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Abstract 

Market risk premium is one of the most important parameters in finance. 

Various estimation methods are used with the aim of accurately estimating market 

risk premium. Business and industry professionals rely and depend on accurate 

estimations of MRP. In this paper, we will propose a variation of the discounted 

cash flow model by Harris and Marston (1999) used to estimate MRP. Our model 

will seek to estimate a growth factor using volume weighted average price and 

Bollinger Bands, as opposed to using analysts’ forecasts as a proxy for growth. 

Our results show that our model is able to produce statistically significant results 

that capture market trends, while also eliminating the risk of analysts’ bias. 

Keywords:  Market Risk Premium; Discounted Cash Flow; Volume Weighted Average 

Price; Bollinger Bands 
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Chapter 1. Introduction 

Market risk premium is one of the most widely used parameters in finance. 

It defines an expected amount of compensation for the risk provided by capital 

markets. Market risk premium is the incremental return over the yield on treasury 

bills. Its application in how capital markets are valued is crucial, and ensuring a 

proper estimation is key. There are several methods to estimate market risk 

premium, each with their own advantages and disadvantages. In this paper, we 

will propose a discounted cash flow (DCF) model for estimating market risk 

premium based on the work of Harris and Marston (1999). 

Market risk premium is a key parameter in the capital asset pricing model 

(CAPM), which is widely used by practitioners today. Lally and Marsden (2003) 

explain how CAPM is used by managers to assist them in making asset allocation 

decisions, as well as helping companies calculate their cost of equity. Since market 

risk premium is key for the CAPM, it is of great importance to ensure that estimates 

are as accurate as possible. One of the most common and simple ways to estimate 

market risk premium is through the use of DCF models. A major disadvantage of 

DCF models lies in their sensitivity to how future dividends are estimated. Harris 

and Marston (1999) built a DCF model based on the Gordon Growth Model (GGM) 

to estimate market risk premium using expectational analysts’ forecasts to reach a 

growth factor. In GGM model, one of the following conditions should be satisfied 

(Harris, R., & Marston, F., 1992):  
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1- A finite horizon of dividend growth at rate g, plus an assumption about the 

asset price at the end of the year.  

2- An infinite horizon of dividend growth at a rate g. 

In this paper we make sure that over a finite horizon the asset price grows 

at a compound rate of g (Harris, R., & Marston, F., 1992). A drawback of their 

model is that analysts’ forecasts are influenced by inherent biases, so their 

application may not be fully appropriate. We will suggest a revision to the model 

that uses the same parameters but differs in how the growth factor is estimated.  

We have used volume weighted average price (VWAP) and Bollinger Bands 

in conjunction with one another to formulate the growth factor. VWAP is a metric 

that incorporates price and volumes traded to reach an average price. It is 

graphically represented by a line, similar to how a simple moving average is 

interpreted. Bollinger Bands are price envelopes that set upper and lower 

boundaries for index movement at a standard deviation above and below a moving 

average price. Together, both will be used to provide buy/sell signals that will 

influence the growth factor. 

Our results show that estimating market risk premium using a formulated 

growth factor not only helps eliminate problems caused by using analysts’ 

forecasts, but improves the models ability to adjust to market trends. Our revision 

of the model produced estimates that were more in line with actual market risk 

premium than the original model by Harris and Marston (1999). For the period of 
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1982-1998, we estimated a value for market risk premium of around 8.29%. During 

the same period, the Harris and Marston (1999) model estimated a value of 7.14%. 

Chapter 2.1 gives a brief overview of historical market risk premium models, 

outlining some categories with their respective pros and cons. Chapter 2.2 explains 

the DCF model built by Harris and Marston (1999). Chapters 2.3-2.4 go over 

VWAP and Bollinger Bands. Chapter 3 describes the methodology used in this 

study.  Our model is described in Chapter 3.1, with the application of VWAP and 

Bollinger Bands along with the strength factor outlined in Chapters 3.2-3.4. Results 

and discussions are provided in Chapter 4, closing with a conclusion in Chapter 5.  



3 

Chapter 2. Literature Review 

2.1 A Brief Review of Market Risk Premium Models 

Duarte and Rosa (2015) appropriately explain what market risk premium is, 

and historical models used to estimate it. In its essence, MRP is the amount of 

return required by investors for holding a risky market portfolio over a risk-free 

bond. MRP is derived from expectations regarding future stock market 

performance, as these returns are not directly observable. Mathematically, MRP 

can be represented by the following 

𝑀𝑅𝑃𝑡(𝑘) = 𝐸𝑡[𝑅𝑡+𝑘] − 𝑅𝑡+𝑘
𝑓

 

where 𝐸𝑡[𝑅𝑡+𝑘] is the expected return of the risky market portfolio for the 

period of 𝑡 + 𝑘, and 𝑅𝑡+𝑘
𝑓

 is the return on risk-free bonds over the same investing 

horizon. 

