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Abstract

Non-fungible tokens (NFTs) have garnered significant attention as a unique asset class, but
comprehending their pricing and making well-informed investment choices remains chal-
lenging. To tackle this challenge, we conducted an extensive data mining analysis of the
NFT markets, examining transaction frequency, category preferences, price distributions,
and inequality. Employing hierarchical clustering, we organized NFTs into distinct clusters
based on their sales history and price dynamics. We developed predictive models for estimat-
ing NFT prices, utilizing linear regression, regularization techniques, and the Multi-Layer
Perceptron (MLP) model. This research yields valuable insights into the NFT markets, em-
powering investors and artists to make informed decisions. Furthermore, it contributes to
the broader field of digital assets, promoting market fairness and transparency. By compre-
hending the factors influencing NFT prices and organizing NFTs into clusters, this study
enhances transparency and facilitates equitable valuation.

Keywords: NFTs, NFT market, statistical analysis, hierarchical clustering, regression,
Multi-Layer Perceptron (MLP), transparency, fairness
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Chapter 1

Introduction

1.1 Background

Non-fungible tokens (NFTs) have become increasingly popular as a new asset class with
potential for investment and speculation. In recent years, the NFT market has experienced
explosive growth, with millions of dollars spent on individual NFTs [37]. This has led to
a growing interest in understanding the factors that influence the prices of NFTs and how
they can be used as potential investment opportunities.

NFTs are unique digital assets that can represent ownership of various items, such as
artwork, music, and collectibles [4]. They are created using blockchain technology, which
provides a secure and transparent way to verify ownership and authenticity [38]. Unlike
traditional assets, NFTs are indivisible and cannot be replicated, making them scarce and
potentially valuable. The process of creating and trading NFTs involves a complex ecosystem
of platforms, wallets, and marketplaces, each with its own set of rules and features.

Another definition of NFTs states that they are digital assets that feature identify-
ing information documented in smart contracts that can be defined as digital contracts
allowing terms contingent on a decentralized consensus that is tamper-proof and typically
self-enforcing through automated execution [11]. NFTs are cryptographically secured digital
assets, usually called digital tokens [23], on a blockchain network that provides a representa-
tion of a unique item. The first NFT prototype was Colored Coins on the Bitcoin blockchain
[35]. Colored Coins allowed for further experimentation and created the prerequisites for
the birth of NFTs on the Ethereum blockchain later in 2016.

The uniqueness and scarcity of NFTs have led to some high-profile sales in recent years.
For example, in March 2021, a digital artwork by the artist Beeple sold for $69 million at
a Christie’s auction [33]. Other notable NFT trades include a tweet by Twitter CEO Jack
Dorsey, which sold for $2.9 million, and a virtual house in the online game Decentraland,
which sold for $2.4 million [20] [22]. These sales highlight the potential for NFTs as a new
form of valuable asset.
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The NFT market is influenced by various factors, such as the overall health of the
cryptocurrency market, changes in regulation and legal frameworks, and the emergence
of new platforms for NFT creation and trade. Some experts suggest that the success or
adoption of younger NFT projects is also influenced by that of more established markets
such as the cryptocurrency market [7]. These factors can all play a role in determining the
value and appeal of NFTs, making it important to understand and analyze them to gain
insights into the NFT market and its potential for investment and growth.

1.2 Motivation

The first motivation for studying NFT sales is to gain a deeper understanding of the factors
that influence their prices. The NFT market is relatively new and lacks traditional valu-
ation models, which makes it difficult to determine how prices are set. By analyzing the
transaction data and using statistical and machine learning techniques, we hope to identify
the key factors that affect NFT prices and develop accurate prediction models. This infor-
mation can be valuable not only to investors but also to artists and creators who want to
understand the value of their work in the NFT market. Additionally, it can provide valuable
insights into the broader art market, which is shifting towards digital assets like NFTs.

The second motivation for studying NFT sales is to promote transparency and fairness
in the market. Investing in NFTs can be risky due to the lack of regulation and transparency
in the market. Without proper information and guidance, investors may fall prey to scams,
fraud, or misinformation. By providing insights into the pricing mechanisms and market
trends, we can help investors make more informed decisions and prevent arbitrage. This
can lead to a more efficient market that benefits both creators and investors. Furthermore,
understanding the value of NFTs and the factors that influence them can lead to fair intel-
lectual property and prevent fraud and exploitation. This can encourage more artists and
creators to participate in the NFT market, knowing that their work is protected and valued
appropriately.

1.3 Research Objectives and Questions

This research aims to analyze an open-source dataset containing NFT transaction data from
2017 to 2021 [29], with the goal of understanding the factors that influence NFT prices and
developing accurate prediction models. The research questions we will address include:

• How do statistical analysis techniques contribute to our understanding of the factors
that influence NFT prices, and what are the key insights gained from this analysis?

• What are the clusters identified through hierarchical clustering techniques, and what
can these clusters tell us about the characteristics of different NFT categories and
their respective price ranges?
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• Can machine learning models accurately predict NFT prices, and what are the most
important features or variables in these models that contribute to accurate price
prediction?

1.4 Methodology and Dataset

We use an open-source dataset containing detailed information on NFT transactions, includ-
ing unique identifiers, prices, categories, and transaction dates. We will employ statistical
analysis, hierarchy of clusters, and machine learning techniques, such as regression mod-
els and Multi-Layer Perceptrons (MLPs), to analyze the dataset and address the research
questions.

For the initial phase of the analysis, we utilized statistical analysis techniques to in-
vestigate the dataset. Descriptive statistics were employed to examine the fundamental
characteristics of the data, including counts, missing values, unique values, and data types,
as well as to identify the types of transactions present in the dataset. We then proceeded to
investigate the distribution of prices and transaction volume across various categories. In
addition, we adopted economic methods such as the Gini Index and Lorenz Curve to ana-
lyze the price distribution. Furthermore, we performed time series analysis and correlation
analysis to identify any trends and relationships within the dataset.

The second part of the research involved applying K-means clustering to identify the
main clusters from the NFT dataset. To determine the optimal number of clusters, the elbow
method was used. The main characteristics of each cluster were analyzed, and clusters larger
than 40% were further clustered from within, allowing us to build the hierarchy of clusters.
This method of analysis enabled us to gain a better understanding of the characteristics of
each cluster and the overall structure of the NFT market.

In the final stage of the research, we applied linear regression and deep learning tech-
niques to predict NFT prices based on a selected set of features. Regularization techniques,
including Lasso (L1) and Ridge (L2) regression, were implemented in linear regression mod-
els to address the issue of overfitting. The performance of the models was evaluated based
on R2 score, root mean squared error (RMSE) estimate, and alpha hyperparameter for
regularization. For deep learning, we used the Multilayer Perceptron (MLP) as a regression
model for price prediction. We conducted experiments by varying the batch size, epochs,
activation functions, and optimizer to find the optimal combination. The performance of
the model was evaluated based on R2 score and validation loss.

1.5 Significance

Overall, this study is significant in providing a deeper understanding of the NFT market
and its potential as a new asset class. The results of this research can have implications
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not only for investors but also for artists, collectors, and other stakeholders in the NFT
ecosystem.
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Chapter 2

Related Work

Previous research on NFTs has focused on various aspects of this emerging market, including
the factors influencing prices, the impact on the creative economy, and the technical aspects
of NFT creation and trade along with the evolution of the market. In this section, we
aim to analyze the current state and research related to the NFT market from different
perspectives. We will start with describing technical components of NFTs and the market
development and its pricing determinants. Next, we will cover the analysis of the NFT
market along with different prediction models that were implemented by researchers from
around the world.

In their report [36] Qin Wang et al. provide a systematic study of the current NFT
ecosystems and explore various aspects, including technical components, protocols, stan-
dards, security evaluation, opportunities, and challenges. They identify the core technical
components (blockchain, smart contracts, address and transaction, data encoding) used to
construct NFTs and present their protocols, standards, and targeted properties. The report
[36] explains two design patterns for establishing the Non-Fungible Token (NFT) paradigm:
Top to Bottom and Bottom to Top that include NFT owner and NFT buyer roles. In the
Top to Bottom design, the process involves digitizing the raw data, storing it in an external
database or blockchain, signing a transaction, and finally minting and trading the NFT.
On the other hand, in the Bottom to Top design, the founder initiates a template, and the
buyer customizes the NFT product by adding additional features on top of basic lines. The
process continues with minting, trading, and finally persistently storing the NFT on-chain
after the consensus procedure is completed. Each NFT has a unique identifier called a "to-
kenId," which is a unit256 variable. The combination of the contract address and tokenId
is globally unique, and tokenId can be used as an input to generate special identifications
such as images in the form of zombies or cartoon characters. Moreover, the key properties
of NFT schemes as decentralized applications include verifiability, transparent execution,
availability, tamper-resistance, usability, atomicity, and tradability.

The technical report summarized above provides us with basic understanding of how
NFTs are being traded and highlights the importance of continuing research in this area
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as it can facilitate the boosting in the gaming industry, flourishing of the virtual events,
protection of the digital collectibles, and inspiring the Metaverse [36].

