
Novel Affinity-Based Data Placement
Mechanism for Processing-in-Memory

Architectures
by

Parker Hao Tian

B.Sc., Simon Fraser University, 2021

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Parker Hao Tian 2023
SIMON FRASER UNIVERSITY

Summer 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Parker Hao Tian

Degree: Master of Science

Thesis title: Novel Affinity-Based Data Placement Mechanism
for Processing-in-Memory Architectures

Committee: Chair: Yuepeng Wang
Assistant Professor, Computing Science

Alaa Alameldeen
Supervisor
Associate Professor, Computing Science

Arrvindh Shriraman
Committee Member
Associate Professor, Computing Science

Zhenman Fang
Examiner
Assistant Professor, Engineering Science

ii

Abstract

Processing-in-Memory (PIM) architectures have been extensively considered to reduce costly
data transfers between processors and memory. Prior PIM work proposed using processing
units in the logic layer of stacked memories, e.g., Hybrid Memory Cubes (HMC), to exploit
the high bandwidth between memory and the logic layer. While such approaches can im-
prove energy efficiency and performance, they incur significant overheads due to the need
to transfer data from remote memory locations to processing units where computations are
performed.

In this thesis, we demonstrate that a large fraction of PIM’s latency per memory request is
attributed to data transfers and queuing delays from remote memory accesses. To improve
PIM’s data locality, we propose DL-PIM, a novel architecture that dynamically detects the
overhead of data movement, and proactively moves data to a reserved area in the local
memory of the requesting processing unit. DL-PIM uses a distributed address-indirection
hardware lookup table to redirect traffic to the current data location. While some workloads
benefit from this architecture, others are negatively impacted by the extra latency due
to indirection accesses. DL-PIM uses an adaptive mechanism that considers the cost and
benefit of indirection, and dynamically enables/disables it to avoid degrading workloads hurt
by indirection. Overall, DL-PIM reduces average memory latency per request by 54% and
improves performance by 15% for workloads that have non-trivial data reuse (6% speedup
for all representative workloads).

Keywords: Processing-in-Memory; Computer Architecture; Computer Systems, Memory
Systems; Data Locality

iii

Acknowledgements

To begin, I would like to first acknowledge the unceded and traditional territories of Musqueam,
Squamish, Tsleil-Waututh, Katzie, Kwikwetlem, Qayqayt, Kwantlen, Semiahmoo and Tsawwassen
indigenous nations and peoples where Simon Fraser University’s three campuses are located,
and where I have had the privilege of living, working and studying on for the past years.

I would also like to dedicate my thesis to all the people whose have lost their lives,
directly or indirectly the horrific COVID-19 pandemic, as well as the healthcare workers,
community workers and scientists who dedicated themselves during the pandemic.

I would like to take this opportunity to appreciate my supervisor, Professor Alaa R.
Alameldeen. Your patience and generosity has guided me through the entire journey and
made me a better researcher.

I would also like to thank the fellow colleagues of my lab, Mahmoud Abumandour,
Marzieh Barkhordar, Brian Fu, Abdelrahman Hussein, Yonas Kelemework and Fateme
Shokouhinia.

I would like to thank my friend, Mogami Nakayama (Pen name: Miao Liu) for supporting
me throughout the entire journey.

I would like to thank all those who have trusted in me years ago, and made it possible
for me to stay in Canada on a Humanitarian and Compassionate status. Namely, LSLAP
student representatives: Alexei Parish, Issac Won, Benjemin Israel, Kaikai Zhuang, Chris
Wong and Astitwa Thapa; Psychologist Dr. Helen Ferrett; Threapist Nadina Dodd, Joshua
Ruberg; and finally, Senior Officer S. Wilkinson of Immigration, Refugees and Citizenship
Canada, who had faith in me when I had none, and gave me a new life in here in Canada.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 6
2.1 PIM and the Memory Wall . 6
2.2 Hybrid Memory Cube (HMC) . 7

3 DL-PIM architecture 9
3.1 Hardware structures . 9
3.2 Subscription protocol . 11

3.2.1 Subscription flow . 12
3.2.2 Resubscription flow . 12
3.2.3 Negative acknowledgement of subscription 12
3.2.4 Unsubscription flow . 12
3.2.5 Special cases for unsubscription . 13
3.2.6 Dirty bit . 13

3.3 Memory requests . 13
3.4 Adaptive subscription architecture . 14

3.4.1 Hops-based adaptive policy . 15
3.4.2 Latency-based adaptive policy . 15
3.4.3 The "Subscription Away" problem and solutions 16
3.4.4 The "Always Unsubscription" problem and solutions 17

v

3.4.5 Fixing the "always unsubscription" problem with periodic subscription 17

4 Evaluation 20

5 Results and Discussion 24
5.1 The Always-Subscribe policy . 25
5.2 Comparing Always-Subscribe and Adaptive policies 26
5.3 Sensitivity to different per-hop latency . 30
5.4 Sensitivity to core count . 31
5.5 Sensitivity to different adaptive policies . 32
5.6 Sensitivity to different adaptive thresholds 33
5.7 Sensitivity to subscription table sizes . 33

6 Related Work 39

7 Conclusions 41

Bibliography 43

vi

List of Tables

Table 4.1 Workloads used in our simulation . 20
Table 4.2 Simulated Baseline System configuration 23

Table 5.1 Baseline configuration execution cycles 24
Table 5.2 The top 10 access memory locations of CHABsBez and the number of

accesses to those locations . 28
Table 5.3 The top 10 access memory locations of SPLRad and the number of

accesses to those locations . 29

vii

List of Figures

Figure 1.1 Average latency per memory request across workloads from DAMOV [81] 2
Figure 1.2 Breakdown of memory latency into data transfer latency, queuing

delay and array access latency . 3
Figure 1.3 Average hops travelled per memory request. Each read request is

split into a request packet, a data header packet and 4 data packets.
Each write request is split into a data header packet and 4 data
packets. Each packet is counted as 1 hop in this figure 4

Figure 1.4 Coefficient of variation (CoV) for memory request distribution across
workloads . 5

Figure 2.1 Representation of an HMC system with 16 vaults from Micron’s
technical specification document [79] 8

Figure 3.1 DL-PIM hardware structures added to the logical base of each HMC
vault . 10

Figure 3.2 Flowchart detailing the subscription process 19

Figure 4.1 Representation of 32 vaults in a 6 × 6 HMC network 22

Figure 5.1 Baseline MPKI without warmup . 26
Figure 5.2 Performance gain for the always-subscribe policy, measured by the

execution cycles of the baseline divided by that of the always-subscribe
policy . 27

Figure 5.3 Average number of local and non-local accesses per subscription of
always-subscribe. The blue portion indicates the average number of
local accesses from the subscribed vault to a subscribed block after it
was successfully subscribed. The orange portion indicates the average
number of remote accesses to a subscribed block. 28

Figure 5.4 Performance gain of always-subscribe and adaptive normalized to the
baseline . 30

Figure 5.5 Average latency per memory request for always-subscribe and adap-
tive policies . 31

viii

Figure 5.6 Average total hops per memory access for always-subscribe and adap-
tive policies . 32

Figure 5.7 Breakdown of transfer, queuing and access latency in total memory
latency for always-subscribe and adaptive policies 33

Figure 5.8 Coefficient of variation (CoV) of the access distribution per vault for
always-subscribe and adaptive policies. A high CoV implies uneven
distribution where some vaults have much higher demand than others 34

Figure 5.9 Breakdown of GETS and GETX requests for CHABsBez and SPLRad 34
Figure 5.10 Average network traffic (in bytes per cycle) for always-subscribe and

adaptive policies . 35
Figure 5.11 Adaptive speedup with different latency per hop 35
Figure 5.12 Breakdown of memory latency into data transfer latency, queuing

delay and array access latency for different latency per hop 36
Figure 5.13 Adaptive speedup with different core number configurations 36
Figure 5.14 Breakdown of memory latency into data transfer latency, queuing

delay and array access latency for different core numbers 37
Figure 5.15 Performance speedup of selected benchmark with different adaptive

policies . 37
Figure 5.16 Performance speedup of selected benchmarks’ adaptive policy with

different adaptive thresholds . 38
Figure 5.17 Adaptive speedup with different subscription table sizes 38

ix

Chapter 1

Introduction

Many sectors in today’s global economy are highly dependent on applications such as ma-
chine learning, data analytics, graph analytics, transaction processing, and scientific high-
performance computing. Such Big Data applications have exponentially growing data needs,
leading to an increasing memory footprint and higher dependence on memory speed and
bandwidth [23]. In compute-centric systems, moving data between memory and processors
consumes a significant amount of energy and causes performance loss, especially for work-
loads that have poor temporal and spacial locality. To reduce the data movement overhead,
processing-in-memory (PIM) architectures have been proposed.

PIM systems utilize the high bandwidth available within memory to increase compu-
tational throughput and improve performance. By reducing the data movement overhead
between processors and memory, PIM systems improve both performance and energy effi-
ciency. For example, using 64-bit fully functional ARM-like PIM core saves 50.9% of energy
consumption and improves the performance by up to 57.2% in the TensorFlow Lite work-
load [38].

While PIM has shown to be promising for many applications, it is limited by how
the memory architecture is implemented [81]. In modern memory systems, memory is di-
vided into different modules, ranks and banks. In Micron’s Hybrid Memory Cube (HMC),
a stacked memory architecture that has been extensively considered for PIM, the memory
system is divided into different vaults [79]. When a PIM processing unit needs to access
data from another vault, data has to be transferred between the home and requesting vaults
with considerable overhead. In Figure 1.1, we evaluated many common workloads [81] that
will be further discussed in Chapter 4. Using the DAMOV simulation framework [81], we
show that each memory request has nearly 128 cycles of overall latency on average across
all workloads. This is in contrast to the average memory array access latency of 60 cycles.
Figure 1.2 shows that 53% of latency per memory request is caused by data transfers and
queuing delays from remote memory accesses.

To explain data transfer latency, we show the average number of network hops traveled
for each memory request across all workloads in Figure 1.3. On average, each memory

1

Figure 1.1: Average latency per memory request across workloads from DAMOV [81]

request in a 6 × 6 HMC memory network needs to travel 21 hops (accounting for one cycle
per hop for each packet of a request).

