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Abstract

This thesis demonstrates the utility of feedback controls systems in guiding
monetary policy by designing a state feedback control system from scratch to
demonstrate its effectiveness. We first demonstrate the strong parallel between
feedback control systems and the formulation of monetary policy. The advantages
of full state feedback over other techniques such as PID and model predictive
control are discussed. In addition, data-driven machine learning control and its
potential for augmented monetary policy is also discussed. For the purposes of this
undergraduate thesis, an enhanced version of the three equation keynesian
economic model will be used to design a corresponding state feedback controller.
The parameters of the state feedback control system can be varied to reflect
various prominent economies in the 21st century. With our control system —a one
percent inflation shock will be utilized with parameters that reflect the United
States economy to obtain the optimal interest rate policy for the Federal Reserve.
The process for designing the state feedback control system is fully outlined.

This thesis will be defended by August of 2023.
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1 Introduction

The concept of control theory has been criticized in the context of designing
macroeconomic policy since the early 1970s — citing that control theory is
impractical given the stochastic nature of the real economy [1]. Many made the case
that economic models do not exhibit time invariant behavior, making them
impractical for optimal control [2]. However, these criticisms were later revised,
realizing that economic systems are not explicitly stochastic [3]. In addition, as we
will see with certain control techniques, the economic model need not be time
invariant.

When the Federal Reserve (FED) — the central bank of the US - conducts
monetary policy with respect to the discrepancy between actual and targeted
macroeconomic performance, the central bank is imposing control over the
economy based on feedback such as inflation, and unemployment data. This
approach is explicitly that of a feedback control system — a process which regulates
the behavior of a dynamic system by continuously monitoring the output and
adjusting the input. The system compares the targeted and actual output, and
adjusts the input to minimize the discrepancy. This process continues in a loop and
hopefully the actual output tracks the targeted output, resulting in a stable and
controlled system [4].

Hawkins et al. demonstrated the strong parallel between PID controllers and
monetary policy in his 2014 paper — “These characteristics of monetary policy rule
development are strikingly similar to controller development in engineering and
suggest that these fields share a common framework” [5]. This thesis is an
augmentation and extension of this line of work. Full state feedback — another
method employed in feedback control systems offers crucial advantages over other
strategies such as PID control as it allows the user to select the eigenvalues directly
according to desired characteristics such as overshoot percentage, and settling time
[4], [6].

Full state feedback is ubiquitous in modern control systems, and it offers
several advantages such as optimal control, robustness, and stability. Full state
feedback uses all available state information which can lead to better performance.
It is particularly useful in applications where the system dynamics are complex or
difficult to model. In addition, full state feedback can be used to design controllers
for a wide range of systems, including linear, non-linear, and time-varying systems,



with multiple inputs and outputs. This makes it a very versatile technique as we
continue to modify and augment the economic model and our control system [4].

Professionals who are well versed in this realm of research, would make the
case that data driven machine learning control would be a far better fit for the FED,
given its access to vast amounts of data. However, in pursuit of such an approach, it
was found that it is too complex and impractical for an undergraduate thesis.
Alternatively, an enhanced economic model was used to design a corresponding
state feedback controller. The goal for this thesis is to demonstrate the efficacy of
feedback control systems in guiding monetary policy through a proof of concept.
Any excess time will be allocated in augmenting the economic model and possibly
incorporating the use of machine learning.

We will start by deriving the transfer function for the system from an
enhanced three-equation keynesian model. Then we establish the controllability of
the system. Once the system is deemed controllable, the state feedback control law
will be applied to design our controller. Optimization techniques such as eigenvalue
selection, linear quadratic regulation and genetic algorithms will be used to select
the gains for the state feedback control law. To test the feedback control system, an
inflation shock will be applied to the system, and the evolution of the input (interest
rates) and the output (inflation) will be observed. The input for the system is the
optimal interest rate policy for the Federal Reserve.

The state feedback control system will be considered effective if:

1. Stability: The closed-loop system should be stable, meaning that the
system’s interest rates (output) should not oscillate and diverge
uncontrollably.

2. Controllability: The system should be controllable, meaning that there exists
a control law which can convert the system's initial state of inflation to the
target rate in a finite time.

3. Performance: The control system should be able to correct a 1% inflation
shock within 5-10 years without the need to apply too high or low of an
interest rate. The applied interest rates should be within -0.5% to 3%.



2 Theory

In the pursuit of framing monetary policy as a feedback control system, we must
understand the objectives of such policies. The Federal Reserve possesses a dual
mandate: To foster maximum employment and target an inflation rate of 2% [7].
Thus, we will need an equation that will capture the relationship between
unemployment and inflation — precisely captured by the Phillips Curve [8].

2.1 The Three-Equation New Keynesian Model

2.1.1 The Phillips Curve

The Phillips curve depicts an inverse relationship —illustrating the policy trade-off
between the unemployment rate and the inflation rate. As unemployment
decreases, wages rise to compete for the job vacancies. As wages rise, firms pass
the increased labor costs to consumers — leading to inflation. Conversely, when
unemployment increases, wages fall due to a competitive job market. The figure
below portrays this relationship [8].

Inflation Rate

Unemployment Rate

Figure 2.1: A plotted image of the Phillips curve. The horizontal axis represents the
unemployment rate and the vertical axis depicts the inflation rate.



Given the trade-off between the inflation and unemployment rate, the central bank
must optimize by minimizing a loss function subject to the Phillip’s Curve:

T =70 + a(yr — yo) 1)

Where 7o represents the current inflation rate and m is the following period
inflation rate. The difference between the next period output Y1 and the target
output Ye is multiplied by « — a factor of proportionality [8].

While the Phillips curve was developed and used in the 1950s and 1960s, it has
been criticized by economists for its practicality in the 21st century. A stable
relationship between unemployment and inflation is idealistic and purely empirical.
In addition, the Phillips curve does not account for uncertainty and structural
changes in the economy [9]. However, it is an exceedingly simple model, making it
very practical for the purpose of this thesis.

In addition to a relationship between inflation and unemployment, in order to
conduct monetary policy, we need a model which describes how people spend and
invest their money with respect to interest rates. This is precisely captured by the
investment savings curve [8].

