
Toric analysis of symmetric differentials
on An-singularities

by

Zhe Xu

B.Sc., Simon Fraser University, 2021

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Zhe Xu 2023
SIMON FRASER UNIVERSITY

Summer 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Zhe Xu

Degree: Master of Science

Thesis title: Toric analysis of symmetric differentials on
An-singularities

Committee: Chair: Stephen Choi
Professor, Mathematics

Nils Bruin
Supervisor
Professor, Mathematics

Nathan Ilten
Committee Member
Associate Professor, Mathematics

Katrina Honigs
Examiner
Assistant Professor, Mathematics

ii



Abstract

Du Val singularities appear in the classification of algebraic surfaces and other areas of
algebraic geometry. Wahl’s concept of local Euler characteristics of sheaves helps in describ-
ing the properties of these singularities. We consider the sheaf of symmetric differentials
and compute one ingredient of the local Euler characteristic: the codimension of those sym-
metric differentials that extend to the resolution of the singularity in the space of those
that are regular around it. Singularities of type An can be described with toric varieties.
We use Klyachko’s theory of toric vector bundles to express this codimension as a lattice
point count in a rational polytope. For symmetric differentials of symmetric degree m at
An-singularities we explicitly determine these polytopes and find expressions for the counts
in terms of Ehrhart’s quasi-polynomials. We also analyse the behaviour of this quantity as
a function of n.

Keywords: Du Val singularities; Toric bundles; Ehrhart quasi-polynomials.
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Chapter 1

Introduction

An important part of the study of algebraic varieties involves the study of their singularities.
A quotient singularity on a surface over C is interpreted analytically as a quotient of an
open subset V of C2 by a finite subgroup of GL2(C). The du Val singularities are a class of
quotient singularities. They are characterised locally over C by the equations

An : x2 + y2 + zn+1 = 0;

Dn : x2 + y2z + zn−1 = 0( for n ≥ 4);

E6 : x2 + y3 + z4 = 0;

E7 : x2 + y3 + yz3 = 0;

E8 : x2 + y3 + z5 = 0.

The du Val singularities are important objects in the study of algebraically quasi-
hyperbolic surfaces, which contain only finitely many curves of genus 0 or 1. Bogomolov and
de Oliveira (see [2]) studied the algebraic quasi-hyperbolicity of surfaces via the sheaf of
symmetric differentials on the surfaces. One sufficient condition for a projective surface X
to be algebraically quasi-hyperbolic is if the growth of h0(X,SmΩX) with m is to the order
of m3. For smooth projective surfaces X ⊂ P3, however, one has that H0(X,SmΩX) = 0 for
all m (see [12]). The fundamental observation by Bogomolov and de Oliveira [2] is that for a
singular surface X ⊂ P3 with many du Val singularities, the minimal resolution ϕ : Y → X

with exceptional divisor ϵ may have that h0(Y, SmΩY ) grows with m nonetheless. Infor-
mally, the presence of singularities may help in proving algebraic quasi-hyperbolicity. One
ingredient in establishing this result is a relation between reflexive sheaves on Y and X. Let
F be a reflexive sheaf on Y . Outside of the singular locus of X, we have that X \ {s} and
Y \ ϵ are isomorphic, so the push-forward ϕ∗(F) of F to X is reflexive outside the singular
locus as well. If the singular locus of X is 0-dimensional, we can extend ϕ∗(F) uniquely to
a reflexive sheaf on X by taking the double dual (ϕ∗F)∨∨, see [9]. Blache [1] showed for a
locally free (and hence reflexive) sheaf F on Y that the difference in Euler characteristic
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between F and (ϕ∗(F))∨∨ can be written as a sum of local terms at the singularities of X,
if those singularities are quotient singularities.

χ(X, (ϕ∗F)∨∨) = χ(Y,F) +
∑

s∈Sing(X)
χloc(s,F). (1.1)

The local term χloc(s,F) is called the local Euler characteristic of F at s as introduced
by Wahl in [14]. It is defined as follows. For a sufficiently small open neighborhood X◦

of s on X and a corresponding open set Y ◦ = ϕ−1(X◦) ⊂ Y , with the exceptional fiber
ϵs = ϕ−1(s) above s, we write

χ0
loc(s,F) := dim H0(Y ◦ − ϵs,F)/H0(Y ◦,F),

χ1
loc(s,F) := dim H1(Y ◦,F),

and define

χloc(s,F) = χ0
loc(s,F) + χ1

loc(s,F).

A surface X ⊂ P3 of degree d with sufficiently many A1 singularities can be shown to
be algebraically quasi-hyperbolic. The exact computation of χ0

loc allows precise statements
about exactly how many singularities are required as a function of d and for which m one
is guaranteed that H0(Y, SmΩY ) is non-trivial, see [2] and [4].

We recognize that up to a change of coordinates, the local equation of an An-singularity
can be written as xz − yn+1 = 0. As we will see in Chapter 3, this is a toric variety and its
minimal desingularization is also a toric variety. Furthermore, the symmetric powers of the
cotangent bundle and its reflexive hull are toric vector bundles.

In our case, we consider a singular toric variety X with an An singularity s and open
dense torus T ⊂ X. Its minimal desingularization Y is also a toric variety and the birational
morphism Y → X allows us to identify the torus in Y with T .

Since dimT = 2, the action of T on itself induces a bigrading on H0(T, SmΩT ). We
can identify H0(X, (SmΩX)∨∨) wth H0(Y − ϵ, SmΩY ), where ϵ is the exceptional divi-
sor of ϕ : Y → X, and by considering T ⊂ Y , we can consider both as subspaces of
H0(T, SmΩT ) and hence decompose them using the bigrading into finite dimensional sum-
mands. These can then be described in terms of Klyachko’s filtered vector spaces. We observe
that H0(Y − ϵ, SmΩY ) and H0(Y, SmΩY ) only differ in finitely many bigraded summands.
The codimension of one in the other can be expressed as a lattice point count of a dilation
by (m+ 1) of a rational polytope P(n) depending only on n. Furthermore, we analyse the
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asymptotic behaviour, which yields the result:

lim
n→∞

Vol(P(n)) = 2π2

9 − 2.

For an A1-singularity s, Bruin, Thomas and Várilly-Alvarado computed χ0
loc(s, SmΩ1

Y ◦),
see [4]. We generalize the result to an An-singularity for arbitrary n. The main result of this
thesis is the following Theorem.

Theorem 1.1. Let X be a surface with a singularity s of type An, and let Y be a mini-
mal resolution of X with exceptional divisor ϵ. The quantity χ0

loc(s, SmΩY ) = dim H0(Y −
ϵ, SmΩY )/H0(Y, SmΩY ) is a quasi-polynomial in m with period dividing lcm(1, 2, . . . , n+2)
that we can explicitly determine.

The quasi-polynomial mentioned in the main theorem is the Ehrhart quasi-polynomial
of the rational polytope P(n), which we explicitly construct using Klyachko filtration. More-
over, we show that χ0

loc(s, SmΩY ) is independent of n whenever m < n. Furthermore, with
the asymptotic behaviour of the polytope P(n), we obtain the expression:

χ0
loc(s, SmΩY ) ∼ (2π2

9 − 2)(m+ 1)3 +O(m).

Chapter 2 briefly reviews the basics of algebraic geometry with an emphasis on locally
free sheaves and sheaves of symmetric differentials. In Chapter 3, we review basic toric
geometry, providing an introduction to toric vector bundles on toric varieties and presenting
Klyachko’s classification of toric vector bundles. Chapter 4 introduces Ehrhart’s theory of
lattice point counting in polytopes and applies the Klyachko filtration to construct the
polytope, which captures the information of the symmetric differentials. With Ehrhart’s
work, we prove the main theorem. In Chapter 5, we present explicit computations for A2

and A3-singularities. In Section 5.3, we demonstrate that when m < n, the quantity χ0
loc is

independent of n.
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Chapter 2

Preliminaries

In this chapter, we review some basic notions concerning sheaves on algebraic varieties that
we use in later chapters. The reader is assumed to have basic knowledge of the notion of
schemes.

Unless otherwise specified, all schemes in this chapter are locally Noetherian, and all
rings are commutative with unity. The reader may take the field k to be the field of complex
numbers C, although the presented content remains valid for any algebraically closed field
k with characteristic 0.

2.1 Locally free sheaves

Let X be a scheme over k. Recall that the structure sheaf OX on X is a sheaf of rings
that assigns to each open subset U ⊂ X the ring OX(U) of regular functions on U . If
X = SpecR is affine, we have OX(X) = R. For any f ∈ R, let D(f) be the distinguished
open set X \ V (f), where V (f) is the closed subscheme of X here f vanishes. As we now
describe OX(D(f)) = Rf , where Rf = R[ 1

f ] is the localization of R at f .
On an affine scheme X = SpecR, an R-module M defines a sheaf M̃ . Recall that the

distinguished open sets {D(f) = SpecRf : f ∈ SpecR} form a basis for the Zariski topology
on X, see [13, Section 3.5]. Writing M̃(D(f)) = M ⊗Rf as the localization of M at f , the
sections of M̃ are described constructively on distinguished open subsets D(f) ⊂ X by
M̃(D(f)). This gives a sheaf on the basis of the Zariski topology, which leads to a sheaf of
modules on the affine scheme X, see [13, Section 2.5].

Definition 2.1. [8, Section 2.5] A sheaf of OX -modules on X is a sheaf F such that F(U)
is an OX(U)-module for any open subset U ⊂ X. Moreover, given the inclusion of open
subsets V ⊂ U , the restriction morphism ρUV : F(U) → F(V ) is compatible with the
restriction morphism of the structure sheaf.

Definition 2.2. LetX be a scheme over k. A sheaf of OX -modules F onX is a quasicoherent
sheaf if, for any affine open subset U = SpecR ⊂ X, there is an R-module M such that
F|U = M̃ .
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Definition 2.3. Let F be a quasicoherent sheaf on X. We say F is a coherent sheaf if for
any affine open subset U = SpecR, the sections F(U) form a finitely generated R-module.

Definition 2.4. Let X be a scheme over k. A quasicoherent sheaf F is locally free if there
exists an open covering {Ui}i∈I of X such that F|Ui is a sheaf of free OX |Ui-modules for
each open cover Ui. We say F has rank r if for each Ui the restriction F|Ui is isomorphic
to (OX |Ui)⊕r.

Definition 2.5. Let X be a scheme over k, and let E and F be locally free sheaves on X.
Then the tensor product sheaf E ⊗OX

F of E and F is the sheafification of the presheaf
(E ⊗OX

F)pre which assigns to each open subset U ⊂ X the OX(U)-module E(U) ⊗OX(U)

F(U). We write E⊗d for the d-th tensor power of E .

Definition 2.6. [13, Section 2.3] Let X be a scheme over k, and let E and F be locally
free sheaves on X. The sheaf-hom HomOX

(E ,F) is the sheaf of abelian groups on X which
assigns to each open subset U ⊂ X the abelian group HomOX |U (E|U ,F|U ).

Definition 2.7. Let X be a scheme over k, and let E be a locally free sheaf on X. The sheaf
of non-commutative algebras T (E) is the sheafification of the presheaf defined as follows.

U ⊂ X 7−→
⊕
i≥0

E⊗i(U) for any open subset U ⊂ X.

For two sections s1 ∈ E⊗i(U) and s2 ∈ E⊗j(U) we get s1 ⊗ s2 ∈ E⊗(i+j)(U), so by
extending the tensor product bilinearly, we obtain the non-commutative algebra T (E)(U).

Definition 2.8. Let X be a scheme over k, and E is a locally free sheaf on X. The sheaf
Sm(E) is the sheafification of the presheaf Sm(E)pre which assigns to each open subset
U ⊂ X the OX(U)-module Sm(E(U)) where Sm is the d-th symmetric power of E(U) over
OX(U).

Definition 2.9. Let X be a scheme over k, and E and F are locally free sheaves on X.The
sheaf of commutative algebras S(E) is the sheafification of the presheaf defined as follows.

U ⊂ X 7−→
⊕
i≥0

Si(E(U)) for any open subset U ⊂ X.

For two sections s1 ∈ Si(E(U)) and s2 ∈ Sj(E(U)) we get s1s2 ∈ Si+j(E)(U), we obtain the
commutative algebra S(E)(U).

Proposition 2.10. Let E and F be two locally free sheaves on a scheme X, suppose
rank E = e and rank F = f. Then E ⊗ F and HomOX

(E ,F) are locally free of rank ef .
The symmetric power SmE is also locally free of rank

(m+e−1
m

)
.
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Proof: Being locally free is a local property, so it is sufficient to choose a sufficiently small
affine open cover such that for each U in this cover, we have E|U ∼= OX |⊕e

U and F ∼= OX |⊕f
U .

This reduces the question to the affine case. Suppose X = SpecR, and E ∼= R̃⊕e and
F ∼= R̃⊕f . The result follows from basic algebra. We present only the proof that SmE is
locally free:

Pick an open subset U such that E ∼= E|U ∼= OX |⊕e
U . Consider the sections of the presheaf

Symd(E)pre on U such that Symd(E)pre(U) is a free OX(U)-module, and assume further that
U is affine. We have the isomorphism:

φ : Sm(E)pre(U)
∼=−→ SmOX(U)⊕e.

Note that Sm(E)pre|U is a presheaf on U . By the universal property of sheafification, its
sheafification Sm(E)|U is the same as the sheafification of Sm(E)pre restricted to U . Thus,
there is an induced map:

φ′ : Sm(E)|U (U) → SmOX(U)⊕e.

