
The code is lava: Improving children’s debugging

skills with explicit instruction

by

Christopher Patrick Kerslake

B.Sc. (Computing Science), Simon Fraser University, 1996

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Arts

in the

Educational Technology and Learning Design Program

Faculty of Education

© Chris Kerslake 2023

SIMON FRASER UNIVERSITY

Summer 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Declaration of Committee

Name: Christopher Patrick Kerslake

Degree: Master of Arts (Education)

Title: The code is lava: Improving children’s debugging
skills with explicit instruction

Committee: Chair: Cary Campbell
Limited Term Lecturer, Education

 D. Kevin O’Neill
Supervisor
Professor, Education

 Kristiina Kumpulainen
Committee Member
Professor, Education

 Parmit Chilana
Examiner
Associate Professor, Computing Science

iii

Ethics Statement

iv

Abstract

The debugging strategies of nine elementary students were investigated during an eight-

week Python programming course which integrated explicit debugging instruction. A

verbal think-aloud protocol was used to document the strategies students used to solve

debugging challenges. Analysis of the data involved content coding that combined

codes derived from Vessey (1984) with inductively-developed codes necessary to cover

the data. Three groups of students were identified. The first group adopted the explicit

debugging strategies taught in the course and used them successfully but exhibited

signs of excessive cognitive load. The second group used the strategies sparingly, and

instead relied on their own expert-like strategies. The third group did not use the taught

strategies, did not understand their role, and ultimately gave up during the final

challenge. The findings of the study suggest that students who adopted the explicit

debugging strategies were successful but appear to require additional practice to master

them.

Keywords: debugging; computer science education; novices; computer

programming; python

v

Dedication

This thesis is dedicated to all of the teachers who have patiently listened to an eager

student talk about their ideas, encouraged them to follow them, and supported them

along the way. Thank-you.

vi

Acknowledgements

I would like to thank my wife Lisa for her unconditional love and support

throughout this project. This thesis would not have been possible without your

encouragement to pursue this idea, and your unwavering love and support throughout.

I would like to express my sincere gratitude to my supervisor Dr. D. Kevin O’Neill.

What started out as an afternoon coffee in 2018 discussing my interest in the teaching of

computer programming has resulted in a new life direction because of your patience and

guidance throughout.

I would also like to thank my committee member Dr. Kristiina Kumpulainen.

Thank-you for your insights on the research process, your focus on the research

questions, and your encouragement throughout.

I want to thank the students (and their parents) who participated in this study.

Thank-you for committing the time necessary to participant in the study, without your

support and participation, this thesis would not have happened.

I am grateful to the three people who acted as my references for admission to the

SFU ETLD master’s program: Bill, Noreen, & Ebru. Bill who encouraged me to seek out

the program. Noreen & Ebru who supported me in my early endeavours at Bayview

Community School and then supported my application to the program. Without your

support, I would not have been able to start down this path.

Finally, I would like to thank my parents who supported me through it all. Thank-

you for encouraging and supporting me throughout the years.

vii

Table of Contents

Declaration of Committee .. ii

Ethics Statement .. iii

Abstract .. iv

Dedication ... v

Acknowledgements .. vi

Table of Contents .. vii

List of Tables ... x

List of Figures... xi

List of Acronyms .. xiii

Glossary ... xiv

Chapter 1. Introduction .. 1

1.1. Study Background ... 1

1.2. Research Problem ... 5

1.3. Research Questions .. 5

1.4. Research Significance ... 6

1.5. Research Limitations ... 6

1.6. Organization of the Thesis ... 8

Chapter 2. Literature Review ... 9

2.1. Introduction .. 9

2.2. Definitions.. 10

2.2.1. Debugging Terms ... 10

2.2.2. Debugging Processes .. 13

2.2.3. Novices versus Experts .. 15

2.2.4. Debugging Code Written by Others .. 16

2.2.5. Turtle Graphics .. 17

2.2.6. Verbal Protocol Analysis .. 19

2.3. History of Debugging Research ... 20

2.3.1. A Call to Teach Debugging .. 20

2.3.2. Initial Debugging Research .. 21

2.3.3. Criticism of Early Research Methods .. 22

2.3.4. Verbal Reporting as Data ... 24

2.3.5. Explicit Debugging Instruction with Children ... 28

2.3.6. A Renewed Interest in Debugging .. 31

2.3.7. Debugging Instruction in the Classroom ... 35

2.3.8. Debugging-First: A New Approach to Teaching Debugging 40

2.4. Literature Review Limitations ... 41

2.5. Research Topic Justification .. 42

Chapter 3. Python Turtle Graphics Course Design .. 45

3.1. Classroom Programming Environment .. 47

viii

3.2. Week 1: Study Introductions and Initial Debugging Challenges 49

3.3. Week 2: Pens, Colors, and Student Generated Examples 52

3.4. Week 3: For-Loops and Variables ... 54

3.5. Week 4: Shapes: Stars, Crosses, and Challenges ... 57

3.6. Week 5: Turtle Stars, Functions, and Challenges .. 58

3.7. Week 6: Bug Localization with the Wolf Fence Algorithm 59

3.8. Week 7: Complex Shapes with Functions .. 60

3.9. Week 8: Complex Shape: Among Us Character (Video) 62

Chapter 4. Methodology ... 64

4.1. Research Questions .. 64

4.2. Research Framework .. 64

4.3. Research Setting ... 65

4.4. Recruitment ... 66

4.5. Debugging Environment .. 66

4.6. Debugging Challenge Bugs ... 67

4.6.1. Week 1: Debugging Challenge #1 .. 68

4.6.2. Week 1: Debugging Challenge #2 .. 68

4.6.3. Week 1: Debugging Challenge #3 .. 69

4.6.4. Week 1: Debugging Challenge #4 .. 69

4.6.5. Week 2: Student-Generated Examples (SGE) 70

4.6.6. Weeks 4/5: Debugging Challenge .. 71

4.6.7. Weeks 7/8: Debugging Challenge .. 71

4.7. Student Questions ... 72

4.7.1. Student Self-Reported Self-Efficacy Scores ... 73

4.7.2. Student Debugging Description Question ... 73

4.7.3. Student Python Coding Description Question ... 73

4.7.4. Student Description of Debugging Difference with Expert 73

4.8. Data Collection .. 74

4.9. Data Analysis .. 76

Chapter 5. Findings .. 79

5.1. Research Questions .. 79

5.2. Data Sources ... 79

5.3. Participants .. 80

5.4. Week 1: One-on-one Debugging Sessions .. 81

5.4.1. Week 1 Student Debugging Strategies ... 81

5.4.2. Week 1 Student Debugging Challenges ... 85

5.4.3. Week 1 Debugging Times .. 87

5.4.4. Week 1 Pre/Post Self-Efficacy Ratings ... 89

5.5. Week 2: Student-Generated Examples and Expert Debugging 91

5.6. Weeks 4/5: One-on-one Debugging Challenges .. 92

5.6.1. Weeks 4/5 Student Debugging Strategies .. 92

5.6.2. Weeks 4/5 Student Debugging Challenges .. 96

5.6.3. Weeks 4/5 Debugging Times ... 98

ix

5.6.4. Weeks 4/5 Pre/Post Self-Efficacy Ratings .. 100

5.7. Weeks 7/8: One-on-one Debugging Challenge .. 101

5.7.1. Weeks 7/8 Student Debugging Strategies .. 102

5.7.2. Weeks 7/8 Student Debugging Challenges .. 106

5.7.3. Weeks 7/8 Debugging Times ... 110

5.7.4. Weeks 7/8 Post Self-Efficacy Ratings .. 111

5.8. Summary of Student Self-Reported Self-Efficacy Ratings 112

5.9. Student Descriptions of Debugging.. 114

Chapter 6. Discussion .. 117

6.1. Research Aims & Research Questions .. 117

6.2. Summary of Key Findings .. 117

6.3. Discussion of Findings ... 118

6.3.1. Student Debugging Strategies .. 119

6.3.2. Student Debugging Challenges .. 122

6.3.3. Effects of Explicit Debugging Instruction .. 124

6.3.4. Student Responses To Explicit Debugging ... 128

6.4. Practical implications ... 132

6.5. Limitations of the study .. 134

6.6. Suggestions for Future Research .. 136

6.7. Concluding Summary .. 137

References ... 138

Appendix A. Code Book ... 145

Appendix B. Weekly Challenge Python Code ... 151

Week 1 Debugging Session Python Code (Challenges 1-4) .. 151

Week 1 – Challenge #1 – 2x Syntax Errors ... 151

Week 1 – Challenge #2 – 1x Syntax Error ... 151

Week 1 – Challenge #3 – 1x Indentation Error .. 152

Week 1 – Challenge #4 – 1x Semantic Error ... 153

Week 4/5 Debugging Sessions Python Code (4x semantic errors) 154

Week 7/8 Debugging Sessions Python Code (2x logic errors) 156

Appendix C. Student Debug Output Progression (Week 7/8) 159

Appendix D. Debugging Session Episodes .. 162

Appendix E. Recruitment Web Page .. 182

Appendix F. Parent Consent form ... 184

Appendix G. Student Assent form ... 187

x

List of Tables

Table 2.1. Nanja & Cook’s expert, intermediate, and novice attribute rubric 28

Table 3.1. Study weekly outline .. 47

Table 5.1. Week 1 student debugging strategies .. 81

Table 5.2. Week 1 student debugging challenges ... 85

Table 5.3. Week 1 student self-reported self-efficacy ratings 90

Table 5.4. Week 2 students’ observations of differences between the teacher
(expert) and their debugging techniques (novices) 92

Table 5.5. Weeks 4/5 student debugging strategies .. 93

Table 5.6. Weeks 4/5 student debugging challenges .. 97

Table 5.7. Weeks 4/5 student self-reported self-efficacy ratings 101

Table 5.8. Weeks 7/8 student debugging strategies .. 102

Table 5.9. Weeks 7/8 student debugging challenges .. 107

Table 5.10. Weeks 7/8 student self-reported self-efficacy ratings 112

Table 5.11. Student descriptions of debugging (weeks 1, 2 & 6) 116

xi

List of Figures

Figure 2.1. PyCharm Community Edition integrated development environment. 11

Figure 2.2. Sample syntax error (missing parentheses) – Python 3. 12

Figure 2.3. Sample runtime error (division by zero) – Python 3. 12

Figure 2.4. Sample semantic error – Python 3 Turtle Graphics. 13

Figure 2.5. Sample images generated during the course using turtle graphics. 18

Figure 2.6. Debugging flowchart from Klahr & Carver (1988, p. 378). 30

Figure 2.7. Debugging Tracing Heuristics (Fitzgerald et al., 2008, p. 114). 33

Figure 2.8. Michaeli & Romeike's three-level systematic debugging process. 38

Figure 2.9. Debugging strategy text (Ko et al., 2019, p. 471).................................... 39

Figure 3.1. Sample images generated during the course using turtle graphics. 46

Figure 3.2. PyCharm Community Edition integrated development environment. 48

Figure 3.3. Sample turtle graphics output of a triangle. .. 49

Figure 3.4. Sample Python hello world program code. ... 50

Figure 3.5. Sample of bugged NameError version of print statement. 51

Figure 3.6. Sample NameError compiler error message (Week 1). 51

Figure 3.7. Week 2 sample brown coloured shape with green turtle. 53

Figure 3.8. Week 3 loops.py – print the loop values. .. 55

Figure 3.9. Week 3 for-loop progression (Python). ... 55

Figure 3.10. Week 3 Final octagon Python code with variables and a for-loop. 56

Figure 3.11. Week 3 debugging challenge. .. 57

Figure 3.12. Week 4 five-point outlined star shape using for-loops............................. 58

Figure 3.13. Multiple five-point connected-point stars created using a stars function. 59

Figure 3.14. Week 6 "four squares" debugging demonstration. 60

Figure 3.15. Week 7 turtle graphics flower example. .. 61

Figure 3.16. Weeks 7 & 8 final debugging challenge, the “Logo Bug Challenge”. 62

Figure 3.17. Week 8 three Among Us character drawn using turtle graphics. 63

Figure 4.1. Email recruitment statement. .. 66

Figure 4.2. Week 1 debugging challenge #1 buggy code. .. 68

Figure 4.3. Week 1 debugging challenge #1 corrected code. 68

Figure 4.4. Week 1 debugging challenge #2 buggy code. .. 69

Figure 4.5. Week 1 debugging challenge #2 corrected code. 69

Figure 4.6. Week 1 debugging challenge #3 buggy code. .. 69

Figure 4.7. Week 1 debugging challenge #3 corrected code. 69

Figure 4.8. Week 1 debugging challenge #4 buggy code. .. 70

Figure 4.9. Week 1 debugging challenge #4 corrected code (option 1). 70

Figure 4.10. Week 1 debugging challenge #3 corrected code (option 2). 70

Figure 4.11. Weeks 4/5 debugging challenge bugs side-by-side. 71

xii

Figure 4.12. Weeks 7/8 commented out debug print-statements. 72

Figure 4.13. Partial debugging session transcript for participant Carl. 75

Figure 4.14. Sample debugging episode outline – Weeks 4/5 – George. 77

Figure 5.1. Screenshot of editor error highlights for challenge #1 (Week 1). 82

Figure 5.2. Screenshot of editor warning highlight for challenge #4 (Week 1). 82

Figure 5.3. Screen of sample compiler error for challenge #1 (Week 1). 83

Figure 5.4. Screenshot of Carl's edited code for challenge #4 (Week 1). 87

Figure 5.5. Screenshot of Carl's solution to challenge #4 (Week 1). 87

Figure 5.6. Week 1 debugging challenge times (in minutes, sorted by time). 88

Figure 5.7. Weeks 4/5 debugging challenge times (in minutes, sorted by time)........ 98

Figure 5.8. Peter’s Week 4/5 debugging challenge episode trace. 99

Figure 5.9. Peter's Week 8 debugging challenge turtle output progression. 103

Figure 5.10. Brian’s Week 8 debugging challenge turtle output progression. 104

Figure 5.11. George's Week 8 debugging challenge turtle output progression. 105

Figure 5.12. George's Week 8 debug output, printing values for is_even function. ... 105

Figure 5.13. Marks’ Week 8 debugging challenge turtle output progression. 106

Figure 5.14. Oscar’s Week 7 debugging challenge turtle output progression. 109

Figure 5.15. Lucas' Week 7 debugging challenge turtle output progression. 110

Figure 5.16. Weeks 7/8 debugging challenge times (in minutes, sorted by time)...... 111

Figure 5.17. Student self-reported debugging confidence scores. 113

xiii

List of Acronyms

API Application programming interface. In this study, the turtle graphics
API provided objects and functions that the programmers used to
generate drawings on their computer screens.

CS Computer science or computing science.

CS1 The first of the first two computer science (CS) courses typically
taught to computer science majors, with CS2 being the second.

CS2 The second of the first two computer science (CS) courses typically
taught to computer science majors, with CS1 being the first.

ETLD Educational Technology and Learning Design. A graduate program
at SFU focused on research-based educational technology and
learning design.

IDE Integrated development environment. A software program used for
the creation and editing of computer programs.

ITiCSE ACM conference on Innovation and Technology in Computer
Science Education.

K-12 Kindergarten to grade 12. An expression used to refer to the
publicly supported school grades prior to college in Canada and the
United States.

PDF Portable document format. A file format created by Adobe that
preserves the layout of a digital document on any compatible
reader.

SFU Simon Fraser University.

URL Uniform resource locator. A URL is a computer-recognizable
address that can be used by a computer program like a web
browser to navigate to the resource. For example, to visit the SFU
library catalog, the URL is https://www.lib.sfu.ca/.

xiv

Glossary

Debugging The process of identifying, locating, and repairing defects
within a computer program.

Episode “A group of task assertions related to the same goal or
objective.” (Vessey, 1984, p. 268)

Expert An individual who has extensive experience with a
subject of study or field of work.

Guess-and-check A debugging technique where the participant guesses at
the cause of the problem, makes a change based on this
guess, and then runs the program to check if their guess
was correct or not.

Library (as in Software
Library)

A software library is pre-written code that provides
specific functionality that can be imported into a
programming project and then used to provide the project
with the library’s functionality. For example, a graphics
library is imported so the program can output graphics.

Novice An individual who is new to a subject of study or field of
work.

PyCharm The integrated development environment used by the
participants in this study, created by JetBrains.

Python A computer programming language used in this study,
created by Guido van Rossum, and first released in 1991.

Zoom An online video-conferencing system used in this study
that provides for the sharing of audio and video for
teaching as well as the sharing of computer screens.

1

Chapter 1.

Introduction

Debugging computer programs accounts for up to 80% of the time a programmer

spends writing them (Ko & Myers, 2005; Mathis, 1974; O’Dell, 2017). As a result, a

number of studies have been conducted over the past 50 years looking at how to reduce

the time spent on debugging (Gould & Drongowski, 1974; Litecky & Davis, 1976;

Shneiderman & McKay, 1976; Youngs, 1974), determine debugging strategies (Katz &

Anderson, 1987; Murphy et al., 2008; Perkins & Martin, 1986), compare novice

debuggers to expert debuggers (Ahmadzadeh et al., 2005; Gugerty & Olson, 1986;

Jeffries, 1982; Perkins et al., 1986; Vessey, 1985), and examine how to teach debugging

as an explicit process or skill (Carver & Risinger, 1987; Chmiel & Loui, 2003; Michaeli &

Romeike, 2019b; Rich et al., 2019; Wescourt & Hemphill, 1978). However, studies that

involved teaching debugging to upper-elementary and middle-school aged children

(Carver & Risinger, 1987; Ko et al., 2019; Rich et al., 2019) did not investigate and

enumerate students’ existing debugging strategies so they could correct, extend, or

augment them. Further, recent studies have focused on block-based programming

rather than text-based programming, and so avoided debugging challenges associated

with proper syntax. The current research aims to identify the debugging strategies and

challenges that upper elementary-school aged novice programmers demonstrate and

the effects of providing them with a set of explicit debugging strategies within the context

of 8-hours of instruction during the course of an eight-week Python programming course.

This chapter will introduce the study by first providing background on the problem of

teaching debugging to novice programmers, followed by the specific aims of this study,

the questions it addresses, its significance and limitations.

1.1. Study Background

Computer programming is challenging because it requires translating from a

problem domain into the computing domain by writing out specific commands in a

programming language. Any mistakes that the programmer makes in realizing this

computerized version of the problem can result in either immediately reported errors or

unexpected outcomes called bugs. These mistakes, missteps, or slips (Brown &

2

VanLehn, 1980) require the programmer to identify, locate, and repair these errors or

bugs in a process called debugging. Expert programmers approach the debugging

process using their knowledge of the programming language, their experience with

similar bugs, and a set of self-developed heuristics for locating and fixing bugs they have

seen before. Novice programmers on the other hand are still learning the language,

have limited experience with similar bugs, and thus have little to no heuristics to use

beyond what experiences they have from other domains. For the novice programmer,

this process of acquiring the necessary skills to debug computer programs takes

practice, experience, and persistence, or as one of my students exclaimed when asked

to debug some code, “The code is like lava1,” referring to the act of debugging as an

uncertain and potentially perilous challenge.

This research aims to first identify what strategies novices come to debugging

with initially and then evaluating the impact of teaching them explicit debugging

techniques.

As an expert programmer with over forty years of programming experience, my

own personal debugging skills developed through a combination of trial-and-error and

persistence. I do not recall ever being taught or shown a formal debugging process and

instead developed one on my own or copied techniques from others. The idea of

novices developing their own debugging skills is something that early constructivists like

Papert, Feurzeig, and Solomon (Feurzeig et al., 1969; Papert, 1972, 1980) suggested

would happen but that Klahr & Carver (1988) reported was not common for the majority

of novice students and teachers. As a teacher of computer programming for the past

eight years, I have come to recognize the lack of understanding that students exhibit

when faced with a new debugging situation. Without a clear set of steps to follow, they

resort to unguided guessing, asking (and waiting) for help, or at worst giving up because

they do not know where to start or are overloaded and frustrated.

In my search for explicit debugging techniques and pedagogy for novices, I have

uncovered a few issues. The first is that the concept of a “novice programmer” is not

well defined or agreed upon. Next, computer languages and environments are

constantly changing. Finally, much of the research on debugging with novices has been

constrained or limited. These constraints and limitations will be discussed below.

1 The title of this thesis begins with a statement made by a student during the pilot for this study.

3

Defining what constitutes a novice programmer is a problem because computer

programming is undertaken as a course of study at different times by different students

for different reasons. For example, some students start in elementary school with casual

or informal play-based learning, a concept initially popularized in the 1980’s by Seymour

Papert with his book Mindstorms (Papert, 1980) and his co-developed Logo

programming language. As a result, there are a few novice debugging studies where

the novices are children or adolescents (Carver, 1986; Carver & Risinger, 1987; Klahr &

Carver, 1988; Ko et al., 2019; Rich et al., 2019). However, the vast majority of research

studies looking at novice debugging involve college and university students

(Ahmadzadeh et al., 2005; Böttcher et al., 2016; Chmiel & Loui, 2004; Jeffries, 1982;

Katz & Anderson, 1987; Kessler & Anderson, 1986; Michaeli & Romeike, 2019b; Nanja

& Cook, 1987). In other research, even adult professional and scientific programmers

were also termed novices during early studies on debugging (Boies & Gould, 1974;

Gould, 1975; Gould & Drongowski, 1974; Vessey, 1985; Youngs, 1974). As a result,

when the literature discusses approaches or strategies for novices, the context of the

study is critical. The approaches and techniques exhibited by a ‘novice’ adult

professional programmer will be different from a child that is just learning other basic

skills like reading, writing, and mathematics, or a university student looking to computing

as a career.

In addition to the concept of a novice programmer being amorphous, the

literature on debugging spans 50 years. As a result, the computer languages and

environments have changed dramatically over this time. For example, many of the early

studies were conducted “offline” using printed copies of the programs to be debugged2

(Gould, 1975; Jeffries, 1982; Vessey, 1985; Youngs, 1974). It was not until the mid-

1980’s that studies switched to “online” debugging (Carver & Risinger, 1987; Gugerty &

Olson, 1986; Katz & Anderson, 1987; Nanja & Cook, 1987) often using the then new

personal computers and tools of the day. In addition to the computing devices having

changed, the computer languages have also changed over time. Early studies used

COBOL, Fortran, PL/1, and Algol. Moving into the 1980’s, BASIC, Logo, Pascal, and

Lisp were used in studies of novice programming. In the mid-1990’s and onwards, Java

was standardized for many undergraduate programs in computing science and so it

2 Gould’s studies did offer participants the option of using online tools, but most did not use them
and instead stayed with the printed copies.

4

came to dominate many of the studies of novice programmers in the past 25 years.

Meanwhile, though BASIC and Logo dominated earlier studies involving novice child

programmers, much research has shifted to block-based programming environments like

Scratch starting in the mid-2000’s. Python, the programming language used in this

study, was developed as a teaching language in the 1990’s and has started to gain

ground in high school and early undergraduate programs. However, there have so far

been limited studies looking at Python novices and debugging specifically (D’souza et

al., 2019; So & Kim, 2018; Whalley et al., 2023). In addition, the present study is the

only one known to the author that has been conducted online via the online video-

conferencing platform Zoom.

Finally, throughout the history of the debugging literature, like most topics of

inquiry, there have been a number of constraints that have limited the studies in often

practical but nonetheless impactful ways, relevant to this study. For example, many of

the studies have involved primarily quantitative data collection and analysis, focusing on

uncovering the frequency of errors and debugging approaches (Ahmadzadeh et al.,

2005; Chmiel & Loui, 2004; Ripley & Druseikis, 1978; Spohrer & Soloway, 1986;

Youngs, 1974). As well, timed studies have been common, namely, treating debugging

time as the dependent variable (Gould, 1975; Gould & Drongowski, 1974) or limiting the

time students are given to complete the debugging challenges (Gould & Drongowski,

1974; Gugerty & Olson, 1986; Katz & Anderson, 1987). Although limiting debugging

sessions may be necessary for practical reasons such as limited researcher time, it can

lead to using easier problems or incomplete results due to some participants failing to

complete the tasks within the time allowed.

As a result of the challenges associated with defining who novice programmers

are, choosing a modern programming environment, and settling on a method of inquiry,

for this study I have chosen tools and an approach that I feel are timely and important. I

have chosen participants in the age group 10-12 because I have been teaching students

in that age group for eight years. As a result, I have experience working with them and

the ability to recruit them. I initially chose to conduct my study via Zoom because of the

limitations of in-person activities during the COVID-19 pandemic, though this also

created data collection opportunities that were useful for my study. I chose Python

because it is a popular modern language, developed for teaching, and commonly used

as the first text-based programming language for this age group. Finally, I chose a

5

qualitative think-aloud verbal protocol approach because I wanted to begin by observing

what strategies and challenges novice students come to or develop initially while

learning how to program, and then see what effects introducing them to an explicit

debugging strategy would have.

1.2. Research Problem

As previously noted, programmers spend a considerable amount of their time

debugging; and novice programmers, who are less experienced both in programming

and debugging, spend much of their debugging time just trying to get unstuck

(McCartney et al., 2007). As a result, a number of studies have tried to uncover what

novices know and what approaches they take. In addition, a few studies have looked at

ways of providing explicit instruction on debugging (Böttcher et al., 2016; Carver, 1986;

Chmiel & Loui, 2003; Ko et al., 2019; Michaeli & Romeike, 2019b; Rich et al., 2019) with

the hope of easing novices’ debugging burden. However, of those studies that have

involved introducing explicit debugging instruction, all of them have come at the

instruction with preconceived models or materials. Although informed by the literature

and experience, none of these studies have started from the student’s perspective. As a

result, the existing literature focuses on what experts think novices need in terms of

explicit debugging instruction rather than specific attributes and approaches based on

pre-existing student approaches. Although these existing explicit approaches may work

for some students, most studies report little to no change as a result of training students

on them (Carver, 1986; Ko et al., 2019) or do not report on the impact of these explicit

interventions specifically (Böttcher et al., 2016; Chmiel & Loui, 2003; Michaeli &

Romeike, 2019b; Rich et al., 2019).

1.3. Research Questions

In response to the research problem identified above, this study aims to identify

what debugging behaviours and approaches novice programmers ages 10-12 exhibit

prior to debugging instruction and what impact teaching them explicit debugging

techniques has on their subsequent debugging activities. This focus has led to the

following objectives and subsequent research questions.

6

Research Objectives:

1. To identify common debugging strategies used by novice Python

programmers.

2. To evaluate the effectiveness of introducing explicit debugging techniques to

novice Python programmers aged 10-12 during 8-hours of instruction over an

eight-week course.

3. To identify challenges that novice programmers face when debugging.

These three objectives have led to the following four research questions:

RQ1: What strategies do novice elementary school students employ when

debugging Python code?

RQ2: What challenges do novice students face when debugging?

RQ3: What effects does an explicit debugging strategy have on student

debugging strategies?

RQ4: In what ways do students respond to explicit debugging instruction?

1.4. Research Significance

This study will contribute to the body of knowledge on debugging by surfacing

and discussing strategies used by young novice programmers and what impact teaching

them explicit debugging strategies has. This will help to develop student-centered

debugging pedagogy that can help identify misconceptions and provide explicit

interventions in an attempt to reduce the “long tortuous cognitive development of the

novice programmer” (Corney et al., 2012).

1.5. Research Limitations

Despite the potential contributions of this study towards the knowledge of

debugging, this study has several limitations which affect its generalizability and

replicability. First, the participants were all previous students of the researcher and

7

recruited to the study via convenience sampling. As noted in Chapter 4, an email was

sent to all of the researcher’s prior students, and nine students volunteered to join the

study. As a result, these students represent individuals who have already expressed

and acted on an interest in computer programming, have already undertaken at least

one programming course using Python, and were presumably interested in the study

course outline of using turtle graphics and Python. Similar studies involving more

students, less experienced students, or differently motivated students may detect

evidence of different strategies than those exhibited by the participants found in this

study.

Another limitation may be the length of the study (8-hours over eight weeks).

While this may seem long in comparison to some other studies, I might have preferred

an even longer study duration. Unfortunately, it was necessary to restrict the length of

the study due to the considerable time involved in teaching the course, transcribing the

Zoom recordings, and coding and analyzing the observational data.

Another potential limitation of the present study is the choice to use video

recorded observational verbal protocol session data. In addition to the time required to

transcribe and code the data, the encoding also required substantial researcher

debugging experience and was somewhat subjective in nature. In an effort to limit this

subjectiveness, a second coder was used on a portion of the data, and then Cohen’s

kappa calculations were performed on the results until the two coders converged

towards agreement. Despite this effort to establish the trustworthiness of the

interpretations provided, other researchers may interpret the observations differently and

thus arrive at different definitions of the strategies students employed. This in turn could

then impact the pedagogical suggestions made.

Finally, as part of the study, three debugging challenges were presented to the

participants, with each one being progressively more challenging. These three

challenges were designed to present challenges that matched the course material and to

assess students’ usage of the explicit debugging techniques demonstrated to them. In

addition, these challenges attempted to overcome or avoid limitations present in

previous studies in the literature. For example, the students were not told how many

errors were present in the code they were to debug; the challenges were conducted

within the same development environment as their course work; and the sessions were

8

not time capped. Although these restrictions did avoid some of the limitations of

previous studies, they also introduced new challenges. For example, by not capping the

time allowed for students to solve a challenge and increasing the number of errors

beyond a single one, the students took more time (in some instances, considerably more

time). This resulted in class time overruns, additional stress on the students, and even

the inability to complete the testing of all students during the final classes. As a result,

although only three challenges were presented, their expansion may pose a challenge to

future researchers as well.

1.6. Organization of the Thesis

This chapter has aimed to explain the context and motivations for this study.

Chapter 2 provides a chronological review of the literature on debugging, starting with

definitions for key terms to aid non-programmers. Chapter 3 details the design of the

class in which participants took part, from the teacher-researcher’s pedagogical

perspective, stepping week by week through the progression of the instruction and

debugging assessments. Chapter 4 describes the methodological approaches involved

in the research and provide additional detail on the participants and the research setting.

Chapter 5 details the data collected, and Chapter 6 discusses their findings and

limitations. The appendices include the materials used or collected during the course of

the study to support both transparency of the study as well as to support future

researchers who choose a similar path or approach.

9

Chapter 2.

Literature Review

This chapter presents a review of literature relevant to debugging, its

characteristics, and the research methodologies used to investigate it. Its major

purposes are to: (a) define what debugging and its processes are, (b) evaluate current

research on debugging, and (c) select and justify the area to be addressed in this

research.

2.1. Introduction

While teaching upper-elementary students computer programming, specifically, a

text-based language named Python, I noticed that most students stopped as soon as

they encountered an error with their programs. After seeing this behaviour repeatedly, I

began to investigate whether direct instruction on debugging techniques could reduce it.

For example, during our first “hello world3” class I would ask students to purposefully

introduce errors into their working programs by changing a word or deleting a character

and then running their code again. This would immediately result in an error and block

them from running their code. I would then lead them through reading and interpreting

the error messages they saw, modeling how to read the error messages and possibly

act upon them. However, this did little to change their apparent helplessness, so I went

in search of ideas and instructional materials to fill this gap. This literature review

details part of my journey towards understanding what strategies novice students come

to the table with, and what effects teaching them explicit debugging techniques and

strategies may have.

In reviewing the literature, I was expecting to find instructional materials and

research studies to back up best practices on how to teach debugging. Instead, what I

discovered was that there were only a very few studies that looked at explicit instruction

on debugging, that calls to integrate debugging into programming instruction have gone

3 A traditional first computer program is called “hello world” because it simply prints the text “hello
world” to the console. A first class is also called “hello world” because it is typically students’ first
introduction to the programming language.

10

largely unheeded, and that after fifty years of research into debugging there is still little

consensus on the strategies programmers use, how they develop them, and what

strategies they should use.

This chapter reviews what we know about bugs, debugging techniques, and

methods for teaching debugging, with the goal of informing the development of materials

and techniques that will be effective in teaching successful debugging practices, as well

as developing students’ sense of agency and control when debugging.

2.2. Definitions

In this section, I will define the key terms related to debugging, to provide context

for readers who are unfamiliar with debugging or computer programming.

2.2.1. Debugging Terms

Computer programs are a series of specifically structured commands that a

programmer gives to a computer so that it can achieve a particular task (Ko & Myers,

2005, p. 43). Unlike natural languages (those that are spoken by humans, such as

English), computer programming languages are formal languages designed to express

computations (Wentworth et al., 2012, p. 5). As a result, programming languages have

strict rules about their syntax and structure which are verified by a program called a

compiler4. The job of the compiler is to read a program written by a human, verify that it

is valid, and then convert the commands into the internal structures the computer will

use to execute the commands. The compiler does not run the program itself, instead it

translates the program commands into the runnable steps the computer will use in order

to run the program.

