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Abstract

We demonstrate that Hadamard matrices and their generalizations can be used to prove
the Kochen–Specker (KS) theorem. In particular, we prove that large classes of classical
and generalized Hadamard matrices can be used to construct so-called KS pairs, which
provide such proofs. We construct an infinite family of KS pairs by showing that for any
odd prime p, there exists a KS pair in C2p using p4 vectors and p3 orthogonal bases. Each
of these pairs is shown to correspond to a 1-factorization of the complete graph K2p. We
explore various computational approaches to the search for new KS pairs. We develop an
integer linear programming approach for testing whether an arbitrary set of vectors and
bases forms a KS pair, which we use to simplify some existing KS pairs.

Keywords: Kochen–Specker theorem, Hadamard matrix, difference matrix, Butson Had-
amard matrix, generalized Hadamard matrix, quantum information, contextuality, quantum
computing, integer linear programming
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Chapter 1

Introduction

The main objective of this thesis is to expand upon and develop new techniques for us-
ing Hadamard matrices and their generalizations to construct Kochen–Specker (KS) pairs.
These pairs are important to the fields of quantum mechanical foundations and quantum
information where they are used to prove the famous Kochen–Specker theorem of 1967 [20],
which establishes the impossibility of a non-contextual hidden variable model of quantum
mechanics. The existence of such a pair was shown in the original paper by Simon Kochen
and Ernst Specker, and subsequent efforts have focused in two overlapping directions.

The first direction focuses on finding the minimum size of a KS pair, where size typically
refers to either or both of the number of vectors and number of bases, and depends on the
vector space in general. Minimization of KS pairs has been well-explored in previous decades;
while the original KS paper used 127 vectors in R3, considerable simplifications came in
the 1990s from authors such as Mermin [29], Peres [31], Kernaghan [18], and Cabello [9].
Research along these lines has continued such that the smallest known 3-dimensional real
KS pair consists of 31 vectors, a 2006 result of John Conway and Kochen reported in [32].
There are lower bounds on the possible sizes of KS pairs in R3; namely, [1] demonstrates
there are no such KS pairs of size smaller than 18, and [24] establishes via an exhaustive
search that there are none using fewer than 23 vectors. The second direction of research
focuses on developing new connections and techniques related to the KS theorem from other
areas of mathematics. For example, a connection between specific Hadamard matrices and
KS pairs was explored by Petr Lisoněk in 2019 [25].

In line with this second direction, the goal of the research presented in this thesis is
to study this connection to Hadamard matrices to better understand a method for gener-
ating KS pairs which was published in a 2022 paper of Waegell and Aravind [38]. It was
hypothesized by Lisoněk that the fundamental mechanism of their method could be ex-
plained in more generality by the previously known connection between the KS theorem
and Hadamard matrices [25], and therefore that these matrices could be a bountiful source
of KS pairs. The computer-free aspects of this thesis serve to confirm this proposed ap-
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proach, expand upon it, find significant simplifications and generalizations, and establish
connections to other areas such as graph theory.

1.1 Outline

We begin with Section 1.2, where we provide some historical exposition to help motivate and
build context for contemporary research in the study of KS pairs and quantum contextuality.
The remainder of Chapter 1 comprises an introduction to some necessary mathematical
background, including the definitions for the various generalizations of Hadamard matrices
we make use of, and an introduction to the specific mathematical formulation of the KS
theorem used in this thesis.

In Chapter 2, we present the computer-free results of the research. Starting with Sec-
tion 2.2, we prove a new result that any generalized Hadamard matrix, subject to some
restrictions on the order, can be used to construct a KS pair. This construction uses the
entire row space of a generalized Hadamard matrix; similar constructions using subspaces of
the row space are also possible, which is explored in Section 2.3. In Section 2.4, we produce
an infinite family of KS pairs in C2p for any odd prime p, using a family of generalized
Hadamard matrices given by Dieter Jungnickel in 1979 [17]. We finish Section 2.4 by prov-
ing that each KS pair in the infinite family corresponds to a 1-factorization of the complete
graph K2p in a natural way.

In Chapter 3, we detail the significant computational element that was involved in
this thesis, and explore different computational lenses through which one might search for
KS pairs. We begin with Section 3.1.1, where we detail the computational machinery we
developed to investigate the creation of new KS pairs. In particular, we develop an integer
linear program (ILP) with which we are able to test whether any set of vectors can be
used to prove the KS theorem. We present the data for several families of KS pairs we
produce via this method. In Section 3.2, we present an alternative computational approach
using graph theory. In Section 3.3, we use our ILP to computationally explore small integer-
valued KS pairs in R3. In Section 3.3.1, we explore a method for creating such KS pairs
as outlined by Cortez and Reyes [11]. We provide a slight simplification of the explicit KS
pair they constructed, and apply our ILP broadly to attempt to construct similar pairs.
In Section 3.3.2, we implement a computational approach which searches for integer-valued
KS pairs in R3 by considering their potential automorphism groups.

We finish in Chapter 4 with a brief summary of some remaining questions and future
research directions, as well as give some additional computational approaches that could be
further developed.

2



1.2 Historical Background

With the introduction of quantum mechanics in the last century came much scientific debate
surrounding its correct interpretation and its broader philosophical implications. In 1927,
Max Born and Werner Heisenberg of the Niels Bohr Institute in Copenhagen were noted
to have said, “We consider quantum mechanics to be a closed theory, whose fundamental
physical and mathematical assumptions are no longer susceptible of any modification” [3].
Eight years later, Albert Einstein, Boris Podolsky, and Nathan Rosen introduced the so-
called EPR paradox, a thought experiment which argued that Born and Heisenberg were
incorrect about the completeness of quantum mechanical theory [15]. Their argument con-
cluded that quantum theory, as stated by Born and Heisenberg, must be non-local; that
is, they claimed that it must be a feature of Born and Heisenberg’s theory that particles
in some circumstances may be influenced instantaneously at a distance. The EPR paper
posited that this necessarily violated the Heisenberg uncertainty principle, but suggested
that any concerns could be remedied by considering a hidden variable (deterministic) model
of quantum mechanics. A hidden variable model of quantum mechanics is a framework in
which all quantum observables are regarded as possessing their values intrinsically; that is,
it is a framework where we remove any requirement of indeterminacy in the measurement of
quantum entities. This was a viewpoint expressed by Einstein and others in part because of
the philosophical implications of its negation, famously summarized in a letter from Einstein
to Born by “I am convinced [God] does not play dice” [14].

Over the following decades, some clarity was provided by various results, namely Bell’s
theorem. In 1964, John Bell proved that any hidden variable model of quantum mechanics
is incompatible with one that is local [4]. Bell argued that if a hidden variable is assumed
to be local, then there are certain mathematical constraints on the correlations among
measurements of entangled particles, known as the Bell inequality. Then, Bell proved that
there are valid physical systems which violate this inequality, showing that any hidden
variable model most be non-local.

Following this, Bell in 1966 [5] and Simon Kochen and Ernst Specker in 1967 [20]
independently showed that any hidden variable model must also be contextual. In this
setting, contextuality refers to the notion that, in general, the results of experiments de-
pend on the specific setting in which they are performed. This result is known as the
(Bell)–Kochen–Specker theorem. Kochen and Specker understood that due to the Heisen-
berg uncertainty principle, there are restrictions on which quantum observables may be
simultaneously measured. Each distinct possibility for simultaneous measurement is known
as a context. Kochen and Specker proved that there exist valid physical configurations of
quantum observables, those which are ostensibly independent of context, such that the mea-
surement outcomes of the observables must actually differ according to the specific context.
This result proved that any hidden variable model must be contextual.
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There is still some debate regarding whether or not a hidden variable model should
be discarded given these results. Notably, while Bell’s theorem shows that a local hidden
variable model is impossible, it does not rule out the possibility of a non-local hidden variable
model. For many, the purpose of Bell’s theorem is to demonstrate non-locality, rather than to
contradict determinacy. Such non-local models include the Bohm interpretation, also known
as de Broglie’s pilot wave theory. Similarly, with regard to contextuality, a contextual hidden
variable model remains possible. Contextual models are of interest for many reasons, among
them that it has been noted that contextuality could be a source of advantage in quantum
computing.

1.3 Mathematical Background

In this section, we outline some standards for notation and relevant mathematical back-
ground used throughout this thesis. In particular, we present notational standards for the
mathematical objects originating from linear algebra, give a brief introduction to projective
space, and introduce some terminology from graph theory. Apart from Section 1.3.1, un-
less stated otherwise, all definitions, propositions, and theorems in Section 1.3 are adapted
from outside sources. The particular sources will be mentioned at the beginning of each
subsection.

1.3.1 Linear Algebra, Groups, and Rings

i) All vectors are assumed to be row vectors. For example, if v ∈ R3, then we write:

v = (1, 2, 3) =


1
2
3


⊤

,

where v⊤ denotes the transpose of v. Hence, the inner product of two real vectors
u, v ∈ Rn is given by ⟨u, v⟩ = uv⊤, and the inner product of two complex vectors
u, v ∈ Cn is given by ⟨u, v⟩ = uv∗, where v∗ denotes the conjugate transpose of v.

ii) We denote the set of n× n matrices with entries in a ring R by Matn(R). We denote
the row space of a matrix A by Row(A), and assume throughout that this space is
defined over the same ring as A; for example, if A ∈ Matn(Fq), then Row(A) is a
subspace of an n-dimensional Fq-vector space.

iii) For a positive integer n, we denote the group of integers under addition modulo n
by Zn.

iv) We denote the vector in Zk
n with all entries equal to 1, the all ones vector of length k,

by 1.
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v) We write Fp to refer to the finite field with a prime number of elements p. Similarly,
we write Fq to refer to the finite field with a prime power number of elements q.

vi) When z ∈ C, we denote the complex conjugate of z by z and the modulus of z by |z|.

vii) We write ωn to denote the complex primitive nth root of unity given by exp(2πi/n).

viii) If G is an additive group and K is a normal subgroup of G, we denote the quotient
map by Q : G → G/K, where Q(g) = g +K.

1.3.2 Projective Space

In this section, we briefly introduce projective space and the relevant notation used in this
thesis. If not stated otherwise, all definitions come from Cox, Little, O’Shea [12].

Definition 1.3.1. Given an n-dimensional vector space V over a field K, the projective
space of V , denoted P(V ) or KPn−1, is the set of equivalence classes of (V \{0})/ ∼, where
for any two v, w ∈ V \ {0}, the equivalence is given by v ∼ w if and only if v = λw for
some λ ∈ K \ {0}.

Given a basis for V , if v = (v1, v2, . . . , vn) ∈ V , then we write the equivalence class of
v in P(V ) as [v1 : v2 : · · · : vn], which can equivalently be represented by [λv1 : λv2 : · · · : λvn]
for any λ ∈ K \ {0}. An element of P(V ) is called a projective point.

Given this definition, it is natural to think of KPn−1 geometrically as the space of lines
through the origin in Kn, and indeed these are in one-to-one correspondence.

Example 1.3.2. The space RP1 is given by equivalence classes [x1 : x2]. For any element
of RP1 with x1 nonzero, we may rewrite the class as [1 : x2/x1]; if x1 = 0, then x2 must be
nonzero, so we may rewrite this class as [0 : 1]. Therefore, the elements of RP1 are given
exactly by [0 : 1] and [1 : m], for each m ∈ K. These correspond to the vertical line though
the origin and the line of slope m through the origin, respectively.

1.3.3 Graph Theory

In this section, we introduce some graph theoretical notation used in this thesis, mainly in
Sections 2.4 and 3.2. Unless stated otherwise, all definitions in this section come from van
Lint and Wilson [37]. We assume throughout that all graphs are simple and undirected.

Definition 1.3.3. Let G = (V,E) be a graph, and let S ⊆ V . If for any pair of distinct
vertices u, v ∈ S we have {u, v} ̸∈ E, then S is an independent set of G. If S is not
contained in any larger independent set of G, we say S is maximal. The size of the largest
independent set of G is called the independence number of G, denoted α(G).

Definition 1.3.4. Let G = (V,E) be a graph, and let k be a positive integer. A k-factor of
G is a spanning k-regular subgraph of G (not necessarily connected). A k-factorization of
G is an edge partition of G into disjoint k-factors.
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Example 1.3.5. The possible 1-factors of K4 are given by

−→

Figure 1.1: All possible 1-factors of K4

Observe that these 1-factors give the parts of a 1-factorization for K4.

1.4 Background on Hadamard Matrices and their General-
izations

In this section, we provide background information regarding Hadamard matrices and some
of their generalizations. These matrices are of particular importance to this thesis, because
they are starting objects of the novel approach for generating KS pairs presented in Chap-
ters 2 and 3.

If not stated otherwise, any definitions, theorems, and proofs in this section come from
van Lint and Wilson [37], Jungnickel [17] or Lampio [21].

1.4.1 Classical Hadamard Matrices

A (classical) Hadamard matrix of order n, named after French mathematician Jacques
Hadamard, is an n × n matrix whose entries consist of +1 and −1, satisfying HH⊤ = nI,
or equivalently whose distinct rows are pairwise orthogonal. Matrices of this type were first
considered by James Sylvester in 1867 [34], 26 years before Hadamard in 1893 [16]. An
interesting note is that Sylvester is also credited with having coined the term “matrix”,
among several other terms such as “graph” and “discriminant”.

Hadamard matrices satisfy several other properties, among them that for any Hadamard
matrix H of order n, we have H⊤H = nI and det(H) = ±nn/2. This first property can be
used to equivalently define Hadamard matrices as matrices whose entries consist of ±1 and
whose distinct columns are pairwise orthogonal. Another property is that any two distinct
rows of a Hadamard matrix have matching entries in exactly half of their columns, and
likewise, and two distinct columns have matching entries in exactly half of their rows.

Example 1.4.1. Some small Hadamard matrices with n = 1, 2, 4 are given by

H1 =
[
1
]
, H2 =

[
1 1
1 −1

]
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
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We also define a notion of equivalence for Hadamard matrices:

Definition 1.4.2. Let H,H ′ be Hadamard matrices of the same order. We call H monomial
equivalent to H ′ if H ′ can be obtained from H by applying a sequence of row permutations,
column permutations, and multiplications of a row or of a column by ±1.

Definition 1.4.3. A Hadamard matrix H is normalized if the first row and first column of
H contain only +1.

Note 1.4.4. Specifying that the first row and column contain only +1 is only a convention.
If the rows and columns of H are not indexed by positive integers, we say H is normalized
if there exists a row and column of H containing only +1.

Given this definition, it follows that through a sequence of multiplying rows and columns
by ±1, we have the following proposition:

Proposition 1.4.5. Every Hadamard matrix is monomial equivalent to a normalized Hada-
mard matrix.

Proposition 1.4.6 (van Lint, Wilson [37, Theorem 18.4]). If H and H ′ are Hadamard
matrices of respective order n and m, then the matrix given by the Kronecker product H⊗H ′

is a Hadamard matrix of order nm.

In particular, if we take H2 to be as in Example 1.4.1, then for any other Hadamard
matrix H, we have

H2 ⊗H =
[
H H

H −H

]
,

which by Proposition 1.4.6 gives a Hadamard matrix of order 2n. Therefore, for n ∈ Z>0,
we can recursively construct a Hadamard matrix of order 2n via H2n = H2 ⊗H2n−1 , where
H2 and H1 are as in Example 1.4.1. This is referred to as the Sylvester construction for
order 2n Hadamard matrices.

The Sylvester matrices do not constitute all Hadamard matrices, however. A necessary
condition on the order n of a Hadamard matrix is that n must be 1, 2, or a multiple of 4:

Theorem 1.4.7 (van Lint, Wilson [37, Theorem 18.1]). If H is a Hadamard matrix of
order n, then n = 1, 2 or n ≡ 0 (mod 4).

That the converse of the above holds is known as the Hadamard conjecture, which is
as of yet unresolved. As of the writing of this thesis, the smallest number n for which the
existence of a Hadamard matrix of order n is unknown is n = 668.

There exist several constructions for Hadamard matrices of order not equal to a power
of two. The first such examples came from Jacques Hadamard in his original discussion of
these matrices [16], where he constructed Hadamard matrices of order 12 and 20. Decades
later, in 1933, came the Hadamard matrix construction by Raymond Paley [30], from which
comes the following theorem.
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Theorem 1.4.8 (van Lint, Wilson [37, Theorem 18.5]). Let q be a power of an odd prime.
A Hadamard matrix of order q + 1 exists if q ≡ 3 (mod 4), and a Hadamard matrix of
order 2(q + 1) exists if q ≡ 1 (mod 4).

The proof of this theorem proceeds by giving explicit constructions of Hadamard ma-
trices which meet the outlined criteria. We do not present the construction in this thesis,
but code to generate the matrices is found in Appendix B.6.

1.4.2 Generalizations of Hadamard Matrices

The definition of a classical Hadamard matrix can be generalized in several ways. It is
important to introduce these generalizations, because they allow us to extend the class of
matrices with which we may generate KS pairs by the methods which are introduced in
Chapter 2. One way to generalize classical Hadamard matrices is to ease the requirement
that all entries be ±1, by allowing the entries to take any values along the unit circle in the
complex plane. This is defined in [21] by the following definition.

Definition 1.4.9. A matrix H ∈ Matn(C) is a complex Hadamard matrix of order n if
all entries h of H are such that |h| = 1 and HH∗ = nI, where H∗ denotes the conjugate
transpose of H.

That is, in analogy to the classical case, a complex Hadamard matrix is a matrix H

with entries belonging to the unit circle whose rows are pairwise orthogonal with respect
to the inner product for complex vector spaces; i.e. if v, w are distinct rows of a complex
Hadamard matrix, then vw∗ = 0.

Complex Hadamard matrices retain many other of the properties of classical Hadamard
matrices as well, which are detailed in [21]. The property that the distinct rows of these
matrices are pairwise orthogonal is most important to this thesis, because it is this property
that guarantees the rows of an order n complex Hadamard matrix comprise a basis for Cn.

In contrast to the classical case, it is true that a complex Hadamard matrix of order n
exists for each n ∈ Z>0; for example, we may take the matrix of the n-point discrete Fourier
transform [35].

We also define the complex Hadamard matrices where entries are restricted to powers
of a fixed complex primitive root of unity:

Definition 1.4.10. Let n, q ∈ Z>0. A complex Hadamard matrix H ∈ Matn(C) is of
Butson type BH(n, q) if its entries consist only of integer powers of ωq = exp(2πi/q), i.e.
powers of the same primitive qth root of unity. We also denote the set of all such matrices
by BH(n, q).

Note 1.4.11. It is a competing standard to use the term complex Hadamard matrix to refer
to BH(n, 4) matrices specifically. This is in part because Butson Hadamard matrices predate
complex Hadamard matrices as in Definition 1.4.9.
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Note that classical Hadamard matrices are Butson Hadamard matrices of type BH(n, 2).

Example 1.4.12. The following is an example of a Butson Hadamard matrix of type
BH(n = 6, q = 3): 

1 1 1 1 1 1
1 1 ω3 ω3 ω2

3 ω2
3

1 ω3 1 ω2
3 ω2

3 ω3

1 ω3 ω2
3 1 ω3 ω2

3
1 ω2

3 ω2
3 ω3 1 ω3

1 ω2
3 ω3 ω2

3 ω3 1


.

A separate generalization of Hadamard matrices comes in the form of what are commonly
referred to simply as generalized Hadamard matrices, which were defined by David Drake
in 1979 [13]. These matrices generalize the property of classical Hadamard matrices that
the entries of any two distinct rows are equal in exactly half of their entries. They generalize
this property by allowing the entries to belong to any finite group, and requiring that the
difference between any two distinct rows contains each element of the group a uniform
number of times.

These matrices are important to this thesis, because with Definition 1.4.18, we define
a map which takes each generalized Hadamard matrix to a Butson Hadamard matrix, and
hence an orthogonal basis for Cn.

Definition 1.4.13. Let G be a finite group of order g, and let λ be a positive integer. A
generalized Hadamard matrix is a gλ×gλ matrix H with entries in G such that, for any two
rows Hi and Hj with i ̸= j, the multiset {HjkH

−1
ik : 1 ≤ k ≤ gλ} contains each element of G

exactly λ times. If H is such a matrix, we say that it is of type GH(G, λ), or H ∈ GH(G, λ).

If G is abelian, we usually write HjkH
−1
ik as Hjk −Hik.

Under this definition, for p prime, Butson Hadamard matrices of type BH(n, p) are the
same as those of type GH(Cp, n/p), where

Cp = {ωk
p : 0 ≤ k ≤ p− 1}

under multiplication. In particular, classical Hadamard matrices of order n > 1 are those of
type GH(C2, n/2). However, there exist Butson Hadamard matrices that are not generalized
Hadamard matrices. See the following example:

Example 1.4.14. For q composite, there exist Hadamard matrices of type BH(n, q) that
are not generalized Hadamard matrices. One such matrix is given in [21]:

1 1 1 1
1 1 −1 −1
1 −1 i −i
1 −1 −i i

 .
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This cannot be a generalized Hadamard matrix: its entries belong to a group of order at least
4, but between the second and first rows, only 2 distinct elements appear in the difference,
regardless of the group.

Proposition 1.4.15 (Jungnickel [17, Theorem 2.2]). H ∈ GH(G, λ) if and only if HT ∈
GH(G, λ).

The above proposition gives us that generalized Hadamard matrices also exhibit bal-
anced differences among their distinct columns.

Theorem 1.4.16 ([8, Theorem 3.5], or [13, Theorem 1.4]). Let p be prime. If m and k are
non-negative integers with m ≤ k, then there exists a matrix of type BH(2mpk, p). If k ̸= 0,
then this matrix is of type GH(Cp, 2mpk−1) as well.

An explicit construction for the matrices guaranteed by Theorem 1.4.16 is provided
in [8].

We introduce a map from matrices of type GH(Zn, λ) to matrices of Butson type. First,
we define a map between the vectors that form the rows:

Definition 1.4.17. Let φn : Zk
n → Ck be the map which sends (v1, . . . , vk) ∈ Zk

n to
(ωv1

n , . . . , ω
vk
n ). We likewise define ψn which maps (ωe1

n , . . . , ω
ek
n ) to (e1, . . . , ek) ∈ Zk

n.

We define a map between generalized Hadamard matrices and Hadamard matrices of
Butson type by applying φn to each row individually.

