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Abstract

Processing-in-Memory (PIM) architectures have been extensively considered to reduce costly
data transfers between processors and memory. Prior PIM work proposed using processing
units in the logic layer of stacked memories, e.g., Hybrid Memory Cubes (HMC), to exploit
the high bandwidth between memory and the logic layer. While such approaches can im-
prove energy efficiency and performance, they incur significant overheads due to the need
to transfer data from remote memory locations to processing units where computations are

performed.

In this thesis, we demonstrate that a large fraction of PIM’s latency per memory request is
attributed to data transfers and queuing delays from remote memory accesses. To improve
PIM’s data locality, we propose DL-PIM, a novel architecture that dynamically detects the
overhead of data movement, and proactively moves data to a reserved area in the local
memory of the requesting processing unit. DL-PIM uses a distributed address-indirection
hardware lookup table to redirect traffic to the current data location. While some workloads
benefit from this architecture, others are negatively impacted by the extra latency due
to indirection accesses. DL-PIM uses an adaptive mechanism that considers the cost and
benefit of indirection, and dynamically enables/disables it to avoid degrading workloads hurt
by indirection. Overall, DL-PIM reduces average memory latency per request by 54% and
improves performance by 15% for workloads that have non-trivial data reuse (6% speedup

for all representative workloads).

Keywords: Processing-in-Memory; Computer Architecture; Computer Systems, Memory

Systems; Data Locality
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Chapter 1

Introduction

Many sectors in today’s global economy are highly dependent on applications such as ma-
chine learning, data analytics, graph analytics, transaction processing, and scientific high-
performance computing. Such Big Data applications have exponentially growing data needs,
leading to an increasing memory footprint and higher dependence on memory speed and
bandwidth [23]. In compute-centric systems, moving data between memory and processors
consumes a significant amount of energy and causes performance loss, especially for work-
loads that have poor temporal and spacial locality. To reduce the data movement overhead,
processing-in-memory (PIM) architectures have been proposed.

PIM systems utilize the high bandwidth available within memory to increase compu-
tational throughput and improve performance. By reducing the data movement overhead
between processors and memory, PIM systems improve both performance and energy effi-
ciency. For example, using 64-bit fully functional ARM-like PIM core saves 50.9% of energy
consumption and improves the performance by up to 57.2% in the TensorFlow Lite work-
load [38].

While PIM has shown to be promising for many applications, it is limited by how
the memory architecture is implemented [81]. In modern memory systems, memory is di-
vided into different modules, ranks and banks. In Micron’s Hybrid Memory Cube (HMC),
a stacked memory architecture that has been extensively considered for PIM, the memory
system is divided into different vaults [79]. When a PIM processing unit needs to access
data from another vault, data has to be transferred between the home and requesting vaults
with considerable overhead. In Figure 1.1, we evaluated many common workloads [81] that
will be further discussed in Chapter 4. Using the DAMOV simulation framework [81], we
show that each memory request has nearly 128 cycles of overall latency on average across
all workloads. This is in contrast to the average memory array access latency of 60 cycles.
Figure 1.2 shows that 53% of latency per memory request is caused by data transfers and
queuing delays from remote memory accesses.

To explain data transfer latency, we show the average number of network hops traveled

for each memory request across all workloads in Figure 1.3. On average, each memory



Figure 1.1: Average latency per memory request across workloads from DAMOV [81]
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request in a 6 x 6 HMC memory network needs to travel 21 hops (accounting for one cycle
per hop for each packet of a request).

Another major contributor to overall latency per request is queuing delay. Accesses
to different vaults could be imbalanced. Memory locations in a vault can be accessed by
multiple vaults at the same time. As each vault can only serve one location per cycle, the
memory requests will have to be queued, which causes significant delays. Further increasing
such delay is the uneven distribution of memory requests across different vaults. Consider
the distribution of requests going to different vaults in a 6 x 6 HMC system, we measure
the coefficient of variation of this distribution (standard deviation divided by mean). A
high coefficient of variation (CoV) implies that a few vaults have much higher demand
than the rest. Figure 1.4 illustrates that while most workloads (low coefficient of variation)
have balanced access distribution across vaults, some workloads have highly imbalanced
distributions indicated by a high coefficient of variation. Uneven request distributions cause
significant additional queuing delays at high-demand vaults. This is illustrated in Figure 1.2
where workloads with high coefficients of variation can have 70-80% of its memory latency
caused by queuing.

To reduce data transfer and queuing delays, an efficient PIM architecture should place
data at the vault where it is mostly accessed. However, optimal placement is impractical
since it requires a prior knowledge of which processing elements need to access different pro-

gram data elements. In this thesis, we attempt to reduce data transfer and queuing delays



Figure 1.2: Breakdown of memory latency into data transfer latency, queuing delay and
array access latency
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across memory modules ("vaults" for HMC) in a PIM system using a hardware indirection-
based mechanism. Our architecture, Data Locality-based PIM (DL-PIM) reserves a small
memory area at each vault, and dynamically moves a memory block into that reserved space
if the benefit of movement outweighs the cost. We maintain a distributed hardware subscrip-
tion table where each vault tracks local blocks that moved to remote vaults, and remote
blocks that moved to the current vault. By examining runtime information across mem-
ory requests, DL-PIM can detect when subscriptions help or hurt performance of various
workloads, and therefore dynamically turn subscriptions on or off.

In this thesis, we make the following main contributions:

e We demonstrate the high overhead caused by data movement within a PIM system,

unlike other works focusing on processor-memory data movement.

o We propose an always-subscribe architecture that dynamically moves data to request-

ing memory module on first access, which helps some workloads while negatively

impacting others.

e We propose an adaptive mechanism that turns on subscription only when it benefits

a workload’s performance.

o We show that DL-PIM improves average performance by 6% for all workloads, and
by 15% (and up to more than 2X) for workloads that have non-negligible data reuse.



Figure 1.3: Average hops travelled per memory request. Each read request is split into a
request packet, a data header packet and 4 data packets. Each write request is split into a
data header packet and 4 data packets. Each packet is counted as 1 hop in this figure
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This is caused by a 54% reduction in average memory latency per request for these

workloads.

In Chapter 2, we will discuss the background surrounding PIM and HMC. Then, we
will discuss the implementation of our architecture, including the hardware overheads and
implementation flows in Chapter 3. We will provide the details about how we evaluate and
set up the simulation infrastructure for our architecture in Chapter 4. We will analyze the
results in Chapter 5 and provide insights behind them. Finally, we will discuss related works

in Chapter 6 and conclude in Chapter 7.