Within the context of computer programming, the process of programming

typically takes place within a programming editor. These editors can be simple text

editors or fully integrated development environments (IDEs), Figure 2.1 shows the

PyCharm IDE used in this study. The role of the editor is to provide an interface where

4 To simplify the discussion, compilation is used even for interpreted languages.

11

the programmer can input and edit their computer program, in other words, write their

code5.

Figure 2.1. PyCharm Community Edition integrated development environment.
(A) The code editing window for the script named “hello_world.py”. (B) The output window for
program output as well as compiler or runtime error messages. (C) The project files, including the
Python script files.

Once programmers have written their code, they submit it to the compiler whose

job it is to parse the code and perform multiple checks on it. If errors are found during

compilation, then the compiler will return a compiler error to the programmer with

information about the type and location of the error (see Figure 2.2). Novice

programmers will typically refer to this as their program failing to compile or run. If the

program does not contain any compiler errors, then the program is ready to be run.

5 This discussion will focus exclusively on text-based programming languages, which are typically
written as words. Block-based languages operate fundamentally the same except they attempt to
avoid written syntax to avoid syntax-related errors, but they are still susceptible to other errors.

12

Figure 2.2. Sample syntax error (missing parentheses) – Python 3.

In some environments, the program is run within the IDE and in others it is run

separately; but in both cases the next step is to run the program. When the program is

run, if an error occurs, then the program will exit and report a “runtime error”. Novice

programmers will typically refer to runtime errors as their program crashing. Runtime

errors occur when the program attempts to take an invalid action that the programmer

did not handle within their code, and so the computer aborts the program and reports

where and why with a runtime error message. An example of a runtime error is when

the program attempts to divide a number by zero, as this is a calculation whose result is

undefined in mathematics (see Figure 2.3).

Figure 2.3. Sample runtime error (division by zero) – Python 3.
Code is syntactically valid, but crashes when run.

Finally, a program may be both syntactically correct and not violate any runtime

rules, but still not correctly deliver or complete its assigned task according to an external

set of requirements called a specification. A specification is a detailed description of the

13

target application that the programmer matches the output of their program with to

determine if they have successfully created the target application. Errors involving a

mismatch between the actual output and the specification are called semantic errors.

Semantic errors occur when the program does what it was told to do rather than what

was intended or required. For example, the program may draw a triangle (actual result)

when it was supposed to draw a square (target image). See Figure 2.4.

Figure 2.4. Sample semantic error – Python 3 Turtle Graphics.
Code is syntactically valid and does not violate any runtime rules, but its output does not match
the target image called for in the specification.

All three types of errors (syntax errors, runtime errors, and semantic errors) are

referred to as “bugs” and the acts of identifying, locating, and correcting them is known

as debugging.

2.2.2. Debugging Processes

Early surveys of debugging concepts (Johnson, 1982; Kocher, 1969; Myers,

1978) defined debugging as a two-step process of locating and correcting errors that

occurred in computer programs. However, this two-stage definition was insufficient

because in order to locate and correct a bug, the programmer first needed to know that a

bug existed. Therefore, a third step was needed, one of identifying that a bug existed.

This resulted in a general three-step debugging process: identifying, locating, and

repairing. This three-step approach will be used for this study.

According to Lukey (1980, p. 194) the first step when debugging, is to identify the

bug by comparing the program’s description to its specifications to arrive at a

manifestation of a bug. Then, once a bug has been identified, the cause of the bug must

be located. The second stage, locating, is described as reading through the code,

making assertions about how it functions, back-tracking when a dead end is reached,

14

and repeating this searching until the bug is located. Finally, once located, step three is

to edit or repair the bug. This results in a generalized three-step process of debugging

by identifying, locating, and repairing.

Although the three-step process that Lukey described has been supported by

others (Katz & Anderson, 1987; Ko & Myers, 2005), it has also been expanded and

modified to suit the needs of individual studies. For example, Vessey (1985) and Klahr

& Carver (1988) split the locating stage into two separate steps: gaining familiarity with

the program and then exploring the program control and execution, resulting in a four-

step process. Rich et al. (2019), when working with young children, proposed a different

four step process of: observe, hypothesize, modify, and test. Carver (1986), also when

working with young children, proposed a five-step process: run program, identify bug,

represent program structure, locate bug, and correct bug. Carver’s process is of

particular interest in this thesis, because it was used for studying elementary-aged

children and as such, it will be described in more detail next.

Of particular interest within the context of this study and to pedagogy related to

working with novice child programmers, Carver (1986) expanded the original three-stage

model into five steps (phases). As stated, Carver’s first step is to run the program and

compare the program plan or specification to the program’s output. Although this new

initial step is implicit in all of the previous multi-stage descriptions, novice programmers

benefit from having an explicit step-by-step process that provides all of the steps. Also,

bugs are typically not noticed until the program is compiled and run, so telling the

students to run their program at the start and after each change is beneficial. Step two

is to identify the bugs as discrepancies between the actual output and the intended

target, just like the first step in the three-step process. Step three again makes explicit

the implicit phase of representing the structure of the program by reading the code. This

building of a representation of the program is necessary because it allows the

programmer to create possible pathways through the code to follow and to reflect on

how the program runs. Step four involves searching for and locating bugs. The last step

is the correction of the bug once located. By explicitly stating the execution (step one)

and representation (step three) elements of her five-phase model, Carver provided

additional elements necessary for developing processes well suited to novices who

require all of the steps to be spelled out explicitly. This stands in contrast to the needs of

15

experts who implicitly already know to run the program each time they make a change,

and develop their own model of the program’s code as they go.

2.2.3. Novices versus Experts

Throughout the history of debugging research, the approaches taken by expert

programmers have been compared to those taken by novice programmers to identify

differences. However, although the term “novice” is well understood to mean a beginner

with little to no prior knowledge in the subject area, the term does not specify an age or

what level of prior knowledge is the cut off between novices and experts. As a result,

most of the debugging literature labels adult undergraduate students as novices

because they are new to their field of study and thus assumed to have little prior

programming knowledge.

A number of debugging studies have tried to address this by using different

labels. For example, Kessler & Anderson (1986) labeled their participants as “true

novices” because although they were adult undergraduates, they had no prior

programming experience. Similarly, Miller (1974) used the term “naïve” rather than

novice to describe participants with no prior programming experience. Nanja & Cook

(1987) split their participants into three groups (expert, intermediate, and novice) based

on their years of experience (graduate student, second-year, first-year). Ahmadzadeh et

al. (2005) labeled their participants as good versus weak programmers based on their

class grade, and then good versus weak debuggers based on their debugging

performance. However, Vessey (1984) presents the biggest problem when talking about

novices and experts, because she compared two sets of professional programmers with

the goal of creating a measure of whether a participant should be considered a novice or

an expert debugger based on their strategy and approach. Thus, she labeled less-

experienced professional programmers as novice debuggers.

This thesis looks at novice child programmers, ages 10-12, who are both novice

programmers and novice learners because of their age.

16

2.2.4. Debugging Code Written by Others

One of the challenges that researchers face when trying to investigate debugging

is whether to give participants code the researchers wrote that contains bugs, or to ask

the participants to write code themselves and observe them debugging their own code.

Most studies choose to provide buggy code written by the researchers (code written by

others) because this ensures that all of the participants are attempting to address the

same bugs in the same code. This allows the researchers to control both the number

and type of bugs for the purposes of the research. However, one consequence of this

approach is that the participants must spend more time up front attempting to read and

understand the code provided by the researchers before they can start debugging it. A

second consequence of this approach is that the researcher-generated code doesn’t

necessarily contain the types of bugs that students would make in their own programs.

Many studies have noted this challenge and observed specifically that novices

were slower than experts during the code comprehension phase (Gugerty & Olson,

1986; Jeffries, 1982; Kessler & Anderson, 1986; Lukey, 1980; Murphy et al., 2008; Nanja

& Cook, 1987; Vessey, 1984). In other words, participants need to spend time reading

and trying to understand code they did not write themselves. In contrast, a few studies

have attempted to observe students debugging their own programs, and as a result

focused on either documenting the different types of errors to inform language design

(Boies & Gould, 1974; Litecky & Davis, 1976; Youngs, 1974) or counted the frequency of

error types made (Ahmadzadeh et al., 2005; Ripley & Druseikis, 1978) to describe

student actions in general. Two exceptions exist though. One exception is Katz &

Anderson (1987), who used a mix of pre-written programs and participant-written

programs. However, their study used an unusual editor, a LISP tutor, which resulted in

the participants essentially filling in the blanks and thus guessing rather than performing

more traditional debugging. The other exception is Murphy et al. (2008) who had

students write their own version of a problem first and then gave them a buggy version

of the same problem written by the researchers. This second exception was an explicit

attempt to work around this problem.

In this thesis, I chose to use buggy programs that I had written, to ensure that all

participants attempted to debug the same code. However, each of the debugging

challenges were similar to the code the participants had already written during the

17

previous class(es) so that the focus was on debugging similar code. In addition, the

study involved a series of debugging challenges, and so I was able to change the types

of bugs for each challenge, in an effort to see how participants handled different

quantities and types of bugs.

2.2.5. Turtle Graphics

A major part of this study relies on the use of a programming library named turtle

graphics that allows for the creation of images using drawing commands that move a

cursor calls a “turtle” around a digital on-screen canvas. (See examples in Figure 2.5.)

Turtle graphics was created in the late 1960’s as part of the development of the Logo6

programming language by Seymour Papert, Cynthia Solomon, and Wallace “Wally”

Feurzeig. Logo was created to introduce mathematics to children using computer

programming (Feurzeig et al., 1969). The original turtle (Papert & Solomon, 1971) was a

robot with pens mounted in it to draw on paper; but future iterations, initially called

“display turtles”, would display images on the computer screen instead. Eventually the

“display” moniker was dropped and the process of drawing on the screen with a turtle

cursor came to be known as turtle graphics. In addition, the physical robot would

eventually be replaced by turtle graphics because it not only allowed more students to

participate (due to the lack of reliance on scarce physical robots), but also because

students could create animations by redrawing quickly on the screen.

6 Logo is a name and not an acronym or abbreviation and thus is capitalized as such. However,
in some studies it is capitalized as LOGO, in line with BASIC, FORTRAN, and COBOL.

18

Figure 2.5. Sample images generated during the course using turtle graphics.

The reason that turtle graphics was chosen for many programming and

debugging studies with children was that it provided an accessible graphical output that

participants could recreate physically through a process described as “body syntonic”

(Papert, 1980). In other words, students could understand what code did by “playing

turtle” and enacting physically, using their bodies, the commands the turtle was

programmed to follow. As a result, important concepts of programming and debugging

could be explored both physical and graphically both with programs written by the

researchers and the students.

Ultimately, Papert positioned teaching children programming (Papert, 1972) as

an act of developing their understanding of concepts like mathematics through a process

of “addition, refinements, and debugging” (p. 3.2). Later in his 1980’s book Mindstorms

(Papert, 1980), Papert would argue that debugging was an essential component of both

education and programming, especially for children because it established a mindset

that errors (bugs) happen naturally, and that fixing them is a natural part of learning.

This sentiment is echoed by Dweck & Elliott’s (1983) ideas about student motivation

during learning, whereby mistakes (bugs) should be framed as learning opportunities

rather than reflections of poor performance or a lack of intelligence.

19

2.2.6. Verbal Protocol Analysis

In order to provide context for the research methods used for debugging-related

studies, including the present study, a short description of verbal protocol analysis is

provided here with the other definitions.

In 1980, K. Anders Ericsson and Herbert Simon proposed that verbal reports

could be used as data in studies of human cognition (Ericsson & Simon, 1980). As

noted by Bowles (2010), researchers needed a way of determining the reasoning behind

learners’ actions, and verbal reports provided access to it. Without verbal reporting,

researchers were left to infer what learners were thinking based solely on their actions

and productions. With verbal reporting, it was argued, participants could verbalize their

reasoning and provide access to their underlying cognitive processes. This approach is

especially important for debugging research because it provides context for why

participants took the actions they did, allowing researchers to note what features,

assumptions, and knowledge they used for each of their problem-solving steps.

There are two primary forms of verbal protocol (Ericsson & Simon, 1993, p. 15):

concurrent verbal reports and retrospective reports. In concurrent reports, participants

speak aloud while engaged in the activity under study. In retrospective reports,

participants are asked to provide an explanation of their actions after completing the

activity. The advantage of concurrent reports is that the participants report their

thoughts in the moment (in situ). The advantage of retrospective reporting is that the

participants are not burdened during the task and can think about their answers after the

fact. The disadvantages of concurrent reports are that the participant is burdened by the

need to speak aloud while they are engaged in a potentially already challenging task,

which may slow them down on the primary task and alter the cognitive processes

involved with completing the primary task. The disadvantage of retrospective reports is

that they are seen as less reliable because participants may forget, rationalize, or even

justify their actions based on the outcome rather than describe the events as they

actually happened. Ultimately, the choice of concurrent verbal reporting or retrospective

verbal reporting comes down to the level of detail the researcher is looking to generate

as well as the level of effort involved by the researcher and the participants.

20

It must be noted that, verbal reports are not without criticism. As noted by

Bowles, asking participants to think-aloud while they are completing an already

challenging task adds another task which may both slow them down and alter their

cognitive processes and thus not result in the true insights claimed. Ericsson & Simon

noted that participants should be given a warm-up or practice in the verbal reporting

process before conducting the main observations, so they are aware of what they need

to do and how to do it. As to validity, Nisbett & Wilson (1977) question whether

participants can even access their unconscious processes explicitly during a task, and

suggest that instead their reports are in-the-moment justifications for their actions rather

than the actual processes used. In addition, protocol analysis is resource-intensive

because participants’ actions and words must be captured in the moment and then

coded for interpretation after the fact. As a result, researchers must employ reliability

measures, such as inter-coder reliability techniques, to ensure the trustworthiness of the

research findings.

This thesis employed a concurrent verbal think-aloud protocol during the one-on-

one debugging challenges to try to capture the moment-by-moment actions of the

participants. In an attempt to alleviate the load of thinking aloud while debugging, early

tasks were designed to be less mentally taxing. As well, the researcher provided

instructions and practice on the process of thinking aloud, and reminded students

regularly while engaged in the challenge tasks.

2.3. History of Debugging Research

Now that debugging and terms related to this thesis have been defined, I will

discuss research on debugging related to this study. My aim is to provide a broad view

of the research, and provide context for the decisions made in the design of the research

for this thesis.

2.3.1. A Call to Teach Debugging

The first calls to teach debugging as part of computer programming instruction

came from two separate groups of computer science professors. First, Heilman & Ashby

(1971) called for the inclusion of debugging as an explicit topic in computer science

education at the college level. This included a call for research into the classification of

21

errors, to facilitate the creation of teaching materials necessary to help students identify

and correct bugs. Heilman & Ashby further suggested that debugging aids be created

and integrated into programming languages, operating systems, and even the hardware

to support effective debugging. Next, Mathis (1974) took the agenda a step further by

making the case that debugging should be realized not as a standalone unit, but instead

that it should be integrated throughout introductory programming courses to expose and

teach the inner workings of the computer and the program, what today Lowe (2019)

would call a “debugging-first” approach. Mathis suggested using techniques such as the

use of print statements to expose program state, in order to show how to effectively

localize faults in code. Unfortunately, both Heilman & Ashby’s and Mathis’ calls have

gone largely unheeded. Instead, debugging continues to be glossed over, ignored, or at

best taught as a standalone lesson or unit.

2.3.2. Initial Debugging Research

Early debugging research in the 1970’s started with a focus on ways of reducing

the time required to debug. As a result, the early studies looked at the types of bugs

introduced (Boies & Gould, 1974; Youngs, 1974) and how long it took participants to

debug them (Gould, 1975; Gould & Drongowski, 1974).

Much of the early research focused on what type of bugs were being introduced

into code. Boies & Gould (1974), looked at syntax errors using three programming

languages7 and concluded that syntax error “[did] not seem to be a major bottleneck in

computer programming” (p. 255), as they accounted for less than 1/6th of the errors

observed. As a result, Gould’s next studies measured how long it took programmers to

debug non-syntactical errors. In two studies (Gould, 1975; Gould & Drongowski, 1974),

participants were given program print-outs, told there was a single bug, and then timed

as they tried to locate and report the bug to the researcher. These two early papers are

among the most cited debugging-related papers, because they put forward claims such

as that finding the bug (fault localization) is the most difficult of the three debugging

processes (identify, locate, repair); that certain types of bugs take longer to detect; and

that programmers are more efficient when debugging code they have previous

experience with.

7 Boies & Gould’s (1974) three languages: Assembler, FORTRAN, and PL/1

22

Like Boies & Gould (1974), Youngs (1974) looked at where programmers made

the most errors across five programming languages8, measured where errors happened,

described them quantitatively, and then reported which language constructs were the

most error-prone. In addition, Youngs’ study provided early examples of bug groupings

and classifications, compared the differences between expert (experienced) and novice

(beginner) programmers, and had participants write and debug their own code rather

than providing them with code written by the researchers. Youngs’ bug groupings and

classifications provided insights into common sources of errors for both novices and

experts, but most importantly, where novices differed from experts. In addition, having

participants write and debug their own code resulted in naturalistic observations of the

differences between novices and experts, which confirmed that their processes were

different as well. For example, Youngs noticed that the experts were faster and focused

on eliminating the easier syntax errors first before focusing on the semantic and logic

errors. Conversely, novices made more errors, were not systematic when debugging,

and took longer to debug. Youngs’ observations about novices being unsystematic

implicitly suggested teaching novices a systematic process to help them become more

expert-like.

2.3.3. Criticism of Early Research Methods

At the start of the 1980’s, researchers (Brooks, 1980; Sheil, 1981) advocated for

rethinking how debugging and programming research studies were conducted. They

claimed that many of the earlier studies were too focused on trying to measure within-

subject variance.

Brooks (1980) raised three methodological concerns about the studies discussed

above: the selection of measures used, the selection of participants, and the selection of

materials used. Starting with the selection of measures, most early studies involved

measuring how long it took individual participants to complete debugging tasks.

However, because debugging involves a number of different sub-tasks, the question of

when to time and what to time was not clear. In addition to what to measure, the

question of who to measure (or the selection of participants) was another issue. Many of

the studies noted wide variances between participants, but unfortunately did not attempt

8 Youngs’ (1974) five languages: ALGOL, BASIC, COBOL, FORTRAN, and PL/1

23

to account for this through other measures. For example, an expert professional

programmer should be expected to complete debugging tasks faster than novice

programmers just starting out. However, when measuring just the time to complete a

task, there could be substantial differences between two experts or two novices. Thus,

additional measures were necessary, for example measures of comprehension, skill, or

knowledge. Finally, unlike many other tasks, two different debugging tasks may require

completely different approaches; and so, the selection of the materials is challenging.

As Brooks noted, many of the early studies tasked their participants to find and fix a

single bug, with some even telling them that there was only a single bug (Gould &

Drongowski, 1974)9. However, the level of difficulty, whether related to the number of

bugs or the types of bugs, must be chosen according to the level of skill of the

participants. Otherwise, the debugging task will be too easy and be completed too fast

(resulting in a ceiling effect), or it will be too difficult, take too long and result in

incomplete or ambiguous data. As a result of these three issues, Brooks suggested

shifting the focus from trying to draw conclusions and make generalizations using only

direct observations, and instead shift the focus towards the development of theories or

models of the cognitive processes involved in programming.

Sheil (1981) added to Brook’s suggestion of shifting towards behavioural studies

because, he argued, programming is a complex human process, and many of the

studies which stated that they were just trying to make something easier, faster, or less

error-prone, were actually in fact psychological studies of cognitive processes.

However, according to Sheil, this was problematic because many psychological theories

are suggestive by nature and thus lacked the robustness and precision required to yield

generalizable predictions or results. In other words, in a field like computer science that

is based on logic and measurable outcomes, there was an expectation that experiments

should be controlled experiments that produce generalizable results for the real world.

9 To their credit, Gould & Drongowski (1974) did note that “[d]ebugging times were

undoubtedly affected by participants’ knowledge that there was always one and only one

bug present” (p. 263) and suggested that future studies should look to vary the number

of bugs.

24

Despite this, what seemed straightforward to measure (debugging), often failed

to account for things such as practice effects, where repeating the same or a similar task

multiple times could lead to improvements that could then result in quicker task

completions on second and subsequent attempts. This was problematic, because the

effects were methodologically weak but were presented as if they established strong

claims. Sheil noted, surprisingly, that the computing community at the time paid little to

no attention to how unclear the effects were in these studies, and instead presented

them as strongly supported ideas around concepts of debugging, regardless of the fact

that the sample sizes and effects were small, and the methods were weak. The

criticisms did not go unnoticed, and signaled a shift towards trying to uncover the

psychological and cognitive factors at play when debugging.

2.3.4. Verbal Reporting as Data

Fortunately, as the interest in investigating and formulating theories related to

cognitive processes in programming and debugging began to form, psychology and

cognitive science set about formalizing techniques for turning verbal reports into data,

largely through the initiative of Ericsson & Simon (1980). With specific reference to

debugging, at least seven studies during the 1980’s (Carver, 1986; Gugerty & Olson,

1986; Jeffries, 1982; Katz & Anderson, 1987; Kessler & Anderson, 1986; Nanja, 1988;

Nanja & Cook, 1987; Vessey, 1984, 1985, 1986) and a few more recently (Fitzgerald et

al., 2005; Lewis, 2012; Murphy et al., 2008; Whalley et al., 2023) have looked at

debugging using a verbal think-aloud protocol. As noted by Carver, the data collected

needed to include the intermediate steps participants used in order to reveal the paths

they took to solve a problem. As a result, debugging researchers used a think-aloud

protocol to “solicit verbal expression of the knowledge currently active in the participants’

short-term memory” (Carver, 1986, p. 41). This sentiment is echoed in the other studies

cited above and forms the basis for developing traces of the steps involved with

debugging so that participants’ strategies could be more fully documented and then

reported.

One of the first debugging studies to use protocol analysis was Jeffries (1982).

In her study, four first-year undergraduate students (novices) and six graduate students

(experts), were asked to report their thinking while attempting to debug printed copies of

two Pascal programs that contained multiple bugs. Participants were told to report

25

errors as they discovered them, which allowed for the creation of a trace of their actions.

However, although the experts presented their processes clearly, novices did not. This

study intentionally made use of multiple bugs after noting the limitation in Gould &

Drongowski (1974), which led to the discovery that a number of participants did not find

all of the bugs. Novices missed 21% of the bugs and experts missed 8%. As well,

Jeffries noted that novices read the code sequentially and introduced new errors while

debugging, whereas experts read the code in the order it was executed, and rarely

introduced new errors (p. 14). Finally, she noted that “All of these observations can be

seen as evidence that novices were working under a severe memory load.” (Jeffries,

1982, p. 10). Jeffries’ study set the stage for more debugging studies using protocol

analysis, novices versus experts, multiple bugs, and further investigations into the

debugging strategies programmers of varying ability used.

Vessey’s thesis (1984) is an early example of the use of a concurrent verbal

think-aloud protocol during the debugging process in order to capture participants’ raw

thought processes as they debugged. Vessey states that this approach was taken so

she could investigate the psychological processes underlying participants’ debugging

strategies. Vessey’s study looked at sixteen professional adult programmers from a

single company, who had been labelled as a novice or an expert debugger by their

manager. The study presented the participants with increasingly difficult debugging

challenges. Vessey recorded their actions and spoken thoughts, used these to create

debugging episodes, and then used the episodes to classify each participant as a novice

or an expert debugger based on the strategies they used. Her hypothesis was that

differences between expert and novice programmers would become more apparent as

the task difficulty increased, and so different levels of difficulty were incorporated into the

study. Vessey’s study is often cited as an expert versus novice study, but I feel this is a

mischaracterization because both groups were professional programmers and the

distinction between them was first assigned by their manager and then benchmarked by

Vessey based on the strategies she determined from their debugging episodes.

Vessey’s study did, however, help to establish concurrent think-aloud verbal protocol as

a viable, albeit resource-intensive (p. 427), means of observing debugging behaviours.

As well, Vessey established the idea of using differences in debugging strategy between

individuals as a way of classifying them as novice or expert. However, her study was

not of novice programmers, but instead professional programmers labelled as either

26

novice or expert debuggers based on their demonstrated debugging strategies. As a

result, additional research with actual novice programmers was needed.

Gugerty & Olson (1986) employed a concurrent verbal think-aloud protocol in

their study which compared novice university students, who had just finished their first or

second course in Pascal with graduate students labeled as experts. Their design was

novel in that both groups knew Pascal, but were asked to debug both a Pascal program

which they had some experience with, as well as a Logo program, which they had no

prior experience with. Each program contained only a single bug, but participants were

not told how many bugs the programs contained. Their study goal was to see if the

debugging behaviours transferred to the new language. They found that experts were

faster, introduced few new bugs or none, and appeared to comprehend the programs

better. This led them to conclude that the expert’s debugging advantage was as a result

of their superior program comprehension abilities. They also noted that experts used

“test writes”10 (debugging print-statements) 50% of the time, while novices only 30% of

the time. This suggests that both groups had some awareness of test writes as

debugging aids, but not why there was a difference or if the difference shaped the

outcomes of debugging.

An important contribution from Gugerty & Olson’s study is a comparison of three

debugging techniques: code comprehension, topographic search, and symptomatic

search. They noted that experts had a greater knowledge of programming constructs,

and this would likely lead them to understand what the program was doing more so than

the novices. With regard to topographical search, where the participant used clues in

the output or tests to narrow the possible locations of bugs, experts used this approach

more effectively. As well, for symptomatic search, where the programmer used prior

debugging experience and knowledge of similar past bugs to solve a problem, the

experts could have a larger mental library of symptom-bug associations. Gugerty &

Olson noted that debugging required using a combination of these three techniques to

generate hypotheses for locating bugs, and that experts debugged more quickly and

successfully than novices largely because they generated higher quality hypotheses and

introduced fewer bugs while debugging.

10 “Test writes” comes from Pascal’s print function being named WriteLn rather than print like in
Python and other languages.

27

Nanja & Cook’s (Nanja, 1988; Nanja & Cook, 1987) study was an attempt to

correct for a number of issues identified with previous studies. Specifically, their

concurrent think-aloud verbal protocol study used eighteen participants classified as

expert, intermediate, and novice based on their reported level of experience. The

novices were first-year students, intermediates were third-year students, and the experts

were graduate students who had worked in industry or taught the introductory

programming courses. The buggy program they used contained multiple errors, and

they measured seven attributes as shown in Table 2.1. Their key findings were that

experts were faster, introduced no new errors, and employed a comprehension

approach when finding bugs. The attributes described in Table 2.1 were used during the

analysis for this thesis as a measure of the ability level of my novice students.

28

Table 2.1. Nanja & Cook’s expert, intermediate, and novice attribute rubric

Attribute Expert Intermediate Novice

Bug finding
approach

employed a
comprehension
approach; understand
the program first and
then use that knowledge
to find the bugs

employed an isolation
approach; used output
for clues to identify
candidate bug locations,
recalled similar bugs, and
tested program state.

employed a random non-
systematic approach;
often characterized by
trial-and-error or guess-
and-check.

Bug correction
approach

corrected multiple errors
before verifying the
corrections

corrected and verified
single errors

corrected and verified
single errors

Bug correction
priority/order

corrected both semantic
and logic errors at the
same time

corrected the semantic
errors first and then the
logic errors

corrected the semantic
errors first and then the
logic errors

Bug correction
speed

fastest average slowest

Bug correction
accuracy

were most successful in
correcting all of the errors

corrected all of the errors
did not correct all of the
errors

Statement
modification
frequency

modified fewer
statements.

made considerable
modifications.

made very extensive
modifications.

Introduction of new
errors

did not introduce more
errors

introduced several new
errors

introduced many new
errors

* Table data is based on attributes described in Nanja & Cook (1987)

2.3.5. Explicit Debugging Instruction with Children

There are a limited number of studies that address teaching children an explicit

debugging process. David Klahr and Sharon Carver were the first to do this in the

1980’s (Carver, 1986; Carver & Risinger, 1987; Klahr & Carver, 1988, 1988). Recently,

a couple of studies have looked again at debugging with young children (Rich et al.,

2019), and teenagers (Ko et al., 2019; Michaeli & Romeike, 2019b). Carver’s work will

be the initial focus of this review, as it was the original model that was followed for the

design of this study, while Rich et al. and Ko et al. provide some modern perspective,

and Michaeli & Romeike furnish insights from high school teachers as well as students.

Carver and Klahr conducted a number of debugging-related studies with

elementary-aged students. Their initial pilot study (Carver & Klahr, 1986) looked at the

29

effect of students engaged in “guided discovery learning” using Logo and turtle graphics.

According to Carver, “A guided discovery environment is one in which the instructor

introduces new LOGO concepts and may give project ideas for trying them, but then the

students are free to create projects of their own choice.” (p. 23). This guided discovery

model describes the type of learning environment that Papert advocated (Papert, 1972,

1980), which he claimed promoted deep learning and transfer of skills.

In addition to the guided discovery environment, students in Carver & Klahr’s

pilot study were given explicit debugging instruction and a specific protocol to follow, as

shown in Figure 2.6. Their approach was successful in showing that teaching students

an explicit debugging process helped them with their programming performance and

confidence. However, this contradicted Papert’s claim (Papert, 1980) that students

would develop their own debugging skills through self-discovery. Instead, Carver &

Klahr reported that in the absence of explicit instruction in debugging neither students

nor teachers developed anything beyond “the most meager debugging skills” (Klahr &

Carver, 1988, p. 377). They claimed that explicit debugging instruction was necessary

for novice programmers to develop effective debugging techniques, and set about

exploring the impact of such instruction. Following the results from her PhD thesis

(1986), Carver conducted another study with Risinger (Carver & Risinger, 1987) where

they took the explicit debugging instruction lessons learned from Carver’s previous work

with Klahr and used it with another group of students. The key findings from these

studies were that explicit debugging instruction for novice child programmers is both

necessary and effective.

30

Figure 2.6. Debugging flowchart from Klahr & Carver (1988, p. 378).

Carver’s PhD thesis (1986) played an outsized role in shaping this thesis. After

reading Carver’s thesis my original intent was to replicate it, however I was unable to

obtain a complete copy of her 35-year-old thesis. Instead, I was only able to obtain the

main body of the thesis, without the appendices which included many of the artifacts

necessary for replication. The reason I was originally interested in replicating this study

is that it surveyed a similar age of student to those I had already taught, used a think-

aloud protocol, covered turtle graphics over a period of twelve weeks11, and included not

only debugging testing but also debugging instruction, i.e., this was a course with

debugging testing. Undeterred by my inability to access Carver’s thesis appendices, I

modelled key parts of this thesis after her course outline but developed my own course

materials, assessments, and changed elements I observed in other studies.

11 Students were taught Logo for 6 months (24 weeks vs. my 8 weeks). There were two
programs, one using turtle graphics and one using list processing. Each program was 12-weeks
in length, each session was two hours in length, resulting in students receiving 2 hours/session x
12 sessions x 2 programs = 48 hours.

31

2.3.6. A Renewed Interest in Debugging

By the end of the 1980’s research into debugging slowed, with only a small

number of studies occurring at the start of the 1990’s which summarized the work done

in the 1980’s (Gilmore, 1991), copied previous studies (Allwood & Björhag, 1990), and

showcased yet another tutoring aid for programming (Araki et al., 1991).

It wasn’t until ITiCSE12 2001 that interest in debugging re-ignited, after a working

group led by McCracken (McCracken et al., 2001) reported that following completion of

their first one or two programming courses, first-year undergraduate computer science

students, exhibited a surprising lack of programming competency. A follow-up study by

Lister et al. (2004), looked at code reading and tracing, and resulted in calls for research

into the underlying issues that novice computer science undergraduate students faced.

One result of these two working group reports was a qualitative study by Fitzgerald,

Simon, & Thomas (Fitzgerald et al., 2005) that used concurrent verbal think-aloud as the

basis for a grounded theory of tracing strategies of novice students.

This study’s goal was to identify strategies such that they could be developed

into theories of how students approached the reading and understanding of code.

Although the study did not focus on debugging specifically, it was soon recognized that

code tracing was a core technique used when trying to locate a bug during debugging.

This led Simon, Fitzgerald, and others to form an international working group that

consisted of multiple institutions in the United Stated and United Kingdom to review and

revisit the debugging literature (then at the time at least twenty years old). This

collaboration resulted in one literature review and four research studies. This set of

studies, starting in 2008, focused on debugging and relied extensively on the work

conducted in the 1980’s. Similar to this thesis, the researchers made changes to

account for the introduction of modern programming tools, languages, and

environments. However, their focus was on first and second-year undergraduate

students. A review of these 2008 studies follows.

