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Abstract

This paper examines how subsistence farmers respond to extreme heat. Using micro-data
from Peruvian households, we find that high temperatures reduce agricultural productivity, in-
crease area planted, and change crop mix. These findings are consistent with farmers using input
adjustments as a short-term mechanism to attenuate the effect of extreme heat on output. This
response seems to complement other coping strategies, such as selling livestock, but exacerbates
the drop in yields, a standard measure of agricultural productivity. Using our estimates, we
show that accounting for land adjustments is important to quantify damages associated with
climate change.
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1 Introduction

A growing body of evidence suggests that extreme temperatures have negative effects on crop
yields.1 Based on these findings, current estimates suggest that climate change will bring dramatic
shifts in agriculture: a global warming of 2℃, as in the most optimistic forecasts, would reduce
agricultural output by almost 25% (IPCC, 2014). Among those exposed to this shock, the rural
poor in developing countries are probably most vulnerable. They are located in tropical areas,
where the changes in climate will occur faster and be more intense, and their livelihoods are more
dependent on agriculture.

Given these potentially disruptive effects, it is extremely important to understand possible
margins of adjustment and the scope for mitigation. Some studies suggest that a possible response
to climate change would be the re-allocation of economic activity, in the form of migration, changes
in trade patterns or sectoral employment (Colmer, 2018, Costinot et al., 2016, Feng et al., 2012).
Other studies, based on farmers’ self-stated adaptive strategies, emphasize changes in consumption
and savings as potential temporary responses (Di Falco et al., 2011, Gbetibouo et al., 2010, Hisali
et al., 2011). Less is known, however, about the potential for productive responses (i.e., changes in
input use and agricultural practices), to attenuate the adverse effects of extreme temperatures.2

This paper examines how subsistence farmers respond to extreme temperatures. It has two main
contributions. First, it examines a population that has been relatively neglected in the literature,
despite comprising a large fraction of the rural poor around the world. Second, it documents the
role of short-run productive responses, in particular the increase in land use, as a mechanism to
mitigate the negative effects of extreme temperatures on agricultural output. To the best of our
knowledge, this margin of adjustment has not been documented before. It has, however, significant
implications for the quantification of climate change damages, and for understanding the potential
long-term effects of weather shocks.

Our empirical analysis combines survey microdata from Peruvian farming households with
weather data from satellite imagery. We examine the relationship between temperature and input
demands (land and labor), as well as other agricultural outcomes such as total factor productivity,
yields, and output. Similar to recent studies of the effect of temperature, we use an approach that
exploits within-locality variation in weather.

By focusing on input use, our approach addresses some limitations of existing economic studies
of the effect of temperature on agriculture. These studies focus on outcomes such as land prices,
profits and yields that can be informative of the costs associated to raising temperatures (as in

1See for instance, Burke et al. (2015), Carleton and Hsiang (2016), Chen et al. (2016), Deschenes and Greenstone
(2007), Lobell et al. (2011), Schlenker et al. (2005, 2006), Zhang et al. (2017). A review of the biological evidences is
available at Wahid et al. (2007).

2A recent paper that addresses this questions is Jagnani et al. (forthcoming). Using data from Kenya, they
find that farmers increase fertilizer use as a response to increased temperatures early in the growing season. They
interpret this finding as a evidence that farmers undertake defensive investments to reduce the adverse impacts of
warmer temperatures.
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Deschenes and Greenstone (2007) and Schlenker et al. (2006)). Moreover, since profits and yields
already include farmers’ responses, they can be used to indirectly assess the scope for mitigation
and adaptation.3 These approaches have, however, two important limitations. First, they are
not informative of the mitigation and adaptive strategies used by farmers, only of their net effect.
Second, because of their reliance on market prices, profits and land values are not very useful in
contexts with incomplete agricultural markets or when revenues and costs are difficult to observe,
for instance due to self-consumption or the use of household inputs. This limitation is particularly
relevant when studying subsistence farmers in less developed countries.

We find that extreme heat increases area planted. The magnitude is economically significant:
one standard deviation increase in our measure of extreme heat is associated with a 6% increase in
land used. Consistent with the additional land being planted with a different crop mix, we find that
extreme heat increases the quantity harvested (in absolute and relative terms) of tubers. We also
find suggestive evidence of increments in the use of domestic, including child, labor on the farm.
The increase in input use occurs despite high temperatures reducing agricultural productivity, and
partially offsets the drop in total output. We interpret these findings as evidence that subsistence
farmers respond to extreme temperatures by increasing input use within the growing season. This
productive adjustment attenuates undesirable drops in output and consumption. Our interpreta-
tion is consistent with agricultural household models with incomplete markets (De Janvry et al.,
1991, Taylor and Adelman, 2003). In these models, production and consumption decisions are not
separable. Thus, at low consumption levels, farmers may resort to more intensive use of non-traded
inputs, like land and domestic labor, to offset the impact of negative income or productivity shocks.
This margin of adjustment may be particularly relevant for farmers in less developed countries due
to the presence of several market imperfections and limited coping mechanisms.

With this interpretation in mind, we also examine several ex-post coping mechanisms previ-
ously identified in the literature on consumption smoothing, such as migration, off-farm labor,
and disposal of livestock (Bandara et al., 2015, Beegle et al., 2006, Kochar, 1999, Munshi, 2003,
Rosenzweig and Wolpin, 1993, Rosenzweig and Stark, 1989). Consistent with previous studies, we
find that households reduce their holdings of livestock after a negative weather shock and seem to
increase hours working off the farm. Interestingly, the increase in land use as a response to extreme
heat occurs even among farmers that resort to other consumption smoothing strategies. This find-
ing suggests that productive responses to extreme temperatures remain important to traditional
farmers, even if they have alternative risk-coping instruments at hand.

Our findings have two important implications. First, they suggest a potential dynamic link
between weather shocks and long-run outcomes. If the increase in land use comes at the expense of

3For instance, Burke and Emerick (2016) find that the effect of extreme heat on crop yields in U.S. has not changed
over time. They interpret this finding as evidence of limited long-run adaptation. Similarly, Taraz (2018) examines
differences on the effect of temperature on crop yields by baseline climate to assess the scope of adaptation among
Indian farmers.
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investments (such as fallowing), then this short-term response could affect future land productivity.
A similar argument could be made about child labor. While we are unable to examine these
implications due to data limitations, future research should explore these links more closely. Second,
this farmer response may affect estimations of the damages of climate change on agricultural output.
These estimates are usually based on the effect of temperature on crop yields (Deschenes and
Greenstone, 2007). This is a correct approach under certain conditions, e.g. if land use is fixed.
In that case, changes in crop yields are the same as changes in output. However, if area planted
increases with temperature, then using crop yields would overestimate the resulting loss in output.
To illustrate this point, we use our results to predict damages of climate change by the end of the
century under two standard scenarios (RCP45 and RCP85). Using the effect of temperature on
yields, as in the existing literature, suggests output losses of 5-9% under different scenarios. In
contrast, taking into account changes in land use, we obtain smaller losses of 0.6 to 1.2%.

