 0] with K zeros for each x ∈ V .
2: for m = 1 to M do
3: for x ∈ V do
4: if T (m)(x) = k ∈ C(m) then
5: Hm(x) = Hm+1(x) = · · · = HM (x) = k.
6: Remove x from V .
7: else
8: Fm(x) = Fm−1(x) + α

(m)
k · 1(T (m)(x) = k).

9: Hm(x) = argmax
k

Fm(x).
10: end if
11: end for
12: Calculate Macro F1 F1m based on Hm and y.
13: end for
14: return Ll where l = argmax

m
F1m.

For a large M , we can apply early stopping with a patience p to Algorithms 4 and 5 in
terms of Macro F1 [12]. In our experiments, we use this early stop option with p = 5.

4.2 Choice of Precision Threshold TH

TH is the threshold on the precision for classes with confident predictions (Line 5, Algo-
rithm 2). The selection of TH is either manual or automated. In certain mission-critical
applications, like medical and security, the user only trusts predictions that pass a certain
threshold of confidence. In such a scenario, the user may manually specify a high TH value
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for confident prediction based on domain-specific information or rules and only use those
predictions which pass the threshold. For instance, TH may be set to 10% more than the
known precision for the whole dataset, or to 95%, which is the industry-accepted minimum.
In the absence of domain knowledge, TH can be searched automatically as a hyperparameter.
The search range is [MP, 1], where MP is T (1)’s Macro Precision. We pick T (1)’s Macro
Precision MP as the lowest TH value for the search range since T (1) is the initial base clas-
sifier without boosting and we expect the confidence of prediction to be at least that of the
base classifier without boosting. We consider 5 equally spaced points in the search range
[MP, 1] for experiments.

4.3 Comparison

Below, we compare the time complexity of LinearBoost with that of AdaBoost (Table 4.1).

Table 4.1: Time Complexity
Method Training Prediction

LinearBoost O(M · (|S′|+ |V |+ β) + M · |V |) O(M)
AdaBoost O(M · (|S|+ β)) O(M)

AdaBoostPruned O(M · (|S′|+ β) + M · |V |) O(M)

LinearBoost. In Algorithm 2, there are M iterations for training and within each
iteration, it needs to train a base classifier T (m) with β time (Line 3) and it needs to
go through all training samples |S′| and validation samples |V | to update their weights,
therefore, Algorithm 2’s time complexity is O(M · (|S′|+ |V |+ β)). Applying Algorithm 4
to get an optimal base classifier list, the overall time complexity of LinearBoost is O(M ·
(|S′| + |V | + β) + M2 · |V |). If we use the more efficient Algorithm 5 to prune the base
classifier list, this time complexity can be reduced to O(M · (|S′|+ |V |+ β) + M · |V |).

AdaBoost. Algorithm 1 has the training time complexity O(M ·(|S|+β)). This is same
as LinearBoost’s training time complexity before applying the pruning algorithm (because
S = S′ ∪ V ).

AdaBoostPruned. As pointed out in Section 4.1, using all base classifiers returned by
AdaBoost in the prediction phase may not guarantee a good generalization error and how to
minimize the generalization error is left open. To address this issue, similar to LinearBoost,
we can separate S into S′ and V and apply Algorithm 4 to determine the best prefix Ll

of the list of M base classifiers returned by AdaBoost using the validation set V , and we
denote this pruned version of AdaBoost by AdaBoostPruned. Since AdaBoostPruned does
not use C(m), we can set C(m) = ∅ for all base classifiers in Algorithm 4. With using S′ as the
training set, Algorithm 1 has the training time complexity O(M ·(|S′|+β)) and the training
time complexity of AdaBoostPruned is O(M ·(|S′|+β)+M2·|V |), or O(M ·(|S′|+β)+M ·|V |)
if Algorithm 5 is used instead of Algorithm 4. Similarly, AdaCost, Asymmetric AdaBoost
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and AdaC (Section 2.3) can be applied the same procedure to obtain the best prefix of the
base classifier list.

Therefore, for the same M and a fixed TH (for instance, when TH is set manually), the
overall time complexity of LinearBoost and AdaBoostPruned is comparable, as the size of
the validation set V is typically much smaller than the size of the training set S′. If TH

is searched using grid search as a hyperparameter, the complexity of LinearBoost will be
multiplied by the number of grid search steps for TH. On the other hand, in the absence of
domain knowledge, AdaBoost’s cost sensitive variants, i.e., AdaCost, Asymmetric AdaBoost
and AdaC, also require a grid search to identify the optimal cost term. Therefore, the time
complexity of the corresponding AdaBoost’s cost sensitive variants will also be multiplied
by the number of grid search steps.

Finally, the prediction time complexity of LinearBoost, AdaBoost and AdaBoostPruned
are on the same level. All of them need to apply a sample sequentially to a list of base
classifiers. Each base classifier needs a constant time to get the prediction for the sample,
therefore, the prediction time complexity of these methods are relative to the number of
base classifiers in the list, i.e., O(M) is the worst case.
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Chapter 5

Experiments

We report the empirical evaluation of LinearBoost in this chapter. The experimental setup,
including datasets and baselines, is first described. Then, we present the key findings and
our analysis.

5.1 Experimental Setup

5.1.1 Datasets

Table 5.1 summarizes the eight datasets used: Fashion MNIST [43], NASA [1], EMNIST
Balanced [9], Letter, Synthetic [18], HAR [33], IDA and Shuttle. Letter, IDA and Shuttle
come from UCI Machine Learning Repository [11]. These datasets are heterogeneous in
terms of real and synthetic datasets, tabular, image and sequence datasets, different data
sizes, different feature numbers, different class numbers, balanced-class and imbalanced-
class distributions, which provide a comprehensive analysis of the strengths and limitations
of various ensemble algorithms in a range of real-world and artificial scenarios. The columns
“Train” and “Test” denote the sizes of training and testing samples given in the sources.
NASA and HAR do not have the pre-determined testing set so we use the stratified 5-
fold cross-validation to split the given dataset into training and testing sets and report the
means and standard errors of the 5-fold testing sets [2]. This cross-validation preserves the
percentage of samples for each class in each fold. If a validation set V is needed in a method
(for example, AdaBoostPruned and LinearBoost), we split the training set S into disjoint
S′ and V with the ratio 4:1. The column IR represents the imbalance ratio, defined as C

C′

where C and C ′ are the maximum and minimum sizes of classes in the number of samples.
These eight datasets are grouped into balanced-class datasets that have IR ≤ 1.5 and
imbalanced-class datasets that have IR > 1.5. The datasets are detailed in the Appendix.