This is an isomorphism as we can easily verify on the stalks. Therefore, the sheaf Sm(E) is
locally free. Its rank is the rank of Sm(OX |U )⊕e, which is

(m+e−1
m

)
.

The study of sheaves of modules is related to vector bundles. Classically, a vector bundle
on a scheme X over k of rank r is a scheme E with a surjective morphism of schemes
π : E → X with a zero section ξ : X → E and two additional morphisms

E ×X E → E , called addition and

k × E → E , called multiplication,

satisfying the following properties. As suggested by the name, the addition morphism is both
commutative and associative; and the scalar multiplication is distributive over addition. For
each x ∈ X, the fiber E(x) = π−1(x) is an affine space Ar

k. See 2.2.G(a) and 14.2.2. of [13].
The addition and scalar multiplication structure restricts to the fibers

E(x) × E(x) → E(x),

k × E(x) → E(x),

This gives a vector space structure for the fibre over x, and ξ(x) is the zero vector in E(x).
Furthermore, there exists an open covering {Ui}i∈I of X such that ψi : π−1(Ui)

∼=−→ Ui ×kr is
an isomorphism for each i ∈ I. The pair (Ui, ψi) is referred to as a trivialization of E over Ui.
Additionally, we have transition morphisms defined on the intersections of the trivializing
open subsets as follows:
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Definition 2.11. Given two trivializations (Ui, ψi) and (Uj , ψj) of a vector bundle E on X.
Let V = SpecA ⊂ Ui ∩ Uj , we define the transition function on V as an

ψij :=
(
ψi ◦ ψ−1

j

)
|Ui∩Uj : V × Ar → V × Ar.

Note ψij ∈ GLr(A). The transition morphisms satisfy the cocycle condition:

ψik|Ui∩Uj∩Uk
= ψjk ◦ ψij |Ui∩Uj∩Uk

.

Definition 2.12. Let X be a scheme over k, and let E be a vector bundle on X of rank r.
We say E is a trivial vector bundle if E ∼= X × kr.

Definition 2.13. A morphism of vector bundles (E , π1) → (F , π2) over X is a map φ :
E → F such that the following diagram is commutative,

E F

X

π1

φ

π2

and φx : π−1
1 (x) → π−1

2 (x) is a linear map for each x ∈ X.

Definition 2.14. The vector bundle (E , π) defines a sheaf on X such that on each open
subset U ⊂ X, the sections are H0(U, E) = {s : U → E : π ◦ s = idU }.

We present the following proposition to indicate the relationship between locally free
sheaves and vector bundles.

Proposition 2.15. [8, Chapter 2, Exercise 5.18] Let X be a scheme. There is a one-to-
one correspondence between isomorphism classes of locally free sheaves of rank r on X and
isomorphism classes of vector bundles of rank r on X.

Proof: The correspondence is constructive. Let E be a vector bundle of rank r on X. Given
a collection of trivializations (ψi, Ui)i∈I of E , the sections on Ui can be expressed as s : Ui →
Ui × Ar. This leads us to the corresponding ring map:

s♯ : OX(Ui) ⊗k[x1,..,xr] k[x1, . . . , xr] → OX(Ui),

where OX(Ui) ⊗k[x1,..,xr] k[x1, . . . , xr] = OX(Ui)[x1, . . . , xn], this gives the isomorphism
E|Ui = O⊕r

X . The vector bundle E is a locally free sheaf on X of rank r.
Conversely, given a locally free sheaf F of rank r. Let SpecS(F) be the relative spectrum

of the sheaf of OX -algebra S(F). There is a natural projection π : SpecS(F) → X such that
for any affine open V ⊂ X, one has π−1(V ) ∼= SpecS(F)(V ). See [8, Section 2.5, Exercise
5.16,1.17.] and [13, Chapter 18].
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Choose a affine open subset U ⊂ X such that F|U is a free OX(U)-module with basis
{x1, . . . , xr}. Note that on the open subset U , the symmetric algebra

S(F(U)) = S(⊕r
i=1xiOX(U)) ∼= OX(U)[x1, . . . , xr].

Thus we have an isomorphism

ψ : π−1(U) ∼= Spec OX [x1, , xr]
∼=−→ U × Ar.

Therefore, the data (SpecS(F), π) defines a vector bundle of rank r on X.

Definition 2.16. Let X be an integral Noetherian scheme, and let F be a coherent sheaf
on X. The dual of F is the sheaf F∨ defined as HomOX

(F ,OX). The sheaf F is reflexive
if F ∼= F∨∨.

Definition 2.17. Let X be an integral Noetherian scheme, and let F be a coherent sheaf
on X. The double dual F∨∨ of a coherent sheaf F on X is called the reflexive hull of F . If
F is locally free, then F∨∨ ∼= F . We also write F̂ for F∨∨.

Definition 2.18. Let φ : X → Y be a morphism of schemes, and consider F as a sheaf
on X. The pushforward or direct image of F on Y , denoted as φ∗F , is a sheaf defined by
assigning to any open subset V ⊂ Y the value F(φ−1(V )).

We cite a weaker version of an important theorem by Hartshorne about reflexive sheaves:

Proposition 2.19. [9, Proposition 1.6] Let F be reflexive sheaf on a normal integral scheme
X. For each open subset U ⊂ X, and for each closed subscheme V ⊂ U of codimension at
least 2; let i : U \ V ↪→ U be the inclusion map. We have i∗F|U\V ∼= F|U .

2.2 Differentials and cotangent sheaves

In this section, we will introduce the sheaf of Kähler differentials. The main references are
[8, Section 2.8] and [13, Chapter 22].

Definition 2.20. Let R be a ring and A an R-algebra, and let M be an A-module. An
R-derivation of A into M is a map d : A → M such that d satisfies the following properties:

(i) d is additive,

(ii) d satisfies the Leibniz rule: d(xy) = x dy + y dx for all x, y ∈ A, and

(iii) d is zero on R: dr = 0 for all r ∈ R.

Note d is A-linear. We write the collection of R-derivations of A into M as DerR(A,M).

8



Definition 2.21. [8, Proposition 8.1 A, Section 2.8] Let R be a ring, and A an R-algebra.
Define the map e : A⊗RA → A such that e(x⊗ y) = xy. Denote the kernel of e as Ie. Then
the A-module Ie/I

2
e is the module of Kähler differentials of A over R together with the map

d : A⊗R A → Ie/I
2
e by d(x) = 1 ⊗ x− x⊗ 1 + I2

e . We write module of Kähler differentials
of the A-algebra over R as ΩA/R.

Proposition 2.22. The module of Kähler differentials has the universal property: for any R-
derivation d′ : A → M for some A-module, there exists a unique A-module homomorphism
f : ΩA/R → M such that the following diagram commutes.

A M

ΩA/R

d′

d f

Proposition 2.23. [8, Proposition 8.4A, Section 2.8] Let A be an R-algebra, and let I ⊂ A

be an ideal. Then we have a natural exact sequence

I/I2 δ−→ ΩA/R ⊗A (A/I) → Ω(A/I)/R → 0,

where for any δ(ā) = da⊗ 1 for all ā ∈ I/I2.

Definition 2.24. [8, Page 175] Let φ : X → Y be a morphism of schemes. Consider the
diagonal map ∆ : X ↪→ X ×Y X. The map ∆ is a locally closed embedding. Then the sheaf
of Kähler differentials of X over Y is ΩX/Y = ∆∗(I/I2), where I = ker

(
O∆(X) → φ∗OX

)
.

Definition 2.25. A k-variety is a reduced, separated scheme over k of finite type.

Definition 2.26. Let X be a k-variety, and let p ∈ X be a closed point. Then X is smooth
at p if OX,p is a regular local ring. The variety X is smooth if and only if OX,p is a regular
local ring for all closed p ∈ X.

Example 2.27. [13, 22.2.E] Let X be an irreducible k-variety. Locally, it is the spec-
trum of a k-algebra A = k[x1, . . . , xn]/(f1, . . . , fm). Let the Jacobian J be the matrix
( ∂fi

∂xj
)1≤i≤m,1≤j≤n. Then coker J = ΩA/k. In particular, we can write

ΩA/k = (⊕n
i=1A dxi)/(⊕m

j=1 dfj).

The variety X is smooth if and only if rank J(p) = n− dimX for all k-valued point p ∈ X.

Remark 2.28. Suppose X is a projective hypersurface, i.e. X = V (f) ⊂ Pn where f is
a homogeneous polynomial in C[x0, . . . , xn]. Then X is smooth if and only if all partial
derivatives ∂f

∂xi
do not vanish simultaneously on X. Conversely, we say X is singular at

p ∈ X if all partial derivatives of f vanish at p.

9



Remark 2.29. [8, Remark 8.9.2] In the local setting, consider U = SpecA as a subset of
Y , and V = SpecB as a subset of φ−1(U) ⊂ X. The restriction of the diagonal morphism
∆ onto V induces a ring homomorphism: B ⊗A B → B. Consequently, we observe that
the module of Kähler differentials I/I2 defines the sheaf (I/I2)|V×U V . Therefore, we can
conclude that ΩU/V = Ω̃B/A, where Ω̃B/A denotes the sheaf associated with the module of
Kähler differentials over the ring homomorphism B → A.

Proposition 2.30. [13, 22.3.9] Let X be a smooth k-variety, and let p be a closed point on
X. Let m ⊂ OX,p be the maximal ideal in the local ring. The Zariski cotangent space m/m2

of X at p is isomorphic to the fiber ΩX/k ⊗A k(p) of ΩX/k at p.

Proposition 2.30 explains why the sheaf of Kähler differentials is also called the cotangent
sheaf.

Remark 2.31. Given a scheme X, the global sections of SmΩX are called the regular
symmetric differentials of symmetric degree m on X. If X is smooth, then ΩX is locally
free, and so is SmΩX .

Let X be an algebraic surface with a du Val singularity s ∈ X as described in the
introduction. Note that the sheaf SmΩX is not locally free at s. We write for reflexive hull
ŜmΩX . We have

H0(X − {s}, SmΩX) ∼= H0(X − {s}, ŜmΩX).

Since s is a codimension 2 closed subset of X, by Theorem 2.19, we have

H0(X − s, SmΩX) H0(X − s, ŜmΩX)

H0(X, ŜmΩX)

∼=

∼=

Let Y be the minimal resolution of the singularity s on X by blow-ups, and let ϵ be the
exceptional divisor. The isomorphism between X − {s} and Y − ϵ induces an isomorphism
as follows

H0(Y − ϵ, SmΩY ) ∼= H0(X, ŜmΩX).

10



Chapter 3

Toric vector bundles

In this chapter, we review toric varieties over C. A toric variety is a variety that contains a
torus as a dense open subvariety, with an action of that torus that restricts to the normal
multiplication action of the torus on itself.

We briefly review how toric varieties are described by combinatorial objects, called cones
and fans. See [5] and [6] for a more complete treatment.

Next, we describe vector bundles on toric varieties that are equivariant under the torus
action, following [10]. As with toric varieties themselves, we see that such vector bundles
can be described in terms of the same combinatorial data that determines the toric variety
itself.

3.1 Toric varieties

An algebraic torus of dimension n is an algebraic variety T isomorphic to (C∗)n. A character
χ of T is a morphism of varieties χ : T → C∗ that is also a group homomorphism. The
collection of all characters with pointwise multiplication forms the character group M ∼= Zn

of the torus T . An element u = (u1, . . . , un) ∈ Zn can be identified with the character

χu : T ∼= (C∗)n → C∗,

(t1, . . . , tn) 7→ tu1
1 . . . tun

n .

An one-parameter subgroup of T is a morphism λ : C∗ → T that is a group homomorphism.
The collection of one-parameter subgroups forms a group N isomorphic to Zn. We can
identify M as HomZ(N,Z). See [5, Section 1.1 pp 11-12]

A toric variety of dimension n is a normal variety X containing an algebraic torus
T = (C∗)n as a Zariski-dense open subset, and with an action of T on X that on T restricts
to the natural multiplication action of T on itself.
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Definition 3.1. Let N ∼= Zn be a lattice, then NR = N ⊗Z R is a real vector space. Let S
be a finite subset of NR. A convex polyhedral cone spanned by S is the following set

σ := Cone(S) = {
∑
v∈S

λvv|λv ≥ 0},

A convex polyhedral cone with one generator is called a ray.

Definition 3.2. A convex polyhedral cone σ in the vector space NR = N⊗ZR is referred to
as rational if it can be expressed as σ = Cone(S) for some subset S ⊂ N . If σ is a rational
convex polyhedral cone and ρ is a ray of σ, we will slightly abuse notation and use ρ to
denote both the ray itself and its minimal generating vector in N .

Definition 3.3. A convex cone σ is called strongly convex if σ∩(−σ) = {0}. Unless specified
otherwise, we use the term cone to refer to a rational strongly convex cone.

Let N be a lattice, and let M = HomZ(N,Z). We denote MR as the vector space M⊗ZR.
Following the notation in [5], we use ⟨·, ·⟩ to represent the natural pairing between the real
vector spaces MR and NR. In other words, for u ∈ M and v ∈ N , we write ⟨u, v⟩ = u(v).

Definition 3.4. The dual cone σ∨ of σ ⊂ NR is the set

σ∨ = {u ∈ MR : ⟨u, v⟩ ≥ 0 for all v ∈ σ}.

The dual of a strongly convex rational polyhedral cone is not necessarily a strongly
convex rational polyhedral.

Definition 3.5. Let σ ⊂ NR be a cone, and let u ̸= 0 ∈ MR. The hyperplane Hu := {v ∈
NR| ⟨u, v⟩ = 0} is called a supporting plane of σ if σ is contained in supporting half-space
defined as H+

u := {v ∈ NR| ⟨u, v⟩ ≥ 0}.