The rest of this paper is organized as follows. Section 2 describes the context and the analytic
framework. Section 3 discusses the data and the empirical strategy. Section 4 presents our main
results and robustness checks. Section 5 examines other other coping mechanisms, while Section 6
discusses the implication of our findings for estimating climate change damages. Section 7 concludes.

2 Background

2.1 Subsistence farming in Peru

Our empirical analysis focuses on subsistence farmers from rural Peru. In 2017, the last year of our
study, 24% of the working population was employed in agriculture, but the sector only accounted
for 7% of the GDP (INEI, 2018). It is, in other words, a sector of very low productivity, with many
characteristics in common with subsistence farming in other developing countries: it is mainly
composed by small productive units (i.e., households), with low capital intensity, and low levels of
technology adoption (Velazco et al., 2012).

Table 1 presents some key summary statistics of the farmers in our sample and defines the
setting for our analysis.4 Most farmers are poor and depend on agriculture as their main source
of livelihood. The incidence of poverty in our sample of farmers is around 50%. For comparison
purposes, a similar methodology shows that poverty over the whole of Peru during the period of
analysis was 21.6%. The average farm is around 2 hectares, has a low degree of specialization and
uses practices akin to traditional, rather than industrial, farming. They rely on domestic labor
(including child labor), cultivate a variety of crops instead of monocropping, and leave some land
uncultivated. Some of this uncultivated land is reported as fallowing while the rest is covered with
grasses, bushed and forests. These last uses are also consistent with sectoral fallowing and crop
rotation, but we can not rule out that part of this land is non-agricultural.

4Data sources and variable definitions are described in Section 3.1
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Figure 1 shows the number of hectares planted by calendar month during years 2014-2017.
As one can see, most planting occurs during October-March. These months correspond to spring
and summer in the Southern Hemisphere and are considered the main growing season in Peru.
However, planting is not a one-off activity as it persists throughout the year. This feature suggests
that farmers have some margin to adjust their input use during the agricultural year. Figure 2
shows that planting is usually spread over several months, and not necessarily a one-off event. For
instance, around 50% of farmers engaged in planting in two or more months. This last observation
suggests that farmers might have flexibility to adjust their decisions during the growing season. We
note that the number of months in which farmers decided to plant could be endogenous to weather
realizations, an issue we explore below.

Our study concentrates on two climatic regions: the coast and the highlands.5 These two
regions exhibit different climate driven by their proximity to the sea and altitude. The coast is a
narrow strip extending from the seashore up to 500 meters above sea level (masl). It has a semi-arid
climate, with warm temperatures and little precipitation. The highlands extends from 500 up to
almost 7,000 masl, albeit most agriculture stops below 4000 masl. It has a much cooler and wetter
climate, with seasonal precipitations in spring and early summer.

These climatic differences are associated with different agricultural practices: coastal farmers
are more reliant on irrigation, while agriculture in the highlands is mostly rainfed. Coastal farmers
are also less likely to be poor and have a different crop mix, cultivating a larger share of fruits and
cereals. While these regional differences do not affect the key results in our analysis (see Section
4.4), they have important implications in terms of the potential effects of greater temperatures due
to climate change.

5Peru has three main climatic regions: the coast to the west, the Andean highlands, and the Amazon jungle to
the east. We do not include observations from the jungle due to small sample size and poor quality of satellite data.
We also drop 282 farmers from the coast and highlands reporting land holdings larger than 100 hectares.
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Table 1: Summary statistics (ENAHO 2007-2015)

(1) (2) (3)
All Coast Highlands

A. Household characteristics
Poor (%) 51.14 26.55 55.10
Household size 4.34 4.41 4.33
Primary education completed by HH head (%) 50.93 58.48 49.71
Child works (%) 21.82 9.65 23.79
At least 1 HH member has off-farm job (%) 47.54 56.45 46.10

B. Agricultural characteristics
Value of agric. output (Y) 1049.93 3263.23 693.40
Output per ha. (Y/T) 1048.92 1868.49 917.09
Land used (T), in ha. 1.99 2.41 1.92
No. HH members work on-farm 2.31 2.21 2.33
Hire workers (%) 48.85 57.08 47.52
Uncultivated land (% of land holding) 40.30 11.81 44.89
Irrigated land (% land holding) 36.05 82.00 28.65
Fruits (% total output) 7.41 31.59 3.52
Tubers (% total output) 31.35 5.54 35.50
Cereals (% total output) 31.30 30.43 31.44
Own livestock (%) 77.61 55.95 81.10
Value of livestock 682.11 461.85 717.59

C. Weather during the last growing season
Average temperature (℃) 22.84 33.07 21.20
Average DD 14.28 22.39 12.97
Average HDD 0.73 2.69 0.41
Share of days with HDD 0.139 0.391 0.097
Precipitation (mm/day) 3.16 0.93 3.51

Observations 53,619 7,439 46,180
Notes: Output and livestock value measured in 2007 USD. Land is measured in hectares. Temper-
ature is measures in Celsius degrees. HoH= household head. HH= household. DD=degree days.
HDD = harmful degree days.
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Figure 1: Percentage of annual area planted in a month, by climatic region

Notes: Figure depicts the share of annual area planted in a given month, averaged
over farmers in a climatic region. We consider only planting of transitory (annual)
crops. Source: National Agricultural Survey of Peru, 2014-2017.
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Figure 2: Number of months of planting, by climatic region

Notes: Figure depicts the proportion of farmers by the number of months in which
they plant transitory crops. Source: National Agricultural Survey of Peru, 2014-2017.
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2.2 Analytical framework

This section develops a simple framework to examine how subsistence farmers adjust their pro-
duction decisions as a response to extreme heat. To this end, we follow standard agricultural
producer-consumer household models in the development literature (Benjamin, 1992, De Janvry et
al., 1991, Taylor and Adelman, 2003) where households make simultaneous, potentially interrelated,
consumption and production decisions during the growing season.

