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Abstract

Molecular Representation Learning is essential to solving many drug discovery and compu-
tational chemistry problems. It is a challenging problem due to the complex structure of 
molecules and the vast chemical space. Graph representations of molecules are more expres-
sive than traditional representations, such as molecular fingerprints. T herefore, t hey can 
improve the performance of machine learning models. We propose SeMole, a method that 
augments the Junction Tree Variational Autoencoders, a state-of-the-art generative model 
for molecular graphs, with semi-supervised learning. SeMole aims to improve the accuracy 
of molecular property prediction when having limited labeled data by exploiting unlabeled 
data. We enforce that the model generates molecular graphs conditioned on target proper-
ties by incorporating the property into the latent representation. We propose an additional 
pre-training phase to improve the training process for our semi-supervised generative model. 
We perform an experimental evaluation on the ZINC dataset using three different molecule 
properties and demonstrate the benefits o f s emi-supervision. We p erform f urther experi-
ments on the QM9 dataset including twelve molecule properties.

Keywords: Semi-Supervised Learning; Molecular Property Prediction; Generative Models; 
Molecule Generation
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Chapter 1

Introduction

One of the challenges in the drug development pipeline is to discover small molecules
with desired properties. Testing candidate molecules experimentally in the wet lab is time-
consuming and expensive. The main challenge for computational methods is the vast chem-
ical space and the challenging nature of navigating through this space where molecule
representation learning attracts attention. Molecule representation learning has been uti-
lized by either end-to-end training or pretrained strategies to solve drug discovery problems
such as generating molecules [19, 7, 33], and molecule property prediction [11, 63, 17]. Re-
cently, advancements in learning molecule representations have been made to propose novel
molecules with targeted desired properties [12, 21, 42, 43]

Several molecular representation learning models have been designed by representing
molecules as graphs, where nodes are atoms and bonds are edges. Utilizing Graph Neural
Networks(GNNs) [59] have resulted in promising performances for unconditionally generat-
ing molecules [19, 37, 64, 49, 65]. Junction Tree Variational Autoencoders(JTVAE) [19] is
one of a state-of-the-art graph-based methods for generating molecules. This method con-
verts the graph structure to the associated tree structure of molecules by breaking them
into components predefined in the vocabulary of chemical bonds. This ensures the model
generates molecules by assembling chemically valid blocks that result in generating 100%
valid molecules.

Previous generative methods do not generate molecules conditioned on target properties,
but optimize the latent space based on a target property. [19],[33], and [7] learn the latent
representation in an unsupervised manner, minimizing the reconstruction error, and opti-
mize molecules with respect to the desired property afterward, following the optimization
approach proposed by [12]. Despite these methods’ promising performance, the optimiza-
tion approaches do not allow setting the property to a specific value and depend on the
definition of the objective function for the optimization task. Therefore They are also not
scalable for generating molecules with multiple desired properties.

Moreover, these supervised training methods assume that there is enough labeled data to
train a classifier or regressor. These solutions largely depend on the availability of labeled
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datasets, which is not the case in many real-world datasets. Recently, researchers have
proposed methods for semi-supervised graph classification [54, 16] to solve the data scarcity
problem. Therefore semi-supervised learning could be beneficial in enhancing the power of
molecule generative models.

Kang et al. [21] proposed a semi-supervised variational autoencoder (SSVAE) that con-
ditionally generates molecules without any post hoc optimization. However, SSVAE rep-
resents molecules as SMILES strings [58], which often leads the model into generating
invalid molecules. Since a single variation in text-based representation might change the
molecule structure significantly and even invalidate the molecule. Also, graph representa-
tion of molecules can be broken down into meaningful subgraphs, such as bonds and rings,
while substrings do not necessarily represent a meaningful division of the molecule structure,
which prevents us from validity checks during the generation process [64]. The SMILES rep-
resentation of molecules is also not sensitive to molecule similarities, making it hard to learn
a smooth embedding of molecules [19]. Moreover, semi-supervised learning with generative
models [24] is challenging to train end-to-end [39].

In this work, we extend a state-of-the-art generative model, JTVAE, for molecular graphs
with semi-supervised learning to learn molecular properties directly as part of the latent
representations via partial supervision. We propose an additional pre-training phase to im-
prove the training process for the semi-supervised generative model. While JTVAE achieved
state-of-the-art performance on generating molecules unconditionally, generating molecules
conditioned on target properties with limited labeled data remains largely untapped. In
conclusion, this paper makes the following contributions:

• We combine a semi-supervised model with a state-of-the-art molecular graph genera-
tive model, JTVAE, for molecule property prediction and generation of valid molecules
with desired properties.

• We improve the training process of the Semi-supervised Variational Autoencoder by
adding a pre-training phase.

• We performed an experimental evaluation on ZINC dataset for three different molecule
properties on molecule property prediction and generation with respect to target prop-
erties.

• We also performed experimental evaluations on the QM9 dataset for twelve different
molecule properties on semi-supervised molecule property prediction.

The rest of this thesis is organized as follows: Chapter 2 represents the related work.
Chapter 3 discusses the methodology of our proposed method. Chapter 4 includes exper-
iments, datasets, and results. The last section will conclude the thesis and explains the
limitations and future work.
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Chapter 2

Related Work

2.1 Molecules as graphs

Molecule structures can be represented by 2D graphs intuitively, where nodes represent
atoms and edges represent bonds. The 2D molecular graphs effectively capture pairwise
interactions between atoms in a molecule. Both nodes and edges in molecular graphs are
explained by features/attributes. Edge attributes mainly consist of bond types, being conju-
gated, or existing in a ring where node attributes include atomic mass, atom type, chirality,
aromaticity, etc. [63]. The 2D graph representation of molecules has several advantages over
other ways of representing molecule structures. First molecular graph representations are
reversible, meaning converting a molecular graph back to a molecular structure is trivial.
At the same time, this does not hold for molecular fingerprints such as Morgan (ECFP)
fingerprints [45] or physical descriptors [40]. For instance, a generated fingerprint cannot be
mapped to a molecular structure. Second string-based representation of molecules, SMILES,
cannot capture molecule similarities, meaning similar molecule structures could be repre-
sented in different SMILES strings [19]. Finally, graph representation of molecules can be
broken down to meaningful subgraphs such as bonds and rings, while substrings do not
necessarily represent a meaningful division of the molecule structure.

However, the 2D representation of molecular graphs only contains limited information
about the spatial structure of molecules as part of the node and edge attributes, which
prevents them from recognizing spatial isomerism and conformation preferences. Moreover,
there are chemical compounds that cannot be described by the graph notation, such as
molecules with ionic bonds or compounds where bonds are unstable and are formed and de-
formed. Another disadvantage of graph representations is their scalability. As the molecules
become larger, it becomes more challenging the allocate the required memory for represent-
ing their graph structure of them. Therefore computational tasks such as generating graphs
are also becoming more challenging.