Kräussl and Tugnetti [25] describe the development of the NFT market in the four
stages. The first stage began in 2012 with the Colored Coins prototype on the Bitcoin
blockchain, and in 2017, the ERC-721 standard was proposed for NFTs on the Ethereum
blockchain. The second stage started with the success of NFT collections like CryptoKitties
and CryptoPunks in 2017. The third stage began in 2018 when some platforms decided to
create their own blockchain to offer users an alternative to Ethereum. The fourth stage began
in 2020 when NFTs gained popularity among the general population, attracting investors
and artists to create their own series. In their review [25], five major categories of the NFTs
were identified as follows: gaming, collectibles, utilities, art, and metaverse. Moreover, the
authors were also able to identify the five major approaches applied to the determination
of pricing NFTs: hedonic regression models (estimates the relationship between the price
of a good and its intrinsic characteristics), repeat sales regressions (examines the change
in the value of an asset over time), vector autoregressive models (analyzes the relationship
between multiple time series), machine learning, and wavelet models (analyzes signals and
time series data at multiple scales) [25].

The review conducted above has highlighted the significant events and milestones that
have shaped the evolution of the NFT market, providing valuable insights into the factors
that could affect pricing strategies [25]. In addition to the NFT categories mentioned in
previous studies, we have introduced an additional category, ’other’, to capture a wider
range of NFT types. Building on the pricing determination techniques discussed in the
literature, our approach to NFT price prediction combines repeat sales regressions and
machine learning methods to enable accurate and reliable price forecasting based on time-
series data and sales price information.

Predicting the sale price was also attempted by another group of researchers, where they
analyzed the NFT market using data from the OpenSea platform, exploring transaction
volumes, prices, trade networks, and visual features that contribute to the value of NFTs
[28]. The authors identify several factors that influence NFT prices, including the rarity of
the artwork, the reputation of the artist, and the aesthetic value of the NFT. They also use
computer vision and dimensionality reduction techniques to analyze the visual features of
NFTs, such as color, shape, and composition, finding that certain features, like bright colors
and symmetry, are associated with higher NFT prices.

Despite the fact that both of our research use the same dataset, there are some simi-
larities and differences. Like the authors in [28], we also analyzed transaction volumes and
prices of NFTs to understand the factors that influence their prices. However, our research
goes beyond by using additional statistical methods like the Gini index and Lorenz curve
analysis to investigate the distribution of wealth in the NFT market. Furthermore, we em-
ployed machine learning techniques, including linear regression and multilayer perceptron
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models, to predict NFT prices with a higher level of accuracy. Moreover, while the authors
in [28] focused on the visual features of NFTs, our research investigated the impact of NFT
categories and explored patterns in the data using hierarchical clustering techniques. We
also analyzed the transaction history of NFTs, including the number of times they were sold
and the length of time between sales, to gain a better understanding of how NFT prices
evolve over time.

In another research, Costa, La Cava, and Tagarelli address the problem of predicting
the financial performance of Non-Fungible Tokens (NFTs) using their associated images
and textual descriptions [13]. They propose a novel multimodal deep learning framework
called MERLIN, which uses Transformer-based language and visual models and graph neural
network models to learn dense representations of NFT data. The objective of the framework
is to perform a price-category classification into low, medium, high, and predict the price
category of a previously unseen NFT.

Similar to the current research, the authors used a publicly available dataset on NFT
purchase transactions, which includes sales from various NFT markets [29]. They selected
202,257 NFTs with images and descriptions that had at least one secondary sale and defined
three price categories based on the distribution of average prices. While both [13] and our
research aim to predict the prices of NFTs based on the same dataset, our methodology
differs in terms of the features that are being selected for training purposes. While the
features selected for [13] include text and image data, the features selected for this research
include prices of the NFTs in USD and corresponding dates of the sales.

Another study conducted by Gumelar et al. [18] aims to predict the price of NFT coins,
which consist of various types, such as mana coins, sand, axes, and other NFT coins. These
coins are required to purchase NFT assets, and as NFTs are being increasingly used for
trading in the blockchain, the movement of NFT coins is erratic and uncertain, making
it difficult for investors to make profitable decisions. Through the literature study stage,
interviews, and viewing daily NFT coin price data, where the attributes used are date,
open, high, low, close, and volume, the authors [18] were able to apply k-Nearest Neighbors
(KNN) algorithm for price prediction. The study collects data from coinmarketcap.com for
the period January 1, 2019, to December 31, 2021, and processes it to predict the close
value of the NFT coin price for a period of one day.

Although both the current study and the research summarized above [18] share the one
of the same objectives of helping investors make profitable decisions using machine learning
techniques, we focus on the price prediction of the NFT asset, while Gumelar et al. focus
on the trade sales of the NFT coins.
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Chapter 3

Preliminaries: Key Concepts and
Statistical Methods

3.1 Gini Index and Lorenz Curve

The Gini Index and Lorenz Curve are important statistical tools for analyzing the distribu-
tion of NFT values. The Lorenz Curve [27] is a graphical representation of the distribution
of a particular variable, with the cumulative percentage of the population on the x-axis and
the cumulative percentage of the variable on the y-axis. It is named after the American
economist Max O. Lorenz, who first used it to study income inequality in 1905 [9]. Suppose
that some quantity Q, which could stand for wealth, income, family income, land, food,
and so on, is distributed in a population. If we imagine the population to be lined up by
increasing the order of their shares of Q, then for any p between 0 and 1 the people in the
first fraction p of the line represent the Q-poorest of the population. We then call L(p) the
fraction of the totality of Q owned by that fraction of the population [15]. In the case when
everyone has the exact same amount of Q, the order of our imaginary line-up would give us
a perfect equitability (Fig 3.1).

The Gini Index [17] is a measure of inequality in the distribution of a particular variable,
such as wealth or income. It is calculated by taking the ratio of the area between the Lorenz
Curve and the line of perfect equitability (blue area -B from Fig.1.) to the total area under
the Lorenz Curve [9]. A Gini Index of 0 indicates perfect equality (every individual has the
same value) and a Gini Index of 1 indicates perfect inequality (one individual has all the
value). The Gini index can be calculated using:

G = A

A + B
(3.1)

G = 1− 1
2

∫
L(p)dp (3.2)
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Figure 3.1: Gini Index Visual Representation[12]

In the context of NFTs, the Gini Index and Lorenz Curve can be used to analyze the
distribution of value among different types of NFTs, as well as the distribution of value
among NFT holders. This is important for understanding the overall level of inequality
within the NFT market and can inform policy decisions related to NFT regulation and
taxation. For example, if the Gini Index is high and the Lorenz Curve is highly skewed, this
could indicate that a small number of NFTs or NFT holders are capturing a disproportionate
share of the value. Conversely, if the Gini Index is low and the Lorenz Curve is relatively
flat, this could indicate a more equal distribution of value. Overall, the Gini Index and
Lorenz Curve provide a useful framework for analyzing the distribution of NFT value and
can inform decision-making within the NFT market.

3.2 Moving Averages

The moving average method [8] is a popular time series analysis method used to understand
the characteristics of a time series and to find a pattern or formula to predict future events.
Simple Moving Average (SMA) is the easiest type of moving average to calculate, where
each point in the time series data is weighted the same regardless of its position in the
sequence. Although many other soft computing methods have been developed, the moving
average method is still considered as one of the best methods due to its ease, objectiveness,
reliability, and usefulness [19]. For every i-th data point, at a given time t, the Simple
Moving Average (SMA(t)) with n data points can be calculated as follows:

SMA(t) = 1
n

∑
A(i) (3.3)
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Moving average methods come in various forms, but their underlying purpose remains
the same: to track the trend determination of the given time series data. Short-term fluctu-
ations are typically ‘smoothed’ using a rolling window of a short time period (e.g. 3 days,
5 days, 7 days). By smoothing out short-term fluctuations, moving averages can help iden-
tify underlying trends, which can be useful for predicting future values of NFTs or making
informed decisions based on the trend direction of the NFTs.

3.3 Correlation Analysis

The use of correlation analysis is an important statistical tool for identifying relationships
between different variables in a dataset. In finance, correlation analysis is widely used to
identify the relationship between different assets, such as stocks, bonds, and commodities.
Additionally, correlation analysis can be used to identify trends in market behavior and to
inform investment decisions.

One commonly used method for calculating the correlation coefficient is the Pearson
correlation coefficient [32], which measures the strength and direction of the linear relation-
ship between two variables. This coefficient ranges from -1 to 1, where a value of -1 indicates
a perfectly negative correlation, a value of 1 indicates a perfectly positive correlation, and
a value of 0 indicates no correlation. For given pair of variables or vectors X and Y, the
formula to calculate the Pearson Correlation coefficient is as follows :

ρXY = E[(X − µX)(Y − µY )]
σXσY

(3.4)

where E is an expected value, σX and σY are the standard deviations of X and Y, and
µX and µY are the mean values of X and Y.

Pearson correlation is widely used in financial analysis and is particularly useful when
analyzing time-series data, such as stock prices or market indices. According to Ezekiel [14],
correlation analysis is a powerful tool that can be used to identify relationships between
different variables in a dataset. The method can be used to identify patterns and trends in
data, and can provide important insights into the behavior of complex systems. Additionally,
correlation analysis is widely used in finance to inform investment decisions and to identify
opportunities for diversification. The Pearson correlation coefficient is a widely used method
for calculating correlations and is particularly useful for analyzing time-series data of the
NFTs transactions.