Without loss of generality, let us assume an agricultural production function with a single input.
We call this input "land" but it can refer to any other variable input such as labor. The household
has an endowment of land, T e. Land can be used for production or “consumed” in non-productive
activities (e.g., leisure).6 Household’s utility is U(c, t), where c is consumption of a market good,
while t is the amount of land used in non-productive activities. Households obtain income by renting
their land and by producing an agricultural good. Production is defined by function F (A, T ), where
T is the amount of land used in agriculture, and A is farmer’s total factor productivity. A is a
productivity shifter that captures the idea that farmers using identical inputs can have different
levels of output due, for instance, to different farming skills, soil quality, or exposure to weather
shocks.7 Consistent with previous studies on the relation between crop yields and temperature, we
assume that extreme heat has a detrimental effect on productivity.8

Each growing season, the household maximizes utility by choosing the amount of land allocated
to productive and non-productive uses. We consider that land is a variable input. This assumption
is driven by the observation that, among subsistence farmers, planting is not a one-off activity, but
instead it is spread throughout the year (see Figure 2).9 Finally, we assume that both the utility
and the production functions are increasing and strictly concave.

2.2.1 Household responses to negative productivity shocks

If input markets exist and are well functioning, we can study consumption and production decisions
separately (Benjamin, 1992). This separation result is driven by the possibility to trade. Thus, the
household’s demand and supply of inputs for production and consumption need not be identical to
its endowments. The farmer’s use of inputs on the farm can then be analyzed by solving the profit
maximization problem max

T
π = pf(A, T )− rT , were p and r refers to output and input prices.

6The inclusion of land directly in the utility function is a modeling device to create a positive shadow price (i.e.,
an opportunity cost of using land), and should not be taken literally. Since land cannot be sold or rented out, without
this device, the model would predict that farmers will always use all available land. This prediction is inconsistent
with the empirical observation that around 40% of land is left uncultivated. An alternative way to generate a non-
zero shadow price is to include an intertemporal opportunity cost, for instance by allowing productivity-enhancing
fallowing.

7In our context, we assume that capital such as irrigation, if used at all, is fixed.
8See for example Schlenker and Roberts (2009), Burke and Emerick (2016), Auffhammer et al. (2012), Hsiang

(2010), Hsiang (2016), among others.
9Note that multi-cropping practices, combined with the availability of uncultivated land, implies that both inputs

and outputs are flexible throughout the season, during which A is realized.
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The standard solution is the unconditional input demand T ∗(A, p,w). In this context, a farmer’s
response to negative productivity shock, such as extreme heat, is unequivocal: she will reduce the
amount of land used in her farm.

This prediction can change in the case of incomplete markets. To illustrate this, consider a case
in which there are no input markets. In this simplified setting, the farmer’s problem becomes:

max
T

U(c, t)

s.t. c = pF (A, T )

T + t = T e.

Solving this problem produces an unconditional demand for land that depends not only on
prices and productivity, but also on land endowment, T (A, p, T e). Moreover, if utility is sufficiently
concave (for instance if consumption levels are quite low or farmer has high risk aversion), then dT

dA

can be negative.10

This result suggests that, in context with imperfect input markets, negative weather shocks,
such as extreme heat, could result in an increase in input use. This occurs because the farmer
uses more inputs to attenuate the fall in agricultural output, and reduce the drop in consumption.
This response is akin to coping mechanisms to smooth consumption, such as selling disposable
assets. The key distinction is that it involves adjustments in productive decisions. This prediction
is relevant because subsistence farmers in rural Peru (and other parts of the developing world)
likely face severe imperfections in input markets (Gollin et al., 2013, Restuccia et al., 2008).

This framework also points out to alternative explanations for a positive relation between ex-
treme temperature and input use. For instance, this could occur if extreme temperatures have a
negative effect on aggregate supply and raise output prices (p). Similarly, we would observe a posi-
tive relation if there are correlated productivity shocks, such as increase in precipitation; or changes
in land endowments (for instance, due to sample attrition of small landholders). We address these
potential confounders in our identification strategy, and examine the role of prices as an alternative
explanation in section 4.4.2.

With this framework in mind, our empirical analysis focuses on examining the effect of extreme
heat on input use, as well as on agricultural productivity. There are, however, other possible
responses. For instance, recent work on climate change and adaptation has stressed changes in
crop mix as a possible response (Burke and Emerick, 2016, Costinot et al., 2016). Similarly, an

10Taking total derivatives to first order condition pUcFT = Ut, we obtain that:

dT

dA
(F 2
TUcc + UcFTT + Utt) + FTFAUcc + UcFTA = 0.

Assuming strictly concave utility and production functions, this expression implies that a necessary and sufficient
condition for inputs to increase with a negative productivity shock ( dT

dA
< 0) is −Ucc

Uc
> FTA

FTFA
. Assuming, a Cobb-

Douglas technology f = ATα, this condition simplifies to: −Ucc
Uc

> 1.
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influential literature highlights how households can smooth consumption by migrating, increasing
off-farm work, or selling cattle, among other strategies (see for instance Rosenzweig and Wolpin
(1993) or Kochar (1999)). In the empirical section, we also examine these additional potential
responses.

3 Methods

3.1 Data

We combine household surveys with satellite imagery to construct a comprehensive dataset contain-
ing agricultural, socio-economic, and weather variables. The unit of observation is the household-
year. We restrict the sample to households with agricultural activities located in the coast and
highlands. Our final dataset consists of around 53,000 observations and spans over the years 2007
to 2015. Table 1 presents some summary statistics for our sample.

3.1.1 Agricultural and socio-economic data

Our main data source is repeated cross-sections of the Peruvian Living Standards Survey (ENAHO),
an annual household survey collected by the National Statistics Office (INEI). This survey is col-
lected in a continuous, rolling, basis. This feature guarantees that the sample is evenly distributed
over the course of the calendar year.

The survey asks the farmer to report the quantity of crops harvested in the last 12 months, as
well as the size and use of parcels planted in that period. We use this information to construct
measures of agricultural output and input use. To measure real agricultural output, we construct
a Laspeyres index using quantity produced of each crop and baseline local prices.11 We calculate
land used by adding the size of parcels dedicated to seasonal and permanent crops. We distinguish
between domestic and hired labor. We measure hired labor using self-reported wage bill paid to
external workers in the last 12 months. To measure domestic labor, we use information on household
members’ employment. In particular, we calculate the number of household members working in
agriculture and build an indicator of child labor.12

This dataset has three relevant limitations. First, we do not observe the time of planting, only
the total land used in the last 12 months. Second, we do not observe which specific crops are
cultivated in each parcel.13 Since most farmers grow several crops and practice inter-cropping, we
cannot calculate crop-specific yields. Finally, the information on household employment is available
only for the two weeks before the interview. Given that interviews can occur all year round and

11As local prices, we use the median price of each crop in a given department (n=24) in 2007.
12Child labor is defined as an indicator equal to one if a child living in the household aged 6-14 reports doing

any activity to obtain some income. This includes helping in the family farm, selling services or goods, or helping
relatives, but excludes household chores.