There are five categories for MRP models based on their assumptions. Four 

of these types of models are built to allow investors to use information available 

now to reach an estimated MRP value. Within each category, models often reach 

very similar MRP estimations. Duarte and Rosa (2015) go in depth into each model 

category, describing their pros and cons. We will go over three common MRP 

model categories and explain the advantages and disadvantages of each. 

Understanding what each of these models does well and were they fall behind will 

allow us to identify key factors needed to reach an efficient value for MRP. 
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2.1.1 Historical average of realized returns models 

These models are arguably the simplest methods used to estimate MRP. 

They use historical averages for the market return over risk-free bonds. Due to the 

simplicity of these models, there is not much that could be added to improve them. 

The major disadvantage of these models is that they are completely reliant on 

historical data, with the assumption that the past influences the future. 

2.1.2 Dividend discount models 

The major underlying assumption behind these models is that stock prices 

are purely a representation of the future cashflows to shareholders. These models 

discount future expected dividends using a rate based on MRP and the risk-free 

rate to reach current stock prices. In order to derive MRP, values are plugged into 

the dividend discount model, and an implied value for MRP is reached in order for 

discounted future cash flows to equal current prices. Advantages of these models 

include their forward-looking view and their ease of application. A major drawback 

is its sensitivity to how expected dividends are calculated. 

2.1.3 Time-series regression models 

These models assume that the value of MRP is derived from a direct 

relationship between stock returns and key economic factors. Duarte and Rosa 

(2015) discuss that in order to derive MRP, a predictive linear regression of excess 

returns is run on lagged key economic factors. Essentially, future stock returns are 

being derived from select economic factors. Advantages of these models include 

their simplicity and need for little assumptions. However, the key to accurately 
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derive MRP using time-series regressions lies in the selected key economic 

factors. 

With this in mind, we can begin to set guidelines for what makes an accurate 

and effective model. A model needs to be forward-looking and simple to apply, 

with minimal assumptions to reduce errors and inconsistencies. 

2.2 Harris and Marston (1999) DCF Model 

Harris and Marston (1999) propose a variation of the common DCF model 

for estimating market return where growth is represented by analysts’ forecasts. 

The DCF model produces an estimate for market return, which could then be used 

to derive market risk premium. The DCF model by Harris and Marston (1999) uses 

a rearranged variation of the Gordon Growth Model. The following equation 

represents the DCF model used by Harris and Marston (1999) 

𝑘 = (
𝐷1

𝑃0
) + 𝑔 

where 𝑘 represents market return, 𝐷1, is the expected next year’s dividend, 

𝑃0 is the current closing price, and 𝑔 is the expected growth rate of dividends. 

They go on to explain that the primary obstacle in using a DCF model is 

determining the growth factor. For their model, they opted to use financial analysts’ 

forecasts (FAF) of long-run growth in earnings as a proxy for growth. The mean 

value of analysts’ forecasts of five-year EPS growth is estimated from data 

provided by IBES, and then used in the model. They found that an advantage of 
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using analyst forecasts is that it can be representative of modern concerns and 

views on equity performance. This gives the model a strong forward-looking edge 

when compared to the commonly used historical average methods. This DCF 

model could be used for single stocks or any portfolio of companies. For the 

purposes of their paper, all their results were done using the S&P 500 index as the 

input data. 

A drawback in this version of the model is the inherent biases that lie in 

analyst forecasts. While using a large selection of analysts reduces this risk, it is 

still present. To eliminate the risk of these biases, our paper will present a method 

for estimating the growth factor that relies on empirical market data. We will also 

be using the S&P 500 as our input data to simplify comparisons with the original 

model. The next sections will focus on the methods used to estimate the growth 

factor, with an overall view of the improved DCF model and its results to follow. 

2.3 Overview of Volume Weighted Average Price (VWAP) 

VWAP is a benchmark used by professionals in the finance industry. VWAP 

can be used to determine and identify trends in the market. Madhavan  (2002) 

explains that an advantage of VWAP models is their computational simplicity and 

ability to incorporate trading volume into average price. The following is a basic 

mathematical interpretation of VWAP 

𝑉𝑊𝐴𝑃 =  
∑ 𝑃𝑗 × 𝑄𝑗𝑗

∑ 𝑄𝑗𝑗
 

where 𝑃𝑗 and 𝑄𝑗 refer to the price and quantity at transaction 𝑗. 
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VWAP is simple in nature and can be used in applications similar to moving 

averages. Madhavan (2002) describes how VWAP is most commonly used in an 

intraday period, allowing traders to get an idea about their performance relative to 

the market for a given day. This means that the VWAP calculation above would be 

used on a daily basis, for specific stocks or the market as a whole. For example, 

traders are happy to see a closing VWAP higher than the price paid during the day. 