Definition 3.6. Let σ be a cone. A face τ of σ is an intersection of σ with a supporting
plane Hu of σ.

Note that any face of a convex polyhedral cone is itself a convex polyhedral cone. Fur-
thermore, the intersection of two faces is also a face, and the face of a face is also a face. A
maximal face of a cone, which is not the whole cone itself, is called a facet.

Theorem 3.7. [5, Proposition 1.2.17] Let σ ⊂ NR be cone. The set Sσ = σ∨ ∩ M is a
finitely generated additive semigroup.

The semigroup Sσ defines a C-algebra C[Sσ] with generators {χu | u ∈ Sσ} and identity
χ0 = 1, where χu represents the character associated with u ∈ Sσ. The multiplication is
given as follows,

χu · χu′ = χu+u′
.

12



We define the affine toric variety Xσ as follows:

Xσ = SpecC[Sσ].

Example 3.8. Let {e1, e2} be the standard basis of NR, and let {e∗1, e∗2} be the dual basis of
{e1, e2}. Consider the cone σ := Cone(e2, 2e1+e2) ⊂ NR. See Figure 3.1. The dual cone σ∨ is
generated by {e∗1, e∗2,−e∗1+2e∗2}, and the semigroup Sσ is generated by {χ(1,0), χ(0,1), χ(−1,2)}.

σ

e1

e2

σ∨

e∗1

e∗2

Figure 3.1: The cone of a toric variety with an A1-singularity.

Taking x = χ(1,0), y = χ(0,1) and z = χ(−1,2), we see that the C-algebra is C[x, y, z]/(xz−
y2). The toric variety is

Xσ = SpecC[x, y, z]/(xz − y2) ⊂ A3
C.

This affine toric variety has an A1-singularity at the origin (x, y, z) = (0, 0, 0).

An affine toric variety is determined by a cone. We can describe a toric variety in terms
of its affine toric subvarieties and the way they intersect. This leads us to consider the
collection of their cones, together with information reflecting how they intersect. Such a
collection is called a fan and a toric variety is determined by its fan. We proceed with the
formal definition.

Definition 3.9. A fan Σ is a collection of strongly convex rational polyhedral cones satis-
fying the following properties:

(a) Each face of a cone in Σ is in Σ.

(b) The intersection of two cones in Σ is a face of both cones.

The conditions in Definition 3.9 represent the compatibility conditions required for gluing
the affine toric varieties associated with each cone in Σ. For detailed information on the
gluing process of toric varieties, we refer the reader to [6, Section 1.4]. Each cone σ in Σ
defines an affine toric variety Uσ = SpecC[Sσ] as an open subvariety of XΣ. To illustrate
these concepts we provide an example of a toric variety related to Example 3.8. We denote
Σ(1) as the collection of rays in Σ.
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Example 3.10. Let {e1, e2} be the standard basis of NR, and let {e∗1, e∗2} be the dual basis of
{e1, e2}. Consider the fan Σ with maximal cones Cone(e2, e1+e2) and Cone(e1+e2, 2e1+e2).
See Figure 3.6. The ray τ = Cone(e1 + e2) is the intersection of σ1 and σ2. Taking the dual
cone, we have σ∨1 ∪ σ∨2 ⊂ τ∨.

σ1 τ
e2

e1

σ2 σ∨1

σ∨2

τ∨

σ∨1 ∩ σ∨2

Figure 3.2: The fan of the toric variety XΣ.

The toric variety XΣ is obtained by gluing Uσ1 and Uσ2 along Uτ . We have

Uσ1 = SpecC[x−1y, x] ∼= C2,

Uσ2 = SpecC[x−1y2, xy−1] ∼= C2,

Uτ = SpecC[x−1y, xy−1, x, y] ∼= C × C∗.

We verify that Uτ ⊂ Uσ1 ∩ Uσ2 by examining the coordinate rings. The coordinate ring of
Uτ can be expressed as C[x−1y, xy−1, x], which corresponds to the localization of C[x−1y, x]
at the element x−1y. Similarly, it can also be written as C[xy−1, x−1y, y], corresponding to
the localization of C[x−1y2, xy−1] at the element xy−1.

The transition map is induced by identifying the coordinate rings with subrings of one
larger ring C[x, x−1, y, y−1]. This yields

φ12 : C[x, x−1y, xy−1]
∼=−→ C[y, xy−1, x−1y]

x−1y 7→ x−1y,

x 7→ y(xy−1).

In particular, the variety XΣ is smooth and is the resolution of an A1-singularity on Xσ in
Example 3.8.

Theorem 3.11. [5, Theorem 3.1.19 (a)]. The toric variety XΣ defined by the fan Σ is
smooth if and only if, for every cone σ ∈ Σ, the minimal set of ray generators of σ forms a
part of a Z-basis of the lattice N .

Given a toric variety defined by the fan Σ. We say a fan Σ′ is a refinement of another
fan Σ if every cone of Σ′ is contained in a cone of Σ.
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Theorem 3.12. [5, Theorem 11.1.9] Let XΣ be a singular toric variety defined by a fan
Σ. There is a refinement Σ′ of Σ by subdividing the non-smooth cones such that the toric
variety XΣ′ is a resolution of singularities.

We verify that the toric variety XΣ in Example 3.10 is isomorphic to the blow-up of
the affine variety X = V (xz − y2) ⊂ A3

C at the origin. Let Y be the strict transform of the
blow-up X̃ ⊂ A2

C ×P2
C with coordinates (x, y, z; a : b : c). The blow-up X̃ = V (bx− ay, cx−

az, cy− bz, xz − y2) is covered by its image in each of the affine charts of A3
C × P2

C, and the
strict transform Y is glued together in a way consistent with the gluing of the affine toric
varieties of XΣ. We see

Y1 := Y ∩ {a ̸= 0} ∼= SpecC
[
x,
b

a
,
c

a

]
/

(
c

a
− b2

a2

)
∼= C2,

Y2 := Y ∩ {b ̸= 0} ∼= SpecC
[
y,
a

b
,
c

b

]
/

(
ac

b2 − 1
)

∼= C × C∗,

Y3 := Y ∩ {c ̸= 0} ∼= SpecC
[
z,
a

c
,
b

c

]
/

(
a

c
− b2

c2

)
∼= C2.

We denote

A := SpecC
[
x,
b

a
,
c

a

]
/

(
c

a
− b2

a2

)
,

B := SpecC
[
y,
a

b
,
c

b

]
/

(
ac

b2 − 1
)
,

C := SpecC
[
z,
a

c
,
b

c

]
/

(
a

c
− b2

c2

)
.

We can identify Y1 with Uσ1 , and Y3 with Uσ2 and Y2 with Uτ , with the relations bx =
ay, cx = az and cy = bz, and the fact that

A b
a

∼= B ∼= C b
c
.

The transition maps are given as follows:

C[x, b
a ,

a
b ] C[y, a

b ,
b
a ] C[y, c

b ,
b
c ] C[z, b

c ,
c
b ].

x 7→y a
b

, b
a
7→a

b = y c
b
←[z, c

b
← [ b

c

This gives us a variety that is obtained by gluing two copies of C2 along their common
subvariety C × C∗, which is the same as the toric variety XΣ described in Example 3.6.

Theorem 3.13. [5, Theorem 3.1.5] Let Σ be a fan in NR. The toric variety XΣ is normal
and separable.
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3.2 Equivariant vector bundles on toric varieties

Consider a fan Σ ⊂ NR such that the associated toric variety XΣ is smooth. Let M be
the dual lattice of N , and let T = SpecC[M ] denote the torus. Suppose T acts linearly
on a vector space V . Then for each character χu the T -eigenspace Vu = {v ∈ V : t · u =
χu(t)v for all t ∈ T} and we can decompose V as follows:

V =
⊕

u∈M

Vu,

This decomposition is known as the isotypical decomposition. An element v ∈ V is referred
to as torus-invariant if t · v = v for all t ∈ T . The torus-invariant elements of V form
sub-vector space V0.

Let X be an affine toric variety. We observe that the action of the torus T on X induces
an action on the coordinate ring C[X] of X, which is a finitely generated C-algebra. Using
the theory of algebraic groups, one can show that C[X] decomposes as a direct sum of
graded subspaces with respect to the T -action. In other words, C[X] can be written as

C[X] =
⊕

u∈M

C[X]u,

where M is the lattice to the character group of T , and C[X]u is the graded subspace
corresponding u ∈ M .

Definition 3.14. A vector bundle π : E → XΣ with a T -action is called a toric vector
bundle if the action of T on E is compatible with the action of T on XΣ.

Let Σ be a fan, and suppose E is a toric vector bundle on a toric variety XΣ. Let E be
the fiber of E over eT where eT is the identity of the torus T . The action of the torus T on
XΣ induces an action of T on H0(XΣ, E) as follows: for each t ∈ T and s ∈ H0(XΣ, E) we
have

(t · s)(x) := t(s(t−1x)).

We can decompose H0(X, E) into a direct sum of isotypical subspaces:

H0(X, E) ∼=
⊕

u∈M

H0(X, E)u,

where H0(X, E)u = {s ∈ H0(X, E) : t · s = χu(t)s for all t ∈ T}.

Proposition 3.15. [10, Proposition 2.1.i] Toric vector bundles on affine toric varieties are
trivial as vector bundles.

Referring to [11, Section 2.1], it is stated that for any toric variety X, sections in
H0(X, E)u that agree on eT must also agree on T and, consequently, on the entire toric
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variety X. Consequently, for any cone σ ∈ Σ, we consider the open affine variety Uσ. We
have that the evaluation map of sections in H0(Uσ, E)u at eT establishes an injective map.

evaleT : H0(Uσ, E)u ↪→ E

s 7→ s(eT ).

Denote the image evaleT (H0(Uσ, E)) as Eσ
u . In addition, let u′ ∈ σ∨ ∩ M . One has the

inclusion of H0(Uσ, E)u in H0(Uσ, E)u−u′ by multiplying χu′ :

multχu′ : H0(Uσ, E)u ↪→ H0(Uσ, E)u−u′ .

Composing the inclusion with evaluation at eT gives an inclusion Eσ
u ⊂ Eσ

u−u′ . Let ρ be a
ray in Σ, the space Eρ

u depends only on i := ⟨ρ, u⟩. Therefore, we define

Eρ(i) := Eρ
u for any u such that ⟨ρ, u⟩ = i.

Definition 3.16. For a fan Σ ⊂ NR and a vector space E, a Σ-filtration of E is a collection
of subvector spaces Eρ(i) for every ray ρ ∈ Σ(1) and i ∈ Z, such that Eρ(i) ⊆ Eρ(j)
whenever i ≥ j, with Eρ(i) = E for i sufficiently small and Eρ(i) = 0 for i sufficiently large.
It also satisfies the following compatibility condition:

Suppose M is the dual lattice of N . Let σ ∈ Σ and Mσ = M/(σ⊥∩M). Then, there exists
a decomposition E =

⊕
[u]∈Mσ

E[u] such that each component E[u] satisfies the following
properties:

Eρ(i) =
∑

[u],⟨u,ρ⟩≥i

E[u], for all ρ ∈ σ(1).

Definition 3.17. Let X be a smooth toric variety associated with the fan Σ. The category
of toric vector bundles on X consists of the collection of toric vector bundles on X, and the
morphisms are defined as equivariant morphisms of toric vector bundles.

Definition 3.18. Let Σ be a fan in NR, and let M be the dual lattice of N . We define
the category of finite-dimensional vector spaces with a family of decreasing Σ-filtered vector
spaces. This category consists of vector spaces E equipped with a decreasing filtration Eρ(i)
indexed by the rays of Σ, satisfying the following compatibility condition:
In this category, the morphisms are defined as linear maps φ : E → F that preserve the
filtrations. This means that for each ρ ∈ Σ(1) and i ∈ Z, the restriction φ|Eρ(i) : Eρ(i) →
F ρ(i) is a well-defined linear map.
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Theorem 3.19 (Klyachko [10],1990). Let Σ be a fan. The category of toric vector bundles
on the toric variety XΣ is equivalent to the category of Σ-filtered vector spaces as defined in
Definition 3.18.

We also refer to a decreasing filtration as described in Theorem 3.19 as the Klyachko
filtration.

Theorem 3.20. [10, Theorem 4.1.1(i)] Let XΣ be a toric variety, and let E be a toric vector
bundle on XΣ. We have

H0(XΣ, E)u = ∩ρ∈Σ(1)E
ρ(⟨u, ρ⟩).

Example/Proposition 3.21. [10, Example 2.3, (5)] Let XΣ be a smooth toric variety
with the cotangent bundle ΩXΣ . The filtrations of ΩXΣ are defined by the vector space
E = M ⊗ C and a family of decreasing filtrations Eρ(i) indexed by the rays ρ ∈ Σ(1).

Eρ(i) =


E, for i < 0,

(Span{ρ})⊥, for i = 0,

0, for i > 0.

Example 3.22. In this example, we examine the cotangent bundle on the variety X := C2.
The variety X is an affine toric variety with the defining cone σ = Cone(e1, e2) ⊂ NR ∼= R2,
where e1 and e2 represent the standard basis vectors. We denote the standard dual basis
as e∗1 and e∗2. The torus T := (C∗)2 is defined as the torus. The dual cone σ∨ is given by
Cone(e∗1, e∗2). Since X is affine, we have

H0(X,ΩX) = C[x, y] dx+ C[x, y] dy.