5.1.2 Baselines

We compare LinearBoost with AdaBoost and its variants. AdaBoost presented in Algorithm
1 is based on SAMME. In our experiments, we use SAMME.R instead of SAMME because
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Table 5.1: Dataset Summary
Dataset Data Type Class Feature Train Test IR

Balanced-class Dataset
Fashion MNITS Image 10 28x28 60,000 10,000 1.00

NASA Tabular 2 8 12,220 - 1.00
EMNIST Balanced Image 47 28x28 112,800 18,800 1.00

Letter Tabular 26 16 16,000 4,000 1.24
Imbalanced-class Dataset

Synthetic Tabular 3 10 12,000 1,333 5.41
HAR Sequence 18 1800 20,750 - 8.41
IDA Tabular 2 162 60,000 16,000 59.0

Shuttle Tabular 5 9 43,483 14,494 883

SAMME.R is the default choice in [30] and performs somewhat better than SAMME and
converges faster. Therefore, “AdaBoost” is based on SAMME.R. Also, we additionally com-
pare with AdaBoost’s variants which are designed for handling imbalanced-class data, i.e.,
AdaCost, AdaC2 (AdaC variation), and Asymmetric AdaBoost. For all baselines, we in-
clude the pruned versions given by the optimal prefix of the full classifier list as discussed
in Section 4.3. We denote them by AdaBoostPruned, AdaCostPruned, AdaC2Pruned, and
AsymmetricPruned. We set M = 20 iterations for LinearBoost and all baselines. Finally,
we include T (1), which represents the single classifier learned by Alg without boosting in
our notation LinearBoost(Alg, Data, M), to study the performance gain of multi-iteration
boosting methods.

All implementations are coded with Python. AdaBoost, AdaCost, Asymmetric AdaBoost
and AdaC2 implementation were transferred from Scikit-learn [30] and imbalanced-ensemble
[25] Python library. We use the imbalanced-ensemble Python library’s default cost term
setting for AdaCost and Asymmetric AdaBoost. The library did not provide the imple-
mentation of AdaC series and we implemented AdaC2 by modifying the implementation of
AdaCost, and we set each class’ cost term to the total number of samples divided by the
number of samples in the class. All experiments were conducted on a Windows machine
with a processor of 2.8 GHz Intel® Core™ i7-7700HQ CPU (4 Core), 16GB RAM, 1TB SSD
storage and an NVIDIA® GeForce® GTX 1060 GPU (6GB).

5.1.3 Training Details for Base Classifiers

The base classifier training is implemented with the backend of PyTorch [29]. Table 5.2 lists
the data type, the model structure T of the base classifier and the optimizer’s learning rate
for each dataset. We use the mini-batches of size 128 for training the base classifier T (m).
For each mini-batch, the Adam optimizer is used to update T (m)’s parameters [21] with
the learning rates from Table 5.2 and the identical weight decay (5e-4) for each dataset.
The current training epoch is complete when all the mini-batches have been used for model
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Table 5.2: Model Structures and Hyperparameters Used for Each Dataset
Dataset Data Type Model T Learning Rate

Fashion MNIST Image CNN 1e-4
NASA Tabular MLP 1e-2

EMNIST Balanced Image CNN 1e-4
Letter Tabular MLP 1e-2

Synthetic Tabular MLP 1e-2
HAR Sequence RNN 1e-3
IDA Tabular MLP 1e-2

Shuttle Tabular MLP 1e-2

parameter updating. At iteration m of a boosting method, we train the base classifier T (m)

for the maximum 100 epochs using early stopping with a patience p [12]. At epoch e, if the
loss on the validation set V (for methods that do not use V like AdaBoost, the loss will
be the training set S loss) at the epoch e − p is the lowest among all e epochs (p = 5 in
our experiment), we use the base classifier learned at epoch e− p as T (m). Intuitively, this
base classifier has the lowest loss up to its epoch and this loss cannot be further reduced by
the next p consecutive epochs. This early stopping applies to all methods for fitting a base
classifier T (m).

The different types of model structures are selected based on different data types of
datasets and classification tasks. The details are explained below.

CNN. The CNN model structure is based on the submitted benchmarks in the Fash-
ion MNIST dataset repository1 and we use the same CNN model structure for the image
datasets, i.e., Fashion MNIST and EMNIST Balanced. Before applying the image samples
to CNN model, the image pixel values are normalized as suggested in the repository bench-
mark2. The CNN model has the first convolution layer consisting of 32 3x3 filters with 1
padding and 2x2 max-pooling with a stride of 2, the second convolution layer consisting of
64 3x3 filters and 2x2 max-pooling, 1 fully connected hidden layer with 512 neurons, and
the output layer with 10 neurons for Fashion MNIST or 47 neurons for EMNIST Balanced.
In each convolution layer, we apply Batch Normalization [19], ReLU activation [26] and
dropout [35]. ReLU activation and dropout are applied in the fully connected hidden layer.
To improve the generalization of the first base classifier T (1), we apply the data augmenta-
tion [45] on the first iteration. The specific data augmentation settings for each dataset are
as follows: taking a random cropping from images and padding with 4 pixels on 4 sides for
both Fashion MNIST and EMNIST Balanced; images in Fashion MNIST are randomly per-
formed horizontal flipping and images in EMNIST Balanced are randomly rotated within

1https://github.com/zalandoresearch/fashion-mnist

2https://github.com/Queequeg92/DualPathNet/blob/master/train_fashion_mnist.py
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25 degrees. The optimizer learning rate for training the first base classifier T (1) is initially
set to 5e-4 and dropped to 1e-4 for the remaining iterations.

MLP. Multilayer Perceptron (MLP) is used for the tabular datasets. The MLP model
consists of one input layer, two hidden layers of 70 and 50 neurons, and one output layer.
Between each layer, the ReLU activation function is used. This MLP model structure was
used in [32] as the base classifier of AdaBoost on the Letter dataset. We use the same MLP
structure for all tabular datasets. All tabular sample feature values are pre-processed using
the standard scaler3.

RNN. We follow [27] to build a simple Recurrent Neural Network (RNN) for the se-
quence data HAR. The RNN model has 1 LSTM layer with an input size of 1800 and a
hidden layer size of 128. The last layer consists of 18 output neurons. Between the LSTM
and output layer, dropout is used. The sequence samples are applied Fast Fourier Transform
[10] before applied to the RNN model as [33] suggests.

5.2 Results

5.2.1 Analysis on AdaBoost

Theorem 2 gives the convergence property of AdaBoost that the generalization error de-
creases as the number of iterations M increases, and we pointed out that this property
is of only theoretical value because in practice the required condition on VC-dimension
and data size may not hold. In this section, we like to study the impact of M on the
performance, i.e., Macro F1 score (defined in Section 2.5), using the eight datasets. To
this end, we compare AdaBoost and AdaBoostPruned as boosting strategies, denoted by
AdaBoost(Alg, Data, M) and AdaBoostPruned(Alg, Data, M), where Alg is the neural
network learning algorithm for training a base classifier defined in Section 5.1.3 and Data is
a dataset defined in Section 5.1.1. AdaBoost(Alg, Data, M) returns the full list of M base
classifiers, whereas AdaBoostPruned(Alg, Data, M) returns an optimal prefix of the full
list using a validation set V reserved from the training data as described in Section 4.3, i.e.,
AdaBoost uses S as Data to train the ensemble classifier, whereas AdaBoostPruned splits
S into S′ and V and trains the ensemble classifier using S′ as Data.