VWAP gives professionals another perspective on the price of a stock using 

trade volume. During a given day, a stock’s price can vary drastically between 

transactions. Some stocks are highly traded, while other stocks see little trades on 

a day-to-day basis. Guéant and Royer (2014) highlight the bias of looking at 

closing prices alone, since they ignore trading volume, which can give deeper 

insights into the value of a stock. VWAP aims to resolve the bias for closing trades 

on a given day. 

In the industry, VWAP benchmarks can be supplemented by trading 

strategies. VWAP benchmarks give investors insight into their performance 

relative to the market. Investment banks may use trading strategies centered 

around VWAP benchmarks. Some of these strategies used by investors as 

outlined by Madhavan (2002) include direct access, forward VWAP cross, and 

guaranteed principal VWAP bid. These strategies differ in terms of trading horizon, 

placement strategy, and venue. For example, the guaranteed principal VWAP bid 

strategy directs traders to pursue their desired positions over several days, as to 

ensure that the purchase is not made during an unfavourable VWAP period. A 

major concern of this strategy is opportunity cost, since it limits when traders can 
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sell and capitalize on favourable prices. Each trading strategy has its respective 

costs that need to be considered. All these strategies use VWAP benchmarks 

calculated on a daily basis to help investors make decisions and gauge their 

performance. 

2.4 Overview of Bollinger Bands 

Bollinger Bands are price envelopes plotted above and below a simple 

moving average depending on a certain standard deviation level. Typically, a level 

of one standard deviation is used in order to calculate these upper and lower 

bands. Graphically, Bollinger Bands are represented by three lines: the top band, 

middle band, and bottom band. The middle band is representative of a simple 

moving average price. The following shows how these bands are calculated in 

Sierra Chart 

𝑇𝑜𝑝 𝐵𝑎𝑛𝑑: 𝑇𝐵𝑡
(𝐵)(𝑋, 𝑛, 𝑣) = 𝑆𝑀𝐴𝑡(𝑋, 𝑛) + 𝑣 × 𝜎𝑡(𝑋, 𝑛) 

𝑀𝑖𝑑𝑑𝑙𝑒 𝐵𝑎𝑛𝑑: 𝑀𝐵𝑡
(𝐵)(𝑋, 𝑛, 𝑣) = 𝑆𝑀𝐴𝑡(𝑋, 𝑛) 

𝐵𝑜𝑡𝑡𝑜𝑚 𝐵𝑎𝑛𝑑: 𝐵𝐵𝑡
(𝐵)(𝑋, 𝑛, 𝑣) = 𝑆𝑀𝐴𝑡(𝑋, 𝑛) − 𝑣 × 𝜎𝑡(𝑋, 𝑛) 

where 𝑋 is input data, 𝑛 is length, 𝑣 is standard deviation, and 𝑡 is the index 

or asset. 

John Bollinger (1992) explains how traders can apply Bollinger Bands to 

identify when certain stocks are overbought or oversold. When a stock’s price 

hits the top band, traders consider the stock to be overbought. Prasetijo et al. 
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(2017) explain that when a stock’s price hits the bottom band, it can be 

considered oversold. These identifiers allow for more informed decisions. 
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Chapter 3. Methodology 

3.1 A Variation of the DCF Model for Risk Premium 

The following is a non-linear, multivariate model used to estimate market 

risk premium. Our model uses a DCF model similar to that of Harris and Marston 

(1999) in order to estimate market return. The following formula is used to find 

market return 

𝐸(𝑅) =  
𝐷0(1 + 𝑔)

𝑃0
+ 𝑔 

where 𝐷0 is the dividend per share expected to be received this year, 𝑔 is 

the expected growth rate in dividends per share, and 𝑃0 is the S&P 500 closing 

price this year. 

Where this model builds on the standard DCF approach is in how 𝑔 is 

estimated. We have opted to incorporate VWAP and Bollinger Bands in tandem 

with one another to reach an estimations of future expected growth. VWAP and 

Bollinger Bands are both used to identify market trends. Market trends are a 

driving force for market performance. Hence, using VWAP and Bollinger Bands 

to capture market trends will allow us to estimate the expected effect on market 

performance. The following equation is used to derive 𝑔 

𝑔 =  𝑋1 +  𝛽𝑋2 +  𝛾𝑋3 +  𝜖 

𝑋1 = − log(
𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒(𝑡0)

𝑉𝑊𝐴𝑃 𝑃𝑟𝑖𝑐𝑒(𝑡0)
) 
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𝑋2 =  −𝑠𝑖𝑔𝑛 (
# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝑇𝑜𝑝 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑 

# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝐵𝑜𝑡𝑡𝑜𝑚 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑
)𝑠𝑖𝑔𝑛 

𝑋3 =  
# 𝑤𝑒𝑒𝑘𝑠 𝑡ℎ𝑎𝑡 𝑝𝑟𝑖𝑐𝑒 𝑎𝑏𝑝𝑣𝑒 𝑉𝑊𝐴𝑃

# 𝑤𝑒𝑒𝑘𝑠 𝑡ℎ𝑎𝑡 𝑝𝑟𝑖𝑐𝑒 𝑏𝑒𝑙𝑜𝑤 𝑉𝑊𝐴𝑃
 × 

# 𝑃 𝑎𝑏𝑜𝑣𝑒 𝐵𝐵𝐿 𝑏𝑎𝑛𝑑 

# 𝑃 𝑏𝑒𝑙𝑜𝑤𝑤 𝐵𝐵𝑙 𝑏𝑎𝑛𝑑 
 ×  

 𝑌𝑒𝑎𝑟𝑙𝑦 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒

𝑉𝑊𝐴𝑃
 

where 𝑋3 is the combination of three different dependent variables. 

Hidalgo and Goodman (2013) explain multivariable regression models as 

equations containing multiple variables used to forecast an outcome. Our model 

uses multiple variables in order to forecast an outcome for market return. 

𝐸(𝑅) ~ (P, D, 𝑋1, 𝑋2, 𝑋3) 

Archontoulis and Miguez (2015) describe how non-linear regression models 

can be used and applied. We found that a non-linear regression fit our model best 

as logarithmic and multifactor equations were used in the calculation of 

independent parameters (𝑋1 and 𝑋3). Furthermore, the model in its essence 

estimates market return using what Rhinehart (2016) describes as a “modified 

hyperbola”, which can be seen below 

𝑌 =  
𝑎𝑋

(1 + 𝑏𝑋)
 

where 𝑌 is the response variable, 𝑋 is the explanatory variable, 𝑎 and 𝑏 are 

parameters that determine the shape of the curve and the magnitude of the 𝑌 

value. 

The 𝑋1 variable represents assumptions calculated using VWAP. When the 

closing price is greater than the closing VWAP for a given year, there is a negative 
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impact on the growth factor. When the closing VWAP is greater than the closing 

price for a given year, there is a positive influence in the growth factor. The 𝑋2 

variable represents signals produced by Bollinger Bands. If the number of weeks 

per year closing near the top band is greater than the number of weeks per year 

closing near the lower band, a sign of +1 will be used. In the opposite case, a sign 

of -1 will be used instead. Buy signals introduce a positive bias, while sell signals 

introduce a negative bias. This captures the signals produced by Bollinger Bands 

for a given year. The 𝑋3 variable is a strength factor incorporating the two methods 

simultaneously, which helps interpret strong or unusual years of data. 

Once 𝑔 is computed, it can be used to complete the DCF model and reach 

an estimation for market return. MRP could then be estimated as follows 

𝑀𝑅𝑃=𝐸(𝑅)−𝑅𝑓 

3.2 Application of VWAP in Forecasting Risk Premium  

Our model incorporates VWAP to gain more insight into the price of a stock. 

For market data, we will be using the S&P 500 index. Sierra Chart is a trading and 

charting platform for financial markets. Sierra Chart also supports technical 

analysis using real time and historical data for a variety of international markets. 

Since this market data is part of the platform, using it for analytics becomes simple 

and straightforward. Our aim is to calculate VWAP for the S&P 500 using Sierra 

Chart, identify trends in the market, and collate this data as part of our process for 

estimating the growth factor.  
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To calculate VWAP for the S&P 500, we have decided to use weekly data 

as opposed to daily data. This will help simplify our model, while also correcting 

for certain daily spikes that might occur. For this, the following formula was used 

to calculate the weekly VWAP of the market 

𝑉𝑊𝐴𝑃(𝑃, 𝑛) =
∑ 𝑃𝑖 × 𝑄𝑖

𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

 

where 𝑛 refers to the number of trading days used for consideration, which 

in our case will be 5.  

The weekly VWAP prices will be plotted and compared with weekly market 

prices in order to generate buy and sell signals (Figure 1 and Figure 2). Traders 

using VWAP benchmarks will try to buy when the price is below the VWAP, or sell 

when the price is above it. Coles and Hawkins (2011) describe how this action can 

help drive the price back toward the average instead of away from it. 

Therefore, when the weekly VWAP is higher than the weekly market price, 

a positive signal will be generated, and vice versa. These weekly indicators will be 

accumulated to generate a signal for an entire year (Figure 3). To do so, we 

anchored the VWAP line so that it resets at the beginning of every year. This 

means that on January 1st, both VWAP and S&P 500 prices start at the same point. 