Let ρ1 be the ray generated by the vector e1 = (1, 0), and let ρ2 be the ray generated by
e2 = (0, 1). We compute

H0(Uρ1 ,ΩX) = C[x, y, y−1] dx+ C[x, y, y−1] dy,

H0(Uρ2 ,ΩX) = C[x, x−1, y] dx+ C[x, x−1, y] dy.

For any t ∈ T , the action of t on dχu is given by

t · dχu = dt · χu = dχ−u(t)χu = χ−u(t) dχu.
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We identify ΩX(eT ) = M ⊗ C with H0(T,ΩX)(0,0) by the following map

M ⊗ C → H0(T,ΩX)(0,0) = SpanC{dx
x
,
dy
y

}.

u 7→ dχu

χu
.

We only consider ρ1 here since the filtration for ρ2 can be computed analogously. We pick
u = (1, 0), (0, 0), and (−1, 0), which correspond to the vector spaces Eρ1(i) for i = 1, 0, and
−1, respectively. By inspection, we see that H0(Uρ1 ,ΩX)(1,0) is zero. The only torus-invariant
sections in H0(Uρ1,ΩX)(0,0) are scalar multiples of dy

y . For u = (−1, 0), we observe that
H0(Uρ1,ΩX)(−1,0) is generated by dx. Since Eρ1(−1) ⊃ Eρ1(0) and dx and dy

y are linearly
independent when evaluated at eT , by a dimension count, we conclude that Eρ1(−1) = E.
Since the filtration is decreasing, this gives the filtration of ΩX on X = C2 as described in
Proposition 3.21.

In the following examples, we give an explicit computation of H0(Xσ,ΩXσ ) and H0(XΣ,ΩΣ)
for the toric varieties in Example 3.8 and 3.10.

Example 3.23. Let σ = Cone(e2, 2e1 + e2), and let ρ1 = Cone(e2) and ρ3 = Cone(2e1 +
e2). Note that we denote the ray generated by 2e1 + e2 by ρ3 to be consistent with later
discussions. Note that the toric variety X := Xσ is singular at the origin O, thus we will
take the reflexive hull Ω̂X . By Proposition 2.19, one has

H0(X, Ω̂X) ∼= H0(X − {O},ΩX).

By Corollary 3.20 the global sections of the of the cotangent bundle ΩX on X − {O} are
given by the following:

H0(X − {O},ΩX) =
⊕

(a,b)∈Z2

Eρ1(ρ1(a, b)) ∩ Eρ3(ρ3(a, b))

Consider the toric variety Y := XΣ where Σ is the fan as in Example 3.10. The toric
variety XΣ is smooth. Let ρ2 = Cone(e1 + e2) ∈ Σ(1). We have

H0(Y,ΩY ) =
⊕

(a,b)∈Z2

Eρ1(ρ1(a, b)) ∩ Eρ2(ρ2(a, b)) ∩ Eρ3(ρ3(a, b))

This gives us a method to determine which sections in H0(Y − ϵ,ΩY ) extend to all of Y .
Since both spaces are graded, their quotient is also graded, and we have:

H0(Y − ϵ,ΩY )
H0(Y,ΩY )

=
⊕

(a,b)∈Z2

Eρ1(ρ1(a, b)) ∩ Eρ3(ρ3(a, b))
Eρ1(ρ1(a, b)) ∩ Eρ2(ρ2(a, b)) ∩ Eρ3(ρ3(a, b)) .
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The left-hand side is a quotient space of an infinite-dimensional C-vector space, while the
right-hand side is an (infinite) direct sum of finite-dimensional spaces. We will show that
only finitely many of them are non-trivial, resulting in a finite direct sum.

We denote ρi(a, b) = ⟨(a, b), ρi⟩ = (i − 1)a + b for i = 1, 2, 3. For each bigraded space
with grading (a, b) on the right-hand side, it is trivial if either Eρ1(ρ1(a, b)) or Eρ3(ρ3(a, b))
is trivial, or if Eρ2(ρ2(a, b)) is the full space E.

The vector space Eρ1(ρ1(a, b)) is zero when b > 0, and the vector space Eρ3(ρ3(a, b)) is
zero when 2a+ b > 0. The two inequalities define the shaded region in Figure 3.3.

a

b

2a+ b = 0

Figure 3.3: b > 0 or 2a+ b > 0 in the (a, b)-plane.

Furthermore, the vector space Eρ2(ρ2(a, b)) is the full space whenever ρ1(a, b) = a+ b <

0. This condition eliminates the lattice points in the shaded region shown in Figure 3.4.
To sum up, all the lattice points in the shaded region are shown in Figure 3.5. The

shaded region consists of all the pairs of integers (a, b) such that the space

Eρ1(ρ1(a, b)) ∩ Eρ3(ρ3(a, b))
Eρ1(ρ1(a, b)) ∩ Eρ2(ρ2(a, b)) ∩ Eρ3(ρ3(a, b))

is trivial.
The only lattice point left is the origin, where the vector spaces are

Eρ1(ρ1(0, 0)) = SpanC{(1, 0)},

Eρ2(ρ2(0, 0)) = SpanC{(−1, 1)},

Eρ3(ρ3(0, 0)) = SpanC{(−1, 2)}.
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a

b

a+ b = 0

Figure 3.4: a+ b < 0 in the (a, b)-plane.

a

b

a+ b = 0

a

b

2a+ b = 0

Figure 3.5: (a, b)-plane.

The intersection Eρ1(0) ∩Eρ3(0) = 0, implying that all Kähler differentials on Y − ϵ are
regular as sections of H0(Y,ΩY ).

This type of computation can be generalized to An-singularities and higher symmetric
powers of the cotangent sheaves. We introduce the following lemma which describes the
varieties with an An-singularity as a toric variety.
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. . . . . .
σρ1 ρn+2

. . . . . .
. . . . . .

ρ1 ρ2 ρn+1 ρn+2
Σ

Figure 3.6: The cone σ and the fan Σ

Lemma 3.24. Let σ = Cone(e2, (n + 1)e1 + e2). The affine toric variety Xσ has an An-
singularity at the origin.

Let Σ be the fan with maximal cones {Cone((i− 1)e1 + e2, ie1 + e2) : i = 1, . . . , n+ 2}.
See Figure 3.6. The toric variety XΣ is the resolution of the An-singularity on the affine
toric variety Xσ.

Proof: The dual cone of σ is σ∨ = Cone(e∗1,−e∗1 + (n + 1)e∗2) ⊂ MR. The associated
semigroup Sσ is generated by {χ(1,0), χ(0,1), χ(−1,n+1)}, so the affine toric variety Xσ =
SpecC[x, y, x−1yn+1]. By writing z = x−1yn+1, we obtain

C[x, y, x−1yn+1] ∼= C[x, y, z]/(xz − yn+1),

and we see that Xσ has an An-singularity at the origin.
The fan Σ can be regarded as a refinement of the fan that defines Xσ. Consequently, XΣ

serves as a resolution of Xσ. For further detail into this refinement process, see [5, Example
10.1.5, Example 10.1.9, and Exercise 10.1.5].

Example 3.25. Let n be any positive integer, and let σ and Σ be the cone and fan
described in Lemma 3.24. We write X := Xσ and Y := XΣ. The dense torus T contained
in X corresponds to the open subvariety defined by xz ̸= 0. The rays e2 and (n+ 1)e1 + e2

correspond to the divisors x = 0 and z = 0 on X.
As we saw in Example 3.22, for each u in the character group of T , Klyachko shows

that the filtrations Eρ(ρ(u)) measure the regularity along the divisor corresponding to the
ray ρ for the sections in H0(T, SmΩT )u. The desingularization Y of X is given by the fan
spanned by the rays e2, e1 +e2, . . . , (n+1)e1 +e2. The additional rays ie1 +e2 for i = 1, ..., n
correspond to the components of the exceptional divisor ϵ.
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Chapter 4

Symmetric differentials and
polytopes

4.1 Klyachko Filtration of Symmetric Differentials

In this section, we focus on the explicit computation of the sections of symmetric differentials
on the toric desingularization of a variety with an An-singularity. Proposition 2.10 indicates
that symmetric powers of a vector bundle are again vector bundles. Our primary approach
will involve the computation of sections of symmetric differentials through the utilization
of Corollary 3.20.

To commence our exploration, we reference the following results from [7]:

Proposition 4.1. [7, Corollary 3.2] Let E be a toric vector bundle on a smooth toric variety
X. Let {Eρ(i)} be the Klyachko filtration of E. For any m ∈ N≥0, the Klyachko filtration for
E⊗m is given by

F ρ(i) =
∑

i1+i2+···+im=i

Eρ(i1) ⊗ Eρ(i2) ⊗ · · · ⊗ Eρ(im).

Proposition 4.2. [7, Corollary 3.5] Let E be a toric vector bundle on a smooth toric variety
X. Let {Eρ(i)} be the Klyachko filtration of E. For any m ∈ N≥0, the Klyachko filtration
for SmE is given by

F ρ(i) =
∑

i1+i2+···+im=i

Im (Eρ(i1) ⊗ Eρ(i2) ⊗ · · · ⊗ Eρ(im) → SmE) .

With no ambiguity, we write

∑
i1+i2+...+im=i

Im (Eρ(i1) ⊗ Eρ(i2) ⊗ . . .⊗ Eρ(im) → SmE) =
∑

i1+i2+...+im=i

Eρ(i1)Eρ(i2) · · ·Eρ(im).

Proposition 4.2 provides us with a direct approach to explicitly compute the Klyachko
filtration of the symmetric differentials. This becomes particularly advantageous as we have
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already obtained the Klyachko filtration of the cotangent bundle in Example/Proposition
3.21. Using Proposition 4.2, we can expand our computations to include the symmetric
differentials and determine their corresponding Klyachko filtration.

We fix the notation σ and Σ for the cone and fan as described in Lemma 3.24, and we
write X := Xσ and Y := XΣ from now on.

Proposition 4.3. Let Σ and Y as described above. The locally free sheaf SmΩY as a toric
vector bundle on Y corresponds to the following data:

(a) A vector space SmE where E = M ⊗ C ∼= C2.

(b) For each ray ρ ∈ Σ(1) there is a decreasing filtration of vector spaces F ρ(i) such that

F ρ
m(i) =


SmE for i ≤ −m− 1;(
ρ⊥)i+mS−iE for −m ≤ i ≤ 0;

0 for i ≥ 1.

(4.1)

The term (ρ⊥)i+mS−iE corresponds to the image of the map defined by multiplying each
symmetric differential in S−iE by (ρ⊥)i+m to obtain SmE.

Proof: This follows directly from Proposition 4.2, where we replace each Eρ(ij) appearing in
the summation with the corresponding terms from the Klyachko filtration of the cotangent
sheaf, as described in Example 3.21. By substituting the explicit expressions of the Klyachko
filtration in place of Eρ(ij), we can obtain the desired result.

Example 4.4. Recall from Example 3.23 that we considered the cone σ := Cone{e2, 2e1 +
e2}, which defines a surface Xσ with an A1-singularity. Using Corollary 3.20, we computed
the sections of ΩY , where Y is the resolution of this singularity. Let ρi denote the ray
generated by (i− 1, 1) for i = 1, 3. The affine toric variety Xσ associated with this cone also
has an A1-singularity. Therefore, we can apply Corollary 3.20 again to compute the sections
of the symmetric differentials on Y .

H0(Y − ϵ, SmΩY ) =
⊕

(a,b)∈Z2

F ρ1
m (ρ1(a, b)) ∩ F ρ3

m (ρ3(a, b));

H0(Y, SmΩY ) =
⊕

(a,b)∈Z2

F ρ1
m (ρ1(a, b)) ∩ F ρ2

m (ρ2(a, b)) ∩ F ρ3
m (ρ3(a, b)).

We now adapt the computation for An-singularities. We take the cone σ and the fan Σ
as in Lemma 3.24. Fixing (a, b) ∈ Z2, Proposition 4.3(b) indicates that the dimension of
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each vector space F ρi
m (ρi(a, b)) is given by

dimF ρi
m (ρi(a, b)) =


0 if ρi(a, b) ≥ 1,

−ρi(a, b) + 1 if −m ≤ ρi(a, b) ≤ 1,

m+ 1 if ρi(a, b) ≤ −m− 1.

(4.2)

We will compute the vector space F ρi
m (ρi(a, b)) ∩ F

ρj
m (ρj(a, b)) for i, j = 1, 2, . . . , n + 2

and i ̸= j, when both ρi(a, b) and ρj(a, b) are in the range of −m to 0. Otherwise, the
intersection is easy to determine. Recall from 4.1 that the space F ρi

m (ρi(a, b)) consists of
symmetric differentials in SmE having a factor of (ρ⊥i )−ρi(a,b)+m.

Note that for any ω ∈ F ρi
m (ρi(a, b)) ∩ F

ρj
m (ρj(a, b)), it is either 0 or must have a factor

of (ρ⊥i )−ρi(a,b)+m · (ρ⊥j )−ρj(a,b)+m. By counting the total symmetric degree, we find that the
dimension of the intersection is given by max{m + 1 − (ρi(a, b) +m) − (ρj(a, b) +m) , 0}.
Extending this computation, we can compute the dimensions of any intersection of the
vector spaces in the filtration. We record for future use the following proposition for the
filtrations introduced here for the resolution of an An singularity.

Proposition 4.5. Let (a, b) ∈ Z2, suppose ρi(a, b) ≤ 0 for all i. Let di(a, b) = max{0,−ρi(a, b)+
m}, then

dimF ρ1
m (ρ1(a, b)) ∩ F ρn+2

m (ρn+2(a, b)) = max{0,m+ 1 − d1(a, b) − dn+2(a, b)},

dim
n+1⋂
i=0

F ρi
m (ρi(a, b)) = max{0,m+ 1 −

n+2∑
i=1

di(a, b)}.