Another major contributor to overall latency per request is queuing delay. Accesses
to different vaults could be imbalanced. Memory locations in a vault can be accessed by
multiple vaults at the same time. As each vault can only serve one location per cycle, the
memory requests will have to be queued, which causes significant delays. Further increasing
such delay is the uneven distribution of memory requests across different vaults. Consider
the distribution of requests going to different vaults in a 6 × 6 HMC system, we measure
the coefficient of variation of this distribution (standard deviation divided by mean). A
high coefficient of variation (CoV) implies that a few vaults have much higher demand
than the rest. Figure 1.4 illustrates that while most workloads (low coefficient of variation)
have balanced access distribution across vaults, some workloads have highly imbalanced
distributions indicated by a high coefficient of variation. Uneven request distributions cause
significant additional queuing delays at high-demand vaults. This is illustrated in Figure 1.2
where workloads with high coefficients of variation can have 70-80% of its memory latency
caused by queuing.

To reduce data transfer and queuing delays, an efficient PIM architecture should place
data at the vault where it is mostly accessed. However, optimal placement is impractical
since it requires a prior knowledge of which processing elements need to access different pro-
gram data elements. In this thesis, we attempt to reduce data transfer and queuing delays

2

Figure 1.2: Breakdown of memory latency into data transfer latency, queuing delay and
array access latency

across memory modules ("vaults" for HMC) in a PIM system using a hardware indirection-
based mechanism. Our architecture, Data Locality-based PIM (DL-PIM) reserves a small
memory area at each vault, and dynamically moves a memory block into that reserved space
if the benefit of movement outweighs the cost. We maintain a distributed hardware subscrip-
tion table where each vault tracks local blocks that moved to remote vaults, and remote
blocks that moved to the current vault. By examining runtime information across mem-
ory requests, DL-PIM can detect when subscriptions help or hurt performance of various
workloads, and therefore dynamically turn subscriptions on or off.

In this thesis, we make the following main contributions:

• We demonstrate the high overhead caused by data movement within a PIM system,
unlike other works focusing on processor-memory data movement.

• We propose an always-subscribe architecture that dynamically moves data to request-
ing memory module on first access, which helps some workloads while negatively
impacting others.

• We propose an adaptive mechanism that turns on subscription only when it benefits
a workload’s performance.

• We show that DL-PIM improves average performance by 6% for all workloads, and
by 15% (and up to more than 2X) for workloads that have non-negligible data reuse.

3

Figure 1.3: Average hops travelled per memory request. Each read request is split into a
request packet, a data header packet and 4 data packets. Each write request is split into a
data header packet and 4 data packets. Each packet is counted as 1 hop in this figure

This is caused by a 54% reduction in average memory latency per request for these
workloads.

In Chapter 2, we will discuss the background surrounding PIM and HMC. Then, we
will discuss the implementation of our architecture, including the hardware overheads and
implementation flows in Chapter 3. We will provide the details about how we evaluate and
set up the simulation infrastructure for our architecture in Chapter 4. We will analyze the
results in Chapter 5 and provide insights behind them. Finally, we will discuss related works
in Chapter 6 and conclude in Chapter 7.

4

Figure 1.4: Coefficient of variation (CoV) for memory request distribution across workloads

5

Chapter 2

Background

2.1 PIM and the Memory Wall

With the exponential improvement in CPU performance over the past few decades, memory
has become the primary performance bottleneck for many important applications. Modern
processors use a multi-level cache hierarchy that exploits spatial and temporal locality to
reduce average memory access time. When data is reused in the cache hierarchy, the cost
of data transfer to/from memory is amortized across many cache hits. As main memory
is much slower than caches, cache misses incur significant performance overhead. Unfortu-
nately, many workloads exhibit poor locality where cache data is reused infrequently, which
requires high time and energy overheads to continuously transfer data from memory (where
it resides) to processors (where computations are performed). This memory wall [78] affects
processor-centric systems and degrades the performance of data-intensive workloads, e.g.,
database systems, machine learning and graph processing.

To reduce the performance and energy overheads of continuously moving data between
processors and memory, memory-centric systems have been extensively investigated for the
past few decades, gaining traction in academic research and industry. Processing-in-memory
(PIM) architectures integrate computations into the memory system [89]. PIM can exploit
the high internal bandwidth in memory and avoids transferring data to/from the CPU,
saving time and energy.

PIM hardware implementations can be classified into two categories: processing near
memory and processing using memory [38]. Both categories address the data movement
bottleneck in different ways. Processing near memory architectures place processing units
near memory, e.g., in the logic layer of a stacked memory technology, to provide high
bandwidth and low latency communication between the processing unit and the memory.
Processing using memory architectures use the architecture and properties of memory cells
to allow for data operations without the involvement of a CPU or accelerator [38]. Although
there are many proposals for processing using memory architectures [1, 28, 32, 93, 92, 95,
91, 47, 17, 83, 57, 19, 90, 72, 94, 5, 73, 6, 7, 8, 71, 62, 96, 63, 64, 33, 12, 49, 106, 48, 110],

6

they present significant complexity due to the need to modify standard memory interfaces
and internal hardware. On the other hand, with the development of 3D-stacked memories
like Micron’s Hybrid Memory Cube (HMC) [79], processing near memory architectures [99,
3, 53, 26, 56, 58, 68, 65, 14, 15, 16, 101, 9, 10, 21, 30, 34, 35, 40, 42, 52, 51, 59, 67, 4, 76]
have been gaining traction recently.

2.2 Hybrid Memory Cube (HMC)

HMC utilizes the 3D-stacked through-silicon-via technology that stacks dies together. HMC
divides the memory system into different vaults, each including one logical die and multiple
memory dies. The logical die acts as a memory controller (called "vault controller"). A
processing near memory architecture that places the processing units in the logical die
benefits from high bandwidth and low latency accesses to memory. When reading from
or writing to HMC from another vault or from another component, a different protocol
is used. Instead of the traditional channel-based communication protocol, HMC utilizes a
packet-based communication protocol. Each packet, i.e., FLIT, is 128 bits (16B) in size.
HMC supports 16B, 32B, 64B or 128B memory blocks. Given that HMC would also require
one FLIT to store the operation information in a header and a tail, each data access may
require between 2 and 9 FLITs.

When communicating with external components, e.g., processors, HMC requires com-
munication links with specifications like output buffers and input buffers, However, HMC
does not define the required communication technology for internal communications and
only uses crossbar switches as an example in the specification document [79]. In this thesis,
we will assume that the vaults are connected in a crossbar switch network, with each vault
only having input buffers of size 16 entries.

Although HMC can be used to implement a processing near memory architecture, it
still faces challenging design choices. Due to the area limitations with the memory dies,
each HMC vault can have only limited capacity. As a result, an HMC system would require
multiple vaults interconnected with each other (usually via a crossbar switch network)
to provide larger capacity. A 16-vault HMC system is illustrated in Figure 2.1. In such
system, each vault acts like a router that is interconnected with the neighbouring vaults,
and forwards non-local requests to the vault that is closest to its destination. Although with
more vaults there are more logical dies that we could increase computational parallelism,
they introduce complexities due to requiring remote accesses to data from other vaults.
While each logic die has high bandwidth and low latency to the memory dies within its
own vault, accesses to other vaults incur high data transfer and queuing delays, degrading
performance and energy efficiency.
Queuing Delay. As HMC is a packet-based memory system, each vault can serve one
memory request at a time. When multiple vaults need to access memory locations from a

7

Figure 2.1: Representation of an HMC system with 16 vaults from Micron’s technical spec-
ification document [79]

vault, these requests need to be queued. HMC has I/O buffers that handle this scenario,
and packets arrived have to be queued in these buffers until they reach the head of the
queue.
Non-Local Access Overhead. We use the DAMOV [81] framework’s default 6×6 network
to demonstrate the network data transfer and queuing overhead across workloads. Figure 1.2
shows that data transfer and queuing latency account for 53% of memory access latency
on average. To address the overhead caused by non-local memory accesses, we propose a
mechanism that "attracts" data to the vault where it is likely to get most accesses. Our
proposal (described in the next chapter) attempts to reduce communication (data transfer)
overhead and queuing delay.

8

Chapter 3

DL-PIM architecture

Our proposal seeks to address the issues discussed in the previous chapter by implementing
an architecture that not only dynamically "attracts" data to the vault where it is likely to
get more accesses, but also balances the load between vaults such that the queuing delay
would decrease.

3.1 Hardware structures

In our implementation, we added the following components (Figure 3.1) to each HMC vault’s
logic base to provide data transfer and reduces overhead. In the remainder of the thesis, we
call such transfer a subscription.

• Subscription Table: A cache-based hardware lookup table.

• Subscription Buffer: A fully-associative cache.

• Registers to accumulate the performance for each PIM core to dynamically turn sub-
scriptions on/off.

• Reserved space in memory to hold subscribed data.

For the central vault in our global adaptive policy (details will be discussed later), we
also added registers to record the performance for the entire system.

We modify the HMC packet transfer protocol, and add a new field to allow for the trans-
fer of subscription request both alongside and separate from regular data access requests.

At early stages of our implementation, we have considered using a subscription threshold-
based policy in which we have a count table to record the number of accesses to each
address. The count table is a direct-mapped cache with 8192 entries and 32-bits per entry,
split between an 8-bit counter and a 24-bit tag. In each data access, we calculate a tag
using the address of the block, and compare it with the tag of the corresponding entry in
the count table. If the tag does not match, we reset the counter to 0 and update the tag

9

Figure 3.1: DL-PIM hardware structures added to the logical base of each HMC vault

with the current tag, by which we evict current entry and replace it with the incoming
entry. If the number of the count is greater than the threshold and the access is not local,
the architecture will trigger the subscription routine. However, during our experiments, we
discovered that almost all subscription-friendly workloads benefit from a 0-count threshold
subscription policy in which we subscribe to an address on first access. Therefore, the count
table is unnecessary and is not included in DL-PIM.
Subscription Table We use a cache-based lookup table called Subscription Table which
maps the original address of a data block to the current address with each subscription.
The subscription table is a 4-way set-associative cache with 2048 sets per table per vault.
Therefore, each vault has 8192 entries. Each entry has two addresses: the original address
and one subscribed address. Additionally, each entry also has three state bits that indicate
any of the following states:

10

• Invalid (or "Unsubscribed")

• Pending Subscription

• Subscribed

• Pending Resubscription

• Pending Unsubscription

We discuss the use and meaning of each of these states in the next few subsections.
Subscription Buffer. As our subscription table has limited size, we only allow for a
subscription if space in the subscription table is available. When the subscription table is
full, we utilize least-frequently used (LFU) algorithm to locate the least frequently or least
recently used entry as our victim for unsubscription. However, the unsubscription does not
take effect instantly, and would require communication over the network. As such, the buffer
is used to temporarily store our request pending the completion of unsubscription.