3.4 Clustering Algorithms and the Hierarchy of Clusters

The K-means clustering algorithm [21], introduced by Hartigan and Wong in 1979, is a
widely used unsupervised learning method that partitions data into K clusters based on their
similarity [21]. The algorithm works by randomly selecting K centroids, which represent the
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center of each cluster, and then assigning each data point to the nearest centroid based on
its distance. In RD space, for data points x and x’, the natural choice of distance computed
is Euclidean [1]:

||x− x
′ || =

√√√√ D∑
d=1

= (xd − x
′
d)2 (3.5)

After the random assignment of the centroids, they are then recalculated as the mean of
the data points assigned to them, and the process is repeated until convergence, where the
centroids no longer change significantly. The algorithm for K-means clustering is as follows
[1]:

Algorithm 1: K-means Algorithm
Input : Data vectors {xn}Nn=1, number of clusters K

Output: Assignments {rn}Nn=1 for each data point, cluster means {µk}Kk=1
for n← 1 to N do

rn ← [0, 0, . . . , 0];
k′ ← RandomInteger(1, K);
rn,k′ ← 1;

end
repeat

for k ← 1 to K do
Nk ←

∑N
n=1 rn,k;

µk ← 1
Nk

∑N
n=1 rn,kxn;

end
for n← 1 to N do

rn ← [0, 0, . . . , 0];
k′ ← arg mink ||xn − µk||2;
rn,k′ ← 1;

end
until none of the rn change;

To determine the optimal number of clusters for K-means, the "elbow method" [6] is
commonly used. The idea is to determine the number of clusters then add clusters, calculate
the sum squared error (SSE) or Inertia per cluster until the maximum number of clusters
that have been determined, then by comparing the difference SSE of each cluster, the most
extreme difference forming the angle of the elbow shows the best cluster number [7]. The
formula to calculate SSE is as follows:

SSE =
k∑

i=1

∑
xj⊂Ci

||xj − µi|| (3.6)
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Figure 3.2: SSE (Inertia) VS number of clusters (k)[10]

where k is the number of clusters, Ci is the i-th cluster, xj is j-th data point, and i is
i-th centroid. If we visualize the results of the SSE(Inertia) calculation against the number
of K (Fig 3.2):

K-means has been used in various applications, such as image segmentation, market
segmentation, and anomaly detection. In finance, K-means has been used to identify groups
of stocks with similar return patterns and to cluster customers based on their behavior.

Hierarchical clustering [30] is a data clustering algorithm that creates a hierarchical rep-
resentation of data by recursively partitioning the dataset into smaller and smaller clusters
or groups. It constructs a tree over the data: the leaves are individual data items, while
the root is a single cluster that contains all of the data. Between the root and the leaves
are intermediate clusters that contain subsets of the data. The main idea of hierarchical
clustering is to make “clusters of clusters” going upwards to construct a tree. There are two
main conceptual approaches to forming such a tree. Hierarchical agglomerative clustering
(HAC) starts at the bottom, with every datum in its own singleton cluster, and merges
groups together. Divisive clustering starts with all of the data in one big group and then
chops it up until every datum is in its own singleton group [2]. In this research, we will
use the second approach of divisive clustering to build a hierarchy of clusters using the
K-means algorithm. We assume that the NFTs might be grouped into different clusters,
and the groups that are extremely large might have subclusters that could be calculated
using the same approach.
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3.5 Regression Models and Regularization

The method of least squares [26] [16] is used as a standard approach in regression analy-
sis, where regression models are known as a type of statistical model used to explore the
relationship between an outcome variable and one or more predictor variables [24]. These
models are widely used in finance, economics, and other fields to make predictions about
future events or to better understand the relationship between different variables. The most
common type of regression model is linear regression, which involves fitting a straight line
to a set of data points in order to predict the value of the outcome variable based on the
value of the predictor variable(s) [24]. Given a dataset {yi, xi1, ..., xip}ni=1 of n statistical
units, a linear regression model assumes that there’s a linear relationship between depen-
dent variable yi and a vector of independent variables {xi1, ..., xip}ni=1 with an addition of
noise (error value) :

yi = β0 + β1xi1 + ... + βpxip + ϵ = xT β + ϵi, for i = 1, 2, ..., n (3.7)

or alternatively in matrix notation,

y = Xβ + ϵ (3.8)

where xT stands for the transpose value of x, so that xT
i produces the inner product

between vectors xi and β; {0, 1, ..., p} is a (p+1)-dimensional parameter vector, where β0 is
the intercept term.

When evaluating the performance of a regression model, two important metrics are often
used: R2 score and Root Mean Squared Error (RMSE).

The R2 score, also known as the coefficient of determination, measures how well the
model fits the data by calculating the proportion of variance in the outcome variable that is
explained by the predictor variable(s). The R2 score ranges from 0 to 1, with higher values
indicating a better fit. It can be calculated using:

R2 = 1−
∑

(yi − µy)2∑
(yi − y′)2 (3.9)

where yi is the actual value of the dependent variable, µy is is the mean of the dependent
variable, and ý is a predicted value of an independent variable.

RMSE, on the other hand, measures the error between the predicted and actual values
of the outcome variable. If MSE (mean root squares) represents the average of the squared
difference between the original and predicted values in the data set indicating the variance
of the residuals, the RMSE measures the variance of the residuals:

MSE = 1
N

N∑
i=1

(y − y
′) (3.10)
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and

RMSE =

√√√√ 1
N

N∑
i=1

(y − y′) (3.11)

The goal of the regression model is to minimize RMSE and maximize the R2 score [24].
Regularization is a technique used to prevent overfitting in regression models. Overfitting

occurs when a model is too complex and begins to fit the noise in the data rather than the
underlying patterns. This can lead to poor performance on new data that the model has
not seen before. L1 (Lasso Regression) and L2 (Ridge Regression) regularization are two
common forms of regularization used in linear regression models.

L1 regularization adds a penalty term to the cost function that is proportional to the
absolute value of the model coefficients. This has the effect of shrinking some of the coeffi-
cients to zero, effectively removing them from the model. The cost function that is used to
measure the error between predicted and actual values for Lasso is:

n∑
i=1

(Yi −
p∑

j=1
Xij)2 + λ

p∑
j=1
|βj | (3.12)

In this case, if λ is zero then we will get back the simple linear regression estimates
whereas a very large value will make coefficients zero hence it will under-fit.

L2 regularization adds a penalty term that is proportional to the square of the model
coefficients, which has the effect of shrinking all the coefficients toward zero [31]. The cost
function of Ridge Regression can be computed using:

n∑
i=1

(Yi −
p∑

j=1
Xij)2 + λ

p∑
j=1

β2
j (3.13)

In this case, if λ is zero then we will get back the simple linear regression estimates
whereas a very large value will add too much weight and it will lead to under-fitting.

In this research, regression models are being used to predict the prices of NFTs based
on a set of historical data variables. R2 score and RMSE will be used to evaluate the
performance of the model and select the best set of input variables. In addition, we will
experiment with L1 and L2 regularization to improve the performance of the model and
prevent overfitting. By incorporating these techniques into the analysis, we hope to create
a more accurate and reliable model for predicting NFT price values.

3.6 Multi-Layer Perceptron

Neural networks are a type of machine learning algorithm modeled on the structure of the
human brain [31]. At its core, a neural network is made up of interconnected nodes, or
neurons, that process and transmit information. These neurons are organized into layers,
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Figure 3.3: MLP structure

with each layer performing a specific function in the network. The input layer receives the
raw data, while the output layer produces the final output, which could be a prediction or
classification [3]. The layers in between are known as hidden layers and are responsible for
processing the input data through a series of non-linear transformations to extract relevant
features. Neural networks use a process called backpropagation to adjust the weights and
biases of each neuron in the network during training, in order to minimize the difference
between the predicted output and the actual output [31].

The multilayer perceptron (MLP) [34] is a type of neural network architecture that has
been widely used for predicting outcomes based on input variables. It is a feedforward net-
work, meaning the information flows in one direction from the input layer to the output
layer, and it has one or more hidden layers in between. Each neuron in the network is con-
nected to every neuron in the adjacent layers, and each connection has a weight associated
with it (see Fig 3.3).

The MLP uses activation functions to introduce non-linearities into the network, allow-
ing it to model complex relationships between the input and output variables. The primary
role of the Activation Function is to transform the summed weighted input from the node
into an output value to be fed to the next hidden layer or as output. During training,
the weights and biases are adjusted using backpropagation and optimizer algorithms to
minimize the difference between the predicted and actual values [3].

As weight, input, and bias enter the node, they go through a transformation of an
activation functions (could be ReLu, Sigmoid, or Tanh):
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Figure 3.4: Neuron composition [5]

a = ϕ(
∑

j

wjxj + b) (3.14)

where, xj are the inputs, wj are the weights, b is bias, and ϕ is an activation function.
At every hidden layer the network computation go through transformations in the form of:

hl
i = ϕl(

∑
j

wl
ijxj + bi) (3.15)

ylast = ϕy(
∑

j

wl
ixj + blast) (3.16)

where l represents an l-th hidden layer, ylast indicates the output value with wj weights
and blast biases that go into the output layer. When training an MLP model, it’s impor-
tant to consider the most optimal optimizer algorithm, the number of hidden layers (for
regression 1 is typically enough), the epoch number, and the batch size. These hyperparam-
eters need to be tuned to achieve optimal performance of the model. MLP can be used for
predicting NFT prices by taking various features of NFTs as inputs and the price as the
output. The MLP model will be trained on historical data, and once trained, it might be
used to predict the price of new NFTs based on their features.