2.1.2 The Investment Saving Curve

The investing savings (IS) curve is a relationship between aggregate investment and
aggregate saving in an economy. The IS curve assumes that investments and
savings are equivalent in an economy. As the interest rate increases, the cost of
borrowing increases which reduces the aggregate investment in the economy. The
IS equation is as follows:

y1 = Ap —arg (2)

Where Ao is the current level of autonomous expenditure, a is a proportionality
factor and 7o is the current interest rate [8]. The IS curve is also an idealistic model
as it assumes that investment spending is solely dependent on the interest rate [9].
Once again, its simple form makes it a practical choice for this thesis.
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2.1.3 The Elliptical Central Bank Loss Function

The central bank’s loss function is a representation of its policy objectives and
preferences. The loss function allows the central bank to determine optimal policy
given the trade-off between inflation and unemployment:

L= (y1—ye)?+ B(m —aT)? (3)

B is the crucial parameter in the central bank loss function: 8 > 1, is a characteristic
of inflation-aversion, g < 1 is associated with unemployment-aversionandg=1is a
characteristic of a balanced policy. The mathematical significance of g is graphically
demonstrated in the figure below [8].

@ L5 (Q\

(@) Balanced: =1  (b) Inflation-averse: 5 >1 (c) Unemployment-averse: < 1

Figure 2.2: A graphical demonstration of the effect of 5 on the elliptical loss
function. As L decreases, the radius of the ellipse contracts. 8 > 1 contracts the
inflation range and expands the unemployment domain. Conversely, 8 < 1 contracts
the unemployment domain and expands the inflation range [8].

Together, 2.1.1, 2.1.2, and 2.1.3 form the new Keynesian model for
macroeconomics. Given its simplicity, this model will serve as a practical start to
designing our controller using state-space methods.



2.2 Feedback Control Systems

In a feedback control system, a process or operation is monitored and adjusted
based on feedback information. An output of a system is measured and as
information to adjust the input to achieve a desired output. These systems are used
in engineering to regulate and optimize the performance of systems [4]. In
feedback control systems relevant to this thesis, there are three key components:

1. Controller: Processes the measurement information and adjusts the input to
achieve the desired output. In our case, this would be the central bank [4].

2. Plant: The process or system that is being controlled — the economy [4].

3. Feedback Elements: These elements allow the controller to continuously
monitor and adjust the process. Our feedback elements are the inflation and
unemployment rate [4].

Error Detector A::uaﬁ:lg
;i Output
Controller —yd  Plant >
Feedback —
Elements

Feedback Signal

Figure 2.3: A block diagram depicting the principle of a feedback control system
along with its key components [10].

For example, to enumerate, our error detector in figure 2.3 above, could be subject
to a 1% inflation shock. The controller would absorb this information and send an
actuating signal (a change in the interest rate) to the plant which represents our
economic system. The updated inflation rate is the output and is fed back into the
controller until stability is achieved and hopefully the actual output tracks the
desired output.



2.3 Full State Feedback Control System

2.3.1 State Feedback Control

State feedback control is a control technique which uses the complete state of the
system, including all the system internal variables and their derivatives. The state is
used to compute the optimal control action that drives the system to the desired
state. There are several methods of control, such as proportional-integral-derivative
(PID) control, which is a feedback control system that uses an error between a
predetermined setpoint and the measured process variable to compute the control
action. Unfortunately, PID control does not take a system's internal dynamics,
rendering it ineffective for economic systems [4].

Model predictive control (MPC) is another control technique which would seem
promising at first glance. MPC utilizes a model of the system to predict future
behaviour and compute a corresponding optimal control action. However, MPC
requires a detailed and very predictable model of the system [11].

Considering the evolution of central banks like the FED and their vastly growing
access to economic data — one can definitely make the case that data-driven
machine learning control would be a superior and futureproof choice at scale. In the
context of monetary policy, a data-driven machine learning control system would be
trained on historical data to identify causal patterns and relationships [12]. This
would allow the control system to predict at least the probability of changes in
economic indicators such as inflation, GDP, and unemployment rates — identifying
pending economic crises —and mitigate them by determining its corresponding
optimal monetary policy. This would be especially effective with the advent and
wide adoption of CBDCs, giving the control system access to data regarding virtually
every single transaction in the economy. Alternatively, the FED could get access to
data on existing transactions by mandating all commercial banks to report all
transactional data to the FED through congressional action. The FED could
significantly augment monetary policy by incorporating this technique. In fact, the
use of data-driven machine learning control in the pursuit of augmented monetary
policy was the initial proposal for this thesis. However, given a deep dive into this
topic — it has proved to be impractical for a 4 month undergraduate thesis and
would require significantly more manpower with expertise in mathematics,
economics and engineering. Alternatively, the three-equation new keynesian model
will be used and a corresponding state feedback controller will be designed as a



proof of concept to demonstrate the utility of feedback control systems in guiding
monetary policy. If time permits, more complex economic models and machine
learning could be introduced.

State feedback control is an appropriate commencement for guiding monetary
policy compared to other methods for the following reasons:

e Better control performance: All the system's internal states are considered
when computing the control action, enabling precise and accurate control
[4].

e Flexibility and Robustness: Can be applied to a wide range of systems
including non-linear and time-varying systems with multiple inputs. In
addition, state feedback control is robust to disturbances and uncertainties
in the system - making it exceedingly appropriate for complex economic
models [4].

e Ease of implementation: Standard control theory and techniques can be
applied, making design and implementation extremely practical [4].

2.3.1 State Space Equations

State space representation is built around the state vector x(1). This is a vector of all
the state variables — a set of variables that describe the current state of the system.
The derivative of the state vector is a linear combination of the state vector, x(t) ,and
the control signal, u(t) :

#(t) = Ax(t) + Bu(t) (4)

This is precisely known as the matrix form of the state equation. A is the dynamics
matrix and it describes the relationship between the internal states — the underlying
dynamics of the system. B is the control matrix, describing how the control signal
enters into the system and which states they affect [13].

The output vector y(t) is a vector of the outputs of the system and is a linear
combination of the state vector, x(t), and the control signal, u(t) :

y(t) = Ca(t) + Du(l) (5)



C is the sensor matrix, describing how the states are combined to obtain the
outputs. D is the direct term, important for systems where any inputs are directly
related to the output. In our case, the output y(t) would be the inflation rate and the
input/control signal u(t) is the interest rate [13].