Figure 1.4: Coefficient of variation (CoV) for memory request distribution across workloads
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Chapter 2

Background

2.1 PIM and the Memory Wall

With the exponential improvement in CPU performance over the past few decades, memory
has become the primary performance bottleneck for many important applications. Modern
processors use a multi-level cache hierarchy that exploits spatial and temporal locality to
reduce average memory access time. When data is reused in the cache hierarchy, the cost
of data transfer to/from memory is amortized across many cache hits. As main memory
is much slower than caches, cache misses incur significant performance overhead. Unfortu-
nately, many workloads exhibit poor locality where cache data is reused infrequently, which
requires high time and energy overheads to continuously transfer data from memory (where
it resides) to processors (where computations are performed). This memory wall [78] affects
processor-centric systems and degrades the performance of data-intensive workloads, e.g.,
database systems, machine learning and graph processing.

To reduce the performance and energy overheads of continuously moving data between
processors and memory, memory-centric systems have been extensively investigated for the
past few decades, gaining traction in academic research and industry. Processing-in-memory
(PIM) architectures integrate computations into the memory system [89]. PIM can exploit
the high internal bandwidth in memory and avoids transferring data to/from the CPU,
saving time and energy.

PIM hardware implementations can be classified into two categories: processing near
memory and processing using memory [38]. Both categories address the data movement
bottleneck in different ways. Processing near memory architectures place processing units
near memory, e.g., in the logic layer of a stacked memory technology, to provide high
bandwidth and low latency communication between the processing unit and the memory.
Processing using memory architectures use the architecture and properties of memory cells
to allow for data operations without the involvement of a CPU or accelerator [38]. Although
there are many proposals for processing using memory architectures [1, 28, 32, 93, 92, 95,
91, 47, 17, 83, 57, 19, 90, 72, 94, 5, 73, 6, 7, 8, 71, 62, 96, 63, 64, 33, 12, 49, 106, 48, 110],



they present significant complexity due to the need to modify standard memory interfaces
and internal hardware. On the other hand, with the development of 3D-stacked memories
like Micron’s Hybrid Memory Cube (HMC) [79], processing near memory architectures [99,
3, 53, 26, 56, 58, 68, 65, 14, 15, 16, 101, 9, 10, 21, 30, 34, 35, 40, 42, 52, 51, 59, 67, 4, 76]

have been gaining traction recently.

2.2 Hybrid Memory Cube (HMC)

HMC utilizes the 3D-stacked through-silicon-via technology that stacks dies together. HMC
divides the memory system into different vaults, each including one logical die and multiple
memory dies. The logical die acts as a memory controller (called "vault controller"). A
processing near memory architecture that places the processing units in the logical die
benefits from high bandwidth and low latency accesses to memory. When reading from
or writing to HMC from another vault or from another component, a different protocol
is used. Instead of the traditional channel-based communication protocol, HMC utilizes a
packet-based communication protocol. Each packet, i.e., FLIT, is 128 bits (16B) in size.
HMC supports 16B, 32B, 64B or 128 B memory blocks. Given that HMC would also require
one FLIT to store the operation information in a header and a tail, each data access may
require between 2 and 9 FLITs.

When communicating with external components, e.g., processors, HMC requires com-
munication [links with specifications like output buffers and input buffers, However, HMC
does not define the required communication technology for internal communications and
only uses crossbar switches as an example in the specification document [79]. In this thesis,
we will assume that the vaults are connected in a crossbar switch network, with each vault
only having input buffers of size 16 entries.

Although HMC can be used to implement a processing near memory architecture, it
still faces challenging design choices. Due to the area limitations with the memory dies,
each HMC vault can have only limited capacity. As a result, an HMC system would require
multiple vaults interconnected with each other (usually via a crossbar switch network)
to provide larger capacity. A 16-vault HMC system is illustrated in Figure 2.1. In such
system, each vault acts like a router that is interconnected with the neighbouring vaults,
and forwards non-local requests to the vault that is closest to its destination. Although with
more vaults there are more logical dies that we could increase computational parallelism,
they introduce complexities due to requiring remote accesses to data from other vaults.
While each logic die has high bandwidth and low latency to the memory dies within its
own vault, accesses to other vaults incur high data transfer and queuing delays, degrading
performance and energy efficiency.

Queuing Delay. As HMC is a packet-based memory system, each vault can serve one

memory request at a time. When multiple vaults need to access memory locations from a



Figure 2.1: Representation of an HMC system with 16 vaults from Micron’s technical spec-
ification document [79]
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vault, these requests need to be queued. HMC has I/O buffers that handle this scenario,
and packets arrived have to be queued in these buffers until they reach the head of the
queue.

Non-Local Access Overhead. We use the DAMOV [81] framework’s default 6 x 6 network
to demonstrate the network data transfer and queuing overhead across workloads. Figure 1.2
shows that data transfer and queuing latency account for 53% of memory access latency
on average. To address the overhead caused by non-local memory accesses, we propose a
mechanism that "attracts" data to the vault where it is likely to get most accesses. Our
proposal (described in the next chapter) attempts to reduce communication (data transfer)

overhead and queuing delay.



Chapter 3

DL-PIM architecture

Our proposal seeks to address the issues discussed in the previous chapter by implementing
an architecture that not only dynamically "attracts" data to the vault where it is likely to
get more accesses, but also balances the load between vaults such that the queuing delay

would decrease.

3.1 Hardware structures

In our implementation, we added the following components (Figure 3.1) to each HMC vault’s
logic base to provide data transfer and reduces overhead. In the remainder of the thesis, we

call such transfer a subscription.

e Subscription Table: A cache-based hardware lookup table.
e Subscription Buffer: A fully-associative cache.

e Registers to accumulate the performance for each PIM core to dynamically turn sub-

scriptions on/off.

e Reserved space in memory to hold subscribed data.

For the central vault in our global adaptive policy (details will be discussed later), we
also added registers to record the performance for the entire system.

We modify the HMC packet transfer protocol, and add a new field to allow for the trans-
fer of subscription request both alongside and separate from regular data access requests.

At early stages of our implementation, we have considered using a subscription threshold-
based policy in which we have a count table to record the number of accesses to each
address. The count table is a direct-mapped cache with 8192 entries and 32-bits per entry,
split between an 8-bit counter and a 24-bit tag. In each data access, we calculate a tag
using the address of the block, and compare it with the tag of the corresponding entry in

the count table. If the tag does not match, we reset the counter to 0 and update the tag



Figure 3.1: DL-PIM hardware structures added to the logical base of each HMC vault
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with the current tag, by which we evict current entry and replace it with the incoming
entry. If the number of the count is greater than the threshold and the access is not local,
the architecture will trigger the subscription routine. However, during our experiments, we
discovered that almost all subscription-friendly workloads benefit from a 0-count threshold
subscription policy in which we subscribe to an address on first access. Therefore, the count
table is unnecessary and is not included in DL-PIM.