Similar to linear regression, when evaluating the performance of the MLP model, two
common metrics used are R2 and validation loss. The R2 score measures the proportion of
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variance in the outcome variable (i.e., price) that is explained by the predictor variables
(i.e., NFT features). A higher R2 score indicates a better fit of the model to the data.
Validation loss, on the other hand, measures the error between the predicted and actual
values of the outcome variable during validation. The goal of the MLP model is to minimize
the validation loss and maximize the R2 score, indicating a good fit of the model to the
data.
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Chapter 4

Results: Statistical Analysis

4.1 Dataset

This dataset was collected by a group of scientists [28] from several NFT marketplaces such
as OpenSea, Atomic, Cryptokitties, Godsunchained, and Decentraland Market APIs. The
data encompasses a period of almost four years, from June 23, 2017, to April 27, 2021, and
includes information on 4,040,908 unique NFTs that were traded during this time period.
The dataset contains 6,071,027 trades and 24 columns of information, with key attributes of
interest being ID_token (unique ID identifier for each NFT), Price_USD (the price during
the transaction in USD), Category (one of the categories: Art, Games, Utility, Metaverse,
Collectible, and Other), and Datetime_updated (date of transaction updated to seconds).

4.2 Descriptive Analysis

This section aims to provide an overview of the key characteristics of the NFT dataset.
In this section, we explore the distribution of NFT prices and volume, the frequency and
duration of trades, and the most popular categories of NFTs.

As mentioned earlier, the dataset includes 6,071,027 rows (transactions) with 4,040,908
unique ID_tokens (unique NFTs). The columns chosen for this study along with their data
types can be seen on Table 4.1

Table 4.1: Description of Important Columns

Column Name Data Type Description
ID_token string Unique identifier of each NFT
Price_USD float Price of the sale in USD
Category string Category of an NFT (Art, Games, Utility,

Metaverse, Collectible, Other)
Datetime_updated datetime Updated transaction date

Even though there are 6,071,027 transactions, most of them (2,874,819) were one-time
purchases (sold_once), while the rest of the transactions were sold more than once. At the
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Figure 4.1: NFTs by the number of transactions

same time, the number of NFTs that were traded twice is 891,844 (sold_twice), and the
remaining 274,245 NFTs were traded more than two times (sold_many_times):

Further, applying a similar analysis to each category, we can observe that for the category
of Art, there’s a distinct amount of NFTs that were traded more than once (55.79%). Next,
we can also see that for the categories of Metaverse and Games, there are 27.95% to 29.7%
of NFTs being traded more than once, while for the rest of the categories, NFTs are mostly
being traded once (over 85% of the transactions are being sold once). Even though the
numbers vary from category to category, the main ratio compared to Table 4.2 is similar:
the largest group is sold once, the medium group is sold twice, and the smallest group of
NFTs is sold more than twice (see Table 4.3 and Fig 4.2).
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Table 4.2: Sales by Type

Sale Type Count Percent
Sold many times 274,245 6.79%
Sold twice 891,844 22.07%
Sold once 2,874,819 71.14%

Table 4.3: Sales by Category and Type

Category Sale Type Within Category %
Art sold_many_times 12.96%

sold_once 44.21%
sold_twice 42.83%

Collectible sold_many_times 2.90%
sold_once 85.63%
sold_twice 11.47%

Games sold_many_times 5.37%
sold_once 72.05%
sold_twice 22.58%

Metaverse sold_many_times 15.17%
sold_once 70.32%
sold_twice 14.51%

Other sold_many_times 1.60%
sold_once 92.91%
sold_twice 5.49%

Utility sold_many_times 2.71%
sold_once 85.73%
sold_twice 11.56%
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: NFTs by Sale Type per Category
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Figure 4.3: Share of Transactions by Category

There are two major ways to describe the NFTs distribution: by the number of trans-
actions per category and by the number of NFTs per category. In the first case, we count
number of transactions per each category. As can be seen from Fig 4.3, the most popular
categories in terms of the number of transactions are Games (43.53%), Collectible (26.45%),
and Art (24.25%) adding up to a total of 94.23%. At the same time, the remaining 5.77%
is spread around Other (4.49%), Metaverse (1.13%), and Utility (0.14%) categories.

Table 4.4: Number of Transactions by Category

Category no_transactions
Games 2,643,014
Collectible 1,605,657
Art 1,472,515
Other 272,772
Metaverse 68,372
Utility 8,697

In terms of the distribution of the NFTs by belonging to a certain category, the pro-
portions are similar to the share of transactions (see Fig 4.4), where Games (45.50%),
Collectible (31.45%), and Art (17.57%) make up 94.52%, while Other (4.58%), Metaverse
(0.73%), and Utility (0.17%) make up 5.48%.

The price distribution of the NFT sales in this dataset ranges between 1.51∗1016(minimum
price) and 7.50 ∗ 106 USD (maximum price), where the cheapest NFT was sold in the cate-
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Figure 4.4: Share of NFTs by Category

Table 4.5: Number of NFTs by Category

Category Number of NFTs
Games 1,919,149
Collectible 1,326,549
Art 740,892
Other 193,077
Metaverse 30,700
Utility 7,369
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gory of Games of Godsunchained collection on November 22nd, 2019 and the most expensive
NFT was sold in the Art category from the Cryptopunks collection on March 11th, 2021.
The average price of the NFTs across all categories is 146 USD, which is not the best repre-
sentation of the data due to outliers. On the other hand, the median value (50th percentile)
of the prices in USD is 1.46. Such a significant difference between the mean and median can
be explained by a relatively large standard deviation of 5490 USD.

Table 4.6: Statistical Measures of Price_USD

Statistical Measure Price_USD
count 6.062744e+06
mean 1.463413e+02
std 5.488389e+03
min 1.514250e-16
25% 2.277600e-01
50% 1.426470e+00
75% 1.385100e+01
max 7.501893e+06

Applying the same principle to different categories of NFTs, we can see how different
statistical measures appear for each category. Similar to Table 4.6 the mean value of each
category is significantly higher than the median value and 75th percentile, while the standard
deviation of each category is larger than the mean value, indicating the skewed distribution
of the prices across the dataset.

Table 4.7: Summary Statistics by Category

Category Mean Std Min 25% 50% 75% Max
Art 413.237 10582.696 2.265e-16 1.090 5.662 34.415 7.501893e+06
Collectible 68.439 706.914 9.558e-16 0.546 2.091 22.050 4.291656e+05
Games 26.797 842.789 1.514e-16 0.088 0.350 3.702 5.149742e+05
Metaverse 1000.340 14740.809 1.619e-04 1.628 54.296 517.290 2.684347e+06
Other 81.553 571.256 3.831e-10 0.189 1.914 19.209 9.984975e+04
Utility 1005.444 3919.342 1.301e-10 6.387 104.927 666.222 1.303435e+05

Investigating the price distribution further, we realized that the majority of NFTs have
smaller intervals, and visualizing a boxplot to see the overall distribution is not reliable. As
one can see from Fig 4.5 - 4.6, most of the NFTs are populated closer to the left side of the
boxplots, where price distribution is measured in USD.

To get a more clear picture, we used the 75th percentile as a threshold to see how prices
are distributed across different categories. Looking at Fig 4.7, we can see that Art and
Utility have the largest range of prices, Other, Collectible, and Metaverse have a similar
price distribution, and the category of Games has the smallest range of prices.
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Figure 4.5: Price Distribution

Figure 4.6: Price Distribution by Category (Boxplot)

Figure 4.7: Price Distribution by Category (Limited)
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Figure 4.8: Lorenz Curve (All categories)

4.3 Gini Index and Lorenz Curve

As per the discussion in Section 3.1 the Gini index and Lorenz curve are two widely used
measures to assess the inequality of a distribution. In the context of NFT prices, these
measures can help us understand how the prices are distributed among different categories,
and whether some categories have a higher concentration of high-priced NFTs than others.
The motivation behind using the Gini index and Lorenz curve in our analysis is to provide a
comprehensive picture of the distribution of NFT prices and the inequality among different
categories. Even though Gini Index is known to be used for assessing the distribution of
wealth in economics or other markets like real estate, here we are using it to assess the price
distribution of NFTs.

As can be observed from Fig 4.8, the Lorenz Curve distribution is significantly below the
perfect equitability line, which suggests that the NFT price distribution is highly unequal.
Since the Lorenz Curve remains constant all the way to the end of the x-axis (0.8), a
large percentage of the NFTs have a very low share of the total wealth. The curve also
suddenly grows towards the end of the x-axis, which suggests that a small percentage of the
population (NFT traders) holds a disproportionately large share of the total wealth.

A similar trend can be observed for all the categories with slight differences across them
(see Fig 4.9)
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Figure 4.9: Lorenz Curve (By categories)
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To compute the Gini Index we calculated the area between the Perfect Equitibility
and Lorenz Curve. As mentioned in Chapter 3.1, the Gini Index is a measure of income
inequality, and ranges between 0 and 1. A value of 0 indicates perfect equality, where
everyone has the same income, while a value of 1 indicates perfect inequality, where a group
of NFTs has all the wealth and everyone else has none. From the Table 4.8, we can see that
the overall Gini Index value for the NFT dataset is 0.481630, which suggests a relatively
high level of inequality in terms of prices across the different NFT categories. The highest
Gini Index values are observed for the Art and Games categories, with values of 0.480957
and 0.473247, respectively. The lowest Gini Index values are observed for the Utility and
Metaverse categories, with values of 0.408745 and 0.442626, respectively. This suggests that
these categories have a relatively more equal distribution of prices compared to the other
categories.

Table 4.8: Gini Index by Category

Category Gini Index
All categories 0.481630
Art 0.480957
Games 0.473247
Other 0.455134
Collectible 0.453071
Metaverse 0.442626
Utility 0.408745

4.4 Time-series Analysis and Moving Average

In this section, we examine the changes in average price and volume of NFT transactions
over time using time-series analysis and moving average techniques. We first present the
general trends in average price and volume change over time for all categories, followed by a
breakdown of these trends by category. The figures in this section are computed by grouping
the data by the dates of the sale, computing the daily average price in USD and the number
of transactions per day (volume), and normalizing the computed numbers between 0 and 1.
The x-axis represent every day from June 23, 2017, to April 27, 2021 totalling up to 6,293
days, and the y-axis represents the change of these two dimensions over time.