2.3.2 Controllability

State feedback control can only be used if the system is controllable — meaning that
there exist control signals which allows the system to reach any state in a finite
amount of time. The state equation (4) is controllable if and only if and only if:

rank[B AB A2B ... An_lB]:n (6)

L.e. if the matrix enclosed above is full rank. It is known as the controllability matrix
and is often denoted by P for conciseness. n is the dimension of the state vector
[13].

2.4 Transfer Function and Frequency Domain Analysis

A transfer function is expressed as the ratio of a system's output signal to its input
signal in the frequency domain. In certain applications, transfer functions and
frequency domain analysis are preferred over time domain analysis. Frequency
domain analysis is imperative for stability analysis and controller design.
Furthermore, the criteria for stability can be simply applied in the frequency domain
[4].

Although it is possible to design our controller in the time domain by putting the
economic system directly into state space representation, the transfer function
simplifies our computation significantly. Convolution in the time domain is
equivalent to multiplication in the frequency domain, giving more insight into the
system while making analysis simpler and more intuitive. In addition, the transfer
function represents differential equations as simple algebraic functions in the
frequency domain [4].

2.5 Controller Designh and Optimization

Once we derive our transfer function we can find its corresponding state space
representation and continue.



2.5.1 State Feedback Control Law

We can verify the controllability of the system if the determinant of P is non-zero. If
the system is controllable, we can apply the following state feedback control law:

u(t) = —Kx(t) + r(t) (7)

In order to achieve desired performance characteristics, this control law is applied
to the state equations (4) and (5), giving:

i(t) = (A — BK)z(t) + Br(t) (8)

y(t) = Cu(t) + Du(t) (9)

Where r(t) is the input, and K is the gain matrix. For our case, we have the interest
rate as the input and the inflation rate as the output. This is a single input and
output case, meaning that K is a 1xn row vector [13].

The state space system model can be constructed and we can perform simulations
on it through MATLAB by using the ss command [14].

We have three options when selecting the gains for the K vector:
1. Shaping the dynamic response through eigenvalue selection.
2. Linear Quadratic Regulator (LOR).
3. Genetic algorithm.

2.5.2 Eigenvalue Selection

The eigenvalues of a system determine its stability and dynamic response. This
method is done manually and involves placing the poles directly. This gives us the
ability to shape and choose the characteristics of the dynamic response.

Characteristics such as rise time, peak time, percentage overshoot and settling time
can be chosen with eigenvalue selection [13].

2.5.3 The Linear Quadratic Regulator

LQR is a common technique for eigenvalue selection. The goal of LOR is to provide
the optimal feedback gain matrix that minimizes a cost function. LQR offers

10



customizability as it allows the cost function to be tailored to meet certain
performance specifications such as settling time. This technique can be performed
on MATLAB by using the lqr command [14].

The economic model proposed in section 2.1 is a linear system — which qualifies for
the use of LQR. However, if we were to propose a non-linear economic model, we
need an alternative technique for optimal gain selection [13].

2.5.4 Genetic Algorithm

The Genetic Algorithm is based on the principles of natural selection and genetic
recombination and can be used to optimize non-linear state feedback control
systems. The genetic algorithm would generate a population of potential K
matrices. Each K matrix is evaluated for its performance relative to a cost function.
The best performing solution is selected to reproduce and programmed to generate
new offspring with combinations and mutations of the best performing K matrices.
This process is repeated over a multitude of generations, leading the K matrices to
converge to an optimal K matrix[13].

Genetic algorithms can handle non-linear, high dimensional cost functions, making
it suitable for complex economic systems. Furthermore, genetic algorithms can run
through a wide range of potential solutions, which can allow it to converge to a truly
globally optimal solution, rather than a local one. The only disadvantage to using
genetic algorithms is their computational cost. They may require significant
computational power and large amounts of time to converge to an optimal
solution[15].

2.5.5 Weighing Matrices

In the optimization of control systems, weighing matrices are crucial for achieving
desired system performance and defining the control objectives. Weighing matrices
are positive semi-definite diagonal matrices that capture the relative importance of
each state and control input in the overall cost function. For our control system, we
have two weighing matrices. One for the states, @=, and one for the control signal u,
Qu. If we look at this through the lens of the Federal Reserve dual mandate, Q-
captures the relative importance of bringing inflation and its derivatives back to
target and Qu captures the importance of maximizing the employment rate [13].

11
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3 Methods, Analysis, Results and Discussion

3.1 Methods

3.1.1 Gap Based Notation and Model Enhancement

Our current form of the three equation keynesian model is not practical. We will
modify the notation such that the discrepancy between the targeted and actual
interest rate, inflation and output is considered.

Starting with PC, we subtract the inflation target =” from both sides of equation (1):

m—nl =m—nl +alyi—ye) = gz[n] = gxln — 1] + agy[n] (7)

Where 9=[n] is the inflation gap at time n and 9=[ — 1] is the inflation gap at time
n-1. Similarly, for the IS curve and loss function, we have:

gyln] = —agr[n] (8)
L[n] = gy[n]* + Bgx[n]? 9)

Where 9r[1] is the rate gap at time nand 9y [n] is the output gap at time n.

The real economy is difficult to model. Although state feedback control doesn’t
require an extremely detailed and accurate model to function, a decent
understanding of system dynamics and accurate measurements of state variables
are still required. The economy has a large degree of unpredictability. Factors such
as changes in consumer behavior, natural disasters or political events significantly
impact the economy and may not be captured by the state variables or be
represented by the system dynamics. Furthermore, the effects of monetary policy
can take time to affect the economy. However, state feedback control is most
effective when the system response is immediate. This also creates risk of over
tightening or loosening of monetary policy due to lagging indicators. In addition,
state feedback control relies on relatively accurate modeling of system dynamics
and may not be well tailored for black swan events. Massive changes to the
economic model, such as those temporarily caused by the COVID-19 pandemic
could potentially destabilize the system. These are risks that come with using the

12
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simple version of the New Keynesian model. We will remedy these risks by
enhancing our model in this section.