Proof: For each i = 1, . . . , n+2, we can express the pairing ⟨(a, b), ρi⟩ as ρi(a, b) = (i−1)a+b.
If ρi(a, b) ≤ −m − 1, then F ρi

m (ρi(a, b)) = SmE, so in the intersection this space does not
restrict the result.

For −m ≤ ρi(a, b) ≤ 0, the vector space F ρi
m (ρi(a, b)) consists of the symmetric vectors

divisible by (ρ⊥i )−i+m. Since for each i, taking the intersection of the space SmE with each
of the spaces F ρi

m (ρi(a, b)) will reduce the dimension by −ρi(a, b)+m. Thus, we can conclude
the result by an inductive argument.

4.2 Rational polytopes and Ehrhart Theory

In this section, we establish a connection between the computation of dimensions of reg-
ular symmetric differentials on Y and Y − ϵ and the enumeration of lattice points in a
3-dimensional rational polytope. Counting lattice points in polytopes is a well-studied prob-
lem in combinatorics. We refer to [3, Chapter 1 and 2] to introduce the concepts of convex
sets and polytopes.
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Definition 4.6. An open half-space in Rd determined by the vector a ∈ Rd and a constant
b is defined by the set {x : x ∈ Rd,a · x > b}. A closed half-space in Rd determined by the
vector a ∈ Rd and a constant b is defined by the set {x : x ∈ Rd,a · x ≥ b}.

If H := {x ∈ Rd : a · x = b} is a hyperplane in Rd, then H gives two closed half-spaces

H1 = {x ∈ Rd : a · x ≥ b},

H2 = {x ∈ Rd : −a · x ≥ −b}.

Definition 4.7. A convex polytope in Rd is an intersection of finitely many closed half-
spaces.

Similar to the supporting planes of a cone that we defined in Chapter 2, we can also
define the supporting plane of a convex polytope P :

Definition 4.8. Let H be a hyperplane in Rd. We say H is a supporting hyperplane of a
convex polytope P if the following holds:

(a) H intersects P;

(b) P is contained in one of the closed half-space of H. We call the intersection P ∩H a
face of P.

Theorem 4.9. [3, Corollary 8.4] Any face of a polytope is a polytope.

Definition 4.10. Let P be a polytope in Rd. Pick a point x0 in P and define the dimension
to be the dimension of the vector space spanned by VX,x0 = {x−x0 : x ∈ X}. The dimension
of an affine space is the dimension of a vector space parallel to the affine space.

Definition 4.11. Let P be a polytope in Rd. Faces of dimension 0 are called vertices of P;
faces of dimension 1 are called edges of P.

Definition 4.12. The convex hull Conv(A) of a finite set A of points in Rn is the smallest
convex set that contains A.

One easily checks that any bounded convex polytope is the convex hull of its vertices.
If V1, . . . , Vk are the vertices of a closed convex polytope, we write P(V1, . . . , Vk).

Definition 4.13. A dilation of a polytope P with a dilation factor λ, denote by λP is
defined by {λx : x ∈ P}.

Definition 4.14. A rational polytope in Rn is a polytope with vertices in Qn. The denom-
inator of P, denoted by d(P), is defined as the smallest integer k such that kP ⊂ Zn. In
other words, d(P) is the lowest common multiple of the denominators of the coordinates of
the vertices of P.
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Definition 4.15. A quasi-polynomial of degree n is a function p : N → R of form p(m) =∑n
i=0 ci(m)mi, where there exists a positive integer d such that ci(m+ d) = ci(m) for all i

and m ∈ N. The period of a quasi-polynomial is the smallest positive integer d such that
ci(m+ d) = ci(m).

Theorem 4.16 (Ehrhart,1962 and McMullen, 1978). Let P ⊂ Rn be a rational polytope.
There is a quasi-polynomial Q(P) of degree dim P and period dividing d(P) such that
Q(P)(λ) = #(λP ∩ Zn) for λ ∈ N≥0. The leading coefficient of Q(P) is the volume of
P.

4.3 Explicit construction of polytopes

We recall the toric variety Y = XΣ from Lemma 3.24, and we also recall the Klyachko
filtration of the symmetric differentials as given in Proposition 4.3.

Proposition 4.17. There exist only finitely many lattice points (a, b) ∈ Z2 such that the
finite-dimensional quotient vector space

Zm(a, b) :=
(
F ρ1

m (ρ1(a, b))
⋂
F ρn+2

m (ρn+2(a, b))
)
/

n+2⋂
i=1

F ρi
m (ρi(a, b)).

is non-trivial.

The proof of Proposition 4.17 follows from the following construction. If either of the
values ρ1(a, b) or ρn+2(a, b) is strictly greater than 0, then the intersection of the vector
spaces is trivial:

F ρ1
m (ρ1(a, b)) ∩ F ρn+2

m (ρn+2(a, b)) = 0.

Thus, the quotient space Zm(a, b) is also trivial. On the other hand, if we have the following
condition:

n+2⋂
i=1

F ρi
m (ρi(a, b)) = F ρ1

m (ρ1(a, b)) ∩ F ρn+2
m (ρn+2(a, b)),

then the space Zm(a, b) is trivial again. The proof of Proposition 4.17 is explicitly construc-
tive. We will show that the lattice points (a, b) for which Zm(a, b) is non-trivial lie inside a
bounded polytope.

Definition 4.18. We define the vector space V (a,b)
m as

(
F ρ1

m (ρ1(a, b)) ∩ F
ρn+2
m (ρn+2(a, b))

)
and W

(a,b)
m =

⋂n+2
i=1 F

ρi
m (ρi(a, b)). Furthermore, we denote zm(a, b) as the dimension of the

quotient vector space Zm(a, b).

We subdivide the (a, b)-plane into finitely many convex polygonal regions where we can
compute dimVm(a, b) and dimWm(a, b) relatively easily. See Figure 4.1.
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• A = (0, 1)

b-axis

Z = (0,−m)

•
R0 = (−m− 1, 1)

ℓ1 ℓ2 ℓ3

ℓ′1

ℓ′2

. . .
. . .H1

R1

Figure 4.1: Polygonal region part 1 (a).

Let ℓi := ρi+1(a, b) + m = 0 and ℓ′i = ρi+1(a, b) − 1 = 0 for i = 1, . . . , n + 1, and let
Z = (0,−m). We denote the intersection point of the line b = 1 and ℓi as Ri−1, for each
i = 1, . . . , n+ 1.
The polygonal region Conv(R0, R1, Z) in the (a, b)-plane is defined by the inequalities

ρ1(a, b) − 1 ≤ 0,

ρ1(a, b) +m ≥ 0,

ρ2(a, b) +m ≥ 0,

ρj(a, b) +m ≤ 0 for j = 3, . . . , n+ 1.

Since a ≤ 0 for all (a, b) in this region, we determine the expressions for the vector spaces
as follows using Proposition 4.3:

F ρ1
m (ρ1(a, b)) = (ρ⊥1 )ρ1(a,b)+mS−ρ1(a,b)E,

F ρ2
m (ρ2(a, b)) = (ρ⊥2 )ρ2(a,b)+mS−ρ2(a,b)E,

F
ρj
m (ρj(a, b)) = SmE for all j = 3, . . . , n+ 1.
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Therefore, using Corollary 4.5 for each (a, b) in this polygonal region, we express dimensions
as follows:

dimV (a,b)
m = 1 − b,

dimW (a,b)
m = max{0, (m+ 1) − (b+m) − (a+ b+m)}.

Let H1 be the intersection of the line (m+ 1) − (b+m) − (a+ b+m) = 0 with ℓ2, we have

H1 =
(

−m+ 1
3 ,−m− 2

3

)
.

The line (m + 1) − (b + m) − (a + b + m) = 0 intersects ℓ1 at R0. We also define H0

to be the same point to maintain consistency with H1 and later constructions. Then, the
line segment R0H1 distinguishes the regions where dimWm(a, b) = 0 or dimWm(a, b) =
(m+ 1) − (b+m) − (a+ b+m). Thus, the codimension is given by:

zm(a, b) =

1 − b for (a, b) ∈ Conv(R0, H1, R1),

a+ b+m for (a, b) ∈ Conv(R0, H1, Z).

We denote the intersection of ℓi with ℓ′i by Pi. Refer to Figure 4.2 for an illustration of
the points P0, P1, and P2. Similarly, we can analyze the polygonal region extending beyond
the b-axis. The dashed line through Z and P0 is defined by the equation b+m = 0.

The line segment P0P2 is defined by the equation ρn+2(a, b) + 1 = 0, and for any (a, b)
above this line, all vector spaces become trivial. The two lines ZP1 and ZP2 correspond
to the line segments R0Z and R1Z in Figure 4.1, respectively. Inside the polygonal region
Conv(Z,P1, P2) in the (a, b)-plane, we observe the reversed inequalities compared to part
(a):

ρ1(a, b) +m ≤ 0,

ρ2(a, b) +m ≤ 0,

ρj(a, b) +m ≥ 0 for j = 3, . . . , n+ 1.

We determine the vector spaces accordingly using Proposition 4.3:

F ρ1
m (ρ1(a, b)) = F ρ2

m (ρ2(a, b)) = SmE,

F
ρj
m (ρj(a, b)) = (ρ⊥j )ρj(a,b)+mS−ρj(a,b)E for j = 3, . . . , n+ 1.
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Z

ℓ1 : ρ2(a, b) +m = 0.

P0

P1

P2

F0

F1

F2

ℓ2 : ρ3(a, b) +m = 0.

ℓ′n+1+ : ρn+2(a, b) − 1 = 0.

Figure 4.2: Polyhedron region part 1 (b).

For each (a, b) within the polygonal region Conv(Z,P1, P2), the dimensions of the vector
spaces are as follows:

dimV (a,b)
m = m+ 1 − ((n+ 1)a+ b+m) = 1 − (n+ 1)a− b,

dimW (a,b)
m = max{0,−(n+ 3)n

2 a− nb−m(n− 1) + 1}.

The line − (n+3)n
2 a− nb−m(n− 1) + 1 = 0 intersects ℓ1 and ℓ2 at F1 and F2, respectively.

The line segment F1F2 divides the polygonal region Conv(Z,P1, P2) in the (a, b)-plane into
two separate polygonal regions: Conv(Z,F1, F2) and Conv(F1, F2, P2, P1). The dimension of
the quotient space for each (a, b) is given by:

zm(a, b) =

1 − (n+ 1)a− b for (a, b) ∈ Conv(F1, F2, P2, P1),
(n+2)(n−1)

2 + (n− 1)b+m(n− 1) for (a, b) ∈ Conv(Z,F1, F2).

Using this expression, we can interpolate the function zm(a, b) to obtain values for real
coordinates a and b. This allows us to define a rational polytope in R3 with coordinates
(a, b, zm).

For any integer k in the range 0, . . . , n − 2, we can identify a corresponding region in
the (a, b)-plane, which is defined by the following linear relations. See Figure 4.3 for an

30



illustration.

b+ 1 = 0,

ρk+2(a, b) +m = 0,

ρk+3(a, b) +m = 0,

ρn+2(a, b) + 1 = 0.

Rk Rk+1

Pk+1

Pk+2

Z

Hk

Hk+1

Fk+1

Fk+2

ℓk+1

ℓk+2

b-axis

a-axis

Figure 4.3: Polyhedron for arbitrary k.

The line segments RkPk+1 and Rk+1Pk+2 are defined by the equations ρk+1(a, b) + m =
0 and ρk+2(a, b) + m = 0, respectively. We determine the vector spaces, for (a, b) ∈
Conv(Z,Rk, Rk+1), and obtain

F ρi
m (ρi(a, b)) =

(ρ⊥i )ρi(a,b)+mS−ρi(a,b)E for 1 ≤ i ≤ k + 2,

SmE for k + 3 ≤ i ≤ n+ 2.
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For (a, b) ∈ Conv(Z,Pk+1, Pk+2), we have

F ρi
m (ρi(a, b)) =

(ρ⊥i )ρi(a,b)+mS−ρi(a,b)E for k + 3 ≤ i ≤ n+ 2,

= SmE for 1 ≤ i ≤ k + 2.

Using this, we compute the dimensions of the vector spaces Vm(a, b) and Wm(a, b), and
encode them in Equation 4.3 and Equation 4.4.

dimV (a,b)
m =

1 − b for (a, b) ∈ Conv(Rk, Rk+1, Z);

1 − (n+ 1)a− 2b for (a, b) ∈ Conv(Pk+1, Pk+2, Z).
(4.3)

dimWm(a, b) =

max{0, (m+ 1) −
∑k+2

i=1 (i− 1)a+ b+m} for (a, b) ∈ Conv(Rk, Rk+1, Z);

max{0, (m+ 1) −
∑n+2

i=k+3(i− 1)a+ b+m} for (a, b) ∈ Conv(Pk+1, Pk+2, Z).
(4.4)

The line (m + 1) −
∑k+2

i=1 (i − 1)a + b + m = 0 intersects ℓk+1 and ℓk+2 at Hk and Hk+1,
respectively. Similarly, the line (m + 1) −

∑n+2
i=k+3(i − 1)a + b + m = 0 intersects ℓk+1 and

ℓk+2 at Fk+1 and Fk+2, respectively. The line segments HkHk+1 and Fk+1Fk+2 serve as
thresholds for determining whether the vector space W (a,b)

m is zero. Then we can express
the dimension of Wm(a, b) based on the polygonal regions in the (a, b)-plane, as described
in Figure 4.3. See Equation 4.5.

dimW (a,b)
m =



0 for (a, b) ∈ C1;

− (k+2)(k+1)
2 a− (k + 2)b− (k + 1)m+ 1 for (a, b) ∈ C2;(

(n+k+3)(−n+k)
2

)
a− (n− k)b− (n− 1 − k)m+ 1 for (a, b) ∈ C3;

0 for (a, b) ∈ C4.

