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Abstract

The National Hockey League (NHL) Entry Draft has been an active area of research in
hockey analytics over the past decade. Prior research has explored predictive modelling
for draft results using player information and statistics as well as ranking data from draft
experts. In this project, we develop a new modelling framework for this problem using
a Bayesian rank-ordered logit model based on draft ranking data obtained from industry
experts between 2019 and 2022. This model builds upon previous approaches by incorpo-
rating team tendencies and needs, addressing within-ranking dependence between players,
and solving various other challenges of working with rank-ordered outcomes such as incor-
porating both unranked players and rankings that only consider a subset of the available
pool of players (i.e., North American skaters, European goalies, etc.).

Keywords: Bayesian analysis; sports analytics; rank-ordered logit; multinomial logit; Na-
tional Hockey League; entry draft
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Chapter 1

Introduction

Over the past two decades, the National Hockey League (NHL) has imposed a hard salary
cap to limit player salaries and control a team’s ability to retain and add talented players
in an e�ort to enforce competitive balance throughout the league. This has forced teams to
become increasingly savvy in how they allocate resources. The NHL has three main outlets
where a team can add, lose or maintain talent: free agency, trades, and the entry draft. Ac-
quiring players through free agency or trades can often be an expensive endeavour costing
valuable cap dollars or assets. On the other hand, the entry draft is a low-cost, high-upside
way to find and develop NHL-level talent.

The entry draft is an annual event held by the NHL where teams take turns selecting
the world’s best young, prospective hockey players in an e�ort to disperse incoming talent
throughout the league. The order of the draft is predominantly determined by the reverse
order of the standings to ensure that the worst teams from the previous season have the
best chance at improving their roster. The draft lasts 7 rounds and each round consists of
32 picks - one for each team. However, there are many wrinkles that may a�ect the draft or-
der such as trades, playo� results, compensatory picks, and the NHL draft lottery. Knappe
(2022) provides a primer for the rules and setup of the NHL draft.

Every NHL team employs a department of scouts to identify and evaluate the top draft-
eligible players throughout the season and inform the team’s draft selections each year. To
strategize and obtain the players they desire, teams make assumptions on how long a player
will remain unselected during the draft. They must dynamically consider how the observed
selections and upcoming selectors a�ect the chances that a player will remain available by
their next pick.

As an interesting demonstration of the strategy involved in NHL draft decision-making,
let’s go back to the 2021 draft when the Dallas Stars were positioned to select next with
the 15th overall pick. Rather than making a selection, the Stars opted to trade the 15th pick
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to the Detroit Red Wings in return for the 23rd, 48th, and 138th picks. With the 23rd pick,
the Stars chose Wyatt Johnston, a Toronto native who had not played any league hockey
in the season leading up to the draft due to COVID-19 restrictions in Ontario. At the time,
Johnston was ranked 16th among draft-eligible North American Skaters by NHL Central
Scouting with other draft experts providing a wide range of where he ranked overall, fluc-
tuating from 20th to 125th.

Following the draft, the Stars’ general manager, Jim Nill, claimed that “[Johnston] was
the best player that we had on the board at that time... The other teams that picked before
us took players that we had ranked lower than he was” (Nill, 2021). If they believed John-
ston had the potential to become a star player in the NHL, then was it worth it to defer
from pick 15 down to 23 and acquire the two additional draft picks from Detroit?

The objective of this project is to estimate the probability that any draft-eligible player
will be selected at any upcoming draft pick. Additionally, the modelling framework we pro-
pose can go beyond this to answer various questions related to the NHL draft. For example,
what is the probability that a player will be available at a given pick, such as the case
of Wyatt Johnston lasting until pick 23? How does the probability that a player will be
selected at each pick change as each new draft pick is made? Which qualities do NHL teams
and draft experts value in players and how do these values di�er between teams and draft
experts? Which draft experts’ rankings best align with the tendencies of NHL teams?

Previous research related to the NHL entry draft has predominantly focused on the
success of draft selections at the NHL level either through retrospective analysis of past
draft selections or building predictive models in an attempt to estimate the level of success
prospects will have in their career. Tingling (2017) provides a brief history of drafts in
major league sports and a review of research related to the NHL draft. Schuckers (2011)
and Tulsky (2013) use historical draft results, player statistics, and draft pick trades to
estimate relative pick value. Both find that the value of draft picks have an exponential
decaying pattern in the NHL draft (e.g., the decrease in value from the 1st pick to the 2nd

pick is much greater than the decrease from the 101st pick to the 102nd pick). Nandakumar
(2017) conducts a retrospective analysis of how well teams performed in the draft by com-
paring their realized draft results to what a ‘perfect draft’ would look like given the draft
capital they had available to them and the future NHL performance of players available in
the draft class. Li (2019) uses data from the NHL combine - an annual fitness assessment
of draft-eligible players - to look at the relationship between combine results, draft stock,
and success at the NHL level. The models found positive relationships between lower-body
strength and draft stock as well as aerobic and anaerobic fitness and NHL success.
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A subset of the research surrounding major league sports drafts has explored predictive
modelling approaches for the outcome of the draft with the goal of answering the ques-
tions we have proposed in this project. ESPN Analytics (2022) have developed a model to
predict the probability that a player is available at a given pick in the National Football
League (NFL) draft; however, their methodology remains private. Burke (2014) and Sp-
rigings (2016) both discuss the foundations of this model at a high-level. It is a Bayesian
model based on consensus player rankings and projections from individual experts with
weightings for each expert based on historical accuracy. Robinson (2020) uses a Bayesian
gamma regression based on mock draft data from draft experts, fans, and media in the NFL
to estimate the probability that a player will be available by a given pick.

This project looks to build upon these previous approaches with a Bayesian rank-ordered
logit (ROL) model. The ROL model is a sequence of conditional multinomial logit (MNL)
models used to model rank-ordered outcomes. The framework we propose addresses within-
ranking dependence to allow updated selection probabilities after each new pick. Addition-
ally, it provides natural solutions for incorporating unranked players and ranking sets that
contain a subset of the available pool of draft-eligible players such as NHL Central Scouting
- which breaks down their rankings into four categories: North American skaters, North
American goalies, European skaters, and European goalies. Finally, it accounts for di�er-
ences between NHL teams and draft experts by leveraging previous years’ expert rankings
and draft results to estimate team and expert-specific e�ects. This provides key strategic
insights into other teams’ draft tendencies and adjusts predictions to align with the tenden-
cies of NHL teams as opposed to draft experts.

Rank-ordered logit models and multinomial logit models, although scarcely applied to
hockey, have had many applications within sport and other domains. Tea & Swartz (2022)
use a Bayesian MNL model to estimate probabilities of serve placements in tennis. Gerber
& Craig (2021) also use a Bayesian MNL model to predict plate appearance outcomes and
project batter performance over a season in Major League Baseball (MLB).

