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Abstract

The main effects of a factorial experiment can be estimated with minimum variance and zero
bias using orthogonal arrays (OAs) of strength three. However, such arrays require the run
size to be a multiple of eight. When the run size is not a multiple of eight, OAs of strength
three do not exist. In the presence of non-negligible two-factor interactions, OAs of strength
two with minimum G2-aberration are available as variance-optimal designs that have the
minimum bias among non-isomorphic OAs of strength two. Such designs only require the
run size to be a multiple of four. Best fold-over designs have zero bias and provide the
minimum variance among all fold-over designs. We examine the use of nearly orthogonal
arrays of strength three for estimating main effects in the presence of nonnegligible two-
factor interactions. This provides an approach that is capable of balancing the consideration
of variance and bias. Our method is compared with the two existing classes of designs.

Keywords: Effect sparsity; Fold-over design; Mean squared error; Projection property
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Chapter 1

Introduction

1.1 Overview and the Motivation of the Study

Design of experiments is a branch of applied statistics, where the data are collected and

analyzed to evaluate the effect of a set of factors on a variable of interest, called a response

variable. While there are different types of design of experiments that are commonly used in

the industry, our study focuses on factorial designs. Factorial experiments consist of two or

more factors, each having a specified number of levels. The designs used in our study have

two levels that are coded as ±1 for the ease of handling, where −1 refers to the low level

and +1 refers to the high level. Factors in such experiments produce two different effects,

namely, main effects and interaction effects. The main effect of a factor quantifies its effect

on the response variable averaged across the other factors. Interaction effects occur when

the effect of a factor on the response variable is influenced by one or more other factors

being considered in the study. There are 2m − 1 effects in total in a factorial experiment

with m two-level factors.

A full factorial is a design that uses all possible combinations of all the factors. The

runs of such a design refer to the 2m treatment combinations. For instance, a full factorial

design with three factors each having two levels is called a 2×2×2 or a 23 design containing

23 = 8 distinct treatment combinations. At least 8 runs are required to estimate all seven

effects. It is clear that the number of runs required to estimate all the main effects and the

interaction effects in a full factorial experiment increases exponentially with the number
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of factors, which renders full factorials impractical. Fractional factorial designs provide a

remedy for the expensive nature of full factorial designs. As the name itself suggests, such

a design contains only a fraction of the complete set of runs required by its underlying full

factorial design. All the designs used in our study are fractional factorials.

We consider the problem of estimating main effects in the presence of two-factor in-

teractions using fractional factorial designs. Orthogonal arrays of strength three allow the

estimation of the main effects of a factorial experiment with minimum variance and zero

bias even when some two factor interactions are non-negligible. However, such arrays re-

quire the run size to be a multiple of eight. OAs of strength two and fold-over designs are

two existing classes of designs for estimating the main effects when OAs of strength three

are unavailable. OAs of strength two are variance-optimal and only require the run size

to be a multiple of four. On the other hand, non-orthogonal fold-over designs introduced

by Margolin (1969) have zero bias. In our study, we use the OAs of strength two with

minimum G2-aberration as variance-optimal designs, and such OAs provide the minimum

bias among the same order non-isomorphic OAs (Tang and Deng (1999)). Non-orthogonal

fold-over designs with the lowest variance are bias-optimal, and they are called the best

fold-over designs (BFDs). Our goal is to introduce and study a class of alternative designs,

which outperform the two existing classes of designs by balancing the bias-variance trade off.

In this chapter, we provide a brief discussion on fractional factorial designs, includ-

ing orthogonal arrays, the concept of J-characteristic and the three dimensional projection

property, and finally the bias, variance, and the mean squared error of linear models. We

review the two existing classes of designs used in our study, namely variance-optimal designs

and bias-optimal designs in Chapter 2. Further, we introduce an alternative set of designs

called nearly orthogonal arrays of strength three and study different approaches for their

construction. We end the chapter with an overview of the calculation of the mean squared

error by taking effect sparsity into consideration, which will be used to compare the three

types of designs later on. Chapter 3 summarizes the important results we obtained from
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our empirical study. We provide a summary and conclusions in Chapter 4.

1.2 Fractional Factorial Designs

Fractional factorial designs are useful in examining the effects of a large number of factors

on a response variable of interest using a relatively small number of experimental runs. Any

experimental design that contains less than 2m runs in an m-factor experiment is a frac-

tional factorial. Regular fractional factorial designs are referred to as 2m−p designs, where

the p indicates the corresponding fraction of runs.

Consider a five-factor design each with two levels. A full factorial design requires 25 = 32

runs to estimate all its effects as mentioned below.

Interactions
Average Main Effects 2-factor 3-factor 4-factor 5-factor

1 5 10 10 5 1

Table 1.1: Main Effects and Interaction Effects of a Five-Factor Experiment

However, many of these effects might be negligible in practice. In general, higher order in-

teractions are not of our interest. Very often, experimenters’ main interest lies in estimating

main effects, and hence, it is meaningless to carry out all 32 runs to estimate the thirty-one

effects in the above example. Moreover, when an experiment involves a large number of

factors, higher order interactions are often negligible. That’s where fractional factorial de-

signs come into play. For instance, a half fractional factorial design of a five-factor two-level

experiment is a 25−1 design. This design uses only sixteen runs to study five factors. Nev-

ertheless, the significant results obtained from both designs will probably be similar (Dey

and Mukerjee (1999)).

Regular fractional factorials are constructed using generators. For instance, in the above

five-factor half fractional factorial experiment, a full 24 design is written for the first four
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variables; 1, 2, 3 and 4, which fulfills the 16 runs requirement. Then the fifth variable is

constructed using the four factor interaction of those variables. Thus, we use the generator

5=1234 or in other words I=12345. The defining relation includes all words that are equal

to the identity I, and the words that can be obtained by multiplying all the generators

together. As the above design contains only one generator, the defining relation includes

only one word, 12345. Suppose we want to construct a 27−4 design. We start with a full 23

design written for the first three variables and the rest of the variables are constructed by

using the generators 4=12, 5=13, 6=23 and 7=123. The defining relation of such a design

is indicated as below:

I = 124 = 135 = 236 = 1237 = 2345 = 1346 = 347 = 1256

= 257 = 167 = 456 = 1457 = 2467 = 3567 = 1234567.

The effects of regular fractional factorial designs are either orthogonal or fully confounded

with each other. Hence, it is not possible to estimate all the effects independently as in full

factorial designs.

Orthogonal arrays are a class of fractional factorial designs which include both regular

and non-regular designs.

Definition 1. A factorial design of n runs for m factors, each having two-levels, is said to

be an orthogonal array of strength t if for any of its sub-matrices of t columns (n × t), the

2t level combinations occur with the same frequency in the rows. Such an array is denoted

by OA(n, 2m, t) and the t is called the strength of the OA. If the design is an OA(n, 2m, t),

then n must be a multiple of 2t, meaning that n = λ2t for some positive integer λ (Hedayat

et al. (1999)).

The above definition implies that if a design is an OA of strength t, it must also be an

OA of any strength t′ < t. OAs are universally optimal, hence A-optimal. An OA of 8 runs

with 4 factors can be displayed as below:
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+ − − +
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− − + +

− − − −



In the above design, each t-tuple occurs in the rows with the same frequency for every t=1,

2 and 3, and the run size n is a multiple of 23 = 8. Hence, the design has strength three,

and is denoted by OA(8, 24, 3). If a column is removed, the remaining design is still an

orthogonal array with strength three. Any two columns in an OA are orthogonal to each

other indicating the orthogonality of main effects. In general, OAs of strength three are uni-

versally optimal in estimating main effects under a model containing both main effects and

two-factor interactions. They are both variance and bias-optimal, providing the minimum

variance and zero bias. However, such arrays require the run size to be a multiple of 23 = 8

as explained in Definition 1, which is not always possible under different experimental con-

ditions. In this study, we use OAs of strength two as variance-optimal designs, for the run

sizes 12, 20 and 28, where OAs of strength three are not available. OAs of strength two

cover a wide range of run sizes as they only require the run size to be a multiple of four.
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1.3 J-Characteristic and a Measure of Three-Dimensional
Projection Property

J-characteristics are useful indicators to recognize the unique features of factorial designs.

The J-characteristic of a single column x is expressed as J(x), which gives the sum of

the elements in that particular vector. The J-characteristic J(x1, x2) represents the inner

product of the two vectors, x1 and x2. All the properties of OAs are also fully determined

by their J-characteristics. If all the J-characteristics of a factorial design for all possible

subsets with t or less columns are zero, the design is an OA with strength t. Consider the

design given in the above matrix with eight runs and four factors. If its columns are denoted

by xi, where i=1, 2, 3 and 4, we obtain that

J1 = {J(x1), J(x2), J(x3), J(x4)} = {0, 0, 0, 0},

J2 = {J(x1, x2), J(x1, x3), J(x2, x3), J(x1, x4), J(x2, x4), J(x3, x4)} = {0, 0, 0, 0, 0, 0},

J3 = {J(x1, x2, x3), J(x1, x2, x4), J(x1, x3, x4), J(x2, x3, x4)} = {0, 0, 0, 0},

J4 = {J(x1, x2, x3, x4)} = 8 = n.