Subscription Table We use a cache-based lookup table called Subscription Table which
maps the original address of a data block to the current address with each subscription.
The subscription table is a 4-way set-associative cache with 2048 sets per table per vault.
Therefore, each vault has 8192 entries. Each entry has two addresses: the original address
and one subscribed address. Additionally, each entry also has three state bits that indicate

any of the following states:

10



e Invalid (or "Unsubscribed")
e Pending Subscription

o Subscribed

e Pending Resubscription

e Pending Unsubscription

We discuss the use and meaning of each of these states in the next few subsections.
Subscription Buffer. As our subscription table has limited size, we only allow for a
subscription if space in the subscription table is available. When the subscription table is
full, we utilize least-frequently used (LFU) algorithm to locate the least frequently or least
recently used entry as our victim for unsubscription. However, the unsubscription does not
take effect instantly, and would require communication over the network. As such, the buffer
is used to temporarily store our request pending the completion of unsubscription.

The subscription buffer is a 32-entry fully-associative cache with an entry for subscrip-
tion request, with from vault, to vault, subscription address, and other information. The
exact format of a subscription request will be provided in the following section. Each sub-
scription buffer entry has a valid bit which will be set when the corresponding subscription
table set has available space. In each cycle, we attempt to process a valid subscription

request, if any, based on valid bits.

3.2 Subscription protocol

We implement a packet-based subscription protocol. Each subscription packet includes the

following information:

e From vault: The vault that originated the request
e To vault: The destination vault for the request
e Address: The memory address of the requested block

e Request type: Subscription Request, Subscription Request Negative Acknowledge-
ment, Subscription Data Transfer, Subscription Transfer Acknowledgement, Unsub-
scription Request, Unsubscription Transfer Acknowledgement, Turn On Subscription,

Turn Off Subscription

o Dirty bit: Whether the data being unsubscribed or resubscribed has been modified

since subscription
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3.2.1 Subscription flow

When an address is accessed, the vault that the subscription block will be subscribed to
(called "requester vault") will first check if it has the space to subscribe such block, and
push the subscription request into the subscription buffer if it requires unsubscription to
free up space. Then, it will push a packet with the address and send it to the home vault
which originally held such block (called "original vault"), and update the subscription table
of the corresponding address with the Pending Subscription state. Upon receiving such
request, the original vault will perform the same check, ensure the address is not subscribed
or pending subscription/unsubscription to/from another vault, and update the state to
Pending Subscription. Then, it will start the transfer of the subscribed data. The requester
vault will then acknowledge such transfer. When both sides acknowledge, the subscription

table entry is marked as Subscribed.

3.2.2 Resubscription flow

Our protocol also supports a special case of subscription called Resubscription which occurs
when a vault requests subscription for a data block that is already subscribed to another
location. In that case, we still process the subscription, but the original vault will redirect
this request to the vault currently holding the memory block (called "subscribed vault").
The subscribed vault will then change the state of its subscription table entry to Pending
Resubscription and start sending the data to the requester vault. Upon receiving data, the
requester vault will send two acknowledgements, one to the original vault (so it modifies
its subscription table and change the entry to the new subscribed address), and one to the

subscribed vault (so it can evict such entry from its table).

3.2.3 Negative acknowledgement of subscription

In some cases, a subscription request cannot be completed successfully. The subscription
table has a limited size, and we would utilize the subscription buffer to temporarily hold
the address while we make space. However, the subscription buffer is also limited in size,
and in the case that the subscription buffer is also full, we cannot complete the subscription
at all. In that case, the original vault would send a subscription negative acknowledgement
to the requester vault, and the requester vault will then just rollback the subscription by
removing the subscription entry. A similar situation would happen when the original vault
(or subscribed vault, in the case of resubscription) is currently in the process of subscribing

the address block to another vault, or unsubscribing the address block from another vault.

3.2.4 Unsubscription flow

Unsubscription is triggered when the subscription table of a given vault is full and requires

some free space. However, there is a special case when the requester vault is the original
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vault, so we cannot redirect the subscription request back to the original vault, and as such
we change the subscription request to unsubscription.

When unsubscription happens, it can be initiated by either the original vault (when it
wants the data back) or the subscribed vault (when it wants to push the data back to the
original vault). When the original vault is initiating, it will send an unsubscription request
to the subscribed vault. When the subscribed vault initiates such process, it can skip this
step. Then, the subscribed vault will mark the subscription table’s corresponding entry as
Pending Unsubscription, and start transferring the data back to the original vault. Upon
receiving such data, the original vault will mark it as Unsubscribed, and acknowledges it to
the subscribed vault, which will also mark the entry as Unsubscribed.

In case an unsubcription request is sent for an address in the process of subscription,
we wait until the subscription flow finishes before we proceed with unsubscription. If an
unsubscription request is sent for an address in the process of resubscription, we wait for
the resubscription to complete and forward the unsubscription request to the requester vault

to ensure data consistency.

3.2.5 Special cases for unsubscription

As with subscription, there are special cases of unsubscription. When an address is in the
process of being subscribed, we wait until the subscription finishes before proceed with
the unsubscription. As for the resubscription, when it happens, we not only wait for the
resubscription to happen, but also forward the unsubscription request to the requester vault
in this case, to ensure data consistency. The wait should be no longer than the time it takes

for the resubscription to finish.

3.2.6 Dirty bit

To reduce the data transfer required for unsubscription, we add a dirty bit to our subscrip-
tion reserved space, which is set when the block is written. When processing unsubscription,
we check if the dirty bit is currently set. If the dirty bit is reset, we only transfer an acknowl-
edgement packet instead of the full data, as it would already exist in the original vault. This
bit would also be forwarded in the case of resubscription using the dirty bit in the request

packet.

3.3 Memory requests

Unlike the baseline HMC memory, our architecture uses the subscription table to provide
dynamic address translation to any subscribed address. However, as our subscription table
is distributed across all vaults, any memory request requires the vault requesting memory
access ('requester vault") to access both the home vault that originally held the block

("original vault") and the vault that currently holds the most recent copy ("subscribed
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vault"). We here will discuss the process of serving both the read and write requests in the
baseline HMC implementation and our architecture. We denote the Manhattan distance
between the original vault and requester vault as h,,, between the requester vault and the
subscribed vault as h,s, and between the subscribed vault and the original vault as hg,.We
denote the size of a data block as k —1 flits, which makes a data transfer packet k flits (since
one flit is used as a header for routing and other information). Our memory access protocol
is inspired by the SGI Origin system [66] based on the DASH protocol [70]. Our protocol
applies to the reserved area in each vault that contain subscribed blocks, as opposed to
caches in Origin.

Read Requests. When serving a read request in the baseline HMC implementation, the
requester vault would send a request to the original vault. When the original vault receives
such request, it would transfer the data back to the requester vault. Such access requires
(k 4+ 1)hy cycles of network overhead assuming a single cycle latency per hop.