13We only observe total area planted and, separately, total harvests of each crop.
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labor use is seasonal, our measures of domestic labor may not reflect actual input use during the
whole year. While this measurement error does not affect estimates of the effect of temperature on
land use, it can affect estimates of its impact on labor use. In those cases, we address this concern
by restricting the sample to farmers interviewed during the main growing season only.

The survey also provides information on socio-demographic characteristics, agricultural prac-
tices and farm conditions (such as intercropping, access to irrigation, and use of fertilizers), and
geographical coordinates of each primary sampling unit or survey block.14 In rural areas, this
corresponds to a village or cluster of dwellings. We use this geographical information to link the
household data to satellite imagery. We complement the household survey with data on soil quality
from the Harmonized World Soil Database (Fischer et al., 2008).15

3.1.2 Temperature and precipitation

We use satellite imagery to obtain high-resolution measures of local temperature. We prefer to use
satellite imagery instead of ground-level measures or gridded products, such as re-analysis datasets,
due to the small number of monitoring stations (around 14 in the whole country).16 We use the
MOD11C1 product provided by NASA. This product is constructed using readings taken by the
MODIS tool aboard the Terra satellite. These readings are processed to obtain daily measures of
daytime temperature on a grid of 0.05× 0.05 degrees, equivalent to 5.6 km squares at the Equator,
and is already cleaned of low quality readings and processed for consistency.17

The satellite data provides estimates of land surface temperature (LST) not of surface air
temperature, which is the variable measured by monitoring stations. For that reason, the reader
should be careful when comparing the results of this paper to other studies using re-analysis data or
station readings. LST is usually higher than air temperature, and this difference tends to increase
with the roughness of the terrain. However, both indicators are highly correlated (Mutiibwa et al.,
2015).

We complement the data on temperature with information on local precipitation. We use data
from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) product
(Funk et al., 2015). CHIRPS is a re-analysis gridded dataset that combines satellite imagery
with monitoring station data. It provides estimates of monthly precipitation with a resolution of
0.05× 0.05 degrees.

14There are around 3,800 unique coordinate points in our sample. Figure A.1 in the Appendix depicts the location
of clusters used in this study.

15This dataset provides information on several soil characteristics relevant for crop production on a 9 km square
grid. The soil qualities include nutrient availability and retention, rooting conditions, oxygen availability, excess salts,
toxicity, and workability.

16Note that reanalysis datasets use ground-level readings as a main input and thus can be less precise in contexts
with a low number of monitoring stations (Auffhammer et al., 2013).

17MODIS validation studies comparing remotely sensed land surface temperature estimates and ground, in situ,
air temperature readings found discrepancies within the 0.1-0.4 ℃ range (Coll et al., 2005, 2009, Wan and Li, 2008).
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To link the weather and household data, we attribute to a given household the weather condi-
tions in the cell overlapping its coordinates. Then, we aggregate weather data (which have daily
and monthly frequency) to obtain measures of exposure to weather during a given agricultural year.
In our baseline specification, we focus on exposure to weather during the last completed growing
season. The growing season is the period in which most of planting and crop growth occurs. As
shown in Section 2.1, even though planting is a year-round activity, it is particularly concentrated
in spring and summer. We use this period as our definition of growing season.18 Figure 3 shows
the distribution of temperatures observed during the last completed growing season for our whole
sample.19

Figure 3: Distribution of daily average temperature by growing season

Notes: density of daily temperatures during the last completed growing season (i.e., October to March).
The unit of observation is farmer-growing season.

18We define the growing season as months October to March. In Section 4.4, we check the robustness of our results
to alternative ways to aggregate weather over time, such as by climatic season or during last 12 months.

19Figure A.3 in the Appendix, shows the average distribution of daily temperatures by growing season, and shows
that the distribution is mostly stable over the time of our study.
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3.2 Empirical strategy

The empirical analysis aims to study how farmers respond to extreme heat. Based on the discussion
in Section 2.2, we focus on productive adjustments, such as changes in input use. To study this
response, we estimate reduced-form unconditional factor demands linking input use to weather
shocks.

In a standard production model, unconditional factor demands are a function of total factor
productivity (TFP), and agricultural prices. In the presence of imperfect input markets, they
could also be affected by household endowments.20 In this context, weather conditions, such as
temperature and precipitation, enter into the factor demand through their effects on A.

We approximate the reduced-form factor demand using the following log-linear regression model:

ln yijt = g(γ, ωit) + φZi + ρj + ψt + εijt, (1)

where the unit of observation is farmer i in district j and growing season t. y is our measure of input
use and g(γ, ωit) is a non-linear function of temperature and precipitation (ωit). The parameter of
interest is γ: the reduced-form estimates of the effect of weather shocks on input use. Note that
our specification exploits within-district variation. Thus we cannot estimate the effect of climate,
but only of weather shocks. This approach is similar to the panel regressions used in recent studies
of the effect of climate on economic outcomes (Dell et al., 2014).

Zi is a vector of farmer characteristics, ρj is a set of district fixed effects, and ψt are climatic
region-by-growing season fixed effects.21 These control variables proxy for both determinants of
TFP as well as other drivers of input use. Zi includes possible drivers of TFP such as indicators
of soil quality, household head’s education, age, and gender, as well as measures of input endow-
ments like land owned and household size, ψt controls for common productivity shocks but, to the
extent that agricultural markets are national, also for agricultural prices. Similarly, ρj accounts for
location-specific determinants of productivity, such as climate and soil quality, but can also control
for other time-invariant determinants of input use, like proximity to markets.22

Similar to previous work, we model the relation between weather and agricultural productivity
as a function of cumulative exposure to heat and water.23 In particular, we construct two measures
of cumulative exposure to heat during the growing season (i.e., spring and summer): average degree
days (DD) and harmful degree days (HDD).

20For instance, in the extreme case of no input markets, input use would be proportional to input endowments.
See the discussion in Aragón and Rud (2016).

21A district is the smallest administrative jurisdiction in Peru and approximately half the size of the average U.S.
county. Our sample includes 1,320 districts out of a total of 1,854.

22A potential concern is that the inclusion of fixed effects could absorb a significant amount of weather variance
and amplify measurement error (Auffhammer and Schlenker, 2014, Fisher et al., 2012). We examine this issue and
find that there is still relatively large weather variation even after including a rich set of fixed effects (see Tables B.2
and B.3 in the Appendix).