Figure 5.1 shows the Macro F1 of AdaBoost and AdaBoostPruned on the eight datasets.
For every m ≤ M (M is the largest value shown on x-axis), the green solid line plots
AdaBoost’s Macro F1 on the training set and the green dash line plots the Macro F1 on
the testing set when the first m base classifiers of AdaBoost are used for prediction. The
red dash line displays the testing Macro F1 of AdaBoostPruned. AdaBoostPruned is not
necessarily the highest point of AdaBoost because its training set is smaller than that of

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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AdaBoost due to reserving a validation set V for finding the optimal prefix of the classifier
list.

The first finding is that AdaBoost’s training performance does not always increase as the
number of iterations increases; in other words, the training error does not always decrease.
Another finding is that, except for Shuttle, AdaBoostPruned achieves a better performance
on the testing set compared with AdaBoost’s performance at the final iteration M . This
suggests that using more training data in AdaBoost (i.e., S instead of S′ as in AdaBoost-
Pruned) does not significantly improve the testing Macro F1 in most cases compared with
AdaBoostPruned and AdaBoost can not identify which iteration achieves the best testing
Macro F1 as it does not have a validation set V to measure the generalization performance.
In contrast, after reserving a fraction of training data as a validation set V , AdaBoost-
Pruned can identify the best first m base classifiers which achieve the nearly best testing
Macro F1 of AdaBoost over 1 ≤ m ≤M . Therefore, using a validation set to determine the
optimal iteration number is necessary for AdaBoost.

Based on this study, AdaBoostPruned achieves better testing performance than Ad-
aBoost in most cases. In the rest of our evaluation, we consider only the pruned versions of
AdaBoost and its variants, i.e., by AdaBoostPruned, AdaCostPruned, AdaC2Pruned, and
AsymmetricPruned.

5.2.2 Main Results

Below, all results are based on the testing set and we employ both transfer learning and
weight resetting for LinearBoost (see Section 3.1).

Table 5.3 shows the performance of all methods on the eight datasets. For NASA and
HAR, we report the means and standard errors of the 5-fold cross validation. For the other
datasets, we report the F1 scores on the given testing set. The best F1 scores are highlighted
in bold-face. Across all datasets and the two F1 metrics, LinearBoost outperforms all base-
lines. The Wilcoxon signed-rank test [42] (one-sided) confirms that these improvements by
LinearBoost over AdaBoostPruned on the population of the eight datasets are statistically
significant at 5% significance level (with p-value = 0.004 for both metrics) [41]. Similarly, the
improvements of LinearBoost over AdaCostPruned, AdaC2Pruned and AsymmetricPruned
are statistically significant (with p-value = 0.004 for both metrics). The main findings are
as follows.

First, LinearBoost performs the best in both Macro F1 and Weighted F1 across the
four balanced-class datasets (i.e., Fashion MNIST, NASA, EMNIST Balanced and Letter).
LinearBoost’s improvements over T (1) are (2.8%, 2.8%) for Macro F1 and Weighted F1
respectively (averaged over the four datasets), whereas such improvements by AdaBoost-
Pruned are only (0.21%, 0.21%). As expected, AdaCostPruned, AdaC2Pruned, and Asym-
metricPruned have similar improvements as AdaBoostPruned due to the balanced-class
distribution.
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Figure 5.1: Macro F1 of AdaBoost and AdaBoostPruned
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Table 5.3: F1 Scores of Eight Datasets
Method Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1

Fashion MNIST NASA EMNIST Balanced Letter
T (1) 0.8835 0.8835 0.6368 ± 0.0018 0.6369 ± 0.0019 0.8548 0.8548 0.9249 0.9250

AdaBoostPruned 0.8939 0.8939 0.6348 ± 0.0012 0.6347 ± 0.0012 0.8548 0.8548 0.9249 0.9250
AdaCostPruned 0.8997 0.8997 0.6341 ± 0.0024 0.6341 ± 0.0024 0.8548 0.8548 0.9249 0.9250
AdaC2Pruned 0.9023 0.9023 0.6357 ± 0.0016 0.6356 ± 0.0016 0.8548 0.8548 0.9249 0.9250

AsymmetricPruned 0.8941 0.8941 0.6360 ± 0.0015 0.6360 ± 0.0015 0.8548 0.8548 0.9249 0.9250
LinearBoost 0.9318 0.9318 0.6454 ± 0.0047 0.6455 ± 0.0046 0.8839 0.8839 0.9498 0.9499

Synthetic HAR IDA Shuttle
T (1) 0.8560 0.9342 0.8208 ± 0.0292 0.8162 ± 0.0293 0.8311 0.9858 0.7886 0.9976

AdaBoostPruned 0.8972 0.9477 0.8208 ± 0.0292 0.8162 ± 0.0293 0.8311 0.9858 0.9019 0.9983
AdaCostPruned 0.9248 0.9644 0.8991 ± 0.0048 0.9110 ± 0.0058 0.8815 0.9893 0.7542 0.9975
AdaC2Pruned 0.8560 0.9342 0.8208 ± 0.0292 0.8162 ± 0.0293 0.8311 0.9858 0.8831 0.9969

AsymmetricPruned 0.9056 0.9516 0.8208 ± 0.0292 0.8162 ± 0.0293 0.8323 0.9860 0.9414 0.9989
LinearBoost 0.9322 0.9684 0.9113 ± 0.0018 0.9221 ± 0.0019 0.8924 0.9906 0.9451 0.9991

Second, LinearBoost performs the best in both Macro F1 and Weighted F1 across the
four imbalanced-class datasets as well (i.e., Synthetic, HAR, IDA, and Shuttle). Linear-
Boost’s improvements over T (1) are (9.6%, 3.7%) on average for Macro F1 and Weighted F1.
In contrast, such improvements over T (1) by the four baselines are: AdaBoostPruned (3.9%,
0.4%), AdaCostPruned (4.1%, 3.2%), AdaC2Pruned (2.4%, 0%) and AsymmetricPruned
(5.1%, 0.5%). LinearBoost has a bigger increase in Macro F1 which is due to the fact that
eliminated samples in an iteration tend to be from a larger class that can easily exceed
the precision threshold TH. This can balance the class distribution which allows subsequent
training iterations to concentrate on the learning of samples from a smaller class.

Third, in the four imbalanced-class datasets, we see that AdaCostPruned, AdaC2Pruned,
and Asymmetric AdaBoostPruned do not always outperform AdaBoostPruned. This high-
lights the sensitivity of the cost term for these methods, and the choice of the cost term is
not always clear.