In our architecture, we first check if the requested address is currently in the local
reserved subscription space. If so, our access is a local access and has no network overhead.
If not, we send the read request to the original vault since the requester vault does not have
an up-to-date subscription information for the requested block. The original vault would
check its subscription table to identify the subscribed vault (if any). If the block is not
subscribed to another vault, the original vault sends the data to the requester. If the block
is subscribed, the original vault forwards the request to the subscribed vault, which transfers
the data back to the requester vault. In total, a read access needs h;,, + hso + khys cycles of
network overhead.

Write Requests. In the basline HMC, the requester vault writes directly to the original
vault, and such operation would have kh,, cycles of network overhead. In DL-PIM, we still
write the data to the original vault in case of remote access, and let the original vault
forward the written data to the subscribed vault. In the case of local access, the network

overhead is 0.

3.4 Adaptive subscription architecture

Our implementation supports the binary always-subscribe and never-subscribe configura-
tions. While many workloads benefit from proactively subscribing and moving data to the
requester vault, others are hurt by the extra latency and traffic caused by indirection re-
quests described in the previous section. Therefore, we also implemented and evaluated a
few adaptive strategies to dynamically turn subscriptions on and off. Our adaptive archi-
tectures focused on these two properties: number of hops travelled and access latency of
each request. We aggregate these statistics in hardware registers as shown in Figure 3.1.
Initially, we considered a policy where we continuously kept track of the cost and benefit

of subscription in a feedback register (discussed below), and broadcast the policy change
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to every vault once the feedback register changes from positive to negative or vice-versa.
However, this has proven to be inefficient, as our subscription policy would change rapidly,
and broadcasting the new subscription policy to all vaults incurs high overhead. Therefore,
we opted to divide the execution into "epochs", and make decisions using the aforemen-
tioned information at the end of each epoch, which is every 10° (one million) cycles in our
implementation. At the end of each epoch, a decision about the subscription policy for the
next epoch is broadcast, and the information stored in aggregate registers is then cleared
so each epoch’s decision is only based on the previous epoch’s cost/benefit behavior.

We also explored to allow for a "sliding" subscription policy in which we have a sliding
number of access threshold when subscription happen. However, as discussed in Section 3.1,
this count threshold implementation is proven to be inefficient, so we are not considering

this adaptive mechanism.

3.4.1 Hops-based adaptive policy

Since our architecture attempts to reduce data movement across the HMC network, the
number of hops per packet is a key metric to consider. To assess whether subscriptions are
helping or hurting traffic, we use a register called feedback register at each vault. We measure
the number of hops travelled by each packet, and using the vault’s address to estimate the
number of hops travelled if the requested address is not subscribed. We then compare the
two hops’ counts. If the estimated original hop is higher than the actual number of hops
when subscribed, it means that our subscription helps reduce the distance traveled for that
packet, and we therefore increment the feedback register. Otherwise, if the subscribed hops
is higher, it means that our subscription is increasing the distance traveled per packet,
and we therefore decrease the feedback register. As such, a positive feedback register value
means that the workload is benefiting from subscription, while a negative value means that
the workload is negatively impacted. In the first epoch, we turn on subscription across all
vaults and collect the cost/benefit information in each vault’s feedback register. At the end
of each epoch, if the feedback register is negative, we turn off the subscription for the next

epoch; otherwise we turn it on.

3.4.2 Latency-based adaptive policy

A more accurate predictor of performance is the access latency per request. This includes
all latency components including transfer (communication) and queuing delays. While es-
timating hops without subscription is straight-forward as discussed above, the latency is
dependent on factors other than hops travelled so we can’t easily estimate the latency for
a memory request without subscription. To address this problem, we used a different strat-
egy to make decisions about subscriptions. At the completion of each request, we record
its latency by adding it to a latency register (Figure 3.1). We also record the number of

requests served in a given epoch in another register called request register. At the end of
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each epoch, we calculate the average latency for all memory requests in this epoch. In the
initial epochs we use the hops-based feedback register to decide the subscription policy, and
aggregate the epoch’s request latency into the latency register. For each epoch afterwards,
we decide whether the average latency per memory request has increased or decreased by
a certain threshold compared to the latency from the previous epoch (stored in a previous
latency register). If average latency is lower or within the threshold, we continue with the
same subscription policy in the next epoch. If the per-request average latency has increased
beyond the threshold, we reverse the decision and enable or disable subscription in the next
epoch. We have tried different thresholds and have found that a 2% threshold is heuristically
the best option for most workloads. We therefore use a 2% latency change threshold for the
latency-based adaptive policy.

3.4.3 The "Subscription Away" problem and solutions

One downside for both hops-based and latency-based adaptive policies is the "subscription
away" problem. While the feedback register mechanism measures the benefit of subscription
to a given vault, it does not take into account the impact on the original vault that included
the data. The original vault is negatively impacted as the block has been "subscribed away"
from it. This is not measured by the previous feedback register mechanism since it only
updates the register of the accessing vault. To address this problem, we not only update
the feedback register of the accessing vault, but also update the feedback register of the
subscribed vault when the memory location is subscribed and the feedback is negative (i.e.
when the subscription is causing the memory request to travel more hops). This addresses
"subscription away" problem by recording the negative feedback of such subscriptions in the
feedback register.

The latency-based policy suffers from the same "subscription away" problem since one
vault may benefit significantly from subscription with cost incurred by other vaults. From
the subscribed vault’s perspective, average latency is lower since the subscribed block incurs
only the local access latency; but other vaults could incur communication and queuing
delays. However, this negative impact on other vaults is not measured by the feedback
mechanism of the subscribed vault. With no negative feedback recorded, all vaults would
opt for the greedy policy of always-subscribe which may cause thrashing and an overall
performance and energy degradation. To address this problem, we need to make decisions at
a global level for all vaults. Instead of each vault individually deciding whether to subscribe
or not for the next epoch, each vault will send a special packet to the vault at the centre
of the network, called "central vault" before an epoch ends, e.g., at 90% of an epoch, or
9 x 10° cycles into an epoch. Then the "central vault" will calculate the global per-request
average latency using individual vaults’ aggregate latency and request counts, and decide
on whether subscription has been helping or not. Finally, the central vault will broadcast

this decision to every vault in the network before the beginning of the next epoch. Since the
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central vault’s computation is complex, it needs to execute in software and would therefore
incur some latency (we estimated it to be 1000 cycles) before the new global policy is in

effect across all vaults after the beginning of an epoch.

3.4.4 The "Always Unsubscription" problem and solutions

Another problem with the initial adaptive policy is that we can only compute the number of
hops for subscribed requests when subscription is turned on. When subscriptions are turned
off, we cannot determine when we enter a phase where subscriptions would help performance
since no subscription benefit can be recorded, which means that the adaptive policy will
be stuck at the newver-subscribe policy. This issue is slightly better for the latency-based
adaptive policy, in which the latency would be higher than the previous epoch when if the
policy change towards never-subscribe is incorrect. However, when the program enters a
phase where it benefits from subscription after a phase where it doesn’t benefit (or vice
versa), the initial adaptive policy is hard to adapt.