23See for instance Schlenker and Roberts (2006) and Schlenker et al. (2006).
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DD measures the cumulative exposure to temperatures between a lower bound, usually 8℃ up
to an upper threshold τ , while HDD captures exposure to temperatures above τ . The inclusion of
HDD allows for potentially different, non-linear, effects of extreme heat. Formally, we define the
average DD and HDD during the growing season as:

DD = 1
n

n∑
d=1

(hd − 8)1(8 ≤ hd ≤ τ)

HDD = 1
n

n∑
d=1

(hd − τhigh))1(hd > τ),

where hd is the average daytime temperature in day d and n is the total number of days in a
growing season with valid temperature data. Note that we do not calculate total degree days, but
instead the average degree days. This re-scaling makes interpretation easier and help us address
the issue of missing observations due to satellite swath errors.

A key issue is to define the value of τ . Previous studies in U.S. set this value between 29-32℃
(Deschenes and Greenstone, 2007, Schlenker and Roberts, 2006). These estimates, however, are
likely to be crop and context dependent and hence might not be transferable to our case.24 For
that reason, we prefer to use a data-driven approach. To do so, we estimate a flexible version of
equation (1) using log of output per hectare as outcome variable and replacing g(.) with a vector of
variables measuring the proportion of days in a growing season on which the temperature fell in a
given temperature bin.25 The results, displayed in Figure 4a suggest that point estimates become
negative for temperatures above 33 ℃. We use this temperature as our preferred τ in our baseline
specification.26

We measure exposure to precipitation using the average daily precipitation (PP) during the
growing season and its square. With these definitions in mind, we parametrize the function relating
weather to productivity g(γ, ωit) as:

g(γ, ωit) = γ0DDit + γ1HDDit + γ2PPit + γ3PP
2
it.

24In addition to differences in crop mix and agricultural technology, we use a different measure of temperature (i.e.,
land surface temperature). These factors make previous estimates not applicable to our case study.

25This specification is similar to the one used by Burgess et al. (2017) to study the effect of weather on mortality.
Based on the distribution of temperatures in the Peruvian case, we define 11 bins: < 6℃, ≥ 42℃, and nine 4℃-wide
bins in between. Our omitted category is the temperature bin 22-25℃.

26As a robustness check, we also estimate τ using an iterative regression method similar to those used by Schlenker
et al. (2006). We ran 17 regressions with different DD/HDD thresholds ranging from 26℃ to 42℃ and compared
their model fit. The results, in Figure A.4 suggests optimal temperatures in the slightly lower 30-32 ℃ range. To
ensure that our choice of τ does not drive our main results, in Figures A.5a and A.5b in the Appendix we plot the
point estimates of the HDD coefficients for the range of τ mentioned above. Reassuringly, point estimates are of
similar size, magnitude, and precision between the 26-35℃ interval.
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4 Main results

This section presents our main empirical results on farmers’ responses to extreme heat. We start
by documenting the relationship between temperature and our main outcomes: land productivity
and land use. As a first glance at the data, we use a flexible approach using temperature bins
instead of degree days.

The results, shown in Figure 4, suggest that extreme temperatures are associated with re-
ductions in land productivity, but increase in area planted. This negative relationship between
productivity and input use is consistent with farmers using more inputs to attenuate the drop in
agricultural output. Below, we examine these findings and interpretation in more detail.

4.1 Temperature and agricultural productivity

We use two approaches to examine the relation between temperature and agricultural productivity.
First, we follow the existing literature and estimate our baseline specification (1) using yields (i.e.,
output per unit of land) as our measure of (land) productivity. This specification measures exposure
to heat using degree days (DD) and harmful degree days (HDD) averaged over the main growing
season (i.e., spring and summer). A limitation of this approach is that yields are a measure of
partial productivity that reflect changes in TFP and land used. This is not an issue when land is
fixed, but can overestimate the effect of extreme heat on productivity if farmers adjust land.

As a second approach, we estimate a production function. Assuming a Cobb-Douglas spec-
ification we modify our baseline specification by using log of output as outcome and controlling
for log of input use.27 This approach allow us to estimate directly the effect of extreme heat on
TFP. However, it comes at the cost of imposing parametric assumptions and, potentially, creating
an endogeneity problem due to omitted productivity drivers affecting both input use and output.
Consistent with the analytical framework proposed in Section 2.2, we address this issue by using
endowments, such as household size and owned land, as predictors for input use in an instrumental
variable approach.28

Table 2 presents our results. The estimates suggest that extreme heat has a negative effect
on agricultural productivity.29 The magnitude of the effect is economically significant: the most

27Assuming a Cobb-Douglas production function Yijt = AijtT
α
itL

β
it, applying logarithms, and defining A =

exp(g(γ, ωit) + φZi + ρj + ψt + εijt) we obtain the following regression model:

lnYijt = α lnTit + β lnLit + g(γ, ωit) + φZi + ρj + ψt + εijt,

where Y is agricultural output, and T and L are quantities of land and labor.
28Table B.4 presents first stage estimates. The validity of this IV approach relies on the assumption that any

residual correlation between the error term and variable inputs would not carry to endowments. This could be
violated, for instance, if there are other unobserved factors that drive both output and inputs endowments, such as
political power Goldstein and Udry (2008). Table B.5 in the Appendix provides additional checks of the effect of
temperature on productivity controlling by endowments and using a more flexible functional form.

29These results are consistent with previous findings of negative effects of high temperatures on yields. See, for
instance, Auffhammer et al. (2012), Guiteras (2009), Burgess et al. (2017), Burke et al. (2015), Burke and Emerick
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Figure 4: Non-linear relationship between temperature and main outcomes

(a) Effect on ln(output per ha.)

(b) Effect on ln(area planted)
Notes: Figure displays the estimates of the effect of an increase in the percentage
of growing-season days in a given temperature bin on ln(output per ha) and ln(area
planted). Circles represent points estimates, while lines indicates 95% confidence
intervals. Standard errors are clustered at the district level. All specifications include
same fixed effects and farmer controls as baseline regressions in column 1 of Tables 2
and 3

(2016), Schlenker and Roberts (2009), Lobell et al. (2011).

17



conservative estimate suggests that each additional average HDD results in a 7% decrease in agri-
cultural productivity. To put this figure in perspective, note that climate change scenarios discussed
in Section 6 envisage that, by the end of this century, the average number of HDD over the grow-
ing season could increase between 0.64 and 1.32, while the already warm Coast would experience
increments between 3 to 5 HDD.30

What happens with total output? Consistent with a negative productivity shock, we find that
extreme heat reduces agricultural output (column 4). However, the magnitude of this effect is
smaller than for TFP or yields, and we cannot reject the null hypothesis at standard levels of
confidence. This finding is suggestive of responses (such as changes in production decisions) that
attenuate the effect of the productivity shock on total output.