Resetting the VWAP every year prevents old historical data from distorting 

assumptions and estimations. 

In this paper, for the first variable (𝑋1) we have used a ratio of closing market 

price over the closing VWAP price. 
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𝑃𝑟𝑖𝑐𝑒 𝑜𝑣𝑒𝑟 𝑉𝑊𝐴𝑃 =  
𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒

𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑉𝑊𝐴𝑃 𝑃𝑟𝑖𝑐𝑒
 

When the market price is above VWAP, it will generate a sell signal which 

has a diminishing effect on the growth factor, and vice versa. As illustrated in the 

model, we have used a negative logarithmic sign to capture this impact. When the 

price is greater than the WVAP, a negative sign will be generated, and when the 

closing price is below the VWAP, the outcome is a positive number which boosts 

the growth factor. 

  



15 

 

Figure 1 - Two-year weekly VWAP (2019-2020). VWAP is anchored to the 

start of the year and includes the volumes and price of transactions over the year. 
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Figure 2 - Seventeen-year weekly anchored VWAP (2004-2020). A 

similar concept for calculation of anchored VWAP for a single year can be applied 

to all years where S&P 500 volume data is available. 
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Figure 3 - VWAP Application in Forecasting Risk Premium. This graph 

shows S&P 500 index weekly closing prices above or below VWAP. Red and 

blue arrows indicate weekly close above and below VWAP respectively. 
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3.3 Application of Bollinger Bands in Forecasting Risk 
Premium  

To incorporate Bollinger Bands into our model, we began by using a 

 twenty weeks moving average of the S&P 500 index. We then calculated 

top and bottom bands at a level of two standard deviations above and below the 

moving average price. Then by using Sierra Chart, we tracked the number of 

weeks per year where the closing price was near the top band (between 2 and 1.5 

standard deviations). When the closing price was near the top band, that would be 

interpreted as a negative indicator, and vice versa (Figure 4). 

Furthermore, we realized that the larger the number of weeks near the 

upper band, the more negative the effects on the growth factor, and vice versa. 

Due to this, in the second variable (𝑋2), we used the ratio of the number of weeks 

that the price was near the upper and lower Bollinger Bands, so that when the 

number of weeks where the price near the upper band was greater than the lower 

band, 𝑋2 would be:  

𝑋2 = −(
# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑 

# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑 
 ) 

As illustrated above, the higher ratio will lead to a higher diminishing effect 

on the growth factor.  

On the other hand, when the number of weeks where the price near the 

lower band was greater than the upper band, we have a buy signal, and we are 

expecting a positive impact on the growth factor. In this situation, 𝑋2 would be:  



19 

𝑋2 =  
# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑

# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑
 

The higher ratio will lead to a more positive effect on the growth factor.  

To abridge this effect in our model, we defined 𝑋2 as:  

𝑋2 =  −𝑠𝑖𝑔𝑛 (
# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 𝑛𝑒𝑎𝑟 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑 

# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒  𝑛𝑒𝑎𝑟 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑
)𝑠𝑖𝑔𝑛 

where 𝑠𝑖𝑔𝑛 is +1 if  

# of weeks Price near Upper Bollinger Band > # of weeks Price near Lower 

Bollinger band. 

and 𝑠𝑖𝑔𝑛 is -1 when  

# of weeks Price near Upper Bollinger Band < # of weeks Price near Lower 

Bollinger band. 

We can also see that there is a relationship between raw Bollinger Band 

signals and future market performance (Figure 5). When the number of negative 

signals outweighed the number of positive signals for a given year, the next year’s 

yield is expected to be lower than the current year’s yield. We will be combining 

interpretations from VWAP and Bollinger Bands in our model in order to reach a 

value for estimated growth. 
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We ran our model for the period of 1979-2020 and estimated market return. 

For the following set of estimates, we used coefficients that were estimated using 

the same period, meaning that the estimates are not out of sample. Table 1 shows 

the estimated market return predicted using our model represented by “Return 

(Forecast)”. This value can then be converted into market risk premium by 

subtracting the respective year’s risk-free rate from the estimated market return. 

The “Market Risk Premium (Forecast)” column lists the implicit market risk 

premium estimated this way. 

Figure 4 - Bollinger Band Application in Forecasting Risk Premium. The 

following graph shows weekly closing prices above or below one and a half standard 

deviations of a moving average of the S&P 500 index using Bollinger Bands. Red and 

blue arrows indicate weekly closing prices above and below the bands respectively. 
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Table 1 - Forecasted market return using our model (using coefficients 

based on the period of 1979-2020).  
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In order to gauge our model results, we will be comparing them to the 

original model by Harris and Marston (1999). It’s important to note that for the 

following comparisons, the coefficients used in our model are estimated using the 

period of 1979-2020. Our model was able to predict MRP more accurately than the 

original DCF model by Harris and Marston (1999). A comparison of estimated 

market risk premium using our model and the traditional DCF model for the period 

between 1982-1998 (the period originally used by Harris and Marston (1999)) 

suggest that our model had produced estimates which followed market trends. 