To address this problem, we implemented a dynamic set sampling mechanism similar to
the one proposed by Qureshi, et al. [86]. As our implementation includes a cache-like set-
associative subscription table, we select two leading sets. In one leading set, subscriptions
are always turned on; while it is always turned off in the other leading set. We record the
feedback and latency for each of the leading sets separately. At the end of each epoch, we
compare hops and/or average latency for the leading sets to determine whether subscription
is beneficial. If one leading set has lower latency or higher feedback, we will use that leading
set’s policy for every other set in our subscription table in the next epoch.

While this implementation solves the "always unsubscription’ problem, it has a potential
drawback. With some memory locations always in the never-subscribe leading set, mem-
ory accesses to those locations would not benefit from subscription. This can significantly
degrade performance for workloads where subscription causes demand across vaults to be
evenly distributed. For example, CHABsBez and SPLRad which benefit most from DL-PIM
(as discussed more in detail in Chapter 5) by smoothing the memory acccess distribution
across vaults. As the placement of memory location is hard to predict at runtime, it is
possible that the most accessed locations are within the never-subscribe set, and as such,

our architecture would have no benefit.

3.4.5 Fixing the "always unsubscription" problem with periodic subscrip-
tion

Another way to address the "always unsubscription" problem is to simply add another

counter to our implementation. This counter will increase by one at the beginning of each

epoch the subscription is turned off, and reset to 0 whenever we are re-enabling subscription.

If the counter is greater than 10, it means that we have completed 10 epochs without
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subscription, and therefore we turn the subscription back on to see if we are entering a
region where subscription would be beneficial.

This implementation also suffers from performance issues as dynamic set sampling.
However, different from dynamic set sampling, it is workloads which subscription harms
that would have most performance degradation. As our architecture would enter "always
subscription” at least once every 107 (10 million) cycles, workloads that do not benefit from
subscription would have some subscription during their executions, and as a result, perform
worse under this policy.

As latency is easier to capture in real hardware using clock, we are using latency-based
adaptive policy as our baseline adaptive policy, and we use global adaptive to avoid the
"subscription away" problem. While "always unsubscription" is a big issue in real hardware,
as our workloads have consistent data access pattern and both of the aforementioned so-
lutions have performance costs, we are using the adaptive policy without set sampling or

periodic subscription in our evaluation.
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Figure 3.2: Flowchart detailing the subscription process
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Chapter 4

Evaluation

We use the DAMOV simulation framework [81] to implement and evaluate our proposed
architecture. DAMOV integrates the ZSim [88] CPU simulator and the Ramulator [61]
memory simulator. It simulates a configurable number of traditional CPUs or Processing-
in-Memory cores with HMC Memory. We simulate an inter-vault network model for a 6 x 6
inter-connected memory network with 32 vaults (Figure 4.1). We instrumented DAMOV to
dynamically analyze inter-vault traffic and overhead in a distributed PIM system.

In our evaluation, we configure a baseline system similar to DAMOV [81] that has
2.4Ghz PIM cores with 32KB L1 cache directly connected to a 4GB HMC memory system.
Since the default memory configuration for network analysis in DAMOYV has 32 vaults, we
opted to configure 32 cores for our default evaluation configuration which is illustrated in
Figure 4.1.

The DAMOV benchmark suite [81, 46] included over 300 applications from different
domains such as big data and machine learning. We use the 44 representative applications
identified by DAMOYV for our evaluation. Those representative applications are from bench-
mark suites Chai [45], Darknet [87], Hashjoin [11], HPCG [27], Ligra [97], PARSEC [13],
phoenix [108], PolyBench [84], Rodinia [20], SPLASH2 [105] and STREAM [77]. Among
these applications, seven were too short to provide useful insights and five had compatibil-
ity issues with our simulation environment. In the next chapter, we present results from 32
representative applications and focus on 13 that have non-negligible data reuse for most of

our analysis. A full list of all workloads is shown in Table 4.1 [81].

Table 4.1: Workloads used in our simulation

Suite Benchmark Function Short Name
Bezier Surface Bezier CHABsBez
Chai
Padding Padding CHAOpad
Darknet Yolo gemm_ nn DRKYolo

Continued on next page
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Table 4.1: Workloads used in our simulation (Continued)

NPO ProbeHashTable HSJNPO
Hashjoin
PRH HistogramJoin HSJPRH
HPCG HPCG ComputeSPMV HPGSpm
Betweenness Centrality LIGBcEms
Breadth-First Search LIGBfsEms
EdgeMapSparse (USA)
) BFS-Connected LIGBfscEms
Ligra
Components
PageRank EdgeMapDense (USA) LIGPrkEmd
Triangle EdgeMapDense (Rmat) LIGTriEmd
Phoenix Linear Regression linear regression_ map PHELinReg
3 Matrix Multiplications PLY3mm
Multi-resolution analysis | PLYDoitgen
kernel
Matrix-multiply PLYgemm
C=alpha.A.B+beta.C
Linear Algebra
Vector Mult. and Matrix | PLYgemver
PolyBench Addition
Gram-Schmidt PLY GramSch
decomposition
Symmetric matrix-multiply | PLYSymm
2D Convolution PLYcon2d
Stencil 2-D Finite Different Time | PLYdtd
Domain
BFS BFSGraph RODBfs
Rodinia
Needleman-Wunsch runTest RODNw
Reverse SPLFftRev
FFT
Transpose SPLFftTra
jacobcalc SPLOcnpJac
SPLASH2 Oceanncp
laplaccalc SPLOcnpLag
Oceancp slave2 SPLOcpSlavg

Continued on next page



Table 4.1: Workloads used in our simulation (Continued)

Radix slave_sort SPLRad

Add Add STRAdd

Copy Copy STRCpy
STREAM

Scale Scale STRSca

Triad Triad STRTriad

Figure 4.1: Representation of 32 vaults in a 6 x 6 HMC network
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Due to DAMOV being an integrated framework with ZSim simulating the CPU and
Ramulator simulating the memory, we cannot easily obtain the number of instructions exe-
cuted on Ramulator, where we implemented DL-PIM. Therefore, we decided to warm up our
simulation based on the number of memory requests. We executed the simulations with 10°
memory requests of warm up. Also, the system requirements of ZSim and Ramulator require
us to run simulations on a virtual machine with the configuration detailed in Table 4.2.