3D representation of molecules could gain more meaningful information about the molecule
structure. Molecules can be represented in 3D format by incorporating cartesian coordinates
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Figure 2.1: Representation of 2D topology and 3D structures drug molecules as graphs.
(A) The molecular topology is defined by constituent elements and corresponding chemical
bonds. Nodes and edges are attributed by atomic and bond features in the node feature
matrix and edge feature matrix. (B) SchNet[48] provides molecule representation for atomic
systems that can be described with atomic types and positions.

for atoms in space, i.e., the atomistic geometry. Each molecule is represented by a set of
atoms, including their atomic types Z = (Z1, . . . , Zn) and positions R = (r1, . . . , rn). [48]
[55]. These cartesian coordinates are not static since atoms could move in reality. Therefore,
different positions are possible for the atoms in a molecule, leading to different potential
energy levels. [1]. Molecular structures with a local minimum of potential energy are called
conformers. [36]

Many methods applied on 3D molecules use SchNet [48] as a step to extract molecule
embedding [51, 62, 1, 36]. SchNet provides molecule representation for atomic systems that
can be described with atomic types and positions. The main blocks in SchNet architecture
are embedding block and interaction block. The embedding block is responsible is a linear
process applied on the atom type that maps the input to features, while the interaction block
is used to learn pairwise interaction between each atom and its neighbors. The interaction
block consists of dense layers along with continuous filter convolutional layers that generalize
convolutional layers in image applications since, unlike image pixels, atoms are located in
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continuous positions. The combination of these two components allows the interaction block
to model the pairwise interaction.

2.2 Graph Representation Learning

Advancements in Deep Learning [13] have led to remarkable success in a wide range of
real-world applications, from computer vision [56] and speech recognition [41] to genomics
[10] and drug discovery [5]. There are increasing applications among deep learning tasks
where data is represented as graphs such as Social Network [57], Protein Protein Interaction
[32], and Knowledge Graphs [18]. Extending deep learning approaches to graph data is
advantageous but challenging due to graphs’ complex nature and interdependent structure.
A few of these challenges are the variable number of nodes and their unordered structure.

Computational tasks performed on graphs can be divided into two main categories: node
level tasks and graph level tasks. The former includes tasks where data points are nodes,
such as Node Classification and Link Prediction. The latter contains tasks where each data
point is a graph, such as Graph Classification and Generation.

Before further discussion, it is important to define our meaning of graphs formally. In
this section, whenever the word graph is used, the purpose is an undirected unweighted
graph. Following the notation of [60], graphs are represented as G = (V, E) where V is
the set of nodes and n = |V | is the number of nodes. E is defined as the set of edges
between nodes. Let A denote the adjacency matrix of G such that Aij is 1 if there is an
edge between node i and node j, and it will be 0 otherwise. Each node may have features
that are represented by the matrix X. Edges could also have a feature matrix Xe.

Graph Neural Networks(GNNs) [46] are a category of neural networks focusing on ap-
plying deep learning to a wide range of applications where data is represented as graphs.
GNNs are designed to learn better node features in node-level or graph-level tasks, while an
aggregation step known as graph pooling is added in graph-level tasks to reach a graph-level
representation from multiple node-level representations. The process of learning better node
features given the graph structure, and the current node features have been called graph
filtering [38] and can be summarized as follows:

F′ = h (A, Fc) (2.1)

where F and F’ denote the current and the output node feature matrix, respectively, and h
represents the operator for graph filtering.

There is a wide range of biochemistry problems that deep learning approaches have
addressed since many tasks in this application are time-consuming and expensive to experi-
ment with in the wet lab. Molecules, proteins, drug-protein interactions, and protein-protein
networks are examples of naturally representable data as graphs. For instance, a chemical
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compound can be represented as a graph such that nodes indicate atoms and chemical
bonds indicate edges.

2.3 Molecule Representation Learning

Molecule representation learning methods are the backbone of most learning approaches
for drug discovery. They enable learning informative representation of molecular graphs for
downstream prediction tasks such as molecule property prediction. The main challenges of
this task are the variable size of molecular graphs and the generalization of the prediction
model. Message Passing Neural Networks (MPNNs)[11] is a general framework for graph
classification tasks on molecular graphs. MPNNs consists of two steps. The message passing
phase iteratively performs message functions Mt and update functions Ut on node features
at each step. The readout phase aggregates updated node embeddings to gain molecular
graph representation by the readout function R. The node embeddings are updated as
follows:

mt+1
v =

∑
w∈N(v)

Mt

(
ht

v, ht
w, evw

)
(2.2)

ht+1
v = Ut

(
ht

v, mt+1
v

)
(2.3)

Where ht
v denotes the node embedding for v at step t and N(v) represents the neirborhood

of v. The readout function is invariant to permutation and operates as follows:

ŷ = R
({

hT
v | v ∈ G

})
(2.4)

Duvenaud at el. [9], Kearnes et al. [22], and Kipf Welling [28] are a few models that fit into
this framework. Directed Message Passing Networks (D-MPNNs) [63] extend MPNNs by
using messages associated with bonds instead of messages associated with nodes, preventing
the message passing process from being stuck in unnecessary loops.

Molecular property prediction models mentioned above are based on supervised training,
assuming enough labeled data to train a classifier or regressor. These solutions largely
depend on the availability of labeled datasets, which is not the case in many real-world
datasets [54, 16]. have been proposed as semi-supervised approaches to graph classification
to solve the data scarcity challenge. ASGN [16] addressed the data scarcity problem using a
semi-supervised method that predicts the most informative samples obtained by an active
learning approach. The active learning model enables the domain expert to effectively help
the model by labeling the most representative samples to add to the training data. InfoGraph
[54] is a semi-supervised graph-level representation learning method that has been evaluated
on molecular property prediction. This method employs a student-teacher framework where
the teacher model is trained on unlabeled data, and the student model is trained on the
labeled data using a supervised objective. InfoGraph maximizes the mutual information

7



between the representations learned by these two models so that the student model learns
from the teacher model. Experiments show that the semi-supervised method performs better
than the supervised version of the model.

Pre-trained models improve the generalization powers of machine learning methods. In
most cases, the distribution of the training and testing data are different, which makes the
prediction tasks challenging, particularly. At the same time, datasets are time-consuming
and expensive to annotate, and labels for each task are scarce. Pre-training models leverage
the huge unlabeled chemical space to improve out-of-distribution generalization. Hu et al.
[17] proposed a framework to compare the representation learning capabilities of different
GNNs. Their strategy for pre-training GNNs is designed at the node and graph levels. For
node-level pre-training, two self-supervised tasks are performed: attribute masking, which
refers to masking the attributes for nodes or edges and encouraging GNN to predict the
ground-truth attribute based on the neighborhood. Context prediction refers to taking a
subgraph and predicting the graph structure in the neighborhood of that subgraph. For
graph-level pre-training, a set of labels are jointly predicted for each graph. Performing the
graph-level pretraining is not solely efficient since not all the supervised tasks in pre-training
are related to the downstream task, which can result in a negative transfer. The node level
pre-training enables the model to learn domain-specific knowledge into node embeddings
that later form the graph level representations. This strategy significantly improved out-of-
distribution generalization for molecule property prediction and protein-protein interaction.