J-characteristics being zero for all the subsets containing up to three columns indicates that

the design has strength three. A factorial design is called regular if any two factorial effects

are either orthogonal or fully aliased with each other. The design becomes non-regular if

some of the factorial effects are partially aliased. In regular designs, all its J-characteristics

are either 0 or ±n, and it is non-regular if at least one of its characteristics is strictly between

0 and n. The J-characteristics of all possible nonempty subsets are zero in a full factorial or

several replicates thereof. Further, if a factorial design is a fold-over design, then the compo-

nents of the J-characteristics for odd numbers of columns are zero, meaning that J(xi) = 0

and J(xi, xj , xk) = 0 for all i, j, k = 1, 2, 3 with i ̸= j ̸= k of a design with only three factors.

The three dimensional projection property (V3) provides a goodness measure for how

close a factorial design is to an OA of strength three. It is a criterion to recognize an optimal

design by taking its J1, J2 and J3 characteristics into consideration. Tang (2001) obtained
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an expression for the three dimensional projection property for a factorial design D, as given

below:

V3(D) = 2−6
3∑

j=1

(
m − j

3 − j

) ∑
|t|=j

J2
t , (1.1)

where m is the total number of factors of the design D, and |t| denotes the number of

columns in a subset t of columns. Let

J1-Component = 2−6(m−1
2
)∑

|t|=1 J2
t ,

J2-Component = 2−6(m−2
1
)∑

|t|=2 J2
t ,

J3-Component = 2−6∑
|t|=3 J2

t .

Equation (1.1) clearly explains that the V3 is an overall measurement of J1-, J2- and J3-

components of a design. As discussed in Section 1.4, J1 and J2 characteristics of OAs

of strength two are zero, and hence its V3 measurement completely depends on the J3-

component. On the other hand the V3 measurement of BFDs in our study are determined

by considering only the J2-component, as the corresponding J1 and J3 components are zero

in fold-over designs as explained in the previous section. In general, a higher J2 gives rise to

a high variance whereas the bias of a design increases with the J3. This relationship clearly

explains why the OAs of strength two are variance-optimal and BFDs are bias-optimal. In

conclusion, designs with the lowest V3 are considered to be the best.

1.4 Bias, Variance, and Mean Squared Error

Our goal is to introduce a class of optimal designs with respect to some statistical crite-

ria. We consider the concept of A-optimality in our study, which minimizes the sum of

the variances of estimated main effects. According to the A-optimality, the design that

minimizes the sum of the variances is the optimal design out of the set of designs being

compared. Suppose, a sample with n observations are collected, which gives the response

vector Y = (Y1, Y2, . . . , Yn)T . The design matrix with n runs and m factors corresponds

to the fractional factorial design being considered in the experiment, which is expressed as
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D = [X1 X2 .... Xm]n×m. The main-effect linear model indicates the relationship between

Y and the set of explanatory variables and is formulated as below:

Y = X(1)β
(1) + ϵ (1.2)

where, ϵi’s are independently and identically distributed with mean zero and common vari-

ance σ2 for all i = 1, 2, ..., n, and X(1) = [1n, D] is a n × (m + 1) matrix with 1n being a

vector of n ones and β(1) = (β0, β1, . . . , βm)T being a vector of the grand mean and the

main effects of m predictors. The method of least squares estimation allows the unbiased

estimation of β’s when model (1.2) is correct by minimizing the sum of squares of the resid-

uals, ||Y − X(1)β
(1)||2. Thus, β̂(1) = (XT

(1)X(1))−1XT
(1)Y is an unbiased estimator for β(1) as

shown below:

E(β̂(1)) = (XT
(1)X(1))−1XT

(1)E(Y )

= β(1).

The variance covariance matrix of β̂(1) is

V ar(β̂(1)) = V ar((XT
(1)X(1))−1XT

(1)Y )

= (XT
(1)X(1))−1XT

(1)V ar(Y )X(1)(XT
(1)X(1))−1

= σ2(XT
(1)X(1))−1XT

(1)X(1)(XT
(1)X(1))−1

= σ2(XT
(1)X(1))−1.

As σ2 is a constant, the design that minimizes the trace(XT
(1)X(1))−1 is A-optimal. In

our study, we allow some two-factor interactions to be non-negligible. The model matrix is

then given by [X(1), X(2)], where X(2) represents the matrix containing all the two-factor

interactions of m factors. Let β(2) denote the vector of all two-factor interactions. Then the

linear model representing the true structure becomes

Y = X(1)β
(1) + X(2)β

(2) + ϵ. (1.3)
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Still our main focus lies on estimating β(1) as two-factor interactions are not of our interest.

However, β̂(1) is no longer unbiased under the model indicated in equation (1.3) as proved

below:

E(β̂(1)) = (XT
(1)X(1))−1XT

(1)E(Y )

= (XT
(1)X(1))−1XT

(1)(X(1)β
(1) + X(2)β

(2))

= β(1) + (XT
(1)X(1))−1XT

(1)X(2)β
(2),

Bias(β̂(1), β(1)) = E(β̂(1)) − β(1)

= (XT
(1)X(1))−1XT

(1)X(2)β
(2).

Nevertheless, the variance-covariance matrix of β̂(1) is not affected by the two-factor inter-

actions and hence remains unchanged in both models. However, as the estimator is biased

under the new model, the MSE will be changed accordingly. The design which gives the

minimum MSE is considered the best out of the set of designs being compared, where

MSE = σ2trace(XT
(1)X(1))−1 + ||(XT

(1)X(1))−1XT
(1)X(2)β

(2)||2. (1.4)

All the above models take the intercept into consideration, while our main focus is to

estimate main effects. Let V ar∗(β̂(1)) = σ2trace(M) with M being the matrix obtained by

deleting the first row and the first column of (XT
(1)X(1))−1, and Bias∗(β̂(1), β(1)) = Bβ(2)

with B being the matrix obtained by deleting the first row of (XT
(1)X(1))−1XT

(1)X(2). Now

under the model (1.3), the MSE for the main effects becomes:

MSE∗ = V ar∗(β̂(1)) + ||Bias∗(β̂(1), β(1))||2 (1.5)

= σ2trace(M) + ||Bβ(2)||2. (1.6)
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Chapter 2

Design Methodology

In this chapter, we discuss three classes of designs used in our study. As mentioned before,

our main goal is to give an alternative class of designs to use in the situations where OAs

of strength three do not exist. Section 2.1 describes variance-optimal designs used in our

study, whereas bias-optimal designs are given in Section 2.2. We introduce an alternative

class of designs called nearly orthogonal arrays of strength three in Section 2.3 and discuss

different approaches used to construct them. Finally, the method used to compare the three

types of designs will be discussed in Section 2.4.

2.1 Variance-Optimal Designs

In this study, we consider designs with run sizes 10, 12, 14, 18, 20 and 28. For run sizes 12, 20

and 28, OAs of strength two are available. The OAs used in this study were constructed from

Hadamard matrices. A Hadamard matrix is a square matrix with entries +1 and −1, whose

rows are mutually orthogonal. This was initially introduced by Sylvester (1867) and later

considered by Hadamard (1893). It has the mathematical property that HT H = HHT = nI,

where I is an identity matrix with order n. Hadamard matrices are available for orders

1, 2 and for orders that are multiples of four. The method of tensor product allows the

construction of Hadamard matrices with large orders from those with smaller orders. For

example, a 4 × 4 Hadamard matrix can be constructed by a 2 × 2 Hadarmard matrix as

illustrated below.
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[
1 1
1 −1

]
⊗
[
1 1
1 −1

]
=


1 ×

(
1 1
1 −1

)
1 ×

(
1 1
1 −1

)

1 ×
(

1 1
1 −1

)
−1 ×

(
1 1
1 −1

)


=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



A Hadamard matrix is a valuable tool to construct OAs of strength two and three. Con-

sider a Hadamard matrix with the first column containing only 1’s, which is said to be

normalized. Strength two OAs can be obtained by deleting the all 1’s column of the corre-

sponding Hadamard matrix. The resulting OA is denoted by OA(n, 2n−1, 2), which contains

the maximum number of factors to be included in a strength-two OA with n runs. The array

obtained by removing one or more columns is still orthogonal with strength two. Hence,

a Hadamard matrix with order n can easily be used to construct an OA(n, 2n′
, 2) for any

n′≤ n − 1.

We choose OAs of strength two with minimum G2-aberration to be the variance-optimal

designs, as they provide the minimum bias among all the non-isomorphic OAs of strength

two, while minimizing the variance of estimated main effects among all possible designs.

Let s = {x1, ..., xk} represent any k subset of the design matrix D. Let

Bk(D) =
∑

|s|=k

(Jk(s)/n)2,

According to Tang and Deng (1999) and Schoen et al. (2017), for given designs D1 and D2,

D1 is said to have less G2-aberration than D2 if Br(D1) < Br(D2), where r is the smallest

integer such that Br(D1) ̸= Br(D2). The design D1 is said to have minimum G2-aberration

if no other design has less G2-aberration than D1. A minimum G2-aberration design esti-

mates the main effects with minimum bias when compared to all other OAs of strength two.