Since different workloads need widely different execution cycles to complete (Table 5.1),
we present most results using the performance gain metric, computed by dividing the base-

line execution time (in cycles) by our architecture’s execution time. A performance gain that
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Table 4.2: Simulated Baseline System configuration
Operating System Ubuntu 18.04 x86-64 running on QEMU 4.2.1
CPU two Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz
128GB total size; HMC v2.0; 32 vaults; 8 DRAM banks/vault;
256B row buffer; DRAM@166 MHz; 8B burst width at 2:1
core-to-bus freq. ratio; Open-page policy; HMC default inter-
leaving [81]

Memory

is higher than 1 indicates our architecture is improving performance, and below 1 indicates
performance degradation. Actual runtimes can be computed using the baseline numbers in
Table 5.1.
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Chapter 5

Results and Discussion

We simulated the baseline configuration without any subscription and the always-subscribe

configuration where we always subscribe on first access to a memory block. Figure 5.1

shows the average absolute misses per thousand instructions for all workloads. We show

normalized performance gain for the remainder of this chapter. As shown in Figure 5.1 and

Table 5.1, each workload has different memory access patterns and execution characteristics,

and therefore performs differently with our architecture.

Table 5.1: Baseline configuration execution cycles

Workload Average Execution time (Cycles)
CHAOpad 794,386,166.4
PLYgemver 23,700,267.8
PLYdtd 12,994,520.6
PLYSymm 101,468,991.6
PLYDoitgen 62,169,710.8
RODBfs 18,475,108.2
SPLOcnpLap 76,855,633.2
PHELinReg 36,723,166
LIGPrkEmd 58,343,807.4
LIGBfsEms 38,385,511.6
SPLFftRev 29,429,555.8
LIGTriEmd 48,599,133.2
STRAdd 59,096,723.2
SPLOcnpJac 34,626,366.6
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Table 5.1: Baseline configuration execution cycles (Continued)

SPLOcpSlave 36,668,710.2
HSINPO 36,084,341.2
STRTriad 61,050,112.8
LIGBcEms 41,995,613.4
PLYgemm 67,804,009.4
STRSca 67,526,104.6
LIGBfscEms 38,507,868
HPGSpm 25,567,980
RODNw 227,088,329
PLYGramSch 92,543,354.2
SPLFf{tTra 28,601,089.2
HSJPRH 18,716,494.6
SPLRad 157,606,333.6
STRCpy 51,808,295
DRKYolo 30,656,832.4
PLY3mm 68,038,019.2
PLYcon2d 9,358,548.8
CHABsBez 30,089,343.4

In the following section, we will only be discussing workloads that are significantly af-
fected (positively or negatively) from our model. We will be analyzing both always subscribe

policy and latency based global adaptive policy in details.

5.1 The Always-Subscribe policy

In Figure 5.2, we analyzed the performance of all 32 representative workloads with the
always-subscribe policy, where we always perform subscription on the first access of a mem-
ory location. Some workloads show significant speedups. For example, SPLRad have up to
105% performance gain. On the other hand, workloads such as PLYgemm and PLY3mm
have up to 17% performance losses. On average, all benchmarks have a geomean perfor-
mance gain of nearly 6%.

Figure 5.2 also shows that many workloads do not demonstrate any performance impact

(Speedup 1.00), indicating subscription has little to no effect. This is despite the fact that for
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Figure 5.1: Baseline MPKI without warmup
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many of these benchmarks, data transfer and queuing delays still represent a considerable
percentage of overall memory latency (Figure 1.2). Unfortunately, many of these workloads
have very poor reuse properties as shown in Figure 5.3. The figure shows the average number
of times a subscribed block has been reused either by the local subscribed vault (blue) or by
a remote vault (orange). Many workloads have near zero average reuse per block, indicating
that blocks are never accessed again after it has been subscribed and moved to the subscribed
vault. This incurs no extra overhead for always-subscribe since the subscription data transfer
would have been done anyway in the baseline when a processing units requests a block from
a remote vault. However, negligible reuse implies that no benefit can be obtained from
always-subscribe.

In the remainder of this chapter, we focus only on workloads that show non-negligible

reuse as illustrated in Figure 5.3.

5.2 Comparing Always-Subscribe and Adaptive policies

Figure 5.4 shows that both always subscribe and adaptive policies affect performance signif-
icantly for many workloads. While most selected workloads benefit from always-subscribe,
some are negatively affected. The geometric mean of speedup for selected benchmarks is
nearly 14% for always-subscribe and 15% for adaptive, which successfully reduces perfor-

mance degradation for workloads that are hurt by always-subscribe.
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Figure 5.2: Performance gain for the always-subscribe policy, measured by the execution
cycles of the baseline divided by that of the always-subscribe policy
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To provide insight into why some workloads benefit from always-subscribe while others
are hurt by it, we show the average memory latency per request for the baseline, always-
subscribe and adaptive in Figure 5.5. On average, adaptive reduces the average memory per
request by nearly 54% across these selected workloads. However, different workloads have
different reasons for higher/lower average per-request latency. We explain a few of these
reasons next.

PHELinReg exhibits a 20% performance gain from always-subscribe since it significantly
reduces the average number of hops per request. Figure 5.6 shows that PHELinReg has
33% lower total hops per memory request for always-subscribe compared to the baseline,
resulting in a smaller fraction of memory access latency caused by inter-vault data transfers
(Figure 5.7). Such improvement in overall memory latency is demonstrated in Figure 5.5.

CHABsBez and SPLRad do not have a high data transfer reduction with always-
subscribe and even exhibit a higher average number of hops per request compared to the
baseline (Figure 5.6). However, both have high coefficients of variation (Figure 5.8) indi-
cating an uneven distribution where some vaults have much higher demand than the rest,
therefore dominating performance. We investigated this behavior in Table 5.2 and Table 5.3
which shows the top 10 memory addresses for both workloads and their corresponding ac-
cess count. The table demonstrates that a few hot locations contribute a large fraction of
memory accesses which significantly increases queuing delays and degrades performance.

For these two workloads, always-subscribe significantly reduces the coefficient of variation,
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Figure 5.3: Average number of local and non-local accesses per subscription of always-
subscribe. The blue portion indicates the average number of local accesses from the sub-
scribed vault to a subscribed block after it was successfully subscribed. The orange portion
indicates the average number of remote accesses to a subscribed block.
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making the vault access distribution more uniform. This alleviates the queuing bottleneck
(as shown in Figure 5.7) and significantly improves performance.

While our configuration and most PIM systems utilize cache to provide data locality,
this is not proven to be useful in these two workloads. We further analyzed the cache
behaviour pertaining the two most accessed locations (000001FFFF867B4D for CHABsBez
and 000001FFFF88D4CD for SPLRad respectively). As it can be shown in Figure 5.9,
both workloads’ most accessed access has almost half of its requests being GETX, which
invalidates other copies of the block. Our further analysis of the cache trace also shows that,
there is usually a GETS request (requesting a read-only copy from another core) following
the GETX request. Such request has to be served by the memory. These two memory
locations also constitute 78.15% (for CHABsBez) and 88.9% (for SPLRad) of total memory
requests. Therefore, our architecture evens out the access count to these hotly contented

locations and reduces the queuing latency.