(4.5)

where

C1 = Conv(Rk, Rk+1, Hk, Hk+1);

C2 = Conv(Hk, Hk+1, Z);

C3 = Conv(Fk+1, Fk+2, Z);

C4 = Conv(Pk+1, Pk+2, Fk+1, Fk+2).

For 0 ≤ k ≤ n−2, the coordinates of the vertices are obtained by taking the intersections
of the half-spaces. The function zm(a, b) extends to a piecewise-linear function on the (a, b)-
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plane. We also include zm(a, b) as the third coordinate of the vertices. With a slight abuse
of notation, we regard the vertices as points in R3 with coordinates (a, b, zm(a, b)). The
coordinates of the vertices are listed in the following table:

Table 4.1: Coordinates of the vertices.

Vertex Coordinate
Rk

(
− 1

k+1(m+ 1), 0 + 1, 0
)

Hk

(
− 2(m+1)

(k+2)(k+1) ,−
k(m+1)

k+2 + 1, k(m+1)
k+2

)
Pk

(
(m+1)

(n+1−k) ,−
(n+1)(m+1)

n+1−k + 1, 0
)

Fk

(
2(m+1)

(n+2−k)(n+1−k) ,
(−(k−n)2+k−3n−2)(m+1)

(n+2−k)(n+1−k) + 1, (n−k)(m+1)
n−k+2

)
Z

(
0,−(m+ 1) + 1, 0

)
A

(
0, 0+1,0

)

Remark 4.19. We can perform a shift of the polytopes by 1 unit along the b-axis, such that
each component of the coordinates has a factor of (m + 1). This shift will be useful when
we apply Ehrhart theory to count the lattice points in the polytopes in the next chapter.

Observe that when k = 0, we obtain the same information as in Figure 4.1 and Figure
4.2, where the coordinates of H0 and R0 coincide. Similarly, when we set k = n − 2, then
Fn and Pn coincide. There are additional symmetries in this polytope construction, which
we will address later in this section.

Although we assumed that k = 0, . . . , n − 2, the coordinates for Rn, Hn, P0, and F0

can also be included in the table. We complete the polyhedron construction with the last
polytope before concluding this section. See Figure 4.4.
First, we consider the polygonal region Conv(Rn−1, Rn, Z). Following the same procedure
as in Figure 4.3, we obtain:

dimV (a,b)
m = 1 − b,

dimW (a,b)
m = max{0, (m+ 1) −

n+1∑
i=1

(i− 1)a+ b+m}

= max{0,−(n+ 1)n
2 a− (n+ 1)b−mn+ 1}.

Let Hn−1 and Hn be the intersection points of line (m+ 1) −
∑n+1

i=1 (i− 1)a+ b+m = 0
with ℓn and ℓn+1 in the (a, b)-plane, respectively. We compute the coordinates as in R3 by
adding zm(a, b) as the third coordinate, we obtain
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Rn A = (0, 1)

P0

P1

F1

Rn−1

F0

Hn

Hn−1

Z

ρn+1(a, b) +m = 0.

ρ2(a, b) +m = 0.

ρn+2(a, b) +m = 0.

ρn+2(a, b) + 1 = 0.

Figure 4.4: Central polyhedron

Hn−1 =
(

−2(m+ 1)
(n+ 1)n ,−

(n− 1)(m+ 1)
n+ 1 + 1, (n− 1)(m+ 1)

n+ 1

)
, (4.6)

Hn =
(

− 2(m+ 1)
(n+ 2)(n+ 1) ,−

(n)(m+ 1)
n+ 2 + 1, (n)(m+ 1)

n+ 2

)
. (4.7)

Similarly, for the polygonal region Conv(P0, P1, Z), we have the inequalities:

ρ1(a, b) +m ≤ 0,

ρj(a, b) +m ≥ 0 for all j ≥ 2.
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This implies that

F ρi
m (ρi(a, b)) =

S
mE if i = 1;

(ρ⊥i )ρi(a,b)+mS−ρi(a,b)E for all 2 ≤ i ≤ n+ 2.

As a result, we obtain the dimensions:

dimV (a,b)
m = 1 − (n+ 1)a− b−m,

dimW (a,b)
m = max{0,−(n+ 2)(n+ 1)

2 a− (n+ 1)b−mn+ 1}.

Let F0 and F1 be the intersection points of the line − (n+2)(n+1)
2 a− (n+1)b−mn+1 = 0

with ℓ1 and ℓ2, respectively. Using this, we can determine that dimV
(a,b)

m /W
(a,b)
m is equal to

dimV
(a,b)

m above the line segment F0F1 and dimV
(a,b)

m − dimW
(a,b)
m below F0F1. By adding

zm(a, b) as the third coordinate, we have the coordinates of the points as follows:

F0 =
(

2(m+ 1)
(n+ 2)(n+ 1) ,

(−n3 − 3n− 2)(m+ 1)
(n+ 2)(n+ 1) + 1, n(m+ 1)

(n+ 2)

)
, (4.8)

F1 =
(

2(m+ 1)
(n+ 1)(n) ,

(−(n− 1)2 − 3n− 1)(m+ 1)
(n+ 1)(n) + 1, (n− 1)(m+ 1)

(n+ 1)

)
. (4.9)

Now it remains to consider the polygonal region Conv(Rn, A, P0, Z). In this range, we
have the following inequalities:

−m ≤ ρ1(a, b) ≤ 1,

−m ≤ ρi(a, b) ≤ 0 for all i ≥ 2.

These inequalities determine the dimensions of the vector spaces as follows:

dimV (a,b)
m = max{0, (m+ 1) − (b+m) − ((n+ 1)a+ b+m)}, (4.10)

dimW (a,b)
m = max{0, (m+ 1) −

n+2∑
i=1

(i− 1)a+ b+m}. (4.11)

The shaded region is where (m+1)−(b)−((n+1)a+b+m) < 0 and hence all vector spaces
will be trivial above the line segment RnP0. Therefore, it is natural to consider only the
polygonal region Conv(Rn, P0, Z). Similarly, the line segment HnF0 is given by the equation
(m+ 1) −

∑n+2
i=1 (i− 1)a+ b+m = 0.
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The shaded region represents the region where (m+ 1) − (b) − ((n+ 1)a+ b+m) < 0,
all vector spaces will be trivial above the line segment RnP0. Therefore, it is natural to
consider only the polygonal region Conv(Rn, P0, Z). Similarly, the line segment HnF0 is
given by the equation (m+ 1) −

∑n+2
i=1 (i− 1)a+ b+m = 0.

The coordinates of Hn−1, Hn, F0, F1 in R3 match the ones in Table 4.1. The points
{Rk, Hk, Fk, Pk, Z : k = 0, . . . , n} define a 3-dimensional rational polytope.

Remark 4.20. We observe that the polytope P ⊂ R3 can be partitioned into smaller
3-dimensional polytopes using the construction described above. We can express P as the
union of the following polytopes:

P =
(

n−1⋃
i=0

P(Ri, Ri+1, Hi, Hi+1, Z)
)

∪ P(Rn, P0, Hn, Fn, Z) ∪

n−1⋃
j=0

P(Pj , Pj+1, Fj , Fj+1, Z)

 .
(4.12)

This partitioning satisfies the construction and covers the entire polytope P. We call
P(Rn, P0, Hn, Fn, Z) the central polytope. Therefore, this confirms Proposition 4.17 that
zm(a, b) is non-zero only in a bounded polytope in {(a, b) : a, b ∈ Z2}.

Proposition 4.21. There is an affine transformation ϕ that preserves lattice points such
that for all k = 0, . . . , n we have

ϕ ·Rk = Pn−k,

ϕ ·Hk = Fn−k,

ϕ · Z = Z.

Proof: Following Remark 4.19, we first apply a shift ψ in the negative b-axis direction by
one unit, which can be represented as the affine transformation:

ψ :


a

b

z

 7→


a

b− 1
z

 .
By inspection of the coordinates in Table 4.1, we identify a linear transformation f ∈ GL2(Z)
whose matrix representation is

f :=


−1 0 0

(n+ 1) 1 0
0 0 1

 .
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The determinant det f = −1, so the linear transformation is volume-preserving. In partic-
ular, f maps integer points to integer points. Moreover, f is an involution, so f−1 = f

preserves volume and lattice points.
Therefore, we define the affine transformation ϕ := ψ−1fψ. For each k = 0, . . . , n we

check:

ϕ · ψ(Rk) =


−1 0 0

(n+ 1) 1 0
0 0 1




− 1
k (m+ 1)

0
0

 =


m+1
k+1

− (n+1)(m+1)
k+1
0

 = ψ(Pn−k),

ϕ · ψ(Hk) =


−1 0 0

(n+ 1) 1 0
0 0 1




− 2(m+1)
(k+2)(k+1)
−k(m+1)

k+2
k(m+1)

k+2

 =


2(m+1)

(k+2)(k+1)

− (k2+k+2n+2)(m+1)
(k+2)(k+1)
k(m+1)

k+2

 = ψ(Fn−k),

ϕ · ψ(Z) =


− 2(m+1)

(k+2)(k+1)
−k(m+1)

k+2
k(m+1)

k+2




0
−m− 1

0

 =


0

−m− 1
0

 = ψ(Z).

This establishes the claim in the proposition.

Remark 4.22. Proposition 4.21 shows that the polytope P admits a symmetry. We can
therefore get full information on lattice point counts in P by considering the convex parts
Conv(Rk, Hk, Rk+1, Hk+1, Z) and the polytope on Conv(Rn, P0, Z) in R3.

By Proposition 4.21 and Remark 4.22, we can simplify our analysis by focusing on the
coordinates obtained after applying the affine transformation ψ described in the proposition.
Consequently, we will adopt the adjusted table of coordinates for the vertices of any polytope
constructed according to the procedure above from this point onward.

Table 4.2: Coordinates of the adjusted vertices.

Vertex Coordinate
Rk

(
− 1

k+1(m+ 1), 0, 0
)

Hk

(
− 2(m+1)

(k+2)(k+1) ,−
k(m+1)

k+2 , k(m+1)
k+2

)
Pk

(
(m+1)

(n+1−k) ,−
(n+1)(m+1)

n+1−k , 0
)

Fk

(
2(m+1)

(n+2−k)(n+1−k) ,
(−(k−n)2+k−3n−2)(m+1)

(n+2−k)(n+1−k) , (n−k)(m+1)
n−k+2

)
Z

(
0,−(m+ 1), 0

)

We refer to Figure 5.1 and Figure 5.2 as examples of the polytope constructed from an A2

and an A3-singularity, respectively. For the SageMath code that generates these polytopes,
please refer to Appendix A.
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4.4 Main Theorem

We briefly introduced Ehrhart theory and lattice point counting in the previous sections.
We showed an application of computing the dimension of a quotient space as a lattice point
count inside a polytope. With no ambiguity, for fixed n and m, we write P for the polytope
we construct using the procedure in the previous sections. We will prove Theorem 1.1.

We can extend the function zm(a, b), as defined in Definition 4.18, to a piecewise-linear
function on R2. By doing so, we find that the dimension of Vm(a, b)/Wm(a, b) can be ex-
pressed as max(0, ⌊zm(a, b)⌋). This observation, as stated in Proposition 4.17, allows us to
represent the quantity χ0

loc(s, SmΩY ) in terms of counting lattice points within a dilation
of a polytope with a dilation factor of m+ 1.

We recall the main theorem and present its proof here.

Theorem (Main). Let X be a surface with a singularity s of type An, and let Y be a
minimal resolution of X. The quantity χ0

loc(s, SmΩY ) = dim H0(Y−ϵ, SmΩY )/H0(Y, SmΩY )
is a quasi-polynomial in m with period dividing lcm(1, 2, . . . , n + 2) that we can explicitly
determine.

Proof: Define the ground polytope by taking the intersection of P with the (a, b)-plane:

Pg := P ∩ {(a, b, z) ∈ R3 : z = 0}.

Note that Pg is the intersection of P with z = 0. We recognize that Pg is a 2-dimensional
polytope with the same vertices but without the third coordinate. Therefore, Theorem 4.16
applies to the rational polytope Pg as well.

Let Q(P) and Q(Pg) be the quasi-polynomials of the rational polytopes P and Pg,
respectively. By Corollaries 4.5 and 3.20, the number of lattice points in P is given by

P ∩ Z3 =
∑

(a,b)∈Pg∩Z2

(zm(a, b) + 1) = χ0
loc(s, SmΩY ) +Q(Pg).

Therefore, for any An-singularity and symmetric differential of degree m, the codimension
count is given by

χ0
loc(SmΩY ) = dim H0(Y − ϵ, SmΩY )

H0(Y, SmΩY )
= Q(P) −Q(Pg).

Since Pg is a 2-dimensional rational polytope with a dilation factor of (m + 1), its
quasi-polynomial Q(Pg) is a quadratic quasi-polynomial.