2.4 Molecular Graph Generation

One of the most significant challenges in drug discovery is discovering novel, valid chemical
compounds with desired properties. This process is time-consuming and expensive, which
led to proposed computational algorithms to tackle this challenge. Graph neural networks
have been utilized for generating molecular graphs. Generating graphs is challenging due to
node-node dependencies and the variable number of nodes and edges. Generating molecular
graphs is particularly challenging since the vast and discrete chemical space while minor
changes to the generated molecular graph lead to molecules with entirely different proper-
ties [30]. To tackle these challenges, many approaches have been proposed. Auto-regressive
approaches are the idea behind many state-of-the-art graph generation methods. In this
approach, molecules are generated atom by atom. There are domain-specific constraints
incorporated in generating the molecule, which helps to prevent the model from generating
invalid molecules. These models leverage three main categories of generative models in the
deep learning literature: Variational Autoencoders, Generative Adversarial Networks, and
Normalizing Flows.

Variational Autoencoders (VAEs)[25] map the input to a continuous latent variable
that is limited to a probability distribution like Gaussian and reconstructs the input by
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sampling from that probability distribution using the learned parameters in the latent space.
CGVAE [35], [37] use the VAE framework along with GNN-based encoders and decoders to
generate molecular graphs. Following autoregressive approaches using VAE, Jin et al. [19]
proposed Junction Tree Variational Auto-encoders (JTVAE) that convert molecular graphs
to associated tree structures of molecules by breaking them into components predefined in
the vocabulary of chemical bonds. Unlike previous methods, the molecule is generated by
putting these chemical blocks together instead of generating molecules atom by atom, which
helps generate valid molecular structures.

Generative Adversarial Networks (GANs) [14] consists of two networks. The generator
network learns a mapping from a Gaussian noise to the data distribution. The discrimina-
tor networks distinguish samples generated by the generator (fake samples) from ground
truth data (real samples). GANs have been widely used for generating molecular graphs.
[64] uses GANs along with a Reinforcement Learning(RL) agent that optimizes the gener-
ated molecules by incorporating positive and negative rewards for molecular properties or
violating chemical criteria, respectively.

Normalizing Flows (NFs) [31] generate molecules from a prior distribution like guassian.
Data is generated using a series of invertible transformations that map the prior distribu-
tion to the data distribution. The benefits of Normalizing Flows over VAEs in the image
applications lead to applying them to molecular graphs [49]. GraphAF iteratively generates
nodes and edges based on the existing sub-graphs and incorporates domain-specific rules
such as valency check in the process, which leads to generating 100% valid molecules. The
main advantage of flow-based methods such as GraphAF over VAE-based methods is their
ability to find the exact data likelihood insead of an approximation, making the training
process more efficient. Another category besides auto-regressive models are approaches that
generate adjacency matrix, node, and edge features of the molecular graph [52] [8]. Gener-
ative models for graphs aim to learn the distribution of the graph-structured data in the
training set and generate new objects similar to them.
The task of generating molecules attempts to generate molecules with desired properties
that preferreably are valid and synthesizable.
Methods of graph generation come from three categories of deep generative models:
(1) Variational autoencoders (VAEs) (2) Generative Adversarial Networks (GANs) (3) Nor-
malizing Flows (NF). We will not discuss methods that exist out of these three categories.
However, Table 2.1 demonstrates some of these methods.

2.4.1 Variational Autoencoders for Graph Generation

Variational Autoencoders (VAEs) [25] has shown considerable performance in solving the
graph/molecule generation problem. Variational Graph Autoencoders (VGAE) [29] is an
unsupervised learning method based on VAE to learn graph-structured data that incorpo-
rates node features as a given variable to the inference model in addition to the adjacency

9



VAEs GANs NF Others
JTNN [19] GCPN [64] GraphAF [49] GraphRNN [65]

VJTNN [20] NetGAN [3] MoleculeChef [4]
SemVAE [37] MolGAN [8]
CVAE [35]

Table 2.1: Categorization of the molecule generation methods

matrix.
Inspired by VAE, VGAE consists of two components. The infenece model and the gen-
erative model. The inference model is parameterized by a two-layer Graph Convolution
network(GCN) [28]. In Equation 2.5 µ = GCNµ(X, A) and log σ = GCNσ(X, A).

q(Z | X, A) =
N∏

i=1
q (zi | X, A) , with q (zi | X, A) = N

(
zi | µi, diag

(
σ2

i

))
(2.5)

The propagation formula of each GCN layer is defined as:

GCN(X, A) = Ã ReLU
(
ÃXW0

)
W1 (2.6)

and Ã = D− 1
2 AD− 1

2 is the normalized adjacency matrix where D is the degree matrix of
the nodes.
The generated adjacency matrix is given by an inner product between latent variables.

p(A | Z) =
N∏

i=1

N∏
j=1

p (Aij | zi, zj) , with p (Aij = 1 | zi, zj) = σ
(
z⊤

i zj

)
(2.7)

where σ(.) is the logistic sigmoid function.
VGAE levreges this encoder-decoder architecture to maximize the variational lower bound
in 2.5. A Gaussian prior has been taken. Full-batch gradient descent and reparameterization
trick have been applied during training.

L = Eq(Z|X,A)[log p(A | Z)]−KL[q(Z | X, A)∥p(Z)] (2.8)

VGAE [29] has performed reasanably well on learning a meaningful embedding for link
prediction tasks. This model has been also tested on link prediction tasks without any node
features. To sum up, this model has been used as a representation learning model more
than a generative model, although it reconstucts the graph’s adjacency matrix. One of the
challenges of these models is the simplifying assumption for the prior. Also, the model only
reconstructs the adjacency matrix.
Junction tree variational autoencoder [19] is one of the state-of-the-art methods for molecule
generation based on VAEs. In this approach, molecules have been decomposed into a tree-
structured object. Molecules are decomposed into trees by changing certain vertices into a
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node in a way that the graph becomes cycle-free. In the junction trees of molecules, nodes
are a vocabulary of valid chemical substructures or components that are extracted from
training data. This tree structure demonstrates the subgraph components of the molecule.
Then these subgraphs have been combined together to form a complete molecule
The encoder consists of learning the encodings for both molecular graph and junction tree.
The tree encoding is designed to represent the subgraphs from the vocabulary of chemical
bonds, rings, and individual atoms. Then the encoding of the molecule captures how these
subgraphs should be connected to each other.
The graph is encoded by a message passing network [11] and message passing is performed
in a loopy belief propagation fashion because molecule graphs have cycles. In Equation 2.9
ν

(t)
uv is a hidden vector denoting the message from vertex u to v in the t-th iteration of the

message passing. Here, xu is the node feature vector consisting atoms’ properties and xuv

is the edge feature vector indicating the bond type between two atoms. The initial amount
for the hidden vectors are zero.