Definition 1.4.18. We define a map Φn : GH(Zn, λ) → BH(λn, n), where for H ∈
GH(Zn, λ), the ith row of Φn(H) is given by applying φn to the ith row of H. Similarly,
we define Ψn : BH(λn, n) → Matλn(Zn) by applying ψn to each row of a Butson Hadamard
matrix.

Example 1.4.19. An example of Φ3 applied to a generalized Hadamard matrix of type
GH(Z3, 1), resulting in a matrix in BH(3, 3):

Φ3




0 0 0
0 2 1
0 1 2


 =


1 1 1
1 ω2

3 ω3

1 ω3 ω2
3

 .
Note 1.4.20. The map Ψn cannot be considered an inverse of Φn for all values of n. The
reason is that for composite n, Butson Hadamard matrices using powers of nth roots of
unity, can achieve pairwise orthogonality among the distinct rows by different means than
uniformity in each element; for example, if n = 6, then because (x6 − 1)/(x − 1) has non-
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trivial divisors over Q, we can have a BH(4, 6) matrix
1 1 1 1
1 1 ω3

6 ω3
6

1 ω3
6 ω6 ω4

6
1 ω3

6 ω4
6 ω6

 ,

because, for example,

1 + 1 + ω3
6 + ω3

6 = 0, 1 + ω3
6 + ω6 + ω4

6 = 0, etc.

Definition 1.4.21. Let k, n ∈ Z>0, and let H ∈ BH(k, n). We call Ψn(H) ∈ Matk(Zn) the
logarithmic form of H.

We also extend the notion of monomial equivalence (Definition 1.4.2) to complex Hada-
mard matrices, and do the same for generalized Hadamard matrices with G = Zn.

Definition 1.4.22. Let H and H ′ be complex Hadamard matrices of the same order. We
say that H is monomial equivalent to H ′ if H ′ can be obtained from H by a finite sequence
of row permutations, column permutations, and multiplications of a row or of a column by
some z ∈ C such that |z| = 1.

Definition 1.4.23. A complex Hadamard matrix H is normalized if there exists a row and
a column of H that contain only 1.

Using the map from GH(Zn, λ) to BH(nλ, n), we induce a notion of monomial equiva-
lence on generalized Hadamard matrices over Zn. The following definition was created for
the purposes of this thesis and is not found elsewhere:

Definition 1.4.24. Let H and H ′ be generalized Hadamard matrices of type GH(Zn, λ).
We say H is monomial equivalent to H ′ if Φn(H) is monomial equivalent to Φn(H ′).

Note 1.4.25. Alternatively, we could have defined that two generalized Hadamard matrices
of type GH(Zn, λ) are monomial equivalent if they differ by row and column permutations,
and adding to any row or column a multiple of the all ones vector.

We also extend the notion of normalization to generalized Hadamard matrices.

Definition 1.4.26. A generalized Hadamard matrix H of type GH(G, λ) is called normal-
ized if the first row and the first column of Hcontain only the identity element of G.

Note 1.4.27. As in the case of classical Hadamard matrices, if the rows and columns are
not indexed by positive integers, we say H is normalized if there exists a row and column
which contain only the identity element of G.

11



Proposition 1.4.28 (Lampio [21]). Every generalized Hadamard matrix is monomial equiv-
alent to a normalized generalized Hadamard matrix of the same type.

The definition of generalized Hadamard matrices (Definition 1.4.13) can be even further
loosened by removing the requirement that the matrices be square. Matrices of this type
are called difference matrices. Of relevance to this thesis, they were studied in a 1979 paper
of Dieter Jungnickel [17] who provided a construction for a family of generalized Hadamard
matrices of order 2q over Fq regarded as a group under addition, for any odd prime power q.

Theorem 1.4.29 (Jungnickel [17, Theorem 2.2]). If q is an odd prime power and n ∈ Fq

is a non-square, then there exists a matrix D of type GH(Fq, 2). Specifically, define the
matrices di = (di

xy), where 1 ≤ i ≤ 4, and x, y ∈ Fq, by

d1
xy = xy − x2

4 d2
xy = xy + n

x2

4

d3
xy = xy − y2 − x2

4 d4
xy =

(
xy − y2 − x2

4

)
/n.

Then,

D =
[
d1 d2

d3 d4

]
.

To summarize the various generalizations of Hadamard matrices mentioned in this sec-
tion, we include an Euler diagram in Appendix A.3, which is a reproduction of a diagram
in [21], where the author also describes the details of the intersections among these collec-
tions of matrices.

1.5 Formulation of the Kochen–Specker Theorem

In physics, the Kochen–Specker theorem states that, in a Hilbert space of dimension 3
or higher, it is impossible to preassign a value to a collection of {0, 1}-valued quantum-
mechanical observables such that this value does not depend on the context in which they
are jointly measured.

Mathematically, we denote a collection of quantum-mechanical observables by projection
operators on a complex inner product space, or equivalently by points in complex projective
space. For readability and simplicity, it is common to denote a collection of these points
by a collection of representative complex vectors in the equivalence class of each projective
point. For example, in [11], the authors define a notion of well-signedness of a vector to
make the choice of representative. A preassignment of values of the vectors in Cn to either
0 or 1 is given by a function from Cn to {0, 1}. In this setting, a context is an orthogonal
basis for Cn, and for each of these bases we may perform a measurement which reveals the
values of each basis element.

12



With this translation to mathematical language in mind, the following is the statement
of the KS theorem, as formulated in [25] and [26]:

Theorem 1.5.1 (Kochen–Specker). Let n ≥ 3. There does not exist a function f : Cn →
{0, 1}, such that for each orthogonal basis B of Cn, we have f(v) = 1 for exactly one vector
v ∈ B.

This theorem was first proved by Kochen and Specker in 1967, but we are nonethe-
less interested in finding new proofs for several reasons: mathematically, we are interested
in finding new approaches which either simplify existing proofs, or establish or demon-
strate deeper connections with various areas of mathematics. In physics, new proofs of this
theorem are desirable for the purpose of using them as blueprints for quantum mechanical
experiments demonstrating quantum contextual phenomenology; for example, in [26], many
potential physical applications motivating the search for new proofs are given.

The condition that each orthogonal basis should possess exactly one vector v such that
f(v) = 1 is ultimately due to the Heisenberg uncertainty principle and other physical
considerations, which require that for any orthogonal basis {v1, . . . , vn} for Cn, we have
that ∑n

i=1 f(vi) = 1, and therefore that exactly one of the vectors evaluates to 1.
A method of proof for the KS theorem is to provide a (finite) collection of nonzero

non-collinear vectors V ⊂ Cn and assume for the sake of contradiction that a function
satisfying the properties of Theorem 1.5.1 does exist. We proceed by considering all of the
orthogonality relations among the vectors of V; that is, we consider:

Definition 1.5.2. Let V ⊂ Cn be a collection of non-collinear nonzero vectors. We define
O(V) to be the set of all maximal subsets of V whose members are pairwise orthogonal;
that is, O(V) is the set of subsets of V whose members are pairwise orthogonal and are not
themselves subsets of any larger subsets of V whose members are pairwise orthogonal. Also,
denote by B(V) ⊆ O(V) the subsets in O(V) which are of size n.

With the aim of proving Theorem 1.5.1 by contradiction, we note that any collection of
n pairwise orthogonal vectors in Cn forms a basis, and therefore if a function f did exist,
then exactly one of them needs to be mapped to 1. Additionally, any smaller collection of
m < n pairwise orthogonal vectors still forms a subset of an orthogonal basis for Cn, so in
this case as well, we require that at most one of them be mapped to 1, as we can still make
deductions using implicitly the bases these pairwise orthogonal vectors are guaranteed to
be part of.

Definition 1.5.3. Let V ⊆ Cn be a collection of non-collinear nonzero vectors. If there
exists a function f : V → {0, 1} such that f(v) = 1 for exactly one element v ∈ B of each
B ∈ B(V), and at most one element v ∈ S for each set S ∈ O(V) \ B(V), then we say V
admits a KS colouring, or is KS colourable.
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Note 1.5.4. We can now rephrase Theorem 1.5.1 as the non-existence of a KS colouring of
Cn for n ≥ 3. The existence of a KS colouring on a finite set of vectors does not constitute
a disproof of the KS theorem. A set of vectors being KS colourable is only enough to say
that they are insufficient to comprise a proof of the KS theorem. This terminology is useful
because when showing the impossibility of a KS colouring, we often need to suppose the
existence of a KS colouring.

Example 1.5.5. Take V = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and S = {V} = O(V). Then, (V, S)
is not a KS pair, because if f((1, 0, 0)) = 1, f((0, 1, 0)) = 0, and f((0, 0, 1)) = 0, then f is
a KS colouring of V because exactly one element of each basis in O(V) is mapped to 1.

Example 1.5.6. To show that the KS theorem does not apply when n = 2, below we provide
a KS colouring for R2. This colouring f : R2 → {0, 1} is defined to be 0 for vectors in
quadrants 1 and 3 (including (0, 1) and (0,−1)), and defined to be 1 for vectors in quadrants
2 and 4 (including (1, 0) and (−1, 0)). We illustrate this colouring with Figure 1.2.

Figure 1.2: KS colouring of R2

This is a KS colouring because each vector (a, b) ∈ R2 belongs to exactly one orthogonal
basis (up to scaling), namely {(a, b), (−b, a)}. These vectors are orthogonal, so each basis
contains one vector coloured 1 and one coloured 0.

Definition 1.5.7. Let V ⊂ Cn be a collection of non-collinear nonzero vectors. If it can be
proved that V does not admit a KS colouring by considering the orthogonality relations in
a subset S ⊆ O(V), then we say (V, S) is a Kochen–Specker (KS) pair.

The logical structure of many historical proofs of the KS theorem, and of the new proofs
provided in this thesis take the following form: let n ≥ 3, and assume f is a KS colouring
for Cn. Then, for all V ⊂ Cn, we must have that f(v) = 1 for exactly one vector v ∈ B,
for each orthogonal basis B ∈ O(V), and f(v) = 1 for at most one vector v ∈ C, for each
non-basis orthogonal set C ∈ O(V). If there exists a subset S ⊆ O(V) for which such a map
is impossible to define, then we have a contradiction, and we call (V, S) a KS pair.

The impossibility usually comes from the fact that each basis must contain exactly one
vector which f maps to 1, and therefore the total number of bases must equal to the sum
of the number of bases each vector mapped to 1 appears in. Therefore, if for example, each
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vector appears in an odd number of bases, but there are an even number of bases, then
there cannot exist a KS colouring on those vectors.

The purpose of using a subset S ⊆ O(V) is that the full collection O(V) may not be
necessary. Likewise, O(V) is only a subset of the set of all subsets of Cn whose members are
pairwise orthogonal. In either case, finding a collection of vectors for which a colouring is
impossible is enough to prove the KS theorem, as we surely cannot colour all vectors if we
cannot colour a subset of them.

This is the method that is employed in the original KS paper [20], as well as in numerous
works since, including [29], [31], [9], [10], [25], [38], and [11]. In these papers, the size of the
KS pair is usually reported as the size of the set V, but some disagreement exists regarding
whether the reported size ought to include any other vectors used implicitly in arguments
which involve O(V)\B(V), which in some cases might result in a significantly larger number
of vectors than those of V. Another consequence of emphasizing only the size of V is that
much of the overall difficulty of a physical realization of these results arises ultimately not
from the number of vectors, but from the number of bases used in the argument. As an
example, the original KS paper used an argument which explicitly involved 117 vectors, but
required 132 contexts.

It is also possible to formulate KS pairs using a basis-first approach, which in some cases
can help to assuage these concerns of counting. In this approach, a contradiction is shown
by providing a collection of orthogonal bases whose constituent vectors are not colourable.
That is, we start with a collection of orthogonal sets, then take the set of all the vectors
which appear in them. To this end, we define:

Definition 1.5.8. Let O be a collection of sets of pairwise orthogonal vectors. We denote
by V(O) the collection of all vectors that appear in at least one set in O.

Often, results following this basis-first approach rely on taking advantage of contradic-
tions which arise from properties of uniformity between the vectors and bases; for example,
if the bases are constructed such that every vector appears in an even number of bases, while
the total number of bases is odd, then a colouring is surely impossible by double counting
the incidences between vectors coloured 1 and the bases. This is often called a parity proof
of the theorem. However, it is not strictly necessary that the contradiction arises as a result
of some even–odd incompatibility, a result demonstrated in Section 2.3. This approach via
bases is the approach used in the paper by Waegell and Aravind [38], as well as in [26]
where a proof is constructed using only 7 contexts; it is also the primary mechanism of the
results in this thesis.
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Chapter 2

Kochen–Specker Pairs via
Generalized Hadamard Matrices

This chapter begins the presentation of the new computer-free results proved in this thesis.
We start with Section 2.1, where we introduce some background motivation for this new

approach, and define some new notation which will be used throughout the remainder of
the thesis.

In Section 2.2, we prove Theorem 2.2.4, with which we demonstrate that a large class of
generalized Hadamard matrices may be used to form KS pairs. In Section 2.3, we formulate a
sufficient condition for when subspaces of the row spaces of generalized Hadamard matrices
can also be used to form KS pairs, and conjecture that this condition might be necessary
as well.

Finally, in Section 2.4, we prove some new results on the rank of the generalized
Hadamard matrices given by Jungnickel’s construction, and use these results to produce
an infinite family of KS pairs of known size.

2.1 Introduction to the Approach

The mechanism of this section was initiated as a generalization of how several KS pairs
were produced in a 2022 paper of Waegell and Aravind [38]. In that paper, it was shown
that some particular objects of classical coding theory (binary and ternary Golay codes)
can be used to construct KS pairs. The key observation leading to the research presented in
this thesis is that the coding theoretical aspect of [38] is not crucial to how its construction
functions. Indeed, it is only the existence of a set of d vectors in Zd

2 which pairwise differ
in half of their entries that underpins the construction. This condition is equivalent to the
balancedness condition found in generalized Hadamard matrices over Z2 of order d, where
the images under φ2 of each of the distinct rows of such a matrix are orthogonal in Cd.
This more fundamental aspect was noted earlier in 2019 by Petr Lisoněk [25], where the
connection to generalized Hadamard matrices first appeared.
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This simpler connection motivated the study of whether any Hadamard matrix might
be a candidate for providing a KS pair in a similar manner as the construction in [38].

Prompted by the role of divisibility in that construction, we began by focusing on
Hadamard matrices of order not a power of 2, starting with order 12 and 20. Initial tests
using these matrices were successful, and generated KS pairs making use of only half the
vectors in [38].

2.1.1 Notation and Outline for the Construction

We begin by introducing some notation for the objects used in all of the new constructions
of KS pairs in this thesis. Recall that the rows of an order d complex Hadamard matrix
are pairwise orthogonal vectors, and therefore form a basis for Cd. Also recall the map Φn

(Definition 1.4.18), with which we may map any generalized Hadamard matrix over Zn to
a Butson Hadamard matrix.

The method we follow in this section is outlined as follows: start with an initial (seed)
generalized Hadamard matrix, and apply to it a sequence of modifications, such that each
of them remains a generalized Hadamard matrix of the same type. This was used, for ex-
ample in [38] and [25]. In our method, we apply the same modifications as in [38], that
is, shifting the seed matrix by a set of suitable vectors. To the resulting collection of gen-
eralized Hadamard matrices, we apply the map Φn to obtain a collection of Butson type
Hadamard matrices, all corresponding to orthogonal bases of Cd. After noting symmetries
in the structure of these bases guaranteed by their construction, we prove that they (and
their constituent vectors) form a KS pair.

Definition 2.1.1. Let H be a generalized Hadamard matrix of type GH(Zn, λ) for n ∈ Z>0

with rows {h1, . . . , hnλ}, and let S be a subset of Znλ
n . For each s ∈ S, the s-prebasis of H,

denoted by PB(H, s), is given by the sequence

PB(H, s) = (hi + s)nλ
i=1.

The set of all s-prebases of H, denoted PB(H,S), is given by

PB(H,S) = {PB(H, s) : s ∈ S}.

Additionally, denoting the additive identity element of Znλ
n by 0, we call PB(H, 0) the seed

prebasis of H.

Note that the vectors in PB(H, 0) are simply the rows of the matrix H. We call these
sets “prebases” because their images under φn always form ordered orthogonal bases for
Cnλ, which we prove in Lemma 2.2.1. First, we define some additional notation:
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Definition 2.1.2. Let PB(H,S) be the S-prebases of a generalized Hadamard matrix H

over Zp. For each prebasis PB(H, s), denote the ordered basis generated by PB(H, s) by

B(H, s) = (φp(ui))nλ
i=1, where ui = PB(H, s)i,

and denote the set of all ordered bases generated by PB(H,S) by

B(H,S) = {B(H, s) : s ∈ S}.

Note 2.1.3. We define the elements of PB(H, S) and B(H, S) to be sequences and ordered
bases, respectively, only for the purposes of the proofs of the theorems presented in the
remaining sections of this chapter. The specific ordering given by the rows of the matrix
is not critical, and if the rows of the given matrix are unordered, one should be assigned
arbitrarily for the purpose of the above definitions.

Note 2.1.4. Especially in the case of H ∈ GH(Z2, λ), the resulting complex orthogonal
bases could also be viewed as real orthogonal bases, and indeed, the complex KS pairs which
result from these matrices in Sections 2.2 and 2.3 could also be understood as real KS pairs.

2.2 Constructions using the Entire Row Space

In this section, we prove Theorem 2.2.4, which is a new result of this thesis, showing that
each generalized Hadamard matrix H over Zp with parameter λ which does not divide pr−1,
where r is the rank of H, may be used to construct a KS pair by considering the prebases
of the matrix given by its row space. First, we prove some supporting lemmas:

Lemma 2.2.1. Let p be a prime, and let H be a generalized Hadamard matrix of type
GH(Zp, λ). Then, for each v ∈ Zpλ

p , B(H, v) is an orthogonal basis for Cpλ.

Proof. Since PB(H, 0) is the set containing the rows of H, and the rows of Φp(H) ∈
BH(pλ, p) are pairwise orthogonal, we have that B(H, 0) is an orthogonal basis for Cpλ.

For each v ∈ Zpλ
p , and every distinct pair u,w in PB(H, 0) we have that

(u+ v) − (w + v) = u− w + v − v = u− w.

Then, since u,w are rows of H ∈ GH(Zp, λ), we must have that (u+v)−(w+v) = u−w

contains each element of Zp exactly λ times, and therefore that φp(u + v)φp(w + v)∗ = 0.
Since u and w were chosen arbitrarily, we must have that B(H, v) is an orthogonal basis
for Cpλ.

We will also need the following in order to prove Theorem 2.2.4.

Lemma 2.2.2. Let H ∈ GH(Zp, λ), then (1)–(3) are equivalent, and imply (4):
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1. There exist distinct v1, v2 ∈ Row(H) such that their images under φp represent the
same projective equivalence class.

2. 1 ∈ Row(H).

3. There exist distinct v1, v2, . . . , vp ∈ Row(H) such that their images under φp represent
the same projective equivalence class.

4. H is not normalized.

Proof. (3 ⇒ 1) This is immediate, as p ≥ 2.
(1 ⇒ 2 ⇒ 3) Let n = pλ. If v1 and v2 correspond to the same point in CPn−1, then we
must have that for some λ ∈ C

φp((v11, v12, . . . , v1n)) = λφp((v21, v22, . . . , v2n)),

and hence that for all 1 ≤ i ≤ n, φp(v1i) = λφp(v2i), so ωv1i
p = λωv2i

p , which implies λ = ωa
p

for some 0 ≤ a ≤ p. Therefore, we must have that v1 = v2 + a1 for some a ∈ Zp. The
previous implications all work in the opposite direction as well, so two vectors of Row(H)
correspond to the same point in CPn−1 if and only if the vectors differ by a multiple of the
all-ones vector. If v and v + a1 are both in Row(H), then their difference v + a1 − v = a1
is also in Row(H), and therefore a−1a1 = 1 ∈ Row(H) as well. If the all ones vector is in
Row(H), then for all v ∈ Row(H), we must have that v + a1 ∈ Row(H) for all a ∈ Zp,
and since this was shown to be equivalent to the existence of two rows corresponding to
the same point, we have these all correspond to the same point, and thus there is a p-to-1
relationship between the vectors of Row(H) and the set of corresponding points in CPn−1.
(¬4 ⇒ ¬2) If H is normalized, then its first column and first row contain only 0. Thus, the
row span of H can never contain any vector with a nonzero first entry, and in particular
cannot contain the all ones vector. Thus, we have shown (1) ⇐⇒ (2) ⇐⇒ (3) ⇒ (4).

Example 2.2.3. A non-normalized Hadamard matrix need not contain the all ones vector
in its row space. For example, the below matrix of type GH(Z2, 2) does not contain the all
ones vector in its row space. 

1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 0

 .
We now prove the main result of this section:

Theorem 2.2.4. Let p be a prime, let H ∈ GH(Zp, λ) be a generalized Hadamard matrix
over Zp for a positive integer λ such that λ does not divide pr−1, where r = rank(H). There
exists a KS pair in Cλp with at most pr vectors and pr bases. If H is normalized, then the
resulting KS pair comprises exactly pr vectors and pr bases.
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Proof of Theorem 2.2.4. Let V = Row(H) be the r-dimensional row space of H. The space
V contains pr vectors which correspond to pr vectors in Cpλ under φp. Now, consider
PB(H,V ), the set of V -prebases of H, which we know is of size pr. We will show that a KS
colouring cannot exist, because |PB(H,V )| is not divisible by the number of prebases each
vector of the row space appears in.

For each v ∈ V and for each vector u appearing in PB(H, 0), we may write v as v =
u + (v − u). We know that both v and u are elements of V , and therefore v appears in
PB(H, v−u), for each vector appearing in PB(H, 0). Each of the prebases must be distinct,
as each vector in PB(H, 0) must be distinct. We know that |PB(H, 0)| = pλ, so we have
shown that each v appears in at least λp distinct prebases. It cannot occur in any other
prebasis. If it did, we would necessarily have that v = u + w and v = u + t for some u
appearing in PB(H, 0) and some pair of distinct elements w, t ∈ V , but this immediately
implies w = t.

We have found that every vector of V appears in exactly λp prebases, and since we
assumed λ does not divide pr−1, it cannot be that λp divides pr. This is enough to say that
it is impossible to produce a KS colouring of the vectors, as any choice of vectors to be
coloured 1 necessarily involves shared prebases.