11



We also consider run sizes 10, 14 and 18 in our study, which involve non-orthogonal

fractional factorial designs. According to Dey and Mukerjee (1999), when the run size of a

design is even but not a multiple of four, the variance-optimal designs can be obtained by

adding two specific runs to the closest lower order OA.

Lemma 1. The design obtained by adding two runs of form l1 = (1, ..., 1) and l2 =

(1, ..., 1, −1, ..., −1) to an orthogonal array is universally optimal and hence A-optimal.

Suppose a factorial design consists of m factors. Then l1 is a vector containing m +1’s and

l2 contains m1 and m2 +1’s and -1’s respectively, whereas m1 is the largest integer that is

smaller than or equal to m/2 and m2 = m−m1. To illustrate, we obtain a variance-optimal

design for 10 runs with 5 factors by using five columns of the Hadamard matrix of order 8

and then adding two specific runs with l1 being (1,1,1,1,1) and l2 being (1,1,-1,-1,-1) to it.

In short, while we use OAs of strength two for run sizes 12, 20 and 28, Lemma 1 is used for

run sizes 10, 14 and 18 in order to obtain the variance-optimal designs. The below 10 × 5

variance-optimal design is obtained by considering the first five columns starting from the

second column of the Hadamard matrix of order eight.



1 1 1 1 1
−1 1 −1 1 −1

1 −1 −1 1 1
−1 −1 1 1 −1

1 1 1 −1 −1
−1 1 −1 −1 1

1 −1 −1 −1 −1
−1 −1 1 −1 1

1 1 1 1 1
1 1 −1 −1 −1
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2.2 Bias-Optimal Designs

Even though variance-optimal designs have the minimum variance, their MSE may get

too large due to the bias. In our study, we also consider a special class of designs called

bias-optimal designs, which provide zero bias and hence, their MSE is completely based

on the variance portion. Margolin (1969) demonstrates that folding over an efficient non-

orthogonal resolution III design with n runs produces a non-orthogonal resolution IV design

with 2n runs. Such a design has zero bias and provides the minimum variance among all

non-orthogonal fold-over designs. For convenience, they are called best fold-over designs

(BFDs) throughout our study. In folding over a design, all the factor levels are reversed to

form runs that are mirror images of those in the initial factorial design.

Nevertheless, BFDs do exist up to n/2 factors for a design with n runs. More precisely,

when the run size is 10, a BFD is available for up to five factors. We use the efficient non-

orthogonal resolution III designs summarized by Margolin (1969) to produce the BFDs of

run sizes 10, 12, 14, 18, 20 and 28 with the number of factors being 5, 6, 7, 9, 10 and 14

respectively. The BFD for n = 10 and m = 5 is constructed as below, where the second half

of the design is a mirror image of the first half.



1 1 1 −1 1
1 1 −1 1 1
1 −1 1 1 1

−1 1 1 1 1
−1 −1 −1 −1 1
−1 −1 −1 1 −1
−1 −1 1 −1 −1
−1 1 −1 −1 −1

1 −1 −1 −1 −1
1 1 1 1 −1
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2.3 Nearly Orthogonal Arrays of Strength Three and Their
Construction

In this section, we search for a set of alternative designs to use when OAs of strength three

do not exist. Variance-optimal designs are efficient in optimizing the variance but their MSE

may be too large due to the large bias. On the other hand, BFDs are bias-optimal, but the

possible high variance may lead to a large MSE. We aim at constructing an alternative de-

sign, for each run size being considered in this study, to minimize both variance and bias to

some extent. The design that has the lowest V3 is chosen to be the best alternative design to

use in our study. Such designs are similar to the OAs of strength three, as they are intended

to minimize both bias and variance simultaneously in contrast to variance and bias-optimal

designs. We call such factorial designs nearly orthogonal arrays (NOAs) of strength three.

We consider the construction of nearly orthogonal arrays of strength three under two

scenarios. In the first scenario, we consider the situation of m = n/2, where both variance-

optimal designs and BFDs are available. In the second scenario, we consider the number of

factors in a design to be greater than the half of the number of runs by 1 (m = n/2 + 1), in

which case BFDs are not available. The construction of NOAs of strength three is done sep-

arately under the two scenarios using two approaches, partially folding-over OAs of strength

two and adding runs to OAs of strength two. Once the best design is found from the two

approaches based on their V3 values, a local search algorithm is used to improve it further.

Those concepts are discussed in Subsections 2.3.1, 2.3.2 and 2.3.3, respectively.

2.3.1 Partial Fold-Over of OAs of Strength Two

In this approach, we start with OAs of strength two. For each run size, we identify all the

OAs of strength two with smaller run sizes and the required number of factors and then

partially fold over some of their runs to produce arrays with the required run size. Many

of such arrays are generated by considering all possible permutations. The design which

gives the smallest V3 out of all the designs is considered the best under this approach. To
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illustrate, consider the run size 20 with 10 factors. There are two types of OAs of strength

two with lower orders, 12 and 16 that contain the sufficient number of runs to fold over. We

first start with an OA(12, 210, 2) and fold over eight runs out of its 12 runs in all possible

ways. Then, the same steps are done on an OA(16, 210, 2) except the fact that here we fold

over only four runs. Out of all the resulting arrays, we choose the design with the lowest

V3.

2.3.2 Adding Runs to OAs of Strength Two

Here, we choose OAs of strength two with lower orders and then add some runs to produce

the required n × m design. To find an NOA with n runs and m factors, we begin with lower

order OAs of strength two having n′ runs and m factors, where n′ < n. We then fill the

remaining n − n′ runs with +1’s and -1’s by considering all the permutations under the

constraint that the resulting design should be balanced in order to make the process less

complicated. A balanced design is defined as a design, where +1’s and -1’s occur with the

same frequency in every column. Thus, the J1-component of such designs becomes zero, and

hence, only J2- and J3-components contribute to the V3. Consider the same example with

20 runs. We again begin with an OA(12, 210, 2) and an OA(16, 210, 2). Let the OA(12, 210, 2)

be the first part of the resulting design. The second part is a matrix of 8 × 10, where we fill

its columns with ten different vectors of four -1’s and four +1’s. The process is repeated by

considering all the permutations. The same steps are done on the OA(16, 210, 2) to fill the

remaining 4 × 10 empty matrix. Finally, the 20 × 10 array that gives the lowest V3 out of

all the resulting designs is considered to be the best under this approach.

2.3.3 Local Search Algorithm

The purpose of the local search algorithm is to improve the optimal design found from

the two approaches mentioned above by comparing it with its one-unit away neighboring

designs. We first choose the design with the smallest V3 from the two approaches and call it
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NOA0. The one-unit away neighbors to NOA0 are generated by swapping the signs of two

elements with opposite signs in column i for all i = 1, 2, ..., m. For a design of order n × m,

there are m(n/2)2 one-unit away neighboring designs in total. If the NOA0 has the lowest

V3 among its neighbors, we stop the algorithmic search and use it as the best NOA in our

study for n runs with m factors. If a neighboring design gives a V3 smaller than that of

NOA0, we move to that particular design and call it NOA1. Then the same steps are done

on NOA1. Similarly, the search continues until the V3 of the current design is the lowest

among its one-unit away neighbors. Finally, the design found to be the best from the local

search algorithm is considered as the best NOA of strength three. The illustration below

describes the first two stages of the iterative process.

Figure 2.1: First Two Steps of the Local Search Algorithm

Consider the NOA0 for 20 runs and 10 factors found by folding over four runs of an

OA(16, 210, 2). We then performed the local search algorithm to improve the NOA0 by

comparing it with its one unit away neighbors. The complete set of iterations is summa-

rized below:
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Design NOA0 NOA1 NOA2 NOA3 NOA4 Best NOA

V3 50 48 46.5 46 45 45

Table 2.1: Complete Set of Iterations of the Local Search Algorithm For the 20 × 10 Exper-

iment

2.4 An MSE Criterion for Comparing Different Designs

The three dimensional projection property (V3) provides a goodness measure for a fractional

factorial design. However, it is combinatorial. We need to carry out a direct statistical com-

parison of the candidate designs to provide a clear guideline for practitioners to use in order

to choose one design over the others. We use the MSE of estimated main effects to compare

the three classes of designs considered in our study. As we allow some two-factor inter-

actions to be non-negligible in the model, the MSE should be computed under the linear

model (1.3). BFDs are not affected by non-negligible two-factor interactions due to their

zero bias. Therefore, only the variance contributes to the MSE. However, best NOAs and

variance-optimal designs are affected by the unknown β(2).