Note that the coordinates of the vertices Ri have denominators {i + 1 : i = 0, . . . , n},
and the coordinates of the vertices Hi have denominators {(i + 2)(i + 1) : i = 0, . . . , n}.
Therefore, the denominator d(P) of the polytope P divides (n + 2)!. More precisely, we
expect the period to be even smaller than lcm({1, 2, . . . , n + 2}). Thus, we see that both
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Q(P) and Q(Pg) have a period dividing lcm({1, 2, . . . , n+ 2}). Therefore, we conclude that
χ0

loc(SmΩY ) is a cubic quasi-polynomial with a dilation factor of (m+ 1) and a period that
divides lcm({1, 2, . . . , n+ 2}).
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Chapter 5

Explicit computation of
quasi-polynomials and limit
behaviour

In this chapter, we present explicit volume computations to study the limit behavior of χ0
loc

as n → ∞.

5.1 Explicit computation for n = 2 and 3

The computation of χ0
loc(SmΩX) for X with an A1-singularity is indeed already in [4]. As

an extension, we will now provide the explicit formula for χ0
loc(s, SmΩY ) where s is an A2

or A3-singularity.
When n = 2, the coordinates of all vertices of ψ(P) are

Table 5.1: Coordinates of the vertices of ψ(P) for n = 2.

Vertex Coordinate Vertex Coordinate
R0

(
− (m+ 1), 0, 0

)
P0

(
m+1

3 ,−m− 1, 0
)

R1
(

− m+1
2 , 0, 0

)
P1

(
(m+1)

2 ,−3(m+1)
2 , 0

)
R2

(
− m+1

3 , 0, 0
)

P2
(
(m+ 1),−3(m+ 1), 0

)
H0

(
− (m+ 1), 0, 0

)
F0

(
(m+1)

6 ,−(m+ 1), m+1
2

)
H1

(
− (m+1)

3 ,− (m+1)
3 , (m+1)

3

)
F1

(
(m+1)

3 ,−4(m+1)
3 , (m+1)

3

)
H2

(
− (m+1)

6 ,− (m+1)
2 , (m+1)

2

)
F2

(
m+ 1,−3(m+ 1), 0

)
Z

(
0,−(m+ 1), 0

)

By setting m = 0, we plot the polytope with SAGE, see Figure 5.1
From the table, it can be observed that the period of the quasi-polynomial divides 6. By

evaluating it at different values of m and performing polynomial interpolation, we eventually
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Figure 5.1: Polytope when n = 2

obtain the Ehrhart quasi-polynomial with a leading coefficient of 29
216 and a period of 6, as

follows:

χ0
loc(s, SmΩY ) =



29
216(m+ 1)3 − 23

72(m+ 1) + 5
27 if m ≡ 0 mod 6,

29
216(m+ 1)3 − 5

18(m+ 1) − 14
27 if m ≡ 1 mod 6,

29
216(m+ 1)3 − 5

24(m+ 1) if m ≡ 2 mod 6,
29
216(m+ 1)3 − 5

18(m+ 1) + 14
27 if m ≡ 3 mod 6,

29
216(m+ 1)3 − 23

72(m+ 1) − 5
27 if m ≡ 4 mod 6,

29
216(m+ 1)3 − 1

6(m+ 1) if m ≡ 5 mod 6.

We may expand the quasi-polynomial as follows,

χ0
loc(s, SmΩY ) =



29
216m

3 + 29
72m

2 + 1
12m if m ≡ 0 mod 6,

29
216m

3 + 29
72m

2 + 1
8m− 143

216 if m ≡ 1 mod 6,
29
216m

3 + 29
72m

2 + 7
36m− 2

27 if m ≡ 2 mod 6,
29
216m

3 + 29
72m

2 + 1
8m+ 3

8 if m ≡ 3 mod 6,
29
216m

3 + 29
72m

2 + 1
12m− 10

27 if m ≡ 4 mod 6,
29
216m

3 + 29
72m

2 + 17
72m− 7

216 if m ≡ 5 mod 6.

.
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For n ≥ 3, the period increases drastically as n increases, as expected in Theorem 1.1.
When n = 3, the Ehrhart quasi-polynomial has a leading coefficient of 809

5400 and a period of
lcm(2, 3, 4, 5) = 60. For large values of n, the computation can be performed using SAGE
or Magma.

Let’s focus on the case when n = 3. Below, we list the vertices of the polytope P, and
we include a plot of the polytope P when n = 3 using SAGE. However, it is important to
note that the quasi-polynomial, in this case, has a period of 60, which we will present in
Appendix A.

Table 5.2: Coordinates of the vertices of ψ(P) for n = 3.

Vertex Coordinate Vertex Coordinate
R0

(
− (m+ 1), 0, 0

)
P0

(
m+1

4 ,−m− 1, 0
)

R1
(

− m+1
2 , 0, 0

)
P1

(
(m+1)

3 ,−4(m+1)
3 , 0

)
R2

(
− m+1

3 , 0, 0
)

P2
(

(m+1)
2 ,−2(m+ 1), 0

)
R3

(
− m+1

4 , 0, 0
)

P3
(
(m+ 1),−4(m+ 1), 0

)
H0

(
− (m+ 1), 0, 0

)
F0

(
(m+1)

10 ,−(m+ 1), 3(m+1)
5

)
H1

(
− (m+1)

3 ,− (m+1)
3 , (m+1)

3

)
F1

(
(m+1)

6 ,−7(m+1)
6 , (m+1)

2

)
H2

(
− (m+1)

6 ,− (m+1)
2 , (m+1)

2

)
F2

(
(m+1)

3 ,−5(m+1)
3 , (m+1)

3

)
H3

(
− (m+1)

10 ,−3(m+1)
5 , 3(m+1)

5

)
F3

(
m+ 1,−4(m+ 1), 0

)
Z

(
0,−(m+ 1), 0

)

The plot of the polytope P generated by SAGE:

Figure 5.2: Polytope when n = 3

In Figure 5.1, one can observe the sheared symmetry described in Proposition 4.21. The
image may be misleading due to the shearing, which increases with n. However, as we have
computed, the affine transformation ϕ preserves lattice points. Therefore, the lattice point
counts in the corresponding polytopes still match.
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5.2 Independence of lattice point counts from n when n > m

In Section 4.3, we have explicitly computed the vertices of the polytopes for arbitrary n > 0.
We denote the polytope corresponding to the An-singularity as Pn. Let {Z,Ri, Hi, Pi, Fi :
i = 0, . . . , n} be the vertices of Pn as discussed in the previous section. Additionally, let
{Z,R′i, H ′i, P ′i , F ′i : i = 0, . . . , n+ 1} be the vertices of the polytope Pn+1.

From this point forward, for any polytope A, we denote its intersection with the ground
plane {(a, b, z) : a, b ∈ R, z = 0} as Ag.

We observe that the polytopes Pn+1 and Pn have the same subpolytopes

P(Z,R′i, R′i+1, H
′
i, H

′
i+1) = P(Z,Ri, Ri+1, Hi, Hi+1) for i ≤ n. (5.1)

Therefore, according to Proposition 4.21, for a fixed value of m, the difference between
the number of lattice points in Pn+1 and the number of lattice points in Pn is equivalent to
the difference between the lattice points in the following polytopes:

A := P(Rn−1, Rn, Hn−1, Hn, Z, F0, F1, P0, P1),

B := P(Rn, P0, F0, Hn, Z).

We denote the polytope P(R′n, R′n+1, H
′
n, H

′
n+1, Z) as A1, the polytope P(R′n+1, P

′
0, F

′
0, H

′
n+1, Z)

as A2, and the polytope P(P ′0, P ′1, F1, F
′
0, Z) as A3. We recognize that A = A1 ∪ A2 ∪ A3.

Proposition 5.1. Let n2, n1 and m be positive integers. Suppose n2 > n1, if m < n1 then

∑
(a,b)∈(Pn2 )g

dim V
(a,b)

m

W
(a,b)
m

=
∑

(a,b)∈(Pn1 )g

dim V
(a,b)

m

W
(a,b)
m

.

i.e., the number of lattice points in the half-open polytope P \ Pg does not depend on n if
m < n.

Proof: It is sufficient to demonstrate that the number of lattice points in Pn and Pn+1 is
the same when m < n. By equation (5.1), we need to show that

#A ∩ {(a, b, z) : a, b, z ∈ Z, z > 0} = #B ∩ {(a, b, z) : a, b, z ∈ Z, z > 0}.

By Proposition 4.21, the affine transformation ϕ preserves lattice points and

ϕ(A1) = A3.

Then we have
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#A1 ∩ Z3 = #A3 ∩ Z3.

For m < n, the polytope A1 has vertices

Rn :
(

− 1
n+ 1(m+ 1), 1, 0

)
, Rn+1 :

(
− 1
n+ 2(m+ 1), 1, 0

)
;

Hn :
(

− 2(m+ 1)
(n+ 2)(n+ 1) ,−

n(m+ 1)
(n+ 2) + 1,−n(m+ 1)

(n+ 2)

)
;

Hn+1 :
(

−n(m+ 1)
n+ 2 ,−(n+ 1)(m+ 1)

(n+ 3) + 1, (n+ 1)(m+ 1)
(n+ 3)

)
;

Z : (0,−m, 0) .

Since m < n, we have

−1 < −(m+ 1)
n+ 1 < −(m+ 1)

(n+ 2) ≤ 0,

−1 < − 2(m+ 1)
(n+ 2)(n+ 1) < −n(m+ 1)

n+ 2 < 0.

We observe that the only vertex in the polytope A1 with an integral first coordinate is Z.
However, the vertex Z belongs to the ground polytope (A1)g. Therefore, there are no lattice
points in (A1)\(A1)g. Consequently, there are no lattice points in (A3)\(A3)g. The number
of lattice points in A \ Ag is the same as the number of lattice points in A2 \ (A2)g.

Now it remains to study A2 and B. Note that A2 and B share a similarity in that they
both represent the middle polytope discussed in Remark 4.20 for Pn and Pn+1, respec-
tively. Without loss of generality, let us examine A2 first. Recall the first component of the
coordinates of the vertices of A2 as shown in Table 4.1. When m < n, we observe that

−1 < −m+ 1
n+ 1 < − 2(m+ 1)

(n+ 1)(n+ 2) <
2(m+ 1)

(n+ 1)(n+ 2) <
m+ 1
n+ 1 < 1.

If there exist lattice points, they must lie in the plane {(a, b, z) ∈ R3 | a = 0}. By taking
intersections with the half-spaces, we obtain two line segments: G1G2 and G2Z, where

G1 :(0,−m

2 + 1
2 , 0),

G2 :(0,−(n+ 1)m− 1
(n+ 2) ,

n(m+ 1)
(n+ 2) ).

See Figure 5.3.
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G1

G2

Rn A = (0, 1)

P0

F0

Hn

Z

ρn+2(a, b) +m = 0.

ρn+2(a, b) + 1 = 0.

Figure 5.3: Base polyhedron of A2

Note Z ∈ Z3 has b-coordinate equal to −m and

−(n+ 1)m− 1
n+ 2 − (−m) = m+ 1

n+ 2 < 1.

Then there are no lattice points lying below the line segment G2Z. And all the lattice
points must lie below the line segment G1G2, which is

G1G2 : z = −2b−m+ 1, b ∈
[
−(n+ 1)m− 1

n+ 2 ,−m− 1
2

]
.

There are at most ⌊n(m+1)
2n+4 ⌋ possible integer values for b. We see that

−(n+ 1)m− 1
(n+ 2) = −(n+ 2)m−m− 1

n+ 2 = −m+ m+ 1
n+ 2 /∈ Z.
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So, the possible integral values for b are

{−m− 1
2 ,−m− 1

2 − 1, . . . ,−m+ 1} if m is odd ;

{−m

2 ,−
m

2 − 1, . . . ,−m+ 1} if m is even .

Therefore, the number of lattice points in #A2 ∩ {(a, b, z) ∈ Z3, z > 0} is

⌊−m−1
2 ⌋∑

b=−m+1
−2b−m+ 1 =


m2−1

4 if m is odd;
m2

4 if m is even.
(5.2)

We see that the number of lattice points in #A2 ∩ {(a, b, z) ∈ Z3, z > 0} is independent
of n, so the same results holds for all poistive integer n greater than m.

5.3 Volume computation and limit behaviour

From (4.16), we know that the leading term of the quasi-polynomial of a polytope is deter-
mined by its volume. In the case of the polytope P, we can obtain the leading coefficient of
the quasi-polynomial Q(P) by computing the volume of P with (m + 1) set to 1, that is,
m = 0. As discussed in Remark 4.20, we can compute the volumes of the polytopes in the
union:(

n−1⋃
i=0

P(Ri, Ri+1, Hi, Hi+1, Z)
)

∪ P(Rn, P0, Hn, Fn, Z) ∪

n−1⋃
j=0

P(Pj , Pj+1, Fj , Fj+1, Z)

 .
Note that by Corollary 4.21, we only need to compute the volumes of the polytopes

P(Rn, P0, Hn, F0, Z) and P(Ri, Ri+1, Hi, Hi+1, Z) for i = 0, . . . , n. This is because the affine
transformation ϕ preserves volumes.

Since we have extended the coordinates of the vertices of P in R3 by adding zm(a, b) as
the third coordinate to the (a, b)-plane, we denote Conv(V1, V2, . . . , Vr) as the projection of
the convex set Conv(V1, . . . , Vr) onto the (a, b)-plane, for V1, . . . , Vr in R3. Therefore, the
volume of P is given by:

Vol(P) = 2
n−1∑
i=0

∫∫
Conv(Ri,Ri+1,Z)

z0(a, b) da db+
∫∫

Conv(Rn,P0,Z)
z0(a, b) da db. (5.3)

We begin with P(Rk, Rk+1, Hk, Hk+1, Z) for k = 0, . . . , n− 1.
The volume of the polytope P(Rk, Rk+1, Hk, Hk+1, Z) is given by the integral

Vol(P(Rk, Rk+1, Hk, Hk+1, Z)) =
∫∫

Conv(Rk,Rk+1,Z)
z0(a, b) da db.
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Rk+1Rk

Z

Hk

Hk+1

b-axis

a-axis

Bk

Bk+1

D1

D2
D3

D4

Figure 5.4: Base plane of P(Rk, Rk+1, Hk, Hk+1, Z)

As shown in the figure, we can partition the polygonal region Conv(Rk, Rk+1, Z) into four
sub-polygonal regions D1,D2,D3, and D4. The integral can be easily computed for each Di.