Figure 5.2 plots the training and testing Macro F1 changing with different M for Linear-
Boost and the best baseline (i.e., the baseline which achieves the best Macro F1 in Table 5.3
among AdaBoostPruned, AdaCostPruned, AdaC2Pruned and AsymmetricPruned at each
dataset) on the eight datasets. As the figure shows, LinearBoost achieves a better training
performance and generalization performance compared with the best baseline in all eight
datasets. It is worth noting that the training and testing Macro F1 lines of both methods
become flat after some M , this is because the Macro F1 score on the validation set V is
decreasing after that point, therefore, the pruning algorithm is early stopped (Algorithm
4 and Algorithm 5). In EMNIST Balanced and Letter datasets, the training and testing
Macro F1 lines of the best baseline are flat after the first iteration, which shows that the
Macro F1 score on the validation set V is decreasing after the first iteration, so the pruning
algorithm returns the base classifier list with the first base classifier only as it achieves the
best Macro F1 on V .

Table 5.4 displays the testing F1 score for each class of the four imbalanced-class
datasets, sorted by the class size in the testing set. We include T (1), LinearBoost, and
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Figure 5.2: Macro F1 of the Best Baseline and LinearBoost
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Table 5.4: F1 Scores per Class of the Four Imbalanced-class Datasets
(a) Synthetic

Method\Class Class 3 Class 1 Class 2
T (1) 0.9610 0.9728 0.6344

AdaCostPruned 0.9792 0.9823 0.8127
LinearBoost 0.9815 0.9853 0.8299

Class size 693 512 128

(b) HAR
Method\Class Stand-sit Stand Sit Talk-stand Lay Talk-sit

T (1) 0.9443 ± 0.071 0.7311 ± 0.0503 0.6050 ± 0.0951 0.9318 ± 0.0064 0.6035 ± 0.0567 0.8106 ± 0.0299
AdaCostPruned 0.9632 ± 0.0043 0.8931 ± 0.0086 0.8507 ± 0.0255 0.9495 ± 0.0016 0.8694 ± 0.0354 0.9161 ± 0.0044

LinearBoost 0.9576 ± 0.0076 0.9161 ± 0.0053 0.9014 ± 0.0082 0.9472 ± 0.0038 0.9333 ± 0.0078 0.9197 ± 0.0018
Class size 436 ± 4 377 ± 10 375 ± 6 373 ± 5 363 ± 5 359 ± 11

Method\Class Lay-stand Pick Sit-up Walk Stair-up Stair-down
T (1) 0.9333 ± 0.0098 0.8670 ± 0.0187 0.8903 ± 0.0188 0.8205 ± 0.0267 0.7522 ± 0.0429 0.7888 ± 0.0457

AdaCostPruned 0.9562 ± 0.0026 0.9079 ± 0.0080 0.9350 ± 0.0075 0.8875 ± 0.0030 0.8565 ± 0.0148 0.8872 ± 0.0071
LinearBoost 0.9444 ± 0.0061 0.8967 ± 0.0161 0.9145 ± 0.0181 0.8883 ± 0.0091 0.8863 ± 0.0084 0.8856 ± 0.0095

Class size 352 ± 3 267 ± 5 201 ± 4 176 ± 5 160 ± 6 156 ± 4
Method\Class Jump Run Push-up Table-tennis Walk-backward Walk-circle

T (1) 0.9569 ± 0.0057 0.9498 ± 0.0113 0.9226 ± 0.0159 0.8497 ± 0.0370 0.7095 ± 0.0662 0.7069 ± 0.0476
AdaCostPruned 0.9768 ± 0.0052 0.9672 ± 0.0050 0.9192 ± 0.0117 0.9208 ± 0.0105 0.8200 ± 0.0173 0.7078 ± 0.0311

LinearBoost 0.9624 ± 0.0048 0.9573 ± 0.0099 0.9393 ± 0.0096 0.9159 ± 0.0041 0.8389 ± 0.0103 0.7982 ± 0.0156
Class size 133 ± 2 119 ± 4 96 ± 4 92 ± 4 63 ± 2 52 ± 3

(c) IDA
Method\Class Negative Positive

T (1) 0.9934 0.6688
AdaCostPruned 0.9946 0.7684

LinearBoost 0.9955 0.7893
Class size 15,625 375

(d) Shuttle
Method\Class Rad Flow Bypass High Fpv Open Fpv Close

T (1) 0.9992 0.9986 0.9963 0.8060 0.1429
AsymmetricPruned 0.9995 0.9995 0.9994 0.8286 0.8800

LinearBoost 0.9995 0.9993 0.9994 0.9091 0.8182
Class size 11,478 2,155 809 39 13

the best baseline in terms of Macro F1 (Table 5.3) for each dataset. The bold-face denotes
the best F1 score for each class.

For Synthetic, LinearBoost achieves the best F1 score across all three classes, with the
greatest F1 improvement above T (1) coming from Class 2 which has the smallest class size.
AdaCostPruned has the same trend that all classes get improved but the improvements are
not larger than LinearBoost’s.

For HAR, LinearBoost performs the best in 9 of the 18 classes, and none of LinearBoost’s
F1 scores is lower than T (1)’s. In contrast, AdaCostPruned has one class (Push-up) whose
F1 score is slightly lower than T (1)’s F1. LinearBoost shows more improvements on the
class whose class size is below the average, i.e., minority class. Even for the smallest class,
Walk-circle, which only accounts for 1.3% of data, LinearBoost improves the F1 score by
9.1% over T (1), but AdaCostPruned only improves it by 0.1%.

IDA dataset result shows the same pattern as Synthetic dataset. LinearBoost boosts the
T (1)’s F1 scores for all classes more than AdaCostPruned’s and the larger F1 improvement
comes from the class with the smallest class size (Positive).
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Table 5.5: Precision and the Size of Confident Prediction Produced by LinearBoost
Dataset Threshold TH Confident % Precision

Fashion MNIST 0.9720 47.45 0.9810
NASA 1.00 ± 0.0 0 ± 0.0 -

EMNIST Balanced 1.00 3.84 0.9931
Letter 0.9817 33.20 0.9646

Synthetic 1.00 0 -
HAR 0.9174 ± 0.0121 77.89 ± 6.96 0.9409 ± 0.0055
IDA 0.9950 95.33 0.9982

Shuttle 1.00 84.70 0.9999

For Shuttle, T (1), AsymmetricPruned, and LinearBoost have comparable F1 scores for
the three biggest classes. In the two smallest classes, AdaBoostPruned has a 2.3% F1 im-
provement on Fpv Open and 73.7% improvement on Fpv Close’s F1, and LinearBoost’s
improvements are 10.3% on Fpv Open and 67.5% on Fpv Close.

In summary, for imbalanced-class datasets, LinearBoost improves or maintains T (1)’s
F1 scores on majority classes, whereas minority classes have seen greater improvements. In
particular, the average F1 improvements for classes above and below the average class size
are 8.5% and 10.9%, respectively. In contrast, the best baseline of each dataset increases
the F1 of classes with class sizes above the average by 7.6% (on average), while the F1
improvements of classes with class sizes below the average are 9.8% (on average), which are
less than LinearBoost’s improvements. This study shows that LinearBoost can emphasize
under-performed samples, which are often from minority classes, while maintaining the
performance of well-performed samples, which are typically from majority classes.