Mukerjee and Tang (2012) adopted a Bayesian inspired approach to calculate the MSE

by taking the effect sparsity into consideration. In factorial experiments, the principle of

effect sparsity states that besides the main effects, only a few two-factor interactions are

likely to be important. Under the two main assumptions that all the subsets of N two-

factor interactions are equally likely to be significant and the active two-factor interactions

are uncorrelated with mean zero and variance τ2, we can express the expected MSE as

below:

MSE = σ2tr(M) + πτ2K2, (2.1)
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where π = N

(m
2 ) denotes the proportion of significant two-factor interactions, which is called

the fraction of sparsity, K2 = tr(BBT ), and M and B matrices are previously defined in

Section 1.3.
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Chapter 3

Results of Comparisons

In this chapter, we summarize the important results of our study. We first describe how

variance-optimal designs and bias-optimal designs perform using an example. The MSE

is computed for both existing designs in 10 runs and 5 factors to illustrate their general

behavior. In Section 3.1, we consider six experiments with 10, 12, 14, 18, 20 and 28 runs

in m = n/2 factors. We conduct the same comparison for variance-optimal designs, bias-

optimal designs and best NOAs of strength three in those experiments. The MSE calculation

is done under seven different values of τ/σ, which is indicated by C throughout our study.

For convenience, we take σ = 1 in all our calculations with C = τ/σ = τ = 0.025, 0.05, 0.1,

0.25, 0.5, 1 and 2. In every experiment, we also consider six different scenarios by changing

the proportion of non-negligible two-factor interactions from 1 to 1/32. Thus, we take π

= 1, 1/2, 1/4, 1/8, 1/16 and 1/32. Our goal here is to provide a range of C given by C1

and C2 such that the alternative design outperforms the corresponding two existing designs

within the range of C1 to C2. In Section 3.2, we consider another six experiments having

the same set of run sizes, but with m = n/2 + 1 factors, where the bias-optimal designs

do not exist. Thus, we compare the available variance-optimal designs with the best NOAs

for the same set of run sizes with 6, 7, 8, 10, 11 and 15 factors, respectively, by considering

their MSEs. We provide a cut-off value C∗ for C in each of the experiments so that the

alternative design outperforms the corresponding variance-optimal design when C > C∗.
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To understand the behaviour of variance-optimal designs and bias-optimal designs, we

first examine in detail an example in which 5 factors are studied using 10 runs. We compute

the MSE by taking effect sparsity into consideration as expressed in equation (2.1). Even

though the variance of variance-optimal designs remains constant, the bias increases with

the fraction of sparsity, which leads to the gradual increment in the MSE of estimated main

effects. However, the MSE of bias-optimal designs remains unchanged as only the variance

of such designs contributes to the MSE. This disproportionate behavior allows us to obtain

a cut-off point, beyond which the best fold-over design performs better than the variance-

optimal design of the same order. The example below summarizes the bias, variance and

the MSE of estimated main effects of the two designs in an experiment with 10 runs and 5

factors when all two-factor interactions are significant.

n m C = τ/σ
VOD BFD

Variance Bias MSE Variance Bias MSE

10 5 0.025 0.536 0.004 0.54 0.556 0 0.556

0.05 0.536 0.014 0.55 0.556 0 0.556

0.1 0.536 0.057 0.593 0.556 0 0.556

0.25 0.536 0.353 0.889 0.556 0 0.556

0.5 0.536 1.413 1.949 0.556 0 0.556

1 0.536 5.653 6.189 0.556 0 0.556

2 0.536 22.612 23.148 0.556 0 0.556

Table 3.1: Variance, Bias and MSE for Variance and Bias-Optimal Designs with 10 Runs

and 5 Factors When All Two-Factor Interactions are Significant (π = 1)
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Figure 3.1: Comparison of the MSE for Variance and Bias-Optimal Designs with n=10 and

m=5 when π = 1

Table 3.1 indicates that the MSE of the variance-optimal design is smaller at lower

values of C, but gradually increases with τ to exceed the MSE of the bias-optimal design at

a certain point, which is approximately 0.059 according to Figure 3.1. Hence, it is clear that

the variance-optimal design is better at lower values of C, while the bias-optimal design

outperforms the variance-optimal design when C exceeds 0.059. We can observe a similar

trend for the two types of designs for other run sizes.

3.1 Comparison of Variance-Optimal Designs and Bias-Optimal
Designs with Best Nearly Orthogonal Arrays of Strength
Three

In this section, we carry out the same comparison by using the best NOAs of strength three.

We choose designs with the lowest V3 to be the best NOAs as discussed in Section 2.3. We

consider six experiments having 10, 12, 14, 18, 20, 28 runs with 5, 6, 7, 9, 10, 14 factors

respectively. In each experiment, we aim to compare all three types of designs together
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to identify three separate regions of C, in each of which one design performs better than

the other two. The V3 values and the corresponding J-components of the three types of

designs in each experiment are displayed in Table 3.2. There are two best NOAs that per-

form equally well for run size 28. Hence, both of the designs are listed, as NOA 1 and NOA 2.

n m Design V3 J1-Component J2-Component J3-Component

10 5 VOD 4.375 0.75 0.75 2.875

BFD 1.875 0 1.875 0

NOA 3.125 1.125 0.75 1.25

12 6 VOD 5 0 0 5

BFD 6 0 6 0

NOA 5 0 3 2

14 7 VOD 14.312 2.812 2.812 8.688

BFD 59.063 0 59.063 0

NOA 6.813 2.813 2.813 1.188

18 9 VOD 44.75 7 7 30.75

BFD 29.75 0 29.75 0

NOA 27.75 1.75 12.25 13.75

20 10 VOD 30 0 0 30

BFD 50 0 50 0

NOA 45 22.5 0 22.5

28 14 VOD 91 0 0 91

BFD 126 0 126 0

NOA 1 136.5 68.25 0 68.25

NOA 2 136.5 63.375 9.75 63.375

Table 3.2: Three Dimensional Projection Property of Variance-Optimal Designs, Bias-

Optimal Designs and Best NOAs in experiments with n=10, 12, 14, 18, 20, 28 where

m = n/2
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We use equation (1.1) to calculate all the values listed in Table 3.2. The orthogonal

arrays of strength two are used as variance-optimal designs in experiments with 12, 20 and

28 runs, and hence their J1- and J2-components are zero. This is explainable as an OA

of strength two is balanced and its columns are orthogonal to each other. Thus, only the

J3-component contributes towards the V3. OAs of strength two are not available for run

sizes 10, 14 and 18, where the corresponding variance-optimal designs are constructed us-

ing Lemma 1. In both situations, we can observe from Table 3.2 that the variance-optimal

designs provide lower J2-components. In contrast, J3-components of bias-optimal designs

are zero in every experiment, resulting in zero bias.

Nevertheless, the J2-component of the best NOA in an experiment is lower than that

of the bias-optimal design, indicating that it provides a variance lower than that of the

bias-optimal design. Moreover, the best NOA provides a J3-component lower than that of

the variance-optimal design but considerably higher than that of the bias-optimal design.

This contradictory relationship clearly explains the fact that the bias of a best NOA found

in our study is lower than that of the corresponding variance-optimal design, while it is

undoubtedly higher than the bias-optimal design. In conclusion, the above-explained bias-

variance trade off among the set of three designs allows us to find three separate regions of

C for each experiment. Let us use the experiment with five factors in ten runs to illustrate

the mentioned behavior between the variance-optimal design, bias-optimal design and the

best NOA of order 10 × 5 by changing the fraction of sparsity.
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Figure 3.2: Comparison of the MSE for Designs With n=10 and m=5

According to Figure 3.2, the MSE of the variance-optimal design is the lowest for smaller

values of C, which gradually increases to exceed the MSE of both the NOA and the bias-
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optimal design. Hence, the MSE of the variance-optimal design is the highest at higher values

of C. The MSE of the best NOA slightly increases over the range of C and lies completely

below the curve of the variance-optimal design after a certain point, while it eventually ex-

ceeds the constant MSE of the bias-optimal design. The MSE of both the variance-optimal

design and the best NOA increases with the fraction of sparsity being considered in the

study according to equation (2.1). For instance, when all the two-factor interactions are

considered non-negligible, the two curves cross the curve of the best fold-over design at C

values 0.059 and 0.067 respectively, whereas when only a half of the two-factor interactions

are significant (π = 1/2), the intersections happen at slightly higher points, 0.083 and 0.095.

Figure 3.2 suggests three separate regions within each of which one out of the three

designs performs better than the remaining two. Suppose the point where the curve of the

variance-optimal design intersects that of the best NOA is indicated as C1 and the intersect-

ing point of curves of the best NOA and the bias-optimal design is named as C2. Regardless

of the fractions of sparsity being considered, the variance-optimal design and the best fold-

over design perform the best when C < C1 and C > C2, respectively. The best NOA of the

same order outperforms the two existing designs when C1 < C < C2. For example, the best

NOA of order 10 × 5 outperforms the corresponding variance-optimal design and the bias-

optimal design in the range of 0.025 < C < 0.068 when none of the two-factor interactions

are negligible, which means π = 1. Table 3.3 below summarizes the list of C1 and C2 values

for all of the experiments listed in Table 3.2 for π = 1, 1/2, 1/4, 1/8, 1/16, 1/32. Figure 3.3

illustrates how the points C1 and C2 change when the fraction of sparsity increases. In

conclusion, experimenters may use the listed regions to decide which design to use in their

experiments.