The rank-ordered logit model - also referred to as the Plackett-Luce or exploded logit
model - was originally developed by Plackett (1975) who leveraged the multinomial choice
logit model proposed by Luce (1959) to model rank-ordered outcomes. Many of the applica-
tions of ROL models in sport have involved racing sports including horse racing (Bolton &
Chapman, 1986; Lo & Bacon-Shone, 1994; Ali, 1998; Johnson, 2010) and automobile racing
(Graves et al., 2003; Guiver & Snelson, 2009; Anderson, 2014). More recently, the focus of
ROL models in sport have accounted for changes in player abilities over time. Glickman &
Hennessy (2015) develop a stochastic ROL model to predict the outcome of multicompetitor
competitions while allowing for changes in competitor abilities over time with applications
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to women’s alpine data.

We begin in Chapter 2 by describing the data collected for this project, defining im-
portant terminology related to our model, and reviewing the multinomial logit model. In
Chapter 3, we define our ROL model specifically designed for the case of the NHL draft.
We define a base ROL model and propose enhancements to this model to account for un-
ranked players, subset rankings, and team tendencies. Chapter 4 explores the interesting
results and insights obtained from applying our model to the 2019 to 2022 NHL drafts.
We demonstrate the e�ect of incorporating team and expert tendencies into the model, ex-
plore di�erences between teams and experts, and determine how much of a risk the Dallas
Stars took by trading down from pick 15 to 23 in acquiring Wyatt Johnston. Additionally,
we investigate model evaluation techniques to compare with previous approaches to this
problem. We conclude with a short discussion of the implications of our work and future
directions that can be taken in Chapter 5.
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Chapter 2

Background

2.1 Data

In multicompetitor sports, athletes typically compete in many events each year that can be
used to fit the ROL model and predict the outcome of future events. On the other hand,
the NHL draft only occurs once per year and each draft involves an entirely di�erent pool
of players available to be selected.

Due to the popularity of the draft among NHL fans, there exists a market for draft ex-
perts who spend hours producing media content related to the NHL draft including ordered
lists which rank the top draft-eligible players. These draft experts are typically employed by
sports media networks such as TSN and Sportsnet or websites that produce hockey-related
content such as Elite Prospects, Dobber Hockey, and The Hockey News. We leverage these
expert rankings along with NHL draft results from previous years to compensate for the
fact that we have no true realizations of the draft results until the actual NHL draft occurs.

We will refer to the draft experts from media networks and hockey websites that provide
rankings for the NHL draft hereinafter as ‘agencies’. Additionally, we will refer to each set
of ranked players provided by an agency hereinafter as a ‘ranking set’ and the observed
results from the NHL draft in a given year as the ‘draft results’.

The data used to fit our model includes draft results and ranking sets from the 2019-
2022 NHL drafts as well as player information for every draft-eligible player that appears
in at least one ranking set or draft result. Each ranking set contains both the rank ordering
of players provided by the agency along with the full set of players that were available to
be ranked, regardless of whether they were ranked or not by the agency. We obtained this
data through a mixture of web scraping with Python Selenium and manual data entry.
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The draft is typically held each year between June 20th and 30th. We only consider the
final ranking set by each agency prior to the draft in our model. This provides us with 14,
17, 22, and 22 ranking sets in each draft year from 2019 to 2022, respectively. Additionally,
all ranking sets published before May 1st are used to set the prior distribution for our model
with an empirical Bayes approach as outlined in 3.5.1 and Appendix B.

2.2 Notation

The notation required to express the ROL model proposed in this project involves many
nested subscripts. To make the model easier to digest, we use two di�erent types of notation
throughout the paper for di�erent purposes. When we wish to illustrate how the model is
structured, we use notation in terms of a single ranking set as outlined in Table 2.1. Alter-
natively, when we wish to expand the model to encompass all ranking sets over all draft
years, we use notation that specifies which ranking set is being considered as outlined in
Table 2.2. Notice that most of the notation stays consistent between both cases; however,
in Table 2.1, we do not specify which ranking set or draft year we are considering.

Variable Description

n The number of picks made in the ranking set
N The number of draft-eligible players considered in the ranking set

si The ith ranked player in the ranking set
SÕ

i The set of available players prior to the ith ranking in the ranking set
ai The agency that selected the ith ranked player in the ranking set

Table 2.1: A list of variables to be used when describing the ROL model for a single ranking
set.

2.3 Multinomial Logit Models

Before laying out the methodology of the ROL model, we first provide a brief overview of
the multinomial logit model applied to the NHL draft. MNL models are the main building
blocks in defining the rank-ordered logit model in Section 3.1. They are a model used in
statistics to classify observations into one of two or more discrete outcome categories.

Let’s consider an example where we are building a model to predict the 1st overall pick
where there are N total draft-eligible players in the data. This is a special case of the MNL
model where each ranking set has one trial being taken from N categories with the trial
being the 1st ranked player in the ranking set and the categories, i = 1, . . . , N , representing
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Variable Description

R The set of draft years considered in the model. Here R =
{2019, 2020, 2021, 2022}

Kr The number of ranking sets or draft results in year r where r œ R

nr The number of picks made in the draft results of year r where r œ R

Nr The number of draft-eligible players considered in year r where r œ R

nrk The number of players ranked in the kth ranking set or draft result of year r

Nrk The number of players available to be ranked in the kth ranking set or draft
result of year r

sirk The ith ranked player in the kth ranking set or draft result of year r

SÕ
irk The set of available players before the ith rank is made in the kth ranking set

or draft result of year r

airk The agency or team that selected the ith ranked player in the kth ranking set
or draft result of year r

Table 2.2: A list of subscript variables to be used when describing the ROL model while
considering all ranking sets in all draft years between 2019-2022.

each of the N draft-eligible players. The goal of the MNL model is to estimate the proba-
bilities that each of the available players will be selected 1st overall based on the ranking
sets. In other words, we wish to estimate probabilities fi1 = [fi11, fi21, . . . , fiN1] such that
fii1 is the probability that player i will be selected with the 1st overall pick subject to the
constraint that

qN
j=1 fij1 = 1.

These probabilities are given by

fii1 = exp (◊i)qN
j=1 exp (◊j)

(2.1)

where ◊i represents a random e�ect for player i that we refer to as player i’s ‘ability param-
eter’, ’i = 1, . . . , N . This conversion of real numbered-parameters to probabilities is often
referred to as the multinomial choice probability or the softmax function.