Table 5.2: The top 10 access memory locations of CHABsBez

and the number of accesses to those locations

Address (Hex) Count
000001FFFF867B4D 3,745,249
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0000000000018583 887,143
000000000001874B 27,375
000000000001874C 9,453
0000000000018752 3,063
0000000000018755 2,639
000000000001874D 1,169
0000000000018751 755
00000000000185A1 231
000001FFFF87C2C3 132

Table 5.3: The top 10 access memory locations of SPLRad

and the number of accesses to those locations

Address (Hex) Count
000001FFFF88D4CD 14,925,709
00000000000282CF 502,086
00000000000282CE 481,196
00000000000283CD 159,922
00000000000283D6 44,307
00000000000283D7 7,203
00000000000283D9 4,021
000001FFFF88D564 230
000001FFFF652B40 116
000001FFFF88D4C9 75

Workloads such as PLYgemm and PLY3mm incur 15-17% worse performance from
always-subscribe. This is caused by always-subscribe increasing the coefficient of variation
where it was lower with the baseline (Figure 5.8). For these workloads, always-subscribe
makes the access distribution per vault more uneven and introduces hot vaults that dom-
inate performance. The adaptive policy reduces the impact of the uneven distribution of
always-subscribe since subscriptions are turned off after the first epoch, which limits the
performance degradation to only 5%.

PLYDoitgen shows performance improvement with always-subscribe despite its low co-
efficient of variation. Figure 5.7 explains this behavior since a smaller fraction of memory
latency is attributed to queuing delay. While the memory access distribution for the entire
run is evenly distributed, each vault can become a hotspot for a short period of time caus-
ing high queuing delay. With always-subscribe, short-term hotspots are evened out therefore

improving performance.
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Figure 5.4: Performance gain of always-subscribe and adaptive normalized to the baseline
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Total Traffic. An interesting result is shown in Figure 5.10 which summarizes the total
network bandwidth demand (in bytes per cycle) for always-subscribe and adaptive compared
to the baseline. This figure takes into account traffic caused by both memory accesses and
subscription requests (the latter was not included in Figure 5.6). Some workloads (e.g., PHE-
LinReg) have significant reductions in bandwidth demand vs. the baseline. However, most
workloads have higher bandwidth demand for always-subscribe with an average increase of
88% vs. the baseline due to additional subscription traffic, mainly caused by the low degree
of reuse for subscribed blocks (Figure 5.3). However, adaptive has an average increase of
only 14%. While both flavors of DL-PIM increase average network bandwidth, the reduction

in execution time from more local accesses would still lead to a more energy-efficient design.

5.3 Sensitivity to different per-hop latency

We modified the baseline configuration and run multiple different simulations. The first one
we explored is the latency per packet per hop. As discussed in Chapter 2, HMC does not
specify the technology used for intra-memory communications, and uses a crossbar based
architecture as an example. In the original DAMOV implementation, it takes one cycle for
each packet to travel one hop across the network and be forwarded to the next vault. This
is dependent on different technologies used, which may have different latency and different
routing algorithms. As such, we performed simulations for 1, 2, 4, 8 cycles per hop latency,

as shown in Figure 5.11.
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Figure 5.5: Average latency per memory request for always-subscribe and adaptive policies
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With the increase of latency per hop per packet, workloads that suffer from high data
transfer overhead, like PHELinReg, benefit more from DL-PIM, while workloads that suffer
from high queuing overhead, like CHABsBez, SPLRad and PLYDoitgen, tend to benefit
less from subscription.

This is because, with high latency per hop per packet, the percentage of data transfer
latency out of total latency is higher. As a result, there are fewer packets in queuing, and
therefore, the workloads with high queuing latency do not benefit from our architecture in
those configurations. This is further shown in Figure 5.12, in which all benchmarks show

an increase in the percentage of transfer latency as the overhead per hop goes up.

5.4 Sensitivity to core count

We also run simulations with 4, 64, and 128-core configurations. While our baseline config-
uration uses only 32 cores, some PIM architectures have higher core counts to utilize the
parallelism available. Because of the HMC architecture, by increasing the core count, we
also increase the number of vaults in a given memory system. Therefore, our different core
counts have different memory capacities, with 512MB for 4 core configuration, 8 GB for the
64 core configuration, 16GB for the 128 core configuration, and 4GB for the baseline 32
core configuration. For each of those configurations, the memory vaults are configured to
be placed in an n X n 2-D network, with n = ceil(y/c) where ¢ stands for the number of

vaults in our system. The result are shown in Figure 5.13.
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Figure 5.6: Average total hops per memory access for always-subscribe and adaptive policies
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With the higher core count, the network size increases, and therefore the transfer latency
as shown in Figure 5.14 increases. The increase of parallelism also means that more requests
will be sent at a given time, and the queuing latency for workloads with high queuing latency

also increases. Therefore, these two type of workloads will benefit more from DL-PIM.

5.5 Sensitivity to different adaptive policies

As discussed in section 3.4, we have developed different adaptive policies to dynamically
turn subscription on and off. We have decided to use the latency-based adaptive policy with
global adaptive policy and no set sampling. In this section, we will analyze the result of
different adaptive policies, as shown in Figure 5.15.

Without set sampling, the "subscription away" problem is significant and is causing
performance degradation in various configurations with SPLRad, PLY3mm, PLYgemm,
PLYgemver and PLYSymm. Furthermore, while set sampling allows us to detect when a
program enters a subscription benefiting region, its performance cost is still significant.
Finally, hops-based subscription policy does not work well with SPLRad, which has a high

coefficient of variation and queuing delays.
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Figure 5.7: Breakdown of transfer, queuing and access latency in total memory latency for

always-subscribe and adaptive policies
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5.6 Sensitivity to different adaptive thresholds

As it is hard to measure the latency of memory requests without subscription vs. with
subscription, we are using the change in latency from previous threshold as the indicator
of whether we should make a policy change. We also experimented with different adaptive
thresholds, and the results can be seen in Figure 5.16.

While SPLRad performs the best with 5% adaptive threshold (i.e. when the current
hop’s average latency is 105% or more or 95% or less of the previous hop), PLY3mm and
PLYgemm are performing similarly as the "always subscribe" configuration. Because we
start our simulation with the subscription turned on, with a high threshold, our result

would converge to the "always subscribe" policy.