The Fig 4.10 illustrates that both the average price and volume of NFTs have been
steadily increasing since 2017, with a peak in early 2021. The increase in both metrics
suggests a growing interest in NFTs among investors and collectors. Additionally, the chart
shows that there are some periods of fluctuation, indicating that the NFT market is not
immune to volatility. The figure also provides insights into the relationship between average
price and volume, as the two metrics seem to follow similar patterns with the trend of
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Figure 4.10: Changes in Average Price and Volume over time

Figure 4.11: Art: Changes in Average Price and Volume over time

volume following the growth rates of the price in 2021. These trends are further analyzed
by category in the following sections.

Analyzing the trends by category, we can notice that the earliest NFT product that
appeared in the market is Art. However, compared to the overall trend on the NFT market,
it seems that NFTs sold as Art reached their peak of popularity in late 2017, late 2018, and
early 2021 respectively, in terms of the volume. On the other hand, the changes in price
over time had its peak post 2021.

The next category of NFT that appeared on the market is Collectible that has an
opposite trend compared to Art. The two peaks of the daily average prices appear in the
first half of 2018, after that the trend remains low and steady. However, the popularity of
the category arises in 2021, similar to the overall trend of all categories (Fig 4.10).
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Figure 4.12: Collectible: Changes in Average Price and Volume over time

Figure 4.13: Other: Changes in Average Price and Volume over time

The following category that appeared on the market is Other. Similar to Collectible, the
trend of the volume for the NFTs of this category goes up after 2021 with a slight popularity
rate in late 2019. However, in terms of the daily average price changes, the fluctuations can
be observed throughout the whole period with a peak in late 2019.

Another category that appeared on the NFT market is Games. Similar to Other cate-
gories, but different from the overall trend of all the categories, the daily average price of
the Games NFTs fluctuates throughout the period reaching a few peaks every 5-7 months.
Also, similarly to the previous figure, the trend of the volume for these NFTs skyrocketed
in the beginning of 2021 with some disturbance in the late 2019.

The next category that appeared on the market in the second half of 2018 is Metaverse.
In contrast to Collectible, Other, and Games categories, the popularity of this category hits
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Figure 4.14: Games: Changes in Average Price and Volume over time

Figure 4.15: Metaverse: Changes in Average Price and Volume over time

the extrema points in early 2019, early 2020, and then early 2021 (once every year). However
the daily average price changes fluctuates the whole period reaching its two consecutive
peaks after 2021.

The last, but not least category that appeared on the market is Utility. From the figure
below we can see that even though the daily average price distribution is fairly static
throughout the time, it reaches its peak in the late 2020. However, the popularity of this
category reached the highest three points in late 2019, second half of 2020, and past 2021.

The time-series analysis reveals some interesting findings about the changes in average
price and volume of NFT transactions. As shown in Fig 4.10, the average price and volume
of NFTs have been steadily increasing since 2017, with a peak in early 2021. The overall
trend suggests that the NFT market has experienced a significant growth in popularity
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Figure 4.16: Utility: Changes in Average Price and Volume over time

among investors and collectors. However, there are periods of fluctuations that suggest the
market is not immune to volatility; therefore, we need to consider techniques that would
smooth the overall trends.

Breaking down the trends by category provides further insights. The Art category, the
earliest NFT product that appeared in the market, reached its peak of popularity in late
2017, late 2018, and early 2021, respectively, in terms of volume. In contrast, the Collectible
category had two peaks in daily average prices in the first half of 2018, but its popularity
increased in 2021. The Other category had a slight popularity rate in late 2019 and saw an
increase in volume after 2021, while Games had a fluctuating daily average price throughout
the period and a surge in volume in early 2021. The Metaverse category experienced its
popularity peaks once every year, in early 2019, early 2020, and then early 2021, while the
Utility category reached its highest points in late 2019, the second half of 2020, and 2021,
with a fairly static daily average price distribution throughout the time. These findings
provide a detailed picture of the changes in NFT market trends by category over time,
which can be useful for investors and collectors seeking to make informed decisions.

As was discussed in Chapter 3.2, moving averages are commonly used in time-series
analysis to identify trends and patterns in data. In the context of the NFT market, moving
averages can help us smooth out short-term fluctuations and focus on longer-term trends.
By calculating the average price over a specific period, we can obtain a more accurate rep-
resentation of the market’s direction and momentum. Moving averages can be particularly
useful when analyzing NFTs, which can experience significant volatility in price and volume.
In this section, we apply moving average techniques to the NFT data to gain deeper insights
into the trends and patterns in the market and compare them to the previously analyzed
figures. The rolling window size was chosen at 7 days.
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Figure 4.17: Average Price versus Moving Average (7 days)

The overall trend of the average daily pricing for all categories is as follows (see Fig
4.17):

Further, by applying the same technique to every category, we can observe that the
trends of the moving average for Art and Collectible are opposite to each other: while
the category of Art has an overall increasing trend, the Collectible has a decreasing trend.
Similar to Art, the moving average of Metaverse also goes up, but with less significant effect.
However, the categories of Other, Games, and Utility still demonstrate price fluctuations
throughout the whole period.

Figure 4.18: Art: Average Price versus Moving Average (7 days)
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Figure 4.19: Collectible: Average Price versus Moving Average (7 days)

Figure 4.20: Other: Average Price versus Moving Average (7 days)
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Figure 4.21: Games: Average Price versus Moving Average (7 days)

Figure 4.22: Metaverse: Average Price versus Moving Average (7 days)
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Figure 4.23: Utility: Average Price versus Moving Average (7 days)

4.5 Correlations

In this section, we focus on analyzing the correlation between the six categories of NFTs on
the market. To conduct this analysis, we first filtered our dataset to include only the dates
when all six categories were being sold on the market, which resulted in a total of 794 days
between February 11, 2019, and April 27, 2021. Next, we computed the daily average price
in USD and volume for each category.

We then used the Pearson correlation coefficient to measure the strength of the linear
relationship between each pair of categories. The Pearson correlation coefficient ranges
between -1 and 1, with a value of 1 indicating a perfect positive linear correlation, a value of
-1 indicating a perfect negative linear correlation, and a value of 0 indicating no correlation.
Finally, we visualized the correlation matrix using a heatmap to identify any significant
relationships between the categories. The following paragraphs provide a detailed analysis
of our findings.

Looking at Table 4.9 and Fig 4.24, we can see that Collectibles and Art prices have the
highest correlation coefficient of 0.41, followed closely by Other, Art and Utility at 0.29.
This suggests that there is a weak positive correlation between these categories, meaning
that they tend to move in relatively similar directions. On the other hand, the rest of the
categories do not have any significant correlations in terms of the price change over time.

From the correlation matrix (Table 4.10 and Fig 4.25), we can see that the volume of
transactions in Collectible, Games, and Other categories have a relatively high correlation
with each other, with correlation coefficients ranging from 0.71 to 0.86. Meanwhile, the
volume of transactions in Art and Metaverse categories have a relatively low correlation
with the other categories, with correlation coefficients ranging from 0.24 to 0.65. The volume
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Table 4.9: Correlation Matrix of Prices

Prices Art Collectible Games Metaverse Other Utility
Art 1.000000 0.414549 0.230264 0.264809 0.290189 0.285110
Collectible 0.414549 1.000000 0.122678 0.241852 0.200546 0.192540
Games 0.230264 0.122678 1.000000 0.146260 0.110030 0.181031
Metaverse 0.264809 0.241852 0.146260 1.000000 0.123646 0.163100
Other 0.290189 0.200546 0.110030 0.123646 1.000000 0.069505
Utility 0.285110 0.192540 0.181031 0.163100 0.069505 1.000000

Figure 4.24: Correlation Matrix between different categories
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Figure 4.25: Correlation Matrix between different categories

of transactions in the Utility category has a very low correlation with all other categories,
with correlation coefficients ranging from 0.14 to 0.33.

Table 4.10: Correlation Matrix - Volume

Category Art Collectible Games Metaverse Other Utility
Art 1.000000 0.536062 0.400288 0.240827 0.652706 0.331847
Collectible 0.536062 1.000000 0.711311 0.564013 0.843593 0.202956
Games 0.400288 0.711311 1.000000 0.736215 0.860377 0.163906
Metaverse 0.240827 0.564013 0.736215 1.000000 0.647091 0.138643
Other 0.652706 0.843593 0.860377 0.647091 1.000000 0.245240
Utility 0.331847 0.202956 0.163906 0.138643 0.245240 1.000000
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Chapter 5

Results: Hierarchy of Clusters

As discussed in Chapter 3.4, the purpose of constructing the hierarchy of clusters was to
organize various types of NFTs into distinct clusters and explore the most prominent ones
using K-means clustering. Given the wide range of NFT prices, it was hypothesized that
certain clusters may be more extensive than others and could be analyzed in more detail
by removing the smaller clusters from the dataset. This approach enabled us to focus on
the most significant trends and insights, while still considering the broader patterns across
all NFTs.

5.1 Feature selection

After conducting a thorough examination of the NFT dataset, we extracted five main fea-
tures to use in our analysis: local_avg_price, global_avg_price, counts_norm, local_std,
and global_std. To calculate local_avg_price, we normalized the sale price of each NFT
within its own sale history between 0 and 1, and then found the average of these normalized
values. For local_std, we calculated the standard deviation of the sale prices within the same
sale history. To obtain global_avg_price and global_std, we first calculated the average and
standard deviation of the sale prices for each NFT across all its sales and then scaled these
values between 0 and 1 using the minimum and maximum values across all NFTs. Finally,
to calculate counts_norm, we determined the number of times each NFT was sold and
normalized this value between 0 and 1 using the minimum and maximum values across all
NFTs.