One of the biggest caveats of the New Keynesian model is that it does not
accurately depict the dynamic interplay between output and inflation for the PC and
the output and rate interplay for the IS curve [16]. For example, the output and rate
gaps are shown for the United States in figure 2 below — contrary to the
instantaneous proportionality proposed by the IS curve. Clearly, there is a lack of
empirical support for the instantaneous response suggested by equation (8) above
[17]. In addition, the New Keynesian model is a discrete-time model.
Continuous-time models are preferred over discrete-time models for state feedback
control as they provide more accurate representations of real world systems by
capturing continuous and smooth dynamics. Furthermore, continuous-time models
allow for a wider range of control design and analysis techniques.

10 g .

GAPS (percent)
()%

5
1960 1970 1980 1990 2000

TIME (years)

Figure 3.1: The output and rate gaps for the United States. The data for this figure
was obtained from the Federal Reserve Bank of St. Louis Economic Data (FRED)
website [17].
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To account for this we will modify the IS curve to relax the assumption of
instantaneous proportionality by allowing time dependence. We start with the
zeroth-order differential equation for the IS curve at equilibrium [17]:

gy = JRT (10)

Where Jr is a negative valued constant. Now we introduce time dependency by
introducing the first derivatives of 9y and r on both sides of the equation without
violating the equality allowing for an anelastic economy [17].

Tr!jy+gy = 1.Jur + Jrr (11)

Jr = Jris the equilibrium proportionality and Ju represents any instantaneous
response. The difference Jr — Ju is the time dependent component of the
response and will recover equation (10) above if it is zero valued [17].

Similarly, our current model of the PC is not representative of an anelastic economy.

We can see some dynamic interplay between output and inflation in figure 3.2
below [16].
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Figure 3.2: The output and inflation gaps for the United States. The data for this
figure was obtained from the Federal Reserve Bank of St. Louis Economic Data
(FRED) website [16].

Raymond J. Hawkins has derived a second order differential equation which he
introduces in his paper ‘Macroeconomic susceptibility, inflation, and aggregate
supply’ in 2018, which much more accurately depicts the relationship between
inflation and output seen in figure 3.3 below — capturing many of the high and low
frequency features [16].
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Figure 3.3: The empirical output gap vs the calculated output gap using equation
(12) for the United States. The data for this figure was obtained from the Federal
Reserve Bank of St. Louis Economic Data (FRED) website [16].

The differential equation is essentially an enhanced PC equation as it has the same
form but contains information about the first and second derivatives of the output
with respect to inflation. The second order differential equation is as follows [16]:

Gy(t) + gy (1) + wogy(t) = gx(t)/m + T'(t)/m (12)

7 is the damping rate for a macroeconomic shock, wo is the resonant frequency of
the macroeconomy, m is the reluctance of an economic variable to alter its rate of
change and I'(¢) is the fluctuation of the output. Equation (12) is a langevin
equation — a stochastic differential equation which describes how a system evolves
subject to a combination of random and deterministic forces [16]. We will not be
going over the derivation of equation (12) as it is complex and not the focus of this
thesis.

16


https://www.codecogs.com/eqnedit.php?latex=%20%5Cgamma%20#1
https://www.codecogs.com/eqnedit.php?latex=%20%5Comega_%7B0%7D%20#1
https://www.codecogs.com/eqnedit.php?latex=%20%5CGamma%20(t)%20#1

3.1.2 Frequency Domain Analysis and Solving for the Transfer
Function

For both our IS curve and PC equations, we can describe the relationship between
the input and output of each equation through a response function. In the frequency
domain, our IS curve and PC — equation (11) and (12) can be represented
respectively as follows [16], [17]:

Gy(s) = xrGr(s) (13)
Gr(s) = xyGy(s) (14)

Where Xr describes the output of the economy given a certain interest rate as input,
and Xy describes the inflation rate given a certain output for the economy. Since we
are designing a control system which takes the interest rates at time t as the input
and outputs the corresponding inflation rate at time t, we need to combine
equations (13) and (14) by substituting equation (13) into equation (14), yielding
[16], [17]:

Gr(8) = xy(8)xr(5)Gr(5) (15)
= =)
= T'(s) = xy(s)xr(s) (16)

Where 1'(s) is the system transfer function. We now need to find Xv and Xr to solve
for the transfer function 7(s). The response function for equation (13) — Xr —is the
solution to equation (11). We will perform a laplace transform to put equation (11)
into the frequency domain, and solve for Xr. The laplace transform of equation (11)
is [16], [17]:

Tr8Gy(s) + Gy(s) = 1, JusGr(s) + JrGr(s) (17)

= Gy(s)(trs + 1) = Gy (s)(mrJus + Jr)

Gy(s) _ 1pJus+Jr
= Gr(s) = T7rs+l
J. J,
o () sk 19
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The output response function for equation (13) — Xy(t) —is also provided by
Hawkins in his 2018 paper. In fact, this was the response function used to calculate
the curve in figure 3.3 in section 3.1 [16].

xy(t) = hme " sinh(wit) (19)

Which Xy is the overdamped Green's function of equation (12) [16]. Taking the
laplace transform of equation (19) gives us:

Xy(t) = , (20)

m((s+3)?—wi)

Therefore, the transfer function is [16]:

T(S) - (Tr;{,ussjljr)(m((s+%1)2_w%))
— TrJus+Jr
= T(s)= (st m((s+2)2—w?) (21)

However, Ju is often not observable and thus [16]:

T(s) = Iy (22)

2 2
m (183 +(Try+1) 82+ (= —wiTe+7) s+ 4 —w?)

3.1.3 Transfer Function to State Space Representation and
Controllability

In equation (4) and (5), since our system has inflation as the output y(t), and the
input/control signal u(t) as the interest rate, we will set the elements of the state
vector, 71, 72, and 3 to be inflation, with its first and second derivatives
respectively. Therefore, with =1 being identical to the output y(t), we can
immediately simplify our control system by setting the sensor matrix Cto [ 1 0 0]
and the direct term D to 0.