In this specification of the MNL model, we wish to estimate the vector of player ability
parameters, ◊, and, in turn, use (2.1) to estimate the probability that player i will be se-
lected 1st overall ’i = 1, . . . , N .
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2.3.1 Latent Variable Formulation of the MNL Model

The MNL model can also be formulated as a latent variable model by introducing an abil-
ity score as shown in Appendix A. This formulation is popular in the literature of discrete
choice models in economics. Here, we assume that each player in each ranking set has an
unobserved random variable, Yi, i = 1, . . . , N , that can be thought of as the latent rating
of player i’s ability by the ranking agency.

In this formulation, we assume that Yi = ◊i + ‘i where ‘i ≥ Gumbel(0, 1), ’i = 1, . . . , N .
That is, Yi is assumed to be a realization from the player ability parameter for player i with
an i.i.d. standard Gumbel error term. We also assume that the agency will select the player
that they assign the highest rating to out of all available players. Thus, fii1 is considered
the probability that Yi is greater than Yj , ’j œ {1, . . . , N} \ {i}. In this context, we can
extend the expression provided in (2.1) as follows,

fii1 = P (Yi > Yj , ’j œ {1, . . . , N} \ {i}) = exp (◊i)qN
j=1 exp (◊j)

where the equivalency of the right hand side of the equation is derived in Appendix A.

The reasoning behind the Gumbel assumption is made clear by Luce & Suppes (1965),
who provide the original derivation of the multinomial choice probability in (2.1) while
assuming ‘i ≥ Gumbel(0, 1), ’i = 1, . . . , N . Furthermore, McFadden (1974) shows that if
(2.1) is true, then the errors of Yi must follow the i.i.d. standard Gumbel distribution.

The assumption of i.i.d. standard Gumbel errors is almost identical to an assumption of
i.i.d. standard normal errors, with extreme value distributions such as the Gumbel having
slightly fatter tails (Train, 2009). However, the latent formulation of the MNL model with
Gumbel errors is much more convenient to work with than the equivalent formulation of
the multinomial probit (MNP) model with normal errors. Additionally, McFadden & Train
(2000) prove that a mixed MNL model can approximate any random utility model with any
degree of accuracy by using appropriate variables and mixing distributions. Srinivasan &
Mahmassani (2005) provide a special case of this proof to show that the mixed MNL model
can approximate the MNP model with appropriate variables and mixing distributions.

Agresti (2019) provides further details on the theoretic framework behind multinomial
logit models along with various examples of MNL models applied to real-world scenarios.
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Chapter 3

A Rank-Ordered Logit Model for
the NHL Draft

3.1 Rank-Ordered Logit Models

The MNL model provides us with a simple framework for describing the probability that a
player is selected with the 1st pick in the draft, but there are still many questions that this
model cannot address such as: What is the probability of a player being drafted 2nd, 3rd

or beyond? How do these probabilities di�er depending on which player(s) are previously
selected? If a player is consistently ranked top five but is never ranked 1st by an agency,
would his probability of being selected 1st be the same as a player rarely ranked in the top
200?

These questions can be addressed using the rank-ordered logit model. The ROL model
can be thought of as a product of conditional multinomial logit models where the 1st overall
pick is modelled as a MNL model with a single pick taken from the pool of all draft-eligible
players, then the 2nd pick is modelled as a MNL model with a single pick taken from all
draft-eligible players excluding the player selected 1st, and so on until the N th pick, which
is modelled using the MNL model with a single pick taken from all draft-eligible players
excluding the N ≠ 1 players that have already been selected. The ROL model provides a
full rank ordering from the 1st pick to the N th pick.

Recall the latent variable formulation of the MNL model introduced in Section 2.3.1.
We defined Yi as the latent rating of player i’s ability by the ranking agency and assumed
that Yi = ◊i + ‘i where ‘i ≥ Gumbel(0, 1) are i.i.d. error terms ’i = 1, . . . , N . This can
alternatively be written as

Yi ≥ Gumbel(◊i, 1) (3.1)
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where Gumbel(◊i, 1) denotes a Gumbel distribution with location parameter ◊i and scale
parameter 1.

We can generalize equation (2.1) to obtain multinomial choice probabilities for the mth

draft pick ’m = 1, . . . , N by conditioning on the previous m ≠ 1 draft selections. Recall
that SÕ

m is the set of players that remain available at pick m. We express the probability
that player i, ’i œ SÕ

m, will be selected with the mth pick given the previous m ≠ 1 picks as

fiim = P (Yi > Yj , ’j œ SÕ
m \ {i}) = exp{◊i}q

jœSÕ
m

exp{◊j} (3.2)

Appendix A describes the full derivation of fiim, ’m = 1, . . . , N .

The likelihood for a full ranking set is proportional to the probability of obtaining the
exact ordering provided by the ranking set. This probability can be expressed using the
multinomial choice probabilities from (3.2) as follows

L(◊) = P (Ys1 > Ys2 > · · · > YsN |◊) =
NŸ

i=1
fisii =

NŸ

i=1

exp{◊si}qN
j=i exp{◊sj }

(3.3)

Notice this is the joint probability that player s1 is ranked 1st, player s2 is ranked 2nd

given player s1 is no longer available, and so on down to player sN being ranked last given
players s1, . . . , sN≠1 are no longer available. Recall that si is the index of the player ranked
ith by the ranking agency.

To provide further intuition on the latent ratings, Yi, and player abilities, ◊i, consider
an example where the player abilities can be thought of as some real-numbered value on
a scale of 0-100 in a similar fashion to a player rating system in any modern sports video
game. Suppose we know the players’ abilities with the top three players in the 2022 draft
- Shane Wright, Juraj Slafkovsky, and Logan Cooley - having abilities of ◊Wright = 94.2,
◊Slafkovsky = 91.9, and ◊Cooley = 90.1. Under the model proposed in this chapter, we assume
that an agency creating a ranking set will assign each of the players a rating that is the
sum of the player’s ability parameter and a realization from an i.i.d. standard Gumbel error
distribution. For example, let’s say YWright = 93.9, YSlafkovsky = 90.9, and YCooley = 91.6.
Since YWright > YCooley > YSlafkovsky, we will observe a ranking set of Shane Wright ranked
1st, Logan Cooley ranked 2nd, and Juraj Slafkovsky ranked 3rd in this case.

Figure 3.1 provides an illustration of this hypothetical scenario considering Wright,
Slafkovsky, and Cooley.
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Figure 3.1: A hypothetical illustration of the assumed structure that agencies use in forming
a ranking set.

In order for another player, i, to displace Wright as the 1st ranked player, he must
be given a rating greater than 93.9 by the ranking agency. If that were the case, his
rating Yi is greater than all other players considered in the ranking set or, equivalently,
Yi > Yj , ’j œ {1, . . . , N} \ {i}.

Note that we only observe the ordering of the agencies’ player ratings through the rank-
ing sets. Agencies typically do not release player ratings and might not use a quantitative
rating system in formulating their rankings at all. Thus, the agencies’ ratings of each player,
Yi, are unobserved.