In their review of the debugging literature, McCauley et al. (McCauley et al.,

2008) focused on the teaching of debugging. They noted that the literature was rich but

dated. In their findings, they observed that few introductory programming textbooks

12 ITiCSE is the ACM conference on Innovation and Technology in Computer Science Education.

32

covered debugging, and those that did provided either basic definitions or just general

rules of thumb to guide the novice. Their definition of debugging: “find out exactly where

the error is and how to fix it” (McCauley et al., 2008, p. 68) covers the two general ideas

of locating and fixing errors, but not the third of identifying nor Carver’s additional three,

all of which are beneficial for novice programmers. They noted that bugs occurred

because of language misconceptions and a chain of cognitive breakdowns (Ko & Myers,

2005) related to the rules of the language, student’s knowledge of the language, and

student’s skills using the language. They also (importantly) noted that educators should

not ignore the incorrect mental models that are the root cause of unsuccessful

debugging, and should therefore teach correct debugging techniques. However,

unfortunately, although their paper touched on a number of historical concepts and

ideas, it did not provide any explicit strategies that practitioners could use within their

classrooms, and instead provided a list of historical studies and concepts covered.

Nonetheless, this literature review would act as a starting point for subsequent studies,

that would look to revisit core concepts related to debugging: what debugging strategies

novices used when debugging code, and what debugging looked like from a student’s

perspective.

In two subsequent studies, Fitzgerald et al. (2008) and Murphy et al. (2008)

reported on the debugging strategies used by novice undergraduate students while

debugging Java programs. These studies used a combination of interviews, a

programming exercise, and a debugging exercise. During the debugging exercises, they

used a concurrent verbal think-aloud protocol. The first study (Fitzgerald et al., 2008),

served as a confirmation of findings from previous studies, namely that once students

find a bug they can fix it. This led them to suggest teaching tracing strategies derived

from their previous study (Fitzgerald et al., 2005): tracing code mentally in their heads,

on paper, using print statements, and via a debugger. This then led to a set of

debugging heuristics to help novices decide on the best approach for a given situation.

See Figure 2.7.

33

- if you have to keep up with more than one or two variables or there’s a loop
involved then you need to trace on paper, not just in your head;

- if the bug can’t be determined by looking at (sic) only at the input and output
values then you need to add some print statements in the middle;

- make sure that your print statements are well placed and print useful
information;

- if you have to put in too many print statements, your program ‘hangs’ or you
think it has an infinite loop, use the debugger.

Figure 2.7. Debugging Tracing Heuristics (Fitzgerald et al., 2008, p. 114).

Of importance to this thesis, Fitzgerald et al. noted a challenge while conducting

the think-aloud portion of their one-on-one sessions with students; namely that students

reported finding thinking aloud distracting, and often chose not to speak. As a result, the

researchers reported limits to the conclusions they could draw from some of the

participants’ actions. This led them to recommend developing a protocol that

encouraged more speaking, and also recording the actions of the participants to provide

more context.

In their second study, Murphy et al. (Murphy et al., 2008) attempted to reduce the

impact of code comprehension at the start of a debugging exercise with code written by

others. To do this, they first asked students to choose one of six typical CS1 activities to

code. The students were then given 30 minutes to program their own solution to the

problem. Next, after the students had created their own version of the exercise, they

were given a syntactically correct solution to the same problem, which contained 3-5

logic errors. Students were then given 20 minutes to debug this bugged version, while

the researchers maintained a minute-by-minute log of their activities. The rationale for

first having participants create their own solution to the problem and then asking them to

debug a bugged version was that the researchers wanted the students to be familiar with

the problem, and thus bridge between their own code and the code written by others. In

addition to the activity log files, the researchers also conducted semi-structured

retroactive interviews to elicit participants’ impressions of the debugging exercises,

strategies used, and motivations for their problem choices. This study resulted in

thirteen “good” effective strategies, nine “bad” less effective, faulty, or unproductive

strategies, and a handful of “quirky” or unusual strategies (p. 165). Of particular interest,

the researchers noted that when tracing, some students used debug print-statements

34

incorrectly, didn’t appear to understand the code even though they edited it, commented

out suspicious lines that were correct, and worked around problems by replacing them

with new code in order to avoid fixing them.

While discussing the observed strategies, Murphy et al. noted that some students

“tinkered” with the code. They described tinkering as “fairly random acts that usually

resulted in unproductive changes” (Murphy et al., 2008, p. 166). They noted that

tinkering was almost always ineffective, whereas systematic tracing was usually effective

when used correctly. This implies that tinkering should be framed as an ineffective

approach with students, and instead systematic tracing should be taught with explicit

instruction and practice. They noted that despite a lack of explicit instruction, students

seemed to be familiar with and used many common debugging techniques. However,

they also noted that because of this lack of explicit instruction, many students applied

the techniques incorrectly, inconsistently, or ineffectively.

In a related study in 2010, Fitzgerald et al. (Fitzgerald et al., 2010) looked at

debugging from the students’ perspective, by asking students to retroactively describe

their debugging approaches. They noted that students relied heavily on online

resources, using what they called “pattern matching” to try to find solutions to their

problems. However, when students failed to find an answer online, they flailed because

they lacked core debugging skills. Fitzgerald et al. noted that tracing skills were

underdeveloped (something they noted previously in 2005 and 2008 as well), which led

to a suggestion that tracing skills be emphasized as both a means of understanding the

code but also a useful debugging technique. A key takeaway regarding debugging code

written by others, as in this study, was offered by a student, who commented: “If I wrote

it, I’m already intimately involved in the algorithms of the code…. If it’s somebody else’s,

It’s figuring out what the heck they are doing.”(Fitzgerald et al., 2010, p. 394). As a

result, the researchers suggested explicitly demonstrating techniques such as

commenting out blocks of code, using a debugger, but also being mindful of the

additional cognitive load required to learn and use the debugger within an already

demanding context.

All in all, these 2008 and 2010 studies helped to revisit and refresh some of the

issues and findings raised in older studies. The main points stressed and emphasized

were the teaching of tracing, being mindful of cognitive load, and both the value and

35

challenges of verbal think-aloud protocols as a technique for studying the cognitive

processes of novice programmers.

2.3.7. Debugging Instruction in the Classroom

Starting as far back as Heilman & Ashby (1971), a common call to action has

been that debugging should be taught as part of instruction in computer programming.

This has resulted in common retorts that either students will pick it up as they go

(Papert, 1980), that textbooks already provide debugging instruction, or that teachers will

provide just-in-time instruction as necessary. However, as noted by Carver & Klahr

(1986) most students did not develop effective debugging processes without explicit

instruction. As well, McCauley et al. (2008) noted that “typically little to no space is

devoted to bugs and debugging in most introductory programming textbooks” (p. 68).

Recognizing the lack of instructional materials available to support the teaching of

debugging, three recent studies created and tested classroom materials (Böttcher et al.,

2016; Ko et al., 2019; Michaeli & Romeike, 2019b).

The first of the group to test adding debugging instruction to a programming

course was Böttcher et al. (2016). They created a debugging unit within their Java

programming course for first-year university students. Their study looked at the effects

of adding a single unit on debugging, which consisted of one reading, one lecture, one

lab, and one assignment. The focus of their unit was on using Gauss’ (1982) Wolf

Fence algorithm13 for fault localization, using the debugger integrated into their IDE,

building and using unit tests to validate their code, and writing a report detailing how they

debugged the assignment. The student assignment consisted of a single program that

contained three bugs and was graded based primarily on the student’s ability to

effectively describe their debugging process. They noted that they had observed the

following naïve debugging strategies: random visual inspection, and print statements to

visualize process flow changes in program state. Results from the study showed that

less than 10% of the students used the Wolf Fence approach, and that there was a weak

correlation between students’ written debugging reports and their debugging abilities.

Overall, this study did not provide convincing evidence to support the approach taken;

13 The Wolf Fence algorithm is a divide-and-conquer search algorithm that splits the search space
in half repeatedly by testing a condition (a wolf howl) in one half and if not present then the wolf
must be in the other half.

36

but this may be considered unsurprising since it was only a single unit and not integrated

throughout the course as suggested by Mathis.

In 2019, Michaeli & Romeike (2019a, 2019b) published two papers on explicitly

teaching debugging during undergraduate computer programming courses. Their first

study (Michaeli & Romeike, 2019a) concluded that although they considered debugging

an essential skill, it was not being explicitly taught in classrooms. Digging further into the

issue, they interviewed German high school teachers to investigate how they

approached debugging in their computer programming classes. Their results showed

that weaker students were often seen as helpless and used unsystematic trial-and-error

approaches. Also, they discovered that compile-time syntax errors played a much more

significant role than is often reported in the debugging literature (Boies & Gould, 1974).

This may in part be because this study looked at younger novice students in high school

rather than in university; so, these students were still stuck on lower-level errors than

those common among older students. Although teachers did report talking about

heuristics for addressing common bugs, they did not have a systematic process to teach

the students due to a lack of available materials.

Following their study with high school teachers, Michaeli & Romeike (2019b)

developed and then introduced a three-level systematic debugging process focused on

student self-efficacy (see Figure 2.8). They then conducted a pre-post control-group

study to examine the efficacy of their debugging process. Both the experimental and

control groups were surveyed using a questionnaire and given debugging exercises as a

pre-test. Both groups completed debugging exercises, with the experimental group

using the intervention and the control group just doing the debugging exercises. For the

post-test, the students were surveyed again and also completed debugging exercises

without any explicit preparation. Their results showed a significant increase in both self-

efficacy expectations and debugging performance in the experimental group as

compared to the control group.

Michaeli & Romeike claimed that their study provided empirical evidence for

explicitly teaching debugging and provided a hands-on approach for the classroom.

However, the intervention, debugging lesson, as well as the pre- and post-tests were all

covered within a single 90-minute lesson taught by the researchers and accompanied by

the poster shown in Figure 2.8. Furthermore, their explicit debugging intervention was

37

only 10 minutes in length (p. 3) and thus subject to strong recency effects. Also, it is not

clear that the intervention was entirely responsible for the observed differences between

the experimental and control groups. Students were not randomly assigned to groups,

individual student debugging proficiency was not measured before the intervention, and

students’ levels of programming performance were not accounted for. So, similar to

Böttcher et al. previously, the intervention was limited, and other variables were not

controlled for to support generalization of the results.

38

Figure 2.8. Michaeli & Romeike's three-level systematic debugging process.
From Michaeli & Romeike (2019b, p. 5), “Figure 4: Systematic debugging process conveyed in
the intervention”.

39

In a study designed to investigate debugging strategy selection and self-

regulation, Ko et al. (2019) introduced seventeen high-school students to two strategies

for debugging and code reuse during a five-week summer camp that focused on video

game development using JavaScript. The students were novices who had little to no

prior programming experience. Students followed course material from Code.org for

three weeks, and then spent the final two weeks building a game of their choice, alone

or in pairs, over 10 classes. Explicit debugging strategies were presented as a series of

generic conditional steps that students could follow. See Figure 2.9.

Figure 2.9. Debugging strategy text (Ko et al., 2019, p. 471).

Ko et al. reported that although students said the strategies were valuable, many

had trouble regulating their choice of strategies and instead defaulted to an ineffective

trial-and-error approach. Those students who used the recommended strategies

completed more features in their projects, but this association may have been mediated

by factors other than the strategies alone. They concluded that students may require

more explicit instruction on strategy selection and self-regulation. This observation

aligns with observations from Fitzgerald et al. (2008), who noted that even with explicit

strategies, students still defaulted to poor strategies and got stuck. It also echoes

findings that students may ignore recommended strategies that they have been taught.

40

2.3.8. Debugging-First: A New Approach to Teaching Debugging

As just discussed, the teaching of debugging as part of computer programming is

arguably logical, but subject to the constraints of limited time and resources in the

classroom. A different perspective suggested by Lowe (2019) is that rather than

considering debugging as a separate skill that one acquires, debugging should instead

be integrated throughout introductory programming courses through a “debugging-first”

pedagogy. In 2019, Lowe introduced a new theory of programming built upon dual

process theory and Bruner’s theory of representation named the Theory of Applied Mind

of Programming (TAMP) (Lowe, 2019). Dual process theory (Frankish, 2010;

Kahneman, 2013), refers to a model of the human mind based on the concept of it

having two systems available for cognitive tasks, named System 1 and System 2.

System 1 is often referred to as the fast-access, automatic, heuristic system that allows

for immediate answers and actions, while System 2 is the slow-access, rule-based,

analytical, or reflective system that allows humans to reason about problems

thoughtfully. Bruner’s theory of representation refers to a model where learners, when

faced with new material, go through a three-stage process that connects this new

knowledge with existing knowledge. Thus, according to Lowe, by engaging with

programming using debugging, that debugging techniques move from relying exclusively

on rules (and thus the slower System 2) to becoming automated like the faster System

1.

As a result, Lowe’s theory suggests that rather than teaching debugging as a

nice-to-have skill or an implicit skill developed as a result of programming, instead,

debugging should be used as the central means of teaching programming itself. This

challenges the notion that success in CS1 is appropriately measured through

demonstrations of knowledge rather than demonstration of skills -- an assumption that

McCracken et al. (McCracken et al., 2001) reported among teachers and which spawned

Lister et al.’s 2004 ITiCSE working group, Simon et al.’s 2005 work, and then the 2008

and 2010 studies on debugging, as previously discussed.

Lowe’s approach echoes Mathis’ (Mathis, 1974) call for the integration of

debugging into programming, but takes it a step further by suggesting the need for a

“debugging-first” pedagogy that can perhaps fill some of the mental gaps that TAMP

suggests hamper novice programmers. For instance, using worked examples, where

41

errors are introduced and then debugged using explicit steps as well as test cases,

tracing, isolating the wrong line, or correcting individual lines of code. As a result of this

approach, many debugging problems can use the same scaffolding already used during

programming instruction by introducing new bugs along the way and then working to

identify, locate, and repair them. In an effort to minimize cognitive load, Lowe suggests

that the teaching “should stress continuous practice with basic materials to the point that

they become overlearned” (p. 2). This concept of overlearning describes the automation

of rules normally processed by System 2 towards the creation of System 1 processes,

which are ultimately immediate and costless. This approach points towards using

debugging from the start, integrating it into introductory programming, with the goal of

automating the debugging process early and within context. As a result, Lowe suggests

that the debugging-first approach should help address issues raised by McCracken et al.

around students not knowing how to program (and debug) by the end of their computer

science programs.

The present research did integrate explicit debugging instruction, as well as

providing and working through debugging situations while teaching Python and turtle

graphics. As a result, the approach taken in this research is similar to the approach

advocated by Lowe. However, given the short duration of the study, with only 8 hours of

total instructional time, any effects were preliminary. Therefore, generalizability is

limited.

2.4. Literature Review Limitations

The following are some limitations of this literature review.

Age of the Research

The majority of research on debugging is from the 1970’s and 1980’s. This

review uses older research to build up the context for the more contemporary research.

Although the general concepts of computer programming remain the same over the time

period discussed, computers and programming languages have changed considerably

over this time. As a result, although the literature is old, it is still relevant and, in some

cases, provides the only examples of research related specifically to debugging.

Limited Research on the Topic of Children and Debugging

42

The majority of the research on debugging has been conducted using

undergraduate students rather than children. Of the many studies reviewed, only a

handful were conducted with children and of those, only a few looked at explicit

instruction on debugging. In addition, of those that looked at explicit instruction with

children, only Carver & Klahr (1986) and most specifically Carver’s thesis from 1986,

looked at the impact of explicit debugging instruction on children.

Excluded Research

Two classes of recent research were not included in this literature review:

debugging e-textiles and debugging block-based programs. Electronic textiles (e-

textiles) involve physical creations, often controlled by electronics that are programmed,

but after reviewing some of the recent studies, their focus was sufficiently different,

especially as it relates to debugging, as to be considered not relevant to the present

study. Similarly, block-based programming languages like Scratch, although mentioned

in some of the included studies, are aside from the focus of this research, which is text-

based programming.

2.5. Research Topic Justification

Using the materials reviewed and discussed in this literature review, the following

is a justification of the design choices made for this thesis. In choosing and justifying the

research topic for this thesis, I have chosen to return to Brooks’ (1980) criticism of early

debugging studies, in which he raised three methodological concerns: the selection of

measures used, the selection of participants used, and the selection of materials used.

Based on this literature review, I made the following choices. For measures, I chose to

compare students’ debugging strategies both between participants as well as over the

course of the study. For participants, I chose upper elementary students (Grades 5-7,

ages 10-12) because they are an under-studied population that is, nonetheless,

increasingly a focus of instructional effort. Lastly, for materials I modified what I was

able to glean from Carver’s thesis (Carver, 1986), which focused on similar participants

and was looking for similar effects of explicit debugging instruction. In addition, I

modified the codes used in Vessey’s thesis (Vessey, 1984) for coding the debugging

session transcripts.

43

With respect to, measures, I chose not to focus exclusively on measuring

debugging times because I felt that although a useful measure of relative performance, it

is also fraught with issues of accuracy and subject to wide variances for reasons related

to the task at hand and the problem presented. In addition, I chose not to focus on

frequency of errors because I felt those failed to answer the question of why students

made the choices they did, to arrive at the bugs being recorded. Although useful for

spotting trends, the frequency of errors focuses too much on the output rather than the

reasoning. Therefore, I chose to develop a measure of the strategies used so that I

could investigate how students debug, and then see how their approaches changed after

being introduced to explicit debugging instruction.

In order to develop the strategies to be taught, I needed a way for participants to

both show and tell me their strategies, which led me to choose using a verbal protocol as

well as screen recording. I ultimately decided to use a concurrent verbal think-aloud

protocol over a retrospective verbal protocol, because I wanted to capture students’

thoughts in the moment rather than after the fact. Although challenging and resource-

intensive, I felt that by practicing the process during a pilot study beforehand, to give me

experience with the process (Carver & Klahr, 1986), giving the students warm up

practice with the technique (Ericsson & Simon, 1993; Jeffries, 1982), and scripting the

prompts, I could conduct an effective think-aloud study. As well, I felt that students at

this age would be less able to recall their debugging processes accurately after the fact,

versus in the moment with prompts. The trade off of potentially disrupting them or

adding additional cognitive load during the sessions was deemed acceptable.

For participants, I chose upper elementary students (Grades 5-7, ages 10-12)

because that is the group that I interact with the most, have the most experience with,

and are at a stage where they are being introduced to computer programming for the

first time, i.e., they are novices in both learning to program and their general cognitive

development. As well, this group is significantly underrepresented in the debugging

literature, and given the push to introduce computer programming to students of this

age, this seems like a timely and necessary gap to fill. I also chose students who had

already taken at least one Python programming course because they would know how to

complete basic program creation and would be comfortable using the tools (to some

extent). Also, because of my previous and continuing work with students in this age

range, they were easier to source as participants in the study.

44

For materials, given that there are limited studies looking at debugging with

children, I modelled my course and study design after Carver’s 12-week course

discussed in her thesis (Carver, 1986) but updated it to use a more modern language

and programming environment. I continued the use of turtle graphics as the topic to be

learned during my 8-week course, because it is a topic of interest to the target audience

and there are a number of existing debugging examples that I used as inspiration for my

three debugging challenges used in the study.

Ultimately, I chose to look at debugging instruction for children because I have

observed that it is a common place of confusion for them, and thus that it acts implicitly

as a barrier to entry to programming. As a result, I wanted to develop and test the

effects of providing them with explicit instruction with the goal of empowering them to

take control over the process and help them develop confidence programming, or more

simply, I wanted to teach them how to navigate there way across the lava.

45

Chapter 3.

Python Turtle Graphics Course Design

This chapter describes the design and pedagogical decisions that went into the

Python turtle graphics course that provided the opportunities for data collection required

for this study. This chapter is presented from the perspective of a teacher-researcher,

and thus focuses on the pedagogical choices for the instruction as they relate to the

research questions. For example, the decision was made to run this study as part of a

course so that students could learn the debugging processes and be tested on it in a

supportive context, rather than simply presenting participants with the debugging

challenges and gauging their success in solving them without any instruction or

opportunity to learn.

To start, turtle graphics is a series of commands that a programmer uses to draw

images on a computer screen. For example, Figure 3.1 demonstrates five sample

images of increasing complexity that were generated by the students during this course.

Turtle graphics originated with the Logo programming language in the late 1960’s

(Feurzeig et al., 1969) and over the years the turtle graphic commands have lived on by

being added to newer programming languages such as Python. I chose to use turtle

graphics for this study partially as an homage to early debugging research, which often

used Logo and turtle graphics, but also because it provides a simple set of commands

that students can experiment with to create their own images.

46

Figure 3.1. Sample images generated during the course using turtle graphics.

Additionally, inspiration for the debugging instruction implemented in the course

come from Sharon Carver’s PhD thesis (Carver, 1986) and detailed in Carver & Klahr

(Carver & Klahr, 1986). For example, key design choices for the session progression

(Carver & Klahr’s was 12 weeks, mine was 8), as well as the choice to ask students to

describe and speculate (they called these “bug proposals”, p. 509), which were part of

the Weeks 4/5 experiment protocol, were inspired by Carver & Klahr (1986).

Additionally, some of the turtle graphics demonstrations and exercises were modelled

after examples in Carver’s papers, including Figure 3.15, the flower (Carver, 1986, p.

99). Although the general outline of my debugging class (Table 3.1) was similar to

Carver’s, the content is all original, and focuses on introducing debugging throughout the

study through both explicit demonstrations and lessons, as well as implicit usage of

debugging processes throughout.

47

Table 3.1. Study weekly outline

Week Topics Data Collection

Week 1/1a*

2022-10-19

2022-10-25

- Study Intro

- Syntax Debugging

- Turtle Graphics Intro

Question 1a: Describe Python Coding

Question 2a: Describe Debugging (pre-debugging)

Student Debugging Sessions Metrics & Times

Student Self-Efficacy Scores (pre/post)

Week 2

2022-10-26

- Turtle Graphics:
Controlling the Turtle’s
Pen & Colors

- Expert Debugging
Demonstration (SGE)

Question 2b: Describe Debugging (after basic debugging)

Student Generated Examples (SGE)

Question 3: Novice vs. Expert debugging differences.

Week 3

2022-11-02

- Turtle Graphics:
Variables and Loops

- Debugging using print
statements

No data collected this week.

Week 4

2022-11-09

- Turtle Graphics:
Drawing Stars

- Draw Cross Challenge

Student Debugging Sessions Metrics & Times

Student Self-Efficacy Scores (pre/post)

Week 5

2022-11-16

- Turtle Graphics:
Drawing Stars
(continued)

Student Debugging Sessions Metrics & Times (continued
from Week 4)

Student Self-Efficacy Scores (pre/post)

Week 6

2022-11-23

- Turtle Graphics: None

- Explicit Debugging
Process/Steps

Question 1b: Describe Python Coding

Question 2c: Describe Debugging (after 2x debugging
challenges)

Week 7

2022-11-30

- Turtle Graphics: Flower
Shape Filling & Functions

Student Debugging Sessions Metrics & Times

Student Self-Efficacy Scores (not collected)

Week 8

2022-12-07

- Turtle Graphics:
AmongUs YouTube
lesson

Student Debugging Sessions Metrics & Times (continued
from Week 7)

Student Self-Efficacy Scores (post-only)

* Week 1a: One student missed the Week 1 class, so they attended a make-up class (named Week 1a). The same
material was taught during Week 1a as Week 1.

3.1. Classroom Programming Environment

Before describing the exercises for the individual weeks, this section will briefly

describe the computer programming environment used by the students on their own

computers. All students installed two software applications before the start of the class:

Python 3 and PyCharm. The first was the Python 3 programming language itself which

allowed them to run Python programs on their computers. The seconds was the

PyCharm Community Edition programming editor (see Figure 3.2), which was used to

write, edit, and run their Python programs. PyCharm was used because it provides a

consistent cross-platform programming environment that the students had already used

48

in previous programming courses with me. Of particular importance for this study,

PyCharm provided distinct areas for code editing (“A” in Figure 3.2) and errors (“B” in

Figure 3.2).

Figure 3.2. PyCharm Community Edition integrated development environment.
(A) The code editing window for the script named “hello_world.py”. (B) The output window for
program output as well as compiler or runtime error messages. (C) The project files, including the
Python script files.

In addition to the editor, this course focused on generating turtle graphics using a

series of commands for drawing a turtle cursor on a computer screen. After the students

had written their programs (a series of commands), they would run their program by

clicking the green “run” button in PyCharm and if there were no errors, then a new

window would appear on their computer screen and draw the turtle output. If, however,

there were errors, then they would appear in the error area of PyCharm (“B” in Figure

3.2).

49

3.2. Week 1: Study Introductions and Initial Debugging
Challenges

The goal for Week 1 was to introduce the students to the study, the concept of

debugging, and turtle graphics. At the end of the first class, students were given an

initial debugging assessment in the form of four basic challenges: three syntactical, and

one semantical. From a data collection standpoint, the challenges were meant to

provide an initial baseline of the student’s pre-existing debugging skills and captured

their initial debugging self-efficacy measures, on a scale of one to seven14. The

challenges also provided students with practice thinking aloud while debugging.

Week 1 introduced students to the basics of setting up their turtle output window,

drawing lines, and changing the turtle’s heading. By the end of the first class, students

had coded along with me as I live-coded how to draw two simple shapes (a square and

a triangle) using turtle graphics (Figure 3.3). The live coding consisted of me sharing my

screen with them, writing each line of code, and periodically running the program on my

computer so they could compare their output to mine.

Figure 3.3. Sample turtle graphics output of a triangle.

In addition to the turtle graphics introduction, students were introduced to three

types of errors that can occur when writing a computer program: syntax errors, runtime

14 The self-efficacy scale was initially scored out of seven rather than ten such that students had
to either choose a preference towards lower (one) or higher (seven), similar to a Likert scale.
However, in practice, some students chose fractional values, especially around the mid-point of
3.5.

50

errors, and semantic errors. Syntax errors occur when the written code is misspelled or

malformed in some way and result in a compiler error message. Runtime errors occur

when the program attempts to do something that is not permitted while running and

result in the program failing to run or crashing and returning a runtime error message.

Semantic errors occur when the program’s output does not match the intended or

required target output but unlike the other two errors, the program runs but does not

produce the desired results. Students were introduced to each error type by way of an

example that they coded along to with the teacher. As a pedagogical device, the

teacher would write valid code, ensure that it was correct and then instruct students to

explicitly introduce the desired bug and run the program to see how it manifest.

For example, as a demonstration of a syntax error, instead of the correct line:

print(“hello world”), as shown in Figure 3.4, they were told to change the letter “i” in print

to another vowel, like “o” which results in the incorrect function name “pront”. They were

then told to notice how the editor (PyCharm) underlined the now incorrect function name

with a red underline, as shown in Figure 3.5, as a means of notifying them of the error.

Next, they were told to run the program, which would produce a NameError compiler

error message as shown in Figure 3.6. They were told to read the compiler error from

the bottom to the top, starting with the NameError line at the bottom, looking at the

identified code, if any, and then noting the line number where the error was identified.

The goal with this demonstration was to provide the students with a worked example

(Merrill, 2002; van Merriënboer et al., 2002) that they themselves had control over such

that they could see what had caused the resulting error. This removed the need to

locate the error because they already knew where it was located. Finally, students were

told to repair the error and run the program again to ensure that their repair was correct

and that the program was working as expected again.

Figure 3.4. Sample Python hello world program code.

51

Figure 3.5. Sample of bugged NameError version of print statement.
The correct function name “print” has been intentionally replaced with the incorrect function name
“pront” to explicitly generate the red underlining of the error by the PyCharm editor.

Figure 3.6. Sample NameError compiler error message (Week 1).

At the end of the first hour, students were randomly selected to individually move

over to a Zoom breakout room to participate in a series of video-recorded one-on-one

debugging challenges. The remaining students were asked to wait on the Zoom call

until their turn arrived and dismissed once they had completed their session. Each one-

on-one session started with the student being asked to rate their level of confidence

debugging Python code, from one to seven (with one being the least confident). Next,

students were given a URL via Zoom chat to click on that led them to the four debugging

challenges. (The code for the four challenges can be found in Appendix B.) These were

novel challenges that they had never seen, which had been produced by me. The

student was instructed to copy the code for the first challenge, create a new Python

script titled “week1_challenge.py” and paste the challenge code into the new script and

run it. They were asked to run the first challenge to ensure that they had switched their

PyCharm to run this new challenge script each time rather than the class script that they

had previously been working on. During each of the four challenges, student was asked

to speak aloud while debugging to tell the teacher-research, “what they were seeing,

thinking, and doing.”

52

The debugging challenges for Week 1 did not use turtle graphics, but instead

focused on syntax and semantic errors using print-statements and variables. This

choice was made in an effort to reduce the amount of code each student needed to read

and debug and to focus on what strategies students used for syntax and semantic errors

at the start of the class. It should be noted that most studies on “novice” programmers

avoid or ignore syntax errors, because they are considered too basic for undergraduates

or above participants. I felt that it was necessary to observe the participants debugging

syntax errors because Carver’s similarly-aged students and teachers (Carver, 1986;

Carver & Risinger, 1987) struggled with them during her studies. It should be noted that

the PyCharm editor used for this study provides a great deal of feedback to the

programmer, including error underlining (see Figure 3.5), which is a common feature of

code editors today but was not available during Carver’s studies.

3.3. Week 2: Pens, Colors, and Student Generated
Examples

The goal for Week 2 was to introduce the students to turtle graphic functions that

allowed them to change the size and colour of the pens used to generate their line

drawings. As well, students were tasked with generating buggy versions of their

programs, sending those buggy versions to the teacher via the online chat feature of

Zoom, and then watching the teacher attempt to debug them.

The turtle graphics goal for Week 2 was to introduce students to colours in turtle

graphics, starting with the colour of their pens, and then additional related functions like

pen size, raising and lowering the pen (using the penup and pendown commands), and

more (see Figure 3.7). By the end of Week 2’s instructional hour, students were creating

their own colourful line drawings and were encouraged to experiment and create their

own drawings.

53

Figure 3.7. Week 2 sample brown coloured shape with green turtle.

Before introducing students to any explicit debugging instruction, I chose to first

demonstrate my own debugging approach using code they created. To start, the

students were instructed to create or modify their Week 2 program to create a buggy

version with no more than three errors of their choice and then to send their bugged

versions to me via Zoom chat. I then randomly chose a student, asked them to share

their screen with the class, and run their bug-free version of their program to

demonstrate what the output should look like. I took a screenshot of the bug-free

version’s output, shared my screen with the class and then proceeded to attempt to

debug the buggy version with only the buggy source code and a picture of the target

output. This demonstration was offered to the students as both a challenge to see if

they could stump the teacher as well as an attempt to demonstrate an expert debugging

process when presented with code written by others.

I modelled my own think-aloud process as I reviewed the error message, output,

or code (as appropriate) to identify, locate, and repair the bugs. Each debugging

attempt started with me running the program to see what compiler or runtime errors were

reported or to see what output resulted. Then, a hypothesis or target area of the code

was identified based on the error message or output observed. After each repair

attempt, I would re-run the program to reassess my repair and progress towards

matching to the target output. Finally, when I felt that I had successfully debugged the

student’s program, I would ask the student if my result was correct.

In all but two of the student programs, I successfully debugged the programs

using this approach. Of the two where I did not initially debug the code successfully, one

involved the student sending the wrong code and the other involved the student editing a

hexadecimal colour code that did not match the one I chose exactly. In the first

54

instance, I did successfully debug the code the student provided and discovered a bug in

the program that the student had unintentionally introduced. In the second situation, the

image produced when the student demonstrated their correct version resulted in an

image that did not reproduce the colour the student had used. This may have been the

result of the Zoom screensharing resulting in an approximation of the student’s chosen

color and thus when I sampled the colour using an image tool, I obtained a colour that

visually was similar, but which did not match the student’s chosen colour code exactly.

This led to a discussion of the importance of target specifications being exact and

matching to that target.

At the end of my demonstration, students were asked to provide a description of

the difference between the way they debugged code written by others and the way that I

had debugged code written by others. The results of this question are provided in the

Results chapter.

3.4. Week 3: For-Loops and Variables

The goal for Week 3 was to introduce students to for-loops in Python so they

could create increasingly complex drawings using loops rather than repeatedly writing

out the same code. In addition, a second debugging challenge was scheduled that

included a looping bug. Unfortunately, a number of students were late for the class,

three by ten to twenty-five minutes and one by an hour. As a result, the originally

scheduled Week 3 debugging challenges were moved to Weeks 4 and 5.

