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Abstract

Shared Last-level caches are increasingly facing severe security risks from occupancy attacks
and set-conflict-based side-channel attacks, e.g., Prime+Probe. Attackers use unrestricted
cache occupacy, or use conflicts in limited-size cache sets, to observe access patterns of a
victim process which can leak a victim’s secret data. To eliminate shared LLC attacks, an
ideal solution is to use a partitioned fully-associative cache design with random replacement
so attackers cannot observe a victim’s access patterns. Prior work proposed mechanisms that
approximate such design at non-trivial power, area, performance and complexity costs.

In this work, we propose a practical INdirect, parTitionEd, Random, Fully-Associative
CachE (INTERFACE) design which consists of a fully-associative data store and a skewed
set-associative tag store. Each set in the primary tag store is linked to two sets, one from
each extra (secondary) tag store. Each entry in the fully-associative data store is indexed
by a valid entry from the tag store. We use a novel architecture to manage free data blocks
without modifying the data store. We isolate processes by partitioning the cache to prevent
occupancy attacks. Compared to prior work, we show that INTERFACE provides strong
security guarantees by eliminating occupancy and conflict-based attacks with lower area
and power overheads, lower complexity, and with a similar performance overhead compared
to prior work.

Keywords: Last Level Caches; Side-Channel attacks; Occupancy Attacks; Conflict-based
attacks; Fully Associative Cache
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Chapter 1

Introduction

1.1 Introduction

Modern datacenter and client computing systems share execution and memory resources
across many concurrent processes. Shared resources enable cost-effective designs that maxi-
mize performance without significantly increasing cost. Unfortunately, shared resources are
subject to security vulnerabilities if malicious processes share them with victim processes
that have sensitive data. Timing-based side-channel attacks were shown to leak victim se-
cret data [1, 2, 3, 4]. These attacks rely on detecting victim-induced state changes in shared
structures (e.g., caches). If such changes are correlated with victim secret data, the pat-
tern of state changes can be exploited to leak secrets. Due to these vulnerabilities, security
has become a primary consideration in designing shared execution resources of computing
systems.

Shared last-level caches (LLCs) are a main target of high-bandwidth side-channel attacks
due to their prevalence and well-understood use. Caches are usually organized in a hierarchy
of levels where the last level is shared among multiple cores. LLCs are set-associative caches,
where each set is shared by addresses that have the same hashed index value. A direct-
mapped cache has a low access latency at the expense of high miss rate due to conflicts
since each set includes only one cache block. A fully-associative cache uses the whole cache
as a single set, eliminating all conflict misses with a higher hit latency and design complexity.
A set-associative LLC is a compromise between the two extremes.

LLC side-channel attacks correlate cache state changes with secret data accesses by a
victim process. Among these attacks, conflict-based attacks, e.g., Prime+Probe[5] enable
high-bandwidth channels to leak secret data. The main step in conflict-based attacks is
detecting addresses that are mapped to the same set in a set-associative cache, i.e., an
eviction set. An attacker can fill a cache set with its own addresses, and track miss delays
for accesses that were evicted by victim accesses. This enables the attacker to detect victim
access patterns and associate them with the victim’s private data such as passwords and
encryption keys. Extending Prime+Probe to the cache level, occupancy attacks are con-
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ducted when an attacker process fills the whole cache, then measures the timing delay due
to victim accesses [4, 6, 7, 8].

LLCs are vulnerable to conflict-based side-channel attacks due to a combination of two
factors. First, static address-to-set mapping is used to simplify cache accesses and reduce
access latency. Unfortunately, static mapping enables easy discovery of eviction sets by an
attacker. Second, cache sharing (allowing co-location of victim and attacker threads in the
same set) enables better overall performance and improved quality of service via dynamic
resource utilization. Unfortunately, cache sharing facilitates attacks such as Prime+Probe.
Combined with unrestricted cache occupancy per process, cache sharing facilitates occu-
pancy attacks. A secure cache design needs to eliminate one or both of the above factors
with minimal performance overhead.

To address static address-to-set mapping of set-associative designs, prior works proposed
using a randomized design where addresses are mapped to sets using a dynamic hash func-
tion [9, 10, 11, 12]. Such designs have low performance overheads but are still limited by the
small size of eviction sets which necessitates frequent changes of the address-to-set mapping
function at a high cost. Furthermore, these mechanisms leave the door open to attacks
as shown in [13] where an attacker can accumulate information across multiple remapping
epochs. To address the cache sharing vulnerability, prior works have proposed using parti-
tioned set-associative designs [14, 15, 16, 17]. A similar approach has been adopted by Intel’s
Cache Allocation Technology (CAT) [18]. Partitioning provides a strong security guarantee
by eliminating resource contention among different processes, but still suffers from attacks
such as Spectre V1 [19] where conflicts are caused by different functions within the same
thread, or by threads in the same process that share the same virtual address space.

One approach to eliminate conflict-based attacks is using a fully-associative cache de-
sign with random replacement, e.g., NewCache [20]. By using the whole cache as a single
set, a Prime+Probe attack would need to fill up the whole cache which is impractical for
large caches. With random replacement, an attacker cannot determine which victim address
caused an eviction. Unfortunately, such a fully-associative design is impractical due to the
high power, latency, and area cost of performing an associative tag match.

A recent proposal, MIRAGE, by Saileshwar and Qureshi [21] addresses the practicality
aspect of a fully-associative cache by leveraging the V-way cache design [22]. MIRAGE uses
a skewed-associative tag store where each set has extra tags that store the metadata of a
newly-installed blocks with a low probability of causing a set-associative eviction (SAE).
Each tag store entry includes a forward pointer to a location in the data store to enable fast
cache lookup. Each cache block in the data store includes a reverse pointer to the current
tag store entry that maps to it. Reverse pointers are used to enable a global eviction policy
where a random block can be selected for eviction among all data store blocks, and the
associated tag store entry can be invalidated.
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While MIRAGE presents a major improvement towards a practical and secure fully-
associative cache design, it does not prevent occupancy attacks and incurs nontrivial costs.
MIRAGE requires custom data store designs as it needs to store reverse pointers with each
data block. MIRAGE adds a hardware free list of pointers to non-allocated data blocks.
Both components increase design complexity as they require significant effort to test and
validate. In addition, avoiding all SAEs requires adding 75% extra tags in the tag store,
where each entry is significantly larger than a set-associative cache tag due to additional
address tag and pointer bits.

In this thesis, we propose a practical indirect, partitioned, random fully-associative
cache design (INTERFACE) that addresses the shortcomings of prior work. Our proposal
is inspired by the indirect-index cache [23] which uses indirection and chaining in the tag
store to locate blocks in the data store. INTERFACE is organized as a skewed set-partitioned
set-associative tag store and a fully-associative data store. Each set in the base (primary)
tag store is chained into two sets, one from each extra (secondary) tag store. Each tag store
entry contains status bits, tag bits and an index pointer into the fully-associative data store.
A cache lookup uses six hash functions of the block address to access two primary skews and
four secondary skews in parallel. We use an encrypted set-associative tag store to reduce tag
comparisons, latency and power overheads per access. To eliminate cross-process set conflict
and occupancy attacks, we modify the cache indexing function to partition the LLC among
processes. To eliminate intra-process set-conflict-based attacks, we use a global eviction
policy to avoid exploitable SAEs. We propose a novel, lower-complexity architecture using
an unmodified data store with no reverse pointers or hardware free list.

To eliminate MIRAGE’s reverse pointers, we use the observation that each data store
block is pointed to by a single valid tag store entry. Therefore, random replacement can
randomly select a valid tag and evict its corresponding data block. To eliminate the extra
hardware free list space, we propose a novel in-situ free list implementation in the data store
that only requires two extra registers with no additional storage. We make the following
main contributions:

• We propose INTERFACE, a practical fully-associative cache design that eliminates
all set-associative evictions (SAEs) and prevents occupancy attacks while using un-
modified data arrays (Chapter 3.1).