Finally, by Lemma 2.2.1, we know that under the map φp, all of these prebases corre-
spond to orthogonal bases of Cpλ, (V(B(H,V )),B(H,V )) is a KS pair with at most pr vec-
tors. If H is normalized, then by Lemma 2.2.2, no two vectors of its row space correspond
to the same projective point, so the KS pair contains exactly pr vectors.

Example 2.2.5. If H is any classical Hadamard matrix of order n not a power of 2, then
Ψ2(H) ∈ GH(Z2, n/2), and since n/2 is not a power of 2, we must have that H gives a KS
pair as in Theorem 2.2.4.

Then, because we have existence results and explicit constructions for generalized Hada-
mard matrices of various types due to Theorem 1.4.16, we have the following corollary:

Corollary 2.2.6. If m ≤ k are positive integers and p is an odd prime, then there exists a
KS pair with vectors in C2mpk with at most p2mpk vectors and p2mpk bases.

Proof. By Theorem 1.4.16, there exists a GH matrix H over Zp with λ = 2mpk−1. Since
p ̸= 2, it follows that λ does not divide p. Therefore, by our theorem, if r is the rank of
H, we know that there is a KS pair in C2mpk with at most pr vectors and bases, and since
r ≤ 2mpk, we may write this bound as at most p2mpk vectors and bases.

While an explicit construction exists for the matrices of Theorem 1.4.16, the size of the
KS pair each matrix provides depends on the rank of the matrix. It is for this reason that
we may only give an upper bound on the size of the KS pairs.

In Section 2.3, we explore how proper subspaces of the row space of H can be used to
construct KS pairs similarly to Theorem 2.2.4.
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2.3 Constructions using Subspaces of the Row Space

In this section, we explore modifying Theorem 2.2.4 by considering proper subspaces of the
row space of a Hadamard matrix rather than necessarily using the whole row space; that
is, for a generalized Hadamard matrix H of type GH(Zp, λ) for a prime λ, and a subspace
K of Row(H), we consider whether we can construct a KS pair using B(H,K). We show in
this section that it is possible to construct additional KS pairs in this way. In particular, in
Theorem 2.3.9, we give a sufficient condition for when we may form a KS pair with B(H,K).
We also conjecture that this is a necessary condition.

We begin by defining a particular feature of the K-prebases of a generalized Hadamard
matrix H, for a subspace K of the row space of H. In the computational study of these
objects, it has become clear that the following seems to predict whether each subspace leads
to a KS pair:

Definition 2.3.1. Let H be a generalized Hadamard matrix of type GH(Zn, λ) and K be
a subspace of Row(H) viewed as a group under addition. Denote the elements of PB(H, 0)
by vi, for 1 ≤ i ≤ nλ. We define the sequence S = (Si)nλ

i=1 of slices of the K-prebases of H,
where Si is given by the image of vi under the quotient map Q : Row(H) → Row(H)/K.
Note that Q(vi) is the coset of K containing vi, that is, Q(vi) = vi +K.

Example 2.3.2. Let H ∈ GH(Z3, 2), and label the rows of H by {v1, v2, . . . , v6}. If K =
{k1, k2, . . . , k9} is a 2-dimensional subspace of Row(H), then the K-prebases of H are given
by

PB(H, k1) = {v1 + k1, v2 + k1, v3 + k1, v4 + k1, v5 + k1, v6 + k1},
PB(H, k2) = {v1 + k2, v2 + k2, v3 + k2, v4 + k2, v5 + k2, v6 + k2},

...
...

...
...

...
...

...
PB(H, k9) = {v1 + k9, v2 + k9, v3 + k9, v4 + k9, v5 + k9, v6 + k9},

where the entries in the box correspond to the slice S2.

These slices may be equal for several elements of the seed prebasis. Therefore, we encode
the degree of overlap between them by the following definition:

Definition 2.3.3. Let S = (Si)nλ
i=1 be a sequence of slices of PB(H,K), where H is a

generalized Hadamard matrix of type GH(Zn, λ), and K a subspace of Row(H), and let
Q : Row(H) → Row(H)/K denote the quotient map. Then, we define the weight of slice
Si, denoted wi, by

wi = |Q−1(Si) ∩ PB(H, 0)|,

which is the number of rows of H in the coset vi +K.

Example 2.3.6 demonstrates the above definition for a specific Hadamard matrix and
subspace.
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Note 2.3.4. The sum of the weights of the distinct slices of PB(H,K) is equal to the number
of rows of H.

Lemma 2.3.5. Let S be a slice of weight w of PB(H,K) for a generalized Hadamard matrix
H of type GH(Zn, λ) and subspace K of the row space of H. For each v ∈ S, we have that
v appears in exactly w distinct K-prebases of H.

Proof. Since S is of weight w, by definition there must exist exactly w distinct slices Sj

such that v ∈ Sj = vj + K. Label these slices Sj1 , . . . , Sjw , for some set of distinct indices
{j1, . . . , jw} ⊆ {1, . . . , nλ}. Then, v appears in PB(H, v − vji) for all i ∈ {j1, . . . , jw}, as

vji + (v − vji) = v.

These must be distinct as well, because all vectors in a prebasis are distinct.

Example 2.3.6. If H is the GH(Z3, 2) Hadamard matrix given by



0 0 0 0 0 0
0 0 1 1 2 2
0 1 0 2 1 2
0 1 2 0 2 1
0 2 1 2 0 1
0 2 2 1 1 0


,

where we denote the rows of H by {v1, v2, . . . , v6}, and K is the subspace of the row space
of H given by span{v2, v3 + v4, v3 + v5}, then it can be computed that there exist three
distinct slices each of weight 2. In particular, S1 = S2, S3 = S6, and S4 = S5. Therefore by
Lemma 2.3.5, we know that, for example, v2 appears in exactly two K-prebases, which are
given by PB(H, v2 − v2) = PB(H, 0) and PB(H, v2 − v1) = PB(H, v2).

We present the following definition and then Theorem 2.3.9, which gives a sufficient
condition for when a subspace leads to a KS pair.

Definition 2.3.7. Let H be a generalized Hadamard matrix of type GH(Zp, λ), n = pλ, K
be a subspace of the row space of H, and wi be the weight of slice Si of PB(H,K) for each
1 ≤ i ≤ n. We define the following linear form:

ℓ(x1, . . . , xn) =
n∑

i=1
wixi.

Note 2.3.8. For computational purposes, one should modify the linear form to only incor-
porate distinct weights.

Theorem 2.3.9. Let p be a prime, H be a generalized Hadamard matrix of type GH(Zp, λ),
n = pλ, K be a subspace of the row space of H, and wi be the weight of slice Si of PB(H,K)
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for each 1 ≤ i ≤ n. If the linear equation ℓ(x1, . . . , xn) = |K| has no non-negative integer
solutions, then (V(B),B) is a KS pair, where B = B(H,K).

Proof. We show the result via the contrapositive; that is, if a KS colouring of (V(B(H,K)),
B(H,K)) exists, then the linear equation ℓ(x1, . . . , xn) = |K| subject to the above con-
straints has a solution.

To this end, suppose there exists a map f : Cn → {0, 1} such that for each k ∈ K,
there exists exactly one element vk of PB(H, k) such that f(φp(vk)) = 1. Denote a slice of
PB(H,K) to which vk belongs by Sk, and denote the weight of Sk by dk. By Lemma 2.3.5,
we know that vk appears in dk prebases, so it is the unique vector coloured 1 in exactly dk

bases.
Denote by {vk1 , . . . , vkr } for some r ∈ Z>0 the set of all vectors in V(B(H,K)) such

that f(φp(vk)) = 1. Then, each vkj
appears in exactly dkj

bases, and therefore ∑r
j=1 dkj

=
|PB(H,K)| = |K|. Some of these may appear in the same slice, so denote by ai the number
of distinct vkj

∈ Si, for each 1 ≤ n, where 0 ≤ ai ≤ |K|. Then, we may write the above sum
as ∑n

i=1wiai. Therefore, we may satisfy the linear form as follows:

ℓ(a1, . . . , an) =
r∑

j=1
dkj

= |K|.

Therefore, we have shown that if the slices given by a subspace of the row space of a
generalized Hadamard matrix are such that their weights do not give a satisfiable linear
equation, then we can always construct a KS pair.

Note 2.3.10. We may now view Theorem 2.2.4 as a corollary of Theorem 2.3.9, which
generalizes the mechanism of proof.

Example 2.3.11. Considering Example 2.3.6, since each of the three slices is of weight 2,
we are looking for solutions to ℓ(x, y, z) = 2(x+ y + z) = 27, which is impossible to satisfy
since 2 does not divide 27. Therefore, this subspace gives a KS pair in C6 with |B| = 27 and
|V| = 81.

Corollary 2.3.12. Let p be prime, H be a generalized Hadamard matrix of type GH(Zp, λ),
n = pλ, and K be a subspace of the row space of H. If the slices of PB(H,K) are of uniform
weight d where d does not divide |K|, then (V(B(H,K)),B(H,K)) is a KS pair.

Proof. The linear equation in this case may be written as ℓ(x1, . . . , xn) = d (∑xi) = |K|,
which has no solutions as d does not divide |K|.

We have shown that the slices of the K-prebases of a generalized Hadamard matrix for
a subspace K of the row space of H satisfying the linear equation ℓ(x) = |K| is a sufficient
condition for constructing a KS pair.
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It is natural to ask whether this condition is also necessary. In all examples studied
throughout the course of the research (Appendix A.1), whether ℓ(x) = |K| has a solution
exactly predicts whether (V(B(H,K)),B(H,K)) is a KS pair. With this computational
evidence in mind, we present the following conjecture:

Conjecture 2.3.13. Let H be a generalized Hadamard matrix of type GH(Zp, λ), n = pλ,
K be a subspace of the row space of H, and wi be the weight of slice Si of PB(H,K) for
each 1 ≤ i ≤ n. If the linear equation ℓ(x1, . . . , xn) = |K| has at least one solution subject
to 0 ≤ xi ≤ |K|, then (V(B),B) is not a KS pair, where B = B(H,K).

Some results helping to support this conjecture are given in Appendix A.1. This table
additionally compiles whether each subspace S leads to a KS pair after considering some
number of additional orthogonality relations in addition to those given by B(H,S).

2.4 Building an Infinite Family of KS Pairs using the Jung-
nickel Construction

In this section, we present several new results using a construction for generalized Hadamard
matrices by Dieter Jungnickel found in [17], which were previously defined in this thesis in
the statement of Theorem 1.4.29.

In Section 2.2, we proved that for generalized Hadamard matrices of type GH(Zp, λ), if
λ does not divide pr−1, where r is the rank of H, then we are able to able to construct a KS
pair. As seen in the statement of Theorem 2.2.4 and Theorem 2.3.9, the number of vectors
and bases used in each pair depends on the rank of the matrix used in the construction.
Therefore, to fully understand the sizes of KS pairs we are generating, we need to understand
the ranks of the generalized Hadamard matrices we use in their construction.

In Theorem 2.4.3, we prove that if the generalized Hadamard matrices resulting from the
construction given in Theorem 1.4.29 are normalized, then they are all of rank 4. Hence,
we may use Theorem 2.2.4 to infer that they generate KS pairs with p4 vectors and p4

bases of C2p. Additionally, we show that the number of bases may always be reduced to
p3, and that the structure of the KS pairs in these cases has a natural correspondence to a
1-factorization of K2p.

To begin, we first introduce some additional notation to help unambiguously refer to
the rows and columns of the matrices given by the construction.

Definition 2.4.1. Let D be a generalized Hadamard matrix over Fq as an additive group
as constructed in Theorem 1.4.29. For 1 ≤ i ≤ 4, denote the rows and columns of each block
di of D by ri = (ri

x) and ci = (ci
y), respectively, for each x, y ∈ Fq, where

ri
x = {di

xy : y ∈ Fq}, and ci
y = {di

xy : x ∈ Fq}.
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Additionally, we denote each combined column of blocks 1 and 3, and each combined column
of blocks 2 and 4 by

c13 =
[
c1

c3

]
, and c24 =

[
c2

c4

]

and do the same for each combined row of blocks 1 and 2, and each combined row of blocks
3 and 4 by

r12 =
[
r1 r2

]
, and r34 =

[
r3 r4

]
.

Now, we normalize the matrix D, by subtracting r12
0 from each row, and c13

0 from each
column.

Construction 2.4.2. After subtracting off r12
0 and c13

0 from each row and column, respec-
tively, we are left with the following definition for di, where 1 ≤ i ≤ 4. For some non-square
n ∈ Fq,

d1
xy = xy d2

xy = xy + (n− 1)x
2

4

d3
xy = xy − y2 d4

xy =
(
xy − y2 + (n− 1)x

2

4

)
/n.

Then, we build D in the same way as the original theorem:

D =
[
d1 d2

d3 d4

]
.

From this point forward in this section, the matrix D and the notation given in Defini-
tion 2.4.1 are in reference to the normalized Hadamard matrix given by Construction 2.4.2.
We now proceed to prove the main theorems of this section.

Theorem 2.4.3. If p is an odd prime and D is a GH(Zp, 2) Hadamard matrix given by
Construction 2.4.2 using any non-square parameter n ∈ Zp, then rank(D) = 4.

Proof. We recall that the assumptions that p be odd and n be non-square are required
by Construction 2.4.2. We begin by showing that rows r12

−2, r
12
−1, r

34
0 , and r34

1 are linearly
independent. Suppose there exist a1, a2, a3, a4 ∈ Zp such that

a1r
12
−2 + a2r

12
−1 + a3r

34
0 + a4r

34
1 = 0.

This also gives an equation for the corresponding entries of the four rows:

a1(−2y) + a2(−y) + a3(−y2) + a4(y − y2) = 0 (2.1)

a1(−2y + (n− 1)) + a2

(
−y + n− 1

4

)
+ a3

(
−y2

n

)
+ a4

(
y − y2

n
+ n− 1

4n

)
= 0, (2.2)
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where (2.1) and (2.2) correspond to the equations given by columns c13
y and c24

y , respectively.
The equations must be satisfied for all y ∈ Zp.

We proceed by evaluating equation (2.1) at y = 1 and y = 2, and equation (2.2) at y = 0
and y = 1. This leads to the following system:

2a1 + a2 + 4a3 = 0

4a1 + 2a2 + 4a3 + 2a4 = 0

4n(n− 1)a1 + n(n− 1)a2 + (n− 1)a4 = 0

(−8n+ 4n(n− 1))a1 + (−4n+ n(n− 1))a2 − 4a3 + (n− 1)a4 = 0.

We encode this system into a matrix A, and using Maple [28] (Appendix B.1.2), it is
shown that

det(A) = −64n3 + 80n2 − 16n.

Therefore, showing linear independence of these rows reduces to showing that det(A) = 0
has no solutions for any valid choice of n, which we recall is a non-square. Since p ̸= 2 and
n ̸= 0, we reduce this to looking for solutions of:

4n2 − 5n+ 1 = (n− 1)(4n− 1) = 0

over Zp. This has solutions n = 1, n = 4−1; however, n is assumed to be non-square and
p ̸= 2, so n may be neither of these values, as 1 = 12 and 4−1 = (2−1)2. Therefore, we have
shown that A is always invertible, and that r12

−2, r
12
−1, r

34
0 , and r34

1 are linearly independent.
Hence, D is of rank at least 4.

We proceed to show that D is of rank exactly 4, by proving we may write each of its
rows as a linear combination of r12

−2, r
12
−1, r

34
0 , and r34

1 . First, we find necessary conditions
for writing r12

x as a linear combination of r12
−2 and r12

−1, and for writing r34
x as a linear

combination of all four. Then we show that these conditions are sufficient. If r12
x is given

by a linear combination of r12
−2 and r12

−1, then for some a1, a2 ∈ Zp, any entry d1
xy and d2

xy

satisfies:
a1(−2y) + a2(−y) = xy,

a1(−8ny + 4n(n− 1)) + a2(−4ny + n(n− 1)) = 4nxy + n(n− 1)x2,

respectively. We know that these hold for y = 1, and 0, giving the equations

−2a1 − a2 = x, and

4n(n− 1)a1 + n(n− 1)a2 = n(n− 1)x2 ⇐⇒ 4a1 + a2 = x2.
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Solving this system gives a1 = x2+x
2 , a2 = −(x2 +2x) (Appendix B.1.3). Then, we verify

that these conditions are sufficient for any column:(
x2 + x

2

)
(−2y) − (x2 + 2x)(−y) = −x2y − xy + x2y + 2xy

= xy

and(
x2 + x

2

)
(−8ny + 4n(n− 1)) − (x2 + 2x)(−4ny + n(n− 1))

= (x2 + x)(−4ny + 2n(n− 1)) + 4nyx2 + 8nyx− x2n(n− 1) + 2nx(n− 1)

= 4nxy + n(n− 1)x2.

Indeed, they are. We have shown that r12
x can always be written as a linear combination

of r12
−2, r

12
−1, r

34
0 , and r34

1 . It remains to show that we can do the same for any r34
x . The

method for these remaining rows is similar to that of r12
x , but lengthier, so the details of the

calculations have been moved to Appendix B.1.4, where we present the Maple code which
was used to solve for the following coefficients:

a1 = x2 − x

2n , a2 = x− x2

n
, a3 = 1 − x, a4 = x.

The above coefficients give a general expression for r34
x in terms of r12

−2, r
12
−1, r

34
0 , and r34

1 .
Hence, we have found that each row of the matrix can be expressed as a linear combination
of four fixed linearly independent rows, and therefore, we have shown that D is rank 4.

Having proved the above theorem, we now know the exact rank of an infinite family
of generalized Hadamard matrices. We combine this fact with Theorem 2.3.9 to show that
these give us KS pairs of known size.

Corollary 2.4.4. If p is an odd prime and D is a GH(Zp, 2) Hadamard matrix given by
Construction 2.4.2 using any non-square parameter n ∈ Zp, then writing V = Row(D),
(V(B(D,V )), B(D,V )) is a KS pair in C2p with p4 vectors and p4 bases.

Proof. Let V be the row space of D. As proved in Theorem 2.4.3, rows r12
−2, r

12
−1, r

34
0 and r34

1
always span V , which hence consists of p4 vectors. Then, since each row of D is contained
in V , there is only one slice of PB(D,V )which is of weight 2p. Then, since 2px = p4 has no
solution in non-negative integers, by Theorem 2.3.9, (V(B(D,V )), B(D,V )) is a KS pair in
C2p with exactly p4 vectors and p4 bases.

Therefore, we have shown that we can generate an infinite family of KS pairs in complex
dimension 2p for any odd prime p, with p4 vectors and p4 bases. This being said, we also
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prove the following theorem, which says that we are always able to reduce this to a KS pair
involving only p3 bases.

Theorem 2.4.5. Let p be an odd prime and D be a GH(Zp, 2) Hadamard matrix given
by Construction 2.4.2 using any non-square parameter n ∈ Zp. There exist at least 2p − 1
distinct 3-dimensional subspaces S of Row(D) such that (V(B(D,S)), B(D,S)) is a KS pair
in C2p with p4 vectors and p3 bases.

Proof. It is proved in Theorem 2.4.3 that the row space of D is always 4-dimensional and is
given by the span of r12

−2, r
12
−1, r

34
0 , and r34

1 . For each nonzero column of D, i.e. every column
except c13

0 , we define a subspace of the row space by considering the elements of the row
space with 0 in the position corresponding to the column. That is, for each nonzero column
c13

y and c24
y , define the spaces S13

y and S24
y by

S13
y = {a1r

12
−2 + a2r

12
−1 + a3r

34
0 + a4r

34
1 : a1d

1
−2,y + a2d

1
−1,y + a3d

3
0,y + a4d

3
1,y = 0},

S24
y = {a1r

12
−2 + a2r

12
−1 + a3r

34
0 + a4r

34
1 : a1d

2
−2,y + a2d

2
−1,y + a3d

4
0,y + a4d

4
1,y = 0}.

If we write the row space in terms of the {r12
−2, r

12
−1, r

34
0 , r

34
1 } basis, then

S12
y = {(a1, a2, a3, a4) ∈ Z4

p : (a1, a2, a3, a4) · (d1
−2,y, d

1
−1,y, d

3
0,y, d

3
1,y) = 0}, and

S34
y = {(a1, a2, a3, a4) ∈ Z4

p : (a1, a2, a3, a4) · (d2
−2,y, d

2
−1,y, d

4
0,y, d

4
1,y) = 0};

that is, these spaces are given by the orthogonal complements of the subspaces given by the
span of each of the following vectors:

{(d1
−2,y, d

1
−1,y, d

3
0,y, d

3
1,y) : y ∈ Zp − {0}} ∪ {(d2

−2,y, d
2
−1,y, d

4
0,y, d

4
1,y) : y ∈ Zp}. (2.3)

Each of these vectors is nonzero, because if for some y ∈ Zp, (d1
−2,y, d

1
−1,y, d

3
0,y, d

3
1,y) =

(0, 0, 0, 0), then there exists a column of D wherein 0 occurs at least 4 times, which is
impossible because D is a normalized generalized Hadamard matrix with λ = 2.

Therefore each of these spaces, S12
y and S34

y , is a 3-dimensional subspace of the 4-
dimensional row space of D, as they are given by the orthogonal complement of a nonzero
vector. We now show that for each of these subspaces S every slice of PB(D,S) is of weight 2.

Since D ∈ GH(Zp, 2), and D is normalized, each value k ∈ Zp appears exactly twice in
each column except the zero column.

We fix a column c13
y or c24

y , and fix some k ∈ Zp. If the column is c13
y for y ̸= 0, then there

are exactly two (possibly indistinct) values x1,x2 ∈ Zp such that d1
xi,y = k or d3

xi,y = k.
Similarly if the column is c24

y , then there are exactly two values x1,x2 ∈ Zp such that
d2

xi,y = k or d4
xi,y = k.
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From this point on, we omit the superscripts on the columns and subspaces given
by columns. We write Sy instead of S13

y , and cy instead of c13
y . The arguments involving

c24
y and S24

y are the same up to replacing symbols.
Since rx1,y = rx2,y = k, we know that rx1,y − rx2,y = k − k = 0, and therefore that

rx1 − rx2 ∈ Sy. Hence, rx1 ∈ PB(D, rx1 − rx2), so rx1 and rx2 belong to the same slice of
PB(D,Sy). Because there are exactly two such rows for any value of k, we know that every
slice of PB(D,Sy) is of weight 2.