The subscription buffer is a 32-entry fully-associative cache with an entry for subscrip-
tion request, with from vault, to vault, subscription address, and other information. The
exact format of a subscription request will be provided in the following section. Each sub-
scription buffer entry has a valid bit which will be set when the corresponding subscription
table set has available space. In each cycle, we attempt to process a valid subscription
request, if any, based on valid bits.

3.2 Subscription protocol

We implement a packet-based subscription protocol. Each subscription packet includes the
following information:

• From vault: The vault that originated the request

• To vault: The destination vault for the request

• Address: The memory address of the requested block

• Request type: Subscription Request, Subscription Request Negative Acknowledge-
ment, Subscription Data Transfer, Subscription Transfer Acknowledgement, Unsub-
scription Request, Unsubscription Transfer Acknowledgement, Turn On Subscription,
Turn Off Subscription

• Dirty bit: Whether the data being unsubscribed or resubscribed has been modified
since subscription

11

3.2.1 Subscription flow

When an address is accessed, the vault that the subscription block will be subscribed to
(called "requester vault") will first check if it has the space to subscribe such block, and
push the subscription request into the subscription buffer if it requires unsubscription to
free up space. Then, it will push a packet with the address and send it to the home vault
which originally held such block (called "original vault"), and update the subscription table
of the corresponding address with the Pending Subscription state. Upon receiving such
request, the original vault will perform the same check, ensure the address is not subscribed
or pending subscription/unsubscription to/from another vault, and update the state to
Pending Subscription. Then, it will start the transfer of the subscribed data. The requester
vault will then acknowledge such transfer. When both sides acknowledge, the subscription
table entry is marked as Subscribed.

3.2.2 Resubscription flow

Our protocol also supports a special case of subscription called Resubscription which occurs
when a vault requests subscription for a data block that is already subscribed to another
location. In that case, we still process the subscription, but the original vault will redirect
this request to the vault currently holding the memory block (called "subscribed vault").
The subscribed vault will then change the state of its subscription table entry to Pending
Resubscription and start sending the data to the requester vault. Upon receiving data, the
requester vault will send two acknowledgements, one to the original vault (so it modifies
its subscription table and change the entry to the new subscribed address), and one to the
subscribed vault (so it can evict such entry from its table).

3.2.3 Negative acknowledgement of subscription

In some cases, a subscription request cannot be completed successfully. The subscription
table has a limited size, and we would utilize the subscription buffer to temporarily hold
the address while we make space. However, the subscription buffer is also limited in size,
and in the case that the subscription buffer is also full, we cannot complete the subscription
at all. In that case, the original vault would send a subscription negative acknowledgement
to the requester vault, and the requester vault will then just rollback the subscription by
removing the subscription entry. A similar situation would happen when the original vault
(or subscribed vault, in the case of resubscription) is currently in the process of subscribing
the address block to another vault, or unsubscribing the address block from another vault.

3.2.4 Unsubscription flow

Unsubscription is triggered when the subscription table of a given vault is full and requires
some free space. However, there is a special case when the requester vault is the original

12

vault, so we cannot redirect the subscription request back to the original vault, and as such
we change the subscription request to unsubscription.

When unsubscription happens, it can be initiated by either the original vault (when it
wants the data back) or the subscribed vault (when it wants to push the data back to the
original vault). When the original vault is initiating, it will send an unsubscription request
to the subscribed vault. When the subscribed vault initiates such process, it can skip this
step. Then, the subscribed vault will mark the subscription table’s corresponding entry as
Pending Unsubscription, and start transferring the data back to the original vault. Upon
receiving such data, the original vault will mark it as Unsubscribed, and acknowledges it to
the subscribed vault, which will also mark the entry as Unsubscribed.

In case an unsubcription request is sent for an address in the process of subscription,
we wait until the subscription flow finishes before we proceed with unsubscription. If an
unsubscription request is sent for an address in the process of resubscription, we wait for
the resubscription to complete and forward the unsubscription request to the requester vault
to ensure data consistency.

3.2.5 Special cases for unsubscription

As with subscription, there are special cases of unsubscription. When an address is in the
process of being subscribed, we wait until the subscription finishes before proceed with
the unsubscription. As for the resubscription, when it happens, we not only wait for the
resubscription to happen, but also forward the unsubscription request to the requester vault
in this case, to ensure data consistency. The wait should be no longer than the time it takes
for the resubscription to finish.

3.2.6 Dirty bit

To reduce the data transfer required for unsubscription, we add a dirty bit to our subscrip-
tion reserved space, which is set when the block is written. When processing unsubscription,
we check if the dirty bit is currently set. If the dirty bit is reset, we only transfer an acknowl-
edgement packet instead of the full data, as it would already exist in the original vault. This
bit would also be forwarded in the case of resubscription using the dirty bit in the request
packet.

3.3 Memory requests

Unlike the baseline HMC memory, our architecture uses the subscription table to provide
dynamic address translation to any subscribed address. However, as our subscription table
is distributed across all vaults, any memory request requires the vault requesting memory
access ("requester vault") to access both the home vault that originally held the block
("original vault") and the vault that currently holds the most recent copy ("subscribed

13

vault"). We here will discuss the process of serving both the read and write requests in the
baseline HMC implementation and our architecture. We denote the Manhattan distance
between the original vault and requester vault as hro, between the requester vault and the
subscribed vault as hrs, and between the subscribed vault and the original vault as hso.We
denote the size of a data block as k−1 flits, which makes a data transfer packet k flits (since
one flit is used as a header for routing and other information). Our memory access protocol
is inspired by the SGI Origin system [66] based on the DASH protocol [70]. Our protocol
applies to the reserved area in each vault that contain subscribed blocks, as opposed to
caches in Origin.
Read Requests. When serving a read request in the baseline HMC implementation, the
requester vault would send a request to the original vault. When the original vault receives
such request, it would transfer the data back to the requester vault. Such access requires
(k + 1)hro cycles of network overhead assuming a single cycle latency per hop.

In our architecture, we first check if the requested address is currently in the local
reserved subscription space. If so, our access is a local access and has no network overhead.
If not, we send the read request to the original vault since the requester vault does not have
an up-to-date subscription information for the requested block. The original vault would
check its subscription table to identify the subscribed vault (if any). If the block is not
subscribed to another vault, the original vault sends the data to the requester. If the block
is subscribed, the original vault forwards the request to the subscribed vault, which transfers
the data back to the requester vault. In total, a read access needs hro + hso + khrs cycles of
network overhead.
Write Requests. In the basline HMC, the requester vault writes directly to the original
vault, and such operation would have khro cycles of network overhead. In DL-PIM, we still
write the data to the original vault in case of remote access, and let the original vault
forward the written data to the subscribed vault. In the case of local access, the network
overhead is 0.

3.4 Adaptive subscription architecture

Our implementation supports the binary always-subscribe and never-subscribe configura-
tions. While many workloads benefit from proactively subscribing and moving data to the
requester vault, others are hurt by the extra latency and traffic caused by indirection re-
quests described in the previous section. Therefore, we also implemented and evaluated a
few adaptive strategies to dynamically turn subscriptions on and off. Our adaptive archi-
tectures focused on these two properties: number of hops travelled and access latency of
each request. We aggregate these statistics in hardware registers as shown in Figure 3.1.
Initially, we considered a policy where we continuously kept track of the cost and benefit
of subscription in a feedback register (discussed below), and broadcast the policy change

14

to every vault once the feedback register changes from positive to negative or vice-versa.
However, this has proven to be inefficient, as our subscription policy would change rapidly,
and broadcasting the new subscription policy to all vaults incurs high overhead. Therefore,
we opted to divide the execution into "epochs", and make decisions using the aforemen-
tioned information at the end of each epoch, which is every 106 (one million) cycles in our
implementation. At the end of each epoch, a decision about the subscription policy for the
next epoch is broadcast, and the information stored in aggregate registers is then cleared
so each epoch’s decision is only based on the previous epoch’s cost/benefit behavior.

We also explored to allow for a "sliding" subscription policy in which we have a sliding
number of access threshold when subscription happen. However, as discussed in Section 3.1,
this count threshold implementation is proven to be inefficient, so we are not considering
this adaptive mechanism.

3.4.1 Hops-based adaptive policy

Since our architecture attempts to reduce data movement across the HMC network, the
number of hops per packet is a key metric to consider. To assess whether subscriptions are
helping or hurting traffic, we use a register called feedback register at each vault. We measure
the number of hops travelled by each packet, and using the vault’s address to estimate the
number of hops travelled if the requested address is not subscribed. We then compare the
two hops’ counts. If the estimated original hop is higher than the actual number of hops
when subscribed, it means that our subscription helps reduce the distance traveled for that
packet, and we therefore increment the feedback register. Otherwise, if the subscribed hops
is higher, it means that our subscription is increasing the distance traveled per packet,
and we therefore decrease the feedback register. As such, a positive feedback register value
means that the workload is benefiting from subscription, while a negative value means that
the workload is negatively impacted. In the first epoch, we turn on subscription across all
vaults and collect the cost/benefit information in each vault’s feedback register. At the end
of each epoch, if the feedback register is negative, we turn off the subscription for the next
epoch; otherwise we turn it on.

3.4.2 Latency-based adaptive policy

A more accurate predictor of performance is the access latency per request. This includes
all latency components including transfer (communication) and queuing delays. While es-
timating hops without subscription is straight-forward as discussed above, the latency is
dependent on factors other than hops travelled so we can’t easily estimate the latency for
a memory request without subscription. To address this problem, we used a different strat-
egy to make decisions about subscriptions. At the completion of each request, we record
its latency by adding it to a latency register (Figure 3.1). We also record the number of
requests served in a given epoch in another register called request register. At the end of

15

each epoch, we calculate the average latency for all memory requests in this epoch. In the
initial epochs we use the hops-based feedback register to decide the subscription policy, and
aggregate the epoch’s request latency into the latency register. For each epoch afterwards,
we decide whether the average latency per memory request has increased or decreased by
a certain threshold compared to the latency from the previous epoch (stored in a previous
latency register). If average latency is lower or within the threshold, we continue with the
same subscription policy in the next epoch. If the per-request average latency has increased
beyond the threshold, we reverse the decision and enable or disable subscription in the next
epoch. We have tried different thresholds and have found that a 2% threshold is heuristically
the best option for most workloads. We therefore use a 2% latency change threshold for the
latency-based adaptive policy.