Table 2: Temperature, agricultural productivity and output

Y/T TFP Y
Dep. Variable: ln(output/ha) ln(output) ln(output) ln(output)

(1) (2) (3) (4)

Average DD in 0.020* 0.014* 0.015** 0.011
growing season (0.011) (0.007) (0.007) (0.009)

Average HDD in -0.114*** -0.064* -0.069** -0.042
growing season (0.038) (0.033) (0.033) (0.041)

Inputs controls No Yes Yes No
Method OLS OLS 2SLS OLS

No. obs. 53,493 53,487 53,487 53,619
R-squared 0.335 0.549 0.359 0.348

Notes: Standard errors (in parenthesis) are clustered at the district level. Stars indicate
statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include dis-
trict, month of interview, and climatic region-by-growing season fixed effects, and farmer
controls such as: household head characteristics (age, age2, gender, and level of educa-
tion), indicators of soil quality from Fischer et al. (2008) (nutrient availability, nutrient
retention, rooting conditions, oxygen availability, salinity, toxicity and workability) and
the share of irrigated land. Input controls: log of area planted, number of household
members working in agriculture, and amount spent on hired labor. Instruments for do-
mestic labor and area planted: log of household size and area of land owned. First stage
joint significance F-test is 466.7.

30Note that our measures of DD and HDD represent the temperatures in an "average" day in the growing season.
Thus, an additional HDD represents an average increase of 1 harmful degree (i.e., above 33℃ ) for all the days in the
growing season. Clearly, there are multiple ways to obtain the same average increase. For example, an increase of 1
HDD could occur if the temperature for 50% of the days in the growing season increase from 33℃ to 35℃ (2 harmful
degrees), or if the daily temperature for 25% of days increase from 33℃ to 37℃ (4 harmful degrees). An increase of
1 HDD is a sizeable change. To put this number in perspective, note that the mean and standard deviation of HDD
in our sample are 0.7 and 1.33, respectively.
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4.2 Productive responses: changes in input use

We examine changes in input use as a potential margin of adjustment to high temperatures. In
our main set of results, we focus on changes in land use, both in terms of area planted and crop
mix. Our focus on land stems from its importance as an agricultural input and because, in many
contexts, it is subject to severe market imperfections, such as ill-defined property rights. Moreover,
we have reasonably good measures of land use, but more limited information on other inputs, such
as labor.

Table 3 presents our main results. We find a positive and statistically significant effect of HDD
on area planted (column 1). An increase in HHD of 1 degree is associated with an increase of
almost 6% in the total area planted. This estimate already controls for endowments, such as the
total area of land available, and thus is not simply picking up changes in the size composition of
farmers. The increase in land used is sizable and partially explains why, despite its documented
negative effects on agricultural productivity, extreme heat has a small and insignificant effect on
total output. It also explains why the estimated effect of HDD on yields (Y/T) is larger than on
total factor productivity (TFP) (see Table 2).

Columns 2 to 4 examine the effect of extreme heat on crop mix. In our context, farmers practice
multi-cropping: the average farmer grows almost six different crops.31 To study effects on crop mix,
we group crops in two categories: tubers (mostly potatoes) and other crops. Tubers are the most
important crop among Peruvian subsistence farmers and account for almost 30% of the value of
agricultural output and 15% of the area planted.

We find that extreme heat increases the quantity (in absolute and relative terms) of tubers
harvested. Coupled with the evidence in the previous section that farmers adjust their land during
the growing season, we interpret these findings as suggestive evidence that the additional land is
planted with a higher share of tubers. Hence farmers adjust their use of land, both in terms of area
planted and crop composition, as a response to extreme heat. These results complement recent
studies that examine the role of changes in crop mix as a possible way to increase food security
and adapt to climate change (Burke and Emerick, 2016, Colmer, 2018, Harvey et al., 2014).

There are, however, two important caveats. First, we do not observe the area planted with
different crops, only the amount harvested. Thus, we are unable to disentangle the effect of extreme
heat on planting decisions from different crop sensitivities to temperature. That said, we can rule
out that our results are only reflecting less sensitivity of tubers to extreme heat: in that case, we
would observe an increase in output share, but a reduction in absolute terms.

Second, our results do not necessarily mean that tubers are more resilient to heat than other
crops.32 Farmers could prefer tubers for several reasons other than heat tolerance. Studies on food

31In our sample, fewer than 10% of farmers report growing only one crop. Multi-cropping is a common practice
among subsistence farmers across the developing world, and is in stark contrast with the modern agricultural practices
of the U.S. and other developed countries, which mostly practice mono-cropping.

32There is some evidence that sweet potatoes and cassava are more drought tolerant than other food crops, such
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security highlight several advantages of tubers (like potatoes, cassava, and sweet potatoes) over
other crops, such as short maturity, sequential harvesting, low water and fertilizer requirements,
more reliability, and high nutritional content (Devaux et al., 2014, Motsa et al., 2015, Woolfe,
1992). These features could made them relatively more attractive than other crops, especially
in the presence of negative productivity shocks. For instance, Dercon (1996) documents that
Tanzanian farmers manage risk by planting less profitable, but more reliable, crops like sweet
potatoes. Similarly, in a study of small farmer in Madagascar, Harvey et al. (2014) find that a
common coping strategy to productivity shocks is to adjust their diet by replacing rice for tubers.

Table 3: Temperature and land use

T ln (output) Tubers
Dep. Variable: ln(area planted) Tubers Other crops % output

(1) (2) (3) (4)

Average DD in -0.006 -0.197*** 0.126*** -0.029***
growing season (0.009) (0.028) (0.016) (0.003)

Average HDD in 0.055*** 0.093** -0.160*** 0.022***
growing season (0.018) (0.043) (0.042) (0.004)

Endowment controls Yes Yes Yes Yes

No. obs. 53,493 53,493 53,493 53,493
R-squared 0.443 0.454 0.463 0.525

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of
interview, and climatic region-by-growing season fixed effects, and the same farmer controls as
baseline regression in Table 2. Endowment controls: log of household size and area of land
owned.

Timing Do the effect and responses to extreme heat vary according to the time at which extreme
temperatures are experienced? Answering this question is relevant to understand the observed
phenomena better and predict impacts more accurately. For instance, effects could vary if crops
are more sensitive to extreme heat at some stages of development (sowing, harvesting) than others,

as maize (Braimoh et al., 2018, Motsa et al., 2015). However, the agronomic literature is less clear about the general
heat tolerance of a crop. A main reason is that heat tolerance depends on several context-specific factors, such as
water availability, pre-conditioning to heat, and developmental stage (Miller et al., 2001, Wahid et al., 2007). For
instance, potatoes are more sensitive to heat at earlier stages (seeding) while maize is more susceptible to heat damage
at later stages (flowering and grain filling). Damage to potato yields can also be offset by increased soil humidity,
but this mechanism does not attenuate the negative effects of heat on maize (Basu and Minhas, 1991, Edreira and
Otegui, 2012, Rykaczewska, 2013). There is also a large variation in heat tolerance between different varieties of the
same crop. For instance, the heat tolerance of some potato cultivars can be twice as large than that of less resilient
varieties (Ahn et al., 2004). Note that in our data, we can only identify crops, not cultivars or varieties.
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or if farmers face time-varying constraints to adjust to these shocks (i.e., due to seasonal crop or
input suitability). Alternatively, we might be observing a delayed response from farmers to extreme
temperatures in previous agricultural seasons, not a response to a contemporaneous shock.