• when C < C1: Variance-optimal design is the best,

• when C1 < C < C2: Best NOA is the best,

• when C > C2: Bias-optimal design (BFD) is the best.
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n m π = 1 π = 1/2 π = 1/4 π = 1/8 π = 1/16 π = 1/32

10 5 C1 0.025 0.036 0.051 0.071 0.101 0.143

C2 0.068 0.095 0.135 0.191 0.27 0.381

12 6 C1 0.306 0.433 0.612 0.866 1.225 1.732

C2 0.339 0.479 0.677 0.957 1.354 1.915

14 7 C1 0.064 0.091 0.128 0.182 0.257 0.363

C2 0.218 0.309 0.436 0.617 0.873 1.234

18 9 C1 0.027 0.038 0.053 0.076 0.107 0.151

C2 0.111 0.158 0.223 0.315 0.446 0.63

20 10 C1 0.048 0.068 0.095 0.135 0.19 0.269

C2 0.094 0.133 0.188 0.265 0.375 0.53

28 14 C1 0.025 0.035 0.05 0.07 0.099 0.14

C2 0.045 0.064 0.09 0.128 0.181 0.255

C1 0.037 0.053 0.075 0.105 0.149 0.211

C2 0.043 0.061 0.087 0.122 0.173 0.245

Table 3.3: C1 and C2 at different values of π in experiments with m = n/2
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Figure 3.3: C1 and C2 of the experiment of 10 × 5 as a function of π
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3.2 Comparison of Variance-Optimal Designs and Best Nearly
Orthogonal Arrays of Strength Three When Best Fold-
Over Designs Do Not Exist

Best fold-over designs do not exist when the number of factors in an experiment is greater

than half the number of runs being considered. Therefore, only variance-optimal designs are

available to use in such situations. Our goal in this section is to introduce some alternative

designs for practitioners to use over variance-optimal designs. We provide a list of the best

NOAs of strength three for experiments in 10, 12, 14, 18, 20, 28 runs with m = n/2 + 1 fac-

tors. We use the same procedure explained in Section 2.3 to construct best NOAs. For each

experiment, we aim to compare the variance-optimal design with the best NOA in terms of

the MSE to provide two separate regions of C, in which each of the designs performs better

than the other design. Table 3.4 contains the V3 values and the J-components of the two

designs in each experiment.

n m Design V3 J1 Component J2 Component J3 Component

10 6 VOD 10 1.875 1.5 6.625

NOA 7.75 0 3.75 4

12 7 VOD 8.75 0 0 8.75

NOA 9.25 0 6.25 3

14 8 VOD 28 5.25 4.5 18.25

NOA 20 2.625 6 11.375

18 10 VOD 64 11.25 10 42.75

NOA 46.5 4.5 14.5 27.5

20 11 VOD 61.25 0 0 61.25

NOA 69.75 0 33.75 36

28 15 VOD 171.75 0 0 171.75

NOA 182.25 5.6875 11.375 165.1875

Table 3.4: Three Dimensional Projection Property of Variance-Optimal Designs and Best

NOAs in Experiments Where m = n/2 + 1
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According to Table 3.4, the J2-component of the variance-optimal design is the lowest

indicating the variance optimality. The best NOA contains the lowest J3-component as it

provides a smaller bias as compared to the variance-optimal design. To illustrate, we use

the experiment of dimension 10 × 6 by changing C = τ/σ when π = 1.

n m C = τ
σ

VOD NOA

Variance Bias MSE Variance Bias MSE

10 6 0.025 0.65 0.008 0.657 0.675 0.007 0.682

0.05 0.65 0.031 0.680 0.675 0.026 0.701

0.1 0.65 0.122 0.771 0.675 0.103 0.778

0.25 0.65 0.762 1.411 0.675 0.645 1.32

0.5 0.65 3.046 3.696 0.675 2.58 3.255

1 0.65 12.184 12.833 0.675 10.32 10.995

2 0.65 48.735 49.384 0.675 41.28 41.955

Table 3.5: Comparison of the MSE for the Variance-Optimal Design and the Best NOA

With 10 Runs and 6 Factors When All Two-Factor Interactions are Significant

According to Table 3.5, the variance of estimated main effects of both designs remains

unchanged, being unaffected by τ . We can clearly observe that the MSE of the variance-

optimal design is smaller at lower values of C and it gradually increases to exceed the MSE

of the best NOA when C increases. That suggests that best NOAs are better than variance-

optimal designs at higher values of C and vise versa. For instance, between the two designs

being compared in the above example of order 10 × 6, the best NOA performs better when

C > 0.117. Thus, for each experiment, we can identify a cut-off point for C, which provides

separate optimal regions for the two designs. If the boundary point is indicated by C∗, the

best NOA is better if C > C∗ and the variance-optimal design performs well when C < C∗.

At the point of C∗, the two designs perform equally well in terms of the MSE. Figure 3.4

illustrates the corresponding C∗ values for the same experiment in different fractions of

sparsity.
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Figure 3.4: Comparison of the MSE of Designs with n=10 and m=6

As can be seen in Figure 3.5, the C∗ value increases as π decreases. That is because

the bias decreases when π decreases according to the equation (2.1), and hence the MSE
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of the estimated main effects is also getting decreased. Thus, the C value required at the

intersection becomes higher. Table 3.6 below summarizes the list of C∗ values for all exper-

iments being considered in this section of our study with π = 1, 1/2, 1/4, 1/8, 1/16, 1/32.

Experimenters may consider the corresponding regions to decide which design to use in

practice in their experiments.

n m π = 1 π = 1/2 π = 1/4 π = 1/8 π = 1/16 π = 1/32

10 6 0.117 0.165 0.234 0.331 0.467 0.661

12 7 0.213 0.302 0.426 0.603 0.853 1.206

14 8 0.033 0.046 0.065 0.092 0.131 0.185

18 10 0.025 0.036 0.051 0.072 0.101 0.143

20 11 0.125 0.177 0.251 0.354 0.501 0.709

28 15 0.08 0.113 0.159 0.225 0.318 0.45

Table 3.6: C∗ at different values of π in experiments with m = n/2 + 1
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Figure 3.5: C∗ of the experiment of 10 × 6 as a function of π
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Chapter 4

Concluding Remarks

Variance-optimal designs and bias-optimal designs are available to use when OAs of strength

three are not available. This study considers searching for an alternative class of designs

called best NOAs of strength three that outperform the two existing classes of designs in

some situations. In this study, we consider two scenarios; the number of factors being equal

to half the number of runs and its being greater than half the number of runs by one.

Construction of the best NOAs is done separately under those two scenarios using two ap-

proaches; partial folding-over of OAs of strength two and adding runs to OAs of strength

two for run sizes 10, 12, 14, 18, 20 and 28. A local search algorithm is then used to improve

the best design found from the two approaches. We conclude a design as a best NOA based

on its three dimensional projection property. When the number of factors is greater than

half the run size, BFDs are not available, and hence we compare the best NOAs with the

available variance-optimal designs. Comparisons are done using the MSE of estimated main

effects considering the effect sparsity. In conclusion, we provide a guideline for practitioners

to use in practice to choose between different designs.

Even though we consider only up to 28 runs with 15 factors, the ideas of this study can

easily be extended to larger designs.
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Appendix A

List of Designs

A.1 Designs used in the case where m = n/2; the Variance-
Optimal Design, Bias-Optimal Design and the Best NOA
respectively.

For n = 10 and m = 5



1 1 1 1 1
−1 1 −1 1 −1

1 −1 −1 1 1
−1 −1 1 1 −1

1 1 1 −1 −1
−1 1 −1 −1 1

1 −1 −1 −1 −1
−1 −1 1 −1 1

1 1 1 1 1
1 1 −1 −1 −1





1 1 1 −1 1
1 1 −1 1 1
1 −1 1 1 1

−1 1 1 1 1
−1 −1 −1 −1 1
−1 −1 −1 1 −1
−1 −1 1 −1 −1
−1 1 −1 −1 −1

1 −1 −1 −1 −1
1 1 1 1 −1





1 1 1 1 1
−1 1 −1 1 −1

1 −1 −1 1 1
−1 −1 1 1 −1

1 1 1 −1 −1
−1 1 −1 −1 1

1 −1 −1 −1 −1
−1 −1 1 −1 1
−1 −1 −1 −1 −1
−1 −1 −1 1 1



For n = 12 and m = 6



1 −1 −1 −1 1 −1
1 1 −1 1 1 1
1 1 1 −1 −1 −1
1 −1 1 1 1 −1
1 −1 1 1 −1 1

−1 −1 −1 −1 −1 −1
−1 1 −1 1 1 −1
−1 −1 −1 1 −1 1
−1 −1 1 −1 1 1

1 1 −1 −1 −1 1
−1 1 1 1 −1 −1
−1 1 1 −1 1 1





−1 1 1 1 1 1
1 −1 −1 −1 −1 1

−1 1 −1 −1 −1 1
−1 −1 1 −1 −1 1
−1 −1 1 −1 1 1
−1 −1 −1 1 1 1

1 −1 −1 −1 −1 −1
−1 1 1 1 1 −1

1 −1 1 1 1 −1
1 1 −1 1 1 −1
1 1 −1 1 −1 −1
1 1 1 −1 −1 −1





1 1 1 1 1 1
−1 1 −1 1 −1 1

1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1

1 1 1 −1 −1 −1
−1 1 −1 −1 1 −1

1 −1 −1 −1 −1 1
−1 −1 1 −1 1 1

1 −1 1 −1 1 −1
−1 1 1 −1 −1 1
−1 −1 −1 1 1 1

1 1 −1 1 −1 −1
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For n = 14 and m = 7