When calculating each feature, we assume that n is a number of sales per NFT, where
Pi is the price of the i-th sale, pmax is the maximum price in the sale history, µ is local
average price, N is total number of NFTs, Pj is the average price of the j-th NFT across all
its sales, Pmax is the maximum price across all NFTs, C is the number of times an NFT was
sold, Cmin is the minimum number of times any NFT was sold, and Cmax is the maximum
number of times any NFT was sold:
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local_avg_price(µ) = 1
n

∑ Pi

pmax
(5.1)

local_std =

√
1

n− 1
∑ Pi

pmax − µ

2
(5.2)

global_avg_price(ν) = 1
N

∑
( Pj

Pmax
) (5.3)

global_std =

√
1

N − 1
∑ Pj

Pmax − ν

2
(5.4)

counts_norm = C − Cmin

Cmax − Cmin
(5.5)

The above formulas were used to calculate features per each NFT, however, for the NFTs
that were only sold once (vast majority) these features cannot be calculated. Therefore, we
initially clusterized the NFTs into 2 clusters at the Root Level: sold once and sold many
times.

Figure 5.1: Root Level clustering

5.2 Process of Clustering

As can be observed from Fig 5.2, the process of clustering starts with plotting inertia values
for k between 2 and 11, to apply the ‘Elbow Method’ discussed in Chapter 3.4. Then, we
choose the optimal number of k (number of clusters), and apply the K-means algorithm
based on the optimal k. After plotting and analyzing the results of an initial clustering, we
choose larger clusters (those that constitute over 40% of all NFTs) and repeat the process
until all the clusters look balanced.
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Figure 5.2: Process of clustering

5.3 Initial Results and Triangular-shaped Clusters

Initially, after cleaning the dataset from missing values and other data inconsistencies, we
were able to extract features of 778,053 unique NFTs that were sold at least twice. We
plotted (see Fig 5.3) K-means values against Inertia Value (SSE measure) to identify the
optimal value of k implying the ’Elbow Method’, and identified k=3 as the optimal number
of clusters.

As our next step, we applied K-Means algorithm with k = 3, and were able to identify
3 main clusters (see Fig 5.4) with the largest cluster 2 (in blue) constituting over 76% of all
NFTs sold at least twice (see Table 5.1).
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Figure 5.3: Inertia Values versus Number of Clusters
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Figure 5.4: Initial Cluster Visualization

Table 5.1: Cluster Analysis Initial Results

Cluster Avg Local Price Avg Global Price Counts Local STD Global STD Size
0 0.357 1.76× 10−5 1.41× 10−4 0.5131 2.16× 10−5 85,670
1 0.5526 1.48× 10−5 9.10× 10−4 0.5264 8.61× 10−5 100,042
2 0.5 0.77× 10−5 0 0.7071 5.51× 10−5 592,341

Following the procedure described in Section 5.2, we focused on cluster 2, and here are
some of our observations:

• The features calculated for local values (local_avg_price, local_std) as well as counts_norm
are uniform for all the NFTs in cluster 2. Therefore, we only used the remaining two
features (global_avg_price, global_std) for visualizations.

• Analyzing the inner clusters further, we noticed that all subsequent clusters are
triangular-shaped (see Fig 5.5), indicating a relationship between the two variables
with a line function:

Global STD = 1.413×Global Avg Price + c

43



Figure 5.5: Cluster 2 Visualization (2D)

These results looked interesting; therefore, we investigated further and found a trivial
explanation to our observations. When an NFT is sold twice, it only has two prices P1 and
P2, where:

avg_price(µ) = 1
2(P1 + P2) (5.6)

std =

√
(P1 − µ)2 + (P2 − µ)2

2 (5.7)

if we define distance from each price P to the mean value as d, then:

(P1 − µ) = (P2 − µ) = d (5.8)

std =

√
(d)2 + (d)2

2 (5.9)

therefore, std and µ have a linear relationship, which explains the triangular-shaped
clusters.

After analyzing these results, we decided to group our clusters into two initial clusters,
and 2 subclusters at the Level 1: sold once (one price available), sold at least two times,
sold twice (two prices available), and sold many times (three or more prices available).
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Figure 5.6: Hierarchy of Clusters at Level 1

5.4 Final Results and the Hierarchy of Clusters

In this section, we will focus on building the hierarchy of clusters after excluding the larger
clusters of the NFTs that were sold once and sold twice. By calculating the Inertia Values of
the remaining 185,788 NFTs in the range of k between 2 and 11, we found our optimal k to
be 4 (see Fig 5.7). Applying K-Means algorithm for four clusters resulted in four subclusters
(see Fig 5.8)
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Figure 5.7: Inertia for different values of k
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Figure 5.8: Cluster Visualization

Table 5.2: Observations for Different Clusters

Cluster Avg Local Price Avg Global Price Counts Local STD Global STD Size (Percent)
2 0.306 2.81× 10−4 0.423 3.89× 10−4 3.16× 10−4 21,519 (11.59%)
0 0.633 1.69× 10−4 0.531 0.99× 10−4 1.95× 10−4 37,642 (20.27%)
3 0.357 1.40× 10−4 0.557 1.72× 10−4 0.54× 10−4 50,722 (27.31%)
1 0.492 1.36× 10−4 0.518 0.82× 10−4 4.41× 10−4 75,829 (40.83%)

Analyzing Fig 5.8 and Table 5.2, we can characterize each cluster as follows:

• Cluster-2: even though the local average price of these NFTs is the smallest, comparing
it to the rest of the NFTs in other clusters, their global average prices are much higher.
In terms of the price distribution of this particular cluster, both local and global STD
is higher than in any other class. We can generalize this group as NFTs that are very
expensive, have lower rate of resale, and with a large range of prices, but the median
of the prices internally is closer to its minimum price.

• Cluster-0: has the largest average price rate locally, meaning that their average price
internally was closer to a maximum price, but has a lower price globally compared to
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cluster-2. At the same time, this group of NFTs along with cluster-2 and cluster-1, are
sold more often than cluster-2. Cluster-0 also has a low STD locally, meaning that the
prices for which these NFTs were sold changed gradually and didn’t differ too much
from its original price. Finally, this group of NFTs has a higher rate of global STD
compared to local STD. This means that the NFTs within this cluster less significantly
than in cluster-2.

• Cluster-3: has very similar characteristics as cluster-0, but with lower local average
price, meaning that their average price internally was closer to a minimum price. More-
over, cluster-3 has a higher local STD than global STD, meaning that all the NFTs in
this cluster are in a relatively similar price range, while price changes internally are
more significant than between different NFTs.

• Cluster-1: has the largest portion of all NFTs and constitutes 40.83% of all clusters.
It also has the smallest global average price and a relatively small volume rate. This
cluster will be analyzed further.

The resulting hierarchy after level 2 can be seen below (Fig 5.9). Now, we will look closer
into cluster-1.

Figure 5.9: Cluster Visualization
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At the final stage, we applied the same technique to cluster-1. We first chose a number of
optimal clusters to be four based on Fig 5.10. Then, we used K-means clustering to identify
subclusters (see Fig 5.11 and Table 5.3) of the cluster-1

Figure 5.10: Inertia for different values of k
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Figure 5.11: Cluster Visualization

Table 5.3: Cluster Analysis Results

Cluster Avg Local Price Avg Global Price Counts Local STD Global STD Size (Percent)
4 0.496 2.32× 10−4 0.417 1.48× 10−4 1.06× 10−3 8,999 (11.87%)
7 0.526 1.52× 10−4 0.501 0.93× 10−4 0.18× 10−3 17,953 (23.68%)
5 0.452 1.47× 10−4 0.503 1.01× 10−4 0.26× 10−3 20,974 (27.66%)
6 0.499 0.86× 10−4 0.573 0.41× 10−4 0.54× 10−3 27,903 (36.79%)

Analyzing Fig 5.11 and Table 5.3, we can characterize each cluster as follows:

• Cluster-4: has a similar pattern with cluster-2 in terms of the global price and volume
(counts) metrics, the global average price is large, but the volume is small. This cluster
also has the largest values of STD both locally and globally, meaning that price ranges
in this group of NFTs are relatively spread.

• Cluster-7: has similar trends with cluster-5 and cluster-6, but its local price measure-
ment is relatively bigger than for other clusters, underlying that the center of the
NFTs under cluster-7 are closer to its maximum point.
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• Cluster-5: has an opposite trend compared to cluster-7 in terms of the local average
price, meaning that its center is closer to a minimum price, even though the global
average of the prices for this cluster is smaller than cluster-4 and cluster-7

• Cluster-6: has the smallest value in terms of global average price, but the largest
number of transactions.

To summarize the hierarchy of clusters, there is a total of nine classes of NFTs: at the
root level and level 1, the classes were separated due to feature extraction peculiarities,
while at levels 2 and 3, the separation was realized through K-means hierarchical clustering
(see Fig 5.12). From table 5.4 we can also see the original measures of each class in USD,
and here are some general observations for each class:

• Class 2 has the highest average price, highest mean STD, and highest mean count,
indicating that it has the most valuable and popular NFTs.

• Class 4 has a lower average price but a relatively high mean STD, indicating that it
has NFTs with higher price volatility.

• Class 0 has a lower average price and mean STD, but it has a higher mean count
compared to other classes, indicating that it has a larger number of lower-priced
NFTs.