• We propose a novel free list implementation that enables data allocation in a fully-
associative cache without requiring a new hardware structure.

• We show that INTERFACE eliminates all set-associative evictions (SAE) at a lower
area overhead compared to prior work (Chapter 4.1).

• We incorporate static and dynamic cache partitioning in INTERFACE to prevent
cross-core occupancy attacks.
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• Our evaluation shows that INTERFACE has 26.2% smaller tag store area/leakage,
7% smaller data store area/leakage, and 10.4% smaller total cache area/storage in
a 16MB LLC at comparable performance overhead while providing stronger security
guarantees compared to the state of the art (Chapter 5.1).
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Chapter 2

Background

Cache side-channel attacks [5, 3, 2, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 4, 6, 7, 8] are major
sources of micro-architectural security vulnerabilities in modern computer systems. These
attacks use changes in the shared cache state (typically the Last-Level Cache, i.e., LLC) to
track the access pattern of a victim process and steal victim secrets. Shared LLC attacks
belong to two main categories: Conflict-based and Occupancy-based attacks.

2.1 Conflict-based attacks

Conflict-based attacks occur when an attacker induces conflict evictions of a victim process’s
cache blocks to track the victim’s access pattern. A key component in conflict-based cache
side-channel attacks is identifying a collection of addresses that map to a particular set,
called an eviction set. Once an eviction set is discovered, an attacker can orchestrate conflict-
based attacks e.g., Prime+Probe. Miss delays (upon requests to the eviction set blocks) are
then used to infer data accesses in the victim’s address space. LLCs are mainly targeted by
such attacks due to their large, shared and set-associative design, which enables the use of
low-resolution timers for fast eviction set discovery algorithms to construct an eviction set,
e.g., [24, 34].

2.2 Occupancy-based attacks

Occupancy-based attacks are carried out by filling the LLC with a buffer size equal to the
cache capacity [4, 6, 7, 8]. The attacker then builds a trace by periodically gathering timing
delay samples of re-accessing (sweeping) the buffer. The attacker lastly correlates the trace
with the co-located victim process’ activity, e.g., identifying visited websites. State-of-the-
art occupancy attacks are cross-process. For instance in Website Fingerprinting Attacks[6],
the attacker and victim are different processes running on multiple browser tabs. For the
rest of the thesis, we refer to cross-process occupancy attacks as occupancy attacks.
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2.3 Mitigation Strategies

Two main approaches have been proposed to mitigate shared LLC vulnerabilities[35]: ran-
domized caches and cache partitioning[36]. Other replacement policy-based approaches
[37, 38] detect suspicious cache accesses and alter their replacement policy to thwart at-
tackers from completing an attack. These approaches require re-learning access patterns for
each emerging attack and updating the pattern detection logic.

2.3.1 Partitioned Caches

Way-based cache partitioning[18, 39, 14, 16, 40, 41], and set-based cache partitioning[42,
43, 15, 9, 17] eliminate conflicts and occupancy attacks by creating isolation in the cache
on a per-process basis. DAWG [16], defines protection domains to provide full, way based,
isolation among processes with a minimal modification to the OS. Catalyst [40], modifies
Intel CAT [18] to implement a hardware-software managed, way partitioned LLC. Chuncked
Cache [15], introduced a set partitioning mechanism where applications that require secure
contexts carve out a private section of the cache, and all other applications utilize the re-
maining part of the cache. However, these mechanisms are still vulnerable to intra-process
conflict-based attacks, where the attacker shares the same virtual address space with the
victim, as in Spectre V1 [19], require the user or OS to specify each process’ cache require-
ments, or limit the number of active threads using the cache.

2.3.2 Randomized Caches

Randomized Caches [9, 44, 10, 11] defend against conflict-based attacks by making the
address-to-set mapping principally random, thereby reducing the probability of successfully
forming an eviction set that has a high eviction success rate. However, these mechanisms
do not defend against occupancy attacks. Many implementations of randomized caches have
been developed in parallel with the development of state-of-the-art eviction set formation
attack algorithms.

NewCache[9] introduced randomized cache designs by using a table indexed by the set
bits of the address, where each entry contains a string of bits that map an address to a
specific set. CEASER[10] proposed an encryption-based principled randomized mapping of
addresses to cache-sets, where the encryption key of the hash function is refreshed after a
given number of cache accesses. By using hash functions, CEASER significantly reduced
latency, area and power overhead of mapping tables used in NewCache. It was proven
to be effective against algorithms[24] which use O(n2) accesses to form an eviction set.
Unfortunately, newer algorithms [11, 45] which form an eviction set with O(n) accesses were
able to exploit CEASER. Song and Liu[34] further reduced the number of required accesses
for O(n) algorithms by a constant factor with an attack model that uses multi-threaded
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execution. CEASER fails to practically defend against such attacks since it would need to
significantly increase the re-randomization frequency, which greatly degrades performance.

By extending CEASER, Skewed-CEASAR[11] is based on skewed-associative caches [46],
where each skew uses a distinct encryption key and is chosen randomly among other skews
for each cache access. Using an analysis independent of search algorithms and replacement
policies, Skewed-CEASAR reported a vulnerability of 1ms over 18 years for a cache with a
remap-rate of 1% and where the attacker focuses on a 1MB cache. Even though Skewed-
CEASAR provided protection against O(n) set discovery algorithms, it is still vulnerable
to more efficient algorithms[47] that construct high confidence probabilistic eviction sets in
less than O(n) accesses. Similarly, ScatterCache[44] used skewed caches, where each skew
has its own hash function. On cache accesses, the entries in the mapping table are swapped
every time one process evicts a cache line from another process. ScatterCache addressed
attack algorithms with O(n) complexity. However, it incurred large performance overheads
due to the frequency of randomization needed to defend against probabilistic set-conflict-
based attacks [47, 48]. Chameleon Cache[49] couples random, skewed caches(RSCs) with
a fully associative victim cache to immediately re-locate evicted line from one mapping to
another, thereby obfuscating set associative evictions. While Chameleon Cache efficiently
boosts RSCs security, its security guarantee is significantly weaker than MIRAGE and
INTERFACE. Chameleon Cache evaluated the success rate of discovering an eviction set
with PRIME+PRUNE+PROBE and randomly selected addresses. For a cache with 16384
cache-lines, 16 ways and 8 victim cache entries, the success rate was reported to be 0.05.

2.3.3 Randomized Cache: Issues

CaSA [13] demonstrated that set-associative-based randomization defenses make two in-
correct assumptions. First, randomized caches assume successful attacks need eviction sets
with high eviction rate CaSA demonstrated that attackers can exploit eviction sets with
low eviction rates. Second, randomized caches assume an attack must conclude within the
lifetime of a given hash function. CaSA demonstrated that cache state changes accumulated
across epochs of hash function updates can increase the success rate of an attack. Brutus [50]
shows that the low latency block cipher used in CEASER only consists of linear functions.
Hence, dynamic re-randomization based defences [9, 44, 10, 11] fail to principally address
the root cause of conflict-based attacks.

2.3.4 Pseudo-Fully Associative Caches

Several prior works have tried to address conflict-based cache side-channel attacks by in-
troducing restricted levels of full associativity to the cache design. Phantom-Cache [12]
randomly inserts a new cache block into one of eight candidate sets, hence increasing the
effective associativity by 8x compared to the baseline associativity at a high dynamic power
overhead due to performing 128 comparisons for each cache access. HybCache [41] provides
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full associativity for a subset of the cache. Hence, processes which map their cache blocks
to this subset can avoid SAEs. However, HybCache is expensive to apply to the LLC due
to the large LLC size.