Now we will convert from transfer function form to state space representation. We
will start by taking the inverse laplace transform of equation (22) to convert to the

time domain. Note that 9= = 7g;
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Jrr(t) = mTTd—;Fg(t) + m(1y + 1)%7@(15) + m(% — Wit + ’y)%ﬁg(t)—f—(f — wW)my(t) (23)
Now we let:

T =T T — dmg
xl 1 — g :> 1 dt
z(t) = |22 = =9

. A7
@ T2= g
3 42 . d3r
vy =gt = A3=
By observation:
2 2
Try 2 0 2
. T 1 —w{Tr+7y T —w
$3:_rz+x3_ 7] Tl To — 4 1
T s

— 7+ n‘{%r(t) (24)

Now we will fully define our state space equations. If we compare this to equation
(4), we can see that:

0 1 0 0
i(t) = Az(t)+Bu(t) = | Y Y Lo z@+] 0 [u®) @5
el Twinty el Jr_
Tr

mT,
Tr Tr r

If we compare the system we have defined so far to equation (5). We can see that:

y(t) = Cx(t)+ Dx(t) =[1 0 0]z(t) =1 (26)
Now that we have completed state space representation, we shall establish the

controllability of the system. Using Symbolab, the controllability matrix (P) for our
system is:

P=[B AB A2B]

JIr
X ! Je(ry 1)
J TrY+
. p=10 I el (27)
Iy o Jr(Try+1) Jr (377?72+4w%73—|—47'r7—|—4)
mT, mr?2 dmT3

19



To check controllability, we calculate the determinant of P:

det(P) = — 2, (28)
The controllability matrix P is independent of the transfer function coefficients and
is a product of its diagonal elements. If P has a nonzero determinant, it is
controllable. Therefore, the system is controllable for any real and non-zero values
of Jr, m, and 7. This is an immaculate result, as it implies that any state space
realization in this form is controllable [13]. Thus, we can significantly modify our
economic model without forgoing controllability.

3.1.4 Controller Desigh and Optimization

Since the system is controllable, we can apply the state feedback control law —
equation (7). Our system is third order and thus:

u(t) = r(t) — [ k1 ks ks |z() (29)

In order to achieve the target inflation rate, we will utilize the control signal u(t) and
perform gain selection. We define the state space control system by using the ss
object in MATLAB discussed in section 2.5.1.

We will start by assigning values to our parameters. The following values are based
on the US economy and were sourced from the same papers which we sourced our
economic models from [16], [17].

Parameter 7 (year) Jr (year) 7 (1/year) | w1 (1/year) m(10~%)

Value 18.18 -2.527 4.370 0.009300 640.36

Table 3.1: The data for this figure was chosen with respect to data from the Federal
Reserve Bank of St. Louis Economic Data (FRED) website [16], [17].

For gain selection, and optimizing the control system, we have the three options
discussed in section 2.5. A copy of the matlab scripts with all of their respective
details are included in the appendix. A combination of eigenvalue selection, the LQR
and genetic algorithm were employed. For each optimization technique, equal
weighing was used for the weighing matrices Q- and Q. discussed in section 2.5.5.
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Subsequently, relative weighting was used with the superior optimization technique.
To simulate our control system, a 1% inflation shock was used for the initial
condition using the initial function in MATLAB. The interest rate was obtained by
multiplying each state variable by its corresponding optimal gain value and
summing the results.

3.2 Results, Analysis and Discussion

3.2.1 Controlled Response Using Eigenvalue Selection

First, eigenvalue selection was used to choose the desired pole locations for the
closed loop system. The poles were chosen such that the inflation rate gap
converges as quickly as possible with the use of a reasonable rate hike whilst
remaining stable.

Controlled Response Using Eigenvalue Selection

1 T

Inflation
Interest Rate

Time (years)

Figure 3.4: The controlled inflation response and optimal overnight federal funds
rate using eigenvalue selection after a 1% inflation shock.

Right away, with eigenvalue selection alone, we were able to achieve our goal set in

the thesis proposal and the introduction of this thesis. The control system was able
to correct for a 1% inflation shock within 5-10 years while applying a maximum

21



interest rate of 0.8% with an initial rate hike of 75 basis points. This is on par with
historical data in the economics literature. Historical data suggests that a rate hike
of 25 to 100 basis points is necessary to correct for a 1% inflation shock within a
few quarters to a few years [18].

3.2.2 Controlled Response Using the LQR

Next, we utilized a well established control technique — the LOR. For this technique
we used the MATLAB lgr function to find the optimal control gains that minimize a
quadratic cost function.

Controlled Response Using LQR
1 T T T T T T T

Inflation
Interest Rate

Time (years)

Figure 3.5: The controlled inflation response and optimal overnight federal funds
rate using the LQR after a 1% inflation shock.

Interestingly, using LOR arguably gave us a worse result compared to eigenvalue
selection. With eigenvalue selection, we were able to converge the inflation gap to
within 0.1% within 5 years with a more modest initial rate hike compared to
achieving a 0.18% inflation gap within 5 years with LQR. Although the initial rate
hike is higher for the LQR response, one could argue that the economy incurs a
higher cost by spending more time in a higher interest rate environment in the first
year of the eigenvalue selection response, and thus maximum employment isn't
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being utilized. Therefore, eigenvalue selection may have outperformed LQR in
controlling inflation, but not necessarily at the mercy of the unemployment rate.

3.2.3 Controlled Response Using the Genetic Algorithm

We also used the genetic algorithm due to its ability to handle complex systems and
run through a wide range of potential solutions, allowing it to converge to a globally
optimal solution rather than a local one. By using the Optimtool in the optimization
app for MATLAB, we employed a genetic algorithm by using the ga function. The
genetic algorithm employed a population-based search strategy and incorporated
mutation and crossover operations to explore the solution space. For the cost
function, we initially used the LQR cost function and modified it to see if we can get
more optimal solutions.

Controlled Response Using Genetic Algorithm
.1 T T T T T T T T

Inflation
Interest Rate

Time (years)
Figure 3.6: The controlled inflation response and optimal overnight federal funds

rate using the genetic algorithm after a 1% inflation shock. MATLAB cost function:
cost = sum(sum(x.~2 * Qx)) + sum(u.~2 * Qu).