As part of the introduction to loops this week, we started with a new script that

did not use turtle graphics, so we could focus on the loop mechanism itself. To do this,

we created a new for-loop with a range of ten, and within the loop we printed the value

for the loop variable (see Figure 3.8). Before we ran the program, students were asked

to guess what would be printed, and specifically what the starting and ending values

would be. Many of the students were unaware that the loop would start with zero and

end with the value specified in the range function minus one, i.e., nine when the range

value of ten was specified. This initial explicit program called loops.py was further

augmented to demonstrate various features of the range function so that students both

experienced how for-loops in Python work and how to modify them to achieve different

55

results. Students were also being primed for the subsequent challenge, which contained

an example of a for-loop off-by-one bug.

1

2

3

loops.py

for i in range(10):

 print(i)

Figure 3.8. Week 3 loops.py – print the loop values.

After reviewing for-loops without turtle graphics, we switched back to turtle

graphics for Week 3 to revisit the drawing of polygonal shapes using loops and

variables. As shown in Figure 3.9 below, we first reviewed and then isolated the

repeated code previously written to draw a square: forward(100) and then right(90) four

times. We then created a for-loop that looped four times to achieve the same square as

before. Next, we replaced the line length (100 in the example) with a variable so that we

could change the size by changing the value of the size variable.

Figure 3.9. Week 3 for-loop progression (Python).

Although not shown, we continued to create a variable named angle and set it to

the value of 90 (angle = 90), and then used this new angle variable to arrive at the same

result once again. Then, we created one more variable named sides, and set it to four

(sides = 4) and replaced the value within the for-loop’s range with the new sides

variable: for i in range(sides) and again ran the program so we again drew the same

square. Finally, after all of these modifications, we changed the values of sides to five

(sides = 5) and angle to 72 (see Figure 3.10). When we ran our program, we produced

a five-sided octagon instead of a square. Students were then tasked to explore

changing the variables to see what other shapes they could create.

56

Figure 3.10. Week 3 Final octagon Python code with variables and a for-loop.

For the Week 3 debugging challenge (Figure 3.11), I chose to not include any

syntactical errors. Instead, I chose to focus on asking students to predict what they

thought might be the bugs that caused the differences they noticed between the target

output and the actual output before they could see the code. I wanted to focus on their

debugging processes rather than their apparent ability to spot the differences.

For this challenge, I introduced four bugs, one of which was repeated twice (see

Appendix B for actual code used). The first and third bugs were duplicates of each other

and involved using a hardcoded constant value of one in place of a variable to specify

the size of the pen used to draw the lines for the squares. The goal was to see if

students would identify the duplicate error and apply the same fix twice or not, and if

they would notice that the pen_size variable had been used for the first square and thus

logically should be used for the other squares too, as noted in the challenge instructions.

The second bug was to add a negative sign in front of a variable that would cause it to

invert on the x/y axis, as demonstrated by the green square. The goal here was to

observe how students would locate the bug and then how they would identify the cause

and correct it. It should be noted that all but one student identified the issue and

corrected it by removing the minus sign. The one student who did not identify the minus

sign instead inverted the turtle using a right(180) command before drawing the second

and third squares, and thus successfully recreated the target image but did so in a

different manner. Finally, the fourth bug involved a for-loop off-by-one bug where the

range value for the blue square (square three) only counted to three: range(1, 4), rather

than four like the other lines: range(4). The goal here was to see whether students

identified the issue with the range and what repair they would apply to the line.

57

Figure 3.11. Week 3 debugging challenge.

3.5. Week 4: Shapes: Stars, Crosses, and Challenges

The goal for Week 4 was to continue to use for-loops to create shapes with

repeating patterns. Students used variables for the colours, the lengths, and the angles

and then combined those within a for-loop to create a star. Once they had their five-

58

point stars working, they were tasked to modify them to create a cross shape while they

waited their turn for the debugging challenge (originally scheduled for Week 3).

Figure 3.12. Week 4 five-point outlined star shape using for-loops.

In addition to continuing to use for-loops with turtle graphics, students were also

introduced to the idea of exposing the values of variables as they changed, using print

statements, something I call “debug print-statements” because their role is to expose the

state of the machine to inform debugging. Thus, during the creation of their five-point

stars, two additional variables were added: total_length and total_angle and their values

were printed out to the console while the stars were being drawn. The two total values

were chosen to show the students how they could see the changes in their variables

while looping, and also mark areas of their code with debug print-statements that they

could use to identify which part of their code was involved and in what order it executed.

These two features (identifying the order of operations and the changing value of

variables) were repeated but were not called out as necessary during their debugging

challenges. However, within the debugging challenge itself, debug print-statements

were included in the form of statements that printed before a shape was drawn, such

that students could, if they wished, add code either before or after these markers so they

could determine if a bug happened before or after a certain point.

3.6. Week 5: Turtle Stars, Functions, and Challenges

The goal for Week 5 was to introduce students to Python functions so they could

draw multiple instances of the same shape simply by calling a named function rather

than duplicating the necessary code. Once again, debug print-statements were the

focus of the explicit debugging instruction. Additionally, although not original scheduled,

students who did not complete the debugging challenge during Week 4, due to time,

completed it this week.

59

Students started Week 5 by making a copy of their star code from the previous

week into a new file so we could convert it to a function. We then modified the code to

create a function named “star” and placed their previous star-drawing code inside the

new function. Next, the line length information was changed to a function parameter and

the function was called multiple times to create multiple stars, as shown in Figure 3.13

below.

Figure 3.13. Multiple five-point connected-point stars created using a stars
function.

Again, similar to Week 4, debug print-statements were added to the function to

print each time it ran as a way for students to observe that the function was being called

multiple times. This instruction was meant to prime students for the following week’s use

of functions with print-statements.

3.7. Week 6: Bug Localization with the Wolf Fence
Algorithm

The goal for Week 6 was to introduce and practice explicit debugging processes

for localizing bugs in code using debug print-statements.

The first process reviewed during Week 6 involved segmenting the code in order

to divide-and-conquer the search space effectively, a technique known as the “Wolf

Fence” algorithm (Gauss, 1982). Students were first introduced to the algorithm as a set

of steps for progressively dividing the code in half such that one half has been

determined not to contain the bug (the wolf) which means it must be in the other half (the

other side of the fence). After introducing the algorithm, students were given a buggy

code sample and then shown how to insert debug print-statements so that they could

divide the code up to locate the bug.

60

After trying the Wolf Fence algorithm for locating bugs, students were tasked to

try to debug some provided code by first generating a hypothesis before trying to debug

it. In this exercise, once they had taken a guess, they were given a chance to search for

the bug using the techniques and tools provided, and then asked how their hypothesis

matched up. After trying the hypothesis approach, students were given code that was

supposed to draw four squares but instead produced three squares and a triangle, as

shown in Figure 3.14. We then engaged in a group debugging challenge where I

attempted to use debug print-statements and the Wolf Fence algorithm to debug the

code. We ended the class after completing this exercise because two students had to

leave early for other engagements.

Figure 3.14. Week 6 "four squares" debugging demonstration.

3.8. Week 7: Complex Shapes with Functions

The goal of Week 7 was to explore the creation of a moderately complex shape

using all of the techniques already covered during the class. The output was inspired by

a similar flower created by Carver (1986) using turtle graphics and Logo (Figure 3.15).

The students followed along through the worked example but modified their flowers

based on their own preferences and ideas.

61

Figure 3.15. Week 7 turtle graphics flower example.
The “Carver (1986)” flower is from Carver (1986, p. 99).

I had originally planned to repeat the stump the teacher challenge from week

two, to see what different types of bugs students would introduce. However, we ran out

of classroom time building the flower and instead I used the last forty-five minutes to

start the final debugging challenge.

For the final debugging challenge, I decided to focus on introducing two logic

bugs that would require the students to trace code using the explicit debugging

techniques covered during the course. To do this, I used two Python programming

techniques not covered in the class, lists and the modulo arithmetic15 operator (%). The

list was used to store a list of colours, and the modulo operator was used to determine if

a number was even or odd.

Knowing that the students were most likely unfamiliar with these two techniques,

I provided pre-built debug print-statements such that students could uncomment any of

the four provided debug print-statements to discover what these new statements did and

use that information to locate and correct the two bugs. Code comments were used

throughout the course and students were told they could uncomment any of the code

they felt they needed. In addition, during the one-on-one debugging challenges, I

explicitly reminded each student that the debug print-statements were present, and I

answered any questions they had about modulo arithmetic or the list of colours. The

15 The modulo arithmetic operator in Python is the percentage sign “%”. The logic used was “if
number % 2 == 0” then the number is even, else it is odd.

62

challenge was for them to try to locate the bugs using the explicit debugging techniques

covered in the course.

Figure 3.16. Weeks 7 & 8 final debugging challenge, the “Logo Bug Challenge”.

3.9. Week 8: Complex Shape: Among Us Character (Video)

During the first class (Week 1), students were shown a slide with a variety of

drawings that had been generated using turtle graphics. One of the drawings was for a

character from the video game Among Us which the students called, “the Among Us

guy” (see Figure 3.17). In place of a live-coding session during Week 8, I created a

63

YouTube video16 of the lesson and made that available to the students to follow along to

while I conducted the final one-one-one debugging sessions. I used a video lesson

because I was trying to squeeze in the final debugging challenge with the remaining

seven students. I had expected students to take an average of fifteen minutes each to

complete the challenge, but the final two students combined took approximately forty-

five minutes instead. Because the final two students were using the debugging

techniques taught in the course, I wanted to gather as much data as I could, and thus

decided to drop the final three students.

No new explicit debugging instructions were presented during Week 8; however,

debug print-statements were used throughout the Among Us video lesson.

Figure 3.17. Week 8 three Among Us character drawn using turtle graphics.

16 The author’s “Drawing Among Us characters with Python Turtle Graphics” video
https://www.youtube.com/watch?v=W7XZfdT4V9g

https://www.youtube.com/watch?v=W7XZfdT4V9g

64

Chapter 4.

Methodology

This chapter describes the research approach and methods used to investigate

and describe how a group of elementary students debugged Python programs during an

eight-week programming course. The chapter proceeds as follows. The first section

describes the research questions, framework, setting, and recruitment. The second

section describes the debugging environment and programming bugs for each

challenge. The third section describes the questions that students were asked at

various stages throughout the study. The final section describes the data collection and

data analysis approaches.

4.1. Research Questions

This study aims to identify what debugging behaviours and approaches novice

programmers exhibit prior to debugging instruction and what impact teaching them

explicit debugging techniques has on their subsequent debugging activities. This focus

has led to the following four research questions:

RQ1: What strategies do novice elementary school students employ when

debugging Python code?

RQ2: What challenges do novice students face when debugging?

RQ3: What effects does an explicit debugging strategy have on student

debugging strategies?

RQ4: In what ways do students respond to explicit debugging instruction?

4.2. Research Framework

This research aims to identify what strategies novices come to debugging with

before explicit debugging instruction and then evaluate the impact of teaching them

explicit debugging techniques. As a result of these two goals, I decided to follow a

65

qualitative research approach so that I could capture and describe the observed details

and then compare them throughout the study.

In line with previous debugging studies, for example Vessey (1984), Nanja

(1988), and more recently Whalley et al.(2023), I chose to analyze verbal protocol data

(Ericsson & Simon, 1993). To do that, I chose to gather not only participants’

observational data recorded via their computer screens, but also their concurrent

verbalized statements about their thought processes. This approach is often called

concurrent think-aloud and is done while the participants are performing the task. The

goal with this form of think-aloud is to capture the participants’ immediate thoughts and

cognitive processes during problem solving rather than just the outcome from problem-

solving.

Following the collection of the think-aloud data above, I started with a grounded

theory-based approach (Charmaz, 2006) similar to Fitzgerald et al. (2005) as a starting

point for the data analysis. However, unlike Fitzgerald et al, rather than attempt to

develop a theory based solely on my own interpretation of the collected data, I leveraged

an existing codebook from Vessey (1984) to arrive at a combination of inductively and

deductively discovered strategies and challenges. This blended approach resulted in

improved consistency between coders and as a result a more complete set of debugging

strategies and challenges.

4.3. Research Setting

To better understand the strategies and challenges that novice programmers

face when debugging, it was crucial to directly observe them while they attempted to

debug computer programs. The research questions were pursued by providing students

with buggy computer programs and observing their actions and their descriptions while

they attempt to debug them.

SFU’s Office of Research Ethics (ORE), gave approval to conduct the research

on September 23, 2022. The research was conducted online via the Zoom video-

conferencing platform over an eight-week during the Fall of 2022, from October 19, 2022

to December 7, 2022. The participants were all elementary students, ages 10-12, from

two urban school districts in British Columbia, Canada.

66

4.4. Recruitment

To recruit participants, I employed non-random convenience sampling by

including a notice about my research study in an email to parents of students who had

previously taken after-school classes with me before. In early October 2022, I sent out

approximately one hundred emails advertising my Fall 2022 after-school educational

technology programs. This email announced my Minecraft and Python programming

classes but also included in the body of the email a statement announcing my research

study, see Figure 4.1.

My SFU research project:

This fall I will be conducting an online research study on Wednesdays after school as

part of my master’s in education at SFU. This study involves a free 8-week online

Python programming course and is open to students in Grades 5 to 7. To learn more

about the study, email me or visit: https://www.xmodus.com/sfu-study-fall-2022.html

Figure 4.1. Email recruitment statement.

The text for the recruitment web page noted in Figure 4.1 can be found in

Appendix E. Sixteen parents expressed interest and from those, nine ultimately signed

up. Parents gave their consent to participate (see Appendix F), and children agreed to

participate after giving their assent (see Appendix G). In contrast to my after-school

programs, of whom these parents and students were previously associated with, no fee

was charged for participation in this class and participants were not provided with any

incentives to participate besides free participation in the class.

4.5. Debugging Environment

The eight-week class in which the study took place met once a week on

Wednesdays via Zoom from 3:30 PM to 5:30 PM. Each student ran their own local copy

of the PyCharm Integrated Development Environment (IDE)17 on their own computer and

had the Python 3 programming language installed with it.

17 https://www.jetbrains.com/pycharm/

https://www.xmodus.com/sfu-study-fall-2022.html

67

The programs that the student had to debug during weeks 1, 4/5, and 7/8

(described below under Debugging Tasks) were created by the researcher and not

shown to the students prior to their debugging sessions. Instead, during each one-on-

one debugging session. students were given a URL via the Zoom chat feature to access

the bugged code as a text file on a web server (see Appendix B for the code samples),

which they then copy-and-pasted from the web page into their PyCharm editor. For

Weeks 4/5 and 7/8, the students were also provided with a description of the target turtle

output (see Appendix B) in the form of a PDF document, which was not necessary for

Week 1 because the code did not include any turtle output.

During the one-on-one debugging sessions, participants were instructed to share

their local computer screen via Zoom, and to speak aloud as they debugged their

programs within their PyCharm editors. All of their actions and utterances were

recorded within Zoom and downloaded later for analysis.

4.6. Debugging Challenge Bugs

During the course, only six of the nine students18 participated in three one-on-one

debugging challenges which consisted of buggy code and a description of what the code

was supposed to do. Students were tasked to share their screen via Zoom and speak

aloud while they attempted to debug the program. Participants were not told how many

or what type of errors the programs contained.

Since the aim of the research was to determine the debugging approaches of the

participants, the programs chosen to be debugged were similar to programs the students

had already written during the course described previously in Chapter 3. This was

intentional, so as to not unintentionally introduce code that was unfamiliar to the

students. This section will describe the bugs for each challenge. All of the programs

used are presented in Appendix B, along with a description of each bug and the fully

corrected version of each program.

18 During Weeks 7/8, three students did not participate in the challenge due to time constraints.

68

4.6.1. Week 1: Debugging Challenge #1

The Week 1 challenges were made intentionally easy so that students could get

used to speaking aloud while debugging. As suggested by Ericsson & Simon (1993),

the students were given time to become used to speaking aloud while debugging by

practicing the process during Week 1. Participants were not told how many or what type

of bugs each of the challenge programs contained. Participants attempted to debug four

challenges, as shown below.

The first debugging challenge during Week 1 involved two syntax errors, lines 3

and 4 (Figure 4.2). If the student ran the program, they would first receive an error

message on line 3 with the error text: NameError, name ‘Age’ is not defined. Once line 3

was corrected, if they ran the program again, they would receive an error message on

line 4, with the error text: NameError: name ‘a’ is not defined. Students had to identify

that the variable “Age” was incorrectly capitalized on line 3 and that the variable “a” on

line 4 should be the correct variable “age” instead. The corrected version of the first

challenge is shown in Figure 4.3.

1

2

3

4

Challenge #1

age = 1

age = Age + 1

print(a)

Figure 4.2. Week 1 debugging challenge #1 buggy code.

1

2

3

4

Challenge #1

age = 1

age = age + 1

print(age)

Figure 4.3. Week 1 debugging challenge #1 corrected code.

4.6.2. Week 1: Debugging Challenge #2

The second debugging challenge during Week 1 involved a single syntax error,

where students had to identify that the function print was incorrectly capitalized as

PRINT on line 3. If the student ran the program, they would receive an error message

on line 3 with the error text: NameError: name ‘PRINT’ is not defined. Students had to

change the incorrect function name PRINT to the correct lowercase print on line 3. The

buggy version is shown in Figure 4.4 and the corrected version in Figure 4.5.

69

1

2

3

Challenge #2

name = "Billy"

PRINT(name)

Figure 4.4. Week 1 debugging challenge #2 buggy code.

1

2

3

Challenge #2

name = "Billy"

print(name)

Figure 4.5. Week 1 debugging challenge #2 corrected code.

4.6.3. Week 1: Debugging Challenge #3

The third debugging challenge during Week 1 involved a single syntax error,

where students had to identify that line 4 was incorrectly indented. If the student ran the

program, they would receive an error message on line 4 with the error text:

IndentationError: unexpected indent. The students had to remove the leading spaces in

front of the print(after_birthday) on line 4. The buggy version is shown in Figure 4.6 and

the corrected version in Figure 4.7.

1

2

3

4

Challenge #3

age = 6

after_birthday = age + 1

 print(after_birthday)

Figure 4.6. Week 1 debugging challenge #3 buggy code.

1

2

3

4

Challenge #3

age = 6

after_birthday = age + 1

print(after_birthday)

Figure 4.7. Week 1 debugging challenge #3 corrected code.

4.6.4. Week 1: Debugging Challenge #4

The fourth debugging challenge during Week 1 involved a single semantic error,

where students had to identify that line 4 did not change the value for the variable height

and so the program output the wrong final value. If the student ran the program, the

program ran and output the incorrect final value of 4 instead of 6. The students had to

change the code so that the final value for the variable height was 6, as printed out by

line 6. The buggy version is shown in Figure 4.8 and two possible corrected versions

are shown in Figure 4.9 and Figure 4.10.

70

1

2

3

4

5

6

Challenge #4

height = 2

height = height + 2

height + 2

at the end, the height should be 6

print(height)

Figure 4.8. Week 1 debugging challenge #4 buggy code.

1

2

3

4

5

6

Challenge #4

height = 2

height = height + 2

height = height + 2

at the end, the height should be 6

print(height)

Figure 4.9. Week 1 debugging challenge #4 corrected code (option 1).

1

2

3

4

5

6

Challenge #4

height = 2

height = height + 2

height += 2

at the end, the height should be 6

print(height)

Figure 4.10. Week 1 debugging challenge #3 corrected code (option 2).

4.6.5. Week 2: Student-Generated Examples (SGE)

During Week 2, students were given time to create their own custom turtle

graphic images using the commands covered during the class. After they had all

created their own custom images, they were asked to create a copy of this non-buggy

image and introduce up to three bugs to create a buggy version of their own program.

Then, when called upon, they ran the non-bugged version on their computer and

showed the output to the class via the Zoom screensharing feature. Then, after showing

the output of their non-buggy version, they provided the bugged version of the code to

the teacher for debugging. This was framed as a challenge for the teacher, i.e., stump

the teacher. Students were told to include a maximum of three bugs due to the time

constraints of debugging nine student projects. The researcher then debugged all of the

programs thinking aloud while talking through each step of their debugging process. At

the end of the session, participants were asked to comment on what differences they

noted between the teacher’s debugging process and their own. Their descriptions are

detailed in the Results chapter.

71

4.6.6. Weeks 4/5: Debugging Challenge

During Weeks 4 & 5, the students were first presented with a two-page PDF

document labelled Week 3 Challenge (see Figure 3.11). The first page of the challenge

showed both the desired target output and a description of the elements of note, as well

as the actual output from the bugged version of the program. The students were

instructed to read the first page and then asked to comment on what they noticed

(identify), and what they thought might be the causes (hypothesize). Following that, they

were instructed to download the code and begin debugging. They were reminded as

they started to debug that they were to think-aloud as they debugged.

The buggy code for Weeks 4/5 contained four semantic bugs, as highlighted in

Figure 4.11. The two pensize(1) errors should have instead used the pen_size variable,

resulting in pensize(pen_size), to produce the same outline size for all three squares.

The negative sign in front of the variable square_size for Square #2 results in the second

square rotating 180 degrees until it was removed. The final error was that the range

value for Square #3 only counted to three, resulting in three sides. The final error could

be corrected either by changing the incorrect range value to range(4) or range(1, 5).

The full code listing for Weeks 4/5, buggy and corrected, are in Appendix B.

Figure 4.11. Weeks 4/5 debugging challenge bugs side-by-side.

4.6.7. Weeks 7/8: Debugging Challenge

The buggy code for Weeks 7/8 contained two different errors. The first was that

the function is_even returned True for odd numbers rather than for even numbers, which

resulted in the colours being swapped. The second error was that the pen was the

72

wrong colour when the squares were drawn, resulting in an incorrect outline colour. The

program ran with no errors but produced the wrong out, as shown in Figure 3.16.

To fix the first error, students needed to identify that the is_even function was

returning the wrong value and either correct the if-conditional statement, swap the return

values, or change what happened when the is_even function was called by the main

program. To fix the second error, students could have either added a command to

change the pen colour to match the square colour, or they could have uncommented line

44 which change the pen colour for them.

For the Weeks 7/8 debugging challenge, the code included a set of debug print-

statements (see Figure 4.12) within the main program loop that were commented out but

ready for the students to use, if they wished. These disabled statements were added to

see if students would take advantage of debug print-statements to see how unfamiliar

code ran or to trace the value of the buggy is_even function. Students were introduced

to the use of debug print-statements throughout the course as a debugging tool they

could use to expose relevant program state, but in this case potentially relevant

examples were provided but also disabled (commented out) so that students had to

actively choose to use them by uncommenting them. All participants were informed of

the embedded debug print-statements during their debugging sessions.

The full code listing for Weeks 7/8, buggy and corrected, are in Appendix B.

37

38

39

40

41

 # some debugging print statements

 # print("s", s)

 # print("s % 3", s, s % 3)

 # print("is_even", s, is_even(s))

 # print("fc", fc)

Figure 4.12. Weeks 7/8 commented out debug print-statements.
The hashtag (#) at the front of the line marks the line as a comment and disables the code to the
right. Removing the hashtag (and leading space) in front of lines 38-41 would re-enable them.

4.7. Student Questions

In addition to the debugging challenges, students were asked a series of

questions at various points during the course, which they responded to via the chat

function in Zoom or verbally, depending on the question. Each of the questions are

73

described next, their data is described in the Findings chapter, and discussed in the

Discussion chapter.

4.7.1. Student Self-Reported Self-Efficacy Scores

During Weeks 1, 4/5, and 7/8, students were asked to rate their level of

confidence debugging Python programs on a scale from one to seven, with one being

the lowest and seven the highest. For Weeks 1 and 4/5, students were asked at the

start of the challenge (pre-) and after completing the challenge (post-). For Weeks 7/8,

the students were only asked at the end of the challenge and the first two students

during Week 7 were not asked due to researcher error. Students were permitted to

provide fractional responses, i.e., 3.5 out of 7. In addition to the reported numeric

values, students were also asked to provide a reason for why the number changed (or

not) between the start of the challenge and the end. The ratings and the change-

reasons were captured verbally.

4.7.2. Student Debugging Description Question

During Weeks 1, 2, and 6, students were asked to provide a one-to-two sentence

description of debugging. The question was phrased as: “In a sentence or two, how

would you describe debugging to a friend?” Students wrote their responses using the

Zoom chat function.

4.7.3. Student Python Coding Description Question

During Weeks 1 and 6, students were asked to describe Python coding to a

friend in one or two sentences. This question was originally meant as a warm-up

question for students before they answered the debugging description question

mentioned above. The data from this question was ultimately not used in this study.

4.7.4. Student Description of Debugging Difference with Expert

During Week 2, after watching the teacher debug their buggy programs, students

were asked to describe the difference between the expert’s approach and their own.

They provided these one or two sentences via the Zoom text chat.

74

4.8. Data Collection

Two forms of data were collected during this study: video of student spoken

words and actions, and student written responses to questions. The video was recorded

using the Zoom video-conferencing software, while their responses to questions were

either captured as spoken text or their written responses via the Zoom text chat feature.

The video data collection and transcription are discussed in more detail below.

Participants performed their one-on-one debugging challenges individually, in a

separate Zoom virtual breakout room. The audio and video for each session were

recorded automatically by Zoom. Once in the breakout room, participants were asked to

share their computer screen via the Zoom share screen feature. Once their screen was

shared, they were given a URL to open in a web browser, asked to copy the relevant

code from the resulting web page, create a new script in the PyCharm editor and name it

to reflect the week of the challenge. They then copy and pasted the code from the web

page into their editor and started to debug. Participants were reminded to speak aloud

while they debugged.

At the end of each class (two hours), the video recording was downloaded from

Zoom to a local video file. The local video files were then fed into a custom Python

program written by the researcher that used the Whisper19 speech recognition system

API to convert the audio to text. The transcribed text was then reviewed and annotated

manually by the researcher with screenshots from the video to create anonymized

student debugging session transcripts (see Figure 4.13).

19 OpenAI’s Whisper automatic speech recognition (ASR) system.
https://openai.com/research/whisper

https://openai.com/research/whisper

75

Figure 4.13. Partial debugging session transcript for participant Carl.

To capture student actions and spoken thoughts during their one-on-one

debugging sessions, a concurrent think-aloud verbal protocol was used along with

screen recording, in line with previous debugging studies (Jeffries, 1982; Nanja & Cook,

1987; Vessey, 1984; Whalley et al., 2023). Participants were asked to describe what

they were “thinking, feeling, seeing, and doing” as they debugged. When they were

silent for too long or if they made an action without describing it, they were reminded to

speak-aloud. Participants were reminded that they could withdraw or stop at any time, in

76

accordance with the ethics protocol for the study. No maximum time was pre-set for the

sessions to avoid rushing or stopping students prematurely and to avoid potentially

adding additional pressure or stress due to a time constraint.

4.9. Data Analysis

The debugging session data collection resulted in 24 individual debugging

session transcripts, one for each student-week session. Each of the debugging

sessions were then coded using a code book (see Appendix A) to generate “debugging

episodes” as shown in Figure 4.14. Adopted from Vessey (1984), the debugging

sessions are a step-by-step trace of the student’s actions as they attempt to debug a

challenge. Their purpose is to provide a coded representation of the actions taken which

can be used to discover patterns of approaches used by the participants.

77

Figure 4.14. Sample debugging episode outline – Weeks 4/5 – George.

78

In order to create the debugging sessions, I first needed to create a code book

that consisted of the codes necessary to describe the participant actions. Initially I

started by inductively creating codes to describe the actions as I observed them within

the sessions. However, after completing several passes of the transcribed debugging

sessions and reviewing them with a second coder, I discovered that the inductively

generated codes were not converging and required too much additional context for the

second coder.

As a result of this lack of convergence of the codes, I went in search of an

alternative coding mechanisms and discovered Vessey’s Coder’s Manual (1984, p. 421)

developed for her debugging strategies study. Although our studies were similar, they

also differed in a number of ways. For example, Vessey’s study focused on adult

professional programmers, used a different programming language, and participants

performed all of their debugging offline using printed copies of the code rather than

online using a modern programming editor. As a result, I extended and modified her

codes to suit the context of this study and arrived at a mix of deductive codes from

Vessey and inductively derived codes unique to the data within this study.

A second coder was used to improve the consistency of categorizations and

validate the individual codes as suggested by multiple sources (Bowles, 2010; Ericsson

& Simon, 1993; Hays & Singh, 2011; Miles & Huberman, 1994). Vessey (1984)

accomplished this by employing two independent coders for her data while resource

limitations for this study allowed only for a single second volunteer coder. As with

Vessey’s study, interrater reliability was measured using Cohen’s kappa (Cohen, 1960).

However, it should be noted that interrater reliability is not without criticism and

controversy. For example, some argue that the need to reach agreement between

multiple parties may reduce the interpretation to a lowest common denominator and thus

drop or lose the richness of the original data. As well, adding additional coders adds

more resource requirements to an already resource intensive process (Chiu & Shu,

2011). Although both criticisms are valid, the potential loss of richness of the data is still

expressed when necessary and the additional resources needed was considered an

acceptable cost for the consistency gained.

79

Chapter 5.

Findings

This chapter presents the data collected to describe the debugging strategies

demonstrated and the challenges faced by upper elementary-aged novice Python

programmers during an eight-week programming course that included explicit debugging

instruction. This chapter starts with a review of the research questions, data sources,

and participants to contextualize the data. Next, each of the weeks when data was

collected, are discussed chronologically to illustrate the progression of debugging

strategies and student attitudes over the course of the study. Each week covers the

strategies and challenges observed, how long each student took to complete them, and

student self-reported self-efficacy ratings. The chapter concludes with a summary of

students’ self-efficacy ratings and their descriptions of debugging over the course of the

study.

5.1. Research Questions

This study addressed four research questions:

RQ1: What strategies do novice elementary school students employ when

debugging Python code?

RQ2: What challenges do novice students face when debugging?

RQ3: What effects does an explicit debugging strategy have on student

debugging strategies?

RQ4: In what ways do students respond to explicit debugging instruction?

5.2. Data Sources

There were two primary sources of data for this study: Zoom video recordings of

one-on-one debugging sessions and student responses to questions answered via

Zoom text chat. The debugging session recordings were transcribed to produce timed

80

action and statement data that were coded and described in this chapter. After four

rounds of sampling and coding, 12% of the available samples had been randomly

selected, coded, and then compared by both coders. By the fourth round, we achieved

a Cohen’s kappa of κ = 0.7987 for the individual codes and κ = 0.8645 for the

summarized code categories.

Student responses to survey questions are also described in this chapter.

5.3. Participants

Note that pseudonyms have been substituted for actual participant names

throughout this thesis.

The participants in this study were nine male20 novice Python programmer upper-

elementary students, aged 10-12 (Grades 5-7). Similar to Murphy et al. (Murphy et al.,

2008), the novices in this study were not completely new to Python programming.

Instead, students had all participated in at least one previous Python programming

course with the researcher and in some cases up to four additional eight-week courses

or camps. As well, all students had participated in at least one course online via Zoom

with the researcher before, and so they were familiar with how to use Zoom in a

classroom setting.

The rationale for studying students with some pre-existing introductory

knowledge is that although they were still novice programmers, they had completed

enough prior direct instruction in Python programming to be familiar with the basic

syntax, and have debugged a variety of errors. It therefore seemed likely that they have

been programming long enough to have established their own debugging strategies,

even if only rudimentary in nature. Klahr & Carver noted that a group similar in age to

this study’s group, 15 fifth grade students (~10 years of age), even with 200 hours of

unstructured Logo experience, failed to develop techniques for identifying and locating

bugs on their own.

20 Two female students and five additional male participants expressed interest but were
ultimately unable to join due to other obligations.

81

5.4. Week 1: One-on-one Debugging Sessions

The first one-on-one debugging session occurred during Week 1 and consisted

of four short challenges, with the first three involving syntax errors and the fourth a

semantic error. There was no time limit on the challenges and students were not told

how many bugs there were in the code provided. Three strategies were observed for

the syntax errors: using editor hints, using prior programming knowledge, and using

compiler error message comprehension. Four strategies were observed for the

semantic error: reading and tracing code, comparing the provided code to working code,

using prior programming knowledge, and removing unnecessary code. A complete

listing of the code and included bugs is presented in Appendix B, and a summary of the

strategies is presented in Table 5.1.

Table 5.1. Week 1 student debugging strategies

Strategy Description

Using code editor hints Look for and react to code editor hints to identify syntax errors
while editing or reading the code.

Using prior programming knowledge
or experience.

Identify bugs using prior experience of the same or similar bugs.

Using compiler error message
comprehension.

Identify and locate bugs using information from compiler error
messages.

Reading and tracing code. Develop familiarity with basic functions and flow of the code.
May lead to identification of bugs.

Comparing to working code. Compare to known-good or working code to identify incorrect
differences for repair.

Removing unnecessary code. Remove duplicate or code deemed unnecessary.

5.4.1. Week 1 Student Debugging Strategies

One of the first bug identification strategies observed to be used by students

during Week 1 was reacting to and using hints provided by the PyCharm code editor.