MIRAGE [21] recognized that conflict-based attacks stem from the set-associative de-
sign of shared LLCs, and proposed a pseudo-fully associative cache based on the V-way
cache [22]. MIRAGE’s set-organized tag store is detached from the fully-associative data
store, and indirection is used to associate a tag store entry with a corresponding data store
entry. MIRAGE uses extra tag entries per tag set, a 2-skewed tag store and an adaptive
hash function selection mechanism to reduce the probability of SAEs. MIRAGE principally
addresses the root cause of conflict-based attacks with modest performance overhead but a
high area and complexity cost due to (1) the need to add 75% extra tags in the tag store,
where each tag entry is significantly larger than a set-associative cache tag; (2) using a sep-
arate hardware linked list structure whose size grows proportionally to the number of cache
data blocks to help with data allocation; (3) adding a reverse pointer in each data store
block to a tag store entry to use in global evictions. Reverse pointers increase the complexity
of cache line updates since it requires custom data arrays to maintain points and cannot
use off-the-shelf data arrays from existing pointers. Custom hardware needs extra design,
testing and validation efforts which hinder their adoption. Reverse pointers also need strong
error correction since an error can invalidate the wrong tag pointing to a different data block
which becomes an orphan, not pointed to by any tag, causing lower available cache capacity
over time. MIRAGE uses a ball and bucket model with random accesses, and formulates an
analytical model to show the probability of success of discovering an SAE is 10−35.

In this work, we propose INTERFACE, a practical set-partitioned fully-associative LLC
design that addresses inter-process and intra-process conflict attacks in addition to occu-
pancy attacks. Our threat model assumes a multi-core CPU with private L1/L2 caches and
a shared LLC, where attackers and victim processes can run on the same or different cores,
and attackers use the shared LLC to leak victim data. INTERFACE addresses the root cause
of both conflict and occupancy attacks (Chapter 3.1) at a lower area, power, and complex-
ity cost compared to prior works. The cache is sectioned into four skews of set-partitioned
set-associative tag stores and a fully-associative data store. We use global eviction in the
data store, hence the attacker cannot associate miss delays with a specific group of ad-
dresses mapping to a cache set. The tag store’s set-associativity enables tag comparisons
with a limited number of cache lines from a skew, reducing the cost of checking tags of all
data entries in a traditional fully-associative cache. The extra tag skews increase effective
ways per set, avoiding SAEs. The set-partitioned tag store provides isolation for inter-core
conflict and occupancy attacks. Our evaluation uses ball-and-bucket analytical modeling
(Chapter 4.1), a cycle-accurate simulator and area/power analysis to model the functional-
ity and overhead of our design (Chapter 5.1). Table 2.1 summarizes INTERFACE’s better
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security guarantees and lower attack success probability (in parenthesis) compared to prior
works.

Table 2.1: Security Coverage and Probability of Attack Success of Different Mitigation
Approaches

Mitigation Set-conflict Cross-
attacks -process

Cross- Intra- occupancy
process process attacks

Randomized ✓ ✓
Caches[10, 44]
MIRAGE[21] ✓(10−35) ✓(10−35)
CEASAR-S[11] ✓(10−12) ✓(10−12)
Chameleon[49] ✓(0.04) ✓(0.04)
Partitioned Caches ✓(0) ✓(0)
[14, 42, 17, 16, 15, 40]
INTERFACE ✓(0) ✓(10−49) ✓(0)
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Chapter 3

Architecture

3.1 INTERFACE Architecture

INTERFACE consists of a fully-associative data store and a set partitioned, skewed, set-
associative tag store.
Cache Partitioning. The cache management unit statically partitions the cache into N
domains (equal to number of physical cores) and sets up the partition register values (mask-
ing bits and partition offset) as shown in Figure 3.2. Each scheduled process is allocated a
partition of the LLC based on its Core ID, Figure 3.3a. When a process finishes or a context
switch occurs, its partition is flushed and allocated to a waiting process, e.g., Process A’s
partition from Figure 3.3a is allocated to process D (Figure 3.3b). In addition to mitigating
cross-core conflict and occupancy attacks, this cache partitioning approach avoids adding
process ID bits in the tag (as in [21]) to defend against shared memory attacks [3, 2].
Dynamic Partitioning. While static partitioning provides a strong security guarantee,
its strict capacity could hurt memory intensive workloads. We implemented a dynamic par-
titioning defense mechanism that can be turned on for better performance at an acceptable
leakage rate. When the OS turns on this mechanism, we set all the masking bits to 1 and
offset values to 0. We then start monitoring the occupancy level of each core via per-core
counters by repurposing partition registers (Figure 3.2). If a core’s cache occupancy exceeds
a random bound (generated for each cache fill request) between 40-60% of the total cache
capacity, we evict a random cache-line allocated to that process. If the current occupancy
is below the random bound, we randomly evict from any process. We analyze the security
implications in Section 4.1.4.
Tag store. Our tag store has 4 skews: 2 primary skews organized into sets of 8 ways (base
ways, similar to a set-associative cache) and 2 additional secondary skews which have the
same number of sets as the primary skews. Each set in the secondary skews has ways equal
to the number of extra ways (Figure 3.1). Inspired by the Indirect-Index Cache [23], each
set in the base tag store is linked to two sets, one from each secondary skew. Each tag store
entry contains status bits, address tag bits, and indexing bits used for indirection into the
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Figure 3.1: INTERFACE architecture.

data store (Figure 3.1). Each block in the fully-associative data store is indexed by an entry
from the tag store. INTERFACE differs from prior skew-based approaches in 3 ways:

• Primary skews contain the base tag store if we didn’t add extra ways, and secondary
skews are extra ways added to ensure the availability of invalid tags for cache fill
requests.

• Secondary skews are multi-ported where an input address is mapped to 2 sets per
skew to facilitate sharing of the extra ways between 2 sets, while primary skews are
single-ported.

• For cache fill requests, we first check the availability of an invalid tag in the pri-
mary skews before accessing the secondary skews, which reduces the dynamic power
overhead of accessing secondary skew tags. Non-constant cache access latency for fill
requests doesn’t create an extra side channel because the overall fill latency is hidden
by DRAM latency.

In addition to the tag store and data store, we have 6 cache indexing hash-functions [51]
to index into the tag store, and 4 pseudo-random number generators(PRNGs) to support
global random eviction in the data store (Figure 3.1). We describe the INTERFACE cache
operations next.
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Figure 3.2: Indexing Logic for INTERFACE’s Partitioned LLC.

3.1.1 Cache Indexing

LLC cache access requests contain the physical address and physical Core ID of the re-
questing process (Figure 3.2). We concatenate Core ID with the address utilizing the un-
used most-significant bits of the physical address. We concurrently fetch a process’ par-
tition information (masking bits, partition offset), and compute the hash function on the
physical address to get the non-partitioned set index. Finally, we apply the mask on the
non-partitioned set index and add the starting index (partition offset) to get the partitioned
set index.

Static partitioning achieves complete process isolation for processes running on different
cores, providing a strong guarantee against cross-core occupancy and conflict-based attacks.
Within each partition, our pseudo-fully associative design prevents SAEs, which mitigates
conflict-based LLC attacks such as Spectre V1 [19] where conflicts are caused by different
functions within the same thread, or by threads in the same process that share the same vir-
tual address space. Dynamic partitioning can improve performance with added vulnerability
to occupancy attacks. We are not aware of occupancy-based attacks where the attacker and
victim are running on the same process, so we leave such mitigations for future work.

3.1.2 Cache Access

When an LLC request arrives from higher cache levels, we use the indexing hash functions
to access two sets (one from each primary skew), and compare the tag bits. On a tag match
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Figure 3.3: Static set partitioning based on Core ID.
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(i.e, hit), we use the data store pointer obtained in parallel with the tag store line’s tag bits
to serially index into the data store. If we cannot find a match in the primary skews, we index
into two sets in each of the secondary skews and compare the tags in parallel. Following a
tag hit in the secondary skews, we access the data store by using the corresponding data
store indexing bits. A tag miss in both primary and secondary skews signals an LLC miss
initiating a main memory request, and allocate a tag store entry and a data store block to
write the data block loaded from memory.