When we compared our model returns, actual returns, and traditional DCF returns, 

figures suggest that our model captured trends in the market while the traditional 

DCF model remained flat (Figure 6 and Figure 7). 

When comparing the error in prediction of the S&P 500 actual return for the 

period between 1982-1998, the figure suggests that our model performed better 

on average than the traditional DCF model (Figure 8). In the seventeen-year 

period, our model errors were higher than those of traditional DCF models only on 

three accounts. When looking at residuals, we can also see that our model had 

fewer residuals than the traditional DCF model (Figure 9). 
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Figure 5 - Our Model Estimates vs. Actual Returns vs DCF Model. The 

graph shows the estimated market return predicted by our model (using 

coefficients based on the period of 1979-2020) and the actual S&P 500 returns 

for the period between 1982-1998. As we can see, the model was able to 

accurately identify market trends, and accordingly adjust predictions. 
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Figure 6 - Our Model Estimates vs. Actual Returns. The graph shows 

the estimated market return predicted by our model and the actual S&P 500 

returns for the period between 1979-2019. As we can see, the model was able to 

accurately identify market trends, and accordingly adjust predictions. 
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Figure 7 - Comparison of Error in S&P 500 Return Prediction. In order 

to gauge the accuracy of our model’s predictions (using coefficients based on the 

period of 1979-2020) over the traditional model, we tracked the error in 

estimations found in both models. We used the same period as Harris and 

Marston (1999). We found that on fourteen out of the seventeen years, our model 

was more accurate than the traditional DCF model.  
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Figure 8 - Comparison of Residuals. The following figure tracks the 

residuals of our model (using coefficients based on the period of 1979-2020) as 

well as the traditional DCF model for the period of 1979-2018. This long-time 

horizon would help test the models’ efficiency and reliability over time. Our model 

was able to consistently produce less residuals than the traditional DCF model 

over the 39 year period. 
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The following in sample statistical tests were performed on the coefficients 

estimated using the period of 1979-2020. These tests aim to showcase the 

possibility for VWAP and Bollinger Bands to be used in MRP calculations. Table 2 

shows the estimates of the coefficients along with a test for their statistical 

significance. As illustrated in the table, both 𝛽 and 𝛾 (coefficients of Bollinger Bands 

and the strength factor respectively) had a tStat value higher than two, which 

shows their statistical significance in the model. Table 3 shows a linear regression 

between our model's estimated return and the actual return on the S&P 500 for the 

period of 1979-2020. These results show the stability of our model while using 

these coefficients.  
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Table 2 - Model coefficient estimates using the period of 1979-2020. 

Model Coefficients Estimated Using the Period of 1979-2020 

 Estimate SE tStat pValue 

b1 0.19167 0.035228 5.4409 3.0914e-06 

b2 0.22999 0.052767 4.3585 9.2418e-05 

Number of observations: 41, Error degrees of freedom: 39 

Root Mean Squared Error: 1.03 

R-Squared: 0.335, Adjusted R-Squared 0.318 

F-statistic vs. zero model: 21.2, p-value = 5.93e-07 

 Estimate tStat Statistically 
Significant 

 

 𝛽 5.22 > 2   

 𝛾 4.03 > 2   
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Table 3 - Regression between S&P 500 returns and our model expected 

returns for the period of 1979-2020 (using coefficients based on the period 

of 1979-2020). 

 Estimate SE tStat pValue 

(Intercept) 0.068577 0.014317 4.7899     2.4247e-0 

x1 0.37003     0.077969     4.7458     2.7836e-05 

 

Number of observations: 41, Error degrees of freedom: 39 

Root Mean Squared Error: 0.0761 

R-squared: 0.366,  Adjusted R-Squared: 0.35 

F-statistic vs. constant model: 22.5, p-value = 2.78e-05 
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4.1 Further Evaluation of the Model Based on Training and 
Test Datasets 

A key point in evaluating a model is to see how it performs on an unseen 

dataset, i.e., test datasets. This is a key step in ensuring that the model can 

consistently provide reliable estimations of the future datapoints. For further 

evaluation of our model in estimating market risk premium, S&P 500 annual return 

data was divided into two datasets:  

1) In-sample dataset, which will be referred to as the ‘training dataset’. Training 

dataset include the data from 1982-1998. The reason to select this range is 

to be aligned with what Harris and Martson (1999) have used to develop 

their DCF model.    

2) Out-of-sample dataset, which will be referred to as the ‘test dataset’. Test 

dataset includes data from 1999-2019. 