PyCharm provided visual hints in the form of a red underline beneath syntax errors

(Figure 5.1) and yellow highlighting for warnings such as possible unused code (Figure

5.2). As a result, after copying and pasting the buggy code into PyCharm, most students

immediately moved their mouse cursors to any underlined or highlighted text. For

example, during Week 1, Walter noted an editor hint on line 4 for challenge #4, began

82

circling it (Figure 5.2) and said, “I see that this is underlined in yellow21.” (Week 1a:

1:05:05). Lucas followed a similar pattern for challenge #2. He immediately moved his

cursor to line 3 after pasting the code into the editor and stated, “I see [that] all of this…”

(Week 1: 2:26:22), then circled the underlined incorrect uppercase PRINT text, deleted

it, and replaced it with the correct lowercase print. All of these students moved their

mouse cursors to the highlighted lines immediately after pasting the code into the

PyCharm editor and before they had either run the code to generate a compiler error or

even had time to read or trace the code.

Figure 5.1. Screenshot of editor error highlights for challenge #1 (Week 1).
* The variable “Age” on line 3 is underlined in red (error) because it should not be capitalized. The
variable “a” on line 4 is underlined in red because no variable “a” exists and instead it should be
“age”.

Figure 5.2. Screenshot of editor warning highlight for challenge #4 (Week 1).
* The text “height + 2” on line 4 is highlighted in yellow because it does not result in any change
to the program state.

In addition to using code editor hints to locate potential errors, some students

also combined the editor hint with syntax recognition, prior debugging experience, and

program comprehension. For example, Carl, during challenge #2, immediately moved

21 Walter stated underlined but meant highlighted.

83

his mouse to line 3, where the function print was incorrectly capitalized as PRINT and

noted, “Print is (mis)spelled with full capital, so it needs to be fully lowercase.” (Week 1:

1:35:07). Peter made a similar statement during challenge #3 which involved an invalid

leading space before the statement. While reading the code and before running it, Peter

correctly noted, “There shouldn't be spaces before the print because it's not in a loop or

anything.” (Week 1: 2:33:13). In both cases, the students used the code editor hints to

locate the errors but then used their knowledge of the syntax or prior debugging

knowledge to correct the error.

In addition to using hints from the editor and code comprehension to identify

errors, students also used compiler and runtime error messages to both identify that

there was an error and to locate it within the code. This was especially common for the

first three challenges during Week 1, because students were instructed to run the code

for the first challenge as soon as they pasted the copied code into their editor to ensure

they were running the correct code. As a result, students experienced a compiler error

message early in the debugging process as shown in Figure 5.3. For example, George

upon seeing the NameError shown in Figure 5.3 stated, “It's like a name error, which

means age needs a definition…” (Week 1: 1:43:40) and then noted the reported line

number, “Oh, it's line 3.” (Week 1: 1:43:55). He then returned to the code, clicked on line

3 and after reading the line stated, “Oh, I think this should be lowercase.” (Week 1:

1:44:01). Other students ran the program, moved their mouse to the compiler error area

at the bottom of the editor, and then immediately clicked on the line with the error, thus

using the compiler error message output to both identify and locate the error.

Figure 5.3. Screen of sample compiler error for challenge #1 (Week 1).
* The file name and path are redacted to hide student name and system information.

Unlike the approaches used to debug syntax and runtime errors, which relied

heavily on editor hints and compiler error messages, debugging the semantic error in

challenge #4 required the students to understand what the program was supposed to do

84

and then compare it to what it was actually doing. Most students started off by scanning

the code for syntax errors or editor hints. For example, Oscar noted, “Something in

this… is off.” (Week 1: 2:21:06) while circling line 4, which was yellow highlighted as

shown in Figure 5.2. However, unlike the first three challenges, the program was

syntactically valid and when run, the program would return the value 4 rather than a

compiler error as happened with the previous three challenges. As a result, students

had to read and trace the program to try and figure out what the program was actually

doing and from there, four strategies emerged: reading and tracing the code, comparing

to working code, using prior programming knowledge, and removing unnecessary code.

While reading and tracing challenge #4, most students correctly determined the

initial value was 2, based on line 2 (height = 2). They then noted the addition on line 3

(height = height + 2) but were confused that line 4 (height + 2) did not add two more and

instead resulted in no change to the value of height. It should be noted that the editor

highlighted the line in yellow and reported, “Statement seems to have no effect”,

however, none of the students hovered over the line to see the editor hint and none of

the students added a debug print-statement, such as print(height), to trace the code.

Ideally, students should have at least read the editor hint or printed out the value of

height to determine its value (something they would learn to do during subsequent

classes during the course). Instead, they made guesses based on their reading and

understanding of the code, and three strategies emerged.

The first strategy was to compare the bugged line 4 to the similar working code

on line 3. For example, George noted that lines 3 and 4 were similar and stated, “…

should I do height equals height plus 2?” (Week 1: 1:46:33). He then changed line 4 to

match line 3 (height = height + 2), and ran the program to verify the repair was correct.

Jason, Lucas, Mark, Oscar, and Walter all arrived at the same solution. Peter made a

different change, noting that the line was only missing an equal sign and correctly

changed line 4 to line += 2. When asked why, he correctly recalled a previous

programming exercise and stated, “Because plus equals (+=) is for adding things, and

plus is kind of just for combining things, sort of.” (Week 1: 02:33:58). Finally, Brian and

Carl arrived at a different solution. Brian noted that line 4 was unnecessary or

redundant, so he deleted the duplicate line and instead changed line 3 to add +4 to

height’s initial value of 2 to arrive at the correct final value of 6. Carl ultimately arrived at

the same solution as Brian, but as is detailed in the challenges below, did not do so

85

immediately. Thus, all of the students arrived at the correct final value, but used

different strategies to do so.

5.4.2. Week 1 Student Debugging Challenges

All of the strategies described in the previous section resulted in correct

solutions, however, two observed strategies were counterproductive. The challenges

are summarized in Table 5.2 and then described in more detail with student examples.

Table 5.2. Week 1 student debugging challenges

Challenge Counterproductive use

Introducing new bugs. Changing the code unintentionally introduces new bugs.

Getting stuck on a repair. Vacillating when faced with a repair decision so much that they
stop, shutdown, or give up.

Two common challenges were noted during Week 1: introducing new bugs into

the code and getting stuck on a repair.

Typically during debugging, code has to be modified to correct bugs, a process

called repairing. During these repairs, new bugs can be introduced either by adding

incorrect new code, changing working code to no longer work, or removing working

code. For example, Mark, in response to the compiler error caused by the variable a not

being defined, incorrectly changed line 4 from printing the value of the variable a to

printing the text a instead. Although he correctly identified the cause of the error, stating,

“There's no, what's it called, name A?” (Week 1: 2:07:48), he then incorrectly noted, “It

has to be under quotations, doesn't it?” (Week 1: 2:07:52) and incorrectly changed

print(a) to print(“a”). He then unexpectedly moved the newly modified print(“a”) to line 2,

which resulted in no output of the final value of age. Upon running the program and

seeing no output, he identified the mistake, deleted the quotations, and ended up with

the correct print(age), but on the wrong line. After seeing this, he copied his new

print(age) back down to where the original print(a) was, ran the code, received the

correct output, and moved on. Although Mark did arrive at the correct final answer in the

end, his changes resulted in new bugs being introduced, one that remained and one that

was corrected. During challenge #2 Mark made the same mistake, adding quotation

marks around the variable to try to correct the reported syntax error.

86

Like Mark, Oscar unexpectedly introduced new bugs into his code as well. In

Oscar’s case, he changed the starting value for the variable age from one to seven, thus

changing the final output from the expected value of 2 to 7. However, unlike Mark who

was trying to correct a syntax error, Oscar’s change did not cause a syntax or runtime

error and instead resulted in a subtle semantic error, because the final output of 7 did

not match the target of 2. Unfortunately, unlike challenge #4 which contained a code

comment telling the students what the final value should be, challenge #1 did not. As a

result, Oscar mistakenly changed the starting value of the age variable because he said

that it seemed too low. This was not investigated further because the original bug was

not related to the initial value of the variable but rather was ensuring the final value was

output, even, as in this case, the value was different than expected.

Unlike Mark and Oscar, who successfully overcame their introductions of bugs

while debugging, Carl got stuck during challenge #4, was not sure how to proceed, and

gave up. Although Carl immediately identified the bugged line, “Wait, hey, this (line #4)

is supposed to be equals?” (Week 1: 1:36:41), he was unsure of how to correct it,

stating, “I'm actually not sure.” (Week 1: 1:36:49) Like some of the other students, he

pointed out PyCharm’s highlighting of the line, noting that line four was “grayed out” (see

Figure 5.2). He also correctly identified that the line needed an equal sign (=) for

assignment, but then mistakenly removed the addition operator (+) and replaced it with

an equal sign (resulting in Figure 5.4). However, this change introduced a new error,

like Mark and Oscar, and resulted in the final output being two rather than the four he

started with and the six he was trying to achieve. After trying a few more combinations

of equals and addition operators, running the program, and continuing to get incorrect

results, Carl stated, “I’m not sure.” (Week 1: 1:38:36). He appeared stuck, repeating that

he did not know what to do two more times. At this point the researcher suggested that

he try something and see what happens. At that prompt, Carl deleted line 4 entirely and

modified line 3 to add four to the initial value of height, to end up with the correct total of

six. (See Figure 5.5 for Carl’s ultimate solution.) During his post-challenge rating of self-

confidence, Carl noted that the challenge had negatively affected his (self-)confidence.

87

Figure 5.4. Screenshot of Carl's edited code for challenge #4 (Week 1).

Figure 5.5. Screenshot of Carl's solution to challenge #4 (Week 1).
Carl deleted line 4 (height + 2) and instead modified line 3 to add 4 instead of 2.

5.4.3. Week 1 Debugging Times

In addition to the student strategies and challenges already discussed, all actions

were implicitly timed as a result of being recorded during the debugging sessions. As a

result, timing data for each of the students is presented here to show how long each

participant took to complete each challenge. Unlike some of the previous studies that

looked only at the time taken to debug (e.g., Gould & Drongowski, 1974), this timing data

is meant to provide additional context rather than be the focus of the discussion. For

example, one student struggled and took longer which resulted in a loss of confidence

while another student also took longer and reported no impact on their confidence. In

addition, the timing data provides some insights into the impact of student strategy

choices, especially when counterproductive strategies resulted in longer overall times.

88

During Week 1, each student’s time to complete each challenge was recorded.

For Week 1’s debugging challenges, there were nine participants, who took a minimum

time of 1:54 to solve all four challenges and a maximum time of 5:28 (mean: 3:22,

median: 3:21, SD: 1:09). Figure 5.6, shows the times for each student. Details for some

of the times follow.

Figure 5.6. Week 1 debugging challenge times (in minutes, sorted by time).

For the first challenge, students were required to correct the capitalization for the

variable age on line 3 and then print the value of age on line 4. Oscar immediately noted

the red underline for the incorrectly named variable Age on line 3 and corrected it.

However, he failed to recognize the invalid variable name a on line 4 as a typographical

error and instead deleted it, resulting in line 4 printing a blank line instead of the value for

age. Although this now resulted in zero errors, it also resulted in no output being

produced. When asked if he had printed age, as required, he said no and then

unexpectedly deleted the value 1 on line 2 (age = 1) and replaced it with 7, resulting in a

new starting age value (age = 7). He then ran the code again and the output remained

blank. Seeing no output, he then changed line 4 to print(7), ran the program again, and

correctly noted that the age should have been higher because of the age = age + 1 on

line 3. Finally, he realized that he needed to print the variable age rather than the

constant 7, and corrected line 4. Altogether, his missteps resulted in a total debugging

time for challenge #1 of 2:08.

1:54

2:51
3:05 3:07

3:21

4:17 4:21

5:05
5:28

 -

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

Peter Lucas Walter Brian George Oscar Jason Carl Mark

Challenge 1 Challenge 2 Challenge 3 Challenge 4

89

Although Jason had the same solution time as Oscar for challenge #1 (2:08), his

actions and process were completely different. Jason started by carefully reading

through the code looking for clues. He correctly identified the errors, such as line 3,

stating, “… in one of the red lines, it said age equal age capital plus 1.” (Week 1:

1:58:08) and line 4, “… alpha print a, it needs to be age, not a.” (Week 1: 1:58:34).

However, he did not make any changes to the code immediately. It was not until he was

told that he could make changes by the researcher, forty seconds into the challenge,

that he made the first of his two correct changes. However, again, he paused after

making the changes and it was not until the researcher asked if he was getting the

correct answer that he acknowledged that he had and that he was done (16 seconds).

Therefore, although his time was the same as Oscar’s (2:08), much of his time was the

result of him hesitating before making the changes he had already identified as needed.

Mark, like Oscar, added extra code and modified the program during challenge

#1 resulting in him adding extra work and thus taking extra time. In Mark’s case, he

mistakenly changed the print on line 4 to output the text string a instead of the value of

the variable a. He also added extra print statements once he realized he was required

to output the value for the variable age. The addition of these extra print statements

resulted in him undertaking unnecessary additional work, and thus resulted in a longer

debugging time of 2:12 for challenge #1.

Carl, as previously mentioned, struggled with challenge #4, resulting in the

highest overall solution time of 3:07 (mean: 1:18, median: 1:03, SD: 0:47). Although he

correctly identified where the error was on line 3, he was not initially sure how to correct

it, had long pauses with no activity, and tried a few changes unsuccessfully until he

finally deleted the problematic line and changed line 2 instead to add the necessary

value of four. Carl, like Jason, was hesitant to make changes, but unlike Jason made a

number of incorrect changes before stopping and needing to be encouraged to make the

final necessary change to complete the challenge.

5.4.4. Week 1 Pre/Post Self-Efficacy Ratings

As part of the one-on-one debugging sessions, students were asked to rate their

level of confidence debugging Python code. These self-reported ratings were meant to

provide insight into the impact of the challenges on their self-confidence. For example, if

90

a student struggled to debug a problem, it was assumed that they might report a

reduced self-confidence score after the event. Additionally, to supplement the student

rating values, students were also asked to explain why their score increased, decreased,

or stayed the same. This additional question was meant to provide context for the

changes beyond the numeric change.

Before and after completing the Week 1 debugging challenge, students were

asked to rate their level of confidence debugging Python code on a scale from one to

seven. See Table 5.3.

Table 5.3. Week 1 student self-reported self-efficacy ratings

Student Pre- Post- Diff. Student answer to why pre- and post- difference.

Brian 4.5 5.0 +0.5 Exercises made me feel more confident.

Carl 5.0 3.5 -1.5 I kind of overthink things and that lowers my confidence.

George 2.0 3.0 +1.0 I was expecting it to be more difficult.

Jason 5.0 6.0 +1.0 I did all of this, and I felt confident about it.

Lucas 5.0 6.0 +1.0 Kinda easy if you know code already. I just got a bit confident.

Mark 3.5 5.0 +1.5 I think I wasn't sure, but I feel better.

Oscar 4.5 5.5 +1.0 I honestly didn't think I could do that.

Peter 5.0 5.0 - It was a pretty accurate guess.

Walter 5.0 5.0 - Sometimes I got it wrong, most of the time I got it right.

All of the students successfully completed all of the challenges. Most students

(6/9) reported that successfully completing the challenges made them feel more

confident, and thus reported a higher post-activity rating. Of those six, three (Jason,

Mark, Oscar) reported that they had been uncertain at the start but after completing the

challenges they felt more confident in their abilities. Two students (George, Lucas)

reported that the challenges had been easy, and their statements aligned with their

challenge completion times as well. Two students (Peter, Walter) reported no change in

their level of confidence, with Peter reporting that he felt his initial rating was already

accurate.

Carl was the only student to report a lower post-challenge score and was the

only student to really struggle with any of the challenges. In Carl’s case, during

challenge (#4), he identified the general problem immediately but was unsure what

repair to make. As a result, he vacillated between a few choices, started, stopped,

91

undid, and was indecisive. After almost giving up, I encouraged him to try one of his

ideas and see what happens. He did so, by deleting the problem line altogether and

fixed the code successfully. After successfully completing the problem and asked why

he rated his confidence lower, he said that he tended to overthink problems some of the

time.

5.5. Week 2: Student-Generated Examples and Expert
Debugging

In an effort to gauge students’ impressions of an explicit debugging strategy, they

were introduced to an expert debugging process during Week 2 and asked to describe

the difference between their own debugging approach and the one demonstrated. To

start, students were asked to create a copy of their in-class exercise and then introduce

up to three bugs into their previously working code. They were then asked to share their

screen with the researcher and demonstrate what the output from their non-bugged

version looked like. After showing their non-bugged version, they then sent the bugged

version to the researcher. Then, the researcher debugged their bugged version while

thinking aloud. At the end of this debugging demonstration, students were asked to

provide a short one or two sentence description of the differences they noticed between

the researcher’s debugging process and their own.

Two students reported seeing no difference (Carl, Peter). Two students noted

that the researcher ran the program after every fix (Mark, Walter), and Brian added that

he did too but only after fixing multiple errors. Six of the students noted that the

researcher worked through the process in order (systematically), one error at a time, and

repeated the same process each time. Oscar was the only student who did not provide

a reflective answer. His answer implied that the only important difference between his

debugging approach and the researcher’s was that the researcher had more experience

and was “better at coding”. Table 5.4 displays all of the students’ responses to the

question about how their personal debugging approach differed from that of the

researcher.

92

Table 5.4. Week 2 students’ observations of differences between the teacher (expert) and their
debugging techniques (novices)

Student Student description of differences between expert debugging and their debugging.

Brian You always try running it before debugging it while if I see an error, I will fix it without running
it to see what it says. Well, I still run it but just after I fix it.

Carl I couldn't really tell the difference.

George You go through all the possibilities of errors in the code.

Jason You do everything in order, and I find a mistake and fix it.

Lucas I found that you took more time to find the answers.

Mark You checked errors to make sure they worked before running and ran the code often.

Oscar You are better at coding.

Peter I didn't see a difference except you're faster.

Walter You run every time once you think you have fixed the bug.

5.6. Weeks 4/5: One-on-one Debugging Challenges

Unlike Week 1, which focused primarily on syntax errors, the challenges for

Weeks 4/5 contained four semantic errors that required the students to identify

mismatches between the target output in the specification and their actual observed

output. The debugging challenge itself was a series of three squares in a particular

order, colour, size, and thickness, as shown in Figure 3.11. There was no time limit on

the challenge, and students were not told how many bugs there were -- only what the

code should output, and what the code actually output. As a result of the shift towards

identifying visual output differences, the challenge was modified so that students were

first shown the target and actual outputs and then asked to describe what they saw and

speculate on the causes before being given the code to debug. A complete listing of the

code and bugs is provided in Appendix B, and a description of the bugs can be found in

Chapter 4.

5.6.1. Weeks 4/5 Student Debugging Strategies

During Weeks 4/5, students demonstrated the following strategies: running the

program first, sequentially reading and tracing the code, comparing similar code to spot

differences, guessing-and-checking changes, working around the bug, and using debug

print-statement output to understand what was happening inside the code. A complete

list of the strategies and fuller descriptions are provided in Table 5.5.

93

Table 5.5. Weeks 4/5 student debugging strategies

Strategy Description

Reading and tracing code. Develop familiarity with basic functions and flow of the code.
May lead to identification of bugs.

Running program first. May generate compiler error messages, runtime error
messages, or produces the output for comparison to the target.

Comparing to working code. Compare to known-good or working code to identify incorrect
differences for repair.

Guessing-and-checking changes. After identifying and locating a potential repair, making a repair
(guess), and verifying (checks) whether the repair is valid or not.
Undoing the repair if it is not valid.

Adding missing code. Adding missing necessary code.

Removing unnecessary code. Remove duplicate or code deemed unnecessary.

Using debug print-statements. Helps verify how the code executes and outputs the program
state during execution. Can help with tracing and segmenting
the code.

Most of the students (6/9; Brian, George, Jason, Lucas, Mark, & Walter) started

the debugging challenge for Weeks 4/5 by running the program first. Unlike Week 1,

where students ran the code for their first challenge because they were instructed to,

during Weeks 4/5 most students chose to do this without prompting. The researcher

employed this run-first strategy during their expert debugging demonstration during

Week 2 as a way of both checking the output and identifying different kinds of errors.

Only one student (Mark) commented about running the program first, stating that he

wanted to see what happened as he traced the lines with his mouse as they were drawn.

None of the other students provided a reason for choosing to run their program first, and

most just closed the turtle window and jumped directly into the code once it finished

drawing. Although the students did not provide an explicit reason for why they just

closed the turtle window after running the code, it is probable that they were looking for

(or testing for) compiler or runtime errors as were common during Week 1. However,

because the Weeks 4/5 program did not have any syntax or runtime errors, the program

ran first time instead.

All of the students started by slowly reading the code from top to bottom. This

behaviour was more noticeable during Weeks 4/5 because the program was 41 lines

long – much longer than the code for previous challenges which averaged only four

94

lines. As a result, students had to scroll the editor’s text window up and down to see all

of the code.

The code for Weeks 4/5 was grouped into three sections of repeated code

blocks, one for each of the three squares, as shown in Figure 4.11. Students

demonstrated an understanding that the code for the three squares was similar by

comparing the code for each of the three squares to each other by scrolling up and down

in the code or mentioning the similarities between the three code blocks. For example,

George, while comparing code for squares one and two noted, “Oh, I think I found it.”

(Week 5: 1:18;34) and then, “I think there’s a minus sign here.” (Week 5: 1:18:45). He

then correctly removed the minus sign and ran the program to verify the change. Walter

made a similar observation, stating, “I feel like because it says pen size one (line 24) and

one (line 34), I feel like this should be pen underscore size (like line 14).” (Week 5:

1:56:57), whereupon he copied the correct variable pen_size from line 14 onto lines 24

and 34 to correct squares two and three. Most students demonstrated this approach,

scrolling the code up and down as they compared one block of code with another.

Whereas students like Peter and Brian picked specific targets to debug and

stated possible causes before fixing them, others like Lucas, Mark, and Oscar took a

guess-and-check approach. In Oscar’s case22, he started with a slow sequential read of

the code, remarked that there were no errors with each line, and then circled back to the

top to start reading again, stating, “I feel like there’s something wrong. I’m just not

catching it.” (Week 4: 1:41:51). He then jumped around the code, clicking on various

lines in different areas before changing the angle in the loop for square two from the

correct right(90) to the incorrect right(120) and then running the program to see what

impact this had. His first change resulted in an incorrect rotation, and so he immediately

undid the change and replaced the correct right(90) with an incorrect left(90). After

running it, he remarked, “Okay, that's makes it a bit better.” (Week 4: 1:43:09), but then

deleted left(90) and replaced it with forward(50) instead. Oscar continued making single

changes (guesses) and running the program (checks) each time to see the results of his

changes. He continued this approach several more times until a change resulted in a

particularly unexpected output, whereupon he remarked, “Oh, what. What is that?”

(Week 4: 1:44:11). After making no progress with these single changes, he finally

22 Oscar’s full episode trace for Weeks 4/5 can be found in Appendix D, Figure D8.

95

noticed the extra minus sign for square two while comparing the code for squares one

and two, stating, “Oh, this is x equals minus square.” (Week 4: 01:45:03). Upon spotting

this difference, he undid one of his previous changes, correctly removed the extra minus

sign bug, and ran the code to see that square two was rotated correctly. Upon seeing

the correction, he proceeded to undo other incorrect changes he had introduced, ran the

code again and then quickly fixed the other three bugs. He did not initially identify that

the code for the squares was repeated, and instead he repeated changed lines randomly

to see what the change would do before discovering the similarities and using code

comparison to find and fix the original bug.

Like Oscar, Lucas and Mark repeatedly guessed and checked changes; but

unlike Oscar, they did not ultimately use a code comparison approach to identify and

correct the bugs. Instead, they added new code that worked around the original bugs.

Lucas started by adding an extra forward statement to fix the missing fourth line for

square three, ran the program, saw only a small change, increased the value for his

incorrect forward statement and ran the program again. Mark also added an extra

forward statement for square three after the for-loop that replicated the code within the

for-loop to add the missing fourth line. However, Mark took this further by rotating

square two 180 degrees using right(180) so that it was in the correct position, at the cost

of also rotating the third square. This required him to add a second right(180) rotation

after square two to rotate square three as well. Although both students arrived at turtle

outputs that matched the target, they did so by working around the original bugs rather

than identifying and fixing the cause of the bugs. These kludgy solutions however are

problematic because they make the code harder to read due to unnecessary extra steps

and they fail to fix the underlying problem which means that it is still there to potentially

cause problems in the future. As well, although not explored in this study, these

suboptimal solutions could represent a pattern or misunderstanding that could be

hindering their debugging or programming abilities. In Mark’s case, he did note after the

session that he could have fixed the missing fourth line for square three by fixing the

range value, but chose not to, which implies that he was potentially aware of the work

around.

Although the code for the Weeks 4/5 challenge included debug print-statements

that output clues to what the program was doing, only Walter used them. After running

the program for the first time, Walter read through the resulting debug output and noted

96

that square two had a negative rotation, stating, “Oh, it's minus.” (Week 5: 1:54:47).

Upon discovering this, he compared it to the output from the other two squares and

stated, “So, I just need to figure out (where the minus is)…” (Week 5: 1:54:58) and

returned to the code in search of the minus sign that was causing the bug. However, he

started at the top of the code, and while sequentially reading the code mistakenly

identified the first minus sign in the code, which was in front of the x-parameter for the

goto statement at the top of the code, i.e., goto(-50, 50), and deleted it. After making

this incorrect change, he ran the program and immediately saw that this was incorrect.

He undid the incorrect change and restarted his sequential search through the code for

another minus sign. After not finding another minus sign right away, he moved to the

code for square two, selected it with his mouse and stated, “So, it's something in here.”

(Week 5: 1:55:17). He then read the lines aloud sequentially until he found x = -

square_size on line 36, whereupon he stated, “Oh, there it is.” (Week 5: 1:55:48). So,

although Walter identified the correct issue, that the output was negative and that this

was most likely caused by a minus sign, he did not immediately connect the bug to the

correct location. Instead, he focused on finding the minus sign and incorrectly used a

sequential search to find the first minus sign instead of the correct minus sign. However,

after his initial mistake, he did jump to the correct area within the code and again applied

a sequential search through the code for the error, reading the code aloud until he found

the bug. At no point did he jump down to the debug print-statement for square two and

compare the variable that was showing the negative value (x) to help locate the source

of the error itself.

5.6.2. Weeks 4/5 Student Debugging Challenges

Similar to Week 1, some students during Weeks 4/5 demonstrated

counterproductive or misapplied approaches including introducing new errors and

adding unnecessary code. However, during Weeks 4/5, students exhibited additional

challenges including: excessive guessing-and-checking and avoiding rather than fixing

errors.

97

Table 5.6. Weeks 4/5 student debugging challenges

Challenge Counterproductive use

Making excessive changes. Repeatedly changing the same line or block of code rather than
stepping back to consider alternatives or verifying that the code
in question is the correct code to change.

Avoiding bugs. Changing the code in such a way as to work around a bug, such
that the original bug is not repaired and is avoided, worked
around, or compensated for instead.

As noted in the previous strategies section, three of the students (Oscar, Lucas,

and Mark) exhibited a pattern of guessing-and-checking. Although all students were

ultimately successful and undid all of the incorrect changes they made, Oscar made

significantly more changes (7) than the other students (mean: 2.22; SD: 2.17) and ran

the program significantly more often while searching for bugs (14 times; mean: 7.7; SD:

4.4). Unlike Jason for example, who carefully read through the code until he identified

where the code for the three squares was, Oscar chose to change an angle in the

middle of the code to try to determine which square the code he was changing belonged

to. He did this by repeatedly changing single statements, running the code, looking at

the output, and then undoing the incorrect change. He repeated this process until he

determined that the rotation was caused by the minus sign and not the numerous

rotations or forward movements.

As also previously mentioned, Lucas and Mark both avoided or worked around

the root causes of the bugs during the challenge for Weeks 4/5. In Mark’s case, he

correctly identified that square two was incorrectly rotated 180 degrees around the x-y

axis, and so he rotated the square by 180 degrees. However, upon seeing that this

repair caused the third square also to rotate 180 degrees, he again applied the same

change to the third square to correct its orientation. In keeping with this approach of

working around the problem, both Mark and Lucas misidentified the bug for square

three, and rather than fixing the incorrect range value, they added extra code to add a

single extra line. In Mark’s case, he added extra code to duplicate the actions within the

for-loop, but later remarked that he could have fixed the bug by changing the range

value for-loop, but chose not to. In all cases, the students chose to change the code

before correctly identifying what the bug was and as a result, once they had found a

workable solution, they kept it so long as their output was correct, even if it did not

98

correct the underlying bug. This approach is problematic not only because it potentially

leaves an unfixed bug and added extra unnecessary code, but it also means that the

code is harder for others to read and understand which means that it will be harder to

improve and maintain.

5.6.3. Weeks 4/5 Debugging Times

During Weeks 4/5 (Figure 5.7), there were nine participants. The minimum time

a participant took to solve a challenge was 1:43 (Peter), the maximum was 21:37

(Jason), and an average time of 8:46 (median: 7:40, SD: 5:27). Jason’s very long

session (more than double the length of the next-longest one) skewed the average time

considerably.

Figure 5.7. Weeks 4/5 debugging challenge times (in minutes, sorted by time).

Peter’s session exhibited the most advanced approach to debugging strategy.

As he read through the code, he identified and corrected each of the bugs in order, using

his observations from the initial identification phase to guide his decisions. He corrected

the rotation bug by noting the incorrect negative sign. He corrected the incomplete third

square by changing the range of the loop to match the range in the other two squares.

Finally, he correctly replaced the constant values of 1 for the incorrect pen thicknesses

with the correct pen_size variable. As shown in his episode trace (Figure 5.8) his path

was deliberate, and he only ran the code once at the end after correcting all of the bugs.

1:43

3:28

6:30 7:01
7:40 7:44 8:10 8:29

21:37

 -

 5.00

 10.00

 15.00

 20.00

 25.00

Peter Brian Carl Lucas Walter Mark George Oscar Jason

99

Figure 5.8. Peter’s Week 4/5 debugging challenge episode trace.

100

It is useful to compare Peter’s approach with that of Jason, who took the longest

time to complete the challenge. While Peter acted decisively as he traced through the

code, Jason was hesitant and repeatedly expressed uncertainty. For example, when

asked where he wanted to start, he responded with, “Maybe here.” (Week 4: 1:21:32)

and pointed at the output window within PyCharm. After reading through the initial

output, he ran the program again without making any changes. He then chose to focus

on why the third square was only drawing three of its four sides. He focused on the

incorrect range value, changed it, and then ran the program again to see if the change

was indeed correct or not. He then shifted focus to the incorrectly rotated square two.

After reviewing the code, he correctly deleted the minus sign and reported that, “…

there's no such thing as minus square size.” (Week 4: 1:29:25). While doing this, he

scrolled the code up and down so he could compare the already-correct square_size

variable for the previous square one that he had matched to repair the error for square

two. Unlike Peter who corrected all of the bugs before running their program, Jason ran

his program after every change, which was more similar to the behaviour demonstrated

by the researcher during the Week 2 debugging examples. As well, Jason was

deliberate and studied the code closely which resulted in long pauses, repeated runs of

the code to double-check, and then slow careful changes, all of which added up to his

longer time.

All episode traces for Weeks 4/5 are available in Appendix D.

5.6.4. Weeks 4/5 Pre/Post Self-Efficacy Ratings

Before and after completing the Weeks 4/5 debugging challenge, students were

asked to rate their level of confidence debugging Python code on a scale from one to

seven. Then, following the challenge, they were asked to provide a reason for any

change in their rating. Individual participants’ ratings with their reported reasons for

changes are shown in Table 5.7.

101

Table 5.7. Weeks 4/5 student self-reported self-efficacy ratings

Student Pre- Post- Diff. Student answer to why pre- and post- difference.

Brian 5.0 5.0 - I don't know. It didn't feel like it changed.

Carl 6.5 6.5 - Same. I think this is kind of how well I thought it would go.

George 5.0 6.5 +1.5 I don't know, but I felt better at the end.

Jason 5.0 6.0 +1.0 I felt it was kind of hard, and I solved it.

Lucas 7.0 9.0* +2.0 When I started noticing more stuff, I got more confident.

Mark 3.5 4.5 +1.0 Like the last time, I wasn't completely sure at how good I
was... I might have raised it higher, but I spent too long at the
start.

Oscar 5.0 6.0 +1.0 I honestly didn't think I wasn't going to do that… so this
boosted my confidence.

Peter 5.5 5.5 - Because I think I was able to find the errors quite fast, but not
amazingly fast.