ν(t)
uv = τ

Wg
1xu + Wg

2xuv + Wg
3

∑
w∈N(u)\v

ν(t−1)
wu

 (2.9)

Messages are aggregated after T iterations of message passing as the latent vector for each
node. Equation 2.10 indicates the aggregation fomula for each vertex. The mean µG and
variance σG of the posterior approximation is calculate by a two layer network from hG, e.i,
the graph representation which is

∑
i hi/|V |. Finaly the latent representation of the graph

is sampled from a Gaussian distribution parameterized by µG and σG.

hu = τ

Ug
1xu +

∑
v∈N(u)

Ug
2ν(T )

vu

 (2.10)

Tree encoding is different from the graph encoding. Here, the encoding is inspired by belief
propagation since the tree structure is cycle-free. An arbitrary node has been picked as the
root. The message is being propagated from root to leaf nodes and another way around.
Gated Recurrent Unit(GRU) [6] is used for updating messages in each iteration:

mij = GRU
(
xi, {mki}k∈N(i)\j

)
(2.11)

where mij is the message from i-th component to j-th component and xi is a one-hot
encoding indicating the label of the component. The latent representation of each node is
calculated by Equation 2.12 aggregating all inward messages. Unlike graph encoding, here,
the tree representation is the aggregated message for the root.

hi = τ

Woxi +
∑

k∈N(i)
Uomki

 (2.12)
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For the decoder, the junction tree has been decoded by generating one node at a time. For
each node, the decoder first decides if this node has children or not. The decoder makes this
decision by calculating this probability using zT , node features and inward messages. Then
each new generated child is being labeled with

qj = softmax
(
Ulτ

(
Wl

1zT + Wl
2hij

))
(2.13)

where qj is a distribution over the chemical vocabulary.
The tree decoder minimizes the following cross entropy loss:

Lc(T ) =
∑

t

Ld (pt, p̂t) +
∑

j

Ll (qj , q̂j) (2.14)

given p̂t and q̂j as the true labels for the binary prediction of generating a new node and
its label from the vocabulary.
Then the molecular graph is formed by a graph decoder from the junction tree. The reason
for generating the tree structure is to make sure of the validity of the molecule by first
identifying the components.

The graph decoder aims to assemble the tree cluster nodes together into the correct
molecular graph. For each tree T , there is a set of potential molecular graphs G(T ). fa is
a scoring function over potential graphs and subgraphs. Let Gi be a potential subgraph
assembled the nodes in the tree starting from node i. Gi is scored by first calculating hGi ,
Then the scoring function is calculated using fa

i (Gi) = hGi · zG. Note that a is used the
indicate the position of the atoms in the junction tree.

The graph decoder is parameterized to maximize the log-likelihood of predicting correct
subgraphs starting from the tree root.

Lg(G) =
∑

i

fa (Gi)− log
∑

G′
i∈Gi

exp
(
fa (

G′
i

)) (2.15)

Figure 2.2 illustrates the method.
One of the challenges in molecule generation is to ensure that the generated graph

is semantically valid. For example, atoms’ valency is one of the constraints for a valid
molecule that should not exceed specific amounts. Moreover, although there are methods
defining the generative process as a sequence of decisions about whether one node or bond
should be inserted or not, as the number of nodes growing, it is more challenging to model
the generative process as a sequence of decisions conditioned on the constructed graph.
Moreover in this case there is no predefined order for the sequences so the permutatoin
problem remains unsolved.
Ma [37] proposed a method that addresses these problems by regularizing VAEs with validity
constraints and focusing on matrix representation of the graph that generates molecules in
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Figure 2.2: Overview of the Junction Tree Variational Autoencoder method [19]

a one-shot style.
Here, G̃ is a random graph model and the probability of sampling a graph from G̃ is defined
as follows:

N∏
i=1

1+d∏
r=1

F̃ (i, r)F (i,r)
1+t∏
i<j

Ẽ(i, j, k)E(i,j,k) (2.16)

where F̃ is the probabilty of nodes belonging to type r and Ẽ is the probability of edge
(i, j) belonging to type k.
A standard VAE[25] model parameterizes the likelihood pθ(G | z), so we are not bringing
the equations again here. Adding the regualarization for constraints the objective function
is defined as:

−LELBO(θ, ϕ) + µ
∑

i

[∫
gi(θ, z)2pθ(z)dz

] 1
2

(2.17)

where gi(θ, z) ≤ 0 is defined as the vailidity constraint function.

2.4.2 Generative Adversarial networks for Graph Generation

Generative Adversarial networks (GANs) [14] are growing in different areas of machine
learning. In this architecture, the model attempts to capture the distribution of the data
using an adversarial process. This model has two components. A generative model that aims
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to generate realistic fake samples and a discriminative model that seeks to identify real data
from the generated one. These two components work together in the training phase so that
the generative model minimizes its error and the discriminative model maximizes its accu-
racy to discriminate fake samples.
In the task of molecular graph generation, it is challenging to design molecules with desired
properties such as drug-likeness while maintaining physical laws such as chemical valency.
Since the chemical space is very large while this space is discrete and small changes in
molecule structure can change the properties drastically. Moreover, the generator should be
able to search the molecule space in whole because the distribution of the molecules with
same properties are not necessary close. [64]
Graph Convolutional Policy Network (GCPN) [64] attempts to solve this problem using
reinforcement learning and adversarial training. Reinforcement learning is capable of incor-
porating desired properties and constraints into the objective function by adding reward
functions. Reinforcment learning also gives more power to the model in order to explore
chemical space beyond the training data. Adversarial traning on the other hand is used to
let the model to make use of learning from the example molecules [64].
GCPN learns an RL agent to generates molecules iteratively by predicting the action of
adding a bond between two existing atoms or connecting a new atom or a substructure to
an exsting partially generated molecule.
The generating process is formulated as a Markov Decission Process. In Figure 2.3 each row
corresponds to an state. S = si consists of all the states in the Markov process including
all the intermediate and final graphs. The set of scafold subgraphs is also available to the
model at each state in order to make the decision of adding a bond or not. It is assumed
that G0, e.i. the intermediate graph of the first state contatins a single carbon atom.
In the next step the node embeddings are calculated using message passing by GCN [28].
Next step is action prediction. The link predicton depends on four other action predictions.
The choice of the first node that is extracted from the probability of selecting each node.
This probability is calculated from the feature vector X by mf which indicates a Multilayer
Perception(MLP). The feature vector of the first selected node Xaf irst is concatenated with
each node in the feature vector X. ms is another MLP to map the concatenated embedding
to the probability distribution of choosing each node as the second node. me is the other
MLP that produces the categorical edge type of the potential bond between the first and
second node. As the last step of the action prediction the node embeddings are aggregated
by AGG and the prbability of termination is caculated by mt from the aggregated graph
embedding.

ffirst (st) = SOFTMAX (mf (X)) , afirst ∼ ffirst (st) ∈ {0, 1}n (2.18)

fsecond (st) = SOFTMAX (ms (Xafirst , X)) , asecond ∼ fsecond (st) ∈ {0, 1}n+c (2.19)
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Figure 2.3: A overview of the GCPN method [64]

fedge (st) = SOFTMAX (me (Xafirst , Xasecond )) , aedge ∼ fedge (st) ∈ {0, 1}b (2.20)

fstop (st) = SOFTMAX (mt( AGG (X))) , astop ∼ fstop (st) ∈ {0, 1} (2.21)