This approach (inspired by the serial chaining method used in [23]) can lead to non-
uniform hit latency where primary skew hits are faster than secondary skew hits. This could
be a point of vulnerability that can be exploited by a timing attack [52, 53, 54, 55, 56]. To
address variable hit latency, we access all primary and secondary skews in parallel, which
leads to a modest increase in dynamic power for tag accesses.

3.1.3 Cache Fill

On an LLC miss, we need to allocate a tag store entry and a corresponding data store
block. To allocate a tag store entry, we hash the cache fill request address and index into
two primary skew sets, one from each skew. If at least one of the two sets is not full, i.e.,
has invalid tags, we use power-of-2 load balancing [57] to pick a candidate set for the fill
line. If both sets have equal loads, but are not full, we randomly choose one of the two
sets and allocate an invalid tag store entry to the fill line. If both primary skew sets are
full, we use the secondary skew hash functions to access the secondary skews, and pick the
set with the lowest occupancy, or pick a set randomly if all candidate sets have the same
occupancy. After exhausting all the set choices for a line fill, if all possible sets are full, we
have to carry out a SAE in the tag store. For a SAE, we randomly select a skew (primary
+ secondary), apply random eviction policy in the set/sets within the selected skew, and
invalidate the data store block pointed to by the evicted tag store entry. However, our
goal is to eliminate all SAEs to avoid all potential set-conflict-based attacks. Hence, we
over-provision the number of extra ways in the secondary skews to ensure an extremely low
probability of SAEs.

Once we have obtained an invalid tag store entry, we set the candidate tag store entry’s
valid bit and check if the data store is full. If not full, we allocate an empty data store block
(explained in Chapter 3.1.4) and set the tag store entry’s data pointer to the newly allocated
data store block. However, if the data store is full, we need to carry out a random global
eviction in the data store, invalidate the tag store entry associated with the evicted data
store block (Chapter 3.1.5), and associate the evicted data store block with the allocated
tag store entry by setting the tag entry’s data pointer.
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3.1.4 Data Store Allocation

A major challenge in managing a fully-associative data store is keeping track of free data
blocks. A brute-force approach would maintain a free list of data store blocks using dedicated
hardware storage of pointers, which incurs a high complexity and cost for managing a
hardware free list. While not discussed in the MIRAGE paper [21], the gem5 implementation
artifact uses a hardware pointer-based queue where pointers to all data store blocks are
inserted initially, then removed one by one as data blocks are allocated. In addition to the
hardware complexity, this hardware free list uses an extra 256K (blocks) x 18b (pointer
bits per block) = 576KB extra storage in a 16MB LLC. INTERFACE introduces a novel
hardware mechanism that utilizes an unmodified data store with two additional hardware
registers and simple logic to maintain a free list of data store blocks. We use a LIFO stack
of free blocks instead of a FIFO list. This avoids the complexity and overhead of adding a
dedicated storage component in the cache system. In addition, since a data block’s capacity
is much larger than the size of the data store indexing (i.e., pointer) bits, we can use the
extra space to store three redundant indexes, and use a simple majority vote circuit to
eliminate errors in free list pointers.

We classify free data store blocks into two groups. Group 1 consists of data store blocks
which were previously allocated but are currently free due to invalidations (potentially
triggered by the cache coherence protocol). Group 2 consists of data store blocks which are
free because they are yet to be allocated by a cache fill request. When the system boots
up, all data store blocks are in Group 2. Our mechanism uses two registers: A Free-Index
Register that points to the tail of the free list and a Counter Register to track the number
of allocated data store blocks. The Counter Register is useful after system boot to keep
track of Group 2 blocks. After all Group 2 blocks are allocated at least once, the Counter
Register remains the same until the next system boot.

Initially, both the Counter and Free-Index registers point to the first block (block 0) of
the data store (Figure 3.4a). On a data block allocation request, if Counter and Free-Index
registers point to the same block, we allocate that block and increment (by one) both the
Free-Index register and Counter register to point to the next consecutive free block (Figure
3.4b). Successive allocation requests will allocate consecutive blocks when Free-Index and
Counter registers point to the same free block as in Figure 3.5a.

When a data block is invalidated (e.g., block 6 in Figure 3.5a), it becomes a Group 1 free
block. To add an invalidated block to the free list: (1) the current Free-Index register’s value
(9), i.e., current tail, is written to the invalidated data block (Figure 3.5b), which could be
done redundantly by writing multiple copies of the value for pointer error correction); and
(2) the invalidated data block’s index (6), is written to the Free-Index register and becomes
the new tail of the free list (Figure 3.5b). Subsequent invalidations result in more insertions
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(a) (b)

Figure 3.4: Allocation in a Data store (size=12 Blocks) when Free-Index and Counter reg-
isters point to the same block.

at the tail of the free list as shown in Figure 3.6a. The Counter register remains constant
while the Free-Index register is updated to the latest invalidated block.

(a) (b)

Figure 3.5: Free-list insertion due to coherence invalidation.

When an invalidation occurs after boot while some blocks haven’t been allocated for the
first time, the Free-Index and Counter registers will not point to the same free data block
(Figure 3.6a). In such case, data block allocation requests are serviced by only using the
Free-Index register. Upon an allocation request, we fetch the data block pointed to by the
Free-Index register (block 3), write its content, i.e., the next free block (block 6) pointer, to
the Free-Index register as the new free list tail, and release the data block for a cache fill,
as shown in Figures 3.6a and 3.6b.

For an incoming allocation request:

• If the Free Index register and Counter register contain different values, we read the
value stored in the data block pointed to by the Free Index register and write it into
the Free Index register

16



• If the Free Index register and Counter register contain the same value, each is incre-
mented by 1 to indicate the block ID of the next free data store entry.

Hence, we prioritize allocating invalidated free blocks (Group 1) followed by blocks that
are yet to be allocated (Group 2) by using either compare & increment or compare & store
operations without linear search (Figure 3.4b).

(a) (b)

Figure 3.6: Data store allocation when Free-Index and Counter registers point to different
free blocks.

If the Counter register points beyond the data store limit, then no more Group 2 blocks
exist since all data blocks have been previously allocated. If both Free-Index and Counter
registers point beyond the data store limit, we infer that the data store is full, and initiate
a Global Random Eviction.

Figure 3.7: Data store allocation with Global Random Eviction when Data Store is full.

3.1.5 Global Random Eviction

Our condition for invoking Global Eviction is when the occupancy level of a process exceeds
its allocated capacity limit and/or when Free-Index and Counter registers point beyond the
data store limit (our cache is at full capacity). When one or both conditions are true (Figure
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3.7), we need to evict a valid data block. MIRAGE uses a hardware PRNG to randomly pick
a victim block from the data store, and utilizes the reverse tag store pointer to invalidate
the tag store entry associated with the evicted data block. INTERFACE, however, does not
use reverse tag store pointers to simplify design and avoid problems discussed in Chapter
2. We rely on the observation that each data store block is pointed to by one and only
one valid tag in the tag store. To evict a random data store block, we can just randomly
select a valid tag from the tag store. In our secure design discussed in Chapter 4.1, we use
50% extra tags so a third of all tags are invalid when the data store is full. This implies
that the probability of finding a valid tag after one randomly generated index is 2/3. If the
selected tag is invalid, we need to try again by generating an additional random tag until
we hit a valid tag. The probability of not finding a valid tag after N lookups is (1/3)N .
To avoid incurring a long latency to identify a valid tag sequentially, we use 4 hardware
PRNGs in parallel to generate indices of four victim tag store entries. If at least one of the
victim tag entries is valid, we invalidate the tag store entry and evict the data store block
pointed to by the invalidated tag store entry. If more than one victim tag entries are valid,
we randomly choose an entry. Due to the extra tags in INTERFACE, the generated random
indices might all reference invalid tag entries.