5.3 Analysis on LinearBoost

In this part, we examine the quality of confident prediction, the various settings and the
generality of LinearBoost.

5.3.1 Quality of Confident Prediction

A sample prediction is confident if its predicted class k has a precision of at least TH on
the validation set (i.e., k ∈ C(m), see Line 5-7 of Algorithm 2). This TH is enforced on
the validation set. It remains to see whether a similar performance is enforced on testing
samples. Table 5.5 displays the TH (determined using grid search on the validation set),
the proportion of testing samples with confident predictions (column “Confident %”), and
the precision of such samples (column “Precision”). As shown in the table, the precision
of testing samples with confident predictions approaches or exceeds the TH threshold. The
proportion of such testing samples depends on datasets. NASA and Synthetic do not have
samples with confident predictions since no class is found to achieve the TH = 100% during
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Table 5.6: LinearBoost’s F1 Scores of Different Settings
Method Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1

Fashion MNIST NASA EMNIST Balanced Letter
T (1) 0.8835 0.8835 0.6368 ± 0.0018 0.6367 ± 0.0019 0.8548 0.8548 0.9249 0.9250

AdaBoostPruned 0.8939 0.8939 0.6348 ± 0.0012 0.6347 ± 0.0012 0.8548 0.8548 0.9249 0.9250
*TR 0.9334 0.9334 0.6503 ± 0.0045 0.6504 ± 0.0045 0.8854 0.8854 0.9492 0.9493
W*R 0.9217 0.9217 0.6369 ± 0.0018 0.6369 ± 0.0019 0.8720 0.8720 0.9435 0.9435
WT* 0.9079 0.9079 0.6369 ± 0.0023 0.6369 ± 0.0023 0.8548 0.8548 0.9234 0.9235
WTR 0.9318 0.9318 0.6454 ± 0.0047 0.6455 ± 0.0046 0.8839 0.8839 0.9498 0.9499

Synthetic HAR IDA Shuttle
T (1) 0.8560 0.9342 0.8208 ± 0.0292 0.8162 ± 0.0293 0.8311 0.9858 0.7886 0.9976

AdaBoostPruned 0.8972 0.9477 0.8208 ± 0.0292 0.8162 ± 0.0293 0.8311 0.9858 0.9019 0.9983
*TR 0.9184 0.9625 0.9100 ± 0.0052 0.9193 ± 0.0054 0.8732 0.9888 0.9428 0.9989
W*R 0.9047 0.9554 0.9064 ± 0.0093 0.9107 ± 0.0106 0.8786 0.9892 0.7886 0.9976
WT* 0.8925 0.9488 0.8811 ± 0.0072 0.8964 ± 0.0076 0.8741 0.9889 0.9649 0.9992
WTR 0.9322 0.9684 0.9113 ± 0.0018 0.9221 ± 0.0019 0.8924 0.9906 0.9451 0.9991

training. Even in this situation, LinearBoost still improves the base classifier T (1)’s per-
formance (see Table 5.3). See the discussion in Section 3.1, Remove samples having
confident predictions.

5.3.2 Ablation Studies

In this section, we study the effectiveness of the three proposed techniques for LinearBoost:
per-class weighting scheme (W), transfer learning (T), and weight resetting (R) (proposed
in Section 3.1) for LinearBoost. “WTR” denotes employing all three techniques, and *
denotes disabling a technique. For example, “*TR” means the setting that transfer learning
and weight resetting are enabled but the per-class weighting is disabled; in this case, the
original AdaBoost weighting (Algorithm 1 Line 4-6) is used. Table 5.6 shows the results (on
the testing set) produced by disabling one technique at a time, i.e., “*TR”, “W*R”, “WT*”,
plus the full setting “WTR”. The best F1 scores and the second-best F1 scores within 0.5%
of the best F1 scores are highlighted in bold-face. The table also includes the performance
of T (1) and AdaBoostPruned for comparison.

We see that the full setting “WTR” achieves the best or the second best performance in
most cases. “WT*” and “W*R” have the lowest average Macro F1 and Weighted F1 across
all datasets. This demonstrates that the base classifier training with a good initialization
(enabled by transfer learning) and periodically returning to uniform weight for all classes
(enabled by weight resetting) are crucial for LinearBoost to generalize well on unseen sam-
ples. In details, the average Macro F1 and Weighted F1 of “WT*” on the eight datasets
are 0.8670 and 0.8946 respectively, and for “W*R”, these averages are 0.8566 and 0.9034.
“WTR” achieves 0.8865 Macro F1 and 0.9114 Weighted F1 on average, which are higher
than “WT*” and “W*R” settings. The Wilcoxon signed-rank tests (one-sided) confirm that
“WTR” Macro F1 and Weighted F1 improvements on the eight datasets are significantly
larger than “WT*” and “W*R” improvements at 5% significance level: the p-value are 0.020
and 0.008 when comparing “WTR” Macro F1 and Weighted F1 improvements with “WT*”
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Table 5.7: IDA T (1)’s Validation Set Confusion Matrix
True

Negative Positive

Predicted Negative 11,795 82
Positive 21 102

respectively; the corresponding p-value are 0.004 and 0.004 for comparison between “WTR”
and “W*R” on Macro F1 and Weighted F1 improvements.

“WTR” Macro F1 and Weighted F1 improvements on all eight datasets are not sig-
nificantly larger than “*TR” (with p-value > 0.05 in both metrics). “WTR” and “*TR”
achieves similar performance on the four balanced-class datasets. This suggests that for
class-balanced data, using AdaBoost’s weighting scheme in LinearBoost is sufficient. How-
ever, on the four imbalanced-class datasets, “WTR” achieves 0.9203 Macro F1 on average,
which is 1% higher than “*TR” Macro F1 (0.9111 on average). To understand why, let’s
take the imbalanced-class IDA dataset as an example. Table 5.7 shows IDA T (1)’s validation
set confusion matrix. Note that AdaBoost’s weighting will assign the same α(1) = 4.75 to
both False Positive and False Negative samples. Since the Negative class (also the majority
class) has a larger precision, LinearBoost’s per-class weighting will assign a larger weight
α

(1)
neg = 4.97 to False Negative samples (i.e., Positive samples misclassified as the Negative

class) and assign a smaller α
(1)
pos = 1.58 to False Positive samples. The larger weight assigned

to False Negative samples helps correctly classify such samples in the next iteration, thus,
increasing the precision of the Negative class. At the same time, correctly classifying these
high weight Positive samples leads to an improvement in F1 score of the Positive class.

In summary, all of per-class weighting, transfer learning and weight resetting contribute
to improving the LinearBoost’s generalization performance on unseen data.