After identifying the actions, the environment incorporates chemical knowledge such as va-
lency check to eliminate infeasible actions proposed by policy network. The model is able
to do this step because of the graph representaion of the molecule and it cannot be done as
a step in the generative process on a text-based representation.
The final and step rewards are designed to guide the RL agent. The final reward is the sum
of domain-specific reward and adversarial loss. The domain-specific rewards consist of prop-
erty scores such as molecular weight and druglikeness(QED). The domain-specific rewards
also incorporates penalizations for molecules that are not following some chemical criteria.
Likewise, the intermediate rewards consists of validity rewards and adversarrial rewards.
To encourage the generated molecule resembling example molecules, a Generative Adver-
sarial Network (GAN) with Graph Convolution Network [28] has been used to define an
adversarial loss [64] as follows:

min
θ

max
ϕ

V (πθ, Dϕ) = Ex∼pdata [log Dϕ(x)] + Ex∼πθ
[log Dϕ(1− x)] (2.22)

The modification of the graph at each step can be modeled as the distribution of the tran-
sition between states: p (st+1 | st, . . . , s0) =

∑
at

p (at | st, . . . s0) p (st+1 | st, . . . s0, at) where
the probability of action given states is represented as a policy network πθ. The objective
function of the policy gradient method is defined as follows to optimize a reward of molecule
properties and adversarial training:

max LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, rt(θ) = πθ (at | st)

πθold (at | st)
(2.23)
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2.4.3 Normalizing Flows for Graph Generation

Normalizing Flows [31] are another family of generative models. These models start from a
simple base distribution (e.g., Normal distribution) sequentially implement a parameterized
invertible deterministic functions in order to find the complex distribution behind the data.
These models can be trained using maximum likelihood. One of the benefits of this method
is that the invertible mapping allows the calculation of the exact data likelihood so that
we can track the distribution of the data. The density function of the real-world data is
computed as follows:

pZ(z) = pE
(
f−1

θ (z)
) ∣∣∣∣∣det ∂f−1

θ (z)
∂z

∣∣∣∣∣ (2.24)

where f : E → Z is an invertible transformation and ϵ ∼ pE(ϵ) is the base distribution. In
the generative process of NF, for each data point z, the exact density can be calculated by
ϵ = f−1

θ (z). For the sampling, z can be sampled from pZ(z) by first sample ϵ from pE(ϵ)
and then feed ϵ to the feed forward network and calculate z

GraphAF [49] is an autoregressive and flow-based model that generates nodes and bonds
based on the previous molecule substructures. This model can be trained end-to-end from a
base distribution to the molecule graph. This sequential generation allows leveraging chem-
ical knowledge for valency checking and incorporating chemical knowledge.
Despite the benefits of autoregressive models for molecule generation, the sequential gen-
eration performs slowly. [49] attempted to solve this challenge by calculating the exact
likelihood of the mapping from data to latent space in parallel with the autoregressive
model mapping the latent space to data.
GraphAF starts from an empty graph. At each step a new node Xi is generated according
to p(Xi|Gi). Then the edges between the current graph and the new node is generated
sequentially according to p(Aij |Gi, Xi, Ai,1:j−1, This process is illustrated in Figure 2.4.
In this method node feature is a one-hot vector that indicates the atom type. Therefore,
both atom and edge feature are discrete that cannot be the input to a flow-based model.
Dequantization teqnique [27] has been used to solve this issue. In this teqniqe discrete data
is being converted to continuous by adding a real-valued noise. The conditional distribution
for the generation is defined as follows:

p
(
zX

i | Gi

)
=N

(
µX

i ,
(
αX

i

)2
)

where µX
i = gµx (Gi) , αX

i = gαx (Gi)
(2.25)

p
(
zA

ij | Gi, Xi, Ai,1:j−1
)

= N
(

µA
ij ,

(
αA

ij

)2
)

, j ∈ {1, 2, . . . , i− 1}

where µA
ij = gµA (Gi, Xi, Ai,1:j−1) , αA

ij = gαA (Gi, Xi, Ai,1:j−1)
(2.26)
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Figure 2.4: An overview of the GraphAF method [49]

In the above equations, given Gi, the current subgraph, Relational GCN(R-GCN) [47], has
been used for the message passing and compute the node embeddings and consequently,
the sub-graph embedding. gµ and gα are positive and unconstrained scalar functions to
calculate the mean and deviation. Here these functions are parameterized neural networks.
GraphAF can leverage chemical rules such as valency constraint in each generation step.
Here is the valency constraint for ith and jth atoms:

∑
j

|Aij | ≤ Valency (Xi) and
∑

i

|Aij | ≤ Valency (Xj) (2.27)

2.5 Semi-supervised Learning for Molecular Graphs

Semi-supervised learning is particularly beneficial for chemistry applications due to the vast
unlabeled chemical space and frequently available partially labeled data in the pharmaceu-
tical and precision agriculture industry. ASGN [16] addressed the data scarcity problem
using a semi-supervised method that predicts the most informative samples obtained by an
active learning approach. ASGN [16] uses two Graph neural networks. A teacher model and
a student model. For the teacher model, they train it in a semi-supervised learning fashion.
The training is guided by the summation of three different losses. Reconstruction loss for
node-level pseudo labels. The idea is that the property prediction model should be able to
recover the atoms and bonds from the embedding. Clustering loss for graph-level pseudo
labels. It learns the distribution of the molecular space. The last one is the property loss
that is only optimized on the labeled dataset. These losses are optimized on both labeled
and unlabelled data. For the student network, the weight is transferred from the teacher

17



network after training the semi-supervised teacher model. It is used to finetune the model
for the downstream property prediction task. The active data selection component chooses
the most informative data to add to the labeled data and retrain the model with the new
labeled dataset. ASGN uses the molecule embeddings by the teacher model to select a small
batch of the most diversified molecules in the chemical space by calculating the distance
between molecule embeddings. In each iteration, they choose a subset of data that maxi-
mizes the distance between labeled and unlabeled sets. InfoGraph [54] is a semi-supervised
graph-level representation learning method that has been evaluated on molecular property
prediction. This method employs a student-teacher framework where the teacher model is
trained on unlabeled data, and the student model is trained on the labeled data using a
supervised objective. InfoGraph maximizes the mutual information between the represen-
tations learned by these two models so that the student model learns from the teacher
model.

Semi-supervised learning using the generative models optimizes the prediction jointly
with a Variational Autoencoder over the input data [24, 39, 50]. The latent representation
is divided into a structured and unstructured part, where the structured part is enforced
to represent labels of data points. Only part of the labels is provided during the training;
therefore, the model learns the latent representation in a semi-supervised setting. This
approach has achieved state-of-the-art performance on image classification [24, 39] and
speech synthesis [15] with partially labeled data [26]. Kang et al. [21] proposed a method
for conditionally generating molecules inspired by semi-supervised learning with generative
models [24].
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Chapter 3

Methodology

In this section, we first introduce our problem definition. Then we propose our method,
SeMole, for semi-supervised Junction Tree Variational Autoencoder. Afterward, we present
a modified version by adding a pretraining phase to training, which we call SeMolePretrained.