Astoundingly, the genetic algorithm was able to reproduce the exact same

controlled inflation response while using a much more optimal overnight federal
funds rate despite using the same cost function. The genetic algorithm response
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only uses an initial rate hike of ~77 basis points along with a much smoother
descent versus the ~88 basis point rate hike for the LQR response.

Although these are reasonable controlled responses, it takes about 10 years for the
inflation gap to converge to 0%. We would ideally want to converge the inflation gap
to 0% within a quicker amount of time. The culprit lies in the cost function. After
experimenting with the genetic algorithm it was found that using a quadratic cost
function for the control signal element incurs too high of a cost on a prolonged rate
hike, leading to an inefficient inflation control policy. To remedy this, we used a
quartic cost function for the control signal element. As we can see in figure 3.7, this
significantly improved the performance of the control system, allowing the inflation
response to converge to 0% within 7-8 years. However, after also experimenting
with a sextic and octic cost function, we found that the sextic cost function for the
control signal element generates the most optimal results (figure 3.8), without
incurring too high of a cost on the economy, and thus maximizing the employment
rate during the inflation control process. With the sextic cost function we were able
to converge the inflation gap response to 0% within 6 years and to 0.2% within just
4 years.

Controlled Response Using Genetic Algorithm

Inflation
Interest Rate

Rate Gap (%)

Time (years)

Figure 3.7: The controlled inflation response and optimal overnight federal funds
rate using the genetic algorithm after a 1% inflation shock. MATLAB cost function:
cost = sum(sum(x.~2 * Qx)) + sum(u.~4 * Qu).
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Controlled Response Using Genetic Algorithm
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Figure 3.8: The controlled inflation response and optimal overnight federal funds
rate using the genetic algorithm after a 1% inflation shock. MATLAB cost function:
cost = sum(sum(x.22 * Qx)) + sum(u.”6 * Qu).

For the rest of our analysis, we will proceed with the genetic algorithm along with
the sextic cost function due to its superior performance.

3.2.4 Controlled Response with Relative Weighing

Now that the superior optimization technique is established, we can explore the
effects of relative weighing. To demonstrate relative weighing, each constant of the
weighing matrices was varied by a factor of 5 ceteris paribus. Relative weighing is
utilitarian for the FED, as it allows for flexibility in optimal control with respect to the
general state of the economy and especially the strength of the employment
market. For instance, in the case of a dovish FED, a more circumspective approach
can be taken during a fragile employment market. In this case, we will apply a cost
emphasis on the interest rate.
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Controlled Response Using Genetic Algorithm
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Figure 3.9: The controlled inflation response and optimal overnight federal funds
rate using the genetic algorithm after a 1% inflation shock with cost emphasis on
the control signal. MATLAB cost function:
cost = sum(sum(x.22 * Qx)) + sum(u.”6 * Qu).

The result is elegant. Only a ~52 basis point rate hike is initially applied, but it is
held for about 1.5 years before slowly descending to 0%. However, the trade off
with convergence time is also clear, as it takes 8 years for inflation to converge to

0%.

In the case of an exceptionally strong employment market, the FED can be more
hawkish in its approach for taming inflation. In this instance, we can apply a cost

emphasis on inflation.
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Controlled Response Using Genetic Algorithm
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Figure 3.10: The controlled inflation response and optimal overnight federal funds
rate using the genetic algorithm after a 1% inflation shock with cost emphasis on
inflation. MATLAB cost function: cost = sum(sum(x.”2 * Qx)) + sum(u.”6 * Qu).

If we compare the results to the equal cost emphasis approach in figure 3.8, we can
see a much more aggressive initial rate hike of ~96 basis points along with more
time being spent in a high interest rate environment. In addition, we have a
convergence time of 4.5 years compared to the convergence time of 6 years in

figure 3.8.

With this control system, we also have the ability to apply a cost emphasis on the
derivative of inflation to slow the descent of the inflation. There are no incentives to
inflation stability, but it is one of the capabilities of our control system and is worth

showcasing.
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Figure 3.11: The controlled inflation response and optimal overnight federal funds
rate using the genetic algorithm after a 1% inflation shock with cost emphasis on
the derivative of inflation. MATLAB cost function:
cost =sum(sum(x.”2 * Qx)) + sum(u.~6 * Qu).

The downside for this cost emphasis is quite severe due to its large trade off with
convergence time despite a relatively large initial rate hike of ~83 basis points. This
result makes sense as the controller is working to quickly decrease the interest rate
to limit change in the inflation rate.

3.2.3 Discretized Controlled Response

The federal open market committee (FOMC) currently holds 8 regularly scheduled
meetings per year [19]. We are using a continuous time model. Although this
wouldn’t be a problem if the FOMC had daily scheduled meetings for changing
interest rates, it is still worth considering a discretized version of our model for
practical implementation with the FOMCs current schedule.

Creating a discretized system is not as simple as sampling the original curves 8

times a year. The system dynamics change when the discretization takes place. In
the discretized version of the genetic algorithm, the continuous-time dynamics of
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the system were transformed into a discrete time representation by using the
zero-order hold (ZOH) method. Details of the MATLAB script are in the appendix.
The discrete time model took into account the discrete nature of control inputs and
system states, which influenced the behavior of the system over time.

Controlled Response Using Genetic Algorithm (Discrete-Time)
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Figure 3.12: The controlled inflation response and optimal overnight federal funds
rate using the genetic algorithm after a 1% inflation shock in discrete time.
MATLAB cost function: cost = sum(sum(x.A2 * Qx)) + sum(u.~6 * Qu).

If we compare this to the continuous time control system in figure 3.8, we can see
that they have identical performance and characteristics but the discrete time
response has a much lower initial rate hike — incurring lower initial costs on the
economy. Thus, one could argue that remarkably — the discrete-time model creates

a more optimal control solution.
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4 Conclusion

With the fabrication of our effective state feedback controller, this thesis
demonstrated the utility of feedback control systems in guiding monetary policy. We
elucidated how fundamentally — the formulation of monetary policy is a feedback
control system — emphasizing the advantages of full state feedback over other
techniques such as PID and model predictive control. Although data-driven
machine learning control was acknowledged as a potentially superior approach, it
was deemed impractical for the scope of this undergraduate thesis.