4.1.1 Training Dataset 

The model was first developed using the training dataset. The model 

parameters were then estimated, as shown below. The growth factor, 𝑔, was 

then estimated for each year, followed by S&P 500 return estimation. Figure 

10 shows the expected returns estimated using the training dataset for the period 

of 1982-1998. For the sake of comparison, the actual S&P 500 return and the 

traditional DCF model estimation are also plotted. 

.  
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The error in estimating the expected return using the training dataset is 

shown in Figure 11. The figure suggests that in fourteen out of the seventeen 

years, the estimated return by our model was closer to the actual S&P 500 return 

than that of the DCF model. 
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Table 4 - Model parameters using the training dataset only. The dataset 

using the period of 1982-1998 is used for training. 

 Estimate SE tStat pValue 

b1 0.21488 0.03931 5.4663 6.5038e-05 

b2 0.24209 0.046511 5.205 0.00010673 

 

Number of observations: 17, Error degrees of freedom: 15 

Root Mean Squared Error: 1.06 

R-Squared: 0.522, Adjusted R-Squared 0.49 

F-statistic vs. zero model: 30.7, p-value = 4.95e-06 

 Estimate tStat Statistically 
Significant 

 

 𝛽 5.47      > 2   

 𝛾 5.2      > 2   
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Table 5 - Our model’s expected return and the associated error using the 

training dataset.  S&P 500 return and traditional DCF expected return (and its 

error) are shown for comparison. 
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Figure 9 - Expected Return Estimation Using the Training Dataset. 

The graph shows the estimated market return predicted by our model developed 

using the training dataset only. For comparison, the actual S&P 500 returns and 

the DCF estimate for the same period (i.e. 1982-1998) are also shown in the 

graph. As we can see, the figure suggests that our model was able to identify 

market trends.  
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Figure 10 - Error in Expected Return Estimation Using the Training 

Dataset. The error by the DCF model is also plotted for comparison. Comparison 

of error in S&P 500 return estimate (using a smaller sample size). For the training 

dataset, the same period as Harris and Marston (1999) was used. It suggests that 

on fourteen out of the seventeen years, our model based on the  training dataset 

was more accurate than the traditional DCF model. 
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Table 6 - Regression between our model using the training dataset and 

actual S&P 500 returns for the period of 1982-1998. 

 Estimate SE tStat pValue 

(Intercept) 0.074487 0.0284 2.6226  0.0192 

x1 0.57731 0.1402 4.1152 0.00091 

 

Number of observations: 17, Error degrees of freedom: 15 

Root Mean Squared Error: 0.075 

R-squared: 0.53, Adjusted R-Squared: 0.499 

F-statistic vs. constant model: 16.9, p-value = 0.000917 

 

 

  

Model tStat pValue Statistically 

Significant 

Samin-Samer 4.1152 > 2  0.00091< 0.01  

Harris and Marston -0.6035 < 2 0.5551> 0.01 
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4.1.2 Test dataset overview 

In order to examine the ability of the model developed in the previous part 

using the training dataset to estimate the expected return, the model was tested 

using a test dataset from 1999-2019. Using the 𝑋1, 𝑋2, and 𝑋3 values for the test 

dataset and the model parameters obtained from the training dataset, the growth 

factor was estimated for each year of the test dataset (1999-2019). The expected 

return was then estimated according to the model outlined in the previous section. 

Shows the estimated return for the test dataset (red markers). For comparison, the 

actual return is also plotted (blue markers). Overall, the model developed using the 

training dataset shows good performance in estimating market return for the test 

dataset. The model performs poorly in estimating the market return for the 

following years: 2002, 2007 and 2012.  

4.1.3 Evaluation of our model using the test dataset 

Makridakis et al. (2018) explain that Mean Absolute Error (MAE) is a metric 

widely used for evaluating models to see how they perform on test datasets. MAE 

is the average of absolute difference between the estimation and the observation. 

It provides a measure of how the estimation deviates from the actual values. Given 

any test dataset, MAE provides a mean of the absolute error in estimation for all 

instances of the test dataset.  However, it does not give any information on whether 

the model is overestimating or underestimation the actual data. The F1 score and 

Area Under Curve (AUC) are some popular metrics that are typically used for 

model evaluation as well. Makridakis et al. (2018) define MAE as follows: 
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𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑗 − 𝑥𝑗| 

𝑁

𝑗=1
 

where N is the number of points in the test dataset; y and x are estimates 

and actual test data, respectively.  