3.1 Problem Definition

Given a set of labeled molecular graphs GL = {G1, G2, . . . Gl} with corresponding property
{y1, y2, ...yl} and a set of unlabeled molecular graphs {Gl+1, . . . , Gl+u}, our goal is to learn
a model that predicts the set of labels {yl+1, ..., yl+u} for the unlabeled molecular graphs
as part of its latent representation. This model should be able to reconstruct the molecular
graph G from the learned latent representation. Therefore, changing the labels will lead to
generating new molecular graphs conditioned on the target labels.

3.2 SeMole

Our method extends Junction Tree Variational Autoencoder to a semi-supervised generative
model for molecular graph property prediction. We propose a semi-supervised generative
model consisting of three latent variables zG, zT , and y. Figure 3.1 shows the graphical
model. y represents the molecular graph’s high-level property, such as partially observed
solubility. Following Junction Tree Variational Autoencoder, the molecular graph is decom-
posed to a junction tree by replacing each cluster with a node, and zT represents the tree
structure and the clusters in the tree. zG represents these clusters’ connectivity and how
they are connected in the original graph. zT and zG are unobserved. y, zT and zG are
sampled from a normal distribution.
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Figure 3.1: Probabilistic semi-supervised model on molecules represented by graphs and
trees. Left: Generative Model. Middle: Unsupervised Inference Model. Right: Supervised
Inference Model.

pθ(y) = N(y|0, 1)

pθ(zT ) = N(zT |0, 1), pθ(zG) = N(zG|0, 1)

pθ(G|zG, T, y) = f(G; zG, T, y, θ), pθ(T |zT , y) = g(T ; zT , y, θ)

(3.1)

Although molecular graph generation - pθ(G|zG, T, y) depends on junction tree T , which
in turn depends on y already, a deliberate choice was made to make both molecular graph
and junction tree generation process dependent on y. This is justified because some stereoiso-
mers (and constitutional isomers) pairs can have drastically different molecular properties.
It is the responsibility of the graph decoder to select the proper connectivity of the clusters
that give rise to the isomer with the desired property. For that reason, latent variable y is
also provided to the graph decoder.

3.2.1 Objective

Our goal is to approximately maximize the log-likelihood for both the tree structure and
the molecular graph by maximizing a variational lower bound (ELBO) for observed and
unobserved y. First, for the case where y is observed the objective function is denoted as
follows:

log pθ(G, T, y) ≥ Eqϕ(zT ,zG|T,G,y)
[
log pθ(G|T, zG, y) + log pθ(T |zT , y)

+ log pθ(zT ) + log pθ(zG) + 2 ∗ log pθ(y)

− log qϕ(zT |T )− log qϕ(zG|G)
]

= −L(T, G, y)

(3.2)
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Figure 3.2: An overview of SeMole. Following JTVAE [19], The encoder consists of learning
the latent representation of both molecular graph and junction tree. The tree encoding
is designed to represent the subgraphs from the vocabulary of chemical bonds, rings, and
individual atoms. Then the encoding of the molecule captures how these subgraphs should
be connected. The target property, y, is also predicted by the representations learned by
the encoders as a latent representation. The decoders take the concatenation of zT and zG

with y and generate a tree-structure graph using valid subgraphs derived from a vocabulary
of chemical bonds. The subgraphs in the tree are then assembled into a molecular graph.

For the case where the label corresponding to a data point is unobserved, we approximate
pθ(zG, zT , y|T, G) using a posterior function qϕ(zG, zT , y|T, G) modelled by neural networks.
The detailed derivation could be found in the appendix. The unlabelled dataset objective
is as follows:

log pθ(G, T ) ≥ Eqϕ(zT ,zG,y|T,G)
[

log pθ(G|T, zG, y) + log pθ(T |zT , y)

+ log pθ(zT ) + log pθ(zG) + 2 ∗ log pθ(y)

− log qϕ(zT |T )− log qϕ(zG|G)− log qϕ(y|T, G)
]

=
∑

y

[
− L(T, G, y)

]
+H

(
q(y|T, G)

)
= −U(T, G)

(3.3)

Following [24], it is desirable to add a loss so the distribution qϕ(y|T, G) can be learnt with
the labelled dataset. This yields our final objective function:

J a =
∑

(T,G,y)∼D
L(T, G, y) +

∑
(T,G)∼D

U(T, G) + a · E
[
log qϕ(y|T, G)

]
(3.4)

The reconstruction loss follows the JTVAE[19] loss function consisting of a topological
and label prediction for the tree structure and the prediction of correct subgraphs for

21



Algorithm 1 Learning in SeMole
1: (ϕ, θ, WG, WT )← initializeModelParameters()
2: while training() do
3: D ← getRandomMiniBatch()
4: Ti ← decomposeToTree(Gi)
5: HGi ← encodeGraph(Gi, WG)
6: HT i ← encodeTree(Ti, WT )
7: yi ∼ qϕ(yi|HGi, HT i)
8: zT i ∼ qϕ(zT i|HT i, yi) zGi ∼ qϕ(zGi|HGi, yi)
9: J a ← Equation 3.4

10: (gϕ, gθ, gWG
, gWT

)← (∂J a

∂ϕ , ∂J a

∂θ , ∂J a

∂WG
, ∂J a

∂WT
)

11: (ϕ, θ, WG, WT )← (ϕ, θ, WG, WT ) + Γ(gϕ, gθ, gWG
, gWT

)
12: end while

the graph structure. However, unlike JTVAE[19], the graph decoder and the tree decoder
generate data conditioned on the target property. The last term is a mean squared error
loss that is added for supervised property prediction.

3.3 Optimization

The paramaters of SeMole’s encoder, regressor and decoder components are optimized
jointly using the objective function in Equation 3.4. Algorithm 1 is the pseudo code of
SeMole’s training algorithm.

For each iteration, a random mini batch is drawn from our dataset, either labelled or
unlabelled; Molecular graphs are then decomposed into junction trees. Note that none of
decomposeToTree(), encodeGraph() and encodeTree() are modified in this project. Our
added regressor network - qϕ(yi|HGi, HT i) is modeled as a 2-layer feed-forward neural net-
work that takes the input from the result of tree and graph encoding. Latent variables zT

and zG are drawn from the normal distribution generated conditioned on y and their re-
spective hidden layer H. The model parameters’ gradient on objective function is computed
for each random mini-batch of training samples and optimized using Adam [23].

3.4 Pretraining

Semi-supervised Variatiatioanl Autoencoders [24] are challenging to train end-to-end due
to their multiple stochastic latent variables [39]. Since this model was unable to converge
end-to-end, Kingma et al. stacked a pretrained feature extractor to their method, which
improves the performance specifically on lower percentage of labeled data. Here we propose
a pretraining version of SeMole called SeMolePretrained by setting the coefficient of the super-
vised loss, α in Equation 3.4, to zero for the first ten training epochs. Since the supervised
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loss decreases during the training instead of assigning α to a constant number, we gradually
increase α during the training until it reaches the maximum.

pretraining enables this method to first train the Junction Tree Variational Autoencoder
using the unsupervised part of the objective function. Then gradually add the supervised
part of the objective function by increasing the value of α.
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Chapter 4

Experiments

We evaluate the effectiveness of our proposed methods for two tasks: molecular property
prediction and conditionally generating molecules with desired properties.