Then, using Corollary 2.3.12, because each slice is of uniform weight 2, and 2 does not
divide |Sy| = p3, we know that (V(B(D,Sy)),B(D,Sy) is a KS pair in C2p with p4 vectors
and p3 bases.

In the computational exploration around the KS pairs produced by Theorem 2.4.5, it
became clear that their slices seemed to always correspond to a 1-factorization of K2p in a
natural way. By the following corollary, we prove that this always happens.

Corollary 2.4.6. Let p be an odd prime and D be a GH(Zp, 2) Hadamard matrix given
by Construction 2.4.2 using any non-square parameter n ∈ Zp. Then, each of the 2p − 1
KS pairs produced by Theorem 2.4.5 corresponds to a 1-factor of K2p, and moreover the
collection of these gives a 1-factorization of K2p.

Proof. Begin by labelling the vertices of K2p by the 2p rows of D. It is clear that each of
the subspaces S as in Theorem 2.4.5 gives a 1-factor on these vertices, as we may pair those
vertices which correspond to a pair of rows which share the same weight 2 slice of PB(D,S).
We will show that these 2p− 1 1-factors of K2p give us a 1-factorization of K2p as well.

Suppose for a contradiction that the pair {r1, r2} of rows of D appears in more than
one of the 1-factors. Then, for two distinct subspaces S1 and S2 we have that:

r1 + S1 = r2 + S1 and r1 + S2 = r2 + S2.

As S1 and S2 are defined to be the subspaces of the row space with 0 in entries corre-
sponding to two distinct nonzero columns y1, y2 of D, it must be that (r1)y1 = k1 = (r2)y1

and (r1)y2 = k2 = (r2)y2 for possibly indistinct values k1, k2 ∈ Zp. Recall that D is a gener-
alized Hadamard matrix of type GH(Zp, 2), and therefore each entry of D appears exactly
twice in the multiset of differences between the entries of any two distinct rows. Therefore,
as the difference 0 must appear exactly twice, any two rows will possess the same value in
exactly two of their entries. However, we have shown that the multiset of differences between
the entries of r1 and r2 contains 0 at least three times, as in addition to the normalized
column of D wherein each row contains a zero, we have shown (r1)y1 − (r2)y1 = k1 − k1 = 0
and (r1)y2 − (r2)y2 = k2 −k2 = 0. Thus, we have shown that each pair of vertices appears in
at most one 1-factor of K2p. We know each pair of vertices appears in at least one 1-factor
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as well, because each row has the same value as any other row in exactly one position apart
from the normalized column. Therefore, we have shown that the 1-factors given by the
subspaces of Theorem 2.4.5 give a 1-factorization of K2p.

Example 2.4.7. Figure 2.1 is an example of a 1-factorization of K6 corresponding to the
subspaces of the row space of the normalized GH(Z3, 2) given by Construction 2.4.2.

Figure 2.1: 1-factorization corresponding to subspaces

To summarize, for any odd prime, the Jungnickel difference matrix construction found
in [17] yields a generalized Hadamard matrix which can always be used to construct a KS
pair for C2p using p4 vectors and p4 bases. This can always be reduced to p3 bases by
considering particular subspaces of the row space, and particular cosets of these subspaces
correspond to a 1-factorization of K2p in a natural way.
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Chapter 3

Computational Results

In this chapter, we detail the large computational component of the research. In Section 3.1,
we formulate an integer linear program (ILP) which tests whether any given set of vectors
and orthogonal sets form a KS pair. In Section 3.2, we formulate a graph theoretical algo-
rithm which tests whether any given set of vectors and sets of pairwise orthogonal vectors
form a KS pair. Finally, in Section 3.3, we use our ILP to computationally explore looking for
small integer-valued KS pairs in R3. In Section 3.3.1, we explore a method for creating such
KS pairs which was detailed by Cortez and Reyes [11]. We provide a slight simplification
of their KS pair, and apply our ILP to attempt to construct similar pairs. In Section 3.3.2,
we implement a computational approach which searches for integer-valued KS pairs in R3

by considering their automorphism groups.

3.1 Using Integer Linear Programming to find KS Pairs

In Section 3.1.1, we formulate an integer linear program (ILP) which tests whether any set
of vectors V and subset of O(V) form a KS pair. We implement this program in MAGMA [7]
and use it to study the sizes of KS pairs generated by the methods of Chapter 2. In partic-
ular, we focus on KS pairs given by Paley Hadamard matrices [30], which are provided in
Appendix B.6.

3.1.1 ILP Formulation

In many proofs of the KS theorem, the contradiction arises from some numerical incom-
patibility; for example, each vector might be observed to occur an even number of times in
an odd number of bases. These are the so-called parity proofs of the KS theorem. We can
rephrase this as a situation where it is impossible satisfy

ax = b; a, b ∈ Z>0; x ∈ Z≥0.

31



Example 3.1.1. In the paper of Waegell and Aravind [38], the set of vectors and bases
is proved to be a KS pair, fundamentally by the unsatisfiability of 24x = 2048 with any
non-negative integer value of x.

We proceed by posing the question, “What other types of contradiction are possible?”
Waegell and Aravind [38] give an example showing that KS pairs can come from the (more
general) unsatisfiability of certain Diophantine equations. A variation of this idea appears
in Section 2.3, where in Theorem 2.3.9, we show that the unsatisfiability of a particular
linear equation is a sufficient condition for generating a KS pair.

In this section, we study whether a given set of vectors and orthogonal sets form a KS
pair in more generality. We do so by posing the question as a satisfiability problem, which
we cast as an integer linear programming (ILP) instance. The related decision problem is
as follows:

Definition 3.1.2. Let V ⊂ Cn and let O ⊆ O(V ) (see Definition 1.5.2). The KS decision
problem asks whether (V,O) is a KS pair.

Recall from Definition 1.5.7 and Theorem 1.5.1, that V and O form a KS pair if there
is not a function which takes exactly one element of each basis in O to 1, and at most one
element of all other non-basis pairwise orthogonal sets in O to 1. Given this, we may decide
whether a set of vectors V and set of orthogonal sets O form a KS pair by asking whether
the following ILP is feasible:

Construction 3.1.3. Let V be a set of vectors in Cn and O ⊆ O(V ). We denote the bases
contained in O by B = O∩B(V ), and the non-basis pairwise orthogonal sets contained in O
by C = O ∩ (O(V ) \ B(V )).

Objective: 1

Constraints: xi ∈ {0, 1}
|V |∑
j=1

bijxj = 1, for all Bi ∈ B, where bij =

0 vj ̸∈ Bi

1 vj ∈ Bi

|V |∑
j=1

cijxj ≤ 1, for all Ci ∈ C, where cij =

0 vj ̸∈ Ci

1 vj ∈ Ci

Note 3.1.4. The objective in this case is of no consequence, as we only require that such an
assignment exists. In fact, this could more concisely be formulated as a satisfiability (SAT)
instance; however, we choose to formulate it as an ILP to more easily make use of the
optimization tools in MAGMA and Maple.

An implementation of the above in MAGMA is provided in Appendix B.2.
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Example 3.1.5. We applied this ILP to the 31-vector KS pair found by Conway and
Kochen [32]. In Appendix B.2, using this ILP, we were able to show that this set of vectors
does indeed form a KS pair, and moreover that it is minimal in the sense that no vector can
be removed from the set without making it colourable.

3.1.2 Applying the ILP to Paley Hadamard Matrices

The Paley construction for Hadamard matrices [37] [30] is a good source of classical Hadam-
ard matrices whose order is not a power of 2. This property allows for many of these matrices
to provide KS pairs using Theorem 2.2.4, but this theorem only gives us an expression
in terms of rank for the size of these pairs. In this section, we both confirm that these
matrices do indeed produce KS pairs, using the ILP from Section 3.1.1, and present a
conjecture on the particular sizes of the KS pairs produced by Paley Hadamard matrices
using Theorem 2.2.4.

The Paley construction for classical Hadamard matrices takes as an input an odd prime
power q, and yields a classical Hadamard matrix of order q − 1 if q ≡ 3 (mod 4), and a
classical Hadamard matrix of order 2(q+1), if q ≡ 1 (mod 4). In Appendix B.6, we provide
explicit code for the construction for Paley Hadamard matrices for each odd prime power q.

For each odd prime power q < 103, we took the corresponding Paley Hadamard matrix
and generated by the method of Theorem 2.2.4 a set of vectors and bases. We confirmed
that the related ILP instances were not feasible, and then we recorded the sizes of the KS
pairs. The patterns in our extensive computational experimentation lead us to present the
following conjecture on the sizes of KS pairs generated using the Paley Hadamard matrices:

Conjecture 3.1.6. Let H ∈ GH(Z2, d/2) be the normalized logarithmic form of the order d
classical Hadamard matrix given by the Paley construction for q an odd prime power not
one less than a power of 2. Then, (V,B) = (V(B(H,Row(H))),B(H,Row(H))) is a KS pair
in Rd with the following data:

q mod 8 |V| |B| d

1, or 5 22(q+1) 22(q+1) 2(q + 1)
3 2q 2q q + 1
7 2

q+1
2 2

q+1
2 q + 1

Table 3.1: Sizes of KS pairs for Paley Hadamard matrices

The purpose of mentioning that q not be one less than a power of 2 is to ensure that
(n+ 1)/2 is not a power of 2, so as to meet the premises of Theorem 2.2.4.

Appendix A.2 presents the computational results which motivate Conjecture 3.1.6. As
can be noted in Figure A.1, KS pairs generated with these matrices by the method of
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Theorem 2.2.4 grow quite large very quickly. In Figure A.2, the number of vectors already
begins to exceed 220 for q > 9.

From this we conclude that, while the Paley construction is a bountiful source of
Hadamard matrices which lead to KS pairs using Theorem 2.2.4, the produced KS pairs are
rather large even in the smallest cases.

3.2 Graph Theoretical Formulation

In this section, we outline a graph theoretical formulation for deciding whether a set of
vectors and orthogonal sets form a KS pair. This formulation allows us to transfer the KS
decision problem (Definition 3.1.2) to the problem of finding all maximal independent sets
of a graph. In our computational exploration of this topic, the formulation presented in
this section was secondary to the approach outlined in Section 3.1.1, but gave an additional
perspective which was useful in understanding why particular KS pairs are uncolourable in
a more fundamental way.

We begin by defining the notion of an orthogonality graph of a set of vectors, which is
based on a definition in a paper of Lovász [27], but has been adapted for the purposes of
this thesis.

Definition 3.2.1. Let V ⊆ Cd be a finite set of d-dimensional complex vectors. The or-
thogonality graph of V, denoted Ω(V) is the labelled graph whose vertices correspond to the
vectors in V, and where two vertices are adjacent if and only if their corresponding vectors
are orthogonal in Cd.

Example 3.2.2. If V = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 1), (−1, 2, 2)}, then Ω(V) is given
by

Figure 3.1: Example of orthogonality graph

Definition 3.2.3. Let V ⊆ Cd be a finite set of vectors, and let S ∈ O(V) be an orthogonal
set. We define the subgraph Ω(V, S) of Ω(V) to be the labelled graph whose vertices correspond
the vectors in V, and where two vertices are adjacent if and only if their corresponding
vectors both belong to the set S. For a collection of sets T ⊆ O(V), we define the graph
Ω(V, T ) to be the union of Ω(V, S) for all S ∈ T .
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This allows for a graph theoretical formulation of the KS decision problem. Namely,
given a finite set of vertices V ⊂ Cd and a finite set of orthogonal sets T ⊆ O(V), we seek
to show that there does not exist a maximal independent set I of Ω(V, T ) such that for all
bases B ∈ T ∩ B(V), the subgraph Ω(V, B) contains a vertex in I. This formulation models
the vectors mapped to 1 as elements of I.

Thus, we have transferred the KS decision problem into the problem of deciding whether
there exists a maximal independent set on a graph with an additional covering property.
Checking this additional property can be done in polynomial time, so the complexity of this
approach is primarily determined by the complexity of the problem of finding all maximal
independent sets of a graph (all maximal independent sets can be found with O

(
3n/3

)
time

complexity [23], where n is the number of vertices).

Example 3.2.4. The following is an example of the orthogonality graph of the vectors
found in B(H,S) for H ∈ GH(Z3, 2) as given by Construction 2.4.2 and S a particular
2-dimensional subspace of Row(H) for which V(B(H,S)) has a KS colouring. The vertices
belonging to the associated maximal independent set are circled in red.

Figure 3.2: Orthogonality graph with indicated maximal independent set

An implementation of this formulation in MAGMA [7] is given in Appendix B.3.

3.3 Searching for Integer-Valued KS Pairs in R3

In this section we present two approaches to searching for KS pairs with integer-valued
vectors in R3. In Section 3.3.1, we follow a construction for a KS pair introduced in a
2022 paper by Cortez and Reyes [11]. We use the ILP presented in Section 3.1.1 to find
a simplification of their KS pair, and show how the computational methods we developed
might be used to address one of the open problems they present. In Section 3.3.2, we search
for integer-valued KS pairs in R3 by studying the finite order subgroups of GL3(Z), the idea
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being that they may be a subgroup of the automorphism group of a subset of vectors lying
on the integer lattice in R3 that yields a KS pair.

3.3.1 Applying the ILP to the Cortez–Reyes KS Pair

This section starts by presenting an approach for finding KS pairs which was introduced in
a 2022 paper by Cortez and Reyes [11]. This approach focuses on finding integer-valued KS
pairs in R3. We use the ILP presented in Section 3.1.1 to find a simplification of their KS
pair, and present some additional computational results.

The approach begins by introducing the quadratic form q : Z3 → Z≥0, defined by

q(v) = vv⊤ = v2
1 + v2

2 + v2
3.

Additionally, for each N ∈ Z≥0 we define

S(N) = {v ∈ R3 : q(v) divides a power of N}.

This set-up was motivated by an earlier result in a paper coauthored by Reyes [6],
which (in different language) showed that if N is not divisible by 2 or not divisible by 3,
then each V ⊂ S(N) admits a KS colouring.

It can also be noted that if N divides M , then S(N) ⊆ S(M), which gives both that it
suffices to consider N square-free, and that S(N) being KS uncolourable implies S(M) is
KS uncolourable.

The above give us that if S(N) is uncolourable, then N is a square-free multiple of 6.
The KS pair given by Conway and Kochen [32] consists of a set of 31 integer-valued vectors
in R3, which is a subset of S(30). This implies that S(30) is uncolourable, and moreover,
that S(N) is uncolourable for any multiple of 30 = 2 · 3 · 5.

The paper by Cortez and Reyes constructs an uncolourable subset of S(462), where
462 = 6 · 7 · 11, which establishes that N need not be a multiple of 30 for S(N) to be un-
colourable. Their construction uses 85 integer-valued vectors formed by considering unions
of the sets of vectors in S(462) whose images under q equal particular divisors of 462:

Q = {v ∈ Z3 : q(v) ∈ {1, 2, 3, 6, 21, 33, 77} and v is well-signed} \ {(1, 4, 4), (4, 5, 6)},

where well-signedness is a notion (defined in [11]) for choosing a unique representative of
the projective equivalence class each vector belongs to.

In Appendix B.2 we provide MAGMA [7] code which uses the ILP of Section 3.1.1 to
verify that this set of 85 vectors Q along with O(Q) comprise a KS pair. Additionally, we
use this same code to show that their given set of vectors is not minimal, in the sense that
there exists a subset of Q which is also uncolourable. We show explicitly in Appendix B.2
that there is a minimal uncolourable subset of Q which contains only 57 vectors.
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We may also test systematically whether for any N the set S(N) is uncolourable. As
the set S(N) is an infinite set, we must choose a maximum power of N , say e, such that we
include only those well-signed vectors whose image under q divides N e. The MAGMA code
which performs this is given in Appendix B.5.

We were able to verify that there are no uncolourable subsets of well-signed vectors in
S(6) with quadratic form dividing up to 65. That is, all subsets of S(6) consisting of vectors
v with q(v) dividing 65 are KS colourable. It could be that higher powers of 6 must be
considered to prove uncolourability. We denote these subsets by

Q(N, e) = {v ∈ S(N) : q(v) divides Ne} ⊆ S(N).

We were able to find several new KS pairs by considering these subsets. We summarize some
results of this approach in Table 3.2. In all three cases, the size of the KS pair we found is
strictly smaller than the pair presented in [11].

N e KS pair #Vectors #Bases #Orth. Sets. Minimal
6 5 No — — — —

30 = 6 · 5 1 Yes 31 17 20 Yes
42 = 6 · 7 2 No — — — —

462 = 6 · 7 · 11 1 Yes 57 28 32 Yes
714 = 6 · 7 · 17 1 Yes 65 36 32 Yes

6p 1 No — — — —
p ∈ {11, 13, . . . , 167}

42p 1 No — — — —
p ∈ {13, 19, 23, 29, 31, 37}

66p 1 No — — — —
p ∈ {13, 17, 19}

78p 1 No — — — —
p ∈ {17, 19}

Table 3.2: New KS pairs found as subsets of S(N)

The code to generate the results of Table 3.2 is included in Appendix B.7. It should be
noted that the given data for the listed KS pairs does not necessarily represent the minimum
KS pair which is a subset of S(N); it should also be emphasized that a “No” entry on the
table does not imply that a KS pair is not possible for higher powers of N .

A key insight from the results in Table 3.2 is that, by showing that S(714) is un-
colourable, we have shown that N = 462 is not unique in being an integer not divisible by
30 for which S(N) is uncolourable. Both 462 and 714 are divisible by 42, but from the data,
it does not appear that S(42) is uncolourable, as there exist several examples of multiples
of 42 which are demonstrated to be colourable, at least up to maximum exponent 1.
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Example 3.3.1. We were also able to generate several distinct uncolourable minimal subsets
of S(30) of size 31, including the 31-vector KS pair by Conway and Kochen [32]. In addition
to recreating the Conway–Kochen pair, we were able to generate 5 new pairs, each consisting
of 31 vectors and 17 bases. All of these pairs were found by first considering

Q(30, 1) \ {v ∈ R3 : q(v) ∈ {10, 15}},

which is an uncolourable subset consisting of 37 vectors. We then reduce the number of
vectors in the subset by removing them one at a time. We were able to compute that there
are exactly 6 distinct ways to remove 6 vectors from the above set to get a KS pair of size 31.

In all of these cases, the reduction of each uncolourable set proceeded initially by remov-
ing vectors one at a time, verifying each time that the set remained uncolourable, until no
removable vectors remained. However, in performing this procedure, it became clear that
there were patterns in which vectors were removable; for example, in the case of the 85
vector set of Cortez and Reyes, it was the case that whenever (a, b, c) was removable, so
too were (−a, b, c), (a,−b, c), and (a, b,−c). This is partially what motivates Section 3.3.2,
where we study the potential symmetries of integer-valued vectors in R3 forming KS pairs.

All of the KS pairs presented in this section can be found in Appendix B.7.

3.3.2 Potential Symmetries of Integer-Valued KS Pairs in R3

In this section, we describe a method for searching for small integer-valued KS pairs in R3

by considering their potential symmetries, rather than looking for the vectors themselves. In
particular, we aim to study to what extent there are any small subsets of the 3-dimensional
integer lattice in R3 that are invariant under the action of finite-order subgroups of GL3(Z).
In this section, by small we mean containing strictly fewer than 31 vectors; that is, we
are looking for KS pairs that are smaller than the record Conway–Kochen pair [32]. It
has previously been shown that there are no such subsets of integer-valued vectors in R3

containing fewer than 23 vectors [24], so we aim for subsets containing a number of vectors
in the range of 23 to 30.

The finite order subgroups of GL3(Z) are enumerated in a 1971 paper of Ken-Ichi
Tahara [36], where it is shown that any finite order element of GL3(Z) is of order 1, 2, 3, 4,
or 6, and therefore that any finite subgroup of GL3(Z) is of order 2i · 3j for some i, j ∈ Z>0.
Tahara uses these facts to exhaustively list all finite-order subgroups of GL3(Z) up to con-
jugation. In Appendix B.4, we catalog these groups using MAGMA.

Example 3.3.2. One such group is given by the following three generators:

W1 =




0 1 0
0 0 1
1 0 0

 ,


−1 0 0
0 1 0
0 0 −1

 ,


−1 0 0
0 −1 0
0 0 −1


 ,
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which is isomorphic to A4 × Z2.

This paper [36] contains some errors; namely, the group W5 is presented as being of
order 24, but is actually order 12, and there is a typo in the second generator matrix of the
order 24 group W11, which should be

W11 =

−


1 1 0

−2 −1 −1
0 0 1

 ,−


−1 −1 −1
0 0 1
0 1 0


 .

Apart from these issues, we were able to verify (Appendix B.4) that all groups presented in
the paper are of the stated orders and are indeed isomorphic to the groups that the paper
claims.

The vectors of the 31-vector KS pair found by Conway and Kochen [32] are all integer-
valued, lying on the 5 × 5 × 5 integer lattice centred at the origin. For this reason, we limit
our search to vectors in this set; that is we consider potential KS sets with vectors arising
from the set

A = {(a, b, c) ∈ R3 : a, b, c ∈ {0,±1,±2}}.

Adopting the notion of well-signedness from [11], the set A consists of 49 distinct nonzero
non-collinear vectors. We already know that (A,B(A)) is a KS pair, as it contains the
Conway–Kochen set as a subset. The remainder of this section will focus on searching for a
construction of a subset of the 49 vectors that remains uncolourable.

We proceed by considering the action of each of the groups G ∈ GL3(Z) found in [36]
on A. That is, we fix a group G, and we consider the set of orbits given by

OG = {G · v : v ∈ A,G · v ⊆ A},

where we note that we are restricting to the orbits which are contained in the set A, as
there is the possibility that G · v ̸⊆ A, for some v ∈ A.

Then, we look for unions of the orbits in OG such that the total number of vectors falls
approximately into the range of 23 to 31, i.e. a number of vectors larger than the proven
minimum and less than the current minimum KS pair in R3. In other words, we are looking
for a subset of orbits S ⊆ OG such that∣∣∣∣∣⋃

s∈S

s

∣∣∣∣∣ ∈ [23, 31].