With 4 hardware PRNGs the probability of not finding a valid tag is 1/81. We handle
this rare case by generating four more indices until we find a valid victim tag entry. For
dynamic partitioning, If the occupancy level of a process is above the randomly generated
bound, we need to evict a valid block with the same process ID. On average the occupancy
bound of a process is 50%, hence the probability of not finding a valid tag with the given
process ID is 1/40.5. Because we only need to access the tag store, the access latency
for the search algorithm is smaller than the hit latency. The global random eviction tag
store accesses also occur in the background while memory is servicing the LLC miss, thus
additional access latency and variability are hidden from an attacker. In the rare case an
attacker observes the delay caused by our random search approach; this delay is associated
neither with the inserted address nor the evicted cache-line, hence the attacker cannot infer
any secrets.

3.1.6 Comparison with MIRAGE

INTERFACE architecturally differs from MIRAGE in numerous ways. Most notably, IN-
TERFACE is set-partitioned with an optional dynamic partitioning mechanism while MI-
RAGE does not have any partitioning feature. Secondly, we add the extra-ways in separate
skews from the base(primary skews), use different keys to access the extra-ways, and multi-
port the secondary skew, hence adding more randomness in the address-to-set mapping,
while MIRAGE adds the extra-ways in the primary skews and uses the same keys to access
the extra-ways. Thirdly, INTERFACE manages cache evictions from the tag store by ran-
domly selecting an entry in the tag store and invalidating the associated data store entry.

18



This approach enables us use an un-modified data array and to easily implement set par-
titioning because we can limit our random search algorithm to only the target partition.
However, MIRAGE requires a modified data array because the eviction policy randomly
selects a data store entry to evict and uses the reverse pointer to invalidate the associated
tag store entry. If we want to directly apply the our set partitioning approach to MIRAGE,
we would suffer from longer latency to locate an appropriate data store entry to evict from
a given partition because MIRAGE’s search algorithm is not limited to the target par-
tition. Lastly, INTERFACE utilized 2 registers and the data store to implement a LIFO
free-list to manage the allocated and free data blocks. However, MIRAGE uses a dedicated
hardware free-list which introduces additional power and storage overheads. In general, by
using more skews(encryption keys), multi-porting our extra-tags stores and, removing the
reverse pointers and dedicated hardware free-list, we provide a less complex and more secure
pseudo-fully associative cache.

Table 3.1: INTERFACE vs MIRAGE Comparison

MIRAGE INTERFACE
Merged extra-ways Separated extra-ways
No multi-ported secondary skews Multi-ported secondary skews
Reverse Data store pointer No Reverse Data store pointer
Dedicated Hardware Free-list 2 registers and data store Free-list
Data-store managed global eviction Tag-store managed global eviction
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Chapter 4

Security Evaluation

4.1 Security Analysis

INTERFACE has a set-associative tag store, which leaves the door open for security vul-
nerabilities caused by set-associative evictions (SAEs). To eliminate SAEs, INTERFACE
uses two primary skews and over-provisions two secondary skews to ensure the availability
of invalid tags for cache fill requests. Additionally, INTERFACE is secure without domain-
specific keys and dynamic remapping because the cache lines filled by the attacker can be
randomly evicted anytime, hence providing dynamic randomness through the global evic-
tion policy. The next sub-chapter explains the model we used to evaluate the number of
additional tags needed to eliminate all SAEs.

4.1.1 Ball and Bucket Model

Our ball and bucket model corresponds to a 16MB cache. A bucket represents a set in the tag
store which requires protection against SAEs. We have 4 sets of buckets, each representing a
skew. The first two set of buckets, primary skew buckets, represent the primary skews. Each
primary skew is organized into 16K buckets with a capacity of 8 to represent the number of
ways. The other two sets, secondary skew buckets, represent the secondary skews, and each
skew is organized into 16K buckets with capacity that varies in the range [0,8], equivalent
to the extra ways. To model data store capacity, the total number of balls in all buckets
cannot exceed 256K (since a 16MB cache has 256K 64B lines). We throw balls to represent
cache line fill requests. We also represent our global eviction policy by randomly removing
balls from buckets once the total number of balls in all buckets exceeds the data store
capacity. We run Monte Carlo simulations with billions of ball insertion/eviction events.
The model is initialized by throwing 256K balls. After initialization, newly inserted balls
trigger an eviction of a randomly-selected ball to keep the total number of balls the same
as the data store capacity. In each iteration, our model first randomly picks a ball from
the buckets and evicts it. Next, we generate a random index for each primary skew and
access the buckets with the respective index from each skew to make an observation about
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Figure 4.1: Ball and bucket model.

their current occupancy. If either or both of buckets are not full, we insert the ball in the
bucket with the lower occupancy; selecting randomly between the skews in case of a tie.
However, if both primary buckets are full, we generate 4 random indices (two per skew)
for the secondary skew buckets. If at least one of the indexed secondary skew buckets is
not full, we insert the ball in the bucket with the lowest current occupancy. However, if
all indexed buckets are full, we increment the spill counter to indicate the occurrence of a
SAE. In our architecture, we access primary and secondary skews in parallel (to reduce the
latency of secondary skew hits) but give preference to primary skews if they are not full.
Sequential accesses in our Monte Carlo model (primary then secondary) provides the same
functionality.

To estimate the number of additional tags we need in INTERFACE, we varied the
number of extra tag store entries per bucket in the secondary skews from 1 to 6 and threw
10 billion balls per experiment. We computed the average number of ball insertions (i.e.,
cache accesses) per spill (i.e., SAE), and observed the probability distribution of having a
certain number of balls in a bucket to validate our probabilistic model presented in the next
Chapter. We also reproduced the results from MIRAGE [21] (which represents the only
practical fully-associative design we are aware of) to compare the two mechanisms.

Figure 4.2 shows the average number of insertions per spill (i.e., SAE) for INTERFACE
and MIRAGE. Using INTERFACE with one and two extra ways per secondary skew, we
observed 8 and 5000 average insertions per spill, but didn’t observe any spills for extra
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ways greater than two across five Monte Carlo simulations with 10 billion insertions each.
For MIRAGE, we observed spills for up to 4 extra ways. The lower probability of SAEs
in INTERFACE is explained by its more efficient use of extra ways. For each insertion
in INTERFACE, the total number of candidate locations is the sum of all locations in
two primary skews and 4 secondary skews. For MIRAGE, however, the total number of
candidate locations is the sum of all locations in the two primary skews and two secondary
skews. Therefore, INTERFACE provides more potential candidates to locate a free bucket
space (i.e., an invalid tag) which reduces the need for additional tags. To provide a robust,

Figure 4.2: The observed average number of balls inserted per spill vs. #extra ways for
MIRAGE and INTERFACE.

quantitative security guarantee that extends beyond 10 billion accesses, we will next develop
an analytical model to estimate the average number of cache access per spill.

4.1.2 Analytical Model

The ball and bucket model’s ability to provide quantitative security guarantee beyond three
extra ways is limited by the number of balls we can throw within a reasonable simulation
time. To scale our results, we define an analytical model based on the observed probability
distribution of the number of balls in a bucket. Our analytical model is based on the insertion
and eviction policies of the INTERFACE cache, which depend on whether the primary skews
are full. We consider two cases: One where there are available space in the primary skews,
and another where the primary skews are full.
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Case 1: Either primary skew buckets below full occupancy. When a ball is
thrown, we randomly index 2 buckets, one from each primary skew. In INTERFACE, this
corresponds to hashing into primary skews. If one (or both) buckets is not full, we consider
scenarios where a bucket in a primary skew transforms from containing N balls to N + 1
balls: (1) If both buckets contain N balls; or (2) if one bucket contains N balls while the
other contains more than N balls. The probability of an N to N+1 transition is therefore
computed as:

P (N → N + 1) = P (n = N)2 + 2 ∗ P (n = N) ∗ P (n > N) (1)

Where P(n = N), is the probability that a bucket contains N balls and P(n > N) is the
probability that a bucket contains more than N balls.