Walter 5.5 6.0 +0.5 Cause I feel like… before I would always go to you (teacher),
but now I feel more comfortable/confident.

* Lucas asked if he could choose a score of 9.0 out of 7.0 because they started with 7.0 and they felt more confident at
the end of the challenge despite choosing an initial value of 7.0.

Of the students who reported an increase after successfully completing the

challenge (6/9), most reported that they thought the problem was hard and that

successfully debugging it boosted their confidence. Although Lucas reported the highest

increase in confidence, he reported a score of 7.0 out of 7.0 at the start, and as a result

was already at the maximum score. He therefore chose 9.0 out of 7.0 because he felt

more confident after successfully completing the challenge. Four students (Brian, Carl,

Lucas, Peter) reported no change in their confidence, and no students noted a drop in

confidence -- not even Jason who took the most time to solve the problem. In fact,

Jason reported an increase in his confidence because although he found the challenge

hard, he was ultimately successful in solving it. Of particular note, Carl reported a

consistent score of 6.5, which was significantly higher than his previous pre-score of 5.0

and post-score of 3.5 at the end of the previous challenges during Week 1.

5.7. Weeks 7/8: One-on-one Debugging Challenge

The final debugging challenge for this study, conducted during Weeks 7/8,

involved two bugs, both of which were semantic bugs. One bug was a logical error, and

the other an incorrectly commented-out line of code. The goal with this challenge was to

test students’ bug-locating skills by requiring them to trace the bug using the debug print-

102

statements provided to them. There was no time limit on the challenge, and students

were not told how many bugs there were, only what the code should output and what the

code actually output. As already noted, three students, Carl, Jason, and Walter did not

participate during Weeks 7 and 8 because we ran out of time. A complete listing of the

code and bugs is shown in Appendix B and a description of the bugs can be found in

Chapter 4.

The focus of the Weeks 7/8 debugging challenge was to observe the extent to

which students had adopted the explicit debugging techniques taught during the course.

Of particular interest was their use of the debug print-statements for debugging state

issues, as presented by the first bug, as well as their adherence to their previous ad-hoc

debugging approaches, i.e., would they be systematic in their approach or not. In

summary, two students did not use debug print-statements but did successfully debug

the code. Two students did use debug print-statements to successfully debug the code

but took much longer to do so and required some assistance. Finally, two students did

not use the debug print-statements and were unsuccessful in completing the debugging

challenge.

5.7.1. Weeks 7/8 Student Debugging Strategies

Table 5.8. Weeks 7/8 student debugging strategies

Strategy Description

Using prior programming knowledge
or experience.

Identify bugs using prior experience of the same or similar bugs.

Reading and tracing code. Develop familiarity with basic functions and flow of the code.
May lead to identification of bugs.

Running program first. Generates compiler error messages, runtime error messages,
and produces the output for comparison to the target.

Guessing-and-checking changes. After identifying and locating a potential repair, making a repair
(guess), and verifying (checks) whether the repair is valid or not.
Undoing the repair if it is not valid.

Adding missing code. Adding missing necessary code.

Removing unnecessary code. Remove duplicate or code deemed unnecessary.

Using debug print-statements. Helps verify how the code executes and outputs the program
state during execution. Can help with tracing and segmenting
the code.

103

As previously mentioned during Weeks 4/5, all students continued to read the

code for Weeks 7/8 sequentially, despite the code at the top of the program being

functions that did not contain any bugs. This meant that they unnecessarily read

through all of the functions and set up code at the top of the program before eventually

reading the main loop near the bottom of the code.

Of the two students who did not use the debug print-statements, Peter was the

only student to explicitly note that the odd squares were coloured, and the even squares

were not. As a result, although he read through the code sequentially, when he reached

the main drawing loop, he paused and traced the code for drawing the squares more

closely. After reading the main drawing loop closely, he correctly swapped two lines of

code in the loop so that the even colours were white and the odd correctly used colours

from the colours_list variable. Peter’s process was exclusively focused on reading the

code closely, simulating it in his head, and only running the program to verify his

changes. Peter made no mistakes, did not use any of the included debug print-

statements, did not introduce any new errors and completed the challenge soonest in

3:20 (see Figure 5.9).

Figure 5.9. Peter's Week 8 debugging challenge turtle output progression.
Times shown below turtle output images are relative to the start of the program for the first image
and then relative to the previous image. They are meant to show the passage of time between
runs of the program that produced the turtle output.

Brian made the same change as Peter, but rather than changing the code

manually, he swapped the code by dragging and dropping it between the True and False

clauses of the if-statement. However, unlike Peter, Brian uncommented all of the debug

print-statements at the start of his session during his initial read of the code. After doing

that and running the program, he read through the debug output once but made no

mention of it again. Brian’s process, like Peter’s, involved careful reading and simulating

of the code. While debugging, he introduced and undid four errors, ran the code ten

times, and completed the challenge in 8:57 (see Figure 5.10).

104

Figure 5.10. Brian’s Week 8 debugging challenge turtle output progression.

Although Peter and Brian did ultimately produce correct output, they did so by

accepting that the is_even function returned a semantically incorrect result and worked

with the function as-is rather than correcting the function itself (which is the where the

bug was). Had the is_even function been used in other places within the program, thus

resulting in multiple bugs because of the errant function, they would have been forced to

make repeated fixes to the code to compensate for the bug in the function. In contrast,

the next two students eventually identified the problem in the is_even function and

changed it to correct the problem instead.

The two students who successfully completed the challenge while using debug

print-statements were George and Mark. George started off by adding his own debug

print-statement to determine the order of execution of the functions. He was the only

student who explicitly attempted to use the Wolf-Fence algorithm shown in class to

locate the bug within the code. Following this single use of the algorithm, he determined

the general area of the code where the bug was, but did not repeat the process to further

narrow the search as prescribed by the algorithm. After a number of attempted changes

to one of the modulo operators for the colours, he uncommented the provided debug

print-statements, initially all at once but then gradually one-by-one, to see what

information they provided. It was while reading the individual debug output lines shown

in Figure 5.12, that he noted, “… is_even five true…” (Week 8: 2:11:59) followed by,

“Shouldn’t it always be true?” (Week 8: 2:12:02), and then exclaimed correctly, “Oh, I

have to flip this around.” (Week 8: 2:12:10). However, rather than immediately doing so,

he tried a few more changes of the modulo operator before returning to focus on the

is_even function. Once focused on the is_even function, he correctly identified and then

switched the return values to return True for even numbers rather than odd numbers.

George introduced and undid nine errors, ran the program 26 times, added six debug

print-statements, and completed the challenge in 17:04 (see Figure 5.11).

105

Figure 5.11. George's Week 8 debugging challenge turtle output progression.
George changed the modulo operator that controlled the colour selection repeatedly.

Figure 5.12. George's Week 8 debug output, printing values for is_even function.
Debug output shows that the is_even function is incorrectly returning True for odd numbers and
False for even numbers.

Like George, Mark attempted to use the debug print-statements, but did so in a

novel fashion by copying and pasting the included debug print-statement code into the

is_even function. However, rather than working right away, this introduced a number of

compiler errors due to variable names not matching. Although Mark corrected these

errors, he did not act on the information provided by the debug print-statements right

away, and instead spent considerable time modifying the sequence of the colours in the

list provided without success and without using debug print-statements to provide any

context. When he did return his focus to his own debug print-statements, he finally

realized that the odd and even results were incorrect and stated, “So, now it’s the exact

opposite.” (Week 8: 1:47:37). He then immediately made the correct code change to the

is_even function to return True when even and False when odd. Mark was the only

student to correctly identify that the incorrect code “if n % 2 == 0” was True when n was

even and changed it to the correct “if n % 2 == 1”. As a result, Mark’s code returned

True for even numbers and False for odd numbers, as expected. In total, Mark ran the

106

program 23 times, introduced and undid seven of his own errors, added 12 debug print-

statements to the program, and took the longest of all participants to complete the

debugging challenge at 27:40 (see Figure 5.13).

Figure 5.13. Marks’ Week 8 debugging challenge turtle output progression.
Mark ran the code repeatedly while modifying only the debug output, not the turtle output.

5.7.2. Weeks 7/8 Student Debugging Challenges

Although the final challenge proved to be too difficult for two of the six students,

most of the successful students exhibited challenges as well. These challenges are

summarized in Table 5.9 and described in more detail with student examples below.

107

Table 5.9. Weeks 7/8 student debugging challenges

Challenge Counterproductive use

Introducing new bugs. Changing the code unintentionally introduces new bugs

Getting stuck on a repair. Vacillating when faced with a repair decision so much that they
stop, shutdown, or give up.

Making excessive changes. Repeatedly changing the same line or block of code rather than
stepping back to consider alternatives or verifying that the code
in question is the correct code to change.

Failing to locate bugs. Unsystematically searching until all potential causes or
candidates have been exhausted, leading to stopping, shutting
down, or giving up.

Reading the code sequentially rather
than functionally.

Reading the code as text rather than as a sequence of
commands with a specific order. Thus, taking additional time
and reviewing unnecessary code.

Misidentifying the role and function of
debug print-statements.

Students incorrectly assumed that debug print-statements
affected the state or flow of the program rather than just
reporting on it.

A number of students introduced bugs while debugging the final challenge: Oscar

(2 bugs), Brian (4 bugs), Mark (7 bugs), George (9 bugs), and Lucas (15 bugs).

Although Oscar only introduced two bugs, he also only tried two changes before undoing

them and giving up on the challenge. Brian’s bugs were related to incorrectly trying to

remove the outside line for the squares, and were all removed. Mark and George both

repeatedly changed the modulo operator while trying to figure out the colours, but both

ultimately discovered that the modulo operator for the colours was not the cause of the

bug and undid their changes. However, Lucas repeatedly changed a single line, ran the

program, did not see the correct change, undid the change, and repeated the process

without success. Positively, none of the students introduced a new bug that they did not

undo.

As previously mentioned in the strategies section, Mark copied some of the

provided debug print-statements into his is_even function, which introduced a number of

compiler errors at the start of his session. He then spent a few minutes attempting to fix

these errors and at one point said that he should just undo all of the changes. I

suggested that he correct them first, to see what information they provided, and then

decide. However, by making this unnecessary change so early in the session, he not

only took longer to complete the challenge, but his tone changed to one of frustration

early on. Although his tone would improve as he uncovered the clues necessary to

108

complete the challenge, this unnecessary change early on did result in evident stress

and frustration.

Although ultimately successful in debugging the code, George got stuck on how

the modulo operator worked. As a result, he made repeated changes to the operator

constant to try to fix the colours for the squares, all the while ignoring the output in the

debug print-statements that showed the value of the modulo statement. This incorrect

fixation on the operator occupied a significant amount of his debugging time, and

demonstrated a lack of understanding of the output from the debug print-statements.

While running the program, one of the debug print-statements printed the output from

the modulo operation but George (and others) ignored or misunderstood the output.

This ultimately led to George and others making excessive changes rather than making

a change and verifying or testing the output successfully.

Two of the students, Oscar, and Lucas, failed to use the provided debug print-

statements effectively, failed to locate the bugs, and ultimately failed to complete the

challenge. Oscar spent the first half (4:05) of his session reading the code, first

sequentially from top to bottom, and then jumping around randomly. He made a single

change that resulted in a single blank diamond, undid that change, immediately made

another change that resulted in a compiler error and then gave up, stating that “I can’t do

it. I don’t know.” (Week 7: 1:41:36). At this point he was reminded by the researcher of

the commented-out debug print-statements on lines 38-41 that he had not tried yet.

Immediately, he uncommented each of the provided debug print-statement lines, one at

a time, running the program after each change to look at the resulting output. Initially he

had an excited tone as he ran the code, only to finish with frustrated statements of, “It

didn’t change.” (Week 7:1:43:01) and “It’s the same thing.” (Week 7:1:43:14). He

stopped at 8:04 and exclaimed, “I still can’t do it.” (Week 7:1:43:44). Oscar’s

progression is shown in Figure 5.14. Unfortunately, Oscar was unable to locate the bug

and misidentified the role and function of the debug print-statements. Apparently, he

expected them to repair the code rather than provide information about how the code

might be malfunctioning. He ran the program two times, introduced, and undid two

bugs, uncommented but did not use the provided debug print-statements, and invested

8:04 working on the problem before giving up.

109

Figure 5.14. Oscar’s Week 7 debugging challenge turtle output progression.
Oscar did not successfully complete the challenge.

Lucas approached the final debugging challenge very differently from the other

students. He started off by quickly scanning the code, jumped down to the bottom

where the debug print-statements were commented out, and uncommented all of them

all at once. He then ran his program and exclaimed, “It does nothing different.” (Week 7:

1:51:44), referring to the debug print-statements. He then correctly uncommented the

code that changed the pen colour to remove the square outlines, ran the program to

produce the correct output, but then unexpectedly undid the change and never returned

to it. Following these initial changes, he then began changing a variety of lines of code

in rapid succession without providing explanations or speaking much at all. After several

mistakes, he exclaimed out loud that he was, “Just messing around.” (Week 7: 1:53:55).

Although some of his mid-challenge changes were focused on the colours, he eventually

abandoned those and started changing positioning and angles, all of which he undid.

Finally, near the end of his session, sounding very frustrated, he stated, “I don’t know.”

(Week 7: 1:59:06), tried a few more changes, and then stopped. In total, he

uncommented all of the debug print-statements but ignored their output, ran the program

19 times in 10 minutes, and introduced and undid 15 errors. Lucas’ progression is

shown in Figure 5.15. Like Oscar, Lucas misidentified the role and function of the debug

print-statements and was unable to locate the cause of the error.

110

Figure 5.15. Lucas' Week 7 debugging challenge turtle output progression.
Lucas did not successfully complete the challenge.

5.7.3. Weeks 7/8 Debugging Times

Only six of the nine participants took part in the Weeks 7/8 challenge, due to a

lack of time. As shown in Figure 5.16, for these six participants the minimum time to

complete was 3:20 and the maximum was 27:40 (mean: 12:36, median: 9:46, SD: 8:36).

Four of the students successfully completed the challenge, while two did not. Of the six

students, two completed the challenge with little to no use of the provided debug print-

statements (Peter and Brian), two completed the challenge and used the debug print-

statements extensively (George and Mark), and two students failed to complete the

challenge and made no effective use of the debug print-statements (Oscar and Lucas).

111

Figure 5.16. Weeks 7/8 debugging challenge times (in minutes, sorted by time).
* Successful means participants successfully debugged the program. Unsuccessful means
participants did not complete the debugging challenge and the time shown is when they stopped.

5.7.4. Weeks 7/8 Post Self-Efficacy Ratings

Unlike the previous two challenges, students were only asked to rate their level

of debugging confidence after completing the challenge, and unfortunately due to

researcher error, the first two students were not asked to provide a rating. As a result,

the self-efficacy ratings collected during Week 8 only include four students (Brian,

George, Mark, Peter). Peter and Brian maintained similar ratings as in previous weeks,

whereas both George and Mark reported lower scores. In the case of George and Mark,

both took significantly longer (see Figure 5.16) to complete the challenge than their

peers, and both noted challenges trying to use the debug print-statements effectively.

However, George and Mark were the only two students to correct the actual problem

with the code, whereas Peter and Brian worked around the problem and Lucas and

Oscar did not successfully complete the challenge at all. Table 5.10 lists students’ self-

reported ratings and comments on their ratings.

3:20

8:57

17:04

27:40

8:04

10:35

 -

 5.00

 10.00

 15.00

 20.00

 25.00

 30.00

Peter Oscar Brian Lucas George Mark

Successful Unsuccessful

112

Table 5.10. Weeks 7/8 student self-reported self-efficacy ratings

Student Pre- Post- Diff. Student answer to why pre- and post- difference.

Brian - 4.5 - I don't know, just like around the middle, maybe a bit higher.

Carl - - - -*

George - 4.0 - I feel like I can debug simple code, but not too complicated
and like four is kind of in the middle.

Jason - - - -*

Lucas - - - Not asked**

Mark 3.6*** - Because I'm not that good. I don't think I'm using print
statements to solve code and so it just takes me a while
because I don't know exactly where to put them. And then
sometimes I'm not good with like seeing how the output can
help too.

Oscar - - Not asked**

Peter 5.5 - At first, I was pretty confused. I didn't know what was going
on. But after that, I figured it out pretty quickly, I think.

Walter - - - -*

* Three students did not participate in the Week 7/8 challenges due to time constraints.
** Two students during Week 7 were not asked post-challenge to report their score.
*** Mark initially stated his score as 4.1 but while explaining his score reduced it to 3.6.

5.8. Summary of Student Self-Reported Self-Efficacy
Ratings

At three points during the study, students were asked to self-report their level of

confidence to debug Python code, on a scale from one to seven. Figure 5.17 shows the

individual scores for all students over the span of the course. Four different patterns are

described: a drop in confidence following a difficult debugging session (Carl), two over-

confident reports (Lucas & Oscar), a downward trend (Mark), and two students whose

scores stayed the same throughout (Brian & Peter).

113

Figure 5.17. Student self-reported debugging confidence scores.

As shown in Figure 5.17, Carl reported the only decrease in confidence (5.0, 3.5)

following his struggling with the final challenge during Week 1, but then reported

increased confidence (6.5, 6.5) during Weeks 4/5 but offered no conclusive reason for

the increase.

On the other hand, Lucas and Oscar never decreased their reported scores and

instead reported ever increasing scores over the first two challenges. As well, both

asked if they could choose a score higher than seven, with Lucas even stating that they

thought they were really a nine (out of seven) at the end of Weeks 4/5. They have been

grouped here because they both reported struggling during their sessions but then

reported higher scores as a result of completing the challenges. When asked why they

increased their score, Oscar noted, “Because I honestly didn't think I was going to do

that. I kind of like, I don't know, boosted my confidence.” (Week 4: 1:49:48), and Lucas

noted, “When I started noticing more stuff, I got more confident.” (Week 4: 2:08:56).

Unfortunately, due to a researcher error, neither Lucas’ nor Oscar’ final scores were

captured during Week 7. This is unfortunate because both students failed to complete

the challenge, and both had sounded downtrodden at the end of their final challenge

session.

In contrast, Mark reported a higher level of confidence at the end of each

session, but his week-to-week scores exhibited a downward trend over the weeks. He

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

Brian Carl George Jason Lucas Mark Oscar Peter Walter

Week 1 Pre Week 1 Post Week 4/5 Pre Week 4/5 Post Week 7/8 Post

114

started with 5.0 during Week 1, then 4.5 for Week 4, and finally a score of 3.6 for Week

8. During Week 8, Mark initially stated a score of 4.1, “I feel like a 4.1.” (Week 8:

1:48:48), going on to clarify, “Because I don’t feel like I’m a four, but I don’t feel like I’m

any higher than a 4.5.” (Week 8: 1:48:56). However, while explaining his reasoning for

his initial 4.1 score, he noted that he was not that good at using the debug print-

statements demonstrated in the class and then suddenly decreased his rating from 4.1

to 3.6 (a 0.1 increase over half of seven), noting, “So, that’s why I thought actually

maybe a 3.6 then.” (Week 8: 1:49:29). In discussing it further to clarify the lower final

confidence score, Mark noted that he had taken longer than expected to complete the

challenge and had trouble with the debug print-statements, which affected his

confidence.

Finally, Brian and Peter both consistently reported the same scores (between 4.5

and 5.5) throughout their three sessions and either did not change their scores or only

changed them marginally (0.5) from the start of the session to the end. When asked

why there was no change, Peter replied, “I think it was a pretty accurate guess.” (Week

1: 2:34:41), and Brian replied, “It didn't feel like it changed.” (Week 5: 1:44:59).

5.9. Student Descriptions of Debugging

Over the course of the eight-week study, students were asked three times to

provide a description of the term debugging. The question was posed as, “In a sentence

or two, how would you describe debugging to a friend?” The answers were scored

according to whether students identified the three central tenets of debugging described

and discussed in the course: identifying that a bug exists (“identify”), locating the bug

(“locate”), and fixing the bug once located (“repair”).

During Week 1, students were asked to describe debugging before any

instruction on debugging. None (0/9) of the students mentioned “identifying” that a bug

existed, only two (2/9) noted “locating”, while most of the students (8/9) included the

term “fixing” in their descriptions. During Week 2, participants were again asked to

describe debugging after they had been exposed to three different debugging situations:

1) they had completed their first debugging challenge the previous week, 2) they had

submitted their own code with bugs in it during this session, and 3) they had watched the

researcher debug their code live in class. Following these debugging experiences, two

115

(2/9) noted “identifying”, three (3/9) included “locating”, and all of the students (9/9)

included the term “fixing” in their descriptions. Finally, during Week 6, after a class on

an explicit debugging process, watching the researcher demonstrate debugging, and

having completed two one-on-one debugging sessions, participants were once again

asked to describe debugging. The results were mostly unchanged from Week 2, two

(2/9) noted “identifying”, four (4/9) included “locating”, and most (8/9) included “fixing”.

Although most students’ descriptions were largely unchanged week to week, one

student, George, demonstrated a clear progression over the course of the study. First,

his Week 1 response identified only fixing: “Debugging is fixing broken code so that it

works.” However, at the end of Week 2, his definition expanded to include both

identifying and fixing: “Debugging is recognizing that there is an error in the code and

fixing it.” Finally, during Week 6, his definition expanded to include all three elements:

“Identifying a problem in the code, finding it, (and) then solving the problem.” In addition,

although not captured in his descriptions of debugging, at the end of his Week 5 one-on-

one debugging challenge, he asked about the green bug icon on the PyCharm toolbar

(the debugger button), how the debugger worked, and if the researcher could show him

how it worked. After a short demonstration, he was encouraged to play with it on his

own and ask any questions.

All student descriptions of debugging are shown in Table 5.11.

116

Table 5.11. Student descriptions of debugging (weeks 1, 2 & 6)

Student Week 1 Week 2 Week 6

Brian Debugging is where you fix
errors that are within a
program, I think.

Debugging is fixing errors or
malfunctions in a program,
that’s basically it.

Debugging is fixing an error
in program, there are three
types of errors: syntax
errors, runtime errors, and
logic errors.

Carl It just means fixing a line or
a part of a code.

Debugging is about finding
and fixing a problem in your
code

Debugging is like fixing code
and like other things you
learn there are strategies to
it.

George Debugging is fixing broken
code so that it works.

Debugging is recognizing
that there is an error in the
code and fixing it.

Identifying a problem in the
code, finding it, then solving
the problem.

Jason When there is something in
the code that's wrong and
you have to take it out like
e.g., pulling a piece of fluff
out of a toy with things in it

Debugging is like when there
is a problem, and you have
to undo it, but you have to
write it on a computer or it's
like taking something out of
a toy that's not supposed to
be there

It’s like taking a needle out
of a haystack except t’s not
impossible to find. You have
to dig around the hay or the
code and find the needle or
the problem. Then, you pull
out the needle, or fix the
code.

Lucas I would describe it like you
fixing a car or fixing toy so
what you do in coding is
debug the code of any bugs

Debugging is like making
spelling mistakes and
needing to erase it and put
the correct thing in

Like if you make mistake
when drawing or writing you
erase it and fix it

Mark I would describe debugging
as fixing an error in a
program.

Debugging is finding an error
in a code, and properly fixing
it. I think if you don't really
know how to code. you can’t
exactly fix or find errors, so
it’s hard.

I would describe debugging
as locating and fixing an
error in coding. Debugging
could also be described as
fixing a problem in coding
with simple methods.

Oscar Fixing errors in the code;
changing something in the
code that you don't want to
be there

Debugging is fixing errors in
a code

Debugging is fixing mistakes
and changing lines of letters
and numbers

Peter Debugging is checking code
for errors and then fixing
them

Finding and fixing problems
in code

Searching for and fixing
broken parts of code

Walter Debugging is like a puzzle.
You have to find the thing
you did wrong which might
be hard a first but once you
get the hang of it, it gets
easy.

Debugging is where u kinda
fix the code if there was an
error; also, it’s kinda hard at
first (be)cause you don’t
really know how to do it;
(be)cause you're just
starting.

Debugging is kinda hard if u
don’t know much about
coding but if u do it’s kinda
like writing on a word
doc(ument).

117

Chapter 6.

Discussion

This chapter discusses the findings of the study in relation to the literature on

novice-programmers’ debugging. It is divided into seven parts: (1) a review of the

research aims and research questions; (2) a summary of the key findings; (3) an

interpretation of the findings in relation to prior research; (4) a discussion of the

implications of the findings; (5) a discussion of the limitations of the study; (6) a set of

recommendations based on the study; and (7) a concluding summary.

6.1. Research Aims & Research Questions

This research aimed to identify the debugging strategies and challenges that

upper elementary-school aged novice programmers demonstrate before explicit

debugging instruction and then the observed effects and their responses to an explicit

debugging strategy taught within the context of a Python programming class. Four

research questions were pursued:

RQ1: What strategies do novice elementary school students employ when

debugging Python code?

RQ2: What challenges do novice students face when debugging?

RQ3: What effects does an explicit debugging strategy have on student

debugging strategies?

RQ4: In what ways do students respond to explicit debugging instruction?

6.2. Summary of Key Findings

Before explicit instruction on debugging, students demonstrated a number of

common strategies and challenges. For syntax and runtime errors, students relied on

external information from the editor and compiler to identify, locate, and repair bugs. For

semantic errors, students used a combination of prior programming knowledge, previous

118

debugging experience, and reading and tracing the code to identify and locate bugs.

Once located, students primarily used prior knowledge, comparison to working code,

and guessing-and-checking to repair bugs.

In addition to common strategies, students also exhibited common challenges

that slowed them down, misled them, or prevented them from debugging successfully.

The most common challenges observed were students introducing new bugs, making

excessive changes to code, reading code sequentially rather than functionally, and

applying fixes that worked around rather than repaired the underlying bugs.

Following explicit debugging instruction during the course, two changes were

observed in students’ debugging strategies. First, students began running their

programs as their first action, which both generated compiler or runtime errors to provide

clues and also allowed them to observe the turtle output to help them understand the

control flow of the program. The second change observed was that some of the

students began utilizing debug print-statements to identify and locate bugs; including

some creating their own print-statements.

Finally, although some students showed signs of adopting the explicit debugging

strategies, the results were mixed, with three main responses identified. One group of

students adopted the explicit debugging strategies taught in the course and used them

successfully, but exhibited signs of excessive cognitive load while doing so. A second

group, although successful, either did not use the strategies taught or did so sparingly,

and instead primarily relied on their own strategies. A third group did not use the taught

strategies, did not appear to understand their role, and ultimately gave up during the final

challenge. The findings of this study suggest that students who adopted the explicit

debugging strategies were successful, but appear to require additional practice to

master them. Understanding the students who did not use the taught strategies will

require further study.

6.3. Discussion of Findings

This section will discuss the findings as they relate to the research questions.

119

6.3.1. Student Debugging Strategies

This section will discuss the key debugging strategies that students

demonstrated as they attempted to complete the debugging challenges before receiving

instruction on explicit debugging strategies.

At the start of the study (Week 1), students were initially introduced to syntax

errors during the first three challenges. Although it is critically important to be able to

identify syntax errors and read and react appropriately to their resulting runtime errors,

they are often overlooked or characterized in the research literature as “easy errors”.

Although commonly counted during studies looking at error frequencies (Ahmadzadeh et

al., 2005; Ripley & Druseikis, 1978; Spohrer & Soloway, 1986), research into how to

handle them has often been ignored, due to their low frequency of occurrence (Boies &

Gould, 1974) and the ease with which they are identified and corrected even by novice

programmers (Youngs, 1974). However, for both “true novices” (Kessler & Anderson,

1986) and younger novices (as in the present study), strategies for handling syntax

errors are critical because they are the first debugging barrier that novice programmers

face when learning to program. Failure to master effective approaches to them could

result in a barrier to more complex programs and result in an inability to move on as a

programmer.

One of the first strategies observed by students when faced with syntax errors

was to use hints provided by their code editor (PyCharm). Using code editor hints was

not discussed in early studies because early editors were relatively primitive, and

computers did not possess the spare processing power necessary to scan for and alert

the programmer of errors while they were working with the code. As a result, during

early studies programmers relied on the compiler to report syntax errors when the

programmer stopped writing and submitted their program for inspection via compilation

or interpretation. This has changed as computers have become more powerful, and as

a result, modern studies have mentioned the use of tools and online resources

(Fitzgerald et al., 2008; Murphy et al., 2008). The students in this study, having used the

PyCharm editor before, demonstrated that they were already familiar with using it to

locate and identify syntax errors. As a result, they were aware that code that was

underlined with a red line contained a syntactical error, and so they used these hints to

home in on and correct such errors quickly. For example, during Week 1, after pasting

120

the bugged code into the editor, most of the students immediately moved their mouse to

the first line that had a red underline, read the underlined text, and immediately

corrected the underlined error.

Like editor hints, students in this study had also already been exposed to

compiler error messages when their programs “stopped working” or “crashed.” As a

result, when they encountered such errors after running their programs, they exhibited

two strategies: immediately moving their attention down to the output window of the

editor to read the error message, or stopping and asking for help from the teacher. Most

of the students in this study reacted to compiler errors by immediately shifting their focus

to the output window to read the error message, using the information to locate the error,

and then correcting it. For those who were less familiar or unsure when an error

occurred, typically a prompt from the researcher to read the error message was

sufficient for them to locate the line and the incorrect code as well. However, a few

students, even after being reminded to read the error messages, still stopped, and asked

for help rather than attempting to correct the error on their own, indicating a

misunderstanding or a learned helplessness whereby their initial reaction to an error is to

ask for help rather than try to fix the error on their own. Perkins et al. (1986) attribute

this to the students not wanting to be seen making mistakes, or what Dweck & Elliott

(1983) characterize as performance-oriented motivation.

As the debugging challenges increased in difficulty from the simpler syntax and

runtime-related errors to the more challenging semantic errors, students’ strategies

changed as well. This was especially noticeable during Weeks 4/5 and 7/8, because the

number of lines of code exceeded a single screen and so students had to scroll their

editor window up and down to see all sections of the code. As a result, students started

off looking for editor hints like they had during Week 1 by scrolling the editor screen up

and down. When that failed to identify any obvious (syntax) errors, they switched to

reading the code line-by-line, which resulted in two observations: code comparison and

guessing-and-checking.

During Weeks 4/5, after reading the code line-by-line, most students noticed that

the blocks of code for the three squares were similar to each other, and thus they could

identify bugs by comparing the working code to non-working code. This most closely

aligns to “pattern matching” from Murphy et al. (2008), although Murphy et al.’s

121

examples were more focused on code example found via web searches rather than the

more general comparison to known working code. In this study, for those students who

compared the code to similar blocks of code, they began by comparing similar code,

looked for and changed what was different, and then ran the code to see if their change

was correct. In most cases this was an effective strategy, as they used the known-good

code and their prior knowledge or experience successfully to identify what was wrong

and make the correct changes.

For those students who did not recognize the similar code, they instead started

off by reading the code, suggesting that they were tracing the code line-by-line and

mentally simulating each command. During Weeks 4/5 in particular, this line-by-line

code tracing approach led to them narrowing down the general area of the bug, but it did

not always result in identifying a specific line of code that needed to be changed. As a

result, students were often left unsure of what needed to be done to fix the bug and what

line(s) to change. When this happened, students would often make a change to the

code (guess) and then run the program to see if they were correct or not (check). This

guessing-and-checking was often successful, demonstrating that students had a weak

understanding of possible solutions, hypothesized possible repairs, and then verified

their changes. However, as discussed later in the challenges section, when guessing-

and-checking did not work, it resulted in excessive counterproductive changes that

frustrated students and caused them to become stuck or give up.

Overall, before explicit instruction in debugging strategies, students exhibited

some previously learned behaviours and general debugging strategies. To start, their

experience with both the PyCharm editor and other text-editing tools helped them

identify syntax errors using a familiar red underline to signal an error and combined with

context clues from the surrounding code or their own knowledge of command syntax,

they easily corrected most of the syntax errors. As the challenges shifted towards

semantic errors, the students exhibited the ability to spot differences through pattern

matching or guessing-and-checking based on their understanding of the code or prior

programming experience. In most cases, for the first set of challenges, the existing

strategies that students had, combined with their programming knowledge allowed them

to identify, locate, and repair all of the challenges successfully. However, as will be

discussed in more detail in the next section, when their existing strategies were

insufficient, students would run out of options and get stuck or give up.

122

6.3.2. Student Debugging Challenges

In addition to demonstrating a variety of strategies during their debugging

sessions, students also exhibited a number of challenges that slowed them down, led

them astray, or resulted in unproductive or counterproductive actions. This section will

discuss the key challenges observed as students attempted to complete the debugging

challenges.