−1 −1 1 −1 1 1 −1
−1 −1 −1 1 −1 1 1

1 −1 −1 −1 1 −1 1
−1 −1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 1 −1
1 1 1 −1 −1 −1 1
1 1 −1 1 1 1 −1

−1 1 −1 1 1 −1 1
1 −1 1 1 −1 1 1
1 −1 1 1 1 −1 −1

−1 1 1 −1 1 1 1
−1 1 1 1 −1 −1 −1

1 1 1 1 1 1 1
1 1 1 −1 −1 −1 −1





1 −1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1 −1
−1 −1 −1 1 −1 −1 −1
−1 −1 −1 −1 1 −1 −1
−1 −1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 −1 1
−1 1 1 1 1 1 1

1 −1 1 1 1 1 1
1 1 −1 1 1 1 1
1 1 1 −1 1 1 1
1 1 1 1 −1 1 1
1 1 1 1 1 −1 1
1 1 1 1 1 1 −1





1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1

1 −1 −1 1 1 −1 −1
−1 −1 1 1 −1 −1 1

1 1 1 −1 −1 −1 −1
−1 1 −1 −1 1 −1 1

1 −1 −1 −1 −1 1 1
−1 −1 1 −1 1 1 −1
−1 −1 −1 −1 −1 −1 −1

1 −1 1 −1 1 −1 1
−1 1 1 −1 −1 1 1

1 1 −1 −1 1 1 −1
−1 −1 −1 1 1 1 1

1 −1 1 1 −1 1 −1



For n = 18 and m = 9



−1 1−1 1−1−1−1−1 1
1 1 1−1 1−1−1−1 1

−1−1 1−1 1−1 1−1−1
1−1−1−1 1−1 1 1 1

−1−1 1 1 1 1−1 1−1
1 1 1−1−1 1 1−1−1

−1 1−1 1 1 1 1−1−1
−1 1−1−1 1−1−1 1−1
−1 1−1−1−1 1 1 1 1

1 1 1 1−1−1−1 1−1
1 1 1 1 1 1 1 1 1

−1−1 1−1−1 1−1−1 1
1−1−1 1−1−1 1−1−1
1−1−1−1−1 1−1 1−1
1−1−1 1 1 1−1−1 1

−1−1 1 1−1−1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1−1−1−1−1−1





1−1 1−1−1−1 1 1−1
1−1 1−1 1 1 1 1 1

−1−1−1−1 1 1−1 1−1
−1−1 1 1−1 1 1−1−1
−1−1 1 1 1−1−1 1−1

1−1−1 1−1 1−1 1 1
−1−1 1−1−1−1−1−1 1
−1−1−1 1−1−1 1 1 1

1−1−1 1 1−1 1−1−1
−1 1−1 1 1 1−1−1 1
−1 1−1 1−1−1−1−1−1

1 1 1 1−1−1 1−1 1
1 1−1−1 1−1−1 1 1
1 1−1−1−1 1 1−1 1

−1 1 1−1 1−1 1−1−1
1 1−1 1 1 1 1 1−1
1 1 1−1 1 1−1−1−1

−1 1 1−1−1 1−1 1 1





−1−1−1−1−1−1−1−1−1
1−1 1−1 1−1 1−1 1

−1−1−1 1 1−1−1 1 1
1−1 1 1−1−1 1 1−1

−1 1 1 1 1−1−1−1−1
1 1−1 1−1−1 1−1 1

−1 1 1−1−1−1−1 1 1
1 1−1−1 1−1 1 1−1

−1−1−1−1−1 1 1 1 1
1−1 1−1 1 1−1 1−1

−1−1−1 1 1 1 1−1−1
1−1 1 1−1 1−1−1 1

−1 1 1 1 1 1 1 1 1
1 1−1 1−1 1−1 1−1

−1 1 1−1−1 1 1−1−1
1 1−1−1 1 1−1−1 1
1 1 1 1 1 1 1 1 1
1−1−1−1−1−1−1−1−1



For n = 20 and m = 10



−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 1
−1 −1 −1 −1 1 1 1 1 1 −1
−1 −1 1 1 −1 −1 1 1 1 1
−1 −1 1 1 1 1 −1 −1 1 −1
−1 1 −1 1 −1 1 1 1 −1 −1
−1 1 −1 1 1 −1 −1 1 1 1
−1 1 1 −1 −1 1 1 −1 1 1
−1 1 1 −1 1 1 −1 1 −1 1
−1 1 1 1 1 −1 1 −1 −1 −1

1 −1 −1 1 −1 1 −1 1 1 1
1 −1 −1 1 1 1 1 −1 −1 1
1 −1 1 −1 −1 1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 1
1 −1 1 1 1 −1 −1 1 −1 −1
1 1 −1 −1 1 −1 1 1 −1 1
1 1 −1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 −1 1 −1 1 −1
1 1 1 −1 −1 −1 −1 1 1 −1
1 1 1 1 −1 1 −1 −1 −1 1





1 −1 −1 −1 −1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 −1 −1 −1

−1 −1 1 −1 −1 −1 −1 1 −1 −1
−1 −1 −1 1 −1 −1 −1 −1 1 −1
−1 −1 −1 −1 1 −1 −1 −1 −1 1
−1 1 1 1 1 1 −1 −1 −1 −1

1 −1 1 1 1 −1 1 −1 −1 −1
1 1 −1 1 1 −1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 −1 −1 −1 1

−1 1 1 1 1 −1 1 1 1 1
−1 −1 1 1 1 1 −1 1 1 1

1 1 −1 1 1 1 1 −1 1 1
1 1 1 −1 1 1 1 1 −1 1
1 1 1 1 −1 1 1 1 1 −1
1 −1 −1 −1 −1 −1 1 1 1 1

−1 1 −1 −1 −1 1 −1 1 1 1
−1 −1 1 −1 −1 1 1 −1 1 1
−1 −1 −1 1 −1 1 1 1 −1 1
−1 −1 −1 −1 1 1 1 1 1 −1
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1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 1
−1 −1 −1 −1 1 1 1 1 1 −1
−1 −1 1 1 −1 −1 1 1 1 1
−1 −1 1 1 1 1 −1 −1 1 −1
−1 1 −1 1 −1 1 1 1 −1 −1
−1 1 −1 1 1 −1 −1 1 1 1
−1 1 1 −1 −1 1 1 −1 1 1
−1 1 1 −1 1 1 −1 1 −1 1
−1 1 1 1 1 −1 1 −1 −1 −1

1 −1 −1 1 −1 1 −1 1 1 1
1 −1 −1 1 1 1 1 −1 −1 1
1 −1 1 −1 −1 1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 1
1 −1 1 1 1 −1 −1 1 −1 −1
1 1 −1 −1 1 −1 1 1 −1 1
1 1 −1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 −1 1 −1 1 −1
1 1 1 −1 −1 −1 −1 1 1 −1
1 1 1 1 −1 1 −1 −1 −1 1



For n = 28 and m = 14



−1−1−1−1−1−1−1−1−1−1−1−1−1−1
−1−1−1−1−1−1−1−1 1 1 1 1 1 1
−1−1−1−1−1 1 1 1−1−1−1 1 1 1
−1−1−1 1 1−1−1 1−1 1 1−1−1 1
−1−1 1−1 1−1 1 1 1−1 1−1 1−1
−1−1 1 1−1 1 1−1−1 1 1 1−1−1
−1−1 1 1 1 1−1−1 1−1−1 1−1 1
−1 1−1−1 1 1 1−1 1 1−1−1−1−1
−1 1−1 1−1−1 1 1 1−1−1 1−1−1
−1 1−1 1 1 1−1−1−1−1 1−1 1−1
−1 1 1−1−1 1−1 1 1−1 1−1−1 1
−1 1 1−1 1−1−1 1−1 1−1 1 1−1
−1 1 1 1−1−1 1−1−1 1−1−1 1 1
−1 1 1 1 1 1 1 1 1 1 1 1 1 1