When a ball is evicted, we pick a random ball from one of the two primary or two
secondary skews. Given a ball is evicted from a primary skew, the probability that a bucket
in the primary skew transforms from containing N + 1 balls to N balls is given as:

P (N + 1 → N) = P (n = N + 1) ∗ Btotal ∗ (N + 1)
btotal

(2)

Where Btotal is the total number of buckets, and btotal is the total number of balls that can
exist in our model at any time.

Our insertion and eviction policies are random in this model are random The INTER-
FACE architecture uses hash functions (not random) to select an insertion location. But
this is equivalent to a random insertion in the probabilistic model, hence the probability of
a bucket transitioning from N to N+1 balls is the same as the probability of transitioning
from N+1 to N balls:

P (N + 1 → N) = P (N → N + 1) (3)

Substituting (1) and (2) in (3) and taking Btotal=32K, btotal=256K to model our 16MB
cache, we get:

P (n = N + 1) = 8
(N + 1) ∗ (P (n = N)2+

2 ∗ P (n = N) ∗ P (n > N)) (4)

To compute the occupancy of primary skews, we use P(n = 0) that we observed from
our Monte Carlo simulations, and recursively calculate the probabilities of P(n=N) (i.e.,
the probability that a primary skew has N valid tags) for N=[1,8].

Case 2: Both primary buckets are full. When the two randomly picked primary
buckets are full. we need to insert a ball into a secondary bucket. To model the INTERFACE
chaining feature, we randomly pick 4 buckets, 2 from each secondary skew. We then compare
the occupancy of all candidate buckets, and choose the bucket with the lowest occupancy
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for insertion. Hence, given both primary skew buckets are full, a bucket in the secondary
skews transitions from containing N balls to N+1 balls in one of the following scenarios:

• All four buckets contain N balls.

• Three buckets contain N balls and one contains more than N balls.

• Two buckets contain N balls and the other two contain more than N balls.

• One bucket contains N balls and the other three contain more than N balls.

Where B is the event where both primary buckets are full (i.e, include 8 balls each).

P (B) = P (n = 8) ∗ P (n = 8) (5)

Using Bayes’ Theorem:

P (N → N + 1|B) = P (B|N → N + 1) ∗ P (N → N + 1)
P (B) (6)

Since insertion in a secondary bucket occurs only if B has occurred, the prob. of B given an
N to N+1 transition is 1:

P (B|N → N + 1) = 1 (7)

Substituting (7) into (6):

P (N → N + 1|B) = P (N → N + 1)
P (B) (8)

Where the Probability of transitioning from N to N+1 is computed from all four scenarios
above:

P (N → N + 1) = P (n = N)4 + 4 ∗ P (n = N)3 ∗ P (n > N)

+6 ∗ P (n = N)2 ∗ P (n > N)2 + 4 ∗ P (n = N) ∗ P (n > N)3 (9)

Substituting (9) into (8):

P (N → N + 1|B) = 1
P (B) ∗ (P (n = N)4+

4 ∗ P (n = N)3 ∗ P (n > N) + 6 ∗ P (n = N)2 ∗ P (n > N)2+

4 ∗ P (n = N) ∗ P (n > N)3) (10)

The probability that a secondary skew bucket transitions from N to N+1 balls (given B has
occurred) is equal to the probability that a secondary skew bucket transitions from N+1 to
N balls:

P (N → N + 1|B) = P (N + 1 → N |B) (11)
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Since the events N + 1− > N and B are independent:

P (N → N + 1|B) = P (N + 1 → N) (12)

During global eviction, a secondary skew bucket transitions from N+1 to N balls if the
evicted ball belongs to a bucket in the secondary skew AND the bucket contains N+1 balls:

P (N + 1 → N) =

P (B) ∗ P (n = N + 1) ∗ Btotal ∗ (N + 1)
btotal

(13)

Substituting (13) and (10) into (12) and rearranging we get:

P (n = N + 1) = 8
(N + 1) ∗ P (B)2 ∗ (P (n = N)4+

4 ∗ P (n = N)3 ∗ P (n > N) + 6 ∗ P (n = N)2 ∗ P (n > N)2

+4 ∗ P (n = N) ∗ P (n > N)3) (14)

Based on our observed Monte Carlo results for P(n=0) in the secondary skews, we recursively
calculated P(n=N) for N=[1, 6]. As shown in Figure 4.3, our analytical model accurately
estimates the probability of observing a primary or a secondary bucket with N balls. W
similarly modeled MIRAGE by taking P(n=N) in the secondary skews as P (n=N+8), where
8 is the maximum capacity of primary skew buckets. Results from our model matches the
results from MIRAGE [21]. Finally, to compute the probability of a SAE given W extra
ways, we compute the probability of a W to W+1 transition in (9):

P [W → W + 1] = 1
P (B) ∗ (P (n = W )4+

4 ∗ P (n = W )3 ∗ P (n > W ) + 6 ∗ P (n = W )2 ∗ P (n > W )2+

4 ∗ P (n = W ) ∗ P (n > W )3) (15)

4.1.3 Security Analysis

From our model in 4.1.1, Figure 4.2 shows the average number of cache accesses per set-
associative eviction (SAE) for INTERFACE and MIRAGE. With INTERFACE, we didn’t
observe any SAEs for extra ways greater than two across five Monte Carlo simulations with
10 billion accesses each. For MIRAGE, we observed SAEs for up to 4 extra ways.

We used our analytical model in 4.1.2 to estimate the average number of ball insertions
per spill. Figure 4.4 shows that with 4 extra ways (50%) in INTERFACE an attacker needs
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Figure 4.3: Probability of observing a Primary or Secondary skew bucket with N balls.

Figure 4.4: The estimated average number of balls inserted per spill vs. #extra ways for
MIRAGE and INTERFACE.
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1049 insertions (equivalent to 1032 years assuming 1 billion cache accesses per second) before
a spill occurs. MIRAGE requires 6 extra ways (75%) to provide 1017 years worth of security.
INTERFACE achieves a better security guarantee with 33% less extra-ways.

By using extra tags efficiently, INTERFACE provides stronger security with lower tag
overhead compared to MIRAGE. For each insertion in INTERFACE, the total number of
candidate locations is the sum of all locations in two primary skews and 4 secondary skews.
For MIRAGE, however, the total number of candidate locations is the sum of all locations
in the two primary skews and two secondary skews. Therefore, INTERFACE has a higher
probability of locating an invalid tag and avoiding an SAE compared to MIRAGE, as shown
in Figure 4.5. In addition to preventing set-conflict-based attacks from the same process
(e.g., Spectre V1 [19]), INTERFACE also protects against inter-process occupancy-based
attacks by partitioning the LLC among processes.

Figure 4.5: The estimated and the observed average number of balls inserted per spill vs.
#extra ways for MIRAGE and INTERFACE.