3.4.3 The "Subscription Away" problem and solutions

One downside for both hops-based and latency-based adaptive policies is the "subscription
away" problem. While the feedback register mechanism measures the benefit of subscription
to a given vault, it does not take into account the impact on the original vault that included
the data. The original vault is negatively impacted as the block has been "subscribed away"
from it. This is not measured by the previous feedback register mechanism since it only
updates the register of the accessing vault. To address this problem, we not only update
the feedback register of the accessing vault, but also update the feedback register of the
subscribed vault when the memory location is subscribed and the feedback is negative (i.e.
when the subscription is causing the memory request to travel more hops). This addresses
"subscription away" problem by recording the negative feedback of such subscriptions in the
feedback register.

The latency-based policy suffers from the same "subscription away" problem since one
vault may benefit significantly from subscription with cost incurred by other vaults. From
the subscribed vault’s perspective, average latency is lower since the subscribed block incurs
only the local access latency; but other vaults could incur communication and queuing
delays. However, this negative impact on other vaults is not measured by the feedback
mechanism of the subscribed vault. With no negative feedback recorded, all vaults would
opt for the greedy policy of always-subscribe which may cause thrashing and an overall
performance and energy degradation. To address this problem, we need to make decisions at
a global level for all vaults. Instead of each vault individually deciding whether to subscribe
or not for the next epoch, each vault will send a special packet to the vault at the centre
of the network, called "central vault" before an epoch ends, e.g., at 90% of an epoch, or
9 × 105 cycles into an epoch. Then the "central vault" will calculate the global per-request
average latency using individual vaults’ aggregate latency and request counts, and decide
on whether subscription has been helping or not. Finally, the central vault will broadcast
this decision to every vault in the network before the beginning of the next epoch. Since the

16

central vault’s computation is complex, it needs to execute in software and would therefore
incur some latency (we estimated it to be 1000 cycles) before the new global policy is in
effect across all vaults after the beginning of an epoch.

3.4.4 The "Always Unsubscription" problem and solutions

Another problem with the initial adaptive policy is that we can only compute the number of
hops for subscribed requests when subscription is turned on. When subscriptions are turned
off, we cannot determine when we enter a phase where subscriptions would help performance
since no subscription benefit can be recorded, which means that the adaptive policy will
be stuck at the never-subscribe policy. This issue is slightly better for the latency-based
adaptive policy, in which the latency would be higher than the previous epoch when if the
policy change towards never-subscribe is incorrect. However, when the program enters a
phase where it benefits from subscription after a phase where it doesn’t benefit (or vice
versa), the initial adaptive policy is hard to adapt.

To address this problem, we implemented a dynamic set sampling mechanism similar to
the one proposed by Qureshi, et al. [86]. As our implementation includes a cache-like set-
associative subscription table, we select two leading sets. In one leading set, subscriptions
are always turned on; while it is always turned off in the other leading set. We record the
feedback and latency for each of the leading sets separately. At the end of each epoch, we
compare hops and/or average latency for the leading sets to determine whether subscription
is beneficial. If one leading set has lower latency or higher feedback, we will use that leading
set’s policy for every other set in our subscription table in the next epoch.

While this implementation solves the "always unsubscription" problem, it has a potential
drawback. With some memory locations always in the never-subscribe leading set, mem-
ory accesses to those locations would not benefit from subscription. This can significantly
degrade performance for workloads where subscription causes demand across vaults to be
evenly distributed. For example, CHABsBez and SPLRad which benefit most from DL-PIM
(as discussed more in detail in Chapter 5) by smoothing the memory acccess distribution
across vaults. As the placement of memory location is hard to predict at runtime, it is
possible that the most accessed locations are within the never-subscribe set, and as such,
our architecture would have no benefit.

3.4.5 Fixing the "always unsubscription" problem with periodic subscrip-
tion

Another way to address the "always unsubscription" problem is to simply add another
counter to our implementation. This counter will increase by one at the beginning of each
epoch the subscription is turned off, and reset to 0 whenever we are re-enabling subscription.
If the counter is greater than 10, it means that we have completed 10 epochs without

17

subscription, and therefore we turn the subscription back on to see if we are entering a
region where subscription would be beneficial.

This implementation also suffers from performance issues as dynamic set sampling.
However, different from dynamic set sampling, it is workloads which subscription harms
that would have most performance degradation. As our architecture would enter "always
subscription" at least once every 107 (10 million) cycles, workloads that do not benefit from
subscription would have some subscription during their executions, and as a result, perform
worse under this policy.

As latency is easier to capture in real hardware using clock, we are using latency-based
adaptive policy as our baseline adaptive policy, and we use global adaptive to avoid the
"subscription away" problem. While "always unsubscription" is a big issue in real hardware,
as our workloads have consistent data access pattern and both of the aforementioned so-
lutions have performance costs, we are using the adaptive policy without set sampling or
periodic subscription in our evaluation.

18

Figure 3.2: Flowchart detailing the subscription process

19

Chapter 4

Evaluation

We use the DAMOV simulation framework [81] to implement and evaluate our proposed
architecture. DAMOV integrates the ZSim [88] CPU simulator and the Ramulator [61]
memory simulator. It simulates a configurable number of traditional CPUs or Processing-
in-Memory cores with HMC Memory. We simulate an inter-vault network model for a 6 × 6
inter-connected memory network with 32 vaults (Figure 4.1). We instrumented DAMOV to
dynamically analyze inter-vault traffic and overhead in a distributed PIM system.

In our evaluation, we configure a baseline system similar to DAMOV [81] that has
2.4Ghz PIM cores with 32KB L1 cache directly connected to a 4GB HMC memory system.
Since the default memory configuration for network analysis in DAMOV has 32 vaults, we
opted to configure 32 cores for our default evaluation configuration which is illustrated in
Figure 4.1.

The DAMOV benchmark suite [81, 46] included over 300 applications from different
domains such as big data and machine learning. We use the 44 representative applications
identified by DAMOV for our evaluation. Those representative applications are from bench-
mark suites Chai [45], Darknet [87], Hashjoin [11], HPCG [27], Ligra [97], PARSEC [13],
phoenix [108], PolyBench [84], Rodinia [20], SPLASH2 [105] and STREAM [77]. Among
these applications, seven were too short to provide useful insights and five had compatibil-
ity issues with our simulation environment. In the next chapter, we present results from 32
representative applications and focus on 13 that have non-negligible data reuse for most of
our analysis. A full list of all workloads is shown in Table 4.1 [81].

Table 4.1: Workloads used in our simulation

Suite Benchmark Function Short Name

Chai
Bezier Surface Bezier CHABsBez

Padding Padding CHAOpad

Darknet Yolo gemm_nn DRKYolo

Continued on next page

20

Table 4.1: Workloads used in our simulation (Continued)

Hashjoin
NPO ProbeHashTable HSJNPO

PRH HistogramJoin HSJPRH

HPCG HPCG ComputeSPMV HPGSpm

Ligra

Betweenness Centrality

EdgeMapSparse (USA)

LIGBcEms

Breadth-First Search LIGBfsEms

BFS-Connected
Components

LIGBfscEms

PageRank EdgeMapDense (USA) LIGPrkEmd

Triangle EdgeMapDense (Rmat) LIGTriEmd

Phoenix Linear Regression linear_regression_map PHELinReg

PolyBench

Linear Algebra

3 Matrix Multiplications PLY3mm

Multi-resolution analysis
kernel

PLYDoitgen

Matrix-multiply
C=alpha.A.B+beta.C

PLYgemm

Vector Mult. and Matrix
Addition

PLYgemver

Gram-Schmidt
decomposition

PLYGramSch

Symmetric matrix-multiply PLYSymm

Stencil
2D Convolution PLYcon2d

2-D Finite Different Time
Domain

PLYdtd

Rodinia
BFS BFSGraph RODBfs

Needleman-Wunsch runTest RODNw

SPLASH2

FFT
Reverse SPLFftRev

Transpose SPLFftTra

Oceanncp
jacobcalc SPLOcnpJac

laplaccalc SPLOcnpLap

Oceancp slave2 SPLOcpSlave

Continued on next page

21

Table 4.1: Workloads used in our simulation (Continued)

Radix slave_sort SPLRad

STREAM

Add Add STRAdd

Copy Copy STRCpy

Scale Scale STRSca

Triad Triad STRTriad

Figure 4.1: Representation of 32 vaults in a 6 × 6 HMC network

Due to DAMOV being an integrated framework with ZSim simulating the CPU and
Ramulator simulating the memory, we cannot easily obtain the number of instructions exe-
cuted on Ramulator, where we implemented DL-PIM. Therefore, we decided to warm up our
simulation based on the number of memory requests. We executed the simulations with 106

memory requests of warm up. Also, the system requirements of ZSim and Ramulator require
us to run simulations on a virtual machine with the configuration detailed in Table 4.2.

Since different workloads need widely different execution cycles to complete (Table 5.1),
we present most results using the performance gain metric, computed by dividing the base-
line execution time (in cycles) by our architecture’s execution time. A performance gain that

22

Table 4.2: Simulated Baseline System configuration
Operating System Ubuntu 18.04 x86-64 running on QEMU 4.2.1
CPU two Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz

Memory

128GB total size; HMC v2.0; 32 vaults; 8 DRAM banks/vault;
256B row buffer; DRAM@166 MHz; 8B burst width at 2:1
core-to-bus freq. ratio; Open-page policy; HMC default inter-
leaving [81]

is higher than 1 indicates our architecture is improving performance, and below 1 indicates
performance degradation. Actual runtimes can be computed using the baseline numbers in
Table 5.1.

23

Chapter 5

Results and Discussion

We simulated the baseline configuration without any subscription and the always-subscribe
configuration where we always subscribe on first access to a memory block. Figure 5.1
shows the average absolute misses per thousand instructions for all workloads. We show
normalized performance gain for the remainder of this chapter. As shown in Figure 5.1 and
Table 5.1, each workload has different memory access patterns and execution characteristics,
and therefore performs differently with our architecture.

Table 5.1: Baseline configuration execution cycles

Workload Average Execution time (Cycles)

CHAOpad 794,386,166.4

PLYgemver 23,700,267.8

PLYdtd 12,994,520.6

PLYSymm 101,468,991.6

PLYDoitgen 62,169,710.8

RODBfs 18,475,108.2

SPLOcnpLap 76,855,633.2

PHELinReg 36,723,166

LIGPrkEmd 58,343,807.4

LIGBfsEms 38,385,511.6

SPLFftRev 29,429,555.8

LIGTriEmd 48,599,133.2

STRAdd 59,096,723.2

SPLOcnpJac 34,626,366.6

Continued on next page

24

Table 5.1: Baseline configuration execution cycles (Continued)

SPLOcpSlave 36,668,710.2

HSJNPO 36,084,341.2

STRTriad 61,050,112.8

LIGBcEms 41,995,613.4

PLYgemm 67,804,009.4

STRSca 67,526,104.6

LIGBfscEms 38,507,868

HPGSpm 25,567,980

RODNw 227,088,329

PLYGramSch 92,543,354.2

SPLFftTra 28,601,089.2

HSJPRH 18,716,494.6

SPLRad 157,606,333.6

STRCpy 51,808,295

DRKYolo 30,656,832.4

PLY3mm 68,038,019.2

PLYcon2d 9,358,548.8

CHABsBez 30,089,343.4

In the following section, we will only be discussing workloads that are significantly af-
fected (positively or negatively) from our model. We will be analyzing both always subscribe
policy and latency based global adaptive policy in details.