1−1−1−1 1 1−1 1 1 1 1 1−1−1
1−1−1 1−1 1 1−1 1−1 1−1 1 1
1−1−1 1 1−1 1−1 1 1−1 1 1−1
1−1 1−1−1−1 1 1 1 1−1−1−1 1
1−1 1−1 1 1−1−1−1 1−1−1 1 1
1−1 1 1−1−1−1 1−1−1 1 1 1−1
1−1 1 1 1 1 1 1−1−1−1−1−1−1
1 1−1−1−1 1 1 1−1 1 1−1 1−1
1 1−1−1 1−1 1−1−1−1 1 1−1 1
1 1−1 1−1 1−1 1−1 1−1 1−1 1
1 1−1 1 1−1−1 1 1−1−1−1 1 1
1 1 1−1−1 1−1−1 1−1−1 1 1−1
1 1 1−1 1−1 1−1−1−1 1 1−1 1
1 1 1 1−1−1−1−1 1 1 1−1−1−1





1−1−1−1−1−1−1−1−1 1−1 1 1 1
−1 1−1−1−1−1−1−1 1−1 1 1 1−1
−1−1 1−1−1−1−1 1−1 1 1 1−1−1
−1−1−1 1−1−1−1−1 1 1 1−1−1 1
−1−1−1−1 1−1−1 1 1 1−1−1 1−1
−1−1−1−1−1 1−1 1 1−1−1 1−1 1
−1−1−1−1−1−1 1 1−1−1 1−1 1 1

1 1−1 1−1−1−1 1−1−1−1−1−1−1
1−1 1−1−1−1 1−1 1−1−1−1−1−1

−1 1−1−1−1 1 1−1−1 1−1−1−1−1
1−1−1−1 1 1−1−1−1−1 1−1−1−1

−1−1−1 1 1−1 1−1−1−1−1 1−1−1
−1−1 1 1−1 1−1−1−1−1−1−1 1−1
−1 1 1−1 1−1−1−1−1−1−1−1−1 1
−1 1 1 1 1 1 1 1 1−1 1−1−1−1

1−1 1 1 1 1 1 1−1 1−1−1−1 1
1 1−1 1 1 1 1−1 1−1−1−1 1 1
1 1 1−1 1 1 1 1−1−1−1 1 1−1
1 1 1 1−1 1 1−1−1−1 1 1−1 1
1 1 1 1 1−1 1−1−1 1 1−1 1−1
1 1 1 1 1 1−1−1 1 1−1 1−1−1

−1−1 1−1 1 1 1−1 1 1 1 1 1 1
−1 1−1 1 1 1−1 1−1 1 1 1 1 1

1−1 1 1 1−1−1 1 1−1 1 1 1 1
−1 1 1 1−1−1 1 1 1 1−1 1 1 1

1 1 1−1−1 1−1 1 1 1 1−1 1 1
1 1−1−1 1−1 1 1 1 1 1 1−1 1
1−1−1 1−1 1 1 1 1 1 1 1 1−1



35





−1−1−1−1 1 1 1−1−1 1 1 1 1−1
−1−1 1 1 1−1 1 1 1−1 1−1 1−1
−1 1−1−1 1−1−1 1−1−1 1 1 1 1

1−1−1−1−1 1−1 1 1−1 1 1 1−1
1 1 1−1 1 1 1 1 1 1 1 1 1 1
1 1 1 1−1−1−1 1 1−1−1−1 1 1
1−1−1 1−1−1 1 1−1 1−1 1 1−1
1 1−1 1 1−1−1−1 1−1 1 1−1−1

−1 1−1−1−1−1 1 1 1 1 1−1−1−1
1 1−1−1−1 1−1−1 1 1−1 1−1 1

−1−1−1−1−1−1−1−1−1−1−1−1−1−1
1−1−1 1 1 1−1 1−1 1 1−1−1 1

−1 1−1 1 1 1−1 1 1 1−1−1 1−1
−1 1 1 1−1 1−1 1−1−1 1 1−1−1

1 1−1−1 1 1 1 1−1−1−1−1−1−1
1−1 1−1 1−1−1 1 1 1−1 1−1−1
1 1 1−1−1−1−1−1−1 1 1−1 1−1

−1 1 1−1−1 1 1−1 1−1−1 1 1−1
1−1 1 1−1 1 1−1 1 1 1−1−1−1
1−1 1 1 1 1−1−1−1−1−1 1 1−1
1−1−1−1 1−1 1−1 1−1−1−1 1 1

−1−1−1 1−1−1−1−1 1 1 1 1 1 1
−1−1−1 1−1 1 1 1 1−1−1 1−1 1
−1−1 1−1 1 1−1−1 1−1 1−1−1 1

1−1 1−1−1−1 1 1−1−1 1 1−1 1
−1−1 1−1−1 1−1 1−1 1−1−1 1 1
−1 1 1 1 1−1 1−1−1 1−1 1−1 1

1 1−1 1−1 1 1−1−1−1 1−1 1 1





−1−1−1−1−1−1−1−1−1−1−1−1−1−1
1 1−1−1 1 1−1−1 1 1 1−1 1−1
1−1−1 1−1−1 1−1 1 1 1−1 1 1

−1 1 1−1−1−1 1 1 1−1 1−1 1−1
−1−1−1−1−1 1 1−1−1 1 1 1 1−1

1−1 1−1−1 1−1 1−1 1−1−1 1 1
1 1−1 1−1 1 1 1−1−1−1−1−1−1

−1−1 1 1−1−1 1 1−1−1 1 1−1 1
1 1−1−1−1 1−1 1 1−1 1 1−1 1

−1−1 1 1−1 1−1 1 1 1 1−1−1−1
1 1 1 1−1−1−1−1−1 1 1 1−1−1

−1 1−1 1−1−1−1 1 1 1−1 1 1 1
−1 1 1 1 1−1 1−1−1 1−1−1 1−1
−1 1 1 1−1 1−1−1−1−1 1−1 1 1

1 1 1 1 1 1 1 1−1 1 1 1 1 1
−1−1−1 1 1 1 1 1 1−1−1−1 1 1

1−1 1 1−1 1−1−1 1−1−1 1 1−1
−1 1 1−1−1 1 1−1 1 1−1−1−1 1

1 1−1−1−1−1 1−1−1−1−1 1 1 1
1−1 1−1 1 1 1−1−1−1 1−1−1 1
1−1−1 1 1 1−1−1−1 1−1 1−1 1
1 1 1 1 1−1−1−1 1−1−1−1−1 1

−1−1 1−1 1−1−1−1 1−1 1 1 1 1
−1 1−1−1 1−1−1 1−1 1 1−1−1 1
−1 1 1−1 1 1−1 1−1−1−1 1 1−1

1−1−1 1 1−1−1 1−1−1 1−1 1−1
1−1 1−1 1−1 1 1 1 1−1 1−1−1

−1 1−1 1 1 1 1−1 1−1 1 1−1−1



A.2 Designs used in the case where m = n/2+1; the Variance-
Optimal Design and the Best NOA respectively.

For n = 10 and m = 6



1 1 1 1 1 1
−1 1 −1 1 −1 1
−1 −1 1 1 −1 1
−1 −1 1 1 −1 −1

1 1 −1 −1 −1 1
−1 1 −1 −1 1 −1
−1 −1 −1 −1 1 1
−1 −1 1 −1 1 1

1 1 1 1 1 1
1 1 1 −1 −1 −1





1 1 1 1 1 1
−1 1 −1 1 −1 1

1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1

1 1 1 −1 −1 −1
−1 1 −1 −1 1 −1

1 −1 −1 −1 −1 1
−1 −1 1 −1 1 1
−1 −1 −1 −1 −1 −1

1 1 1 1 1 1
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For n = 12 and m = 7



1 1 1 1 1 1 1
−1 1 −1 1 1 1 −1
−1 −1 1 −1 1 1 1

1 −1 −1 1 −1 1 1
−1 1 −1 −1 1 −1 1
−1 −1 1 −1 −1 1 −1
−1 −1 −1 1 −1 −1 1

1 −1 −1 −1 1 −1 −1
1 1 −1 −1 −1 1 −1
1 1 1 −1 −1 −1 1

−1 1 1 1 −1 −1 −1
1 −1 1 1 1 −1 −1





1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1

1 −1 −1 1 1 −1 −1
−1 −1 1 1 −1 −1 1

1 1 1 −1 −1 −1 −1
−1 1 −1 1 1 −1 1

1 −1 −1 1 −1 1 1
−1 −1 1 −1 1 1 −1
−1 −1 −1 −1 −1 −1 −1

1 −1 1 −1 1 −1 1
−1 1 1 −1 −1 1 1

1 1 −1 −1 1 1 −1



For n = 14 and m = 8



1 1 1 1 1 1 1 1
−1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 1 −1
−1 −1 1 −1 1 1 1 1
−1 1 −1 −1 1 −1 1 1
−1 −1 1 −1 −1 1 −1 1
−1 −1 −1 1 −1 −1 1 −1
−1 −1 −1 1 −1 −1 1 1

1 −1 −1 −1 1 −1 −1 1
1 1 1 −1 −1 −1 1 −1

−1 1 1 1 −1 −1 −1 1
1 −1 1 1 1 −1 −1 −1
1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1