We recall (4.3) and (4.4), the dimension of the quotient space is given by:

z0(a, b) =

1 − b for (a, b) ∈ D1 ∪ D2,

(k+2)(k+1)
2 a+ (k + 1)b for (a, b) ∈ D3 ∪ D4.

Interpreting Di as the ranges of a and b, we have

D1 =

− b
k+1 ≤ a ≤ b

k+2 ,

− k
k+2 + 1 ≤ b ≤ 1,

D2 =


−2((k+2)b−1)

(k+2)(k+1) ≤ a ≤ − b
k+2 ,

− (k+1)
(k+3) + 1 ≤ b ≤ − k

k+1 + 1.

D3 =

− b
k+1 ≤ a ≤ −2((k+2)b−1)

(k+2)(k+1) ,

−k+1
k+3 + 1 ≤ b ≤ − k

k+1 + 1.

D4 =

− b
k+1 ≤ a ≤ b

k+2 ,

0 ≤ b ≤ −k+1
k+3 + 1.
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Let Ii be the integral of z0(a, b) over Di, we get

I1 =
∫ 1

−k
k+2 +1

∫ −b
k+2

−b
k+1

(1 − b) da db = k2(k + 6)
6(k + 3)(k + 2)2(k + 1) ,

I2 =
∫ − b

k+2

−2((k+2)b+1)
(k+2)(k+1)

∫ − k
k+1 +1

− (k+1)
(k+3) +1

(1 − b) dadb = 2(3k2 + 9k + 2)
3(k + 1)(k + 3)2(k + 2)4 ,

I3 =
∫ −2((k+2)b+1)

(k+2)(k+1)

b
k+1

∫ − k
k+1 +1

− k+1
k+3 +1

(k + 2)(k + 1)
2 a+ (k + 1)bdadb = 2(3k2 + 8k + 2)

3(k + 3)3(k + 2)2(k + 1) ,

I4 =
∫ b

k+2

− b
k+1

∫ − k+1
k+3 +1

0

(k + 2)(k + 1)
2 a+ (k + 1)bdadb = 4k + 2

3(k + 3)3(k + 2)(k + 1) .

Summing up the integrals, we get

Vol(P(Rk, Rk+1, Hk, Hk+1, Z) = I1 + I2 + I3 + I4 = k2 + 5k + 2
6(k + 2)2(k + 1)(k + 3) .

We proceed similarly to compute the volume of the central polytope. Again, we subdivide
the ground plane of the central polytope P(Rn, Hn, P0, F0, Z) into three parts B1,B2, and
B3 as shown in Figure 5.5:

The volume of P(Rn, Hn, P0, F0, Z) is

Vol(P(Rn, Hn, P0, F0, Z)) =
3∑

i=1

∫∫
Bi

z0(a, b) da db.

By (4.10), we write

dimV
(a,b)

0 = 1 − (b) − ((n+ 1)a+ b),

dimW
(a,b)
0 =

0 for (a, b) ∈ B1 ∪ B2,

− (n+2)(n+1)
2 a− (n+ 2)b+ 1 for (a, b) ∈ B3.

We have

z0(a, b) :=

1 − (n+ 1)a− 2b for (a, b) ∈ B1 ∪ B2,

(n+1)n
2 a− nb for (a, b) ∈ B3.

Interpreting each Bi as the ranges of (a, b) in the (a, b)-plane, we have
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Rn

P0

F0

Hn

Z

B1

B2

B3

Figure 5.5: Base plane of P(Rn, Hn, P0, F0, Z)

B1 =

− b
n+1 ≤ a ≤ −2b+1

n+1 ,

−n
n+2 + 1 ≤ b ≤ 1.

B2 =


−2((n+2)b−1)

(n+2)(n+1) ≤ a ≤ −2b+1
n+1 ,

0 ≤ b ≤ 1.

B3 =

− b
(n+1) ≤ a ≤ −2((n+2)b−1)

(n+2)(n+1) ,

0 ≤ b ≤ − n
(n+2) + 1.

We compute the integrals

I ′1 =
∫∫
B1
h(a, b) dadb = n3

6(n+ 1)(n+ 2)3 ,

I ′2 =
∫∫
B2
h(a, b) dadb = n2

(n+ 1)(n+ 2)3 ,

I ′3 =
∫∫
B3
h(a, b) dadb = 4n

3(n+ 1)(n+ 2)3 .
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The volume of the central polytope P(Rn, P0, F0, Hn, Z) is

Vol(P(Rn, P0, F0, Hn, Z) = I ′1 + I ′2 + I ′3 = n(n+ 4)
6(n+ 1)(n+ 2)2 .

By Equation 5.3, we can compute the total volume of the polytope P:

Vol(P)(n) = 2
n−1∑
k=0

k2 + 5k + 2
6(k + 2)2(k + 1)(k + 3) + n(n+ 4)

6(n+ 1)(n+ 2)2 . (5.4)

We provide a table of the volumes with respect to An-singularities as n varies:

Table 5.3: Table of volumes with respect to small n.

Singularity type Volume of P Period
A1

11
108 6

A2
29
216 6

A3
809
5400 60

A4
143
900 30

A5
10903
66150 210

A6
178873
1058400 420

A7
204929
1190700 2520

Remark 5.2. From Equation 5.4, we compute the limit as n goes to infinity:

lim
n→∞

Vol(Pn) = 2π2

9 − 2.

Therefore, we have

lim
n→∞

χ0
loc(s, SmΩY ) =

(
2π2

9 − 2
)

(m+ 1)3 +O(m).

Recalling Table 5.3, we observe that the volumes converge to the limit rather quickly.
Furthermore, Proposition 5.1 shows that for a fixed m, the quantity χ0

loc tends to stabilize
as n becomes sufficiently large.
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Appendix A

Sage Code for polytope
computation

The computation is done using SageMath version 9.8.

First, we need the following class and function to assist with the arithmetic of quasi-
polynomials:

class quasipol:
def __init__(self, L):

self.n=len(L)
self.L=L

def __getitem__(self,i):
return self.L[i % self.n]

def __add__(self,other):
m=lcm(self.n,other.n)
return quasipol([self[i]+other[i] for i in range(m)])

def __sub__(self,other):
m=lcm(self.n,other.n)
return quasipol([self[i]-other[i] for i in range(m)])

def __rmul__(self,scalar):
return quasipol([scalar*s for s in self.L])

def __call__(self,a):
return self[a](a)

def __repr__(self):
return "Quasipolynomial of period {} with components {}".format(self.n,self.L)

def reduce_period(P):
def test(d):

for i in range(d):
for j in range(i+d,P.n,d):

if P[i] != P[j]:
return False
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return True
for d in ZZ(P.n).divisors():

if test(d):
return quasipol(P.L[:d])

return P

The following function takes an input integer n and returns the polytopes Pn and (Pn)g

def polylist(n):
m=0
D = [((-m-1)/(i+1),0,0) for i in range (0,n+1)]
H = [(-(m+1)/((i+2)*(i+1)/2),-i*(m+1)/(i+2),i*(m+1)/(i+2)) for i in range (0,n+1)]
H_g = [(-(m+1)/((i+2)*(i+1)/2),-i*(m+1)/(i+2),0) for i in range (0,n+1)]
Z = (0,-m-1,0)
P = [( (m+1)/(n+1-i),-(n+1)*(m+1)/(n+1-i),0) for i in range (0,n+1)]
F = [((m+1)/( (n+2-i)*(n+1-i)/2 ), (-(i-n)^2+i-3*n-2)*(m+1)/((n+2-i)*(n+1-i)),

(n-i)*(m+1)/(n-i+2) ) for i in range (0,n+1)]
F_g = [((m+1)/( (n+2-i)*(n+1-i)/2 ), (-(i-n)^2+i-3*n-2)*(m+1)/((n+2-i)*(n+1-i)), 0)

for i in range (0,n+1)]
P_out = D+P
P_in = H + F
P_in_g = H_g+F_g

PList = [Polyhedron([ P_out[i],P_out[i+1],P_in[i],P_in[i+1],P_in_g[i],
P_in_g[i+1],Z ],backend=’normaliz’) for i in range (0,2*n+1)]

ground = Polyhedron([(-5*n,-5*n,0),(5*n,-5*n,0),(-5*n,5*n,0),(5*n,5*n,0)])
GList = [P.intersection(ground) for P in PList]

return PList, GList

For n = 3, we compute:

n = 3
PP,PG = polylist(n)

To plot the polytope P3, we use:

sum(P.plot() for P in PP)

This produces Figure 5.2 with the default coloring scheme.

The polytopes we obtain from the function polylist are unions of a list of subpolytopes
with intersecting faces. To compute χ0

loc(s, SmΩY ) for an A3-singularity s, we need to apply
the principle of inclusion-exclusion to account for lattice points lying on common faces of
different subpolytopes. We compute the intersecting faces:
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I=[PP[i-1].intersection(PP[i]) for i in range(1,len(PP))]
IG=[PP[i-1].intersection(PG[i]) for i in range(1,len(PG))]

The quasi-polynomial computation is given by the following:

Quasipol_PP=reduce_period(sum([quasipol(P.ehrhart_quasipolynomial())
for P in PP],quasipol([0])) -sum([quasipol(P.ehrhart_quasipolynomial())
for P in I],quasipol([0])))

Quasipol_PG=reduce_period(sum([quasipol(P.ehrhart_quasipolynomial())
for P in PG],quasipol([0]))-sum([quasipol(P.ehrhart_quasipolynomial())
for P in IG],quasipol([0])))

answer=Quasipol_PP - Quasipol_PG
answer

We obtain the quasi-polynomial:

Quasipolynomial of period 60 with components
[809/5400*t^3 - 1/5*t, 809/5400*t^3 - 509/1800*t + 359/2700,
809/5400*t^3 - 97/225*t - 227/675, 809/5400*t^3 - 127/600*t - 41/100,
809/5400*t^3 - 88/225*t - 16/675, 809/5400*t^3 - 73/360*t + 31/108,
809/5400*t^3 - 7/25*t + 8/25, 809/5400*t^3 - 581/1800*t - 343/2700,
809/5400*t^3 - 97/225*t - 173/675, 809/5400*t^3 - 103/600*t + 33/100,
809/5400*t^3 - 14/45*t + 8/27, 809/5400*t^3 - 509/1800*t - 791/2700,
809/5400*t^3 - 8/25*t - 1/25, 809/5400*t^3 - 581/1800*t + 143/2700,
809/5400*t^3 - 88/225*t - 416/675, 809/5400*t^3 - 11/120*t - 1/4,
809/5400*t^3 - 88/225*t + 416/675, 809/5400*t^3 - 581/1800*t + 1207/2700,
809/5400*t^3 - 8/25*t + 1/25, 809/5400*t^3 - 509/1800*t - 559/2700,
809/5400*t^3 - 14/45*t - 8/27, 809/5400*t^3 - 103/600*t + 17/100,
809/5400*t^3 - 97/225*t + 173/675, 809/5400*t^3 - 581/1800*t - 1007/2700,
809/5400*t^3 - 7/25*t - 8/25, 809/5400*t^3 - 73/360*t + 23/108,
809/5400*t^3 - 88/225*t + 16/675, 809/5400*t^3 - 127/600*t - 9/100,
809/5400*t^3 - 97/225*t + 227/675, 809/5400*t^3 - 509/1800*t + 991/2700,
809/5400*t^3 - 1/5*t, 809/5400*t^3 - 509/1800*t - 991/2700,
809/5400*t^3 - 97/225*t - 227/675, 809/5400*t^3 - 127/600*t + 9/100,
809/5400*t^3 - 88/225*t - 16/675, 809/5400*t^3 - 73/360*t - 23/108,
809/5400*t^3 - 7/25*t + 8/25, 809/5400*t^3 - 581/1800*t + 1007/2700,
809/5400*t^3 - 97/225*t - 173/675, 809/5400*t^3 - 103/600*t - 17/100,
809/5400*t^3 - 14/45*t + 8/27, 809/5400*t^3 - 509/1800*t + 559/2700,
809/5400*t^3 - 8/25*t - 1/25, 809/5400*t^3 - 581/1800*t - 1207/2700,
809/5400*t^3 - 88/225*t - 416/675, 809/5400*t^3 - 11/120*t + 1/4,
809/5400*t^3 - 88/225*t + 416/675, 809/5400*t^3 - 581/1800*t - 143/2700,
809/5400*t^3 - 8/25*t + 1/25, 809/5400*t^3 - 509/1800*t + 791/2700,
809/5400*t^3 - 14/45*t - 8/27, 809/5400*t^3 - 103/600*t - 33/100,
809/5400*t^3 - 97/225*t + 173/675, 809/5400*t^3 - 581/1800*t + 343/2700,
809/5400*t^3 - 7/25*t - 8/25, 809/5400*t^3 - 73/360*t - 31/108,
809/5400*t^3 - 88/225*t + 16/675, 809/5400*t^3 - 127/600*t + 41/100,
809/5400*t^3 - 97/225*t + 227/675, 809/5400*t^3 - 509/1800*t - 359/2700]
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