5.1 The Always-Subscribe policy

In Figure 5.2, we analyzed the performance of all 32 representative workloads with the
always-subscribe policy, where we always perform subscription on the first access of a mem-
ory location. Some workloads show significant speedups. For example, SPLRad have up to
105% performance gain. On the other hand, workloads such as PLYgemm and PLY3mm
have up to 17% performance losses. On average, all benchmarks have a geomean perfor-
mance gain of nearly 6%.

Figure 5.2 also shows that many workloads do not demonstrate any performance impact
(Speedup 1.00), indicating subscription has little to no effect. This is despite the fact that for

25

Figure 5.1: Baseline MPKI without warmup

many of these benchmarks, data transfer and queuing delays still represent a considerable
percentage of overall memory latency (Figure 1.2). Unfortunately, many of these workloads
have very poor reuse properties as shown in Figure 5.3. The figure shows the average number
of times a subscribed block has been reused either by the local subscribed vault (blue) or by
a remote vault (orange). Many workloads have near zero average reuse per block, indicating
that blocks are never accessed again after it has been subscribed and moved to the subscribed
vault. This incurs no extra overhead for always-subscribe since the subscription data transfer
would have been done anyway in the baseline when a processing units requests a block from
a remote vault. However, negligible reuse implies that no benefit can be obtained from
always-subscribe.

In the remainder of this chapter, we focus only on workloads that show non-negligible
reuse as illustrated in Figure 5.3.

5.2 Comparing Always-Subscribe and Adaptive policies

Figure 5.4 shows that both always subscribe and adaptive policies affect performance signif-
icantly for many workloads. While most selected workloads benefit from always-subscribe,
some are negatively affected. The geometric mean of speedup for selected benchmarks is
nearly 14% for always-subscribe and 15% for adaptive, which successfully reduces perfor-
mance degradation for workloads that are hurt by always-subscribe.

26

Figure 5.2: Performance gain for the always-subscribe policy, measured by the execution
cycles of the baseline divided by that of the always-subscribe policy

To provide insight into why some workloads benefit from always-subscribe while others
are hurt by it, we show the average memory latency per request for the baseline, always-
subscribe and adaptive in Figure 5.5. On average, adaptive reduces the average memory per
request by nearly 54% across these selected workloads. However, different workloads have
different reasons for higher/lower average per-request latency. We explain a few of these
reasons next.

PHELinReg exhibits a 20% performance gain from always-subscribe since it significantly
reduces the average number of hops per request. Figure 5.6 shows that PHELinReg has
33% lower total hops per memory request for always-subscribe compared to the baseline,
resulting in a smaller fraction of memory access latency caused by inter-vault data transfers
(Figure 5.7). Such improvement in overall memory latency is demonstrated in Figure 5.5.

CHABsBez and SPLRad do not have a high data transfer reduction with always-
subscribe and even exhibit a higher average number of hops per request compared to the
baseline (Figure 5.6). However, both have high coefficients of variation (Figure 5.8) indi-
cating an uneven distribution where some vaults have much higher demand than the rest,
therefore dominating performance. We investigated this behavior in Table 5.2 and Table 5.3
which shows the top 10 memory addresses for both workloads and their corresponding ac-
cess count. The table demonstrates that a few hot locations contribute a large fraction of
memory accesses which significantly increases queuing delays and degrades performance.
For these two workloads, always-subscribe significantly reduces the coefficient of variation,

27

Figure 5.3: Average number of local and non-local accesses per subscription of always-
subscribe. The blue portion indicates the average number of local accesses from the sub-
scribed vault to a subscribed block after it was successfully subscribed. The orange portion
indicates the average number of remote accesses to a subscribed block.

making the vault access distribution more uniform. This alleviates the queuing bottleneck
(as shown in Figure 5.7) and significantly improves performance.

While our configuration and most PIM systems utilize cache to provide data locality,
this is not proven to be useful in these two workloads. We further analyzed the cache
behaviour pertaining the two most accessed locations (000001FFFF867B4D for CHABsBez
and 000001FFFF88D4CD for SPLRad respectively). As it can be shown in Figure 5.9,
both workloads’ most accessed access has almost half of its requests being GETX, which
invalidates other copies of the block. Our further analysis of the cache trace also shows that,
there is usually a GETS request (requesting a read-only copy from another core) following
the GETX request. Such request has to be served by the memory. These two memory
locations also constitute 78.15% (for CHABsBez) and 88.9% (for SPLRad) of total memory
requests. Therefore, our architecture evens out the access count to these hotly contented
locations and reduces the queuing latency.

Table 5.2: The top 10 access memory locations of CHABsBez
and the number of accesses to those locations

Address (Hex) Count
000001FFFF867B4D 3,745,249

28

0000000000018583 887,143
000000000001874B 27,375
000000000001874C 9,453
0000000000018752 3,063
0000000000018755 2,639
000000000001874D 1,169
0000000000018751 755
00000000000185A1 231
000001FFFF87C2C3 132

Table 5.3: The top 10 access memory locations of SPLRad
and the number of accesses to those locations

Address (Hex) Count
000001FFFF88D4CD 14,925,709
00000000000282CF 502,086
00000000000282CE 481,196
00000000000283CD 159,922
00000000000283D6 44,307
00000000000283D7 7,203
00000000000283D9 4,021
000001FFFF88D564 230
000001FFFF652B40 116
000001FFFF88D4C9 75

Workloads such as PLYgemm and PLY3mm incur 15-17% worse performance from
always-subscribe. This is caused by always-subscribe increasing the coefficient of variation
where it was lower with the baseline (Figure 5.8). For these workloads, always-subscribe
makes the access distribution per vault more uneven and introduces hot vaults that dom-
inate performance. The adaptive policy reduces the impact of the uneven distribution of
always-subscribe since subscriptions are turned off after the first epoch, which limits the
performance degradation to only 5%.

PLYDoitgen shows performance improvement with always-subscribe despite its low co-
efficient of variation. Figure 5.7 explains this behavior since a smaller fraction of memory
latency is attributed to queuing delay. While the memory access distribution for the entire
run is evenly distributed, each vault can become a hotspot for a short period of time caus-
ing high queuing delay. With always-subscribe, short-term hotspots are evened out therefore
improving performance.

29

Figure 5.4: Performance gain of always-subscribe and adaptive normalized to the baseline

Total Traffic. An interesting result is shown in Figure 5.10 which summarizes the total
network bandwidth demand (in bytes per cycle) for always-subscribe and adaptive compared
to the baseline. This figure takes into account traffic caused by both memory accesses and
subscription requests (the latter was not included in Figure 5.6). Some workloads (e.g., PHE-
LinReg) have significant reductions in bandwidth demand vs. the baseline. However, most
workloads have higher bandwidth demand for always-subscribe with an average increase of
88% vs. the baseline due to additional subscription traffic, mainly caused by the low degree
of reuse for subscribed blocks (Figure 5.3). However, adaptive has an average increase of
only 14%. While both flavors of DL-PIM increase average network bandwidth, the reduction
in execution time from more local accesses would still lead to a more energy-efficient design.

5.3 Sensitivity to different per-hop latency

We modified the baseline configuration and run multiple different simulations. The first one
we explored is the latency per packet per hop. As discussed in Chapter 2, HMC does not
specify the technology used for intra-memory communications, and uses a crossbar based
architecture as an example. In the original DAMOV implementation, it takes one cycle for
each packet to travel one hop across the network and be forwarded to the next vault. This
is dependent on different technologies used, which may have different latency and different
routing algorithms. As such, we performed simulations for 1, 2, 4, 8 cycles per hop latency,
as shown in Figure 5.11.

30

Figure 5.5: Average latency per memory request for always-subscribe and adaptive policies

With the increase of latency per hop per packet, workloads that suffer from high data
transfer overhead, like PHELinReg, benefit more from DL-PIM, while workloads that suffer
from high queuing overhead, like CHABsBez, SPLRad and PLYDoitgen, tend to benefit
less from subscription.

This is because, with high latency per hop per packet, the percentage of data transfer
latency out of total latency is higher. As a result, there are fewer packets in queuing, and
therefore, the workloads with high queuing latency do not benefit from our architecture in
those configurations. This is further shown in Figure 5.12, in which all benchmarks show
an increase in the percentage of transfer latency as the overhead per hop goes up.

5.4 Sensitivity to core count

We also run simulations with 4, 64, and 128-core configurations. While our baseline config-
uration uses only 32 cores, some PIM architectures have higher core counts to utilize the
parallelism available. Because of the HMC architecture, by increasing the core count, we
also increase the number of vaults in a given memory system. Therefore, our different core
counts have different memory capacities, with 512MB for 4 core configuration, 8GB for the
64 core configuration, 16GB for the 128 core configuration, and 4GB for the baseline 32
core configuration. For each of those configurations, the memory vaults are configured to
be placed in an n × n 2-D network, with n = ceil(

√
c) where c stands for the number of

vaults in our system. The result are shown in Figure 5.13.

31

Figure 5.6: Average total hops per memory access for always-subscribe and adaptive policies

With the higher core count, the network size increases, and therefore the transfer latency
as shown in Figure 5.14 increases. The increase of parallelism also means that more requests
will be sent at a given time, and the queuing latency for workloads with high queuing latency
also increases. Therefore, these two type of workloads will benefit more from DL-PIM.

5.5 Sensitivity to different adaptive policies

As discussed in section 3.4, we have developed different adaptive policies to dynamically
turn subscription on and off. We have decided to use the latency-based adaptive policy with
global adaptive policy and no set sampling. In this section, we will analyze the result of
different adaptive policies, as shown in Figure 5.15.

Without set sampling, the "subscription away" problem is significant and is causing
performance degradation in various configurations with SPLRad, PLY3mm, PLYgemm,
PLYgemver and PLYSymm. Furthermore, while set sampling allows us to detect when a
program enters a subscription benefiting region, its performance cost is still significant.
Finally, hops-based subscription policy does not work well with SPLRad, which has a high
coefficient of variation and queuing delays.