After such subsets are found, if we write V = ⋃
s∈S s, then the ILP of Section 3.1 can

be used to check whether (V,O(V)) is a KS pair.
The motivation for constructing the vectors of a KS pair as a union of orbits is twofold.

One reason is that combinatorial objects with exceptional properties typically do have large
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automorphism groups. It is possible that the exceptional properties of such objects can be
better understood by first examining their symmetries. The second reason is that, in terms
of computational searches for these objects, prescribing the potential symmetries of a set
significantly reduces the computation time in that the size of the search space is profoundly
cut down. For example, if we want to construct a putative KS set V of vectors as a subset
of some finite set A containing n vectors, then the size of the search space is 2n, but if
we prescribe an order 2 symmetry on V , then this cuts the size of the search space to
approximately 2n/2.

Using the implementation in Appendix B.5, we were able to verify that for several
subgroups G, there does not exist an S ⊆ OG such that the union of sets in S gives a KS
pair. In particular, we have verified that for any S ⊆ OG, for any subgroup G ∈ GL3(Z)
listed in [36] of order larger than 8, there are no KS pairs of size in the target range produced
using via the method outlined above.

Note 3.3.3. The groups listed in [36] and given in Appendix B.4 comprise the complete
collection of the finite subgroups of GL3(Z), up to conjugation. We have verified that none
of the subgroups of order 8 or higher yield KS pairs via the above method, but only as they
are given in the paper. It is possible that subgroups conjugate to those listed could yield KS
pairs, as the action of two subgroups of GL3(Z) in the same conjugacy class can produce
significantly different sets of orbits.

The decision to define A as the size 5 integer lattice is based primarily on the precedent
set by Conway and Kochen, but it remains possible a KS pair could exist with the above
symmetries by expanding to a larger subset of the lattice. This is likely unnecessary, as the
size 5 lattice is already uncolourable.

It is also useful to consider the symmetry groups of existing KS pairs; for example,
knowing the symmetry group of the 31-vector KS pair found by Conway and Kochen would
help illuminate what symmetries are possible for small KS pairs, and ultimately help in the
search for KS pairs using fewer than 31 vectors. We have found that the symmetry group
of the Conway–Kochen pair is non-trivial; in Appendix B.5 we provide code which demon-
strates that the set vectors is invariant (up to scaling) under the action of the subgroup of
GL3(Z) generated by

A =


0 −1 0
1 0 0
0 0 −1

 , B =


1 0 0
0 1 0
0 0 −1

 ,
which is isomorphic to C4 × C2, and conjugate to the order 8 group W1 in [36].

From this point forward, we consider the groups acting on a set of lines (projective
points) rather than representative vectors. We are therefore concerned with finding trans-
formations that fix our set of lines, that is we are looking for projectivities (homographies)
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under which our set of lines is invariant. Thus, we will look for a symmetry group that is a
finite subgroup of PGL3(Q).

As a subgroup of PGL3(Q), we were able to compute that the symmetry group of the
Conway–Kochen KS pair is generated by A and B, but is only of order 4, as

A2B = −I,

which is the identity in PGL3(Q).
A projective frame in RPd−1 is a set of d + 1 points such that no subset of d points is

linearly dependent. For the remainder of this section, let d = 3.
To calculate the symmetry group of a finite set of lines T (points in RP2), we use the fact

that any projectivity will map any projective frame to another projective frame. We may find
the projective frames by finding all sets of four points with the property that no subset of
size 3 is linearly dependent. Once all projective frames are found, the procedure to calculate
all projectivities fixing a given set of lines is as follows. Fix a frame P = {v1, v2, v3, v4} ⊂ T ,
and compute a1, a2, a3 such that v4 = a1v1 + a2v2 + a3v3 (note that all ai are nonzero by
the assumption that P is a frame). For every other frame Q = {u1, u2, u3, u4} ⊂ T where
u4 = b1u1 + b2u2 + b3u3, let L be the linear transformation on R3 taking vi to bi

ai
ui for

1 ≤ i ≤ 3 so that

L(v4) = L

( 3∑
i=1

aivi

)
=

3∑
i=1

biui = u4,

and check whether L fixes T set-wise. If this is the case, then L is a symmetry of T . In this
way, we can find all elements of the symmetry group.

Code which implements this procedure for the Conway–Kochen KS pair is found in
Appendix B.8. Using this code, we were able to verify that as a subgroup of PGL3(Q), the
symmetry group of the Conway–Kochen KS pair is order 4 isomorphic to C2 × C2, and is
generated by the matrices A and B as above.
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Chapter 4

Outlook

In this chapter, we begin in Section 4.1 with a presentation of a selection of some questions
which remain to be answered, and suggest some directions of future research. In Section 4.2,
we present some additional theoretical and computational perspectives which were not ul-
timately pursued during the course of writing this thesis, but could still be interesting to
consider.

4.1 Remaining Questions and Future Directions of Research

In this section, we pose some relevant questions which remain to be answered and propose
future research directions.

• What is the smallest KS pair that can be generated by the methods of Chapter 2?

• Could a smaller KS pair be found by generating the prebases of a Hadamard matrix
with a set that is not a subspace of the row space of the matrix?

• Does Conjecture 2.3.13 hold? If so, it would be interesting to explore whether there is a
more natural characterization of which subspaces of the row space give KS pairs, as it
could be that slice weights are simply an indicator of a more fundamental explanation.

• How might a characterization for which subspaces lead to KS pairs change if we include
non-basis pairwise orthogonal sets? Could there exist a modification of Definition 2.3.9
for this case?

• Can all KS pairs be understood as having originated from shifts of a Hadamard
matrix? If so, is it possible to find new Hadamard matrices by considering existing
KS pairs?

We now present some future research directions:
In Section 2.3, we finish by presenting Conjecture 2.3.13, which posits that the existence

of a solution to ℓ(x) = |K| is enough to guarantee colourability of the bases given by a
subspace.
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There are numerous examples of Butson Hadamard matrices of type BH(n, q) for q non-
prime, a large number of which are collected in [22]. As in the prime case, many of these can
be shown to correspond to KS pairs in the same way as in the prime case, the key difference
being that these matrices do not necessarily correspond to generalized Hadamard matrices.
The row spaces of the logarithmic forms of these matrices are also no longer necessarily
vector spaces, as Zq is not a field, so there is a need to generalize the theorems of Chapter 2
to accommodate Zq-(sub)modules.

In Section 3.3.2, we presented a method for searching for integer-valued KS pairs in R3

by studying symmetries of the lattice Z3. It would be most interesting to fully establish that
there are no KS pairs in the target size up to symmetries given by the groups mentioned in
the section. It would also be of interest to consider applying this method to groups which
belong the conjugacy classes of the groups in [36]. This pursuit would benefit from both
additional computational resources and development of a more efficient method.

4.2 Alternative Computational Perspectives

In this section, we briefly outline some additional computational perspectives that were
considered during the course of the research, but were never fully developed into any sig-
nificant theoretical or computational results. It is possible that these perspectives could be
useful in future research.

4.2.1 Exact Hitting Set Formulation

The KS decision problem is perhaps best phrased as an instance of the exact hitting set
problem:

Given a collection S of subsets of a set X, an exact hitting set is a setM such that every
subset of S contains exactly one element of M . Each instance of a hitting set problem can
be encoded into an |V | × |S| matrix A, where Ai,j is 1 if vi ∈ Si and 0 otherwise.

Given this encoding, the KS decision problem is shifted to finding a subset of rows of A
such that each column contains exactly one 1. We can look for solutions to an instance of
an exact hitting set problem using Knuth’s algorithm X [19].

We managed to find and slightly modify a simple implementation of this algorithm in
Python [2]. This algorithm has been useful for independently confirming the results shown
with the purpose-built ILP in Magma [7], but has not thus far provided any speedup or
novel results.

4.2.2 Frobenius Coin Problem

When considering solutions to the linear equation (Definition 2.3.9), presented in Sec-
tion 2.3, it became clear that establishing existence of solutions to this equation was essen-
tially an instance of the Frobenius coin problem [33]. This problem asks, given coprime pos-
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itive integers a1, . . . , ak, what is the largest integer which cannot be expressed as ∑k
i=1 aixi,

where xi are non-negative integers?
If k = 1, then only multiples of a1 can be expressed; in particular, every integer can be

expressed if a1 = 1. If k = 2, then the largest integer which cannot be expressed is given by
a1a2 − a1 − a2.

For k > 2, even if a closed form solution exists, it may be rather complicated, so instead
we use an approach with generating functions. For each ai consider the following functions
where the coefficient of xt is either 0 or 1, depending on whether t is a multiple of ai:

pai(x) = 1 + xai + x2ai + · · · = 1
1 − xai

Then, we consider the product of these:

k∏
i=1

pai(x) =
k∏

i=1

1
1 − xai

,

whose coefficients could be found by considering its Taylor expansion.
Taking advantage of this, denote k coprime slice weights w1, w2, . . . , wk and the number

of prebases by n. Then, a solution exists to ℓ(x) = n if and only if the coefficient of xn in
the above function is greater than zero.

This approach would become quite useful in the event a proof of Conjecture 2.3.13
can be found. That is, if we can show that the existence of a solution to ℓ(x) implies the
colourability of a set of bases, we could use this formulation to quickly determine whether
a subspace will generate a KS pair.
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Appendix A

Data for Constructions of KS Pairs

A.1 KS pairs Generated by Subspaces of the Row Spaces of
Hadamard matrices

In this section, we present a selection of data related to which subspaces of the row spaces
of generalized Hadamard matrices provide KS pairs. This data was collected using the
MAGMA [7] code in Appendix B.2. Several of the listed subspaces do not provide KS pairs
via the methods of Section 2.3, but are nonetheless shown to be uncolourable by considering
smaller non-basis pairwise orthogonal sets of vectors.

For a generalized Hadamard matrix, the table below catalogs whether various proper sub-
spaces of its row space yield KS pairs. In all computed examples, whether a subspace has
led to a KS pair is entirely dependent on the weights of its slices. Therefore, we list the
subspaces only up to their slice weights, writing the total number of such subspaces in the
column labelled “Count”. The final column lists whether each type of space gives a KS pair
via the ILP. The format displaying the size of each KS pair is

(#Vectors, #Bases, #Non-basis Orthogonal Sets),

and if the subspace does not generate a KS pair by any method outlined in this thesis, we
write “No”. We notate the slice weights for a subspace by we1

1 w
e2
2 · · ·wen

n , where each wi is
a distinct weight, and ei is the number of slices of weight wi.

The matrices H3, H5, and H7 are monomial equivalent to those produced by Construc-
tion B.1.1, for p = 3, 5, 7, and were originally sourced from [22]. The matrices Pq are those
given by the Paley construction for classical Hadamard matrices for prime power q.
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Hadamard Vector R.Space Subspace Weights Count KS Pair
Matrix Space Dim. Dim.

23 15 (81, 27, 0)
3 124 15 (81, 27, 810)

32 10 No
H3 C6 4 142 45 (45, 9, 252)

2 1222 45 No
133 20 No
16 20 No

1 16 25 No
142 15 No
25 45 (625, 125, 0)

H5 C10 4 3 11213141 101 No
146 10 No
110 204 (250, 25, 8250)

2 1821 125 (225, 25, 6475)
1622 300 (200, 25, 4825)
1423 50 (175, 25, 3525)

152131 100 No
1551 2 No
1224 25 No
110 121 No

1 1821 25 No
1622 10 No

3 27 91 (2401, 343, 0)
243241 No

H7 C14 4 2 114 888 No
11221 343 No
1226 49 No
11022 882 No
1624 98 No
1823 294 No

172231 294 No
177 2 No

1 114 337 No
11221 49 No
1823 14 No

P5 R12 12 4 11021 1 (176, 16, 6120)
P11 R12 11 8 34 1 (1024, 256, 0)

9 62 1 (1024, 512, 0)
P23 R24 12 8 38 1 (2048, 256, 0)

9 64 1 (2048, 512, 0)
10 122 1 (2048, 1024, 0)

Table A.1: Data for KS pairs given by subspaces of the row spaces of various Hadamard
matrices

49



A.2 Paley Construction

The following graphs present the sizes of KS pairs given by the Paley Hadamard matrices
for each odd prime power q < 103. The second graph presents a subset of the first, focusing
only on odd prime powers less than 50. In both graphs, the number of vectors is presented
logarithmically.
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Figure A.1: Size of KS pair (|V|) over various prime powers q < 103
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Figure A.2: Size of KS pair (|V|) over various prime powers q < 50
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A.3 Euler Diagram for Generalizations of Hadamard Matri-
ces

The following is a reproduction of an Euler diagram found in [21], which summarizes the
various generalizations of Hadamard matrices mentioned in Chapter 1.

difference
matrices

generalized
Hadamard
matrices

complex
Hadamard
matrices

Butson-
type
Hadamard
matrices

Hadamard
matrices

Figure A.3: Euler diagram presenting various generalizations of Hadamard matrices. Re-
produced from the cover of [21] with author’s permission.
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Appendix B

Computer Code

This chapter presents much of the relevant computer code which was developed through-
out the course of this thesis research. The majority of the code was written using either
MAGMA [7] or Maple [28], making use of built-in packages only.

B.1 Normalized Jungnickel Construction and Related Cal-
culations

This section presents code relevant to the infinite family of KS pairs produced in Section 2.4.

B.1.1 Normalized Jungnickel Construction (MAGMA)

The following is a MAGMA function which produces the normalized generalized Hadamard
matrix defined in Theorem 1.4.29. The function has required argument q which is the odd
prime-power required by the construction, and optional argument for the desired non-square
parameter NS which by default assumes the smallest non-square in the field.

Jungn icke l := function ( q :NS:=0)
//q i s some odd prime power , matrix w i l l be order 2q over F_q
//NS non−square parameter , d e f a u l t i s to take e i t h e r −1, or

s m a l l e s t one , depending on case

i f IsPrimePower (q ) then // input v e r i f i c a t i o n

i f IsPrime (q ) then
F:= [GF(q ) ! i : i in [ 0 . . q −1 ] ] ;

else
F := SetToSequence ( Set (GF(q ) ) ) ;
copy:=F [ 1 ] ; // f o r c e 0 to be the f i r s t e lement
idx :=Index (F , 0 ) ;
F [ 1 ] :=F[ idx ] ;
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F[ idx ] :=copy ;

end i f ;

N:=Setseq ( Set (GF(q ) ) d i f f {x ^2: x in Set (GF( q ) ) } ) ; // s e t o f
a l l non−squares

i f NS in N then // i f i npu t t ed NS i s a c t u a l l y a non−square
n:=NS;

e l i f q mod 4 eq 3 then // e l s e i f q i s 3 mod 4
n:=q−1;

else // e l s e j u s t take the s m a l l e s t non−square
n:=N[ 1 ] ;

end i f ;

// p r i n t f "\ nq=%o\ZZ_{>0}=%o\n " , q , n ;

D:=Matrix (GF(q ) ,2∗q ,2∗q , [ ] ) ;

for i :=1 to q do
for j :=1 to q do

x:=F[ i ] ;
y:=F[ j ] ;

D[ i , j ] :=x∗y+(x^2/4) ;
D[ i , j+q ] :=x∗y+(n∗x^2/4) ;
D[ i+q , j ] :=x∗y−y^2−(x^2/4) ;
D[ i+q , j+q ] :=( x∗y−y^2−(x^2/4) ) /n ;

end for ;
end for ;

//now make the f i r s t row a l l 0 (F[1]=0 , so i t shouldn ’ t
matter anyway )

for j :=1 to 2∗q do
t :=D[1 , j ] ;
for i :=1 to 2∗q do

D[ i , j ] :=D[ i , j ]− t ;
end for ;

end for ;

//now make f i r s t column a l l 0
for i :=1 to 2∗q do

t :=D[ i , 1 ] ;
for j :=1 to 2∗q do

D[ i , j ] :=D[ i , j ]− t ;
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end for ;
end for ;
printf " q=%o n=%o rank=%o\n rank o f inner 4 rows:%o\n" , q

, n , Rank(D) , Dimension (sub<RowSpace (D) | {D[ i ] : i in [ q −1.. q
+2]}>) ;

return D;
end i f ;

end function ;

B.1.2 Linear Independence of Rows (Maple)

This section presents a portion of the proof of Theorem 2.4.3 written in Maple [28]. The
following code computes the determinant of the matrix A and computes its zeros.

with ( LinearAlgebra ) :
A := Matrix (4 , 4 , [ [ 2 , 1 , 4 , 0 ] , [ 4 , 2 , 4 , 2 ] , [ 4∗n∗(n − 1) , n∗(n

− 1) , 0 , n − 1 ] , [−8∗n + 4∗n∗(n − 1) , −4∗n + n∗(n − 1) , −4, n
− 1 ] ] ) :

d := Determinant (A) ;
> d := −64∗n^3 + 80∗n^2 − 16∗n

so l v e (d) ;
> Vector [ column ] ( 3 , [ 0 , 1 , 1 /4 ] )

B.1.3 Finding Coefficients for r12 (Maple)

This section presents a portion of the proof of Theorem 2.4.3 written in Maple. The following
code shows that the upper rows of the matrix D can be written as a linear combination
of r12

−2 and r12
−1 by finding a necessary condition on the coefficients, and verifying that they

work in general.

A := Matrix ( [ [ −2 , −1] , [ 4 , 1 ] ] ) :
b := Vector ( [ x , x ^2 ] ) :
Determinant (A) ;

> 2

X := LinearSo lve (A, b) ;

> X := Vector [ column ] ( 2 , [1/2∗x^2 + 1/2∗x , −x^2 −
2∗x ] )

v e r i f y (X[1]∗( −2∗y ) − X[ 2 ] ∗ y , x∗y , equal ) ;

> true
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v e r i f y (X[1]∗( −8∗n∗y + 4∗n∗(n − 1) ) + X[2]∗( −4∗n∗y + n∗(n − 1) ) ,
4∗n∗x∗y + n∗(n − 1) ∗x^2 , equal ) ;

> true

B.1.4 Finding Coefficients for r34 (Maple)

This section presents a portion of the proof of Theorem 2.4.3 written in Maple. The following
code shows that the lower rows of the matrix D can be written as a linear combination of
r12

−2, r12
−1, r34

0 , and r34
1 by finding a necessary condition on the coefficients, and verifying that

they work in general.

A := Matrix (4 , 5 , [ [ n − 1 , 1/4∗n − 1/4 , 0 , 1/4∗(n − 1) /n , 1/4∗(n
− 1) ∗x^2/n ] , [ n − 3 , 1/4∗n − 5/4 , −1/n , 1/4∗(n − 1) /n , ( x − 1
+ 1/4∗(n − 1) ∗x^2)/n ] , [−2 , −1, −1, 0 , x − 1 ] , [−4 , −2, −4,
−2, 2∗x − 4 ] ] ) :

B := r r e f (A) :
X := Column(B, 5) ;

> Vector [ column ] ( 4 , [1/2∗x∗( x − 1) /n , −x∗( x − 1) /
n , −x + 1 , x ] )

v e r i f y (X[1]∗( −2∗y ) − X[ 2 ] ∗ y − X[ 3 ] ∗ y^2 + X[4]∗( −y^2 + y) , x∗y − y
^2 , equal ) ;

> true

v e r i f y (X[1]∗( −2∗y + n − 1) + X[2]∗( −y + (n − 1) /4) − X[ 3 ] ∗ y^2/n +
X[ 4 ] ∗ ( y − y^2 + (n − 1) /4) /n , ( x∗y − y^2 + ( ( n − 1) ∗x^2) /4) /n
, equal ) ;

> true

B.2 ILP Implementation (MAGMA)

This section presents an implementation in MAGMA of the ILP as described in Section 3.1,
as well as code which tests whether any subspaces of the row spaces of any generalized
Hadamard matrix can be used to form KS pairs via the methods outlined in Chapter 2.

B.2.1 Arbitrary Vectors (MAGMA)

The following is a MAGMA procedure which takes in any finite set of vectors belonging
to the same vector space, computes all maximal orthogonal sets which contain the vectors,
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implements the ILP as described in Section 3.1, and outputs whether or not they form a
KS pair.

ILP := procedure (V:B:= [ ] ,C:= [ ] )
//V i s any f i n i t e s e t o f v e c t o r s b e l ong ing to the same vec t o r

space
//B i s any s e t o f bases c o n s i s t i n g o f v e c t o r s in V, d e f a u l t i t

genera te a l l p o s s i b l e
//C i s any non−b a s i s s e t o f s e t s o f pa i rw i s e or thogona l

e lements o f V, d e f a u l t i t to genera te a l l p o s s i b l e

d:=Degree (Random(V) ) ; // g e t s dimension o f v e c t o r s

i f B eq [ ] then
B:=Setseq ( {b : b in Subse t s (V, d ) | f o r a l l {{u , v} : u , v in b | Round

(1000∗Modulus ( InnerProduct (u , v ) ) ) eq 0 or u eq v}}) ; // bases
end i f ;
i f C eq [ ] then
C:=Setseq (& join {{c : c in Subse t s (V, k ) | f o r a l l {{u , v} : u , v in c |

Round(1000∗Modulus ( InnerProduct (u , v ) ) ) eq 0 or u eq v }} : k
in [ 2 . . ( d−1) ] } ) ; //non−b a s i s o r t h s e t s

end i f ;

n:=#V; //number o f v e c t o r s
m:=#B; //number bases
l :=#C; //number o f non−b a s i s o r t h s e t s

V:=Setseq (V) ;
R:=RealF ie ld ( ) ;

l h s :=Matrix (R,m+l , n , [ ] ) ;
for i :=1 to m+l do

for j :=1 to n do
i f i l t m+1 then

i f V[ j ] in B[ i ] then
l h s [ i ] [ j ] :=1 ;

else
l h s [ i ] [ j ] :=0 ;

end i f ;
else

i f V[ j ] in C[ i−m] then
l h s [ i ] [ j ] :=1 ;

else
l h s [ i ] [ j ] :=0 ;

end i f ;
end i f ;

end for ;
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end for ;

rhs :=Matrix (R,m+l , 1 , [ 1 ^^ (m+l ) ] ) ;
r e l :=Matrix (R,m+l , 1 , [ 0 ^^ (m) ,(−1) ^^( l ) ] ) ;
obj :=Matrix (R, 1 , n , [ 0 ^^ ( n) ] ) ;

a , b:=MaximalZeroOneSolution ( lhs , r e l , rhs , obj ) ;

i f b eq 0 then // output the r e s u l t o f the ILP
printf " So lu t i on ␣ Ex i s t s \n\n " ; // " Optimal So lu t i on :\ n%o " , a ;

e l i f b eq 1 or b eq 4 then
printf " Fa i l u r e " ;

e l i f b eq 2 then
printf " ∗∗ I n f e a s i b l e ␣problem ∗∗\n " ;
printf " Vectors : ␣%o\n\n" ,n ;
printf " Bases : ␣%o\n\n%o\n\n␣Non−Bas i s ␣Orthogonal ␣ Set s : ␣%o\n\n

%o\n\n" ,m,B, l ,C;

e l i f b eq 3 then
printf "Unbounded␣problem " ;

end i f ;
end procedure ;

We can demonstrate the above using the 31 vectors of Conway and Kochen [31], and also
show that this set is minimal in the sense that no vector can be removed from the set
without losing uncolourability.