• Class 7 has a lower average price, mean STD, and mean count than the other classes,
indicating that it has a relatively smaller number of lower-priced and lower-volatility
NFTs.

• Class 5 has a lower average price and mean STD, but a slightly higher mean count
than Class 7, indicating that it has a larger number of lower-priced and lower-volatility
NFTs than Class 7.

• Class 3 has a relatively low average price and a high mean STD, indicating that it
has NFTs with higher price volatility.

• Class 6 has the lowest average price, lowest mean STD, and lowest mean count, indi-
cating that it has the least valuable and popular NFTs. However, it has the highest
STD of prices, which suggests that it may have NFTs with a wider range of prices.
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Figure 5.12: Hierarchy of Clusters

Table 5.4: Class Statistics

Classes
Avg

Price
Mean
STD

Mean
Counts

STD
of Prices

STD
of STD

STD
of Counts

2 144.594 174.226 8.820 881.38 1731.40 41.42
4 119.208 66.334 4.956 1507.39 1107.14 1.69
0 87.007 44.298 3.359 664.69 467.95 1.02
7 77.994 41.485 3.343 788.63 512.86 0.69
5 75.629 45.152 3.472 1103.99 484.48 0.77
3 71.886 76.970 3.100 1239.08 2065.67 0.64
6 44.295 18.278 4.000 3139.70 680.29 0.05
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Chapter 6

Results: Predicting Prices

In this section, we discuss the process of predicting NFT prices. We first discuss feature
selection, followed by the results of the linear regression model, regularized regression, and
MLP.

6.1 Feature Selection and Data Preprocessing

During the process of feature selection, we endeavored to extract relevant features for the
purpose of predicting the last sale price of non-fungible tokens (NFTs). From an initial pool
of over 30 different features, we narrowed down our focus to 11 features that were deemed
to be the most significant. Our approach involved a focus on the historical transactional
data of NFTs, and specifically, we selected 135,812 NFTs that had been traded at least 5
times.

To preprocess the data, we grouped NFTs and normalized their prices between 0 and
1 within their sale history. We then extracted the last sale price for each NFT as our
dependent variable (y value). Additionally, we extracted the prices and dates for the second
to last, third to last, fourth to last, and primary sales (see Fig 6.1). In order to capture the
variability of the data, we included the average normalized price and standard deviation of
these prices as two additional features (see the description of each feature in table 6.1).

Figure 6.1: Hierarchy of Clusters

Overall, this feature selection process allowed us to narrow down a large pool of poten-
tial features to a set of key variables that could be used for the price prediction of NFTs.
This served as the foundation for subsequent modeling approaches, including linear regres-
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Table 6.1: Feature Descriptions

Feature Description
global_avg_norm_price average price of the NFT after normalizing
global_std_norm_price standard deviation of the NFT prices after normalizing
primary_norm_price normalized price of the first ever sale
primary_sale_year year in which the first sale has been made
second_last_norm_price normalized price of the second to last sale
second_last_sale_year year in which the second to last sale has been made
third_last_norm_price normalized price of the third to last sale
third_last_sale_year year in which the third to last sale has been made
fourth_last_norm_price normalized price of the fourth to last sale
fourth_last_sale_year year in which the fourth to last sale has been made
last_sale_year year in which the last sale is made

sion, regularized regression, and a neural networks model using the Multi-Layer Perceptron
(MLP) algorithm. Additionally, we used a 9:1 train/test ratio for the model training and
evaluation processes. The models used in this study incorporated 10 cross-fold validation
techniques for regression analysis, as well as used validation sets for MLP model evaluation.

6.2 Linear Regression and Regularization

Simple Linear Regression: In this approach, we used a linear regression model to predict
the last sale price of an NFT based on a set of selected features. We used a 10-fold cross-
validation method to evaluate the performance of our model. The performance was measured
using the Root Mean Squared Error (RMSE) metric, which indicates the difference between
the predicted and actual values. We also calculated the coefficients of the features in the
linear regression model, which indicates how strongly each feature affects the predicted
value.

L1 Regularized Regression (Lasso): In this approach, we used Lasso regularization to
reduce the complexity of our model and prevent overfitting. We first found an optimal alpha
value using a 10-fold cross-validation method. We then used this alpha value to train our
Lasso regression model and calculated the RMSE and standard deviation of our predictions.
We also calculated the coefficients of the features in the Lasso regression model.

L2 Regularized Regression (Ridge): In this approach, we used Ridge regularization to
reduce the complexity of our model and prevent overfitting. Similar to Lasso, we first found
an optimal alpha value using a 10-fold cross-validation method. We then used this alpha
value to train our Ridge regression model and calculated the RMSE and standard devi-
ation of our predictions. We also calculated the coefficients of the features in the Ridge
regression model, which indicates the importance of each feature in the prediction. Table
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6.2 demonstrates the coefficient values for each model, and its visualization can be seen in
the Appendix .

Table 6.2: Regression Coefficients

Feature Linear Regression Coef Ridge Coef Lasso Coef
global_avg_norm_price 1.9925 1.9923 1.9926
global_std_norm_price -0.0833 -0.0832 -0.0833
primary_norm_price -0.6883 -0.6882 -0.6883
primary_sale_year -0.0050 -0.0050 -0.0050
second_last_norm_price -0.4109 -0.4108 -0.4109
second_last_sale_year -0.0203 -0.0203 -0.0203
third_last_norm_price -0.5678 -0.5677 -0.5678
third_last_sale_year -0.0232 -0.0232 -0.0232
fourth_last_norm_price -0.1734 -0.1733 -0.17334
fourth_last_sale_year 0.0203 0.0203 0.0203
last_sale_year 0.0308 0.0308 0.0308

Table 6.3: Regression Metrics and Parameters

Metrics/Parameters Linear Regression Ridge Regression (L2) Lasso Regression (L1)
alpha None 0.0514 0.00001
RMSE mean (10-CV) 0.2445 0.2445 0.2445
STD of RMSE 0.0019 0.0018 0.0018
R2 score 68.7132 ×10−2 68.7133 ×10−2 68.7132 ×10−2

Upon examining Table 6.2, it can be observed that the majority of the coefficients
are strikingly similar, barring the coefficients of global_avg_norm_price. However, it is
worth noting that the coefficients for all other features are exactly the same between Linear
Regression and Lasso Regression. Similarly, Table 6.3 highlights a comparable trend where
the R2 scores of Linear Regression and Lasso Regression are identical, while the Ridge
Regression produced slightly superior results. These results can be explained simply by the
fact that the optimal alpha value of Lasso Regression is extremely close to zero, which makes
it significantly similar to the original simple Linear Regression.

6.3 Multi-layer Perceptron

In the MLP (Multilayer Perceptron) section, the training process of the model is initiated by
defining its architecture. This includes specifying the number of input and output neurons,
as well as determining the structure of the hidden layers. Additionally, choices regarding
activation functions, batch sizes, optimizers, and the number of epochs are made to configure
the model.
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Once the model is defined, the training process begins. During training, the model
iteratively updates its weights and biases using backpropagation and gradient descent. The
aim is to minimize the loss function and improve the model’s performance.

To evaluate the performance of the model, the validation loss is monitored during train-
ing. This loss represents the discrepancy between the predicted values and the actual values
in the validation dataset. A plot of the validation loss against the epochs is created, allowing
for a visual assessment of the model’s learning progress. The minimum validation loss is
identified as the point at which the model achieves its best performance on the validation
dataset.

In addition to the validation loss, the R2 score is calculated as a measure of the model’s
predictive capability.

After extensive experimentation and tuning, we have identified the optimal parameters
for the MLP (Multi-Layer Perceptron) model. These parameters were selected based on
their impact on model performance (validation loss and R2 score) and their ability to yield
the best results for our specific task.

During the experimentation phase of our MLP (Multi-Layer Perceptron) model, we
focused on exploring the impact of the number of hidden layers and the number of neurons
in the hidden layer first. As mentioned in Chapter 3.6, it is commonly recommended to use
a single hidden layer for regression tasks.

By varying the number of hidden layers and the number of neurons within those layers,
we examined the model’s performance in terms of the validation loss and the R2 score. Figure
6.2 illustrates the relationship between the number of hidden layers and the validation loss.
We observed that the minimum validation loss was achieved when there was only one hidden
layer with 400 neurons. This finding suggests that a single hidden layer with 400 neurons is
sufficient for capturing the underlying patterns in the data and minimizing the prediction
errors. Similarly, Figure 6.3 displays that the R2 score reached its maximum value when
using a single hidden layer with 400 neurons.
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Figure 6.2: Validation Loss by the Number of Hidden Layers

Figure 6.3: R2 Score by the Number of Hidden Layers

In the subsequent phase of our experimentation, we focused on determining the optimal
number of epochs for training the MLP model. We explored a range of epochs, spanning
from 100 to 1600, and evaluated the model’s performance in terms of the validation loss
and the R2 score.
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Figure 6.4 provides insights into the relationship between the number of epochs and
the validation loss. It is evident that as the number of epochs increases, the validation loss
gradually decreases. However, we observed that after reaching a minimum, the validation
loss stabilizes around 1000 epochs.

Figure 6.5 depicts the R2 score corresponding to different numbers of epochs. We noted
that the R2 score steadily increases as the number of epochs increases, reaching its maximum
value of 0.79 at 1000 epochs.

Figure 6.4: Optimal Number of Epochs

Figure 6.5: Optimal Number of Epochs

In the subsequent stage of our experimentation, we focused on exploring different acti-
vation functions for the hidden layer (Layer 1) and the output layer (Layer 2) of the MLP
model. Specifically, we investigated the effects of using ReLu, Sigmoid, and Tanh activation
functions.