32

Figure 5.7: Breakdown of transfer, queuing and access latency in total memory latency for
always-subscribe and adaptive policies

5.6 Sensitivity to different adaptive thresholds

As it is hard to measure the latency of memory requests without subscription vs. with
subscription, we are using the change in latency from previous threshold as the indicator
of whether we should make a policy change. We also experimented with different adaptive
thresholds, and the results can be seen in Figure 5.16.

While SPLRad performs the best with 5% adaptive threshold (i.e. when the current
hop’s average latency is 105% or more or 95% or less of the previous hop), PLY3mm and
PLYgemm are performing similarly as the "always subscribe" configuration. Because we
start our simulation with the subscription turned on, with a high threshold, our result
would converge to the "always subscribe" policy.

5.7 Sensitivity to subscription table sizes

We analyzed the impact of subscription table sizes on the performance. With larger tables,
DL-PIM can hold more subscribed memory locations for each vault, but would increase
hardware overhead. Figure 5.17 shows that some workloads (e.g., PLYDoitgen) saw a per-
formance improvement with a larger subscription table, but that improvement flattened
with a 8192-entry subscription table. We decided to use 8192 entries as our default con-
figuration in this thesis, which incurs a 0.125% state overhead relative to the 4GB vault
memory size.

33

Figure 5.8: Coefficient of variation (CoV) of the access distribution per vault for always-
subscribe and adaptive policies. A high CoV implies uneven distribution where some vaults
have much higher demand than others

Figure 5.9: Breakdown of GETS and GETX requests for CHABsBez and SPLRad

34

Figure 5.10: Average network traffic (in bytes per cycle) for always-subscribe and adaptive
policies

Figure 5.11: Adaptive speedup with different latency per hop

35

Figure 5.12: Breakdown of memory latency into data transfer latency, queuing delay and
array access latency for different latency per hop

Figure 5.13: Adaptive speedup with different core number configurations

36

Figure 5.14: Breakdown of memory latency into data transfer latency, queuing delay and
array access latency for different core numbers

Figure 5.15: Performance speedup of selected benchmark with different adaptive policies

37

Figure 5.16: Performance speedup of selected benchmarks’ adaptive policy with different
adaptive thresholds

Figure 5.17: Adaptive speedup with different subscription table sizes

38

Chapter 6

Related Work

This work is inspired by GPS [80], which utilizes a subscription based hardware-software
integrated framework to accelerate multi-GPU systems. GPS uses manual subscription man-
agement in software, allows data use by local and remote GPUs, and evaluates several au-
tomatic subscription algorithms. Conversely, DL-PIM is a hardware-only solution that does
not change the existing program models or APIs.

A recent proposal by Tian et al. [104] (ABNDP) investigated reducing the network over-
head in a PIM system via a hardware/software co-design that proposes a new programming
model, and uses a traveller cache for remote data that resembles a traditional cache. One
traveller cache is used by a group of 4 or more vaults. ABNDP divides the program into
smaller tasks using its programming model, and schedules tasks dynamically based on data
location. Our DL-PIM proposal is a hardware-only solution that uses a 3D-stacked memory
system, and uses a reserved area in memory (not a separate cache) to subscribe remote
addresses and reduce data movement per memory access. ALP [37] also seeks to alleviate
the data movement overhead. However, ALP focuses mostly on the data movement over-
head between the host and the PIM accelerators, instead of the data movement overhead
between different PIM accelerators. Furthermore, ALP uses dynamic run-time information
to decide whether and when to offload a "tightly connected segment" onto PIM accelerators,
and our architecture instead subscribes on first access.

Prior work [69, 98] propose using stacked DRAM as a memory-side cache, automatically
copying/moving data upon request. Most DRAM cache works seek to increase the capacity
or reduce the latency of DRAM caches [85, 75, 109, 74, 54, 41, 111], but all focus on
processor-centric systems. Other works target reducing the communication latency between
different distributed DRAM caches in a multi-node system [22]. Our proposal uses stacked
DRAM technology as a PIM system to reduce process-memory data movement.

Some prior work [112] proposed replacing the crossbar network in HMC with a mesh
network and a reduction/dispersion tree architecture where memory controllers in the same
row are connected together with one set of reduction/dispersion trees. While this proposal
reduces communication overhead between memory controllers and the outside processors, it

39

does not work well with PIM architectures as it disallows communications between memory
controllers without passing through the processor, so it does not reduce processor-memory
data movement.

Our system at a high-level has some similarities to the Cache-only Memory Access
(COMA) architecture [24, 103, 29]. COMA dynamically migrates data requested by a local
node to a local attraction memory from the remote node upon access. However, COMA
can replicate multiple copies of the same data block across different attraction memories
for shared blocks. Our proposal invalidates the original copy on subscription. Although this
may cause performance degradation, it is easier to implement and manage. The Reactive
Non-uniform Cache Access (R-NUCA) machine [50] also seeks to alleviate data movement
overhead by combining different caches to form clusters, and dynamically adjusts the cluster
size based on software-defined parameters. R-NUCA attempts to evenly distribute the data
across different caches within a cluster, to ensure even access latency.

PIM architectures have been extensively used to accelerate many important applications
like graph processing [25, 2, 114, 113], neural networks [36, 82, 68, 7, 96], sparse matrix-
vector multiplication [107, 39], weather prediction [100, 102], regression [44], time series
analysis [31] and bioinformatics [60, 18, 43, 55, 8, 76]. Our proposal accelerated a fraction
of the DAMOV workloads but did not focus on a specific application domain. We attempted
to design a general PIM architecture that could benefit a variety of workloads.

40

Chapter 7

Conclusions

While PIM systems target reducing data movements between processors and memory, they
incur significant data movement due to processing data in remote memory modules. We
showed that most of the latency per memory request is caused by data transfer and queuing
delays between different memory modules (vaults). We proposed DL-PIM, a subscription-
based architecture for PIM systems that seeks to reduce the average latency per memory
request by increasing the fraction of local accesses for PIM processing units. We proposed
an always-subscribe policy that moves data from remote memory modules to a reserved
area in the local module on first access. We also proposed an adaptive policy that alleviates
performance degradation for some workloads caused by the extra traffic of always-subscribe.
Our adaptive policy shows an average performance improvement of 6% across DAMOV
representative workloads, and 15% for workloads that have non-trivial data reuse caused by
a 54% reduction in average memory latency per request. However, DL-PIM had no impact
on many workloads with poor data reuse. It also increased bandwidth demand by 14% due
to the extra traffic caused by subscriptions.

Although our architecture is achieving significant performance improvement for many
commonly used workloads, there are some limitations to it.

First of all, our architecture is focused on HMC memory architecture only. While HMC
used to be a promising architecture for PIM systems, the cessation of development of it
means that we should explore the potential to migrate this work to more recent architectures
like High Bandwidth Memory (HBM).

Furthermore, our implementation allocates an area within the existing memory to pro-
vide local data access. While this is simple to implement, it produces additional hardware
overheads as we need additional memory hardware to store subscribed data. This limits the
size of our subscription table and the potential benefits of our architecture. In the future,
we can explore a "swap" mechanism in which we do not add additional memory space but
instead "swap" the subscribed data with a non-frequently accessed local memory location.

Another issue with our current subscription mechanism is the "subscription away" issue
that we’ve discussed previously. To permanently solve this issue, we can explore a "copy"

41

mechanism in which the data is kept in its original place, but simply "copied" to the sub-
scribed location. This mechanism requires updating all copies of a memory block whenever
it is modified by any of the cores. This cannot be enforced only using the cache coherence
protocol but requires invalidating memory copies whenever a cache block is invalidated for
a shared block. This introduces a lot of additional complexity in designing the protocol, in
addition to significant validation and verification effort. However, this architecture would
significantly reduce the cost of subscription and allow for better performance on even more
workloads.

Finally, DAMOV’s implementation does not consider the scenario when the input buffer
of a memory request’s destination vault is full, and assume that the memory request is placed
in the input buffer of its destination vault immediately upon issuance. This may cause the
performance result to be slightly different from the real hardware.

42

Bibliography

[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David
Blaauw, and Reetuparna Das. Compute Caches. In 2017 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 481–492, 2017.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
A scalable processing-in-memory accelerator for parallel graph processing. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), pages 105–117, 2015.

[3] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-enabled instruc-
tions: A low-overhead, locality-aware processing-in-memory architecture. In Proceed-
ings of the 42nd Annual International Symposium on Computer Architecture, ISCA
’15, page 336–348, New York, NY, USA, 2015. Association for Computing Machinery.

[4] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-enabled instruc-
tions: A low-overhead, locality-aware processing-in-memory architecture. SIGARCH
Comput. Archit. News, 43(3S):336–348, jun 2015.

[5] Shaahin Angizi and Deliang Fan. Accelerating bulk bit-wise x(n)or operation in
processing-in-dram platform, 2019.

[6] Shaahin Angizi, Zhezhi He, and Deliang Fan. Pima-logic: A novel processing-in-
memory architecture for highly flexible and energy-efficient logic computation. In 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6, 2018.

[7] Shaahin Angizi, Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Cmp-pim: An
energy-efficient comparator-based processing-in-memory neural network accelerator.
In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6,
2018.

[8] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. Aligns: A processing-in-
memory accelerator for dna short read alignment leveraging sot-mram. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2019.

[9] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.
Chameleon: Versatile and practical near-dram acceleration architecture for large mem-
ory systems. In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–13, 2016.

[10] Aurelia Augusta and Stratos Idreos. Jafar: Near-data processing for databases. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management

43

of Data, SIGMOD ’15, page 2069–2070, New York, NY, USA, 2015. Association for
Computing Machinery.

[11] Çağrı Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. Main-memory
hash joins on modern processor architectures. IEEE Transactions on Knowledge and
Data Engineering, 27(7):1754–1766, 2015.

[12] Debjyoti Bhattacharjee, Rajeswari Devadoss, and Anupam Chattopadhyay. Revamp:
Reram based vliw architecture for in-memory computing. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017, pages 782–787, 2017.

[13] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec bench-
mark suite: Characterization and architectural implications. In Proceedings of the
17th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’08, page 72–81, New York, NY, USA, 2008. Association for Computing Ma-
chinery.

[14] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric
Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ran-
ganathan, and Onur Mutlu. Google workloads for consumer devices: Mitigating data
movement bottlenecks. SIGPLAN Not., 53(2):316–331, mar 2018.

[15] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu. Conda: Efficient cache coherence support for
near-data accelerators. In 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), pages 629–642, 2019.