The likelihood given by (3.3) is the ROL model for a single ranking set. In Sections 3.2
and 3.3 we alter this model to better address unique issues in modelling the NHL draft.
Beyond that, Sections 3.4 and 3.5 describe the full model for all ranking sets and the esti-
mation methods.

3.2 Unranked Players and Subset Rankings

The model likelihood proposed in (3.3) considers a ranking set where all N draft-eligible
players are both ranked and available to be ranked. However, this is not always the case in
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practice.

Typically, an agency provides a ranking set up to some number of picks n < N . In this
case, (3.3) does not reflect the agency’s ordering of the remaining N ≠ n players who were
not ranked. To address this, we adjust the likelihood based on the work of Fok et al. (2012)
which takes the product of multinomial choice probabilities up until the nth pick as follows

P (Ys1 > Ys2 > · · · > Ysn > max{Ysn+1 , . . . , YsN }|◊) =
nŸ

i=1

exp{◊si}qN
j=i exp{◊sj }

(3.4)

Notice that this updated model likelihood still considers all N players to be available
to the agency when selecting each pick, despite that only n players are ranked. This is an
important distinction as it incorporates the unranked players into the likelihood and recog-
nizes that the latent rating for each of the unranked players is less than the latent rating of
the last ranked player.

Additionally, there are also occasional ranking sets that only consider a subset of the
total pool of players. A popular example of this is the NHL Central Scouting agency who
divides their ranking sets into four categories: North American skaters, North American
goalies, European skaters, and European goalies. To address this, we allow N to vary for
each ranking set. No change is needed in the likelihood for a single ranking set proposed
in (3.4); however, we address this in Section 3.4 when we state the full likelihood for all
ranking sets by letting nrk and Nrk be the number of players ranked and number of players
available for ranking set k in draft year r where r œ R and k = 1, . . . , Kr, respectively.

3.3 Agency and Team Tendencies

The proposed ROL model to this point has assumed a linear predictor of ÷ij = ◊i for agency
or team j’s latent rating of player i where ◊i is player i’s ability parameter and all other
variation in player ratings is due to noise from an i.i.d. standard Gumbel error term. How-
ever, the agency or team doing the ranking can have a major influence on the player ratings.

As an easily measurable example, consider the 2020 draft selections made by the Toronto
Maple Leafs and Ottawa Senators. That year, the Maple Leafs’ picks had an average height
of approximately 5’10.5”, while the Senators averaged approximately 6’2” among their new
draftees. Perhaps this was random chance, but - based on the disparity between the two
teams - it is far more likely that the Senators’ management team valued tall players more
than the Maple Leafs.
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To address this, we define a general linear predictor for player i being ranked by agency
or team j as

÷ij = ◊i + —j1xi1 + —j2xi2 + · · · + —jpxip (3.5)

where ◊i is the player ability parameter, xik is a covariate with player-specific information
and —jk is an agency or team-specific parameter corresponding to xik, ’k = 1, . . . , p.

By including this updated linear predictor that varies with the ranking agency or team,
the likelihood is now updated to be

nŸ

i=1
P

!
Ysiai > Yjai , ’j œ SÕ

i \ {si} | ◊, —
"

=
nŸ

i=1

exp{÷siai}qN
j=i exp{÷sjai}

(3.6)

where — is an A ◊ p matrix with rows representing each of the A total agencies and teams
in the data and columns representing each of the p covariates in the data.

Since we are now assuming that the linear predictor is dependent on the agency or team,
the latent rating, Yij = ÷ij + ‘ij , where ‘ij remains as an i.i.d. standard Gumbel error term,
will also be dependent on the agency or team. As a consequence, we can no longer use the
Y1 > Y2 > · · · > Yn notation as expressed in 3.3 and 3.4 since each subsequent pick may be
made by a di�erent team. Thus, we only care about the ordering of the next pick by each
team.

3.4 Final Model

We have defined a ROL model for the NHL draft with respect to a single ranking set in
Section 3.1 and built upon it to address draft-related issues in Sections 3.2 and 3.3. Now
we extend this model to all ranking sets over all draft years available in our data. Recall
Table 2.2 provides a guide of the notation used for the ROL model with all ranking sets.

We now let Yijrk = ÷ij + ‘ijrk be the latent rating by agency j for player i in the kth

ranking set of year r where ‘ijrk remains an i.i.d. standard Gumbel error term ’r, k, i, j.
The full model likelihood can now be stated as the product of (3.6) taken over all ranking
sets in all draft years as follows

L(◊, —) =
Ÿ

rœR

KrŸ

k=1

nrkŸ

i=1

exp{÷sirkairk}
qNrk

j=i exp{÷sjrkairk}
(3.7)

where sirk and airk are the ith ranked player and the agency or team that ranked the ith

player in the kth ranking set or draft result in year r, respectively. Note that the denomi-
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nator in 3.7 has subscript airk rather than ajrk to ensure the probabilities at the ith pick
reflect the tendencies of the agency making that pick.

The model defined in (3.5) and (3.7) is our full ROL model proposed for the NHL draft.
This triple product represents the probability of observing all selections over all ranking
sets in all draft years considered by the model.

3.5 Parameter Estimation

The ROL model we have proposed for the NHL draft typically involves the estimation of
hundreds - or even thousands - of parameters. To estimate this high-dimensional set of
parameters, we turn to Bayesian inference. In the Bayesian setting, we can express the
posterior distribution of parameters ◊, — as proportional to the model likelihood stated in
(3.7) multiplied by the prior distribution, fi(◊, —), as follows

fi(◊, —|Z) Ã
Ÿ

rœR

KrŸ

k=1

nrkŸ

i=1

exp{÷sirkairk}
qNrk

j=i exp{÷sjrkairk}
fi(◊, —) (3.8)

where Z is the ranking set data for all players considered in the ranking set.

Here, we are interested in estimating unknown parameters ◊, — which quantify the abil-
ity of each player and the level at which each agency and team values particular player
traits, respectively.

3.5.1 Prior Distribution

We assume a
q

rœR Nr dimensional multivariate normal prior on the ability parameters with
covariance matrix � = ‡2

◊I and mean vector µ◊ which is determined through an empirical
Bayes procedure based on ranking sets that were released prior to May 1st of the draft
year. Thus, our prior distribution is ◊ ≥ MVN(µ◊, ‡2

◊I) where we place a hyperprior of
Inv-Gamma(1, 1) on ‡2

◊ . A full description of the empirical Bayes procedure to obtain µ◊ is
found in Appendix B.

We assume a hierarchical structure on each —k in the parameter matrix — = [—1, . . . , —p].
That is, —jk ≥ N(µ—k, ‡2

—k) where we set standard hyperpriors µ—k ≥ N(0, 1) and ‡2
—k ≥

Inv-Gamma(1, 1), ’k = 1, . . . , p where p is the total number of player information covariates
in the model.