To evaluate the performance of various activation function combinations, we generated
heatmaps depicting the validation loss and R2 score for different combinations of Layer 1
and Layer 2 activation functions. These heatmaps, as shown in Figures 6.6 and 6.7, provide
valuable insights into the impact of activation functions on the model’s performance. Based
on the observed results, it was found that the combination of Tanh activation for the hidden
layer (Layer 1) and Sigmoid activation for the output layer (Layer 2) yielded the most
favorable outcomes. This combination achieved a validation loss of 0.072 and an R2 score
of 0.79, indicating better performance compared to other activation function combinations.
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Figure 6.6: Activation Functions Heatmap: Validation Loss
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Figure 6.7: Activation Functions Heatmap: R2 score

Finally, after conducting experiments with different optimization algorithms including
Adadrad, SGD, and Adam, we carefully evaluated their performance in minimizing the
cost function. Our analysis, as depicted in Figures 6.8, clearly indicates that the Adam
optimizer outperformed the other algorithms, exhibiting both the minimal validation loss
and the maximum R2 score. This compelling evidence led us to select the Adam optimizer as
the optimal choice for our model in achieving superior performance in the task of minimizing
the cost function.
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Figure 6.8: Validation Loss and R2 score
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Chapter 7

Conclusion

7.1 Statistical Analysis

The descriptive analysis of the NFT dataset revealed key characteristics of the market. The
dataset covered a span of four years and included over 4 million unique NFTs and 6 million
trades. The transaction frequency indicated that many NFTs were traded only once, and
the Games, Collectible, and Art categories dominated the market in terms of transaction
volume. The price distribution exhibited wide variation, with a skewed distribution and
notable differences between mean and median prices. Each category displayed its own price
distribution pattern, emphasizing the heterogeneity within the NFT market.

The examination of the Gini Index and Lorenz Curve shed light on the inequality of
NFT price distributions. The Lorenz Curve indicated a highly unequal distribution, with
a small percentage of traders holding a disproportionate share of wealth. The Gini Index
further confirmed the high level of price inequality, with Art and Games categories showing
the greatest inequality. In contrast, the Utility and Metaverse categories displayed a more
equal distribution of prices. These findings provided insights into the concentration of wealth
within the NFT market.

The time-series analysis revealed a steady increase in the average price and volume of
NFT transactions since 2017, with a peak in early 2021. However, the market experienced pe-
riods of fluctuation, indicating volatility. The trends varied across categories, with different
categories exhibiting peaks of popularity at different times. Moving average techniques high-
lighted the overall trends, with Art showing an increasing trend, Collectible demonstrating
a decreasing trend, and Other, Games, and Utility categories displaying price fluctuations.

The analysis of correlations between NFT categories identified interesting relationships.
Collectibles and Art showed the highest positive correlation in terms of price changes, in-
dicating similarities in their movements. Other, Art, and Utility categories also exhibited
moderate positive correlations. In terms of transaction volume, Collectibles, Games, and
Other categories showed relatively high correlations with each other, while Art and Meta-
verse categories had lower correlations. The Utility category displayed low correlations with

62



all other categories. These findings provided insights into the interconnectedness and pat-
terns within the NFT market. The results of the correlation analysis could potentially be
insightful for investors that try to recognize patterns and invest in the categories that are
potentially correlated. For example, when Metaverse’s popularity on the market increases,
that could give a hint to investors that they could also start investing in Games based on
their correlation.

7.2 Hierarchy of Clusters

The clustering analysis aimed to organize the NFTs into distinct clusters and explore the
most prominent ones using the K-means clustering technique. Five main features were
selected for the analysis, including local_avg_price, global_avg_price, counts_norm, lo-
cal_std, and global_std, which provided insights into the price and transaction character-
istics of the NFTs. The initial clustering process involved identifying the optimal number
of clusters through the "Elbow Method" among NFTs that were sold more than once and
resulted in the largest cluster constituting over 76% of the NFTs sold twice. Further anal-
ysis revealed that the clusters followed triangular shapes, indicating a linear relationship
between the features.

Based on the initial clustering results, the hierarchy of clusters was refined by excluding
the larger clusters representing NFTs sold only once or twice. The remaining NFTs were
subjected to hierarchical clustering, resulting in four subclusters. The hierarchy of clusters
consisted of nine classes, organized at different levels based on feature extraction peculiar-
ities and K-means hierarchical clustering. Each class exhibited distinct characteristics in
terms of average price, standard deviation, and count.

Intriguingly, the hierarchical clustering analysis of the NFT dataset yielded surprising
insights that shed light on the nature of the market. As the K-means algorithm organized
NFTs into distinct clusters based on their sales history and price dynamics, several clusters
exhibited unexpected characteristics and trends. Notably, certain clusters displayed unique
price behavior and transaction patterns, challenging conventional assumptions about NFT
categorization. These surprising findings, uncovered during the clustering process, have the
potential to redefine our understanding of the NFT market and its underlying dynamics.

7.3 Price Prediction

In the feature selection and data preprocessing stage, 11 significant features were selected
for predicting the last sale price of NFTs. The dataset was preprocessed by grouping NFTs
and normalizing their prices. Linear regression, Lasso, and Ridge regularization techniques
were applied, and coefficients of the features were calculated. The results showed a similarity
between linear regression and Lasso regression coefficients, while Ridge regression performed
slightly better.
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The Multi-Layer Perceptron (MLP) model was trained by defining its architecture and
configuring hidden layers, activation functions, batch sizes, optimizers, and epochs. The
model underwent experimentation to determine the optimal number of hidden layers and
neurons, as well as the number of epochs. The combination of Tanh activation for the
hidden layer and Sigmoid activation for the output layer yielded the best results. The Adam
optimizer outperformed other optimization algorithms in minimizing the cost function.

7.4 Contributions

The present study makes significant contributions to the understanding of non-fungible
tokens (NFTs) through various analyses and modeling techniques. Firstly, we provide a
comprehensive analysis of the NFT market, examining transaction frequency, category pref-
erences, and price distributions. This analysis sheds light on the heterogeneous nature of
the NFT ecosystem, offering valuable insights into market dynamics and category-specific
trends. We also investigate the inequality of NFT price distributions using the Gini Index
and Lorenz Curve revealing significant wealth disparities within the market, highlighting
the concentration of prices in certain categories. These insights have implications for un-
derstanding market dynamics and informing investment decisions.

Secondly, we investigate the hierarchical clustering of NFTs, organizing them into dis-
tinct clusters based on their sales history and price dynamics. By applying K-means cluster-
ing and analyzing the resulting clusters, we uncover meaningful patterns and relationships
within the NFT market. This hierarchical clustering approach allows for a more granular
understanding of the market, enabling stakeholders to identify significant trends and make
informed decisions based on the characteristics of each cluster.

Additionally, we develop predictive models for NFT price estimation, incorporating fea-
ture selection and utilizing linear regression, regularization techniques (Lasso and Ridge),
and a Multi-Layer Perceptron (MLP) model. These models provide valuable tools for price
prediction and market analysis, helping investors and collectors navigate the NFT market
with greater confidence.

7.5 Limitations and Future work

The research process encountered several noteworthy challenges that should be acknowl-
edged. Firstly, the limitations of the dataset became apparent as it relied on open-source
data and accessible APIs. Consequently, the dataset may not have captured a comprehen-
sive representation of all NFT sales, resulting in potential missing data. Furthermore, the
dataset is limited in its temporal scope, extending only until April 2021, which restricts
the analysis of more recent developments in the NFT market. Another significant challenge
arose from the distribution of sales across NFTs, with the majority being sold only once.
This limited the availability of historical data required for training the predictive models.
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As a result, the dataset’s capacity to capture robust patterns and trends may have been
compromised due to the scarcity of repeated sales and insufficient historical information.

Moreover, due to the incomplete market picture, capturing and incorporating price
fluctuations into the machine-learning models proved to be a challenge. The absence of a
comprehensive understanding of market dynamics and the lack of real-time data hindered
the ability to construct accurate predictive models that could effectively account for price
volatility.

Due to the limitations of data availability and the focus on analyzing existing data, this
research utilized datasets collected by a group of scientists using specific APIs. While the
available data provided valuable insights into the NFT market, it was restricted to a specific
temporal scope and might not have encompassed more recent developments in the rapidly
evolving NFT landscape. Consequently, the analysis primarily concentrated on the stable
and curated datasets at hand, making it challenging to incorporate later data that could
potentially impact the broader understanding of the NFT market dynamics.

These limitations underscore the need for caution when interpreting the findings and
emphasize the importance of further research to address data availability issues, expand the
temporal scope, and develop methodologies that can account for the unique characteristics
of the NFT market.

In terms of future work, there are several areas that warrant further exploration and
investigation. Firstly, expanding the dataset by including more comprehensive and up-to-
date data will enhance the accuracy and reliability of the analysis. This can be achieved
by accessing additional sources of NFT transaction data or partnering with platforms to
obtain a more comprehensive view of the market. Furthermore, exploring advanced machine
learning techniques and models can improve the accuracy of price prediction and market
analysis. Another avenue for future research is the exploration of the impact of regulatory
frameworks on the NFT market. As the market continues to grow and attract increased
attention, it is crucial to understand how regulatory policies and interventions may shape
its dynamics. Investigating the influence of regulatory factors such as intellectual property
rights, taxation, and consumer protection measures can provide insights into the potential
risks and opportunities associated with NFT investments and transactions.
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