We vary the percentage of the labeled data (5%, 10%, 20%, and 50%) in the molecular
property prediction experiments to evaluate the semi-supervised component of our method.
We save 5% of the training set for validation. The property prediction task is evaluated by
Mean Absolute Error (MAE) between the ground truth target property and the predicted
property on the testing dataset, which consists of 10000 molecules.

Considering the prior distribution of target properties in the model, we normalize the
properties to have a mean of 0 and a standard deviation of 1. We set the batch size to 16
and the learning rate to 0.001. The dimension of zT and zG is set to 56. The tree encoder
consists of two GRU networks, and the graph decoder is a Message Passing Neural Network.

We use SSVAE [21] as the baseline which also is a semi-supervised variational autoen-
coder but representing molecules as SMILES representation instead of molecular graphs.
The results are copied from the original paper since we use the same experimental design
as our baseline. We further perform an ablation study for three different versions of our
proposed model to assess the impact of semi-supervision and pretraining.

We developed a supervised version of SeMole by eliminating the unlabeled data from
training to show the impact of semi-supervised learning as a solution to label scarcity. There-
fore, SeMoleSupervised only takes the labeled portion of the training data as the input. Our
goal is to show the benefits of leveraging unlabeled data compared to supervised training.

We use the trained models on 50% labeled data to generate molecules conditioned on tar-
get properties and set the properties to different specific values. We also generate molecules
unconditionally. Following our baseline [21], during the generation of molecules, we check
the validity of the generated molecules using RDKit package [34], and we discard invalid
molecules, or molecules that already exist in the training data or are already generated by
the decoders before. We continue this process until we generate 3000 molecules or we reach
the limit of 10000 generated molecules. Then we label the generated molecules for the target
properties to assess whether their properties are close to the target properties.
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We perform further experiments on another dataset to compare the SeMole’s perfor-
mance on Semi-Supervised molecule property prediction with two state-of-the-art semi-
supervised GNNs. We used InfoGraph [54] and ASGN [16] as our baselines for this task.
InfoGraph focuses on effectively learning whole graph representations in an unsupervised or
semi-supervised fashion. The method maximizes the mutual information between the entire
graph representation and all the substructure representations for the unsupervised task.
The semi-supervised version consists of two separate encoders, similar to the unsupervised
version. On top of that idea here, the model also maximizes the mutual information of
the representations learned by the two encoders at all levels(layers). The main difference
between this method and SeMole is that InfoGraph maximizes the mutual information be-
tween supervised and unsupervised encoders; however, SeMole jointly learns the supervised
and unsupervised network and predicts the target as part of the latent representation. For
this experiment, following the baselines, we randomly chose 10000 samples for testing, 10000
samples for validation, and 5000 samples as labeled for training. We kept the rest of the
data unlabeled. Similar to previous experiments all molecule properties are normalized to
have a mean of 0 and a standard deviation of 1. We evaluate Mean Absolute Error(MAE)
while minimizing Mean Squared Error(MSE) in training.

4.1 Dataset

We use 310000 drug-like molecules sampled from ZINC [53]. We use the same dataset
that was also used to evaluate SSVAE [21]. Following the literature, we use three chemical
properties that are available using RDKit Package[34], i.e., molecular weight (MolWt),
Wildman-Crippen partition coefficient (LogP), and quantitative estimation of drug-likeness
(QED) which are generaly used for this task in the literature.

We also perform experiments on QM9 dataset [44] which includes 134000 molecules and
12 pre-computed quantum mechanical properties. These molecules contain 9 non-hydrogen
(heavy) atoms at most.

4.2 Results

Table 4.1 demonstrates the MAE of the molecule property prediction task with the varying
number of labels in the training dataset. We repeated the experiment three times by train-
ing the model with a new seed number each time and reported the average and standard
deviation of the MAE. The pretrained version of SeMole outperformed SSVAE in most of
the cases. SeMolePretrained achieved better performance on LogP and QED compared to
MolWt. The results show the effectiveness of the pretraining since SeMolePretrained out-
performs SeMole in all cases except in two experiments where SeMole performs slightly
better. SeMolePretrained substantially outperforms SeMoleSupervised showing the benefit of
semi-supervision while having limited labeled data. The performance of SeMolePretrained
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Table 4.1: Mean Absolute Error(MAE) of Molecule Property Prediction with Varying Per-
centage of Labeled data. SeMolePretrained outperformed SSVAE in most of the cases showing
the benefit of representing molecules as graphs and the pretraining of semi-supervised gen-
erative models for molecular property prediction with partial supervision. SeMolePretrained
substantially outperforms SeMoleSupervised showing the benefit of semi-supervision while
having limited labeled data.

% Labeled target property SSVAE SeMolePretrained SeMole SeMoleSupervised
5% MolWt 1.639± 0.577 1.658± 0.130 1.642± 0.165 1.894± 0.131

LogP 0.120± 0.006 0.117± 0.001 0.133± 0.002 0.154± 0.004
QED 0.028± 0.001 0.021± 0.000 0.038± 0.000 0.057± 0.000

10% MolWt 1.444± 0.618 1.350± 0.139 1.419± 0.149 1.597± 0.126
LogP 0.090± 0.004 0.092± 0.001 0.089± 0.000 0.127± 0.006
QED 0.021± 0.001 0.017± 0.000 0.024± 0.000 0.046± 0.000

20% MolWt 1.008± 0.370 1.069± 0.088 1.187± 0.119 1.286± 0.121
LogP 0.071± 0.007 0.070± 0.000 0.076± 0.000 0.091± 0.001
QED 0.016± 0.001 0.012± 0.000 0.011± 0.000 0.019± 0.000

50% MolWt 1.050± 0.164 1.049± 0.041 1.054± 0.387 1.243± 0.273
LogP 0.047± 0.003 0.043± 0.000 0.047± 0.000 0.061± 0.000
QED 0.010± 0.001 0.009± 0.000 0.011± 0.000 0.013± 0.000

compared to SSVAE shows the benefit of representing molecules as graphs and the pre-
training of semi-supervised generative models for molecular property prediction with partial
supervision.

Table 4.2 compares the efficacy of conditional generation of molecules for these methods.
The table demonstrates the percentage of valid, unique, and novel molecules generated by
these methods. The results show that SSVAE and SeMolePretrained demonstrate better per-
formance than SeMoleSupervised and SeMole. The main distinction between SeMolePretrained

and SSVAE is that SeMolePretrained generates 100% valid molecules. SeMolePretrained also
outperforms SSVAE on the percentage of the generated molecules with properties within
the threshold of 5% difference from the target values.