4.1.4 Dynamic Partitioning Security Analysis

To evaluate security against occupancy attacks, we used Metior[58], and modeled a 128KB.
We use a small cache due simulation time limit. A larger (e.g., 16MB) cache will have
the same leakage but its priming requires a much longer time. Metior is a comprehensive
model to quantitatively study the security guarantees of different side-channel obfuscating
approaches. Metior defines leakage bits not as direct data leakage but a relative metric
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to quantify the distinguishability of a victim’s modulation pattern relative to randomly
guessing a pattern. We modeled a dynamically-partitioned INTERFACE with a floating
bound of 40-60% of total capacity. The attacker primed the entire cache multiple times
before probing. After 8 iterations, we measured a maximal leakage of 0.32 bits or 20.32, i.e.,
1.25x more successful than a blind guess. A non-partitioned cache has a maximal leakage
of 0.64 bits (1.56x higher success than blind guessing). Setting a moving bound on each
process’ occupancy adds noise into the priming step by randomly evicting priming cache
lines more often than a non-partitioned cache.
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Chapter 5

Performance and Power Evaluation

5.1 Evaluation Methodology

We evaluate INTERFACE using gem5[59], a cycle-accurate execution driven simulator that
provides detailed CPU, cache and memory models. We modeled INTERFACE as both
a partitioned and non-partitioned skewed set-associative tag store and a fully-associative
data store cache with a tag-store-based global eviction, no reverse pointers and a free list
implemented using the data store (Chapter 3.1).

To compare against non-partitioned INTERFACE, we use the gem5 implementation
of MIRAGE [21] (provided as an artifact by the authors). We simulated representative
benchmarks from SPEC CPU2017 [60]. We ran 16-core multi-program simulations for each
benchmark (i.e, 16 copies) where we fast-forwarded 20 billion instructions on each core and
simulated 1 billion instructions per core.

To evaluate the partitioned INTERFACE, we implemented static way-partitioning on
the baseline 16-way cache with the configuration in Table 5.1. Due to the complexity of
identifying trusted processes like prior work, we assume that none of the processes are
trusted, so static way-partitioning is the only mechanism to guarantee preventing occupancy
attacks. We used twelve 4-benchmark mixes of SPEC CPU2017 benchmarks shown in Table
5.2, and ran 4-core simulations for each mix where we fast forwarded 20 billion instructions
and simulated 1 billion instructions. We use normalized instructions-per-cycle (IPC) to
estimate performance. We evaluated the baseline and INTERFACE configurations shown
in Table 5.1. We estimated baseline, INTERFACE and MIRAGE latencies using CACTI
(Chapter 5.3).

5.2 Performance Analysis

Figure 5.1 shows the normalized IPC of non-partitioned INTERFACE and MIRAGE versus
the baseline. Both mechanisms use global random replacement and similar extra latency
per access, so both have similar performance. The performance drop varies depending on
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Table 5.1: Baseline and INTERFACE Configurations

Structure Configuration
CPU 16 cores, Timing simple
L1 Split I/D Caches Private, 32KB, 8-way, 64B lines
L2 Cache Private, 256KB, 8 way, 64B lines
LLC (Baseline) Shared, 16 MB, 16-way, set-assoc-

iative, 64B lines, LRU replacement
LLC (INTERFACE) Shared, 16MB data store, Tag: 2

primary skews each 8 ways,
2 secondary-skews each 4 ways,
global random replacement

Figure 5.1: Normalized IPC for MIRAGE and INTERFACE (normalized to Baseline LLC).

the benchmark. The maximum performance drop was 9% for the 505.mcf_r benchmark,
and the geometric mean drop was 1.4% across all benchmarks. Both INTERFACE and
MIRAGE use random replacement instead of the baseline LRU, which affects benchmarks
that are sensitive to cache replacement (e.g., mcf). Most performance losses are attributed
to early random evictions of frequently used lines, while the small increase in cache access
latency has a lower performance impact.

Figure 5.2 shows the normalized IPC of non-partitioned and partitioned INTERFACE,
the way-partitioned baseline, and dynamically partitioned INTERFACE versus the (non-
secure) non-partitioned baseline. Set-partitioned INTERFACE shows a 2.7% mean perfor-
mance drop while way-partitioned baseline has a 3.1% mean performance drop. INTER-

30



Table 5.2: 4 Core Benchmark Mixes

Mix Benchamarks
1 cactuBSSN, gcc, bwaves, nab
2 lbm, xalancbmk, deepsjeng,leela
3 lbm, imagick, blender, gcc
4 lbm, bwaves, deepsjeng, leela
5 lbm, bwaves, deepsjeng, cactuBSSN
6 xalancbmk, leela, bwaves, blender
7 gcc, lbm, deepsjeng, nab
8 nab, imagick, deepsjeng, blender
9 perlbench, gcc, mcf, bwaves
10 gcc, xalancbmk, imagick, cactuBSSN
11 cactuBSSN, gcc, mcf, nab
12 namd, bwaves, imagick, blender

FACE’s set-partitioning maintains its fully associative design which helps cope with the im-
posed capacity limit of statically partitioning the cache. However, Way-based partitioning
reduces both associativity and capacity which results in worse miss rates. Set partitioning
scales with the number of cores, while way partitioning is limited by the number of LLC
ways, which usually is less than 32. We note that partitioned caches sometimes outperform
non-partitioned caches in cases where one or more benchmarks occupy a large portion of the
cache with low impact on miss rate (i.e, has a lower marginal utility [61]) while other bench-
marks benefit from additional capacity. Dynamically partitioning INTERFACE resulted in
only a 1.7% drop due to limiting occupancy of benchmarks with low marginal utility.

5.2.1 Cache Size Sensitivity

We evaluated LLC sizes of 2, 4, 8 and 16MB using the eight 4-core mixes (Table 5.2) and
plotted the geometric mean in the Figure 5.3. For cache sizes 2, 4 and 8MB, we observed
a high miss rate for all the configurations due to capacity misses. For these sizes, the hit
access latency overhead of set-partitioned INTERFACE results in a higher average access
latency compared to the baseline way-partitioned configuration, and a performance drop
of 0.5%, 0.8% and 0.3% respectively. For 16MB, set-partitioned INTERFACE has a lower
miss-rate than way partitioned baseline, resulting a performance increase of 0.7%.

5.2.2 Performance Impact of Free-list in MT workloads

The importance of our Free-list goes beyond the initial booting phase. For MT workloads,
disabling the Free-list beyond the initial booting phase means losing cache capacity due to
blocks invalidated by coherence transactions. To evaluate the Free-list’s performance im-
pact, we used 8 PARSEC and 1(ep) NPB 4-thread workloads and configured non-partitioned
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Figure 5.2: Normalized IPC of the way-partitioned baseline, set-partitioned INTERFACE,
dynamically partitioned INTERFACE, and non-partitioned INTERFACE against non-
partitioned baseline (16MB).

Figure 5.3: Geometric mean of Normalized IPC for 4-mix benchmarks at different cache
sizes.
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INTERFACE with and without Free-list. We simulated a 4-core, classic memory system
(MOESI coherence) gem5 FS model and normalized IPC against a Baseline 16MB cache.
Figure 5.4 shows a 13.2% mean performance drop due to disabling the free-list, which
resulted in losing cache capacity. We saw 2x and 1.26x drops in streamcluster and ep re-
spectively due to a large number of coherence invalidations reducing cache capacity. The
remaining workloads exhibit lower data sharing, hence the performance drop is smaller.

Figure 5.4: Normalized IPC of Non-partitioned INTERFACE with and without a Free-list.

5.3 Latency, Storage and Power Overheads

The latency overhead of INTERFACE can be attributed to the indexing hash function logic,
the wider tag bits (tag + data store pointer + status bits) and the sequential indirection
to access a data store block. To get latency and power estimates of INTERFACE, we used
Cacti 7.0 [62]. We modeled the baseline and INTERFACE caches in Table 5.1. Modeling
the baseline 16MB cache was simple in CACTI using the default NUCA configuration.
However, modeling INTERFACE and MIRAGE was challenging since Cacti doesn’t support
a different associativity for tag and data stores.