A comparison of MAEs for the training dataset, test dataset and traditional 

DCF model is provided in Figure 13. As is shown in the bar chart, MAE for the test 

dataset is about 0.09, which is greater than that of the training dataset, which is 

about 0.07. This is expected as the MAE for the test dataset is typically greater 

than that of the training dataset. However, the MAE for the test dataset is still lower 

than that of the traditional DCF model, which is about 0.11. This evaluation shows 

that our model tested for an out-of-sample dataset is still performing better than 

the traditional DCF model. 
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Table 7 - Our model’s expected return and the associated error using 

the test dataset.  S&P 500 return is also shown for comparison. 
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 Figure 11 - Finding Expected Market Return for Following Years. This 

graph shows the expected market return predicted by our model when using 

coefficients estimated from a smaller sample size. This shows our model’s ability 

to perform out of sample estimations. 
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Figure 12 - Mean Absolute Error in Estimating the Expected Return for 

the Test Dataset. MAE of the test dataset is lower than that of the traditional DCF 

model.  
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For further evaluation of the model, distributions of the error in estimating 

the market return on testing datasets are plotted (Figure 14). A similar distribution 

for the training dataset is also shown for comparison. The mean and standard 

deviation for the training dataset are 0.072 and 0.092 respectively. For the test 

dataset, the mean and standard deviation are 0.093 and 0.097 respectively. From 

a statistical perspective, this shows that the model performance on the test dataset 

is comparable to that of the training dataset. The outlier estimation in the test 

dataset is highlighted using the red marker and is excluded in mean and standard 

deviation calculations. The overlap of these two distributions is also shown. 
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Figure 13 - Distribution of Error in Estimating the Expected Return for 

Training and Test Datasets. The mean and standard deviation for the training 

dataset are 0.072 and 0.092 respectively. For the test dataset, the mean and 

standard deviation are 0.093 and 0.097 respectively.  
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Table 8 - Regression between our model using the test dataset and actual 

S&P 500 returns for the period of 1999-2019. 

 Estimate SE tStat pValue 

(Intercept) 0.0545 0.0233 2.338 0.0304 

x1 0.2788 0.1408 1.9798 0.0623 

 

Number of observations: 21, Error degrees of freedom: 19 

Root Mean Squared Error: 0.1 

R-squared: 0.171, Adjusted R-Squared: 0.127 

F-statistic vs. constant model: 3.92, p-value = 0.0624 
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Figure 14 - Illustration of Correlation Between Estimated Return and 

Actual Return.  The correlation coefficient of the test dataset is greater than that 

of the traditional DCF model. The training dataset shows the highest correlation 

coefficient among all, as expected. 
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These results show that developing the model using the training dataset still 

results in statistically significant estimates of annual return. Our estimates did 

change due to the change in coefficients, but the overall conclusions remain the 

same. Our model estimates were able to adjust to market trends, contained less 

errors in predictions, and maintained fewer residuals than the traditional DCF 

model. 

We can see from these results that a larger sample size enables our model 

to perform slightly more optimally. However, an almost twenty-year sample size 

was still able to produce accurate and statistically significant results that did not 

vary much from our earlier estimates. 

 After performing several statistical tests on our model using two sets 

of samples, we determined that VWAP and Bollinger Bands can be expanded 

beyond their current use cases. We were able to slightly adjust the DCF model by 

Harris and Marston (1999) and achieve statistically significant results that captured 

market trends.  
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Chapter 5. Conclusion 

The market risk premium is one of the most widely used parameters in 

finance. It’s important for practitioners and professionals to have an accurate 

estimation of market risk premium. While there are several categories for 

estimating market risk premium, the two most widely used methods involve the 

use of historical averages and DCF models. Both of these methods are favoured 

for their simplicity and ease of application. 

We set out to adjust the DCF model by Harris and Marston (1999) and 

improve it by implementing stronger empirical methods for estimating growth in 

order to eliminate risks that come with using analysts’ forecasts. We did so by 

using a non-linear multivariate model that estimates growth using VWAP and 

Bollinger Bands. Traditionally, these two methods have been used in order to 

identify trends and locate buy/sell signals. We applied these methods to reach an 

assumption for the growth factor in the DCF model. 

After performing several tests, we can see that estimating growth using 

VWAP and Bollinger Bands yields statistically significant results. Our estimations 

for market risk premium are able to capture market trends while eliminating the risk 

of analyst biases found in Harris and Marston’s (1999) DCF model. Model 

residuals and errors in prediction were also lower than the original DCF model. 

This expands the use for VWAP and Bollinger Bands, while also providing a new 

variation of the traditional DCF model.  
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Appendix A. Input Data and the Forecasted Risk 
Premium Yield Using Our Model 

Input Data and Forecasted Risk Premium Yield using our model. 
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Appendix B. Input Data and the Forecasted Risk 
Premium Yield using Harris and Marston’s Model 
(1999) 

Input Data and Forecasted Risk Premium Yield using Harris and Marston’s Model (1999). 

 