Q:= [ [ 2 , 2 , 2 ] , [ 1 , 1 , 2 ] , [ 1 , 0 , 2 ] , [ 1 , −1 ,2 ] , [ 0 , −1 ,2 ] , [ 0 , 0 , 2 ] ,
[ 0 , 1 , 2 ] , [ 0 , 2 , 2 ] , [−1 , −1 ,2] , [ −1 ,0 ,2 ] , [ −1 ,1 ,2 ] , [ −2 ,0 ,2 ] ,
[ −2 ,2 ,2 ] , [ −2 , −1 ,1] , [−2 , −1 ,0] , [−2 ,−1 ,−1] , [ −2 ,0 ,1 ] ,
[ −2 ,0 ,0 ] , [ −2 ,0 , −1] , [ −2 ,0 , −2] , [ −2 ,2 ,0 ] , [ −2 ,2 , −2] , [ −1 ,2 ,1 ] ,
[ 0 , 2 , 1 ] , [ −1 ,2 ,0 ] , [ 0 , 2 , 0 ] , [ 2 , 2 , 0 ] , [ −1 ,2 , −1] , [ 0 ,2 , −1 ] ,

[ 0 ,2 , −2 ] , [ 2 , 2 , −2 ] ] ;
V:={ VectorSpace ( Rat iona l s ( ) ,3) ! v : v in Q} ;
ILP(V) ;

>> ∗∗ I n f e a s i b l e problem∗∗
>> Vectors : 31
>> Bases : 17

. . .
>> Non−Bas i s Orthogonal Set s : 20

. . .
for u in Q do ILP(V d i f f {V! u} ) ; end for ; // t e s t s whether any

vec t o r can be removed
>> So lut i on Ex i s t s

. . .
>> So lu t i on Ex i s t s
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We also use the above to simplify the 85 vector KS pair created by Cortez and Reyes.

Q:= [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] , [ 1 , 1 , 0 ] , [ 1 , 0 , 1 ] , [ 0 ,
1 , 1 ] , [ 1 , −1, 0 ] , [ 1 , 0 , −1] , [ 0 , 1 , −1] , [ 1 , 1 , 1 ] , [ 1 , 1 ,
−1] , [ 1 , −1, 1 ] , [−1 , 1 , 1 ] , [ 1 , 1 , 2 ] , [ 1 , 2 , 1 ] , [ 2 , 1 , 1 ] ,
[−1 , 1 , 2 ] , [−1 , 2 , 1 ] , [−2 , 1 , 1 ] , [ 1 , −1, 2 ] , [ 1 , −2, 1 ] ,
[ 2 , −1, 1 ] , [ 1 , 1 , −2] , [ 1 , 2 , −1] , [ 2 , 1 , −1] , [ 1 , 2 , 4 ] , [ 1 ,
4 , 2 ] , [ 2 , 1 , 4 ] , [ 2 , 4 , 1 ] , [ 4 , 1 , 2 ] , [ 4 , 2 , 1 ] , [−1 , 2 ,

4 ] , [−1 , 4 , 2 ] , [−2 , 1 , 4 ] , [−2 , 4 , 1 ] , [−4 , 1 , 2 ] , [−4 , 2 ,
1 ] , [ 1 , −2, 4 ] , [ 1 , −4, 2 ] , [ 2 , −1, 4 ] , [ 2 , −4, 1 ] , [ 4 , −1,
2 ] , [ 4 , −2, 1 ] , [ 1 , 2 , −4] , [ 1 , 4 , −2] , [ 2 , 1 , −4] , [ 2 , 4 ,
−1] , [ 4 , 1 , −2] , [ 4 , 2 , −1] , [ 2 , 2 , 5 ] , [ 2 , 5 , 2 ] , [ 5 , 2 , 2 ] ,
[−2 , 2 , 5 ] , [−2 , 5 , 2 ] , [−5 , 2 , 2 ] , [ 2 , −2, 5 ] , [ 2 , −5, 2 ] ,
[ 5 , −2, 2 ] , [ 2 , 2 , −5] , [ 2 , 5 , −2] , [ 5 , 2 , −2] , [ 2 , 3 , 8 ] , [ 2 ,
8 , 3 ] , [ 3 , 2 , 8 ] , [ 3 , 8 , 2 ] , [ 8 , 2 , 3 ] , [ 8 , 3 , 2 ] , [−2 , 3 ,

8 ] , [−2 , 8 , 3 ] , [−3 , 2 , 8 ] , [−3 , 8 , 2 ] , [−8 , 2 , 3 ] , [−8 , 3 ,
2 ] , [ 2 , −3, 8 ] , [ 2 , −8, 3 ] , [ 3 , −2, 8 ] , [ 3 , −8, 2 ] , [ 8 , −2,
3 ] , [ 8 , −3, 2 ] , [ 2 , 3 , −8] , [ 2 , 8 , −3] , [ 3 , 2 , −8] , [ 3 , 8 ,
−2] , [ 8 , 2 , −3] , [ 8 , 3 , −2 ] ] ;

V:={ VectorSpace ( Rat iona l s ( ) ,3) ! v : v in Q} ;
ILP(V) ;

>> ∗∗ I n f e a s i b l e problem∗∗
>> Vectors : 85
>> Bases : 40

. . .
>> Non−Bas i s Orthogonal Set s : 180

. . .
ILP(V d i f f {V! u : u in { [2 , 5 , 2 ] , [ 2 , 5 , −2] , [ 2 , −5, 2 ] , [ −2 , 5 ,

2 ] , [ 4 , 2 , 1 ] , [ −4 ,2 ,1] , [4 , −2 ,1] , [4 ,2 , −1] , [ 2 , 4 , 1 ] , [ −2 ,4 ,1] ,
[2 , −4 ,1] , [2 ,4 , −1] , [ 1 , 2 , 4 ] , [ −1 ,2 ,4] , [1 , −2 ,4] , [1 ,2 , −4] ,

[ 3 , 2 , 8 ] , [ −3 ,2 ,8] , [3 ,2 , −8] , [3 , −2 ,8] , [ 8 , 2 , 3 ] , [ −8 ,2 ,3] ,
[8 , −2 ,3] , [8 ,2 , −3] , [2 ,3 ,8 ] , [ −2 ,3 ,8 ] , [ 2 , −3 ,8 ] , [ 2 ,3 , −8 ] } }) ;

>> ∗∗ I n f e a s i b l e problem∗∗
>> Vectors : 57
>> Bases : 28

. . .
>> Non−Bas i s Orthogonal Set s : 116

. . .

B.2.2 Using Generalized Hadamard Matrices (MAGMA)

// Example Hadamard matr ices

H3:=Matrix (GF(3) ,6 ,6 , [ 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,2 ,2 ,0 ,1
,0 ,2 ,2 ,1 ,0 ,1 ,2 ,0 ,1 ,2 ,0 ,2 ,2 ,1 ,0 ,1 ,0 ,2 ,1 ,2 ,1
, 0 ] ) ;
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H5:=Matrix (GF(5) ,10 ,10 , [ 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1
,1 ,2 ,2 ,3 ,3 ,4 ,4 ,0 ,1 ,0 ,3 ,2 ,4 ,1 ,4 ,2 ,3 ,0 ,1 ,3 ,4
,3 ,1 ,0 ,2 ,4 ,2 ,0 ,2 ,3 ,0 ,1 ,3 ,4 ,1 ,2 ,4 ,0 ,2 ,4 ,2

,0 ,1 ,3 ,4 ,3 ,1 ,0 ,3 ,1 ,2 ,4 ,0 ,4 ,2 ,1 ,3 ,0 ,3 ,2 ,4 ,1
,4 ,2 ,3 ,0 ,1 ,0 ,4 ,2 ,1 ,4 ,3 ,1 ,0 ,3 ,2 ,0 ,4 ,4 ,3 ,3

,2 ,2 ,1 ,1 , 0 ] ) ;

// Subspaces code
M:=function (k , q ) return &∗[ q^ i−1 : i in [ 1 . . k ] ] ; end

function ;

G:=function (n , k , q ) return M(n , q ) / ( M(k , q ) ∗ M(n−k , q ) ) ; end
function ;

Subspaces := function (V, k , q ) // re turns a l l the subspaces o f V o f
dim k

n:=Dimension (V) ;
S:=Set (V) ;
subsp := { sub< V | b > : b in Subse t s (S , k ) | Dimension ( sub<V|

b> ) eq k } ;
// p r i n t f " check number o f subspaces . . . %o\n " , G(n , k , q ) eq #

subsp ;
return subsp ;

end function ;

// main b i t

d iophant ineSo l := function (P,m)
R:=RealF ie ld ( ) ;
N:=Setseq ( {#p : p in P} ) ;
N;
l h s :=Matrix (R,2∗#N+1 ,#N, [ ] ) ;
for j := 1 to #N do

l h s [ 1 ] [ j ] := N[ j ] ;
l h s [ j +1] [ j ] := 1 ;
l h s [ j+#N+1] [ j ] :=1 ;

end for ;

rhs :=Matrix (R,2∗#N+1 ,1 , [m,m̂ ^#N,0^^#N] ) ;
r e l :=Matrix (R,2∗#N+1 ,1 , [ 0 ,(−1)^^#N,1^^#N] ) ;
obj :=Matrix (R, 1 ,#N,[0^^#N] ) ;

a , b:=MaximalIntegerSo lut ion ( lhs , r e l , rhs , obj ) ;

i f b eq 2 then
return fa l se ;

59



else
print " Diophantine ␣Equation␣has␣ s o l u t i o n " ;
return true ;

end i f ;
end function ;

toReal := function (B, p , d )
// func t i on used to check i f KS bases are or thogona l in C
// take s as input : s e t o f vec tor s , c h a r a c t e r i s t i c , and l e n g t h o f

v e c t o r s
// re turns m u l t i s e t o f inner product s o f the v e c t o r s

C<i>:= ComplexField ( ) ;
V:=VectorSpace (C, d) ;
w:=RootOfUnity (p) ;

Br:=SetToSequence ( { [C!w^( I n t e g e r s ( ) ! k ) : k in E l t s e q (B[ i ] ) ] : i in
[1 . .#B] } ) ;

A:={∗ Round(1000∗ Modulus ( InnerProduct (V! Br [ i ] ,V! Br [ j ] ) ) ) : i , j
in [1 . .# Br ] | i l t j ∗} ;

return A;

end function ;

ssLP:= procedure (H: L:= [ ] , OrthSets :=0)
// Main func t i on f o r genera t ing v e c t o r s / bases , and formu la t ing /

s o l v i n g the ILP us ing magma
// H i s any Hadamard matrix w r i t t en in Z_p
// L parameter i s a e i t h e r l i s t o f subspaces to cons ider , or

which s i z e s o f subspaces to cons ider , d e f u a l t i s to use on ly
the f u l l space

// OrthSets determines the maximum s i z e o f non−b a s i s or thogona l
s e t s the ILP w i l l cons ider

r :=NumberOfRows(H) ;
c:=NumberOfColumns (H) ;
B0:= [H[ i ] : i in [ 1 . . r ] ] ;
V:=sub<RowSpace (H) |B0>;
q:=Cha r a c t e r i s t i c ( BaseRing (H) ) ;

i f Type (L) eq SeqEnum and L eq [ ] then
SS:={{V} } ;

else
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i f ExtendedType (L) eq SeqEnum [ModTupFld ] or ExtendedType (L)
eq SeqEnum [ModTupRng ] then

SS:={L} ;
else

SS := { Subspaces (V, k , q ) : k in L} ; // genera te a l l subspaces
end i f ;

end i f ;

SSl := SetToSequence (SS) ;

for SSk in SSl do // outer loop i s over dim of subspace
for s in SSk do

Sl :=SetToSequence ( Set ( s ) ) ; // s e t o f a l l v e c t o r s in subspace

n:=#Sl ;

BB:={ [ S l [ i ]+b : b in B0 ] : i in [ 1 . . n ] } ; // c r e a t e s bases

BBl:=SetToSequence (BB) ;

assert f o r a l l {b : b in BB| toReal ( b , q , c ) eq {∗ 0^^( Binomial (
r , 2 ) ) ∗} } ; // checks a l l bases are or thogona l

T:={v : v in V | e x i s t s {b : b in BB | v in b} } ; // f i n d s s e t o f
v e c t o r s a c t u a l l y used in the bases

Tl:=SetToSequence (T) ;

i f OrthSets gt 0 then
O:={U:U in &j o i n { Subse t s (T, i ) : i in [ OrthSets . . OrthSets ] } |

toReal ( Setseq (U) ,q , r ) eq {∗0^^ Binomial(#U, 2 ) ∗} and not
exists {v : v in T d i f f U|#U+1 l e OrthSets and toReal (

Se t s eq (U j o i n {v} ) , q , r ) eq {∗0^^ Binomial(#U+1 ,2) ∗}}
and not exists {b : b in BB| U s u b s e t b} } ;

else
O:={} ;

end i f ;

Ol:=SetToSequence (O) ;

m:=#BBl ; //number bases
n:=#Tl ; //number o f v e c t o r s
l :=#Ol ;

ONl:={{ Index ( Tl , v ) : v in Ol [ j ] } : j in [ 1 . . l ] } ;
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BN:={ [ Index ( Tl , v ) : v in BBl [ j ] ] : j in [ 1 . .m] } ; // conver t s
v e c t o r s to d i s t i n c t i n t e g e r s

BNl:=SetToSequence (BN) ;

printf "Number␣ o f ␣ bases : ␣%o\ZZ_{>0}umber␣ o f ␣ ve c t o r s /
codewords : ␣%o\ZZ_{>0}umber␣ o f ␣Orth␣Pa i r s : ␣%o\n" ,m, n , l ;

print s ;
L:= [ {H[ i ]+u : u in s } : i in [ 1 . . c ] ] ;

P:={{ i : i in [ 1 . . c ] | L [ i ] eq L [ j ] } : j in [ 1 . . c ] } ;
printf " s l i c e s : ␣%o\n\n" ,P ;

i f OrthSets eq 0 and exists { i : i in [1 . .#P]|# Se t s eq (P) [ i ] in
D iv i s o r s (m) } then // checks easy cond i t i on f o r

c o l o u r a b i l i t y
runILP:=fa l se ;
b:=0 ;

e l i f OrthSets eq 0 and not d iophant ineSo l (P,m) then
runILP:=fa l se ;
b:=2 ;

else
runILP:=true ;

end i f ;

//ILP
i f runILP then
R:=RealF ie ld ( ) ;

l h s :=Matrix (R,m+l , n , [ ] ) ;
for i :=1 to m+l do

for j :=1 to n do
i f i l t m+1 then

i f Tl [ j ] in BBl [ i ] then
l h s [ i ] [ j ] :=1 ;

else
l h s [ i ] [ j ] :=0 ;

end i f ;
else

i f Tl [ j ] in Ol [ i−m] then
l h s [ i ] [ j ] :=1 ;

else
l h s [ i ] [ j ] :=0 ;

end i f ;
end i f ;

end for ;

end for ;
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rhs :=Matrix (R,m+l , 1 , [ 1^^(m+l ) ] ) ;
r e l :=Matrix (R,m+l , 1 , [ 0^^(m) ,(−1) ^^( l ) ] ) ;
obj :=Matrix (R, 1 ,n , [ 0 ^^ ( n) ] ) ;

a , b:=MaximalZeroOneSolution ( lhs , r e l , rhs , obj ) ;
end i f ;

i f b eq 0 then // output the r e s u l t o f the ILP
printf " So lu t i on ␣ Ex i s t s \n\n " ; // " Optimal So lu t i on :\ n%o " , a ;

// p r i n t f " Bases : %o\n\n Orthogonal Pairs : %o\n\n " , BNl , ONl ;
e l i f b eq 1 or b eq 4 then

printf " Fa i l u r e \n\n " ;
printf " Bases : ␣%o\n\n␣Orthogonal ␣ Pa i r s : ␣%o\n\n" ,BNl ,ONl ;

e l i f b eq 2 then
printf " ∗∗ I n f e a s i b l e ␣problem ∗∗\n " ;
printf " Bases : ␣%o\n\n␣Orthogonal ␣ Pa i r s : ␣%o\n\n" ,BNl ,ONl ;

i f #{#p : p in P} gt 1 then print " f l a g " ; end i f ; // f l a g s i f
any i n t e r e s t i n g cases a r i s e

e l i f b eq 3 then
printf "Unbounded␣problem " ;

end i f ;

end for ;
end for ;

end procedure ;

f := map<GF(p)−>ComplexField ( ) | x:−>RootOfUnity (p) ^( I n t e g e r s ( ) ! x ) >;
// code to change FF matrix to Complex

g:= map<ComplexField ( )−> GF(p) | x:−> GF(p) ! Truncate ( ( p/(2∗Pi (
Rea lF ie ld ( ) ) ) ) ∗ Imaginary (Log (x ) ) ) >;

B.3 Graph Theoretical Implementation (MAGMA)

The following code is an implementation of the graph theoretical procedure for solving
instances of the KS decision problem, which was presented in Section 3.2.

GraphKS:= procedure (V:B:= [ ] ,C:= [ ] )
//V i s any f i n i t e s e t o f v e c t o r s b e l ong ing to the same vec t o r

space
//B i s any s e t o f bases c o n s i s t i n g o f v e c t o r s in V, d e f a u l t i t

genera te a l l p o s s i b l e
//C i s any non−b a s i s s e t o f s e t s o f pa i rw i s e or thogona l

e lements o f V, d e f a u l t i t to genera te a l l p o s s i b l e
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d:=Degree (Random(V) ) ; // g e t s dimension o f v e c t o r s

i f B ne [ ] then
B:=Setseq ( {b : b in Subse t s (V, d ) | f o r a l l {{u , v} : u , v in b | Round

(1000∗Modulus ( InnerProduct (u , v ) ) ) eq 0 or u eq v}}) ; //
bases

end i f ;

i f C ne [ ] then
C:=Setseq (& join {{c : c in Subse t s (V, k ) | f o r a l l {{u , v} : u , v in c |

Round(1000∗Modulus ( InnerProduct (u , v ) ) ) eq 0 or u eq v }} : k
in [ 2 . . ( d−1) ] } ) ; //non−b a s i s o r t h s e t s

end i f ;

n:=#V; //number o f v e c t o r s
m:=#B; //number bases
l :=#C; //number o f non−b a s i s o r t h s e t s

V:=Setseq (V) ;

// conver t v e c t o r s to t h e i r i n d i c e s in V
Bn := {{ Index (V, u) : u in b} : b in B} ;
Cn := {{ Index (V, u) : u in c} : c in C} ;

E:= {{u , v} : u , v in [ 1 . . n ] | exists { s : s in Bn j o i n Cn | {u , v}
subset s and u ne v }} ; // Def ines Edge s e t o f Or thogona l i t y
graph

G:=Graph<n |E>; // Or thogona l i t y Graph

IS := Al lC l i que s (Complement (G) ) ; // Set o f a l l Maximal
Independent Se t s

i f exists {M: M in IS | f o r a l l {{v , b , c} : v in M, b in Bn, c in Cn| {
Index (G, v ) } meet b eq 1 and { Index (G, v ) } meet c le 1}} then

print " So lu t i on ␣ Ex i s t s " ;
else

printf " ∗∗KS␣ pa i r ∗∗\n\nVectors : ␣%o\n\n%o\n\nBases : ␣%o\n\n%o\n
\nOrthsets : ␣%o\n\n%o\n\n" ,n ,V,m,B, l ,C;

end i f ;
end procedure ;
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B.4 Matrix Groups in GL3(Z) (MAGMA)

This section catalogs the small matrix groups presented in the paper by [36]. It also includes
a procedure for verifying that these groups are as purported in that paper. The group O24W11
is presented without the typo that was identified in Section 3.3.2.