5.3.3 LinearBoost Applied to Other Base Classifiers

LinearBoost is a general methodology that can be applied to any base classifier, by calling
such learning algorithms as black-boxes, to boost its classification performance. In Section
5.2.2, we have applied LinearBoost to base classifiers defined by different types of neural
networks, e.g., CNN, MLP and RNN. To further demonstrate this generality of LinearBoost,
we apply LinearBoost to two other different types of base classifiers, i.e., decision trees and
XGBoost as base classifiers T (m). XGBoost is the state-of-the-art ensemble method which
uses the decision tree as its base classifier (Section 2.4). Table 5.8 shows the hyperparameter
settings of base classifiers T (m). The decision tree has the hyperparameter “max_depth”
representing the maximum tree depth of the decision tree. XGBoost has two hyperparam-
eters: “max_depth” represents the maximum tree depth of the decision tree used by each
XGBoost ensemble classifier, and “gamma” represents a regularization parameter used to
control the leaf splitting of such decision tree. The threshold TH is determined by grid
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Table 5.8: Hyperparameters of Decision Tree and XGBoost as Base Classifiers T (m).
Hyperparameter Fashion MNIST NASA EMNIST Balanced Letter Synthetic HAR IDA Shuttle

Decision Tree T (m)

max_depth 7 10 10 5 13 7 3 1
XGBoost T (m)

max_depth 2 6 2 6 3 2 3 1
gamma 5 2 5 2 5 15 5 2

Table 5.9: F1 Scores When Decision Tree are Base Classifiers T (m)
Method Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1

Fashion MNIST NASA EMNIST Balanced Letter
T (1) 0.7592 0.7592 0.7726 ± 0.0041 0.7727 ± 0.0041 0.5307 0.5307 0.3304 0.3319

AdaBoostPruned 0.7592 0.7592 0.7852 ± 0.0034 0.7854 ± 0.0034 0.5307 0.5307 0.5982 0.6008
AdaCostPruned 0.7592 0.7592 0.7840 ± 0.0032 0.7841 ± 0.0032 0.5307 0.5307 0.6396 0.6419
AdaC2Pruned 0.7592 0.7592 0.7862 ± 0.0033 0.7863 ± 0.0033 0.5307 0.5307 0.6085 0.6091

AsymmetricPruned 0.7592 0.7592 0.7858 ± 0.0037 0.7859 ± 0.0037 0.5307 0.5307 0.5573 0.5581
LinearBoost 0.8234 0.8234 0.7899 ± 0.0055 0.7899 ± 0.0055 0.5809 0.5809 0.7184 0.7184

Synthetic HAR IDA Shuttle
T (1) 0.5495 0.7175 0.6451 ± 0.0054 0.7193 ± 0.0028 0.7944 0.9832 0.3291 0.8561

AdaBoostPruned 0.6107 0.7775 0.6488 ± 0.0075 0.7015 ± 0.0162 0.8606 0.9879 0.7131 0.9302
AdaCostPruned 0.6236 0.8147 0.7002 ± 0.0029 0.7717 ± 0.0029 0.8418 0.9858 0.3291 0.8561
AdaC2Pruned 0.6267 0.7576 0.6451 ± 0.0054 0.7193 ± 0.0028 0.8077 0.9795 0.5867 0.7484

AsymmetricPruned 0.6094 0.7711 0.6548 ± 0.0091 0.7050 ± 0.0070 0.8668 0.9879 0.8846 0.9312
LinearBoost 0.6094 0.7945 0.7934 ± 0.0203 0.8268 ± 0.0138 0.8601 0.9881 0.9973 0.9999

Table 5.10: F1 Scores When XGBoost are Base Classifiers T (m)
Method Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1 Macro F1 Weighted F1

Fashion MNIST NASA EMNIST Balanced Letter
T (1) 0.8736 0.8736 0.7742 ± 0.0043 0.7742 ± 0.0043 0.7205 0.7205 0.9052 0.9054

AdaBoostPruned 0.8736 0.8736 0.7825 ± 0.0044 0.7825 ± 0.0044 0.7205 0.7205 0.9052 0.9054
AdaCostPruned 0.8736 0.8736 0.7828 ± 0.0042 0.7828 ± 0.0042 0.7205 0.7205 0.9052 0.9054
AdaC2Pruned 0.8736 0.8736 0.7830 ± 0.0044 0.7831 ± 0.0044 0.7205 0.7205 0.9052 0.9054

AsymmetricPruned 0.8736 0.8736 0.7813 ± 0.0049 0.7813 ± 0.0049 0.7205 0.7205 0.9052 0.9054
LinearBoost 0.8822 0.8822 0.7819 ± 0.0029 0.7819 ± 0.0029 0.7319 0.7319 0.9225 0.9227

Synthetic HAR IDA Shuttle
T (1) 0.6320 0.8563 0.8832 ± 0.0008 0.9018 ± 0.0019 0.8756 0.9894 0.9845 0.9997

AdaBoostPruned 0.6795 0.8709 0.8832 ± 0.0008 0.9018 ± 0.0019 0.8814 0.9899 0.9845 0.9997
AdaCostPruned 0.6320 0.8563 0.8832 ± 0.0008 0.9018 ± 0.0019 0.8808 0.9899 0.9845 0.9997
AdaC2Pruned 0.7961 0.9108 0.8870 ± 0.0014 0.9027 ± 0.0017 0.8934 0.9905 0.9845 0.9997

AsymmetricPruned 0.6984 0.8779 0.8832 ± 0.0008 0.9018 ± 0.0019 0.8786 0.9898 0.9845 0.9997
LinearBoost 0.8185 0.9172 0.9081 ± 0.0017 0.9221 ± 0.0014 0.8998 0.9909 0.9920 0.9999

search. As transfer learning is not commonly used in a tree-based classifier, we disable
transfer learning. All methods have the same number of iterations M = 25.

Tables 5.9 and 5.10 show the results when base classifiers are decision trees and XGBoost,
respectively. The best F1 scores are highlighted in bold-face. As the tables show, LinearBoost
improves Macro F1 and Weighted F1 scores of T (1) in all datasets. For decision trees as T (m)

(Table 5.9), LinearBoost performs the best in six out of eight datasets, and for XGBoost as
T (m) (Table 5.10), LinearBoost performs the best in seven out of eight datasets.

It is true that LinearBoost with decision trees as base classifiers T (m) has worse perfor-
mance than XGBoost, i.e., Table 5.9 LinearBoost vs Table 5.10 XGBoost T (1)’s performance.
However, LinearBoost can improve XGBoost by treating the latter as base classifiers, i.e.,
Table 5.10 LinearBoost vs T (1). This is the advantage of LinearBoost being agnostic to
the learning algorithm for base classifiers (by treating such algorithms as a black-box). In
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Table 5.11: The p-value of the Wilcoxon Signed-rank Tests (one-sided) for Comparing Lin-
earBoost’s Macro F1 and Weighted F1 with Those of the Four Baselines

T (m) Metric AdaBoostPruned AdaCostPruned AdaC2Pruned AsymmetricPruned

Decision Tree Macro F1 0.020 0.012 0.012 0.020
Weighted F1 0.004 0.020 0.004 0.004

XGBoost Macro F1 0.008 0.008 0.008 0.004
Weighted F1 0.012 0.012 0.020 0.004

contrast, XGBoost cannot apply LinearBoost as its base classifiers because XGBoost is
designed specifically for tree base classifiers only.