Table 4.3 compares the MAE of the semi-supervised molecule property prediction task
for SeMolePretrained, InfoGraph, and ASGN. SeMolePretrained marginally outperforms Info-
Graph in most cases; however, ASGN still significantly outperforms both methods. We
believe the main reason for the better performance in ASGN is related to the Active Learn-
ing component allowing the model to choose the most representative samples to label. In
this experiment, although we start with the same number of labeled samples for ASGN
and SeMole, the number of samples increases by the active learning component in ASGN
while it remains constant in SeMole. The number of labeled samples starts from 5000 in
both ASGN and SeMole but reaches 70,000 in ASGN while remaining constant in SeMole
through training. We hypothesize that SeMole outperforms InfoGraph since the architecture
of Junction Tree Variational Autoencoders enables the model to learn the representation of
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Table 4.2: Percentage of novel, unique, valid generated molecules. Novel molecules are those
generated molecules that do not exist in the training dataset. Molecules are evaluated by
the RDKit package [34] to determine if they represent a valid molecule structure. Unique
molecules are considered generated molecules that are not duplicated
model target property novel molecules unique molecules validity
SSVAE unconditional generation 95.0 98.5 99.3

MolWt = 250 95.7 78.3 99.6
MolWt = 350 96.2 86.9 99.5
MolWt = 450 93.4 79.1 99.3
LogP = 1.5 96.3 91.2 99.2
LogP = 3 95.2 92.8 96.4
LogP = 4.5 94.7 91.7 99.1
QED = 0.5 95.1 93.2 98.6
QED = 0.7 94.9 96.3 99.4
QED = 0.9 96.1 97.0 99.6

SeMolePretrained unconditional generation 94.6 98.0 100
MolWt = 250 94.3 80.9 100
MolWt = 350 93.6 84.1 100
MolWt = 450 95.6 80.7 100
LogP = 1.5 93.2 92.0 100
LogP = 3 96.6 91.9 100
LogP = 4.5 95.6 90.8 100
QED = 0.5 95.0 94.7 100
QED = 0.7 92.7 95.4 100
QED = 0.9 98.1 97.8 100

SeMole unconditional generation 89.1 96.4 100
MolWt = 250 93.8 78.0 100
MolWt = 350 90.9 82.6 100
MolWt = 450 94.2 90.3 100
LogP = 1.5 90.2 87.4 100
LogP = 3 89.5 86.4 100
LogP = 4.5 92.9 89.0 100
QED = 0.5 93.9 90.8 100
QED = 0.7 91.8 90.4 100
QED = 0.9 93.0 92.9 100

SeMoleSupervised unconditional generation 91.8 95.9 100
MolWt = 250 94.8 81.6 100
MolWt = 350 92.8 83.0 100
MolWt = 450 94.7 88.6 100
LogP = 1.5 88.3 89.0 100
LogP = 3 86.9 86.3 100
LogP = 4.5 90.4 91.7 100
QED = 0.5 92.0 91.8 100
QED = 0.7 90.7 89.2 100
QED = 0.9 92.9 90.0 100
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Table 4.3: Mean Absolute Error(MAE) of semi-supervised experiments on the QM9 dataset.
The table compares the MAE of the semi-supervised molecule property prediction task for
SeMolePretrained, InfoGraph, and ASGN. Target properties are all scalar values of quantum
mechanical properties for molecules in the QM9 dataset. The property values are higher in
some cases, such as R2, and lower in other properties, like ZPVE. However, all properties
were normalized for training. SeMolePretrained marginally outperforms InfoGraph in most
cases; however, ASGN still significantly outperforms both methods benefiting from the
active learning component.

target SeMolePretrained InfoGraph ASGN
Mu (0) 0.2781± 0.0239 0.3168 0.1947
Alpha (1) 0.4908± 0.0017 0.5444 0.2818
HOMO (2) 0.1426± 0.0060 0.1605 0.1190
LUMO (3) 0.1992± 0.0018 0.1659 0.1061
Gap (4) 0.2331± 0.0240 0.2421 0.2012
R2 (5) 6.08± 0.37 4.92 1.38
ZPVE(6) 0.00023± 0.00002 0.00036 0.00017
U0 (7) 0.1191± 0.0089 0.1410 0.0562
U (8) 0.1413± 0.0191 0.1702 0.0594
H (9) 0.1709± 0.0019 0.1552 0.0583
G(10) 0.1242± 0.0059 0.1592 0.0560
Cv (11) 0.1690± 0.0182 0.1965 0.0984

molecules based on a vocabulary of chemical subgraphs associated with molecule properties,
while Graph Convolution Networks used by InfoGraph do not incorporate domain-specific
subgraphs.
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Chapter 5

Conclusion

We have proposed SeMole, a semi-supervised generative model for molecular graphs. we
augmented a state-of-the-art generative model, JTVAE, for molecular graphs with semi-
supervised learning. We also added a pretraining phase to improve the training of the semi-
supervised generative model. We performed experiments on molecular property prediction
and conditional generation only using limited labeled data. These experiments were per-
formed on three properties in the ZINC dataset and twelve quantum mechanical properties
in the QM9 dataset. The SeMolePretrained outperforms SSVAE on most molecule property
prediction tasks and generates 100% valid molecules conditioned on target properties. The
ablation study showed the effectiveness of semi-supervision over supervised methods when
labeled data is limited. We also demonstrated the efficacy of our pretraining phase for
training a Semi-supervised VAE. We further showed that SeMolePretrained outperforms, In-
foGraph, a state-of-the-art semi-supervised GNN in most cases. However, an active learning
component improves the performance of the semi-supervised GNN significantly which shows
the importance of choosing the right samples for feedback on the semi-supervised model.
One of the limitations of this method is the training time. Although the computational
complexity of JTVAE is linear in the number of clusters in the trees, the high number of
parameters and the complex architecture of the model causes slow training on datasets such
as ZINC.

This thesis suggests several directions for future research. SeMolePretrained, like other
methods in the literature, predicts only one molecular property and generates molecules
conditioned on a single property. However, predicting multiple molecular properties could
improve the accuracy of the prediction and also is beneficial to discover molecules with
multiple target properties. Moreover, extending the 2D representation of molecules to 3D
representation could help learn richer latent representations, which lead to more accurate
predictions and improved molecule generation [2]. The challenge for incorporating the 3D
structure of molecules is that for most molecules, their 3D structures are not available.
Deep generative models have been developed to predict valid and stable conformations by
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taking 3D coordinates for each atom as the input [61]. Incorporating molecule properties in
generating 3D structures is still mainly unexplored.

The generalization power of a machine learning model is even more important in drug
discovery since a model that performs well in one region of the chemical space does not
necessarily has the same performance in another part of the chemical space. Therefore
random splitting that is used in state-of-the-art machine learning in many cases can not
beat more traditional methods still used by domain experts due to the arbitrary choice of
train and test sample. For example, scaffold splitting is used in drug discovery applications
instead of random splitting which splits the chemical space based on molecular graph simi-
larities [63]. Evaluating the semi-supervised molecule property prediction based on different
ways of splitting the data could be a beneficial step toward developing models with better
generalization.
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