Q:=Rat iona l s ( ) ;

//Order 2
O2W1:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
O2W2:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,1 ] >;
O2W3:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ] >;
O2W4:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,−1 ,0 ] >;
O2W5:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;

O2:= [ [O2W1 ,O2W2,O2W3,O2W4,O2W5 ] ] ;
G2:= [ <2 ,1 >];

//Order 3
O3W1:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,−1]>;
O3W2:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ] >;

O3:= [ [O3W1 ,O3W2 ] ] ;
G3:= [ <3 ,1 >];

//Order 4
O4W1:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,0 ] >;
O4W2:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 ,0 ] >;
O4W3:=MatrixGroup<3,Q| [ 1 ,0 ,1 ,0 ,0 ,−1 ,0 ,1 ,0 ] >;
O4W4:=MatrixGroup<3,Q|[−1 ,0 ,−1 ,0 ,0 ,1 ,0 ,−1 ,0 ] >;

O4W5:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1] ,[−1 ,0 ,0 ,0
,−1 ,0 ,0 ,0 ,−1]>;

O4W6:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1] ,[−1 ,0 ,0 ,0
,−1 ,0 ,0 ,0 ,1 ] >;

O4W7:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 , −1 ] , [1 ,0 ,0 ,0
,1 ,0 ,0 ,0 ,−1]>;

O4W8:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1] ,[−1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O4W9:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 , −1 ] , [1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O4W10:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,1 ,0 ,0 ,0 , 1 ] , [ 1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O4W11:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0
,−1 ,0 ,0 ,0 ,−1]>;

O4W12:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,1
,0 ,−1 ,−1 ,−1 ,0 ] >;
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O4W13:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 , 0 ] , [ 1 ,0 ,0 ,−1
,0 ,1 ,1 ,1 ,0 ] >;

O4W14:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ] , [ −1 ,1 ,−1 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O4W15:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 , 0 ] , [ 1 ,−1 ,1 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O4:= [ [O4W1 ,O4W2,O4W3,O4W4] , [O4W5,O4W6,O4W7,O4W8,O4W9,O4W10 ,
O4W11 ,O4W12,O4W13,O4W14,O4W15 ] ] ;

G4:=[<4 ,1> ,<4 ,2>];

//Order 6
O6W1:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,1 ] >;
O6W2:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 ,−1]>;
O6W3:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 ,1 ] >;
O6W4:=MatrixGroup<3,Q| [ 0 ,−1 ,0 ,0 ,0 ,−1 ,−1 ,0 ,0 ] >;

O6W5:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,−1] ,[−1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O6W6:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 , −1 ] , [1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O6W7:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,−1] ,[−1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O6W8:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 , −1 ] , [1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O6W9:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 , 0 ] , [ 0 ,0 ,−1 ,0
,−1 ,0 ,−1 ,0 ,0 ] >;

O6W10:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 , 0 ] , [ 0 ,0 ,1 ,0 ,1
,0 ,1 ,0 ,0 ] >;

O6:= [ [O6W1 ,O6W2,O6W3,O6W4] , [O6W5,O6W6,O6W7,O6W8,O6W9,O6W10 ] ] ;
G6:=[<6 ,2> ,<6 ,1>];

//Order 8
O8W1:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0

,−1 ,0 ,0 ,0 ,−1]>;
O8W2:=MatrixGroup<3,Q| [ 1 ,0 ,1 ,0 ,0 ,−1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0

,−1 ,0 ,0 ,0 ,−1]>;
O8W3:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1] ,[−1 ,0 ,0 ,0

,−1 ,0 ,0 ,0 ,1 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
O8W4:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1] ,[−1 ,0 ,0 ,0

,0 ,−1 ,0 ,−1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
O8W5:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,1

,0 ,−1 ,−1 ,−1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
O8W6:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ] , [ −1 ,1 ,−1 ,0

,0 ,−1 ,0 ,−1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
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O8W7:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O8W8:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 , 0 ] , [ 1 ,0 ,0 ,0 ,0
,−1 ,0 ,−1 ,0 ] >;

O8W9:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 ,0 ] , [ −1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O8W10:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 , 0 ] , [ 1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O8W11:=MatrixGroup<3,Q| [ 1 ,0 ,1 ,0 ,0 ,−1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O8W12:=MatrixGroup<3,Q| [ 1 ,0 ,1 ,0 ,0 ,−1 ,0 ,1 , 0 ] , [ 1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O8W13:=MatrixGroup<3,Q|[−1 ,0 ,−1 ,0 ,0 ,1 ,0 ,−1 ,0 ] , [ −1 ,0 ,0
,0 ,0 ,−1 ,0 ,−1 ,0 ] >;

O8W14:=MatrixGroup<3,Q|[−1 ,0 ,−1 ,0 ,0 ,1 ,0 ,−1 , 0 ] , [ 1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O8:= [ [O8W1 ,O8W2] , [O8W3,O8W4,O8W5,O8W6] , [O8W7,O8W8,O8W9,O8W10 ,
O8W11 ,O8W12,O8W13,O8W14 ] ] ;

G8:=[<8 ,2>,<8 ,5>,<8 ,3>];

//Order 12
O12W1:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,1 ] , [ −1 ,0 ,0 ,0

,−1 ,0 ,0 ,0 ,−1]>;

O12W2:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,1 ] , [ −1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O12W3:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 , 1 ] , [ 1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O12W4:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 ,−1] ,[−1 ,0 ,0
,0 ,0 ,1 ,0 ,1 ,0 ] >;

O12W5:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 , −1 ] , [1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O12W6:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 ,1 ] , [ −1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O12W7:=MatrixGroup<3,Q|[−1 ,0 ,0 ,0 ,0 ,1 ,0 ,−1 ,1 ] , [ −1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O12W8:=MatrixGroup<3,Q| [ 0 ,−1 ,0 ,0 ,0 ,−1 ,−1 ,0 , 0 ] , [ 0 ,0 ,−1
,0 ,−1 ,0 ,−1 ,0 ,0 ] >;

O12W9:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ] , [ −1 ,0 ,0 ,0
,1 ,0 ,0 ,0 ,−1]>;

O12W10:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 , 0 ] , [ 0 ,−1 ,1 ,0
,−1 ,0 ,1 ,−1 ,0 ] >;

O12W11:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ] , [ −1 ,−1 ,−1
,0 ,0 ,1 ,0 ,1 ,0 ] >;
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O12:= [ [ O12W1 ] , [O12W2,O12W3,O12W4,O12W5,O12W6,O12W7,O12W8 ] , [O12W9,
O12W10 ,O12W11 ] ] ;

G12:=[<12 ,5> ,<12 ,4> ,<12 ,3>];

//Order 16
O16W1:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0

,0 ,1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
O16W2:=MatrixGroup<3,Q| [ 1 ,0 ,1 ,0 ,0 ,−1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0

,0 ,−1 ,0 ,−1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;

O16:= [ [ O16W1 ,O16W2 ] ] ;
G16:= [ <16 ,11 >];

//Order 24
O24W1:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ] , [ −1 ,0 ,0 ,0

,1 ,0 ,0 ,0 ,−1] ,[−1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
O24W2:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 , 0 ] , [ 0 ,−1 ,1 ,0

,−1 ,0 ,1 ,−1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
O24W3:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ] , [ −1 ,−1 ,−1 ,0

,0 ,1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;

O24W4:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,1 ] , [ −1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;

O24W5:=MatrixGroup<3,Q| [ 1 ,0 ,0 ,0 ,0 ,−1 ,0 ,1 ,−1] ,[−1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;

O24W6:=MatrixGroup<3,Q| [ 0 ,0 ,1 ,0 ,1 ,0 ,−1 ,0 ,0 ] , [ −1 ,0 ,0 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O24W7:=MatrixGroup<3,Q| [ 0 ,0 ,−1 ,0 ,−1 ,0 ,1 ,0 , 0 ] , [ 1 ,0 ,0 ,0
,0 ,1 ,0 ,1 ,0 ] >;

O24W8:=MatrixGroup<3,Q| [ 0 ,−1 ,0 ,1 ,1 ,1 ,−1 ,0 ,0 ] , [ −1 ,−1 ,0
,0 ,1 ,0 ,0 ,0 ,−1]>;

O24W9:=MatrixGroup<3,Q| [ 0 ,1 ,0 ,−1 ,−1 ,−1 ,1 ,0 , 0 ] , [ 1 ,1 ,0 ,0
,−1 ,0 ,0 ,0 ,1 ] >;

O24W10:=MatrixGroup<3,Q| [ 1 ,1 ,0 ,−2,−1 ,−1 ,0 ,0 ,1 ] , [ −1 ,−1 ,−1
,0 ,0 ,1 ,0 ,1 ,0 ] >;

O24W11:=MatrixGroup<3,Q|[−1 ,−1 ,0 ,2 ,1 ,1 ,0 ,0 , −1 ] , [1 ,1 ,1 ,0
,0 ,−1 ,0 ,−1 ,0 ] >;

O24:= [ [ O24W1 ,O24W2,O24W3 ] , [O24W4,O24W5 ] , [O24W6,O24W7,O24W8,O24W9
,O24W10 ,O24W11 ] ] ;

G24:=[<24 ,13> ,<24 ,14> ,<24 ,12>];

//Order 48
O48W1:=MatrixGroup<3,Q| [ 0 ,0 ,1 ,0 ,1 ,0 ,−1 ,0 ,0 ] , [ −1 ,0 ,0 ,0

,0 ,−1 ,0 ,−1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;
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O48W2:=MatrixGroup<3,Q| [ 0 ,−1 ,0 ,1 ,1 ,1 ,−1 ,0 ,0 ] , [ −1 ,−1 ,0
,0 ,1 ,0 ,0 ,0 ,−1] ,[−1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;

O48W3:=MatrixGroup<3,Q| [ 1 ,1 ,0 ,−2,−1 ,−1 ,0 ,0 ,1 ] , [ −1 ,−1 ,−1
,0 ,0 ,1 ,0 ,1 ,0 ] , [ −1 ,0 ,0 ,0 ,−1 ,0 ,0 ,0 ,−1]>;

O48:= [ [ O48W1 ,O48W2,O48W3 ] ] ;

checkGroups:= procedure ( )
// Checks t h a t the groups are a l l as the paper c la ims
for i :=1 to #O2 do for G in O2[ i ] do printf ( "Group : %o\n\

nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G2[ i ] ,G2 [ i ] ; end for ; end

for ;
for i :=1 to #O3 do for G in O3[ i ] do printf ( "Group : %o\n\

nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G3[ i ] ,G3 [ i ] ; end for ; end

for ;
for i :=1 to #O4 do for G in O4[ i ] do printf ( "Group : %o\n\

nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G4[ i ] ,G4 [ i ] ; end for ; end

for ;
for i :=1 to #O6 do for G in O6[ i ] do printf ( "Group : %o\n\

nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G6[ i ] ,G6 [ i ] ; end for ; end

for ;
for i :=1 to #O8 do for G in O8[ i ] do printf ( "Group : %o\n\

nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G8[ i ] ,G8 [ i ] ; end for ; end

for ;
for i :=1 to #O12 do for G in O12 [ i ] do printf ( "Group : %o\n\

nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G12 [ i ] , G12 [ i ] ; end for ;
end for ;

for i :=1 to #O16 do for G in O16 [ i ] do printf ( "Group : %o\n\
nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G16 [ i ] , G16 [ i ] ; end for ;
end for ;

for i :=1 to #O24 do for G in O24 [ i ] do printf ( "Group : %o\n\
nIdent i t y : %o\n\nSame as Paper Claims : %o , %o\n\n" ) ,G,
Ident i fyGroup (G) , Ident i fyGroup (G) eq G24 [ i ] , G24 [ i ] ; end for ;
end for ;

for i :=1 to #O48 do for G in O48 [ i ] do printf ( "Group : %o\n\
nIdent i t y : %o\n\nSame as Paper Claims : N/A\n\n" ) ,G,
Ident i fyGroup (G) ; end for ; end for ;

end procedure ;
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B.5 Testing the Method of Section 3.3.2 (MAGMA)

The following code is an implementation of the method described in Section 3.3.2.

Q:=Rat iona l s ( ) ;
V:=VectorSpace (Q, 3 ) ;

f :=function (u) return Bas i s (sub<V| u>) [ 1 ] ; end function ;

A:={ f (V! [ a , b , c ] ) : a , b , c in [ − 2 . . 2 ] | [ a , b , c ] ne [ 0 , 0 , 0 ] } ; // nonzero
non−c o l l i n e a r l a t t i c e po in t s

Action:= procedure (Groups : s i z e := [ 2 3 . . 3 1 ] , subs e t s :=0 , rev :=fa l se )
// Groups i s e i t h e r a s i n g l e matrix group , or a sequence o f

matrix groups
// s i z e r e f e r s to the t a r g e t s i z e o f KS s e t to be generated ,

d e f a u l t i s [ 2 3 . . 3 1 ] ( a l s o accep t s s i n g l e i n t e g e r )
// rev dec i de s how the unions o f o r b i t s are i t e r a t e d over ,

d e f a u l t i s to genera te a l l o f them , s e t to t rue f o r
r e v o l v i n g door

// s u b s e t s determines max number o f o r b i t s to combine when
l o o k i n g f o r so l u t i on , d e f a u l t (0) means check a l l s u b s e t s

i f Type (Groups ) ne SeqEnum then Groups:= [ Groups ] ; end i f ;
i f Type ( s i z e ) ne SeqEnum then s i z e := [ s i z e ] ; end i f ;
for G in Groups do

print G, Ident i fyGroup (G) ;

O:={ f ( a∗Transpose (M) ) :M in G} : a in A} ;
Orbits := [ b : b in O| b subset A] ;
printf "Number␣ o f ␣Orbits : ␣%o\n\n" , #Orbits ;
N:=1 ;

while N in [ 1 . . 2^# Orbits −1] do
i f not rev then
N:=0 ; // turn o f f wh i l e loop
i f subse t s eq 0 then

s sOrb i t s :=Subsets ( { i : i in [1 . .# Orb i t s ] } ) ;
else

s sOrb i t s :=&join { Subse t s ({ i : i in [1 . .# Orb i t s ] } , i ) : i in
[ 1 . . sub s e t s ] } ;

end i f ;

U:={&j o i n { Orb i t s [ i ] : i in T} :T in s sOrb i t s |#(& join { Orb i t s [
i ] : i in T} ) gt 22} ; // look f o r a l l unions o f o r b i t s o f

s p e c i f i z e d s i z e ( s )
else
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I := In t s eq (N, 2 ) ;
T:=&join { Orb i t s [ j ] : j in [1 . .# I ] | I [ j ] eq 1} ;
i f #T gt 22 then U:={T} ; else U:={} ; end i f ;
N:=N+1;

end i f ;
for u in U do

O3:={{v ,w, t } : v ,w, t in u d i f f {V! [ 0 , 0 , 0 ] } | {DotProduct ( v ,w)
, DotProduct ( v , t ) , DotProduct (w, t ) } eq {0} } ; //
Orthogonal T r i p l e s

O2:={{v ,w} : v ,w in u d i f f {V! [ 0 , 0 , 0 ] } | DotProduct (v ,w) eq
0 and not exists {C:C in O3 | {v ,w} subset C}} ; //
Orthogonal p a i r s

m:=#O3;
l :=#O2;

i f m ne 0 then // i f t h e r e are no bases , no vec to r needs
to be co loured

Tl:= [ v : v in u | exists {b : b in O3 j o i n O2 | v in b} ] ; // f i n d
v e c t o r s a c t u a l l y used in the or th s e t s

n:=#Tl ;

i f n in s i z e then // check t h a t number o f v e c t o r s i s a t
l e a s t t h a t o f the proved lower bound

R:=RealF ie ld ( ) ;

l h s :=Matrix (R,m+l , n , [ ] ) ;
for i :=1 to m+l do

for j :=1 to n do
i f i l t m+1 then

i f Tl [ j ] in Setseq (O3) [ i ] then
l h s [ i ] [ j ] :=1 ;

else
l h s [ i ] [ j ] :=0 ;

end i f ;
else

i f Tl [ j ] in Setseq (O2) [ i−m] then
l h s [ i ] [ j ] :=1 ;

else
l h s [ i ] [ j ] :=0 ;

end i f ;
end i f ;

end for ;

end for ;
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rhs :=Matrix (R,m+l , 1 , [ 1 ^^ (m+l ) ] ) ;
r e l :=Matrix (R,m+l , 1 , [ 0 ^^ (m) ,(−1) ^^( l ) ] ) ;
obj :=Matrix (R, 1 , n , [ 0 ^^ ( n) ] ) ;

a , b:=MaximalZeroOneSolution ( lhs , r e l , rhs , obj ) ;
else

b:=0 ;
end i f ;

i f b eq 0 then // output the r e s u l t o f the ILP
printf " So lu t i on ␣ Ex i s t s \n\n " ;

e l i f b eq 1 or b eq 4 then
printf " Fa i l u r e " ;

e l i f b eq 2 then
printf " ∗∗ I n f e a s i b l e ␣problem ∗∗\n " ;
printf ( "Number␣ o f ␣Vectors : ␣%o\n\n" ) ,n ;
printf " Vectors : ␣%o\n\nBases : ␣%o\n\n␣Orthogonal ␣ Pa i r s

: ␣%o\n\n" , u , Setseq (O3) , Setseq (O2) ;

e l i f b eq 3 then
printf "Unbounded␣problem " ;

end i f ;

end i f ;
end for ;

end while ;
end for ;

end procedure ;

We also test that the KS pair found by Conway and Kochen has a nontrivial symmetry
group.

Q:=Rat iona l s ( ) ;
V:=VectorSpace (Q, 3 ) ;
Q37 := {V! u : u in [ [ 1 , 1 , 1 ] , [ 1 , 1 , 2 ] , [ 1 , 0 , 2 ] , [1 , −1 ,2] , [0 ,1 , −2] ,

[ 0 , 0 , 1 ] , [ 0 , 1 , 2 ] , [ 0 , 1 , 1 ] , [1 ,1 , −2] , [1 ,0 , −2] , [ −1 ,1 ,2] ,
[1 ,0 , −1] , [ −1 ,1 ,1] , [2 ,1 , −1] , [ 2 , 1 , 0 ] , [ 2 , 1 , 1 ] , [2 ,0 , −1] ,
[ 1 , 0 , 0 ] , [ 2 , 0 , 1 ] , [ 1 , 0 , 1 ] , [1 , −1 ,0] , [1 , −1 ,1] , [ −1 ,2 ,1] ,
[ 0 , 2 , 1 ] , [1 , −2 ,0] , [ 0 , 1 , 0 ] , [ 1 , 1 , 0 ] , [1 , −2 ,1] , [0 ,2 , −1] ,
[0 ,1 , −1] , [1 ,1 , −1] , [2 , −1 ,0] , [ 1 , 2 , 0 ] , [ −2 ,1 ,1] , [1 ,2 , −1] ,
[ 1 , 2 , 1 ] , [2 , −1 ,1 ] ] } ;

//Conway−Kochen Set
CK:= Q37 d i f f {V! u : u in [ [2 , −1 ,0 ] , [ 1 , 2 , 0 ] , [ −2 ,1 ,1] , [1 ,2 , −1] ,

[ 1 , 2 , 1 ] , [2 , −1 ,1 ] ] } ;

G:=MatrixGroup<3,Q| [0 , −1 ,0 ,1 ,0 , 0 , 0 ,0 , −1 ] , [ 1 , 0 ,0 , 0 , 1 , 0 , 0 ,0 , −1 ] >;
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for M in G do {sub<V| v∗Transpose (M) >:v in CK} eq {sub<V| v>:v in
CK} ; end for ;

B.6 Paley Hadamard Matrices (MAGMA)

The following MAGMA code gives an explicit construction for the Paley Hadamard matrices
(Theorem 1.4.8).

X := function (K, q )
sq:={x ^2: x in K} d i f f {K!0 } ;
i f q eq K!0 then

return 0 ;
e l i f q in sq then

return 1 ;
else

return −1;
end i f ;

end function ;
Paley := function ( q ) ;

i f IsOdd (q ) and IsPrimePower (q ) then
printf " \nq=%o␣␣␣␣␣␣q␣mod␣8=%o\n" ,q , q mod 8 ;

Fq:=GF(q ) ;
Fql:=SetToSequence ( Set (Fq) ) ;

Q:=Matrix ( Rat iona l s ( ) , q , q , [ ] ) ;
for i :=1 to q do

for j :=1 to q do
Q[ i , j ] :=X(Fq , Fql [ j ]−Fql [ i ] ) ;

end for ;
end for ;
C:= Ver t i c a l J o i n (Matrix ( Rat iona l s ( ) , 1 , q+1 , [0 ,1^^(q ) ] ) ,

Hor i zonta lJo in (Matrix ( Rat iona l s ( ) , q , 1 , [ 1^^ q ] ) ,Q) ) ;
I := Matrix ( Rat iona l s ( ) , q+1,q+1 , [ ] ) ;
for i :=1 to q+1 do

for j :=1 to q+1 do
i f i eq j then

I [ i , j ] :=1 ;
else

I [ i , j ] :=0 ;
end i f ;

end for ;
end for ;
i f ( q mod 4) eq 3 then

for i :=2 to q+1 do
C[ i , 1 ] :=−1;

end for ;
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H:= I+C;
e l i f ( q mod 4) eq 1 then

H1:= I+C;
H2:=−I+C;
H3:=H2 ;
H4:=−I−C;

H:= Ver t i c a l J o i n ( Hor i zonta lJo in (H1 ,H2) , Hor i zonta lJo in
(H3 ,H4) ) ;

end i f ;
assert IsHadamard (H) ;
return H;

end i f ;
return 0 ;

end function ;

B.7 KS Pairs from Cortez–Reyes Construction (MAGMA)

The following is MAGMA [7] code which computes the well-signed vectors within Q(N, e),
as defined in Section 3.3.1, then determines whether they may be used to form a KS pair.

q:=function ( v )
return &+[k^2: k in Elt seq (v ) ] ;

end function ;

wsVecs:= function ( k )
// re turns the l i s t o f we l l −s i gned i n t e g e r v e c t o r s wi th q ( v )=k
V:=VectorSpace ( Rat iona l s ( ) , 3 ) ;

return {V! [ a , b , c ] : a , b , c in [−Floor ( Sqr t ( k ) ) . . Floor ( Sqr t ( k ) ) ] | q
( [ a , b , c ] ) eq k and ( ( ( a eq 0 and b eq 0 and c g t 0) or ( a eq
0 and b g t 0 and c eq 0) or ( a g t 0 and b eq 0 and c eq 0) )
or ( ( a eq 0 and b g t 0 and c ne 0) or ( b eq 0 and a g t 0

and c ne 0) or ( c eq 0 and a g t 0 and b ne 0) ) or ( ( a∗b∗c ne
0) and (( a g t 0 and b g t 0 ) or ( a g t 0 and c g t 0) or ( b
g t 0 and c g t 0) ) ) ) } ;

end function ;

vecLP:= procedure ( z , p )
//N i s a square−f r e e i n t e g e r
//p i s the maximum exponent
printf "N=%o\nExp=%o\n" , z , p ;
Q:= [ wsVecs (d) : d in Div i s o r s ( z^p) ] ;
S l := SetToSequence(& join Q) ;
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O3 := SetToSequence ( {{v ,w, u} : v ,w, u in Sl | DotProduct (v ,w) eq 0
and DotProduct (w, u) eq 0 and DotProduct (v , u ) eq 0}) ; //
or thogona l t r i p l e s

O2 := SetToSequence ( {{v ,w} : v ,w in Sl | DotProduct (v ,w) eq 0 and
not exists {b : b in O3 | v in b and w in b} }) ; // or thogona l

pa i r s
n:=#Sl ;
m:=#O3; //number bases
l :=#O2;
O2Nl:=SetToSequence ( {{ Index ( Sl , v ) : v in O2[ j ] } : j in [ 1 . . l ] } ) ;
O3N:={{ Index ( Sl , v ) : v in O3[ j ] } : j in [ 1 . .m] } ; // conver t s v e c t o r s

to d i s t i n c t i n t e g e r s
O3Nl:=SetToSequence (O3N) ;
printf "Number␣ o f ␣ bases : ␣%o\nNumber␣ o f ␣ ve c t o r s / codewords : ␣%o\

nNumber␣ o f ␣Orth␣Pa i r s : ␣%o\n" ,m, n , l ;

//ILP
R:=RealF ie ld ( ) ;
l h s :=Matrix (R,m+l , n , [ ] ) ;

for i :=1 to m+l do
for j :=1 to n do

i f i l t m+1 then
i f Sl [ j ] in O3[ i ] then

l h s [ i ] [ j ] :=1 ;
else

l h s [ i ] [ j ] :=0 ;
end i f ;

else
i f Sl [ j ] in O2[ i−m] then

l h s [ i ] [ j ] :=1 ;
else

l h s [ i ] [ j ] :=0 ;
end i f ;

end i f ;
end for ;

end for ;
rhs :=Matrix (R,m+l , 1 , [ 1 ^^ (m+l ) ] ) ;
r e l :=Matrix (R,m+l , 1 , [ 0 ^^ (m) ,(−1) ^^( l ) ] ) ;
obj :=Matrix (R, 1 , n , [ 0 ^^ ( n) ] ) ;
a , b:=MaximalZeroOneSolution ( lhs , r e l , rhs , obj ) ;

i f b eq 0 then // output the r e s u l t o f the ILP
printf " So lu t i on ␣ Ex i s t s \n\n " ; // " Optimal So lu t i on :\ n%o " , a ;

e l i f b eq 1 or b eq 4 then
printf " Fa i l u r e " ;

e l i f b eq 2 then
printf " ∗∗ I n f e a s i b l e ␣problem ∗∗\n " ;
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printf " Bases : ␣%o\n\n␣Orthogonal ␣ Pa i r s : ␣%o\n\n" ,O3Nl , O2Nl ;
e l i f b eq 3 then

printf "Unbounded␣problem " ;
end i f ;

end procedure ;

main:=procedure ( e )
for i :=1 to 10^3 do

i f I s Squa r e f r e e ( i ) and i mod 6 eq 0 then
vecLP ( i , e ) ;

end i f ;
end for ;

end procedure ;

The following code gives explicitly the vectors forming the new KS pairs presented in Sec-
tion 3.3.1, as well as the existing pairs of Cortez–Reyes and Conway–Kochen.