From (3.5) it is evident that ◊ and —k are each only identifiable up to an additive
constant. To address this, we impose a constraint on the model that all player ability pa-
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rameters in a given draft year must sum to zero. We also impose the same constraint for
each —k, ’k = 1, . . . , p. As a result, zero represents the average value of a parameter and
parameter values can be interpreted as relative to each other or to the average (zero).

3.5.2 Computation

The model is fit with Stan (Stan Development Team, 2022a), an open-source software that
uses Hamiltonian Monte Carlo (HMC) methods to obtain draws from the posterior distri-
bution of model parameters. We access Stan through RStudio and the R package ‘rstan’
(Stan Development Team, 2022b), which provides an interface for integrating Stan code
into the R programming language.

We run the model on 4 chains with 4500 iterations for each chain, 2000 of which are
used as the ‘burn-in’ stage. Thus, we obtain 10000 total posterior draws for our model pa-
rameters. We denote ◊(t), —(t) as a posterior draw provided from Stan’s HMC simulations
for our model where t = 1, . . . , 10000. Thus, posterior means for model parameters can be
expressed as ◊̂ = 1

10000
q10000

t=1 ◊(t) and —̂ = 1
10000

q10000
t=1 —(t).

Under this specification, it took approximately 36 hours to run on a 16-core MacBook
Pro with 64 GB of RAM.

3.5.3 Predictive Distributions

The desired output of the ROL model for the NHL draft is an estimate of the joint proba-
bility distribution over all remaining players and draft picks. To do this, we wish to obtain
the predictive distribution, which averages the density of future data over the posterior
densities of the unknown model parameters to provide a forecast of future outcomes. The
predictive distribution allows us to gain a better understanding of the uncertainty in our
model by not only accounting for the uncertainty of the likelihood but also - by integrating
over ◊ and — - we average over the uncertainty in the parameter values.

Recall that the posterior distribution, fi(◊, —|Z), corresponds to the ability parameters
and team and agency preferences based on past ranking sets and draft results. The data
Z corresponds to all previous ranking sets and draft results as well as the results of the
current draft up to the time of interest. Fortunately, the Bayesian framework provides a
convenient approach for prediction of future draft results, Z̃. The predictive distribution of
Z̃ is given by
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p(Z̃|Z) =
⁄ ⁄

p(Z̃|Z, ◊, —)fi(◊, —|Z)d◊d— (3.9)

where p(Z̃|Z, ◊, —) is the joint probability mass function across all remaining draft picks,
given Z, ◊, —.

As a by-product of MCMC, we generate realizations of the predictive distribution by
first generating (◊(t), —(t)), ’t = 1, . . . , 10000 from the posterior distribution, then generat-
ing Z̃ from p(Z̃|Z, ◊, —) using these posterior draws. This is done by repeatedly simulating
from the softmax function with a diminishing choice set that removes players as they are
‘selected’ in the simulation. Thus, we do not directly solve this integral but rather approx-
imate it using posterior samples.

Let fi(t)
ijm = exp{÷

(t)
ij }

qNr
¸=i

exp{÷
(t)
¸j }

be the probability that player i is selected by team j with the

mth pick in the draft, given the previous m ≠ 1 picks are known where ÷(t)
ij is the linear

predictor as defined in (3.5) under the tth posterior draw.

Suppose we wish to begin drafting from pick m, where 1 Æ m Æ nr, m œ Z and the
ordered set of size m ≠ 1 of players that have already been selected is contained within Z,
while SÕ

m is the set of size Nr ≠ (m ≠ 1) of players that have not been selected. We obtain a
simulation of the draft by repeatedly (i) simulating a selection from the set of multinomial
choice probabilities,

1
fi(t)

ijm

2

iœSÕ
m

, (ii) removing the selected player from SÕ
m and adding him

to an ordered set of players selected by simulation, Z̃
(t), (iii) repeating (i) and (ii) until nr

draft selections are made.

By repeating this process ’t = 1, . . . , 10000, we can estimate the probability that a
player will be selected with each upcoming pick given Z̃ as expressed in (3.9).
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Chapter 4

Results

We now explore the results of the ROL model applied to ranking set and draft result data
from the 2019 to 2022 NHL drafts as described in Section 2.1. All models were fit by mod-
ifying code published by Stokes (2022).

Appendix C provides tables with all teams and agencies considered in the model along
with corresponding abbreviations used in this chapter.

4.1 Without Agency and Team Tendencies

We begin by exploring the ROL model without considering agency and team tendencies.
Here, we use the likelihood posed in (3.7) with linear predictor ÷ij = ◊i rather than (3.5).
Thus, we are estimating the posterior distribution of the player ability parameters with no
consideration of agency or team tendencies.

Figure 4.1 displays posterior summaries from this model for the ability parameters of
the top 32 players in the 2022 NHL draft. The posterior draws from the model are used to
form the credible intervals shown in this figure. By ordering players by the posterior means
of their ability parameter, we obtain a consolidated draft ranking based on the ranking sets
provided.

Notice the unusually large gaps between the posterior means of Shane Wright and Lo-
gan Cooley as well as David Jiricek and Joakim Kemell. These are due to the natural tiers
that form in the draft when ranking sets consistently rank a group of players above those
below them. For example, agencies consistently ranked Wright, Cooley, Slafkovsky, Nemec
and Jiricek as the top five in the draft, while Kemell and Savoie rarely achieved this feat.
Thus, despite being ranked 6th and 7th, respectively, the model estimates a relatively large
gap between them and the top five.
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Figure 4.1: Posterior distribution summaries of the player ability parameters, ◊, for the top
32 of 601 draft-eligible players in the 2022 NHL draft immediately prior to the draft. Players
are listed in descending order based on posterior mean estimates of ◊. Points represent the
posterior means of ◊i for player i; lines represent the corresponding 95% credible intervals
of the parameter.
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Figures 4.2a and 4.2b illustrate the estimated predictive probabilities that a player is
selected at any pick as described in Section 3.5.3. Here, we look at the top 32 players and
picks in the 2021 and 2022 drafts. We refer to this visual as the player-pick probability
mass function (pmf) since it represents the joint pmf that a player will be selected at a
corresponding draft pick. The ith row can be referred to as the pick pmf for player i up until
pick 32 as it represents the marginal pmf for player i being selected at any pick in the top 32.

Notice that each draft class displays unique trends. In 2021, we observe a fair amount
of uncertainty towards the top of the draft as there was a lot of variation among agencies
in ranking the top 6 players. While in 2022, the vast majority of agencies ranked Shane
Wright 1st; consequently, Wright had a very high probability of being selected 1st overall
by this model. Additionally, we now observe the same tiers in the draft as Figure 4.1 just
on the probability scale as opposed to the latent ability scale. This feature allows teams
to gain a sense of where large perceived drops in pick value occur and strategize accordingly.