Even when students successfully debugged the challenges, they often

introduced new bugs while attempting to repair the existing ones. This is a common

challenge noted early on by Heilman & Ashby (1971), who observed that any changes to

the source code, even the addition of debug print-statements, risks introducing more

bugs, as was observed during Week 8 (Mark). Bonar (1985) suggests that students

introduce bugs because they encounter a gap or inconsistency in their programming

knowledge which results in an impasse. This in turn leads to them guessing at solutions,

which is prone to introduce new bugs. Perkins et al. (1986) suggested this occurs

because novices act unsystematically, tinkering rather than debugging systematically.

Nanja & Cook (1987) characterized novices by their introduction of new errors into the

code, as compared to experts who did not, and intermediates who did so only

occasionally. Fortunately, the students in this study undid all of the bugs they

introduced, showing that they were aware of the changes they had made, kept track of

those changes, and undid them when they determined that they did not work.

As mentioned in the previous section on debugging strategies, some students

made an excessive number of changes while debugging, especially when guessing-and-

checking. Perkins et al. (1986) described students who moved too fast, and tried

repairing their code in rapid-fire succession, without reflection or apparent forethought,

as “extreme movers” (p. 42). This pattern of excessive changes was most apparent for

two cases during the study: Oscar during Week 4 and Lucas during Week 7. In Oscar’s

case, he made seven incorrect changes (compared to an average of two by the other

students) but as noted above, he undid each one and was ultimately successful in

completing the challenge. His approach was unsystematic, and he appeared to stumble

upon the solution rather than arrive at it logically like the others. This led to him noting, “I

honestly didn't think I wasn't going to do that.” (Week 4: 1:49:48). During Week 7, Lucas

123

exhibited a similar rapid-fire succession of changes, but unlike Oscar during Week 4,

Lucas did not stumble across the solution and ultimately gave up on the challenge.

Perkins et al. (1986) suggest that students adopt an “extreme mover” behaviour

to appear busy and to avoid failure by persisting. However, they also note that this

behaviour can lead to loss of self-confidence and discouragement to continue

programming. In Oscar’s case, he acted confidently as he made his mistakes during

Week 4; but during Week 7, he lost all confidence when his actions did not work as

expected. In Lucas’ case, he seemed to fit Perkins et al.’s characterization of looking

busy and avoiding failure when he stated that he was, “Just messing around.” (Week 7:

1:53:55). Upon reflection, this behaviour of acting busy to avoid failure aligns with the

students being performance-oriented rather than learning-oriented (Dweck & Elliott,

1983), something Papert (1980) had noted separately as well. Although throughout this

course bugs were characterized as “no big deal” (NBD) and something that happens all

of the time (including while the teacher was teaching), some of the students appeared

unwilling to be wrong, and as such persisted unproductively to appear busy and hope to

luck into a solution rather than taking a step back, re-checking their assumptions, or

looking for clues as suggested by McCartney et al. (2007).

Although the goal of debugging is to identify, locate, and repair bugs, some

repairs are better than others. For example, a repair that fixes a root problem in a

function called from multiple places within the application can result in a single repair

fixing multiple bugs. However, if the root problem is not repaired and instead each

symptom of the bug is made to work with the still-buggy code, then the programmer has

failed to identify and fix the root cause. This avoidance can result in the modifying of

code that did not need to be modified. Further, when a bug impacts multiple areas of the

code, as in our example above, it can lead to code maintenance issues because each of

the worked-around or avoided pieces of code themselves needs to be maintained

according to the still-buggy code. As a result, it is imperative that students identify the

root cause of the bug rather than just the symptoms of the bug.

Murphy et al. (2008) called this “working around the problem” and described it as

happening because students did not understand what the code was doing and so they

replaced it with code that they did understand (p. 166). This approach was exhibited by

Mark and Lucas during Weeks 4/5 when they added unnecessary code after or within

124

the for-loop for square three that was missing its fourth side. The bug in the code was

that the range for the for-loop was too small, something that was shown by the debug

print-statement outputs as well as the turtle output. In Mark and Lucas’ case, rather than

identifying and fixing the bug in the range, they both added unnecessary extra turtle

movement commands after the loop to complete the square. Although their solution

produced the correct output, if they had then been asked to modify the code to draw a

different polygon with more sides, their code would not have worked, and they would

have had to add to or modify their unnecessary repair code to compensate while the

other students could have just changed the single range value.

The last common challenge that students exhibited was reading the code

sequentially from top to bottom, like prose, rather than as a series of ordered instructions

(Jeffries, 1982; Nanja & Cook, 1987). This behaviour was sufficient during the first two

challenges because the code itself was a series of sequential instructions. Therefore,

reading it sequentially matched how the computer read it. However, the debugging

challenge code for Weeks 7/8 used two functions, one for drawing the squares (square)

and the other for determining whether a number was even or not (is_even). As a result,

the order of execution for the final challenge was not sequential and the main bug was

contained within the is_even function. This resulted in student times being exaggerated

the more time they took trying to read the code. As well, students exhibited signs of

excessive cognitive load as they tried to both simulate and keep track of the program

state as they read through the code sequentially. This is in contrast to expert

programmers who maintain only the necessary current state as they traverse the code

functionally or who offload the memory work to external sources or mechanisms

(Fitzgerald et al., 2008).

6.3.3. Effects of Explicit Debugging Instruction

At multiple points during the programming course, students were exposed to a

variety of implicit and explicit debugging instruction. The implicit instruction included

organizing the code to make it easier to read, and running the code first and often while

debugging to verify changes as soon as possible. The explicit instruction included

demonstrating an expert debugging process using a think-aloud verbal protocol,

introducing the Wolf Fence algorithm for locating bugs, and introducing and using debug

print-statements to trace program flow control and program state. Following these

125

debugging demonstrations and instructions during the course, the students adopted

three new strategies: (1) running the program as the first step in debugging, (2) applying

the Wolf Fence algorithm, and (3) using debug print-statements.

One of the first changes observed in students’ approaches to debugging after

explicit instruction was their running of the program as their first step in debugging. Prior

to this (during the first week for example), students focused on finding and fixing

typographical errors using the editor hints. As a result, they would read the code first

and even attempt fixes before running their programs. However, during Week 2, while

debugging the students’ code live, the researcher always stated that he was first going

to run the student programs first to see what information he could glean in terms of

compiler error messages or output variations. When asked what differences between

their own approaches and the researcher’s approach, three students noted that the

researcher ran the program after each fix, rather than as a first step. Following this live

demo where students repeatedly saw the researcher running their programs first and

after each change, student behaviour changed to running their programs first and often

as well. For example, during Weeks 4/5 only Jason and Peter read the code first, while

the other seven ran their programs first. As well, during Weeks 7/8, only Peter read the

code first, while the other five ran their programs first.

Carver’s (1986) five-point debugging process included running the code as the

first step. Her rationale for this was that bugs are typically not noticed until the program

is compiled and run, so telling the students to run their program at the start and after

each change is beneficial. Although this was not explicitly stated during my debugging

instruction, most students adopted this strategy because it allowed them to see any

compiler error messages, see the turtle output, and also observe the sequence of turtle

actions as the program executed. As a result, running the code gave them a sense of

what the program did before they tried to debug it as well as after each change.

As the course progressed, students were introduced to two explicit debugging

techniques: the Wolf Fence algorithm (Gauss, 1982) for sub-dividing the code to aid in

locating bugs, and debug print-statements for tracing program flow and state changes

over time.

126

Although students were explicitly taught how to use the Wolf Fence algorithm as

part of a code-along debugging exercise during Week 6, only a single student (George)

attempted to use it during Week 8. In George’s case, he added a single print(“potato”)

line as a marker in his code (as prescribed by the algorithm), then ran his program, read

the debug output, and stated that it did not help him. Unfortunately, he placed the print

statement at the start of the program, and failed to add the necessary additional

statements or move the print around in the code as he worked. It is clear from this

single use that George tried to use the algorithm but that he did not recall or understand

the need to move the marker or to add more markers to further sub-divide the code.

Böttcher et al. (2016) described a similar experience during their study when they tried to

introduce the Wolf Fence algorithm, noting that students did not use it and instead

returned to “poking around.” Unfortunately, given that only a single student tried to use

the approach, it is not clear if the lack of use was because of the simplicity of the

debugging challenges, and thus this approach was unnecessary, or that the approach

was too complicated and students either failed to understand it or chose to stay with

approaches they were more comfortable with.

In contrast to the single exercise and demonstration of the Wolf Fence algorithm,

print-statements were used throughout the course. To start, print-statements were

introduced during the first week as the sole means of program output to familiarize

students with how they worked and to implicitly demonstrate their ability to output

program state information as it changed. During Weeks 4/5, the challenge code

included researcher-provided debug print-statements for each of the three squares to

both identify the start of each block of code for each square, and also to output the

turtle’s state as each square was drawn. Most of the students used the identification

print-statements to locate the code for each square but only a single student (Walter)

mentioned and then demonstrated reading the output to identify and then locate one of

the bugs. The nature of the bugs for Weeks 4/5 did not specifically require using the

debug output, but using it made finding the rotation bug much easier. However, even

though Walter correctly identified the reason for the bug, he did not use this information

correctly. Instead, rather than returning to the debug print-statement line to see what

variable was wrong, he mistakenly deleted the first minus sign (-) he found in the code.

So, although the debug output helped him identify the issue, he did not use it fully to

locate or repair the bug itself.

127

In the final challenge, a set of commented out (disabled) debug print-statements

were provided in the bugged code. Thus, by default, they generated no output. A

comment in the code identified them as “some debugging print statements” and students

were told that the statements were there if they wanted to use them, but that they were

not required to. Of the six students who participated in the final challenge, one did not

use the debug print-statements at all (Peter) while the other five uncommented all of

them. Brian only looked at the output once at the start, and then proceeded to debug

the code without using them. Lucas and Oscar also uncommented all of the debug print-

statements, and both noted that they did not change the turtle output and so dismissed

them. Both Lucas and Oscar failed to complete the challenge. In contrast, Mark and

George both used the debug print-statements successfully. However, their use was also

unexpected and is worth discussing in more detail.

In addition to using debug print-statements to locate the bug, George

successfully used the output from the provided debug print-statements to identify that

the is_even function was returning the wrong result. Through careful and repeated

reading of the output, he eventually noted that the output was wrong, and that led him to

correctly identify that the function was incorrect and to make the correct change. This

shows that given the necessary clues (in this case that the function was not working as

required), George was able to then locate and correct the error (unlike Walter in the

previous example). However, George did not initiate the creation of the debug print-

statement on his own and thus without the provided debug print-statement, he may not

have found the bug on his own. This finding aligns with the four debugging heuristics

provided by Fitzgerald et al. (2008, p. 114) which indicates that students need to be

taught to validate their assumptions using (debug) print-statements (or other means).

Like George, Mark successfully used debug print-statements during the final

challenge. However, Mark used them differently. Mark started off by copying the

provided commented-out debug print-statements from the bottom of the code up into the

is_even function at the top of the code. He placed these copied lines into the conditional

clause where the function returned True and uncommented them. Unfortunately, by

doing this, he introduced a number of compiler errors and initially stated that he was just

going to undo the change; but the researcher encouraged him to fix the compiler errors

first and then decide. After fixing them, Mark reviewed the output but was not initially

certain of what it meant. After uncommenting and reviewing the rest of the debug

128

output, he returned to his own debug print-statements and added a copy of them for

when the function returned False. It was during this interaction and subsequent

inspection of the output that he realized that the function was returning the wrong values.

This led him to correct the bug in the function so that it returned the correct values.

Although George made a similar discovery, Mark, through his detailed debug

print-statements, was the only student to identify and repair the single change that fixed

the function. This deep dive into his own debug print-statements and then the

encouragement to follow that ultimately correct pathway suggests that additional practice

and support is needed for students to use print-statements early on, when their code

comprehension level is still developing, to validate and verify their code. In the case of

the final challenge, the modulo operator was used, which was unfamiliar to the student.

Although the necessary debug output was available for them to see both how the

modulo operator worked and also the buggy is_even function, most students failed to

follow the steps necessary to identify, locate, and repair the bug efficiently. Fitzgerald et

al. (2008), when discussing debugging heuristics (Figure 2.7), noted that students need

to be made aware of their limited ability to keep the program in their heads along with

the program state, and as such need to be encouraged to offload this memory load such

that they can inspect and verify so they can identify, locate, and repair bugs effectively.

6.3.4. Student Responses To Explicit Debugging

Unfortunately, few studies have examined student responses to explicit

debugging instruction. Of those that have, Murphy et al. (2008) noted that (university

computer science) students were positive towards undertaking debugging activities while

learning programming, with one stating, “All students should do this [debugging

exercises] – it is really good for you.” (p. 167). In a study similar to the present one, Ko

et al. (2019) noted that 73% of their high-school-aged participants reported that they

understood the debugging strategies, but only 53% reported that they were helpful. Ko

et al. noted that rather than use the systematic strategies they had been taught, students

engaged in rapid cycles of shallow editing and testing, similar to the previously

discussed guessing-and-checking from this study. This appears to align with Lowe’s

(2019) comments that the newly taught strategies still require the slower System 2, and

so novices stick to what they have already automated (System 1) because it is faster

and is something they already know.

129

In this study, student responses to the explicit debugging instruction were

observed during the final challenge, and three general responses were identified. One

group of students used the most strategies to successfully complete the challenge, but

needed assistance to do so and showed signs of excessive cognitive load. A second

group made no use of the taught strategies, and instead used their own strategies

successfully. The third group made no use of the taught strategies, did not appear to

understand their role or how they worked, and did not successfully complete the

challenge.

The first group consisted of George and Mark, who successfully applied the

taught strategies with some instructor support. George attempted to use both the Wolf

Fence algorithm and debug print-statements during the final challenge. However, as

previously noted, his Wolf Fence attempt consisted of a single print(“potato”) line at the

top of his program that he did not return to or use after running the code one time. In

contrast, he used the debug print-statements effectively to both identify that the is_even

function was returning opposite values to those intended, and how to fix it. His repair

fixed the buggy is_even function and required only two code changes. As a result, he

showed a clear understanding of the value of the debug print-statements and how to use

them effectively to debug.

Similarly, Mark used the debug print-statements to determine that the is_even

function was incorrect, locate the incorrect line, and repair it. However, Mark struggled

with the debug print-statements initially because he tried to copy-and-paste the provided

lines into the function directly, which resulted in compiler errors. He wondered aloud if

he should undo this exploration, but I suggested he correct the errors first and then

decide. Fortunately, after making the necessary corrections, he was able to use the

information from his custom debug print-statements to correctly identify the issue and

correct the single buggy line. He was the only student to make the single correct

change.

The second group consisted of Peter and Brian, who both completed the

challenge quickly and with little to no use of the explicit debugging techniques taught in

the class. In Brian’s case, he uncommented the provided debug print-statements, ran

the program, looked at the output, and then ignored it while he traced the code instead.

Peter did not uncomment the debug print-statements and instead traced the code

130

closely, ran it a few times, and noted that the order of the colours was incorrect. Both

students changed the if-statement for the colouring rather than repairing the is_even

function. As a result, they had to move two lines around to work around the incorrect

is_even function. Although they did not use the strategies taught in the course, their

times to complete the challenge were among the lowest, and their approaches the most

systematic.

Unlike the first two groups, the third group, which consisting of Lucas and Oscar,

did not use any of the explicit debugging strategies taught in the course. They appeared

to misunderstand what the debug print-statements did, and as a result failed to complete

the challenge. In Lucas’ case, he uncommented all of the commented-out code at the

bottom of the code, including the debug print-statements. However, upon running the

program, he stated that it just output a bunch of text but did not fix the turtle output, and

so he ignored the output of the debug print-statements thereafter. Instead, he tried a

number of seemingly random changes in an ultimately futile attempt to stumble across

something that would provide a clue to the underlying bug. This haphazard approach

clearly demonstrated a lack of understanding of both the explicit strategies and how the

program worked. As a result, Lucas made an excessive number of edits, never made

any progress, and ultimately gave up.

Oscar’s actions also showed a lack of understanding of the debug print-

statements. He read the code aloud slowly from top to bottom, then jumped back to the

top and read the code again. However, rather than tracing the code (and demonstrating

an understanding of the flow), he read it sequentially as though it was prose. He

eventually settled on a suspect area of the code, made a single change, got a blank

result, and stated that he did not know what to do. When reminded of the debug print-

statements, he excitedly uncommented them line-by-line, running the program after

uncommenting each line. However, after running the last line and seeing no change in

the turtle output, he remarked that the debug print-statements did not do anything, and

gave up. He was clearly lost, did not understand what the code was doing, and did not

formulate a plan to debug the program.

The first group of students represents the closest to expected results, because

they not only tried to use the explicit strategies but in doing so, they found and fixed the

correct bug. This aligns with the outcomes expected based on the recommendations

131

from Fitzgerald et al. (2008). However, they also struggled unexpectedly, and required

support from the researcher to use the debugging strategies successfully. In addition,

they both reported a lower self-efficacy rating at the end of the challenge, even though

they had used the strategies successfully.

The second group was successful using their own strategies, rather than the

strategies taught in the course. I suspect that the bugs did not present enough of a

challenge to require them to need the explicit strategies, so they were able to reason

their way through the two bugs and solve the problem. A more challenging exercise, or

one that required explicit tracking of program state, may have been necessary to require

them to try the debug print-statements or the Wolf Fence algorithm. Unlike the first

group, these students reported the same self-efficacy ratings throughout the three

challenges, and at the end they maintained that nothing had really changed with regard

to their confidence in their debugging abilities.

The third group was a surprise, but was also the most similar to what Ko et al.

(2019) noted, namely that even with explicit instruction, these students either did not

learn the strategies or chose to revert back to their own less-effective approaches when

challenged. Ironically, these two students reported the highest self-efficacy ratings

during the first two challenges but unfortunately due to a procedural error, their final

confidence ratings were not captured. However, they were both downtrodden at the end

of the final challenge when they failed to solve it.

Upon reflection, it is clear that additional instruction, practice, and assessment

are needed to support all three groups. The first group needed to build up their

confidence, and to do that they appear to have needed additional practice using the

debug print-statements. The second group, although successful with the challenge, may

also have benefited from practice so they could see the benefit of at least using the

output from the provided debug print-statements. Finally, the third group would likely

have benefitted from being identified earlier in the course, so that I could have

investigated and determined why they were not apparently learning how to use the

debug print-statements. Although both students in the third group reported feeling

confident, and were successful during the first two challenges, upon closer inspection

they did exhibit excessive mover tendencies (Perkins et al., 1986) and excessive errors

that may have indicated they were having trouble earlier on.

132

Before closing out this section on student responses, I want to draw attention to

one of the students, George, who demonstrated a clear interest in debugging throughout

the course. Following his Week 5 debugging challenge, he asked what the green debug

icon (pictured as a green bug) on the PyCharm toolbar was used for. This led to a

demonstration and discussion of the Python debugger available within PyCharm, the use

of breakpoints, the watch window, and the debugger’s ability to step through code line-

by-line. George was the only student to ask about this and was encouraged to try it out

following the demo; but no further mention of it was made and no further questions were

asked. George was also the only student to attempt to use a debug print-statement to

split the code, as demonstrated in the Wolf Fence algorithm, and he made use of the

debug print-statements to identify, locate, and repair his bug. Finally, his definition of

debugging evolved throughout the course, and he was the only one to include all three

elements (identify, location, and repair) for his final definition. Looking back, it is clear

that George was interested in debugging and that may have played a part in his

willingness to try all of the debugging strategies, even if not always successfully.

6.4. Practical implications

This section will discuss the most significant findings and their implications.

First, as noted by Ko et al. (2019), unless student feel confident that they can

perform the explicit debugging strategies on their own, they may be reluctant to use

them, especially while being observed, even when their use has direct benefit to them.

This lack of confidence implies that additional support and practice may be necessary to

increase their confidence and work towards automating these processes, as suggested

by Lowe (2019). During this study, the actions of Mark and George during the final

challenge, demonstrated that students are capable, for example, of using debug print-

statements successfully to identify and correct the errors, but that they required

additional support from the researcher to do so. Although these were the only two

students to use the approach successfully (with support), this finding suggests that with

additional support more students could potentially integrate these strategies as well.

In line with lack of confidence using the strategies, some students appear to have

adopted a performance-oriented mindset when debugging rather than a learning-

oriented mindset (Dweck & Elliott, 1983). As a result, while debugging, they appeared

133

unwilling to fail or “look bad” in front of the researcher and as a result made themselves

appear busy and productive rather than ask for help or make a mistake (Perkins et al.,

1986). This manifested as “excessive moving” (Perkins et al., 1986), which resulted in

them either randomly finding a solution, which further reinforces their suboptimal

approach, or arriving at a dead-end and giving up. This implies that additional research

is necessary on how to identify unproductive or counterproductive excessive movement

with the goal of shifting students towards a learning-oriented mindset that encourages

self-reflection on their processes. Additionally, strategies are needed, for example the

four tracing heuristics proposed by Fitzgerald et al. (2008), which students can use and

practice to help them self-assess their progress and choose a productive path forward

when stuck or at a dead end.

In contrast to the lack of adoption of the explicit debugging strategies because

students felt unsure about using them, another interpretation, echoed by Ko et al.

(2019), is that the strategies were too advanced or sophisticated this early in their

programming experience. As a result, although the strategies are valid and valuable to

more experienced programmers, they may be too much when combined with also

learning the programming language and turtle graphics at the same time. Although Ko

et al. suggested simpler strategies and additional scaffolding for their study, I feel that

the strategies in this study were already simply enough but not practiced enough due to

time constraints. As a result, I feel that additional practice, including partially worked and

fully worked examples using the strategies followed by in-class exercises before formal

assessment, such as the debugging challenges, should be investigated further. As

already noted, Mark and George both successfully used the debug print-statements, with

support from the researcher, which implies that with additional practice more students

could potentially integrate them effectively as well.

Finally, the third group (Lucas and Oscar) during the final challenge appeared to

misunderstand the role of the debug print-statements and as a result were unable to

collect the program state information necessary to debug the challenge successfully.

Even with support and suggestions from the researcher, both students uncommented

and ran the provided debug print-statements but then noted that they did not help with

the turtle graphics output. This implies that these students misunderstood that the role

of the debug print-statements was to provide information on the program state so they

could identify and locate the source of the bugs. Upon reflection, although the debug

134

print-statements were covered throughout the course and even used to show program

state during some of the code-along exercises, no assessment was undertaken of

student understanding of their role and use before the final debug challenge. As a

result, future instruction should incorporate student assessment of understanding and

use of the strategies as well.

6.5. Limitations of the study

The primary objectives of this study were to enumerate existing student

debugging strategies and challenges, and see what effects explicit instruction in

debugging strategies would have on the strategies used. However, decisions were

made in the design of the study that resulted in limitations on the interpretation and

generalizability of the research findings.

One of the primary limitations of this study was the amount of time on task. The

entire study occurred over eight weeks, with instruction taking place during the first one

hour and the debugging challenges taking the second hour. As a result, students

received approximately eight hours of instruction which included learning Python, turtle

graphics, and the debugging strategies under study. As noted already, students showed

signs of either partially learning the materials or not learning the materials, which

indicates that more time was necessary for practice, assessment, and interventions to

ensure they had the time necessary to successfully integrate it into their practice.

Another limitation on the interpretation of the findings stems from the fact that the

majority of the data were collected via spoken concurrent think-aloud protocols in which

students’ spoken words and actions were recorded and later analyzed by the

researcher. Although the researcher is an experienced programmer and teacher, and

the coding was scrutinized by a second coder, the findings are subject to interpretation.

To improve confidence in the interpretations of these findings in the future, additional

coders or separate arms-length coders could be used.

In addition to uncertainties in the interpretation of the spoken-word data, students

were not consistent with regard to when they spoke, what they spoke about, or the level

of detail provided about their problem-solving. This is a common challenge for verbal

think-aloud protocols (Bowles, 2010; Ericsson & Simon, 1993), especially when working

135

with younger students. In fact, Fitzgerald et al. (2010) noted that students reported

finding thinking aloud distracting, and often chose not to speak. As a result, Fitzgerald et

al. noted limits on the conclusions that could be drawn from some of the students’

actions. They recommended developing a protocol that encouraged more speaking, and

also recording the actions of the participants to provide more context, as was done in the

present study. For future research, additional warm-up exercises where students think-

aloud both to the researcher and to each other could help them become more fluent in

thinking aloud, and perhaps come to view it as a part of their own process rather than an

additional task they need to handle while also trying to solve a problem. In addition to

practicing the process of thinking aloud, additional data could be collected

retrospectively by interviewing students at the end of each challenge and asking them to

recount or explain their approach. This recounting could then be compared to their

actions and spoken statements, to provide additional context or better understand their

thought process.

In addition to limits resulting from the data generation procedures, the

generalizability of the results is limited by the recruitment strategy, the number of

participants, and the gender of the participants. Participants in the study were all

previously students in the researcher’s after-school programs, and as such had all

previously taken Python programming classes with the researcher before. This made

recruitment easier, because the students and parents were already familiar with the

researcher and the classroom setting. However, only nine participants were able to

commit to the eight-week schedule for the study, and all were male. A number of

additional participants (including female students) expressed interest, but could not

participate due to scheduling conflicts. Although the participants were not representative

of all students in this age range, their familiarity with the researcher made them more

comfortable sharing their thoughts, asking questions, and generally participating in the

study.

One final limitation was that the code the students debugged was written by the

researcher and not by themselves. In one sense, it would be ideal for students to debug

their own code, because they would not need to familiarize themselves with it and

instead could focus on identifying, locating, and repairing their mistakes. However, as

noted in studies that chose this approach (Katz & Anderson, 1987; Youngs, 1974), it

does not ensure that all students debugged the same types of errors in the same

136

manner. A possible compromise was explored by Murphy et al. (2008), in which they

first had students write a similar program so they developed a mental model of the

program logic, and then provided them with a buggy version of the program, still written

by the researchers, to debug. These and additional research designs should be

considered for future research.

6.6. Suggestions for Future Research

In future studies on debugging using a concurrent think-aloud verbal protocol, it

would be beneficial to augment the real-time statements with retrospective post-activity

interviews, similar to Murphy et al. (2008). This would allow students who did not speak

much during the activity to provide an explanation of their actions and thinking, even if it

does risk the students providing rationalized responses (Bowles, 2010; Ericsson &

Simon, 1993). The potential benefits are that the retrospective interview data could

allow for deeper explanations by students of their strategies, and their misconceptions

as well.

To increase the generalizability of findings from a similarly designed study of

debugging strategies, a group of less-experienced students (“true novices”), might

provide more insight into novice debugging strategies. In addition, less-experienced

students may also exhibit different misconceptions and challenges that need to be

identified. Working with such a group could also provide a chance to test the materials

used in this study, as well as compare the effects and student responses further.

In this study, the one-on-one challenges served only as high-stakes exams rather

than formative assessment tools that could help identify and correct misconceptions or

failed uptake. In response to this limited up-take of the explicit strategies during this

study, future researchers could create and examine the use of assessments for

debugging knowledge, strategies, and misconceptions. Such assessments might help

teachers identify students who required additional support in order to avoid them giving

up during the challenges.

Finally, as suggested by Mathis (1974) and Lowe (2019), future research should

consider more fully integrating debugging into instruction, what Lowe calls a “debugging-

first” approach. This would require the creation of materials of the kind modelled by

137

Mathis, which led students through the process of validating their newly learned

programming techniques, such that students overlearn the debugging concepts (Lowe)

while completing the typical programming instruction (Mathis). This approach would

complement the idea of increasing the practice of explicit debugging techniques and

naturally lead towards debugging exercise and assessment as well.

6.7. Concluding Summary

This study set out to identify the strategies and challenges that novice Python

programmers exhibit during a typical introductory programming course and the effects of

introducing them to explicit debugging techniques during the course. Despite

participants being younger than those in most prior studies of debugging, the set of

strategies and challenges identified, were largely similar to those documented in other

studies (Fitzgerald et al., 2008; Murphy et al., 2008). With regards to the effects of

explicit debugging instruction, student uptake of the Wolf Fence algorithm and debug

print-statements was limited, again matching the findings of similar studies (Böttcher et

al., 2016; Ko et al., 2019). However, during the final challenge, two students showed

early signs of adopting the explicit debugging strategies and through their efforts

achieved the best debugging outcome. Although they needed some assistance, their

efforts resulted in the correct outcome and generated further curiosity around debugging

techniques.

Despite the limitations detailed above, these findings have important implications

for future research and teaching. The findings suggest that providing students with

explicit debugging instruction has the potential to both pique their interest in debugging

and give them the tools they need to be successful. However, further research is

needed to explore how to ensure that students internalize both the need for and the use

of these strategies, to improve not only their debugging but also their programming as

well. It is hoped that these findings provide a solid foundation for this work, so that more

students can view debugging as a challenge to overcome rather than lava to be avoided.

138

References

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging
among novice computer science students. Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science
Education, 84–88. https://doi.org/10.1145/1067445.1067472

Allwood, C. M., & Björhag, C.-G. (1990). Novices’ debugging when programming in
Pascal. International Journal of Man-Machine Studies, 33(6), 707–724.
https://doi.org/10.1016/S0020-7373(05)80070-7

Araki, K., Furukawa, Z., & Cheng, J. (1991). A general framework for debugging. IEEE
Software, 8(3), 14–20. https://doi.org/10.1109/52.88939

Boies, S. J., & Gould, J. D. (1974). Syntactic Errors in Computer Programming. Human
Factors, 16(3), 253–257. https://doi.org/10.1177/001872087401600307

Bonar, J. (1985). Understanding the Bugs of Novice Programmers (COINS Technical
Report 85–12; p. 81). University of Massachusetts.

Böttcher, A., Thurner, V., Schlierkamp, K., & Zehetmeier, D. (2016). Debugging
students’ debugging process. 2016 IEEE Frontiers in Education Conference
(FIE), 1–7. https://doi.org/10.1109/FIE.2016.7757447

Bowles, M. A. (2010). The Think-Aloud Controversy in Second Language Research.
Routledge. https://doi.org/10.4324/9780203856338

Brooks, R. E. (1980). Studying programmer behavior experimentally: The problems of
proper methodology. Communications of the ACM, 23(4), 207–213.
https://doi.org/10.1145/358841.358847

Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4(4), 379–426.
https://doi.org/10.1016/S0364-0213(80)80010-3

Carver, S. M. (1986). Transfer of LOGO Debugging Skill: Analysis, Instruction, and
Assessment [Doctoral Dissertation, Carnegie-Mellon University].
https://eric.ed.gov/?id=ED284678

Carver, S. M., & Klahr, D. (1986). Assessing children’s LOGO debugging skills with a
formal model. Journal of Educational Computing Research, 2(4), 487–525.
https://doi.org/10.2190/KRD4-YNHH-X283-3P

Carver, S. M., & Risinger, S. C. (1987). Improving children’s debugging skills. In
Empirical studies of programmers: Second workshop (pp. 141–171).
https://dl.acm.org/doi/abs/10.5555/54968.54978

139

Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative
analysis. Sage Publications.

Chiu, I., & Shu, L. H. (2011). Potential Limitations of Verbal Protocols in Design
Experiments. 287–296. https://doi.org/10.1115/DETC2010-28675

Chmiel, R., & Loui, M. C. (2003). An integrated approach to instruction in debugging
computer programs. 33rd Annual Frontiers in Education, 2003. FIE 2003., 3,
S4C-1. https://doi.org/10.1109/FIE.2003.1266016

Chmiel, R., & Loui, M. C. (2004). Debugging: From Novice to Expert. ACM SIGCSE
Bulletin, 36(1), 17–21. https://doi.org/10.1145/1028174.971310

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement, 20(1), 37–46.
https://doi.org/10.1177/001316446002000104

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some empirical results for neo-
Piagetian reasoning in novice programmers and the relationship to code
explanation questions. Proceedings of the Fourteenth Australasian Computing
Education Conference, 123, 77–86.
https://dl.acm.org/doi/10.5555/2483716.2483726

D’souza, R., Bhayana, M., Ahmadzadeh, M., & Harrington, B. (2019). A Mixed-Methods
Study of Novice Programmer Interaction with Python Error Messages.
Proceedings of the Western Canadian Conference on Computing Education, 1–
2. https://doi.org/10.1145/3314994.3325090

Dweck, C. S., & Elliott, E. S. (1983). Achievement Motivation. In Handbook of child
psychology: Social and personality development. (pp. 643–691). Wiley.

Ericsson, K. A., & Simon, H. A. (1980). Verbal Report as Data. Psychological Review,
87(3), 215–251. https://doi.org/10.1037/0033-295X.87.3.215

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data
(Revised Edition). The MIT Press.