To examine this issue, we first restrict our sample to those farmers interviewed during the fall or
winter months (April to September, in the southern hemisphere). As mentioned before, although
planting and harvesting are year-round activities, the most important planting period (in terms of
area) corresponds to spring and summer, the growing season months. Thus, our sample restriction
allows us to focus on those farmers who have already completed most of their annual land use
decisions.33 Then, we construct separate measures of weather for each of the last four seasons
(i.e., fall, winter, spring, and summer). Specifically, if a household is interviewed during the fall or
winter of year t, we match each observation with the weather outcomes in that location during the
fall, winter and spring of year t− 1 (April to December), and for the summer of year t (January to
March). This procedure effectively summarizes the weather conditions over the 12 months previous
to the end of the last growing season.

Figure 5 depicts the effect of average HDD in different seasons on our measures of productivity
(Y/T) and land used (T). The main observation is that the effect of extreme heat on productivity
and land use is driven by shocks that occur during the spring. This timing is consistent with the
biological response (and the human reaction) to heat experienced during a sensitive period in the
agricultural calendar. Previous studies show that, while plants are vulnerable to high temperatures
throughout their life-cycle, the potential harm is highest during the sowing period (Slafer and
Rawson, 1994). Moreover, it suggests that the observed changes in land use are a response to
productivity shocks within the agricultural season.

To explore the possibility of within-growing season responses by farmer in area planted, we
make use of data from the Peruvian National Agricultural Survey, available for four years, between
2014 and 2017. This is a longitudinal dataset that has farm-level data of monthly planting over a
12-month period. In Figure A.2 and Table B.1 in the Appendix, we show the results of regressing
the area planted on a given month on monthly HHD realizations (contemporaneous and lagged
values), using farmer fixed effects. Thus, we use within-farmer variation to explore how planting by
a farmer responds to temperature shocks during the agricultural season. Results show that farmers
increase their planting one and two months after they were exposed to harmful temperatures. These
findings support the idea that farmers indeed respond during the growing season to extreme heat,
and reduce concerns such that the increase in land is picking up differences in timing of planting
across different farmers or locations.

33Recall that interviewers ask about the total land used in agriculture over the past 12 months
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Figure 5: Effect of exposure to HDD by season

(a) Effect on ln(output per ha.)

(b) Effect on ln(area planted)
Notes: Figure displays the estimates of the effect of HDD in different seasons on
ln(yields) and ln(area planted). Circles represent points estimates, while lines indi-
cates 95% confidence intervals. Standard errors are clustered at the district level. All
specifications include same fixed effects and farmer controls as baseline regression in
Table 2.

4.2.1 Changes in labor use

Finally, we examine the effect of extreme heat on labor. We distinguish two types of labor: domestic
and hired. In contrast to land use, we do not have good proxies for labor used during the agricultural
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season. We only observe the wage bill of hired workers in last 12 months, not actual number of
workers. More importantly, we only have information on labor outcomes of household members
during the last 2 weeks before the interview, not for the whole agricultural year. Because of these
limitations, the results on labor use should be interpreted with caution.

Table 4 presents our findings. Columns 1 to 4 examine the effect on two measures of domestic
labor: number of household members working on the farm, and an indicator of child labor. We
estimate the effect of HDD using the baseline specification (columns 1 and 2) as well as an alternative
specification restricting the sample to farmers interviewed in spring and summer and using average
HDD in spring as a measure of exposure to extreme heat. By focusing on households interviewed
at the moment when most of the productivity shock occurs, we can partially address the data
limitations mentioned above. Column 5 examines the effect on wage bill: our proxy for hired labor.

Similar to the results on land used, we find that HDD has a positive and, in most cases,
significant effect on measures of domestic labor. Interestingly, extreme heat seems to increase
the likelihood of child labor. This last result is consistent with findings in the literature on child
labor showing that poor households may resort to employing children in productive activities when
subject to negative income shocks (Bandara et al., 2015, Beegle et al., 2006). In contrast, the
coefficient of HHD on hired labor’s wage bill is negative, albeit also insignificant. These findings
suggest a slight tendency of farms to use more intensively domestic labor as a response to extreme
heat.

4.3 Discussion

Our findings are hard to reconcile with predictions from a standard production model. As discussed
in Section 2.2, a standard production model would predict a weakly negative relation between HDD
and input use, as well as a negative effect on output. The reduction in productivity would drive
the negative effect on input use. However, if extreme heat shocks occur after input decisions are
sunk (i.e., after planting), there would be no effect of HDD on area planted.34

Instead, our findings are consistent with models of subsistence farmers in a context of incomplete
markets (De Janvry et al., 1991, Taylor and Adelman, 2003). In this scenario, production and
consumption decisions are not separable (Benjamin, 1992). Thus, farmers exposed to negative
shocks may need to resort to more intensive use of non-traded inputs, like land and domestic labor,

34A model with factor biased productivity shocks (i.e., extreme temperatures affecting relatively more one factor
of production), could also generate changes in input ratios and, potentially, increase use of some inputs. However,
it is unlikely to explain the observed increase in land and domestic labor. To see this, consider an alternative
model with competitive input and output markets, two inputs (land and labor), and a CES production function
f(T,L) = [AT ρ + BLρ]

γ
ρ , where T and L refers to land and labor, and A and B are factor-specific productivity

shifters. Cost-minimization requires that the input ratio (T/L) is equal to (Aw
Br

)1/(1−ρ), where w and r are the input
market prices. Note that if extreme temperature affects only land then the land-labor ratio would decrease (because
of a drop in A/B). This prediction together with the reduction in output (due to higher costs) imply a reduction in
land, T . The effect on labor is, however, ambiguous.
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Table 4: Temperature and labor use

Domestic labor Hired
No. HH Child No. HH Child labor

Dep. variable: members work labor members work labor ln(wage bill)
in farm in farm
(1) (2) (3) (4) (5)

Average DD in -0.015*** -0.017*** 0.021
growing season (0.005) (0.004) (0.015)

Average HDD in 0.033* 0.017* -0.067
growing season (0.017) (0.009) (0.056)

Average DD -0.014** -0.018***
in spring (0.007) (0.004)

Average HDD 0.027 0.028***
in spring (0.020) (0.010)

Sample Full sample Spring & summer Full sample
Endowment controls Yes Yes Yes Yes Yes

Mean outcome 2.311 0.407 2.294 0.432 2.536
No. obs. 53,619 28,744 26,714 14,352 53,618
R-squared 0.448 0.271 0.464 0.312 0.244

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p
<0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and climatic region-by-
growing season fixed effects, and the same farmer controls as baseline regression in Table 2. Columns 2 and 4
restrict the sample to farmers interviewed during the growing season (spring and summer). Columns 1 and 3 also
restrict the sample to households with at least one child aged 6 to 15 years. HH = household.

to offset undesirable drops in output and consumption. In this sense, changes in input use are
akin to other consumption smoothing mechanisms, such as selling disposable assets or increasing
off-farm work (Kochar, 1999, Rosenzweig and Wolpin, 1993).