5.7 Sensitivity to subscription table sizes

We analyzed the impact of subscription table sizes on the performance. With larger tables,
DL-PIM can hold more subscribed memory locations for each vault, but would increase
hardware overhead. Figure 5.17 shows that some workloads (e.g., PLYDoitgen) saw a per-
formance improvement with a larger subscription table, but that improvement flattened
with a 8192-entry subscription table. We decided to use 8192 entries as our default con-
figuration in this thesis, which incurs a 0.125% state overhead relative to the 4GB vault

memory size.
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Figure 5.8: Coefficient of variation (CoV) of the access distribution per vault for always-
subscribe and adaptive policies. A high CoV implies uneven distribution where some vaults

have much higher demand than others
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Figure 5.9: Breakdown of GETS and GETX requests for CHABsBez and SPLRad
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Figure 5.10: Average network traffic (in bytes per cycle) for always-subscribe and adaptive
policies
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Figure 5.11: Adaptive speedup with different latency per hop
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Figure 5.12: Breakdown of memory latency into data transfer latency, queuing delay and
array access latency for different latency per hop
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Figure 5.13: Adaptive speedup with different core number configurations
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Figure 5.14: Breakdown of memory latency into data transfer latency, queuing delay and
array access latency for different core numbers
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Figure 5.15: Performance speedup of selected benchmark with different adaptive policies
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Figure 5.16: Performance speedup of selected benchmarks’ adaptive policy with different
adaptive thresholds
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Figure 5.17: Adaptive speedup with different subscription table sizes
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Chapter 6

Related Work

This work is inspired by GPS [80], which utilizes a subscription based hardware-software
integrated framework to accelerate multi-GPU systems. GPS uses manual subscription man-
agement in software, allows data use by local and remote GPUs, and evaluates several au-
tomatic subscription algorithms. Conversely, DL-PIM is a hardware-only solution that does
not change the existing program models or APIs.

A recent proposal by Tian et al. [104] (ABNDP) investigated reducing the network over-
head in a PIM system via a hardware/software co-design that proposes a new programming
model, and uses a traveller cache for remote data that resembles a traditional cache. One
traveller cache is used by a group of 4 or more vaults. ABNDP divides the program into
smaller tasks using its programming model, and schedules tasks dynamically based on data
location. Our DL-PIM proposal is a hardware-only solution that uses a 3D-stacked memory
system, and uses a reserved area in memory (not a separate cache) to subscribe remote
addresses and reduce data movement per memory access. ALP [37] also seeks to alleviate
the data movement overhead. However, ALP focuses mostly on the data movement over-
head between the host and the PIM accelerators, instead of the data movement overhead
between different PIM accelerators. Furthermore, ALP uses dynamic run-time information
to decide whether and when to offload a "tightly connected segment" onto PIM accelerators,
and our architecture instead subscribes on first access.

Prior work [69, 98] propose using stacked DRAM as a memory-side cache, automatically
copying/moving data upon request. Most DRAM cache works seek to increase the capacity
or reduce the latency of DRAM caches [85, 75, 109, 74, 54, 41, 111], but all focus on
processor-centric systems. Other works target reducing the communication latency between
different distributed DRAM caches in a multi-node system [22]. Our proposal uses stacked
DRAM technology as a PIM system to reduce process-memory data movement.

Some prior work [112] proposed replacing the crossbar network in HMC with a mesh
network and a reduction/dispersion tree architecture where memory controllers in the same
row are connected together with one set of reduction/dispersion trees. While this proposal

reduces communication overhead between memory controllers and the outside processors, it
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does not work well with PIM architectures as it disallows communications between memory
controllers without passing through the processor, so it does not reduce processor-memory
data movement.

Our system at a high-level has some similarities to the Cache-only Memory Access
(COMA) architecture [24, 103, 29]. COMA dynamically migrates data requested by a local
node to a local attraction memory from the remote node upon access. However, COMA
can replicate multiple copies of the same data block across different attraction memories
for shared blocks. Our proposal invalidates the original copy on subscription. Although this
may cause performance degradation, it is easier to implement and manage. The Reactive
Non-uniform Cache Access (R-NUCA) machine [50] also seeks to alleviate data movement
overhead by combining different caches to form clusters, and dynamically adjusts the cluster
size based on software-defined parameters. R-NUCA attempts to evenly distribute the data
across different caches within a cluster, to ensure even access latency.

PIM architectures have been extensively used to accelerate many important applications
like graph processing [25, 2, 114, 113], neural networks [36, 82, 68, 7, 96], sparse matrix-
vector multiplication [107, 39], weather prediction [100, 102], regression [44], time series
analysis [31] and bioinformatics [60, 18, 43, 55, 8, 76]. Our proposal accelerated a fraction
of the DAMOYV workloads but did not focus on a specific application domain. We attempted

to design a general PIM architecture that could benefit a variety of workloads.
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Chapter 7

Conclusions

While PIM systems target reducing data movements between processors and memory, they
incur significant data movement due to processing data in remote memory modules. We
showed that most of the latency per memory request is caused by data transfer and queuing
delays between different memory modules (vaults). We proposed DL-PIM, a subscription-
based architecture for PIM systems that seeks to reduce the average latency per memory
request by increasing the fraction of local accesses for PIM processing units. We proposed
an always-subscribe policy that moves data from remote memory modules to a reserved
area in the local module on first access. We also proposed an adaptive policy that alleviates
performance degradation for some workloads caused by the extra traffic of always-subscribe.
Our adaptive policy shows an average performance improvement of 6% across DAMOV
representative workloads, and 15% for workloads that have non-trivial data reuse caused by
a 54% reduction in average memory latency per request. However, DL-PIM had no impact
on many workloads with poor data reuse. It also increased bandwidth demand by 14% due
to the extra traffic caused by subscriptions.

Although our architecture is achieving significant performance improvement for many
commonly used workloads, there are some limitations to it.

First of all, our architecture is focused on HMC memory architecture only. While HMC
used to be a promising architecture for PIM systems, the cessation of development of it
means that we should explore the potential to migrate this work to more recent architectures
like High Bandwidth Memory (HBM).

Furthermore, our implementation allocates an area within the existing memory to pro-
vide local data access. While this is simple to implement, it produces additional hardware
overheads as we need additional memory hardware to store subscribed data. This limits the
size of our subscription table and the potential benefits of our architecture. In the future,
we can explore a "swap' mechanism in which we do not add additional memory space but
instead "swap' the subscribed data with a non-frequently accessed local memory location.

Another issue with our current subscription mechanism is the "subscription away" issue

that we’ve discussed previously. To permanently solve this issue, we can explore a "copy"
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mechanism in which the data is kept in its original place, but simply "copied" to the sub-
scribed location. This mechanism requires updating all copies of a memory block whenever
it is modified by any of the cores. This cannot be enforced only using the cache coherence
protocol but requires invalidating memory copies whenever a cache block is invalidated for
a shared block. This introduces a lot of additional complexity in designing the protocol, in
addition to significant validation and verification effort. However, this architecture would
significantly reduce the cost of subscription and allow for better performance on even more
workloads.

Finally, DAMOV’s implementation does not consider the scenario when the input buffer
of a memory request’s destination vault is full, and assume that the memory request is placed
in the input buffer of its destination vault immediately upon issuance. This may cause the

performance result to be slightly different from the real hardware.
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