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1969). Programming-
Languages as a Conceptual Framework for Teaching Mathematics. Final Report
on the First Fifteen Months of the LOGO Project.
https://eric.ed.gov/?id=ED038034

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., &
Zander, C. (2008). Debugging: Finding, fixing and flailing, a multi-institutional
study of novice debuggers. Computer Science Education, 18(2), 93–116.
https://doi.org/10.1080/08993400802114508

140

Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., & Zander, C. (2010).
Debugging From the Student Perspective. IEEE Transactions on Education,
53(3), 390–396. https://doi.org/10.1109/TE.2009.2025266

Fitzgerald, S., Simon, B., & Thomas, L. (2005). Strategies that students use to trace
code: An analysis based in grounded theory. Proceedings of the First
International Workshop on Computing Education Research, 69–80.
https://doi.org/10.1145/1089786.1089793

Frankish, K. (2010). Dual‐Process and Dual‐System Theories of Reasoning. Philosophy
Compass, 5(10), 914–926. https://doi.org/10.1111/j.1747-9991.2010.00330.x

Gauss, E. J. (1982). The “Wolf Fence” algorithm for debugging. Communications of the
ACM, 25(11), 780. https://doi.org/10.1145/358690.358695

Gilmore, D. J. (1991). Models of debugging. Acta Psychologica, 78, 151–172.
https://doi.org/10.1016/0001-6918(91)90009-O

Gould, J. D. (1975). Some Psychological Evidence on How People Debug Computer
Programs. International Journal of Man-Machine Studies, 7, 151–182.
https://doi.org/10.1016/S0020-7373(75)80005-8

Gould, J. D., & Drongowski, P. (1974). An Exploratory Study of Computer Program
Debugging. Human Factors, 16(3), 258–277.
https://doi.org/10.1177/001872087401600308

Gugerty, L., & Olson, G. M. (1986). Comprehension differences in debugging by skilled
and novice programmers. Empirical Studies of Programmers: First Workshop,
13–27. https://dl.acm.org/doi/abs/10.5555/21842.28883

Hays, D. G., & Singh, A. A. (2011). Qualitative Inquiry in Clinical and Educational
Settings. Guilford Press.

Heilman, R. L., & Ashby, G. P. (1971). Re-evaluation of debugging in the computer
science curriculum. ACM SIGCSE Bulletin, 3(4), 15–18.
https://doi.org/10.1145/382214.382215

Jeffries, R. (1982). A comparison of the debugging behavior of expert and novice
programmers. AERA Annual Meeting, 1–17.

Johnson, M. S. (1982). A software debugging glossary. ACM SIGPLAN Notices, 17(2),
53–70. https://doi.org/10.1145/947902.947908

Kahneman, D. (2013). Thinking, Fast and Slow. Farrar, Straus and Giroux.
https://us.macmillan.com/books/9780374533557/thinkingfastandslow

141

Katz, I. R., & Anderson, J. R. (1987). Debugging: An Analysis of Bug-Location
Strategies. Human–Computer Interaction, 3(4), 351–399.
https://doi.org/10.1207/s15327051hci0304_2

Kessler, C. M., & Anderson, J. R. (1986). A model of novice debugging in LISP.
Empirical Studies of Programmers: First Workshop, 198–212.

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum:
Instruction, learning, and transfer. Cognitive Psychology, 20(3), 362–404.
https://doi.org/10.1016/0010-0285(88)90004-7

Ko, A. J., LaToza, T. D., Hull, S., Ko, E. A., Kwok, W., Quichocho, J., Akkaraju, H., &
Pandit, R. (2019). Teaching Explicit Programming Strategies to Adolescents.
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, 469–475. https://doi.org/10.1145/3287324.3287371

Ko, A. J., & Myers, B. A. (2005). A framework and methodology for studying the causes
of software errors in programming systems. Journal of Visual Languages &
Computing, 16(1), 41–84. https://doi.org/10.1016/j.jvlc.2004.08.003

Kocher, W. (1969). A survey of current debugging concepts (Contractor Report (CR)
NASA-CR-1397; p. 98). NASA.
https://ntrs.nasa.gov/api/citations/19690026235/downloads/19690026235.pdf

Lewis, C. M. (2012). The importance of students’ attention to program state: A case
study of debugging behavior. Proceedings of the Ninth Annual International
Conference on International Computing Education Research, 127–134.
https://doi.org/10.1145/2361276.2361301

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,
R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B., & Thomas, L. (2004). A
multi-national study of reading and tracing skills in novice programmers. ACM
SIGCSE Bulletin, 36(4), 119–150. https://doi.org/10.1145/1041624.1041673

Litecky, C. R., & Davis, G. B. (1976). A study of errors, error-proneness, and error
diagnosis in Cobol. Communications of the ACM, 19(1), 33–38.
https://doi.org/10.1145/359970.359991

Lowe, T. (2019). Debugging: The key to unlocking the mind of a novice programmer?
2019 IEEE Frontiers in Education Conference (FIE), 1–9.
https://doi.org/10.1109/FIE43999.2019.9028699

Lukey, F. J. (1980). Understanding and debugging programs. International Journal of
Man-Machine Studies, 12(2), 189–202. https://doi.org/10.1016/S0020-
7373(80)80017-4

Mathis, R. F. (1974). Teaching debugging. Proceedings of the Fourth SIGCSE Technical
Symposium on Computer Science Education, 59–63.
https://doi.org/10.1145/800183.810443

142

McCartney, R., Eckerdal, A., Moström, J. E., Sanders, K., & Zander, C. (2007).
Successful students’ strategies for getting unstuck. Proceedings of the 12th
Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education, 156–160. https://doi.org/10.1145/1268784.1268831

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., &
Zander, C. (2008). Debugging: A review of the literature from an educational
perspective. Computer Science Education, 18(2), 67–92.
https://doi.org/10.1080/08993400802114581

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students.
Working Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education, 125–180. https://doi.org/10.1145/572133.572137

Merrill, M. D. (2002). First principles of instruction. Educational Technology Research
and Development, 50(3), 43–59. https://doi.org/10.1007/BF02505024

Michaeli, T., & Romeike, R. (2019a). Current Status and Perspectives of Debugging in
the K12 Classroom: A Qualitative Study. 2019 IEEE Global Engineering
Education Conference (EDUCON), 1030–1038.
https://doi.org/10.1109/EDUCON.2019.8725282

Michaeli, T., & Romeike, R. (2019b). Improving Debugging Skills in the Classroom—The
Effects of Teaching a Systematic Debugging Process. Proceedings of the 14th
Workshop in Primary and Secondary Computing Education, 1–7.
https://doi.org/10.1145/3361721.3361724

Miles, Matthew. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook (2nd Edition). SAGE Publications.

Miller, L. A. (1974). Programming by non-programmers. International Journal of Man-
Machine Studies, 6(2), 237–260. https://doi.org/10.1016/S0020-7373(74)80004-0

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C.
(2008). Debugging: The good, the bad, and the quirky -- a qualitative analysis of
novices’ strategies. ACM SIGCSE Bulletin, 40(1), 163–167.
https://doi.org/10.1145/1352322.1352191

Myers, G. J. (1978). A controlled experiment in program testing and code
walkthroughs/inspections. Communications of the ACM, 21(9), 760–768.
https://doi.org/10.1145/359588.359602

Nanja, M. (1988). An Investigation of the On-line Debugging Process of Expert and
Novice Student Programmers [PhD Thesis]. Oregon State University.

143

Nanja, M., & Cook, C. R. (1987). An analysis of the on-line debugging process. In
Empirical Studies of Programmers: Second Workshop (pp. 172–184). Ablex.
https://dl.acm.org/doi/abs/10.5555/54968.54979

Newell, A., & Simon, H. A. (1972). Human problem solving (pp. xiv, 920). Prentice-Hall.

Nisbett, R. E., & Wilson, T. D. (1977). Telling More Than We Can Know: Verbal Reports
on Mental Processes. Psychological Review, 84(3), 231–259.
https://doi.org/10.1037/0033-295X.84.3.231

O’Dell, D. H. (2017). The Debugging Mindset: Understanding the psychology of learning
strategies leads to effective problem-solving skills. Queue, 15(1), 71–90.
https://doi.org/10.1145/3055301.3068754

Papert, S. (1972). Teaching Children Thinking. Programmed Learning and Educational
Technology, 9(5), 245–255. https://doi.org/10.1080/1355800720090503

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Papert, S., & Solomon, C. (1971). Twenty things to do with a computer (Memo A.I.
Memo No. 248; Logo Memo No. 3.). Massachusetts Institute of Technology.
https://dspace.mit.edu/handle/1721.1/5836

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of
Learning in Novice Programmers. Journal of Educational Computing Research,
2(1), 37–55. https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice
programmers. Papers Presented at the First Workshop on Empirical Studies of
Programmers on Empirical Studies of Programmers, 213–229.

Rich, K. M., Strickland, C., Binkowski, T. A., & Franklin, D. (2019). A K-8 Debugging
Learning Trajectory Derived from Research Literature. Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, 745–751.
https://doi.org/10.1145/3287324.3287396

Ripley, G. D., & Druseikis, F. C. (1978). A statistical analysis of syntax errors. Computer
Languages, 3(4), 227–240. https://doi.org/10.1016/0096-0551(78)90041-3

Sheil, B. A. (1981). The Psychological Study of Programming. ACM Computing Surveys
(CSUR), 13(1), 101–120. https://doi.org/10.1145/356835.356840

Shneiderman, B., & McKay, D. (1976). Experimental Investigations of Computer
Program Debugging and Modification. Proceedings of the Human Factors
Society Annual Meeting, 20(24), 557–563.
https://doi.org/10.1177/154193127602002401

144

So, M. H., & Kim, J. M. (2018). An analysis of the difficulties of elementary school
students in Python programming learning. International Journal on Advanced
Science, Engineering and Information Technology, 8(4–2), 1507–1512.
https://doi.org/10.18517/ijaseit.8.4-2.2720

Spohrer, J. C., & Soloway, E. (1986). Analyzing the high frequency bugs in novice
programs. Empirical Studies of Programmers: First Workshop, 230–251.
https://dl.acm.org/doi/abs/10.5555/21842.28897

van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for
complex learning: The 4C/ID-model. Educational Technology Research and
Development, 50(2), 39–61. https://doi.org/10.1007/BF02504993

Vessey, I. (1984). An investigation of the psychological processes underlying the
debugging of computer programs. [Doctoral Dissertation]. University of
Queensland.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies, 23(5), 459–494.
https://doi.org/10.1016/S0020-7373(85)80054-7

Vessey, I. (1986). Expertise in Debugging Computer Programs: An Analysis of the
Content of Verbal Protocols. IEEE Transactions on Systems, Man, and
Cybernetics, 16(5), 621–637. https://doi.org/10.1109/TSMC.1986.289308

Wentworth, P., Elkner, J., Downey, A. B., & Meyers, C. (2012). How to Think Like a
Computer Scientist: Learning with Python 3 (3rd Edition).
https://openbookproject.net/thinkcs/python/english3e/

Wescourt, K. T., & Hemphill, L. (1978). Representing and Teaching Knowledge for
Troubleshooting/Debugging. Technical Report No. 292. Institute for Mathematical
Studies in the Social Sciences, Stanford University.
https://eric.ed.gov/?id=ED152321

Whalley, J., Settle, A., & Luxton-Reilly, A. (2023). A Think-Aloud Study of Novice
Debugging. ACM Transactions on Computing Education, 23(2), 28:1-28:38.
https://doi.org/10.1145/3589004

Youngs, E. A. (1974). Human Errors in Programming. International Journal of Man-
Machine Studies, 6(3), 361–376. https://doi.org/10.1016/S0020-7373(74)80027-1

145

Appendix A.

Code Book

Fall 2022 Debugging Study - Coders Manual (Version 4)

The aim of this research project is to investigate the strategies that novice programmers

use while debugging computer programs. To investigate these strategies, participants

were asked to think-aloud while they attempted to debug computer programs and their

statements and actions were recorded. These recording were then transcribed into a

series of short, numbered phrases, which according to Newell & Simon (1972) represent

“a naïve assessment of what constitutes a single take assertion or reference by the

subject” (Vessey, 1984, p. 427). These short phrases then need to be encoded using

the codes and heuristics described in this code book.

How to Encode

To encode a transcribed debugging session, first you will need the session transcription

and a debugging session coder spreadsheet (Figure A1). For each of the lines of the

transcript that contains a debugging action, choose one of the codes from the drop-down

list in column F. If none of the codes available match the action, choose the No-Match

option.

Figure A1. Sample debugging session coder spreadsheet.

146

Coding Heuristics

The following are suggestions to follow when encoding specific situations where the

choice of codes may be ambiguous.

Order of precedence when encountering multiple possible codes:

In situations where multiple codes are applicable, I have, where possible, separated the

transcription lines into multiple distinct lines to support individual coding of individual

situations or actions. However, in situations where it is unclear which of a set of possible

competing codes from a different category to choose, then the following order of

precedence is to be used. Planning codes are chosen over both Bug Repair and

Information Gathering. As well, Bug Repair codes are chosen over Information

Gathering codes.

More simply: Planning > Bug Repair > Information Gathering

Note that Self-Efficacy is not included in the order of precedence above because those

comments are asked and answered separately from the debugging codes.

Common Planning versus Bug Report Situation

The most common situation where a planning code is possible, and a bug report code is

possible is at the end of a debugging session where a student has completed or

abandoned a planned or hypothesized scenario. In this case the student will first need

to verify that their change was successful or not and then verify if they have completed

the task or not. This results in a Bug-Report-Verify (BRV) and either a Planning-

Satisfies-Goal (PSG) or Planning-Cancels-Goal (PCG) depending on the outcome of

their change. The planning codes should be used when the student finishes or

abandons the bug and the verify should be used when they are still working on it.

Order of precedence for the run program rules (BRRP & IGRP).

There are two separate “run-program” codes: Bug-Repair-Run-Program (BRRP) and

Information-Gathering-Run-Program (IGRP). BRRP is only used when the student runs

their program immediately after making a bug repair so they can try to validate the

results. IGRP typically happens at the start of the debugging session when the student

147

wants to see what the program output looks like before attempting any repairs or during

their debugging session when they just want to see the output but have not made any

bug repairs related to this program run.

Coding Categories

The codes are grouped into four coding categories: planning, bug related, information

gathering, and self-efficacy.

Planning (PL)

Planning activities happen when the student states that they are going to focus on a

particular problem or sub-problem (Planning-Set-Goal) or when the student states that

they think something is the problem. Planning is split into three situations: (1) stating an

explicit goal (Planning-Set-Goal), (2) stating a hypothesis (Planning-Hypothesis), or (3)

reaching the end of a goal by achieving the stated goal (Planning-Satisfies-Goal); or

cancelling the goal implicitly or explicitly by abandoning or switching tasks (Planning-

Cancel-Goal).

Name Description

Planning-Set-Goal (PSX) When the student states the start of a goal or a particular end state. For
example, “I’m going to start with the green square” or “Okay, let’s look at
the line thickness.”

Planning-Cancels-Goal
(PCG)

When the student cancels a previous goal either stating it explicitly or
switching implicitly by starting a new task. For example, when they
abandon one idea and instead switch to another target or goal.

Planning-Satisfies-Goal
(PSG)

When the previously set goal (PSX) has been successfully achieved
either implicitly by their actions or stated explicitly by the student. For
example: “That fixed it,” “That got it,” “There it is,” etc.

Planning-Hypothesis (PH) When the student states a hypothesis about a bug and includes possible
code-specific or code-related reasons. For example, "I think this is
happening because they didn't put the code into functions."

Q: When is it PSX vs PH?

A: When in doubt between PH and PSX, PSX needs to be an explicit goal or target while

PH is more an expression that either already is or can be prefaced with “I think.” For

example, if the student says they are going to look at something specifically then that is

probably PSX but when they imply or say they think that something might be the cause

or worth looking into then that is a hypothesis (PH).

148

Bug Related (BR)

Bug-related activities occur when the student is attempting to find, repair, or verify a bug.

Name Description

Bug-Clue-Found (BCF) When the student finds a clue. This code is assigned when the
participant discovers a problem with the program, i.e., that the program
is not performing as it should. The CF code is assigned only once for
each clue (use CS when additional statements, evidence, or references
to this clue are made). BCF is only used when it is made about the code
itself and not about an issue with the output.

Bug-Observation (BO) When the student makes an observation about a bug without providing a
reason or guess. For example, “There is something wrong with the blue
square.”

Bug-Repair-Correct (BRC) When the participant correctly repairs a bug by making a correct change
to the code. Does not include undoing code (see BRU instead).

Bug-Repair-Incorrect (BRI) When the student makes an incorrect change to the program while
attempting to fix a bug.

Bug-Repair-Run-Program
(BRRP)

When the student runs the program after a repair in an effort to verify the
repair.

Bug-Repair-Undo (BRU) When the student undoes a coding line change that they introduced. For
example, if they remove a line they previously added or adds back a line
they previously deleted. As well, if a student restores a line back to a
previous state, for example changing the value of a variable from A to B
and then restoring it back to A.

Bug-Repair-Verify (BRV) When the student compares or verifies their output against the target
output either by stating a comparison or comparison result. For
example, “Now they match” or “Oh what, why is that not the same now?”

Q: When is a change an undo (BRU) rather than a BRC/BRI?

A: BRU is only used when the student restores the code back to its previous state either

using a keyboard shortcut like CTRL-Z or by restoring the previous value. If the student

instead changes the value to a new value, either the correct or incorrect value then it is a

BRC or BRI instead.

149

Information Gathering (IG)

Information gathering refers to activities in which the participant seeks information from

the task materials, i.e., the code, assignment specifications, and program inputs/outputs.

Name Description

Information-Gathering-Code-
Editor-Hint (IGCEH)

Student has acted on or commented on a hint from the code editor. For
example, red underline for errors and grey or yellow highlights or
underlines for warnings. If the student appears to or explicitly states that
they are making a decision because they saw an editor hint and are
acting upon it. For example, “That line has a red error underline, so I’m
going to look at it.”

Information-Gathering-
Compiler-Error-Message
(IGCEM)

When the student reads the compiler error message or runtime error
message in the output window. This only happens after the student has
attempted to run their program and either before the program runs or
during its running it fails and reports an error in the output window in the
form of a traceback compiler error message.

Information-Gathering-
Debug-Output (IGDO)

When the student reads the debug output from a debug print-statement
in the output window. Note that this is only for output from a debug print-
statement that either the student added to the code or that was part of
the original code. Output that is read that is not from a debug print-
statement is covered by IGO instead.

Information-Gathering-Output
(IGO)

When the student reads non-debugging output from the output window.
For example, when the read the output from a print statement that is the
result of running the program, but which is not specifically for debugging
the program. Also, output does not include compiler or runtime error
message, use “IGCEM” for those instead.

Information-Gathering-
Processing (IGP)

When the participant shows evidence of mentally processing or tracing
the program and can include the establishment of a point in processing
from which to commence.

Information-Gathering-Read-
Code (IGRC)

When the student either explicitly reads the code as-is out loud or
implicitly appears to read the program source code by moving their
mouse over and around the source code. Note that reading the code
aloud must mostly match the actual syntax. If the student is instead
reading part of the code but appears to be synthesizing the code values
or flow, then they are processing the code and that should instead be
IGP.

Information-Gathering-Read-
Specification (IGRS)

When the student reads or refers to the program or challenge
specification document for information.

Information-Gathering-Run-
Program (IGRP)

The participant has run the program to see what it does. This is not the
same as running the program to test a code change or to observe
debugging information (BRRP).

150

Self-Efficacy (SE)

Self-efficacy codes occur when the students make a statement about their confidence

related to debugging the code. Student self-efficacy was measured via pre- and post-

session questions about their confidence debugging on a scale from one to seven with

one being the lowest and seven the highest. Following the question of confidence scale,

students were then asked why they felt it went up, down, or stayed the same relative to

their previously reported value.

Name Description

Self-Efficacy-Less-
Confidence (SELC)

When the student makes a comment about something lowering their
debugging confidence. For example, "I'm feeling less confident now."

Self-Efficacy-More-
Confidence (SEMC)

When a student makes a comment about something improving or raising
their debugging confidence. For example, "I feel more confident after
debugging that code."

Self-Efficacy-No-Change
(SENC)

When the student states that their confidence did not change as a result
of the just completed debugging session. For example, "Q: Why no
change to your confidence?", "A: Nothing changed, I still feel the same
level of confidence."

151

Appendix B.

Weekly Challenge Python Code

Week 1 Debugging Session Python Code (Challenges 1-4)

Original URL: https://www.xmodus.com/assets/sfu-study-fall-2022/week1-challenges.txt

Week 1 – Challenge #1 – 2x Syntax Errors

Bugged Version:

1

2

3

4

Challenge #1

age = 1

age = Age + 1

print(a)

Number of bugs: 2

- Line 3: NameError: “Age” is not defined; should be “age”.

- Line 4: NameError: name ‘a’ is not defined; should be “age”.

Corrected Version:

1

2

3

4

Challenge #1

age = 1

age = age + 1

print(age)

Week 1 – Challenge #2 – 1x Syntax Error

Bugged Version:

1

2

3

Challenge #2

name = "Billy"

PRINT(name)

Number of bugs: 1

- Line 3: NameError: name ‘PRINT’ is not defined, should be “print”.

https://www.xmodus.com/assets/sfu-study-fall-2022/week1-challenges.txt

152

Corrected Version:

1

2

3

Challenge #2

name = "Billy"

print(name)

Week 1 – Challenge #3 – 1x Indentation Error

Bugged Version:

1

2

3

4

Challenge #3

age = 6

after_birthday = age + 1

 print(after_birthday)

Number of bugs: 1

- IndentationError: unexpected indent [Line 4]; leading spaces need to be removed.

Corrected Version:

1

2

3

4

Challenge #3

age = 6

after_birthday = age + 1

print(after_birthday)

153

Week 1 – Challenge #4 – 1x Semantic Error

Bugged Version:

1

2

3

4

5

6

Challenge #4

height = 2

height = height + 2

height + 2

at the end, the height should be 6

print(height)

Number of bugs: 1

- Line 4: This statement, “height + 2” does not modify the height and instead is

considered a “null operation”. As a result, height returns four (4) instead of six

(6). This should be “height = height + 2”, like line 3, or the equivalent expression

“height += 2”.

Corrected Version 1:

1

2

3

4

5

6

Challenge #4

height = 2

height = height + 2

height = height + 2

at the end, the height should be 6

print(height)

Corrected Version 2:

1

2

3

4

5

6

Challenge #4

height = 2

height = height + 2

height += 2

at the end, the height should be 6

print(height)

154

Week 4/5 Debugging Sessions Python Code (4x semantic
errors)

Bugged Version:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

3 nested squares - variables and loops (bugged)

from turtle import *

setup(500, 500)

penup()

goto(-50, 50)

pendown()

square_size = 30

pen_size = 3

print("square 1")

pencolor("red")

pensize(pen_size)

for i in range(4):

 x = square_size

 forward(x)

 print("i=", i, "x=", x, "square_size=", square_size)

 right(90)

square_size += 30

print("square 2")

pencolor("green")

pensize(1)

for j in range(4):

 x = -square_size

 forward(x)

 print("j=", j, "x=", x, "square_size=", square_size)

 right(90)

square_size += 30

print("square 3")

pencolor("blue")

pensize(1)

for k in range(1, 4):

 x = square_size

 forward(x)

 print("k=", k, "x=", x, "square_size=", square_size)

 right(90)

done()

Number of bugs: 4

- Line 24: Incorrect value; should be pensize(pen_size).

155

- Line 26: Logic error; should be “x = square_size”

- Line 34: Incorrect value; should be pensize(pen_size).

- Line 35: Off-by-one error; should be “for k in range(4)”, “for k in range(1, 5)”, or

“for k in range(0, 4)”.

Corrected Version:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

3 nested squares - variables and loops (bugged)

from turtle import *

setup(500, 500)

penup()

goto(-50, 50)

pendown()

square_size = 30

pen_size = 3

print("square 1")

pencolor("red")

pensize(pen_size)

for i in range(4):

 x = square_size

 forward(x)

 print("i=", i, "x=", x, "square_size=", square_size)

 right(90)

square_size += 30

print("square 2")

pencolor("green")

pensize(pen_size)

for j in range(4):

 x = square_size

 forward(x)

 print("j=", j, "x=", x, "square_size=", square_size)

 right(90)

square_size += 30

print("square 3")

pencolor("blue")

pensize(pen_size)

for k in range(4):

 x = square_size

 forward(x)

 print("k=", k, "x=", x, "square_size=", square_size)

 right(90)

done()

156

Week 7/8 Debugging Sessions Python Code (2x logic errors)

Bugged Version:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

week7_challenge.py

this script should draw a series of nested diamonds, in

the sequence: green smallest, red middle, blue biggest

from turtle import *

setup(800, 600)

colours = ["red", "green", "blue"]

def square(size):

 for i in range(4):

 forward(size)

 right(90)

def is_even(n):

 if n % 2 == 0:

 return False

 else:

 return True

reposition

penup()

goto(-100, 0)

pendown()

start drawing

pencolor("black")

pensize(2)

left(45)

for s in range(5, 0, -1):

 # get the color

 if is_even(s):

 fc = "white"

 else:

 fc = colours[s % 3]

 # some debugging print statements

 # print("s", s)

 # print("s % 3", s, s % 3)

 # print("is_even", s, is_even(s))

 # print("fc", fc)

 # draw the square

 # pencolor(fc)

 fillcolor(fc)

157

46

47

48

49

50

51

52

 begin_fill()

 square(s * 30)

 end_fill()

hideturtle()

done()

Number of bugs: 2

- The “is_even” function returns True when the number if odd and False when the

number is even. This is because Line 14 should be “if n % 2 == 1”, not “if n % 2

== 0”. Alternatively, the return values on lines 15 & 17 could be swapped so that

is_even returns the correct True for even number and False for odd numbers.

Although the is_even() function should be corrected, an alternative would be to

negate the return value for the function on line 32, changing it to “if not

is_even(s)” or swapping the order of the if-statement lines 33 and 35 to

accomplish the same result.

- Line 44 should be uncommented so that the outline lines for the squares are the

same color as the fill color rather than the default black.

Corrected Version:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

week7_challenge.py

this script should draw a series of nested diamonds, in

the sequence: green smallest, red middle, blue biggest

from turtle import *

setup(800, 600)

colours = ["red", "green", "blue"]

def square(size):

 for i in range(4):

 forward(size)

 right(90)

def is_even(n):

 if n % 2 == 1:

 return False

 else:

 return True

reposition

penup()

goto(-100, 0)

158

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

pendown()

start drawing

pencolor("black")

pensize(2)

left(45)

for s in range(5, 0, -1):

 # get the color

 if is_even(s):

 fc = "white"

 else:

 fc = colours[s % 3]

 # some debugging print statements

 # print("s", s)

 # print("s % 3", s, s % 3)

 # print("is_even", s, is_even(s))

 # print("fc", fc)

 # draw the square

 pencolor(fc)

 fillcolor(fc)

 begin_fill()

 square(s * 30)

 end_fill()

hideturtle()

done()

159

Appendix C.

Student Debug Output Progression (Week 7/8)

The following are the graphical outputs that resulted when the students ran the

Week 7/8 debugging challenge. These are ordered by the sequence students

participated in the challenge, i.e., Oscar was the first student, then Lucas, etc. The

times below each image are relative to the previous run time or the start of the session

for the first image. This is meant to show how long students took between each run of

the program.

Oscar (S7) – 3 runs – Total time: 8:01 (unsuccessful).

4:06 1:22 2:00

Lucas (S5) – 17 runs – Total time: 10:20 (unsuccessful).

1:17 0:21 0:45 0:27 0:47 0:52 0:18 0:22 1:02

0:36 0:23 1:11 0:16 0:26 0:26 0:29 0:12

160

Brian (S1) – 5 runs – Total time: 9:57 (successful).

0:00 1:59 0:20 1:31 5:14

Peter (S8) – 4 runs – Total time: 3:20 (successful).

0:42 1:10 0:16 0:54

Mark (S6) – 21 runs – Total time: 27:40 (successful).

0:06 4:04 0:28 0:44 1:13 1:53 1:32 0:43 0:04

2:07 0:57 1:54 0:24 0:45 2:38 1:33 0:29 3:08

0:37 1:40 0:23

161

George (S3) – 12 runs – Total time: 19:33 (successful).

0:00 0:36 2:41 0:38 1:31 0:29 0:16 0:18 1:06

2:51 0:38 2:10 0:44 2:51 0:13

162

Appendix D.

Debugging Session Episodes

Weeks 4/5

Figure D1. Week 4/5 Debugging Session Episode Colors Legend and Bugs List

163

Figure D2. Week 4/5 – Brian’s debugging session episodes.

164

Figure D3. Week 4/5 – Carl’s debugging session episodes.

165

Figure D4. Week 4/5 – George’s debugging session episodes.

166

Figure D5. Week 4/5 – Jason’s debugging session episodes.

167

Figure D6. Week 4/5 – Lucas’ debugging session episodes.

168

Figure D7. Week 4/5 – Mark’s debugging session episodes.

169

Figure D8. Week 4/5 – Oscar’s debugging session episodes.

170

Figure D9. Week 4/5 – Peter’s debugging session episodes.

171

Figure D10. Week 4/5 – Walter’s debugging session episodes.

172

Weeks 7/8

Figure D11. Week 7/8 Debugging Session Episode Colors Legend and Bugs List

173

Figure D12. Week 7/8 – Brian’s debugging session episodes.

174

Figure D13a. Week 7/8 – George’s debugging session episodes (1 of 2).

175

Figure D13b. Week 7/8 – George’s debugging session episodes (2 of 2).

176

Figure D14a. Week 7/8 – Lucas’ debugging session episodes (1 of 2).

177

Figure D14b. Week 7/8 – Lucas’ debugging session episodes (2 of 2).

178

Figure D15a. Week 7/8 – Mark’s debugging session episodes (1 of 2).

179

Figure D15b. Week 7/8 – Mark’s debugging session episodes (2 of 2).

180

Figure D16. Week 7/8 – Oscar’s debugging session episodes.

181

Figure D17. Week 7/8 – Peter’s debugging session episodes.

182

Appendix E.

Recruitment Web Page

SFU Research Study (Fall 2022)
2022-10-03

RE: Research study parental consent request.

Name of study: The code is lava: Improving children's debugging skills with explicit

instruction.

SFU ORE Protocol: 30001083

Study Dates: Wednesdays 3:30 PM - 5:30 PM: Oct 19, 26; Nov 2, 9, 16, 23, 30; Dec 7

Cost: None, free

Dear Parent or Guardian,

My name is Chris Kerslake, and for the past 7 years I have been teaching computer
science and computer programming to students in Vancouver via after-school programs.
During this time, I have observed a lack of student know-how and even an avoidance
when it comes to debugging or fixing their code. As a result, I am undertaking a research
project as part of my graduate studies at Simon Fraser University (SFU) to look into how
students approach debugging and whether teaching them a step-by-step debugging
process is beneficial. This letter provides details about the study should you and your
child be interested in participating in this study.

Research Project Structure:
This research project will consist of an 8-week Python programming course where
students will learn how to create 2D graphics and images. The individual sessions will be
2-hours in length, will be conducted online via Zoom, and will be provided at no cost.
During each session, students will first learn and practice a programming technique and
then will be given exercises related to programming and debugging to complete. During
some of these debugging exercises, students will be asked to join a breakout room
individually or in pairs to describe a given problem in detail. In these breakout rooms
students will be asked questions about the problem and then asked to talk through how
they are trying to solve the problem, a process called thinking aloud. These lessons and
breakout sessions will be recorded so that I can analyze them for patterns as part of the
research study.

Student Protection and Privacy:
Student protection and privacy are paramount during this study. As a result, students
can withdraw from the study at any time and for any reason. As well, all collected
information will be anonymized and the video recordings will be transcribed and then
destroyed at the end of the research project. Further, student names will not be used in
any reporting and all research data will be stored securely and will only be available to
Chris Kerslake and his supervisor, Dr. Kevin O'Neill.

183

How to join the study:
If you wish to participate in the study and agree to allow us to collect and use the
information described, please complete both the attached Parent Guardian Informed
Consent for Minors form and Student Informed Assent for Minors form and return them
to Chris Kerslake.

Thank-you for taking the time to read this letter. We appreciate your time and
cooperation.

Contact Details:
Chris Kerslake
Graduate Student
Faculty of Education
Simon Fraser University

Dr. Kevin O'Neill
Associate Professor
Faculty of Education
Simon Fraser University

184

Appendix F.

Parent Consent form

Figure F1. Parent/Guardian Informed Consent for Minors form (page 1 of 3).

185

Figure F2. Parent/Guardian Informed Consent for Minors form (page 2 of 3).

186

Figure F3. Parent/Guardian Informed Consent for Minors form (page 3 of 3).

187

Appendix G.

Student Assent form

Figure G1. Student Informed Assent for Minors form (page 1 of 2).

188

Figure G2. Student Informed Assent for Minors form (page 2 of 2).