Once the first m ≠ 1 picks are known, we can also use the same process to simulate
forward from the mth pick and obtain the updated probabilities conditional on the known
picks. Figures 4.3a and 4.3b display the player-pick pmfs of the 2022 draft after the first three
picks in two di�erent scenarios: (a) the actual observed NHL draft results of Slafkovsky, Ne-
mec, and Cooley and (b) the most likely draft result by this model after three hypothesized
picks of Wright, Cooley, and Slafkovsky.

In the 5th row of Figures 4.3a and 4.3b we see the pick pmf of David Jiricek. Notice the
change in Jiricek’s pick pmfs in the two di�erent scenarios. Under the observed draft order
with Shane Wright still available, Jiricek has a <1% chance of being selected 4th overall;
however, if Wright were selected and the best remaining player were Nemec, then Jiricek
has approximately a 22% chance of being selected 4th. This example shows how the ROL
model can dynamically update selection probabilities to account for changes in the pool of
available players.

These player-pick pmfs can be used to provide teams with data-driven information when
there are time-sensitive decisions that must be made. Despite slow computational time in
fitting the model, it takes approximately 12 seconds to run 10000 simulations of the next
32 picks in the draft, while each team has three minutes to made their pick when they are
up next.
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(a) 2021 NHL Draft

(b) 2022 NHL Draft

Figure 4.2: Player-pick pmfs based on draft simulations immediately prior to the draft from
the ROL draft model without agency and team tendencies. Players are listed in descending
order based on ability parameters, ◊. 20



(a) Observed outcome for the top three picks

(b) Most likely outcome for the top three picks

Figure 4.3: Player-pick pmfs based on draft simulations from the ROL draft model without
agency and team tendencies after the first three picks of the draft.
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4.2 With Agency and Team Tendencies

We now generate draft simulations based on posterior draws from the full model with
agency and team tendencies as described in (3.5), (??), and (3.7) where each parameter
is constrained to zero across player or agency and team. Thus, we are able to leverage all
of the same insights and features provided in the ROL model without agency and team
tendencies that we detailed in Section 4.1. Beyond that, we can also gain insights into draft
tendencies from other teams and more accurate estimates of pick probabilities that better
align with teams than agencies.

We estimate agency and team tendency parameters for three covariates that we introduce
into our model. These covariates are

• xi1: An indicator for whether or not player i is an overager in the current draft year.
An overager in the NHL draft is a player that was eligible, but not selected in a prior
NHL draft and is thus re-entering the draft as an ‘overaged’ player.

• xi2: Proportion of games played at professional men’s level in draft year.

• xi3: Player height, z-scored by position and draft year.

In Figure 4.4, we display the posterior means of each tendency parameter as shown by
the labels for each agency (blue) and team (red) along with horizontal lines to represent
the average of the posterior means for both types. The purpose of these plots is to iden-
tify di�erences in draft tendencies between agencies and teams as well as highlight notable
teams with respect to each covariate. From these plots, we identify that teams tend to value
height more than agencies do, agencies tend to value professional experience slightly more
than teams, and overaged players are considered less by agencies than teams.

Figures 4.5a and 4.5b show the updated player-pick pmf after incorporating agency and
team tendencies for the 2022 draft both at the beginning of the draft and after the first five
picks. These probabilities are not as smooth as Figure 4.2 or Figure 4.3; however, they now
adjust for draft tendencies that other teams have shown in the past. For example, notice
that the probability Lian Bichsel is selected spikes at Chicago’s 13th and 25th overall picks.
In Figure 4.4 we see that Chicago has high height and pro experience tendency parameters,
while Lian Bichsel is a 6’4” defenceman who played 72.5% of his games in the Swedish
Hockey League (SHL), Sweden’s top professional league.
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4.3 Wyatt Johnston: A Star in the Making?

Recall the example in the introduction of this project about the Dallas Stars’ selection of
Wyatt Johnston in the 2021 draft. In that example, we posed a question: If the Dallas Stars
believed Johnston had the potential to become a star player in the NHL, then would it have
been worth it to defer from pick 15 down to 23 and acquire additional picks 48 and 138
from the Detroit Red Wings?

The approach described in Section 3.5.3 allows us to estimate the probability that Wy-
att Johnston is selected at any specified pick given all of the information we had available
to us at the time of the 15th pick. By simulating these picks, the estimated probabilities
are unconditional of all picks that occur from the start of the simulation up to the pick of
interest. Thus, by summing the probabilities that he is selected in all prior picks, we can
obtain an estimate of the probability that Johnston is still available by the specified pick
as well.

Figure 4.6 provides the pick cumulative distribution function (cdf) for Johnston over
the first three rounds of the NHL draft given the first 14 picks are known. If the Stars kept
their pick, there would have been a 100% that Johnston was available to them at 15. If
they opted to select someone else with the 15th overall pick, then there would have been an
81.7% chance that Johnston would last until the Stars’ next pick at 47th overall. By making
the trade down from 15 to 23, their probability of having Johnston available to them only
dropped to 97.9%. Assuming Johnston was the best player on their draft board at pick 15 -
as Stars’ general manager Jim Nill suggested (Nill, 2021) - the Stars acquired picks 48 and
138 for a 2.1% drop in probability that they would be able to draft Wyatt Johnston.

Whether this risk was worth it will unfold over the next decade as Johnston and the
other players involved in the trade continue to develop. Tingling (2017) suggests that there
is little evidence that teams are able to di�erentiate talent from the consensus opinion. With
this in mind, despite the Johnston’s success since the Stars drafted him, a 2.1% decrease in
probability that they get their desired player will generally have far less value in return for
two additional draft picks.

4.4 Model Evaluation

To evaluate our proposed ROL models, we compare the accuracy of their predictions in the
2022 NHL draft to a pair of notable ranking sets:
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Ranking Set Spearman Kendall
ROL-WT 0.910 0.727
ROL-NT 0.854 0.656

TSN 0.884 0.709
SBN 0.850 0.654

Table 4.1: The Spearman and Kendall rank correlation coe�cients between the first 50 picks
in the 2022 NHL draft and the ROL model with agency and team tendencies (ROL-WT),
the ROL model without agency and team tendencies (ROL-NT), TSN Bob McKenzie’s final
rankings (TSN), and SB Nation Jared Book’s consolidated rankings (SBN).

• TSN Bob McKenzie’s final ranking set (TSN) for the 2022 draft; McKenzie’s list is
highly regarded in the hockey community for its consistent accuracy in predicting the
results of the draft. This ranking set contains 90 players.