Most importantly, our results indicated that we were successful in fulfilling our goals
in the thesis proposal and introduction section of this paper. The closed loop system
was stable, controllable and was able to correct a 1% inflation shock within 4.5
years without the need to apply too high or low of a rate hike. However, our
controller isn’t without its limitations. With the FEDs current sampling rate for
inflation, it is difficult to feed the controller with the initial conditions of inflation. In
addition, access to the first and second derivatives of inflation is limited. In order to
fully utilize control systems used in engineering, central banks such as the FED
need to significantly improve their ability to gather data on inflation.

The introduction of relative weighing demonstrates the flexibility of the control
system in adapting to different economic conditions and policy objectives. By
adjusting the relative weights of the cost function, the control system can prioritize
inflation, derivatives of inflation and interest rate relatively based on the prevailing
economic environment. This allows for a more tailored and nuanced approach to
monetary policy. Furthermore, the consideration of a discretized version of the
control system highlights the practical implementation of the model with the
FOMC’s schedule.

Overall, this thesis provides valuable insights into the application of feedback
control systems in guiding monetary policy. It lays the foundation for further
exploration and potential enhancements. I believe that this work is utilitarian,
important, fulfilling and appropriate for an Engineering Physics undergraduate
thesis given its multidisciplinary nature. Central banks are due for a technological
revolution given their technological insufficiency relative to the advent of modern
technologies. State feedback control systems are a useful addition to the central
banking monetary policy toolbox - enabling central banks to adjust policy settings
more accurately and precisely based on real time feedback data. Albeit, we must
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proceed with caution, carefully considering the public's confidence in central bank
operations and the need for regulatory compliance and financial stability. As central
banking continues to evolve, especially in the realm of data acquisition, it is very
likely that feedback control systems such as state feedback control and data-driven
machine learning control will play an important role in the fabrication of monetary
policy.
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Appendix A
Appendix A1l: Matlab Script for State Feedback Control
System With Eigenvalue Selection

[T s B B O I o R ]
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ce Representation
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% Define the desired pole locations / eigenvalues
desiredPoles = [-1.5; -0.7; -1.8]:

Calculate the state feedback gain matrix K

K = place (i, B, desiredPoles)

% Create the controlled state-space model

sysControlled = ssim, B, C, D):

% Define the initial condition

x0 = [1r 07 0]: % Initial state condition

% Define the simulation time
t = linspace (0, 10, 100); % Time wvector

% Simulate the controlled response
[¥, ~, %] = initial (sysControlled, x0, t):
u= —(E*x');

% Plot the controlled response

plot(t, ¥, 'bB', "LineWidth', 1.5):;hold on;
plot(t, w, 'r', "LineWidth', 1.5);hold off;
xlakel ("'Time (years)'):
yvlakel ("Rate Gap (%) "):

legend({'Inflation', "Interest Rate'}, 'FontSiz
title ("Controlled Response Using Eigenvalue
®xlim ([0 10]):

¥lim({[-0.1 1]}

grid on;

clear;

Figure A.1: This MATLAB script demonstrates the implementation of a state feedback
control system using eigenvalue selection to achieve the desired closed-loop pole
locations. The state space representation of the system is defined with the system

matrices A,B, C and D. The desired pole locations are specified, and the state feedback gain
matrix K is calculated using the place() function. The controlled state space model is
created by subtracting the product of B and K from A. The initial condition and simulation
time are defined and the controlled response is simulated using the initial() function. The
output response and control input are obtained from the simulation results. Finally, the
controlled response is plotted, showing the time evolution of the inflation and interest rate
gaps — allowing for the analysis and evaluation of the system’s performance.
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Appendix A2: Matlab Script for State Feedback Control
System With LQR
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o e
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14
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% Define the State Space Representation
A= [010; 001; -0.2626 -5.015 -4.425];
B = [0; O; -2.171]:

C= 110 07]:

D= 0;

% Define the guadratic cost matrices

Ox = diag{[1l 1 1]); % State cost matrix

Qu = 1; % Control cost / unemployment cost
% Calculate the optimal gains using LOR

¥, ~, ~] = lgri(k, B, 0=, Qu)

% Create the state-space model
sys = ss(A - B * H, B, C, D)
[V,D]=eig(A-B*EK)

p=diag (D)

% Define the time vector
T = 0:0.01:10;

% Set the initial condition

X0 = [1; 0; Q]

% Simulate the controlled response
r = zeros(size(t)):

v, ~, %] = lsim(sys, r, t, x0);

% Lhpply control signal consctraint
u=-K * x';

% Plot the results

ploti{t, v, 'b', 'LineWidth', 1.5);hold on;
ploti{t, u, 'r', 'LineWidth', 1.5):;hold off:;
xlabel ('Time (vears)'):

vlabel ("Rate Gap (%) "):

legend ({"Inflation', "Interest Rate'}, 'FontSize'",11)
title('Controlled Response Using LOR') »

grid on;

clear:

Figure A.2: This MATLAB script implements a state feedback control system using the

Linear Quadratic Regulator (LQR) method. The state space representation of the system is

defined with the A, B, C and D matrices. The quadratic cost matrices Qx and Qu are
specified to define the cost function for the LQR controller. The optimal gains K are

computed using the lqr() function. The state-space model is created by subtracting the

product of B and K from A. The time vector and initial condition are defined, and the

controlled response is simulated using the Isim() function. The control input is obtained by
multiplying the state vector x with the gain matrix K. The results are plotted, showing the

time evolution of the inflation and interest rate gaps — allowing for the analysis and

evaluation of the system’s performance.
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Appendix A3 : Matlab Script for State Feedback Control
System With GA

1 % Define the 5tate Space Representation

= B [0 1 ©; 0 0 1; -0.2626 -5.015 —-4.425];

3 - B = [0; 0; -2.171]:

4 — C=1[100]:

El= D= 0;

&

T % Define the guadratic cost matrices

L= Qx = diag([1 l|l]]; % State cost matrix

z|= CQu = 1; % Control cost

10

11 % Define the time wvector

120 = t = 0:0.01:10;

13

14 % Set the initial condition

1= x0 = [1; 10; 0]

16

17 % Define the options for the genetic algorithm

18 - options = optimoptions('ga', 'Display', 'iter', 'PopulationSize', 1000, 'MaxGenerations', 500):
19