Table 5.11 shows the p-value of the Wilcoxon signed-rank tests (one-sided) for comparing
LinearBoost’s Macro F1 and Weighted F1 with those of AdaBoostPruned, AdaCostPruned,
AdaC2Pruned and AsymmetricPruned, with the population of the eight datasets. At 5%
significance level, all p-value are smaller than 0.05, suggesting that LinearBoost’s improve-
ments on both F1 metrics over these four baselines are statistically significant, for both
decision trees as T (m) and XGBoost as T (m). This study suggests that LinearBoost can be
applied with different types of base classifiers to improve their performance.
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Chapter 6

Conclusions and Future Works

A single classifier may not work well for all classes in a dataset. Class competition and
uneven class distribution may explain bad performance in certain classes. In this situation,
the ensemble method which learns multiple base classifiers and aggregates their predictions
can produce a better result than the single base classifier. The traditional and wildly used
ensemble method, AdaBoost, reweights samples during each iteration, giving more weight to
samples that were incorrectly classified, and then aggregates all base classifiers to produce
a final prediction for each sample. This method pays more attention to samples that were
incorrectly classified. However, this kind of reweighting scheme results in poor classifiers for
samples that have previously been accurately classified.

Therefore, if a sample is likely to be properly classified, we should use the current
prediction rather than the aggregating one as the final result. LinearBoost is the name of
the new ensemble algorithm that we propose. The plan is to identify the predictions of
samples that have been accurately predicted and lock in these predictions in the current
iteration, which can be done by using a validation set V and a precision threshold TH. If a
class k’s precision calculated on V is not less than TH in the current iteration, LinearBoost
considers all samples which are predicted as class k in the current iteration have confident
predictions, as LinearBoost has at least TH confidence that these predictions are correct.
Once the samples are considered as having confident predictions, they will be removed
from the training process so that LinearBoost can concentrate on other remaining hard-to-
classify samples. As the samples with confident predictions are removed during the training,
LinearBoost applies transfer learning instead of random initializing the base classifier’s
parameters, which uses the previous fine-tuned base classifier’s parameters for initialization.
With a good starting point, the base classifier training can converge quickly and require
less data to achieve satisfactory performance. In order to maximize the number of classes
with confident predictions, LinearBoost computes the per-class weighting which can direct
the training process to firstly boost the class whose precision is closer to TH, i.e., easy to
pass TH. At the same time, LinearBoost can emphasize the samples from minority classes
during the training as LinearBoost’s per-class weighting scheme pays more attention to
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them. However, LinearBoost’s per-class weighting scheme can not boost all classes at the
same time as it prefers the classes with high precision, therefore, LinearBoost will bring
the less-attended classes back to the same level by applying weight resetting. For the two
key hyperparameters, the number of iterations M and precision threshold TH, LinearBoost
provides a pruning algorithm to find out M such that achieving the best generalization
performance and an automatic way to discover the threshold TH.

In the experiment, we compare LinearBoost’s performance with AdaBoost and Ad-
aBoost’s variants which are designed for imbalanced-class distribution. The results show
that LinearBoost has better performance compared with AdaBoost and its variants, and it
is able to improve the performance of samples that are poorly-predicted meanwhile main-
taining the performance of samples that are well-predicted, according to empirical experi-
ments conducted on datasets with a variety of features. Also, we demonstrate the prediction
quality on unseen testing samples with confident predictions is actually high and Linear-
Boost is a general methodology which can work with any kind of base classifiers, including
the state-of-the-art ensemble methods as the base classifiers. The ablation study shows that
the combination of per-class weighting, transfer learning and weight resetting can achieve
the best performance in most cases. For the time complexity, LinearBoost is comparable
with AdaBoost and its variants.

Future Works. The core of the ensemble method proposed in this thesis is to identify
the sample predictions with high confidence of being correct in each iteration and “lock in”
the predictions to avoid the potential negative effect from later iterations. In future work, we
can extend this idea to optimize other ensemble methods. For example, in GradientBoost,
the predicted value is updated in the direction of the negative gradient at each iteration. We
can set a high threshold for the predicted value and once it reaches the threshold, we have
high confidence that the predicted value is correct. We can “lock in” the predicted value
and remove the sample in the next procedure. Therefore, the high quality of the sample
prediction is maintained.

To get an optimal threshold TH automatically, we need to perform a grid search and
this is time consuming. Future work includes designing a theoretical way to determine the
optimal TH that requires less time complexity or improving LinearBoost algorithm so that
it does not require TH and M as the hyperparameter searching.

We have noticed that some intermediate base classifiers in the base classifier list have
negative contributions to the generalization performance, i.e., generalization performance
is worse when including these base classifiers (for example, the dropping on the Macro F1,
Figure 5.2, NASA and Shuttle datasets). This suggests that carefully selecting the base clas-
sifiers returned by LinearBoost’s pruning algorithm can further improve the performance.
Future work on how to select the most informative base classifiers will be beneficial for not
only LinearBoost but also all ensemble methods.

36



Bibliography

[1] Hamoud Aljamaan and Amal Alazba. Software defect prediction using tree-based
ensembles. In Proceedings of the 16th ACM International Conference on Predictive
Models and Data Analytics in Software Engineering, PROMISE 2020, page 1–10, New
York, NY, USA, 2020. Association for Computing Machinery.

[2] Douglas G Altman and J Martin Bland. Standard deviations and standard errors.
Bmj, 331(7521):903, 2005.

[3] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E Schapire. Boosting the
margin: A new explanation for the effectiveness of voting methods. The annals of
statistics, 26(5):1651–1686, 1998.

[4] Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011.

[5] Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

[6] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[7] Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer.
Smoteboost: Improving prediction of the minority class in boosting. In Knowledge Dis-
covery in Databases: PKDD 2003: 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-26,
2003. Proceedings 7, pages 107–119. Springer, 2003.

[8] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, 2016.

[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an
extension of mnist to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[10] James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[11] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[12] William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019.

[13] Wei Fan, Salvatore J Stolfo, Junxin Zhang, and Philip K Chan. Adacost: misclassifi-
cation cost-sensitive boosting. In Icml, volume 99, pages 97–105. Citeseer, 1999.

37



[14] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[15] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.
In icml, volume 96, pages 148–156. Citeseer, 1996.

[16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the authors). The
annals of statistics, 28(2):337–407, 2000.

[17] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[18] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics
and its Interface, 2(3):349–360, 2009.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[20] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.
Advances in neural information processing systems, 30, 2017.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[22] Kewen Li, Guangyue Zhou, Jiannan Zhai, Fulai Li, and Mingwen Shao. Improved
pso_adaboost ensemble algorithm for imbalanced data. Sensors, 19(6):1476, 2019.

[23] Xuchun Li, Lei Wang, and Eric Sung. Adaboost with svm-based component classifiers.
Engineering Applications of Artificial Intelligence, 21(5):785–795, 2008.