• SB Nation Jared Book’s consolidated ranking set (SBN) for the 2022 draft1; Book
obtains average rankings for draft-eligible players from a collection of 15 di�erent
sources. This ranking set contains 154 players.

We obtain a rank ordering from our ROL models with agency and team tendencies
(ROL-WT) and without agency and team tendencies (ROL-NT) by calculating the ex-
pected value of each player’s pick pmf and ranking all players in ascending order.

We compute the Spearman (Spearman, 1904) and Kendall (Kendall, 1955) rank correla-
tion coe�cients with the observed 2022 NHL draft results for each of the four rank orderings
(TSN, SBN, ROL-WT, ROL-NT). Since TSN and SBN did not provide extensive ranking
sets, players that were not ranked on their lists were selected in the draft as early as pick
52. Thus, we only used the first 50 picks in the NHL draft in correlation calculations to
avoid dealing with unranked players biasing the results.

Table 4.1 provides the correlation results for these four ranking sets. Among the four
rank orderings, our ROL model with agency and team tendencies appears to provide an
edge in predictive performance. On the other hand, the ROL model without agency and
team tendencies performs approximately the same as the basic consolidated ranking (SBN)
in terms of correlation.

1We do not use Book’s consolidated rankings in the model fitting process due to its clear dependence on
other ranking sets.
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The increase in correlation obtained by incorporating agency and team tendencies into
the model with three simple covariates provides us with a boost beyond Bob McKenzie’s
highly-regarded ranking set and general consolidated rankings. This model will help teams
gain more accurate and transparent estimates of how long a player will remain available in
the NHL draft and, in turn, can help them gain a competitive edge during the draft.
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Figure 4.4: A visualization of the posterior means for agency and team tendency parameters;
top, middle and bottom represent the height, overager, and professional experience tendency
parameters, respectively. The y-axis represents the posterior mean of the parameter and the
x-axis di�erentiates teams and agencies with meaningless jitter to separate individual teams
and agencies. The red lines represents the average of the posterior means for teams while
the blue lines represents the average of the posterior means for agencies.
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(a) Start of the 2022 NHL draft

(b) After the first five picks of the 2022 NHL draft

Figure 4.5: Player-pick pmfs based on draft simulations from the ROL draft model with
agency and team tendencies at the start and after five picks into the 2022 NHL draft.
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Figure 4.6: The pick cdf for Wyatt Johnston from the 15th overall pick in the 2021 draft
until the end of the 3rd round of the draft. Markers represent the probability that Johnston
is available at the current pick (15), the Red Wings’ next pick (23) and the Stars’ next pick
(48) from left to right, respectively.
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Chapter 5

Discussion

In this project we introduce a novel framework for modelling the outcome of the NHL draft
that overcomes many obstacles not tackled by previous approaches. We leverage a Bayesian
rank-ordered logit model, which can be thought of a sequence of multinomial logit models,
to model the rank-ordered structure of the draft and estimate the probability that each
player will be selected at each pick through simulations. In doing so we find ways to update
probabilities within the draft conditional on previous picks that have been observed, address
unranked players and subset rankings into the model likelihood, and incorporate team and
agency tendencies to uncover insights into team strategies and adjust probabilities to better
align with team tendencies as opposed to agencies.

Despite building upon current methods, there are still areas of improvement that can
enhance model performance. Some areas of exploration include further investigation into
both the prior distribution for model parameters and the covariates included in the model,
incorporation of team needs, adjusting agency and team tendencies to account for changes
in personnel, addressing the dependence between ranking sets, exploring further into model
evaluation approaches, and application of the ROL model framework to other sports drafts
such as the NFL, NBA or MLB. However, the two main limitations with the proposed
framework are computational feasibility and the dependence of team tendencies on previ-
ous draft picks. We currently require over 24 hours of computation time to run the model
with a su�cient number of iterations, which greatly hinders our ability for investigation
into model improvements. Additionally, the model currently assumes that team tendencies
will remain the same throughout the draft. This is not necessarily the case as a team will
likely adapt their preferences as they satisfy team needs. For example, if a team drafts a
goalie with their 1st round pick, we suspect that they will be less likely to select a goalie
with any of their future picks in the draft as they will focus on filling other areas of concern
on their roster.
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We see the ROL model as a state-of-the-art approach to modelling the outcome of
major league sports drafts. Teams that implement this framework can gain insights into
their opponents draft strategies and have a stronger, data-driven approach to estimate how
long a desired player will last before he is selected by another team in the draft.
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Appendix A

Derivation of Multinomial Choice
Probability for Next Pick

Train (2009) provides a full derivation of the multinomial choice probability in the context
of the ROL model. Here, we provide a modified excerpt of this derivation in the context of
the proposed NHL draft model.

Suppose the agency, a, has ranked the best m≠1 players out of a pool of N available players
and they are moving on to select the next player. Let ÷ia be the linear predictor for the ith

player remaining, ’i = m, . . . , N . Also assume that the agency assigns each player a latent
rating, Yia = ÷ia + ‘ia where ‘ia ≥ Gumbel(0, 1) is i.i.d. ’i = m, . . . , N . Since we are only
considering one agency, a, in this derivation, we will omit a from the subscripts of Yi, ÷i

and ‘i for simplicity.

Note that we describe the linear predictor as ÷ia = ◊i in Chapters 2.3 and 3.1 where ◊i is
player i’s latent ability parameter, while we generalize it as (3.5) in the final model when
incorporating team and agency tendencies. The derivation provided is agnostic for either
notation.

Let fiim be the probability that player i is ranked mth by the agency, ’i = m, . . . , N . This
can be expressed as

fiim = P (Yi > Yj , ’j = m, . . . , N, j ”= i)
= P (÷i + ‘i > ÷j + ‘j , ’j = m, . . . , N, j ”= i)
= P (‘j < ‘i + ÷i ≠ ÷j , ’j = m, . . . , N, j ”= i)

(A.1)

Recall that the cumulative distribution function and probability density function for the
standard Gumbel distribution are given as follows, respectively.