[16] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu. Lazypim:
An efficient cache coherence mechanism for processing-in-memory. IEEE Computer
Architecture Letters, 16(1):46–50, 2017.

[17] F. Nisa Bostancı, Ataberk Olgun, Lois Orosa, A. Giray Yağlıkçı, Jeremie S. Kim,
Hasan Hassan, Oğuz Ergin, and Onur Mutlu. Dr-strange: End-to-end system de-
sign for dram-based true random number generators. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 1141–1155,
2022.

[18] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subrama-
nian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-
Luna, Amirali Boroumand, Anant Norion, Allison Scibisz, Sreenivas Subramoneyon,
Can Alkan, Saugata Ghose, and Onur Mutlu. Genasm: A high-performance, low-
power approximate string matching acceleration framework for genome sequence anal-
ysis. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 951–966, 2020.

[19] Kevin K. Chang, Prashant J. Nair, Donghyuk Lee, Saugata Ghose, Moinuddin K.
Qureshi, and Onur Mutlu. Low-cost inter-linked subarrays (lisa): Enabling fast inter-
subarray data movement in dram. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 568–580, 2016.

44

[20] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In
2009 IEEE International Symposium on Workload Characterization (IISWC), pages
44–54, 2009.

[21] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang,
and Yuan Xie. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 27–39, 2016.

[22] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. Candy: Enabling coherent
dram caches for multi-node systems. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, 2016.

[23] Russell Clapp, Martin Dimitrov, Karthik Kumar, Vish Viswanathan, and Thomas
Willhalm. Quantifying the performance impact of memory latency and bandwidth
for big data workloads. In 2015 IEEE International Symposium on Workload Char-
acterization, pages 213–224, 2015.

[24] F. Dahlgren and J. Torrellas. Cache-only memory architectures. Computer, 32(6):72–
79, 1999.

[25] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan Liu,
Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A processing-in-memory architec-
ture for large-scale graph processing. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 38(4):640–653, 2019.

[26] Fabrice Devaux. The true processing in memory accelerator. In 2019 IEEE Hot Chips
31 Symposium (HCS), pages 1–24, 2019.

[27] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. Hpcg benchmark: a new
metric for ranking high performance computing systems. Knoxville, Tennessee, 42,
2015.

[28] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Den-
nis Sylvester, David Blaaauw, and Reetuparna Das. Neural Cache: Bit-Serial In-Cache
Acceleration of Deep Neural Networks. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 383–396, 2018.

[29] Babak Falsafi and David A. Wood. Reactive numa: A design for unifying s-coma and
cc-numa. SIGARCH Comput. Archit. News, 25(2):229–240, May 1997.

[30] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung Kim.
Nda: Near-dram acceleration architecture leveraging commodity dram devices and
standard memory modules. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 283–295, 2015.

[31] Ivan Fernandez, Aditya Manglik, Christina Giannoula, Ricardo Quislant, Nika Man-
souri Ghiasi, Juan Gómez-Luna, Eladio Gutierrez, Oscar Plata, and Onur Mutlu.
Accelerating time series analysis via processing using non-volatile memories, 2022.

45

[32] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality Cache for Data Paral-
lel Acceleration. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 397–410, New York, NY, USA, 2019. Association for Computing
Machinery.

[33] Pierre-Emmanuel Gaillardon, Luca Amarú, Anne Siemon, Eike Linn, Rainer Waser,
Anupam Chattopadhyay, and Giovanni De Micheli. The programmable logic-in-
memory (plim) computer. In 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 427–432, 2016.

[34] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. Practical near-data processing
for in-memory analytics frameworks. In 2015 International Conference on Parallel
Architecture and Compilation (PACT), pages 113–124, 2015.

[35] Mingyu Gao and Christos Kozyrakis. Hrl: Efficient and flexible reconfigurable logic for
near-data processing. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 126–137, 2016.

[36] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris:
Scalable and efficient neural network acceleration with 3d memory. In Proceedings of
the Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 751–764, New York, NY, USA, 2017.
Association for Computing Machinery.

[37] Nika Mansouri Ghiasi, Nandita Vijaykumar, Geraldo F. Oliveira, Lois Orosa, Ivan Fer-
nandez, Mohammad Sadrosadati, Konstantinos Kanellopoulos, Nastaran Hajinazar,
Juan Gómez Luna, and Onur Mutlu. Alp: Alleviating cpu-memory data movement
overheads in memory-centric systems. IEEE Transactions on Emerging Topics in
Computing, 11(2):388–403, 2023.

[38] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu. Processing-in-
memory: A workload-driven perspective. IBM Journal of Research and Development,
63(6):3:1–3:19, 2019.

[39] Christina Giannoula, Ivan Fernandez, Juan Gómez Luna, Nectarios Koziris, Georgios
Goumas, and Onur Mutlu. Sparsep: Towards efficient sparse matrix vector multipli-
cation on real processing-in-memory architectures. Proc. ACM Meas. Anal. Comput.
Syst., 6(1), feb 2022.

[40] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon,
Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon Jeong, and
Duckhyun Chang. Biscuit: A framework for near-data processing of big data work-
loads. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 153–165, 2016.

[41] Nagendra Gulur, Mahesh Mehendale, R. Manikantan, and R. Govindarajan. Bi-modal
dram cache: Improving hit rate, hit latency and bandwidth. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 38–50, 2014.

[42] Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu, Tze-Meng Low,
Lawrence Pileggi, James C Hoe, and Franz Franchetti. 3d-stacked memory-side ac-
celeration: Accelerator and system design, 2014.

46

[43] Saransh Gupta, Mohsen Imani, Behnam Khaleghi, Venkatesh Kumar, and Tajana
Rosing. Rapid: A reram processing in-memory architecture for dna sequence align-
ment. In 2019 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), pages 1–6, 2019.

[44] Juan Gómez-Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy Cimadomo,
Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu. An experimental evaluation
of machine learning training on a real processing-in-memory system, 2023.

[45] Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Víctor García-Floreszx, Simon Gar-
cia de Gonzalo, Thomas B. Jablin, Antonio J. Peña, and Wen-mei Hwu. Chai: Col-
laborative heterogeneous applications for integrated-architectures. In 2017 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 43–54, 2017.

[46] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F.
Oliveira, and Onur Mutlu. Benchmarking a new paradigm: Experimental analysis
and characterization of a real processing-in-memory system. IEEE Access, 10:52565–
52608, 2022.

[47] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gómez-
Luna, and Onur Mutlu. Simdram: A framework for bit-serial simd processing using
dram. In Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’21, page 329–345,
New York, NY, USA, 2021. Association for Computing Machinery.

[48] Said Hamdioui, Shahar Kvatinsky, Gert Cauwenberghs, Lei Xie, Nimrod Wald, Sid-
dharth Joshi, Hesham Mostafa Elsayed, Henk Corporaal, and Koen Bertels. Memristor
for computing: Myth or reality? In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pages 722–731, 2017.

[49] Said Hamdioui, Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Koen Ber-
tels, Henk Corporaal, Hailong Jiao, Francky Catthoor, Dirk Wouters, Linn Eike, and
Jan van Lunteren. Memristor based computation-in-memory architecture for data-
intensive applications. In 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1718–1725, 2015.

[50] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Re-
active nuca: Near-optimal block placement and replication in distributed caches. In
Proceedings of the 36th Annual International Symposium on Computer Architecture,
pages 184–195, New York, NY, USA, 2009. Association for Computing Machinery.

[51] Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. Accelerat-
ing dependent cache misses with an enhanced memory controller. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pages 444–
455, 2016.

[52] Milad Hashemi, Onur Mutlu, and Yale N. Patt. Continuous runahead: Transpar-
ent hardware acceleration for memory intensive workloads. In 2016 49th Annual

47

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12,
2016.

[53] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. Accelerating pointer chasing in 3d-
stacked memory: Challenges, mechanisms, evaluation. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD), pages 25–32, 2016.

[54] Cheng-Chieh Huang and Vijay Nagarajan. Atcache: Reducing dram cache latency via
a small sram tag cache. In 2014 23rd International Conference on Parallel Architecture
and Compilation Techniques (PACT), pages 51–60, 2014.

[55] Wenqin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. Radar: A 3d-reram based
dna alignment accelerator architecture. In 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC), pages 1–6, 2018.

[56] Maurus Item, Geraldo F. Oliveira, Juan Gómez-Luna, Mohammad Sadrosadati, Yuxin
Guo, and Onur Mutlu. Transpimlib: Efficient transcendental functions for processing-
in-memory systems. In 2023 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 235–247, 2023.

[57] Mingu Kang, Min-Sun Keel, Naresh R. Shanbhag, Sean Eilert, and Ken Curewitz.
An energy-efficient vlsi architecture for pattern recognition via deep embedding of
computation in sram. In 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8326–8330, 2014.

[58] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang, Sukhan Lee, Songyi
Han, YeonGon Cho, Jin Hyun Kim, Yongsuk Kwon, KyungSoo Kim, Jin Jung, Ilk-
won Yun, Sung Joo Park, Hyunsun Park, Joonho Song, Jeonghyeon Cho, Kyomin
Sohn, Nam Sung Kim, and Hsien-Hsin S. Lee. Near-memory processing in action: Ac-
celerating personalized recommendation with axdimm. IEEE Micro, 42(1):116–127,
2022.

[59] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory. In 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pages 380–392, 2016.

[60] Jeremie S Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mo-
hammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu. Grim-filter:
Fast seed location filtering in dna read mapping using processing-in-memory technolo-
gies. BMC genomics, 19(2):23–40, 2018.

[61] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible dram
simulator. IEEE Computer Architecture Letters, 15(1):45–49, 2016.

[62] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G.
Friedman, Avinoam Kolodny, and Uri C. Weiser. Magic—memristor-aided logic. IEEE
Transactions on Circuits and Systems II: Express Briefs, 61(11):895–899, 2014.

48

[63] Shahar Kvatinsky, Avinoam Kolodny, Uri C. Weiser, and Eby G. Friedman.
Memristor-based imply logic design procedure. In 2011 IEEE 29th International
Conference on Computer Design (ICCD), pages 142–147, 2011.

[64] Shahar Kvatinsky, Guy Satat, Nimrod Wald, Eby G. Friedman, Avinoam Kolodny,
and Uri C. Weiser. Memristor-based material implication (imply) logic: Design prin-
ciples and methodologies. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(10):2054–2066, 2014.

[65] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-
Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin Cho, Jin Guk
Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah, HyoungMin Kim,
Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David
Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song, Jaeyoun Youn,
Kyomin Sohn, and Nam Sung Kim. A 20nm 6gb function-in-memory dram, based
on hbm2 with a 1.2tflops programmable computing unit using bank-level parallelism,
for machine learning applications. In 2021 IEEE International Solid- State Circuits
Conference (ISSCC), volume 64, pages 350–352, 2021.