[24] Weiwei Liu, Ivor W Tsang, and Klaus-Robert Müller. An easy-to-hard learning
paradigm for multiple classes and multiple labels. The Journal of Machine Learning
Research, 18, 2017.

[25] Zhining Liu, Zhepei Wei, Erxin Yu, Qiang Huang, Kai Guo, Boyang Yu, Zhaonian Cai,
Hangting Ye, Wei Cao, Jiang Bian, Pengfei Wei, Jing Jiang, and Yi Chang. IMBENS:
ensemble class-imbalanced learning in python. CoRR, abs/2111.12776, 2021.

[26] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Icml, 2010.

[27] Bolu Oluwalade, Sunil Neela, Judy Wawira, Tobiloba Adejumo, and Saptarshi
Purkayastha. Human activity recognition using deep learning models on smartphones
and smartwatches sensor data. arXiv preprint arXiv:2103.03836, 2021.

[28] David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.
Journal of artificial intelligence research, 11:169–198, 1999.

38



[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Z. Yang, Zach DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning library. CoRR,
abs/1912.01703, 2019.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[31] Robert E Schapire. Explaining adaboost. Empirical Inference: Festschrift in Honor of
Vladimir N. Vapnik, pages 37–52, 2013.

[32] Holger Schwenk and Yoshua Bengio. Boosting neural networks. Neural computation,
12(8):1869–1887, 2000.

[33] Niloy Sikder and Abdullah-Al Nahid. Ku-har: An open dataset for heterogeneous
human activity recognition. Pattern Recognition Letters, 146:46–54, 2021.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[36] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-sensitive
boosting for classification of imbalanced data. Pattern recognition, 40(12):3358–3378,
2007.

[37] Aboozar Taherkhani, Georgina Cosma, and T Martin McGinnity. Adaboost-cnn: An
adaptive boosting algorithm for convolutional neural networks to classify multi-class
imbalanced datasets using transfer learning. Neurocomputing, 404:351–366, 2020.

[38] Jafar Tanha, Yousef Abdi, Negin Samadi, Nazila Razzaghi, and Mohammad Asadpour.
Boosting methods for multi-class imbalanced data classification: an experimental re-
view. Journal of Big Data, 7(1):1–47, 2020.

[39] Joaquin Vanschoren. Understanding machine learning performance with experiment
databases. lirias. kuleuven. be, no, 2010.

[40] Paul Viola and Michael Jones. Fast and robust classification using asymmetric adaboost
and a detector cascade. Advances in neural information processing systems, 14, 2001.

[41] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.

39



Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272, 2020.

[42] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in
Statistics: Methodology and Distribution, pages 196–202. Springer, 1992.

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

[44] Qing-Yan Yin, Jiang-She Zhang, Chun-Xia Zhang, and Sheng-Cai Liu. An empirical
study on the performance of cost-sensitive boosting algorithms with different levels of
class imbalance. Mathematical Problems in Engineering, 2013, 2013.

[45] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing
data augmentation. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 13001–13008, 2020.

[46] Ji Zhu, Saharon Rosset, Hui Zou, and Trevor Hastie. Multi-class adaboost. Ann Arbor,
1001:48109, 2006.

[47] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of
the IEEE, 109(1):43–76, 2020.

40



Appendix A

Dataset Details

Fashion MNIST. Fashion-MNIST is a balanced-class dataset. It comprises 70,000 gray-
scale fashion images for classification, measuring 28 by 28 pixels. Each pixel has an integer
value between 0 and 255. There are 60,000 training samples and 10,000 testing samples,
and each sample belongs to one of ten classes: T-shirt/top, Trouser, Pullover, Dress, Coat,
Sandal, Shirt, Sneaker, Bag, and Ankle boot.

EMNIST Balanced. EMNIST Balanced is a balanced-class dataset and it shares the
same image data structure as Fashion MNIST. EMNIST Balanced dataset contains 131,600
images of handwritten digits, lowercase letters and uppercase letters (0 to 9, a to z and A
to Z) for classification. There are 112,800 training samples and 18,800 testing samples. The
total number of classes is 47 because some letters lowercase and uppercase are merged as
one class since they are similar in handwritten, e.g., c/C, i/I, j/J, k/K, l/L, m/M, o/O,
p/P, s/S, u/U, v/V, w/W, x/X, y/Y and z/Z.

NASA. NASA dataset is a software defect prediction dataset and it has 11 different ver-
sions. In this thesis, we use the preprocessed JM1 version (data cleaning, data balancing
with SMOTE [4] and feature selection with Gain Ratio)1. This is a balanced-class tabular
dataset and each sample has eight numerical features measuring the software statistic. Each
sample belongs to Defective or Non-defective class. It has 12,220 samples and doesn’t have
a pre-determined testing set.

Letter. Letter is a balanced-class tabular dataset with 26 classes (A to Z). This is used for
classification tasks and each sample has 16 integer features (statistical moments and counts
of edge). It has 16,000 training samples and 4,000 testing samples.

Synthetic. Synthetic dataset has three classes and each sample has ten features which are
drawn from a ten-dimensional standard normal distribution. The class of drawn sample x
is determined by Equation A.1

1https://github.com/hjamaan/PROMISE20-DefectPredictionTreeEnsembles/blob/master/Datasets
/Preprocessed/Step3_GainRatio/JM1_Clean_Balanced_GainRatio.csv
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10 distribution, respectively. In this thesis, we generate 12,000
training samples and 1,333 testing samples with a class size ratio of roughly 4:1:5 for Class
1, Class 2 and Class 3. So, Synthetic dataset is an imbalanced-class tabular dataset.

HAR. Human Activity Recognition (HAR) dataset comprises information on 18 distinct
classes of activities and includes 20750 samples derived from raw activity samples. This is
an imbalanced-class (IR = 8.41), sequence dataset whose each sample contains a total of
1,800 measurements/features on acceleration along the X, Y, Z axes and rate of rotation
around the X, Y, Z axes.

IDA. IDA is an imbalanced-class tabular dataset that is used to predict whether failures of
trucks related to the Air Pressure system (APS) or not. It has two classes, Positive means
the failures are caused by APS and Negative means the failures are not related to APS. Each
sample has 170 numerical features and this dataset contains many missing values, so we
impute the missing values with median for each feature. For features containing more than
70% missing values, we drop them. We also drop features which contain only a single value
throughout all samples. After dropping, each sample has 162 features. The imbalanced ratio
of IDA dataset is 59 and this dataset contains 60,000 training and 16,000 testing samples.

Shuttle. Shuttle dataset has seven classes and nine numerical features. The seven classes
are Rad Flow, Fpv Close, Fpv Open, High, Bypass, Bpv Close and Bpv Open. We remove
Bpv Close and Bpv Open samples in this experiment since these two classes have too few
samples for training. The number of training and testing samples of Shuttle dataset are
43,483 and 14,494, respectively. In a word, Shuttle dataset is the most imbalanced-class
tabular dataset (IR = 883) in this experiment, roughly 95% of samples belong to Rad Flow
or Bypass classes.
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