V:=VectorSpace ( Rat iona l s ( ) , 3 ) ;

Q37 := {V! u : u in [ [ 1 , 1 , 1 ] , [ 1 , 1 , 2 ] , [ 1 , 0 , 2 ] , [1 , −1 ,2] , [0 ,1 , −2] ,
[ 0 , 0 , 1 ] , [ 0 , 1 , 2 ] , [ 0 , 1 , 1 ] , [1 ,1 , −2] , [1 ,0 , −2] , [ −1 ,1 ,2] ,

[1 ,0 , −1] , [ −1 ,1 ,1] , [2 ,1 , −1] , [ 2 , 1 , 0 ] , [ 2 , 1 , 1 ] , [2 ,0 , −1] ,
[ 1 , 0 , 0 ] , [ 2 , 0 , 1 ] , [ 1 , 0 , 1 ] , [1 , −1 ,0] , [1 , −1 ,1] , [ −1 ,2 ,1] ,
[ 0 , 2 , 1 ] , [1 , −2 ,0] , [ 0 , 1 , 0 ] , [ 1 , 1 , 0 ] , [1 , −2 ,1] , [0 ,2 , −1] ,
[0 ,1 , −1] , [1 ,1 , −1] , [2 , −1 ,0] , [ 1 , 2 , 0 ] , [ −2 ,1 ,1] , [1 ,2 , −1] ,
[ 1 , 2 , 1 ] , [2 , −1 ,1 ] ] } ;

//Conway−Kochen Set
CK:= Q37 d i f f {V! u : u in [ [2 , −1 ,0 ] , [ 1 , 2 , 0 ] , [ −2 ,1 ,1] , [1 ,2 , −1] ,

[ 1 , 2 , 1 ] , [2 , −1 ,1 ] ] } ;

// Other s i z e 31 s e t s
Q31a:=Q37 d i f f {V! u : u in [ [ 1 , 0 , 2 ] , [2 ,0 , −1] , [1 , −1 ,2] , [ −2 ,1 ,1] ,

[2 ,1 , −1] , [ 1 , 1 , 2 ] ] } ;
Q31b:=Q37 d i f f {V! u : u in [ [1 ,0 , −2 ] , [ 2 , 0 , 1 ] , [ −1 ,1 ,2] , [2 , −1 ,1] ,

[ 2 , 1 , 1 ] , [1 ,1 , −2] ] } ;
Q31c:=Q37 d i f f {V! u : u in [ [ 0 , 1 , 2 ] , [0 ,2 , −1] , [1 , −2 ,1] , [1 ,2 , −1] ,

[ −1 ,1 ,2] , [ 1 , 1 , 2 ] ] } ;
Q31d:=Q37 d i f f {V! u : u in [ [ 2 , 1 , 0 ] , [1 , −2 ,0] , [2 ,1 , −1] , [ −1 ,2 ,1] ,

[1 , −2 ,1] , [ 2 , 1 , 1 ] ] } ;
Q31e:=Q37 d i f f {V! u : u in [ [0 ,1 , −2 ] , [ 0 , 2 , 1 ] , [1 , −1 ,2] , [ −1 ,2 ,1] ,

[1 ,1 , −2] , [ 1 , 2 , 1 ] ] } ;

// Cortez−Reyes s e t
Q85:={V! u : u in [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] , [ 1 , 1 , 0 ] , [ 1 ,

0 , 1 ] , [ 0 , 1 , 1 ] , [ 1 , −1, 0 ] , [ 1 , 0 , −1] , [ 0 , 1 , −1] , [ 1 , 1 ,
1 ] , [ 1 , 1 , −1] , [ 1 , −1, 1 ] , [ −1 , 1 , 1 ] , [ 1 , 1 , 2 ] , [ 1 , 2 , 1 ] ,
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[ 2 , 1 , 1 ] , [ −1 , 1 , 2 ] , [ −1 , 2 , 1 ] , [ −2 , 1 , 1 ] , [ 1 , −1, 2 ] , [ 1 ,
−2, 1 ] , [ 2 , −1, 1 ] , [ 1 , 1 , −2] , [ 1 , 2 , −1] , [ 2 , 1 , −1] , [ 1 ,

2 , 4 ] , [ 1 , 4 , 2 ] , [ 2 , 1 , 4 ] , [ 2 , 4 , 1 ] , [ 4 , 1 , 2 ] , [ 4 , 2 , 1 ] ,
[ −1 , 2 , 4 ] , [ −1 , 4 , 2 ] , [ −2 , 1 , 4 ] , [ −2 , 4 , 1 ] , [ −4 , 1 , 2 ] ,
[ −4 , 2 , 1 ] , [ 1 , −2, 4 ] , [ 1 , −4, 2 ] , [ 2 , −1, 4 ] , [ 2 , −4, 1 ] ,
[ 4 , −1, 2 ] , [ 4 , −2, 1 ] , [ 1 , 2 , −4] , [ 1 , 4 , −2] , [ 2 , 1 , −4] ,
[ 2 , 4 , −1] , [ 4 , 1 , −2] , [ 4 , 2 , −1] , [ 2 , 2 , 5 ] , [ 2 , 5 , 2 ] , [ 5 ,
2 , 2 ] , [ −2 , 2 , 5 ] , [ −2 , 5 , 2 ] , [ −5 , 2 , 2 ] , [ 2 , −2, 5 ] , [ 2 , −5,

2 ] , [ 5 , −2, 2 ] , [ 2 , 2 , −5] , [ 2 , 5 , −2] , [ 5 , 2 , −2] , [ 2 , 3 ,
8 ] , [ 2 , 8 , 3 ] , [ 3 , 2 , 8 ] , [ 3 , 8 , 2 ] , [ 8 , 2 , 3 ] , [ 8 , 3 , 2 ] ,
[ −2 , 3 , 8 ] , [ −2 , 8 , 3 ] , [ −3 , 2 , 8 ] , [ −3 , 8 , 2 ] , [ −8 , 2 , 3 ] ,
[ −8 , 3 , 2 ] , [ 2 , −3, 8 ] , [ 2 , −8, 3 ] , [ 3 , −2, 8 ] , [ 3 , −8, 2 ] ,
[ 8 , −2, 3 ] , [ 8 , −3, 2 ] , [ 2 , 3 , −8] , [ 2 , 8 , −3] , [ 3 , 2 , −8] ,
[ 3 , 8 , −2] , [ 8 , 2 , −3] , [ 8 , 3 , −2]] } ;

//minimal s u b s e t o f S(462)
Q57:={V! u : u in [ [ −8 ,3 ,2 ] , [ 8 , 3 , 2 ] , [ −1 ,4 ,2] , [ 1 , 4 , 2 ] , [1 ,4 , −2] ,

[8 ,3 , −2] , [5 ,2 , −2] , [1 ,2 , −1] , [3 , −8 ,2] , [2 ,2 , −5] , [2 , −8 ,3] ,
[4 ,1 , −2] , [2 ,1 , −1] , [1 ,1 , −1] , [0 ,1 , −1] , [1 , −1 ,0] , [2 , −1 ,1] ,
[4 , −1 ,2] , [1 ,1 , −2] , [ −2 ,8 ,3] , [1 , −1 ,1] , [2 ,1 , −4] , [1 , −1 ,2] ,
[ 1 , 0 , 0 ] , [ 0 , 0 , 1 ] , [2 , −1 ,4] , [ −3 ,8 ,2] , [ 1 , 0 , 1 ] , [ 3 , 8 , 2 ] ,
[ 2 , 8 , 3 ] , [1 ,0 , −1] , [5 , −2 ,2] , [3 ,8 , −2] , [2 ,8 , −3] , [ −2 ,1 ,4] ,
[1 , −2 ,1] , [ −1 ,1 ,2] , [ 0 , 1 , 0 ] , [ 1 , 1 , 0 ] , [ −1 ,1 ,1] , [ 0 , 1 , 1 ] ,
[ −2 ,1 ,1] , [ −4 ,1 ,2] , [ 1 , 1 , 1 ] , [ 2 , 1 , 1 ] , [2 , −2 ,5] , [ 1 , 1 , 2 ] ,
[ 4 , 1 , 2 ] , [8 , −3 ,2] , [ 2 , 1 , 4 ] , [ −2 ,2 ,5] , [ −1 ,2 ,1] , [ 1 , 2 , 1 ] ,
[ −5 ,2 ,2] , [ 5 , 2 , 2 ] , [ 2 , 2 , 5 ] , [1 , −4 ,2 ] ] } ;

//minimal s u b s e t o f S(714)
Q65 := {V! u : u in [ [1 , −4 ,5 ] , [4 ,5 , −1] , [ −1 ,4 ,5] , [4 , −5 ,1] ,

[1 ,5 , −4] , [ 1 , 4 , 0 ] , [1 , −5 ,4] , [ 1 , 4 , 5 ] , [ −1 ,5 ,4] , [1 ,4 , −5] ,
[ −4 ,5 ,1] , [ 4 , 5 , 1 ] , [ 1 , 5 , 4 ] , [2 ,3 , −1] , [3 ,2 , −1] , [1 ,2 , −1] ,
[4 , −1 ,0] , [2 ,1 , −1] , [3 ,1 , −2] , [1 ,1 , −1] , [0 ,1 , −1] , [1 , −1 ,0] ,
[2 , −1 ,1] , [1 ,1 , −2] , [3 , −1 ,2] , [2 ,1 , −3] , [1 , −1 ,1] , [1 , −1 ,2] ,
[4 ,1 , −5] , [ 1 , 0 , 0 ] , [2 , −1 ,3] , [ 0 , 0 , 1 ] , [4 , −1 ,5] , [ 1 , 0 , 1 ] ,
[ 4 , 0 , 1 ] , [4 ,0 , −1] , [ 1 , 0 , 4 ] , [1 ,0 , −1] , [3 , −2 ,1] , [ −4 ,1 ,5] ,
[1 , −2 ,1] , [ −2 ,1 ,3] , [ −1 ,1 ,2] , [ 0 , 1 , 0 ] , [1 ,0 , −4] , [ 1 , 1 , 0 ] ,
[ −1 ,1 ,1] , [ −3 ,1 ,2] , [ 0 , 1 , 1 ] , [ −2 ,1 ,1] , [ 1 , 1 , 1 ] , [ 2 , 1 , 1 ] ,
[ 4 , 1 , 0 ] , [ 1 , 1 , 2 ] , [ 3 , 1 , 2 ] , [ 2 , 1 , 3 ] , [2 , −3 ,1] , [ 4 , 1 , 5 ] ,
[ −1 ,2 ,1] , [ 1 , 2 , 1 ] , [ −3 ,2 ,1] , [ 3 , 2 , 1 ] , [1 , −4 ,0] , [ −2 ,3 ,1] ,
[ 2 , 3 , 1 ] ] } ;

B.8 Computing Projectivies

The following is a function which computes the projective symmetries (projectivies) of a set
of rational points.
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Q3:=VectorSpace ( Rat iona l s ( ) , 3 ) ;

Q37 := {Q3! u : u in [ [ 1 , 1 , 1 ] , [ 1 , 1 , 2 ] , [ 1 , 0 , 2 ] , [1 , −1 ,2] ,
[0 ,1 , −2] , [ 0 , 0 , 1 ] , [ 0 , 1 , 2 ] , [ 0 , 1 , 1 ] , [1 ,1 , −2] , [1 ,0 , −2] ,
[ −1 ,1 ,2] , [1 ,0 , −1] , [ −1 ,1 ,1] , [2 ,1 , −1] , [ 2 , 1 , 0 ] , [ 2 , 1 , 1 ] ,
[2 ,0 , −1] , [ 1 , 0 , 0 ] , [ 2 , 0 , 1 ] , [ 1 , 0 , 1 ] , [1 , −1 ,0] , [1 , −1 ,1] ,
[ −1 ,2 ,1] , [ 0 , 2 , 1 ] , [1 , −2 ,0] , [ 0 , 1 , 0 ] , [ 1 , 1 , 0 ] , [1 , −2 ,1] ,
[0 ,2 , −1] , [0 ,1 , −1] , [1 ,1 , −1] , [2 , −1 ,0] , [ 1 , 2 , 0 ] , [ −2 ,1 ,1] ,
[1 ,2 , −1] , [ 1 , 2 , 1 ] , [2 , −1 ,1 ] ] } ;

//Conway−Kochen Set
CK:= Q37 d i f f {Q3| [2 , −1 ,0 ] , [ 1 , 2 , 0 ] , [ −2 ,1 ,1] , [1 ,2 , −1] , [ 1 , 2 , 1 ] ,

[2 , −1 ,1] } ;
Q85:={Q3! u : u in [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] , [ 1 , 1 , 0 ] , [ 1 ,

0 , 1 ] , [ 0 , 1 , 1 ] , [ 1 , −1, 0 ] , [ 1 , 0 , −1] , [ 0 , 1 , −1] , [ 1 , 1 ,
1 ] , [ 1 , 1 , −1] , [ 1 , −1, 1 ] , [ −1 , 1 , 1 ] , [ 1 , 1 , 2 ] , [ 1 , 2 , 1 ] ,
[ 2 , 1 , 1 ] , [ −1 , 1 , 2 ] , [ −1 , 2 , 1 ] , [ −2 , 1 , 1 ] , [ 1 , −1, 2 ] , [ 1 ,
−2, 1 ] , [ 2 , −1, 1 ] , [ 1 , 1 , −2] , [ 1 , 2 , −1] , [ 2 , 1 , −1] , [ 1 ,

2 , 4 ] , [ 1 , 4 , 2 ] , [ 2 , 1 , 4 ] , [ 2 , 4 , 1 ] , [ 4 , 1 , 2 ] , [ 4 , 2 , 1 ] ,
[ −1 , 2 , 4 ] , [ −1 , 4 , 2 ] , [ −2 , 1 , 4 ] , [ −2 , 4 , 1 ] , [ −4 , 1 , 2 ] ,
[ −4 , 2 , 1 ] , [ 1 , −2, 4 ] , [ 1 , −4, 2 ] , [ 2 , −1, 4 ] , [ 2 , −4, 1 ] ,
[ 4 , −1, 2 ] , [ 4 , −2, 1 ] , [ 1 , 2 , −4] , [ 1 , 4 , −2] , [ 2 , 1 , −4] ,
[ 2 , 4 , −1] , [ 4 , 1 , −2] , [ 4 , 2 , −1] , [ 2 , 2 , 5 ] , [ 2 , 5 , 2 ] , [ 5 ,
2 , 2 ] , [ −2 , 2 , 5 ] , [ −2 , 5 , 2 ] , [ −5 , 2 , 2 ] , [ 2 , −2, 5 ] , [ 2 , −5,

2 ] , [ 5 , −2, 2 ] , [ 2 , 2 , −5] , [ 2 , 5 , −2] , [ 5 , 2 , −2] , [ 2 , 3 ,
8 ] , [ 2 , 8 , 3 ] , [ 3 , 2 , 8 ] , [ 3 , 8 , 2 ] , [ 8 , 2 , 3 ] , [ 8 , 3 , 2 ] ,
[ −2 , 3 , 8 ] , [ −2 , 8 , 3 ] , [ −3 , 2 , 8 ] , [ −3 , 8 , 2 ] , [ −8 , 2 , 3 ] ,
[ −8 , 3 , 2 ] , [ 2 , −3, 8 ] , [ 2 , −8, 3 ] , [ 3 , −2, 8 ] , [ 3 , −8, 2 ] ,
[ 8 , −2, 3 ] , [ 8 , −3, 2 ] , [ 2 , 3 , −8] , [ 2 , 8 , −3] , [ 3 , 2 , −8] ,
[ 3 , 8 , −2] , [ 8 , 2 , −3] , [ 8 , 3 , −2]] } ;

L:=function (P,Q)
a:= Coordinates ( VectorSpaceWithBasis ( [P [ i ] : i in [ 1 . . 3 ] ] ) ,

P [ 4 ] ) ;
b:= Coordinates ( VectorSpaceWithBasis ( [Q[ i ] : i in [ 1 . . 3 ] ] ) ,

Q[ 4 ] ) ;

A:= Matrix ( Rat iona l s ( ) ,3 ,3 ,& cat [ E l t s eq (P[ i ] ) : i in
[ 1 . . 3 ] ] ) ;

Ainv:=A^(−1) ;
B:= Matrix ( Rat iona l s ( ) ,3 ,3 ,& cat [ E l t s eq (b [ i ] / a [ i ]∗Q[ i ] ) : i

in [ 1 . . 3 ] ] ) ;

return Ainv∗B;
end function ;

AG := function (V:mem:=fa l se )
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i f not mem then // opt ion worse on memory
// f i n d s 4−s eq s such t h a t a l l i t s 3− s u b s e t s are L .

I .
M:={U: U in Permutations (V, 4 ) | f o r a l l {T:T in

Subse t s ( Set (U) ,3) | Rank( Matrix ( Rat iona l s ( )
,3 ,3 ,& cat [ E l t s e q ( t ) : t in T] ) ) eq 3} } ;

print " Finding ␣ gene ra to r s \n " ;
//random f i x e d frame
P:=Random(M) ;

gen:={} ;

for Q in M do
T:=L(P,Q) ;
i f {sub<Q3 | p∗T>:p in V} eq {sub<Q3 | p>: p

in V} then gen:= gen join {T} ; printf "
%o\n\n" ,T; end i f ;

end for ;

else

repeat P:={Random(V) : i in [ 1 . . 4 ] } ; until #P eq 4
and f o r a l l {T:T in Subse t s (P, 3 ) | Rank( Matrix (
Rat iona l s ( ) ,3 ,3 ,& cat [ E l t s e q ( t ) : t in T] ) ) eq 3}
;

print " Finding ␣ gene ra to r s \n " ;

P:=Setseq (P) ;
gen:={} ;
V:=Setseq (V) ;

for a , b , c , d in V do
i f #{a , b , c , d} eq 4 and f o r a l l {T:T in

Subse t s ( Set ( [ a , b , c , d ] ) ,3) | Rank( Matrix (
Rat iona l s ( ) ,3 ,3 ,& cat [ E l t s e q ( t ) : t in T
] ) ) eq 3} then

T:=L(P, [ a , b , c , d ] ) ;
i f {sub<Q3 | p∗T>:p in V} eq {sub<

Q3 | p>: p in V} then
gen:= gen join {T} ;
printf "%o\n\n" ,T;

end i f ;
end i f ;

end for ;
end i f ;
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G:=sub<GL(3 , Rat iona l s ( ) ) | gen>;

printf " smal l ␣group␣ type␣%o\n" , Ident i fyGroup (G) ;
return G;

end function ;

AG(CK) ;

// t e s t
/∗ P:=Random(M) ;
Q:=Random(M d i f f {P}) ;

p r i n t f " Set P:\ n%o\n " ,P;
p r i n t f " Set Q:\ n%o\n " ,Q;
p r i n t f " Linear Transformation :\ n%o\n " ,L(P,Q) ;

P:=Se t s eq (P) ;
a:= Coordinates ( VectorSpaceWithBasis ( [P[ i ] : i in [ 1 . . 3 ] ] ) ,P [ 4 ] ) ;
p r i n t f "P [ 4 ] eq sum P[ i ] %o\n " ,P [ 4 ] eq &+{a [ i ]∗P[ i ] : i in [ 1 . . 3 ] } ;
Q:=Se t s eq (Q) ;
b:= Coordinates ( VectorSpaceWithBasis ( [Q[ i ] : i in [ 1 . . 3 ] ] ) ,Q[ 4 ] ) ;
p r i n t f "Q[ 4 ] eq sum Q[ i ] %o\n " ,Q[ 4 ] eq &+{b [ i ]∗Q[ i ] : i in [ 1 . . 3 ] } ;

f o r i in [ 1 . . 3 ] do p r i n t f "L(P[%o ] ) eq b[%o ]/ a[%o ]∗Q[%o ] %o\n " , i , i
, i , i ,P[ i ]∗L( Set (P) , Set (Q) ) eq b [ i ] / a [ i ]∗Q[ i ] ; end f o r ; ∗/
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