[66] James Laudon and Daniel Lenoski. The sgi origin: A ccnuma highly scalable server.
SIGARCH Comput. Archit. News, 25(2):241–251, May 1997.

[67] Joo Hwan Lee, Jaewoong Sim, and Hyesoon Kim. Bssync: Processing near memory
for machine learning workloads with bounded staleness consistency models. In 2015
International Conference on Parallel Architecture and Compilation (PACT), pages
241–252, 2015.

[68] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun Kim,
O Seongil, Anand Iyer, David Wang, Kyomin Sohn, and Nam Sung Kim. Hard-
ware architecture and software stack for pim based on commercial dram technology
: Industrial product. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 43–56, 2021.

[69] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang, Jangwoo Kim, Jinkyu
Jeong, and Jae W. Lee. A fully associative, tagless dram cache. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), pages 211–
222, 2015.

[70] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hen-
nessy. The directory-based cache coherence protocol for the dash multiprocessor.
SIGARCH Comput. Archit. News, 18(2SI):148–159, may 1990.

[71] Yifat Levy, Jehoshua Bruck, Yuval Cassuto, Eby G. Friedman, Avinoam Kolodny,
Eitan Yaakobi, and Shahar Kvatinsky. Logic operations in memory using a memristive
akers array. Microelectronics Journal, 45(11):1429–1437, 2014.

[72] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan,
and Yuan Xie. Drisa: A dram-based reconfigurable in-situ accelerator. In 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
288–301, 2017.

49

[73] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo:
A processing-in-memory architecture for bulk bitwise operations in emerging non-
volatile memories. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, 2016.

[74] Gabriel H. Loh. Extending the effectiveness of 3d-stacked dram caches with an adap-
tive multi-queue policy. In 2009 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 201–212, 2009.

[75] Gabriel H. Loh and Mark D. Hill. Efficiently enabling conventional block sizes for
very large die-stacked dram caches. In 2011 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 454–464, 2011.

[76] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Ol-
gun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almad-
houn Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and
Onur Mutlu. Genstore: A high-performance in-storage processing system for genome
sequence analysis. In Proceedings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’22,
page 635–654, New York, NY, USA, 2022. Association for Computing Machinery.

[77] John D McCalpin et al. Memory bandwidth and machine balance in current high
performance computers. IEEE computer society technical committee on computer
architecture (TCCA) newsletter, 2(19-25), 1995.

[78] Sally A. McKee. Reflections on the memory wall. In Proceedings of the 1st Conference
on Computing Frontiers, CF ’04, page 162, New York, NY, USA, 2004. Association
for Computing Machinery.

[79] Micron Technology, Inc. Hybrid Memory Cube – HMC Gen2.

[80] Harini Muthukrishnan, Daniel Lustig, David Nellans, and Thomas Wenisch. Gps: A
global publish-subscribe model for multi-gpu memory management. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, pages 46–58,
2021.

[81] Geraldo F Oliveira, Juan Gómez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijayku-
mar, Ivan Fernandez, Mohammad Sadrosadati, and Onur Mutlu. DAMOV: A new
methodology and benchmark suite for evaluating data movement bottlenecks. IEEE
Access, 9:134457–134502, 2021.

[82] Geraldo F. Oliveira, Juan Gómez-Luna, Saugata Ghose, Amirali Boroumand, and
Onur Mutlu. Accelerating neural network inference with processing-in-dram: From
the edge to the cloud. IEEE Micro, 42(6):25–38, 2022.

[83] Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu. Flash-
cosmos: In-flash bulk bitwise operations using inherent computation capability of nand
flash memory. In 2022 55th IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 937–955, 2022.

50

[84] Louis-Noel Pouchet. Polybench: The polyhedral benchmark suite. https://www.cs.
colostate.edu/~pouchet/software/polybench/, 2011–2012.

[85] Moinuddin K. Qureshi and Gabe H. Loh. Fundamental latency trade-off in architect-
ing dram caches: Outperforming impractical sram-tags with a simple and practical
design. In 2012 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 235–246, 2012.

[86] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt. A case
for mlp-aware cache replacement. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture, pages 167–178, USA, 2006. IEEE Computer
Society.

[87] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/
darknet/, 2013–2016.

[88] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, pages 475–486, New York, NY, USA, 2013.
Association for Computing Machinery.

[89] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the memory wall: The
case for processor/memory integration. SIGARCH Comput. Archit. News, 24(2):90–
101, May 1996.

[90] Vivek Seshadri, Kevin Hsieh, Amirali Boroum, Donghyuk Lee, Michael A. Kozuch,
Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. Fast bulk bitwise and and or
in dram. IEEE Computer Architecture Letters, 14(2):127–131, 2015.

[91] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarung-
nirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A.
Kozuch, and Todd C. Mowry. Rowclone: Fast and energy-efficient in-dram bulk data
copy and initialization. In 2013 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 185–197, 2013.

[92] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand,
Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C.
Mowry. Buddy-ram: Improving the performance and efficiency of bulk bitwise oper-
ations using dram, 2016.

[93] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand,
Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C.
Mowry. Ambit: In-memory accelerator for bulk bitwise operations using commod-
ity dram technology. In 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 273–287, 2017.

[94] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B Gib-
bons, Michael A. Kozuch, and Todd C Mowry. Gather-scatter dram: In-dram address
translation to improve the spatial locality of non-unit strided accesses. In 2015 48th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
267–280, 2015.

51

https://www.cs.colostate.edu/~pouchet/software/polybench/
https://www.cs.colostate.edu/~pouchet/software/polybench/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

[95] Vivek Seshadri and Onur Mutlu. The processing using memory paradigm:in-dram
bulk copy, initialization, bitwise and and or, 2016.

[96] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. Isaac: A
convolutional neural network accelerator with in-situ analog arithmetic in crossbars.
In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pages 14–26, 2016.

[97] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. SIGPLAN Not., 48(8):135–146, Feb 2013.

[98] Jaewoong Sim, Gabriel H. Loh, Hyesoon Kim, Mike OConnor, and Mithuna Thot-
tethodi. A mostly-clean dram cache for effective hit speculation and self-balancing
dispatch. In 2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 247–257, 2012.

[99] Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu. Fpga-based near-memory ac-
celeration of modern data-intensive applications. IEEE Micro, 41(4):39–48, 2021.

[100] Gagandeep Singh, Dionysios Diamantopoulos, Juan Gómez-Luna, Christoph Hagleit-
ner, Sander Stuijk, Henk Corporaal, and Onur Mutlu. Accelerating weather prediction
using near-memory reconfigurable fabric. ACM Trans. Reconfigurable Technol. Syst.,
15(4), jun 2022.

[101] Gagandeep Singh, Juan Gómez-Luna, Giovanni Mariani, Geraldo F. Oliveira, Ste-
fano Corda, Sander Stuijk, Onur Mutlu, and Henk Corporaal. Napel: Near-memory
computing application performance prediction via ensemble learning. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2019.

[102] Gagandeep Singh, Alireza Khodamoradi, Kristof Denolf, Jack Lo, Juan Gomez-Luna,
Joseph Melber, Andra Bisca, Henk Corporaal, and Onur Mutlu. Sparta: Spatial
acceleration for efficient and scalable horizontal diffusion weather stencil computation.
In Proceedings of the 37th International Conference on Supercomputing, ICS ’23, page
463–476, New York, NY, USA, 2023. Association for Computing Machinery.

[103] P. Stenstrom, T. Joe, and A. Gupta. Comparative performance evaluation of cache-
coherent numa and coma architectures. In [1992] Proceedings the 19th Annual Inter-
national Symposium on Computer Architecture, pages 80–91, 1992.

[104] Boyu Tian, Qihang Chen, and Mingyu Gao. Abndp: Co-optimizing data access and
load balance in near-data processing. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 3, pages 3–17, 2023.

[105] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The splash-2 programs:
characterization and methodological considerations. In Proceedings 22nd Annual In-
ternational Symposium on Computer Architecture, pages 24–36, 1995.

52

[106] Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, and Koen
Bertels. Fast boolean logic mapped on memristor crossbar. In 2015 33rd IEEE
International Conference on Computer Design (ICCD), pages 335–342, 2015.

[107] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. Spacea: Sparse matrix vector multiplication on processing-in-memory
accelerator. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 570–583, 2021.

[108] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix rebirth: Scal-
able mapreduce on a large-scale shared-memory system. In 2009 IEEE International
Symposium on Workload Characterization (IISWC), pages 198–207, 2009.

[109] Vinson Young, Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. Accord: En-
abling associativity for gigascale dram caches by coordinating way-install and way-
prediction. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 328–339, 2018.

[110] Jintao Yu, Hoang Anh Du Nguyen, Lei Xie, Mottaqiallah Taouil, and Said Hamdioui.
Memristive devices for computation-in-memory. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1646–1651, 2018.

[111] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu, and Srinivas
Devadas. Banshee: Bandwidth-efficient dram caching via software/hardware coopera-
tion. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–14, 2017.

[112] Jia Zhan, Itir Akgun, Jishen Zhao, Al Davis, Paolo Faraboschi, Yuangang Wang,
and Yuan Xie. A unified memory network architecture for in-memory computing in
commodity servers. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–14, 2016.

[113] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen,
Christos Kozyrakis, and Xuehai Qian. Graphp: Reducing communication for pim-
based graph processing with efficient data partition. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 544–557,
2018.

[114] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang,
and Xuehai Qian. Graphq: Scalable pim-based graph processing. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
712–725, New York, NY, USA, 2019. Association for Computing Machinery.

53

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	PIM and the Memory Wall
	Hybrid Memory Cube (HMC)

	DL-PIM architecture
	Hardware structures
	Subscription protocol
	Subscription flow
	Resubscription flow
	Negative acknowledgement of subscription
	Unsubscription flow
	Special cases for unsubscription
	Dirty bit

	Memory requests
	Adaptive subscription architecture
	Hops-based adaptive policy
	Latency-based adaptive policy
	The "Subscription Away" problem and solutions
	The "Always Unsubscription" problem and solutions
	Fixing the "always unsubscription" problem with periodic subscription

	Evaluation
	Results and Discussion
	The Always-Subscribe policy
	Comparing Always-Subscribe and Adaptive policies
	Sensitivity to different per-hop latency
	Sensitivity to core count
	Sensitivity to different adaptive policies
	Sensitivity to different adaptive thresholds
	Sensitivity to subscription table sizes

	Related Work
	Conclusions
	Bibliography