20 % Define the cost function for optimization

21 = costFunction = @(K) calculateCost(¥, &, B, C, D, Qx, Qu, t, =0);
22

23 % Run the genetic algorithm to optimize the control gains
24 — [K_opt, ~, ~] = ga(costFunction, numel (B}, [I, [1., [1., [1. [1. [1., [1. cptioms);
25

26 % Create the state-space model with optimized gains

27 = sys = ss(A - B * K opt, B, C, D);

28

29 % Simulate the controlled response

30 - r = zeros(size(t));

31 = [v, ~, ®] = lsim(svys, x©, t, x0);

32

332 % Apply control signal

34 - u = -K opt * =x';

35

36 % Plot the results

3= plot(t, ¥, '"B', "LineWidth', 1.5):hold on;

S8l = plot(t, u, '"r', 'LineWidth', 1.5):hold off;

2= xlabel ("Time (years)'):

40 — ylakel ("Rate Gap (%) "):

41 — legend ({"Inflation', "Interest Rate'}, 'FontSize',11)

42 — title('Controlled Response Using Genetic Algorithm');

43 — grid on;

44

45 % Define the cost function for optimization

4 function cost = calculateCost (K, A, B, C, D, Ox, Qu, t, x0)
47 % Create the state-space model with current gains

43 — sys = s33(A - B * K, B, C, D}):

449

50 % Simulate the controlled response

S r = zeros(size(t)):

52 — [v, ~, %] = lsim(sys, r, t, =x0);

53

54 control signal

55 =

56

57 % Calculate the cost based on the guadratic cost matrices
58 — cost = sum(sum(x.”2 * Qx)) + sum(u.”€ * Qu);

o= end

Figure A.3: This MATLAB script demonstrates the implementation of a control system using
a genetic algorithm to optimize the control gains for a given state space representation. The
state space representation of the system is defined by matrices A, B, C, and D. Matrix A
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represents the system dynamics, matrix B relates the control input to the state variables,
matrix C defines the output equation, and matrix D represents the direct feedthrough term.
The script starts by defining the quadratic cost matrices Qx and Qu. These cost matrices are
used to construct a cost function that quantifies the performance of the control system.
Next, the time vector and initial condition are specified to define the duration of the
simulation and the initial state of the system. The options for the genetic algorithm are set
using the optimoptions function. These options include parameters like display settings,
population size, and the maximum number of generations. The script defines a cost
function named calculateCost, which takes the control gains, system matrices, cost
matrices, time vector, and initial condition as inputs. This cost function evaluates the
performance of the control system by simulating the controlled response using the
state-space model with the given control gains. It calculates the cost based on the
quadratic cost matrices by summing the squares of the state variables and applying a
power of 6 to the control input. The genetic algorithm is then executed using the ga function
with the specified options. It searches for the optimal control gains that minimize the cost
function. The cost function is repeatedly evaluated for different sets of control gains, and
the algorithm iteratively refines the search to converge towards the optimal solution. After
the genetic algorithm optimization process is completed, the state-space model is
reconstructed using the optimized control gains. The controlled response is simulated by
applying the optimized control gains to the system and calculating the resulting outputs and
control signals. The inflation and interest rate gaps over time are plotted to visualize the
performance of the controlled system.
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Appendix A4 : Matlab Script for State Feedback Control
System With GA in Discrete Time

[ L R I R

i i e e e i i =
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oo
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Define the State Space Representation

[0 1 0y OO0 1; -0.2626 -5.015 -4.425]:
[0; 0; -2.171]:

[1 0 0]:

0:

2o0moE e
]

% Define the gquadratic cost matrices
Qx = diag([1 1 1]); % State cost matrix
Qu = 1; % Control cost

% Define the time vector
t = 0:0.125:10; % § data polnts per unit time

% Set the initial condition
x0 = [1; O; 0]

% Define the options for the genetic algorithm
options = optimoptions('ga', 'Display', '"iter', 'PopulationSize', 1000,

% Define the cost function for optimization
costFunction = @(K) calculateCost(¥, &L, B, C, D, Qx, Qu, t, =0);

% Run the genetic algorithm to optimize the control gains
[E_opt, ~, ~] = ga(costFunction, numel(3), [I, [1, [1, [1. 01, [, [I,

% Create the discrete-time state-space model with optimized gains
Ts = 0.125; % Sampling time for § data points per unit time
sys d = c2d(ss(A - B * K opt, B, C, D), T3, 'zoh'):

% Simulate the controlled response in discrete-time
r d = zeros(size(t)):

[v_.d, ~, % d] = lsim(sys d, r_d, t, x0);

% Apply control signal in discrete-time
ud=-Kopt * x d';

% Plot the results with dotted lines

plot(t, v d, 'b.', 'LineWidth', 1.5, 'MarkerSize', €); hold on;
plot(t, un d, 'r.', ' S5ize', 6); hold off;
xlakbel ('Time (years)');

vlabel ('Rate Gap (%) '"):

legend ({"Inflation', 'Interest Rate'} 'FontSize", 11):

1
title('Controlled Response Using Genetic Al ithm (Discrete-Time)'):

grid on;

% Define the cost function for optimization

function cost = calculateCost(E, A, B, C, D, Qx, Qu, t, x0)
% Create the state-space model with current gains
sys = =ss(L - B * ¥, B, C, D):

% Simulate the controlled response
r = zeros(size(t)):
[v, ~, x] = lsim(sys, xr, t, x0);

culate the control signal

oy

% Calculate the cost based on the guadratic cost matrices

COSt = sum(sum(x.”2 * 0Qx)) + sum(u.”6& * Qu):
end

options);

500) ;

Figure A.4: This MATLAB script is identical to the MATLAB script in figure A.3. However,

after the genetic algorithm optimization process, a discrete-time state-space model with
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the optimized gains is constructed using the c2d function. The sampling time, Ts, is



specified to determine the discretization of the continuous-time system. The controlled
response is simulated in discrete-time by applying the optimized control gains to the
system and calculating the resulting outputs and control signals. The inflation and interest
rate gaps over time are plotted, utilizing dotted lines to distinguish them.
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