F‘j (y) = exp{≠ exp{≠y}} (A.2)
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f‘j (y) = exp{≠y} exp{≠ exp{≠y}}

If we assume ‘i is given, then (A.2) becomes the cumulative distribution ’‘j evaluated
at ‘i + ÷i ≠ ÷j . Since ‘k is i.i.d. ’k = m, . . . , N , the cumulative distribution over all j =
m, . . . , N, j ”= i is the product of the individual cdfs.

fiim|‘i =
Ÿ

jœ{m,...,N}\{i}
F‘j (‘i + ÷i ≠ ÷j) =

Ÿ

jœ{m,...,N}\{i}
exp{≠ exp{≠(‘i + ÷i ≠ ÷j)}}

However, ‘i is random, not given. Thus, the choice probability becomes the integral of fiim|‘i

over all values of ‘i, weighted by its density. We express this below where x is a dummy
variable used to integrate across ‘i.

fiim =
⁄

f‘i(x)

Q

a
Ÿ

jœ{m,...,N}\{i}
F‘j (x + ÷i ≠ ÷j)

R

b dx

=
⁄

exp{≠x} exp{≠ exp{≠x}}

Q

a
Ÿ

jœ{m,...,N}\{i}
exp{≠ exp{≠(x + ÷i ≠ ÷j)}}

R

b dx

=
⁄ Œ

≠Œ
exp{≠x}

Q

a
Ÿ

jœ{m,...,N}
exp{≠ exp{≠(x + ÷i ≠ ÷j)}}

R

b dx

=
⁄ Œ

≠Œ
exp{≠x} exp

Y
]

[≠
ÿ

jœ{m,...,N}
exp{≠(x + ÷i ≠ ÷j)}

Z
^

\ dx

=
⁄ Œ

≠Œ
exp{≠x} exp

Y
]

[≠ exp{≠x}
ÿ

jœ{m,...,N}
exp{÷j ≠ ÷i}

Z
^

\ dx

Define t = exp{≠x} such that dt = ≠ exp{≠x}dx.

Note that, as x æ Œ, t æ 0, while as x æ ≠Œ, t æ Œ. Thus, we can express fiim as
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fiim =
⁄ 0

Œ
exp

Y
]

[≠t
Nÿ

j=m

exp{÷j ≠ ÷i}

Z
^

\ (≠dt)

=
⁄ Œ

0
exp

Y
]

[≠t
Nÿ

j=m

exp{÷j ≠ ÷i}

Z
^

\ dt

=
exp

Ó
≠t

qN
j=m exp{÷j ≠ ÷i}

Ô

≠
qN

j=m exp{÷j ≠ ÷i}

-----

Œ

0

= 1
qN

j=m exp{÷j ≠ ÷i}

fiim = exp{÷i}qN
j=m exp{÷j}

Therefore, the probability that player i will be selected with the next pick can be expressed
as a multinomial choice probability with categories representing each of the draft-eligible
players that remain unranked. This can be applied ’m = 1, . . . , N .
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Appendix B

Composite Score for Ability
Parameter Prior Distribution

Each draft-eligible player receives a composite score which is used as the mean in the
prior distribution for his ability parameter. The vector of all composite scores is denoted
µ◊ = [µ◊1, . . . , µ◊Q] where Q =

q
rœR Nr is the total number of draft-eligible players con-

sidered in the model over all draft years.

The goal of this composite score is to adjust our prior distribution to better match popular
opinion prior to the ranking agencies releasing their final ranking sets at the end of the
hockey season.

The composite score is determined through an empirical Bayes procedure based on ranking
sets that were published before May 1st leading up to the draft. We define this composite
score for player i as

µ◊i = c1(wri1 + z) + c5(wri5 + z) + c32(wri32 + z) + cu(wriu + z)
wr + 4z

where

• r is the draft year for player i.

• wr is the total number of ranking sets in draft year r that were released before May
1st.

• wri1 is the total number of ranking sets in draft year r that were released before May
1st where player i was ranked 1st overall.

• wri5 is the total number of ranking sets in draft year r that were released before May
1st where player i was ranked between 2nd and 5th overall.
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• wri32 is the total number of ranking sets in draft year r that were released before May
1st where player i was ranked between 6th and 32nd overall.

• wriu is the total number of ranking sets in draft year r that were released before May
1st where player i was ranked outside of the top 32 players.

• cú are constants corresponding to each wriú that must be tuned in assigning the prior
score.

• z is a regularizing constant that is used to add 4z pseudo-observations with z of each
assigned to each of the four categories (wri1, wri5, wri32, wriu). This is based on the
‘add 2 successes and 2 failures’ approach by Agresti & Ca�o (2000) to improve the
performance of confidence intervals for proportions.

After manual tuning based on our domain knowledge of the NHL draft, we set c1 = 12,
c5 = 6, c32 = 2, cu = 0 and z = 2, to best align with our prior beliefs. Since the prior means
of the ability parameters produced from this score, µ◊i, are not naturally interpretable, we
use the softmax function to convert µ◊i into an estimate of the probability that each player
will be selected first and performed manual tuning in these terms.

We also explored a prior of µ◊ = 0; however, we found the composite score system de-
scribed in this section converged quicker and provided an increase in computational speed
as compared to the 0-mean case.
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Appendix C

Agency and Team Abbreviations

Agency Abbreviation
The Athletic - Corey Pronman TA-CP
The Athletic - Scott Wheeler TA-SW
Daily Faceo� - Chris Peters DF-CP
Dobber Prospects - Full Sta� DP
The Draft Analyst - Steve Kournianos TDA-SK
Draft Prospects Hockey - Full Sta� DPH
Elite Prospects - Full Sta� EP
Elite Prospects - Cam Robinson EP-CR
Future Considerations Hockey - Full Sta� FCH
The Hockey News - Ryan Kennedy THN-RK
The Hockey Writers - Peter Baracchini THW-PB
The Hockey Writers - Andrew Forbes THW-AF
The Hockey Writers - Matthew Zator THW-MZ
McKeen’s Hockey - Full Sta� MKH
NHL Central Scouting - Full Sta� NHLCS
Recruit Scouting - Full Sta� RS
Scouching - Will Scouch SCO-WS
Smaht Scouting - Full Sta� SS
Sportsnet - Sam Cosentino SN-SC
TSN - Craig Button TSN-CB
TSN - Bob McKenzie TSN-BM

Table C.1: A list of all agencies considered in the model accompanied by corresponding
abbreviations.
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Team Abbreviation
Anaheim Ducks ANA
Arizona Coyotes ARI
Boston Bruins BOS
Bu�alo Sabres BUF
Calgary Flames CGY
Carolina Hurricanes CAR
Chicago Blackhawks CHI
Colorado Avalanche COL
Columbus Blue Jackets CBJ
Dallas Stars DAL
Detroit Red Wings DET
Edmonton Oilers EDM
Florida Panthers FLA
Los Angeles Kings LA
Minnesota Wild MIN
Montreal Canadiens MTL
Nashville Predators NSH
New Jersey Devils NJ
New York Islanders NYI
New York Rangers NYR
Ottawa Senators OTT
Philadelphia Flyeers PHI
Pittsburgh Penguins PIT
San Jose Sharks SJ
Seattle Kraken SEA
St. Louis Blues STL
Tampa Bay Lightning TB
Toronto Maple Leafs TOR
Vancouver Canucks VAN
Vegas Golden Knights VGK
Washington Capitals WSH
Winnipeg Jets WPG

Table C.2: A list of all teams considered in the model accompanied by corresponding ab-
breviations.
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