1 1 1 1 1 1 1 1
−1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 1 −1

1 −1 −1 1 −1 1 1 1
−1 1 −1 −1 1 −1 1 1
−1 −1 1 −1 −1 1 −1 1
−1 −1 −1 1 −1 −1 1 −1

1 −1 −1 −1 1 −1 −1 1
1 1 −1 −1 −1 1 −1 −1
1 1 1 −1 −1 −1 1 −1

−1 1 1 1 −1 −1 −1 1
1 −1 1 1 1 −1 −1 −1
1 −1 1 1 −1 1 −1 −1

−1 1 −1 −1 −1 1 1 1



For n = 18 and m = 10



−1 −1 1 −1 −1 1 −1 −1 1 1
−1 −1 1 −1 −1 1 −1 −1 1 −1
−1 −1 −1 −1 1 −1 1 −1 1 1
−1 −1 1 −1 1 −1 1 −1 −1 1
−1 −1 1 1 −1 −1 1 1 1 −1

1 1 −1 1 −1 −1 −1 1 1 1
−1 −1 1 1 1 −1 −1 1 −1 1
−1 1 −1 1 −1 −1 −1 −1 1 1

1 1 1 1 1 1 1 1 1 1
1 −1 −1 −1 1 −1 1 1 1 −1

−1 1 −1 −1 −1 1 1 1 1 1
−1 1 −1 1 1 1 1 −1 −1 −1
−1 −1 1 1 1 1 −1 1 −1 1

1 1 1 1 −1 −1 −1 1 −1 −1
1 1 1 −1 −1 1 1 −1 −1 −1

−1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 −1 −1 −1 −1 −1





−1 −1 −1 −1 −1 −1 −1 1 −1 −1
−1 1 −1 −1 1 1 −1 1 −1 1

1 1 −1 1 1 −1 1 1 1 1
1 −1 −1 1 −1 1 1 −1 1 −1

−1 −1 1 1 1 −1 −1 −1 1 1
−1 1 1 1 −1 1 −1 1 1 −1

1 1 1 −1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 1 1 −1 −1 1

−1 −1 −1 −1 −1 1 1 1 1 1
−1 1 −1 −1 1 −1 1 −1 1 −1

1 1 −1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 −1 −1 −1 1 −1 1

−1 −1 1 1 1 1 1 1 −1 −1
−1 1 1 1 −1 −1 1 −1 −1 1

1 1 1 −1 −1 1 −1 −1 1 1
1 −1 1 −1 1 −1 −1 1 1 −1
1 1 1 1 1 1 1 1 1 1

−1 −1 1 −1 −1 1 −1 −1 −1 −1
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For n = 20 and m = 11



−1 1 −1 1 1 1 1 −1 −1 1 1
1 1 −1 −1 1 1 −1 1 1 −1 −1

−1 −1 −1 1 −1 1 −1 1 1 1 1
−1 1 1 1 1 −1 −1 1 1 −1 1

1 1 1 −1 −1 1 1 −1 1 1 −1
1 1 −1 1 1 −1 −1 −1 −1 1 −1

−1 −1 −1 −1 1 −1 1 −1 1 1 1
1 1 1 1 −1 −1 1 1 −1 1 1
1 −1 −1 −1 −1 1 −1 1 −1 1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 1 1 −1 −1 −1 −1 1 −1 1 −1
−1 −1 1 −1 1 −1 1 1 1 1 −1
−1 −1 1 1 −1 1 1 −1 −1 −1 −1

1 −1 −1 1 1 −1 1 1 −1 −1 −1
1 1 −1 −1 −1 −1 1 −1 1 −1 1
1 −1 1 1 −1 −1 −1 −1 1 −1 1

−1 1 1 −1 1 1 −1 −1 −1 −1 1
−1 1 −1 1 −1 1 1 1 1 −1 −1

1 −1 1 −1 1 1 1 1 −1 −1 1
1 −1 1 1 1 1 −1 −1 1 1 −1





−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 −1 −1 1 −1 1

−1 −1 −1 1 1 −1 1 −1 −1 1 1
1 −1 1 1 −1 −1 1 −1 1 1 −1

−1 1 1 1 1 −1 −1 1 1 1 1
1 1 −1 1 −1 −1 −1 1 −1 1 −1

−1 1 1 −1 −1 −1 1 1 1 −1 −1
1 1 −1 −1 1 −1 1 1 −1 −1 1

−1 −1 −1 −1 −1 1 1 1 1 1 1
1 −1 1 −1 1 1 1 1 −1 1 −1

−1 −1 −1 1 1 1 −1 1 1 −1 −1
1 −1 1 1 −1 1 −1 1 −1 −1 1

−1 1 1 1 1 1 1 −1 −1 −1 −1
1 1 −1 1 −1 1 1 −1 1 −1 1

−1 1 1 −1 −1 1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1
1 1 1 1 1 1 1 1 1 1 1
1 −1 −1 −1 −1 1 1 −1 −1 −1 −1

−1 1 −1 1 −1 −1 −1 −1 1 −1 1
−1 −1 1 −1 1 −1 −1 1 −1 1 −1



For n = 28 and m = 15



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1−1−1 1 1−1−1−1 1 1 1−1−1−1−1
1−1−1−1−1 1 1 1−1−1−1 1 1 1−1
1−1−1−1−1 1 1−1 1 1−1 1−1−1−1

−1 1 1−1 1−1 1−1−1 1−1 1−1 1 1
1−1−1−1 1−1 1 1−1 1 1−1−1 1−1

−1 1 1−1−1 1 1 1 1 1 1−1−1−1 1
1−1 1 1−1 1−1 1−1 1 1−1−1 1 1

−1 1−1 1−1 1−1 1 1 1−1 1−1−1−1
1−1 1 1 1−1−1 1 1−1−1 1 1−1 1

−1 1−1 1−1 1−1−1−1−1 1−1 1 1−1
1−1 1−1−1 1 1−1 1−1 1−1 1−1 1

−1 1−1−1 1−1 1 1 1−1 1−1 1−1−1
1 1−1 1−1−1 1−1−1−1 1 1−1−1 1

−1−1 1 1 1−1 1−1−1 1 1 1 1−1−1
−1−1 1 1−1−1−1 1 1−1 1 1−1 1−1

1 1−1 1 1 1−1−1−1 1−1−1 1−1 1
1 1−1−1 1−1−1 1 1−1−1−1−1 1 1

−1−1 1−1 1 1−1−1 1 1−1−1 1 1−1
1 1 1−1 1 1−1−1−1−1 1 1−1 1−1
1 1 1 1−1−1 1−1 1−1−1−1 1 1−1

−1−1−1 1 1 1 1−1 1−1−1 1−1 1 1
1 1 1−1−1−1−1 1−1 1−1 1 1−1−1

−1−1−1−1 1 1−1 1−1−1 1 1 1−1 1
−1−1−1 1−1−1 1 1−1 1−1−1 1 1 1
−1−1 1−1−1−1−1−1−1−1−1−1−1−1 1
−1 1−1−1−1−1−1−1 1 1 1 1 1 1 1
−1 1 1 1 1 1 1 1−1−1−1−1−1−1−1





1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−1 1 1−1−1 1−1 1−1−1−1 1 1−1 1
−1−1 1−1−1−1 1−1 1−1 1 1−1 1 1

1−1−1 1 1−1−1−1 1 1 1−1−1 1 1
−1 1−1−1 1 1 1−1 1 1−1−1−1−1−1

1−1−1−1 1−1−1 1 1−1−1 1 1−1 1
−1 1 1 1−1−1 1−1−1 1 1 1 1 1−1

1−1 1 1−1 1 1 1 1−1 1−1−1−1−1
−1 1 1−1 1 1−1 1 1−1 1−1−1 1−1

1−1 1−1 1−1−1 1−1 1 1 1−1−1−1
1 1−1−1−1−1−1−1−1−1 1−1 1 1 1

−1−1−1 1 1 1−1−1−1−1 1 1 1 1−1
1 1 1 1 1−1 1−1 1−1−1 1 1−1−1
1−1−1 1−1 1 1−1−1 1−1 1−1−1−1
1−1 1−1−1 1−1−1 1 1−1 1 1 1−1
1 1 1−1−1−1 1 1−1 1−1−1−1 1 1
1 1−1 1−1−1−1 1 1−1−1 1−1 1−1

−1 1−1 1 1−1 1 1−1−1 1−1−1−1 1
−1−1 1 1 1 1−1 1−1 1−1 1−1 1 1
−1 1 1 1 1−1−1−1 1 1−1−1 1−1 1
−1−1−1−1 1−1 1 1−1 1−1−1 1 1−1
−1−1 1 1−1−1−1−1−1−1−1−1−1−1−1

1 1−1 1−1 1−1 1−1 1 1−1 1−1−1
−1 1−1−1−1 1−1−1 1 1 1 1−1−1 1
−1−1−1−1−1−1 1 1 1 1 1 1 1−1−1

1 1−1−1 1 1 1−1−1−1−1 1−1 1−1
1−1 1−1 1 1 1−1−1−1 1−1 1−1 1

−1−1−1 1−1 1 1 1 1−1−1−1 1 1 1
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