5.3.1 Latency

For each cache access, INTERFACE makes 32 tag comparisons. To compute the latency
upper bound, we modeled a 32MB, 32-way sequential cache with 62 tag bits. At 3GHz
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using 22nm technology, our model required one more cycle for data access compared to the
baseline. Since the primary and secondary skews are accessed in parallel, we need 6 indexing
hash-function blocks. At 3GHz clock frequency, MIRAGE [21, 63] reports the PRINCE block
cipher logic can be pipelined into 3 stages for a total of 3 cycles. Our partition table, modeled
using Cacti, is accessed in parallel with the cipher logic and takes 1 cycle to complete. Lastly,
the masking and adding operations are incorporated into the last stage of our cipher logic.
In total, INTERFACE requires 4 additional cycles per cache access: 3 cycles for indexing
logic and 1 cycle for the indirection to data store logic and tag comparison. Latency is
similar to MIRAGE since we use the same hash functions, indirection logic and smaller tag
bit width.

5.3.2 Power

We modeled 6 tag arrays (2 primary and 4 secondary) using Cacti to represent INTER-
FACE’s 6 parallel tag array accesses for each read/write request. We obtained the total
dynamic power by adding the dynamic power consumed by the 6 tag arrays (including
routing and wiring dynamic power) to the dynamic power consumed by a 16MB data array.
INTERFACE consumes more dynamic power than MIRAGE due to the 4 extra tag array
accesses. However, for LLCs dynamic power accounts for a small fraction of total power
which is dominated by static power. The static power (leakage) overhead of INTERFACE
is due to the 1.5x increase in the number of extra tag store entries and the 2.06x increase
in the number of tag bits per entry. To estimate static power, we modeled the tag store size
of INTERFACE using a 24MB set associative cache with 62 tag bits per entry, and used a
16MB set-associative cache with 30 tag bits as a baseline cache. To estimate the tag store
leakage power of both configurations, we multiplied the per-bank tag array leakage power by
the bank count. Since INTERFACE’s data store configuration is the same as the baseline,
we used the baseline’s per-bank data array leakage power multiplied by the bank count to
estimate the data store leakage power. The optimal bank layout for both the baseline cache
and the 24MB cache was 4x4, hence we added the wire leakage and router leakage powers
of the respective caches to the total array leakage power (tag array leakage + data array
leakage) to get the overall estimated leakage power of INTERFACE and the baseline. The
leakage power contributed by our Partition Table is negligible because it only accounts for
0.002% of the cache capacity. Free-list reads and writes to the data store incur more dynamic
power than MIRAGE’s dedicated Free-list table reads and writes since INTERFACE reads
longer bit-lines. However, the LLC is dominated by static power, and static power saved
by removing a dedicated hardware free-list table is significantly larger than the additional
dynamic power incurred from reading longer bit-lines. Table 5.3 shows that INTERFACE
increases total power by 16.9% vs. baseline, compared to a 21.9% increase for MIRAGE.
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Table 5.3: Power Overhead Compared to Baseline.

Baseline MIRAGE INTERFACE
Dynamic
Energy/access(nJ) 0.776 1.305 1.870
Dyn. Power (W) 0.041 0.065 0.093
Leak. Power (W) 5.837 7.101 6.781
Total Power (W) 5.878 7.166 6.874

5.3.3 Storage

INTERFACE requires more storage than the baseline due to partition registers, extra tag
store entries, per-tag forward pointer (for indirection), and extra address tag bits for physical
address reconstruction. Compared to a baseline 16MB 16-way cache (Table 5.4), INTER-
FACE increases tag store size by 3.1X leading to a 11.6% LLC storage overhead. These
overheads are computed for a 16MB 16-way set-associative baseline. Comparing with 32-
way MIRAGE, 32-way INTERFACE will have 4 extra ways instead of 6 and will require
1030 insertions per spill instead of 1025 insertions per spill, with 8.3% less storage. Over-
heads for MIRAGE and INTERFACE are slightly higher for larger caches and slightly
lower for smaller caches. However, compared to the state-of-the-art secure design (MI-
RAGE), INTERFACE requires 33% fewer extra ways, removes data store reverse pointers
(608KB), Process ID bits (448KB) and free-list pointers (576KB). Consequently, statically
set-partitioned INTERFACE has a 26.2% smaller tag storage and 7% smaller data storage
for an overall of 10.4% smaller total LLC capacity than MIRAGE. Dynamically-partitioned
INTERFACE requires process ID bits in the tag to enable our eviction policy, so the tag
storage is 14.3% smaller than MIRAGE, and the total LLC capacity is only 8.1% smaller
than MIRAGE.
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Table 5.4: Baseline, MIRAGE and INTERFACE cache storage sizes for a 16 MB cache with
4 extra ways in the secondary skews of INTERFACE, and 48bit physical addresses.

Baseline MIRAGE INTERFACE INTERFACE
(Static) (Dynamic)

Partition
Reg./Core(bits) 0 0 32 32
Total Partition
Table(bytes) 0 0 384(96 cores) 384
Tag Bits 28 42 42 42
Status Bits 2 2 2 2
Data Store
Pointer (bits) 0 18 18 18
PID Bits 0 10 0 10
Bits/tag entry 30 72 62 72
Total Tag
Store (bytes) 960KB 4032KB 2976KB 3456KB
Data Store
entry (bits) 512 531 512 512
Free-list (bytes) 0 576KB 5 5
Total Data
Store (bytes) 16,384KB 17,568KB 16,384KB 16,384KB
Total (bytes) 17,344KB 21,600KB 19,360KB 19,840KB
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we showed that shared last-level caches are vulnerable to conflict- and
occupancy-based attacks. Prior mitigation approaches (e.g., partitioning and randomized
caches) suffer from high performance overheads or low security guarantees. MIRAGE [21]
proposed a fully-associative approach using a set-associative tag store with extra entries and
a fully-associative data store with global eviction to defend against conflict-based attacks.
However, MIRAGE does not prevent occupancy attacks, incurs area and power overheads
due to a large number of extra tags, and a higher implementation complexity due to using
custom data store designs with reverse pointers and a separate hardware free list.

INTERFACE uses a novel architecture that increases the number of tag skews and par-
titions the tag store at a lower area and power overhead while using a simpler data store
design. Interface defends against both conflict- and occupancy-based attacks. Compared to
MIRAGE, INTERFACE prevents occupancy attacks, reduces extra tags by 33%, reduces
tag store area/leakage by 26.2% and data store area/leakage by 7% with a 2.7% average per-
formance overhead over a set-associative 16MB baseline. Compared to partitioned caches,
INTERFACE prevents intra-process conflict attacks and provides comparable performance.
Dynamically-partitioned INTERFACE only has a 1.7% performance overhead, compared to
2.7% drop of set-partitioned INTERFACE and 3.1% drop of way-partitioned baseline, vs.
the un-partitioned baseline and 8.1% lower LLC area/leakage vs. MIRAGE with a small
added vulnerability to occupancy attacks.

Compared to most prior works, INTERFACE does not require burdening the OS or the
user to classify execution contexts, can support a large number of concurrent processes by
using a static Core ID-based set partitioning, and does not need attack pattern detection
logic to provide robust security guarantees. By adding a limited number of extra tag store
entries, two registers, a small Partition table and using an encrypted indexing hash function,
INTERFACE provides strong security guarantees with small performance, area and power
overheads.
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6.2 Future Work

In the future, we would like to extend the concept of security aware hardware optimiza-
tions, which requires addressing several challenges. One of the challenges of security aware
hardware designs is performance degradation. To minimize the performance loss of using
static and strong partitioning principles, we are extending our current work by loosen-
ing the strict security requirements without compromising future security guarantees. This
involves exploring different adaptive approaches without introducing exploitable character-
istics. Current mitigation approaches also introduce significant area and power overheads,
reducing the overheads introduced by these approaches is an another challenge that needs
to be addressed.

Most importantly, reducing the complexity of security aware designs to enable quick
industry adaptation is another challenge we partially addressed in this work, and want
to explore further opportunities to minimize validation cost of new designs. Lastly, we
want to introduce mitigation approach which principally address the root cause of these
hardware vulnerabilities transparently without burdening the software developer with new
programming paradigms.
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