To the best of our knowledge, this margin of adjustment, namely increasing land use on the
extensive margin, has not been previously documented in the consumption smoothing literature,
nor in existing studies of the effect of temperature on agriculture. However, it may be particularly
relevant for farmers in less developed countries due to the presence of several market imperfections
and limited coping mechanisms, such as crop insurance or savings.35

35We examine the importance of market imperfections in Table B.10 in the Appendix. This table estimates
heterogeneous effects of HDD on area planted by several indicators of market development, such as share of output
sold in market, share of farmers hiring workers, and number of branches of agricultural banks. The evidence is
consistent with the positive effect driven by market imperfections. However, we recommend caution to the reader
when interpreting these results due to potential endogeneity of the indicators of market development.
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Our findings have at least two important implications. First, it suggests a potential dynamic
link between weather shocks and long-run outcomes. Leaving land uncultivated, i.e., fallowing, is
a common practice in traditional agriculture to avoid depleting soil nutrients, recover soil biomass,
and restore land productivity (Goldstein and Udry, 2008). If the increase in area planted as a
response to extreme temperature comes at the expense of fallow land, then this short-term response
could affect land productivity in the medium- or long-term. To explore this hypothesis, we evaluate
whether past weather shocks affect current agricultural yields. We do so by adding to our baseline
regression values of HHD from the last 8 previous years (see Table B.9 in the Appendix).36 For most
lags, we cannot rule out their effect are statistically insignificant. However, the effect of HDD lagged
7 years is negative and marginally significant (p-value= 0.083). While suggestive of medium-term
effects, we interpret these findings cautiously. We do not have information on the fallow history of
a plot or a farm, so we cannot directly link changes in fallowing in the past to current productivity.
Similarly, we do not have reliable information on the use of uncultivated land.37 Thus we cannot
satisfactorily examine the effects of temperature on fallow duration or extent.

Second, this farmer response may affect estimations of the damages of climate change on agri-
cultural output. These estimates are usually based on the effect of temperature on crop yields
(Y/T ). This is a correct approach if land use is fixed. In that case, changes in crop yields are
the same as changes in output. However, using crop yields may be less informative in contexts in
which farmers respond to weather shocks by changing land use. As we show in Section 6, taking
into account this adaptive response reduces, in a non-trivial magnitude, the predicted damages.

4.4 Additional checks

4.4.1 Alternative specifications

Table 5 presents several checks of the robustness of our main results to alternative model specifica-
tions. We report only the estimate associated with the measure of extreme heat (HDD). Each row
uses a different specification.

Row 1 restricts our sample only to farmers interviewed in fall and winter. By that time, the
main growing season has passed and farmers have reaped the main harvest of the year. This
specification drops almost half of the baseline sample, but it reduces concerns of measurement
error due to mismatch of planting and harvesting decisions, confounding of current and previous
weather shocks, or recall bias. Row 2 estimates a more parsimonious model without any individual
or household-level controls, only district and region-by-year fixed effects, while row 3 implements

36We choose this time span based on the fallow duration of 6 to 8 years documented for subsistence farmers in
Peruvian highlands (Brush et al., 1981, Orlove and Godoy, 1986). We present results adding one lag at a time, and
also all of them simultaneously. This last specification is quite demanding due to correlation between past weather
shocks.

37Farmers report fallowing in only a quarter of uncultivated land. The rest is reported as covered with bushes,
grasses, and forest. These uses are also consistent with fallowing and crop rotation (Denevan, 2003, Ch. 3). However,
we do not know if this land is left fallow or is non-agricultural land.
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a more conservative clustering at province (n= 159) instead of district level (n=977). In all three
cases, our results are similar to the baseline specification.

Our results are also robust to alternative ways to measure exposure to extreme heat. Row 4
uses the number of days in growing seasons with HDD, while row 5 uses average HDD during the
last 12 months instead of during the last completed growing season. We also obtain similar results
when allowing for different HDD thresholds by climatic region, i.e., coast and highlands (row 6).38

Figure A.5 in the Appendix further assesses the sensitivity of our results to different values of the
threshold (τ) ranging from 26℃ to 42℃. These results show that lower thresholds produce similar
results, while higher thresholds increase the magnitude of our baseline estimates and reduce their
precision.

4.4.2 Prices as omitted variables

An important concern is that our results might be driven by changes in relative prices. Extreme
heat shocks can reduce aggregate supply and increase agricultural prices. This price increase would,
in turn, create incentives to increase production and input use. In our baseline specification, we
address this concern by including a set of climatic region-by-growing season fixed effects. To the
extent that agricultural markets are national or circumscribed to climatic regions, this approach
would control for agricultural prices. However, if agricultural markets are narrower, we could have
an omitted variables problem.

We examine the relevance of this issue in two ways (see rows 7 to 8 in Table 5). First, we
add province-by-growing season fixed effects (row 7). This is a much richer set of time-varying
controls than our baseline specification and, under the assumption that agricultural markets are
province-wide, effectively controls for prices. Second, we add proxies of local prices at district level
(row 8). We focus on tubers and cereals: the two main types of crops in our sample. For each crop
type, we construct a price index at the district level and add it to baseline regression.39 In both
cases, our results remain similar to the baseline specification.

4.4.3 Regional differences

As discussed in Section 2.1, our sample has two distinct climatic regions: coast and highlands.
The coast has a warm semi-arid climate with very little precipitation, especially in the central
and southern coast. In contrast, the highlands are cooler and receive more rain. These climatic
differences are apparent when observing the distribution of daily temperature in these two regions
(see Figure A.6 in the Appendix). The two regions also differ in their agricultural practices. Coastal
farmers are, on average, substantially better off, are more productive, more educated, and more

38These region-specific thresholds were chosen by replicating the analysis shown in Figure 4 in the coast and
highland observations separately. The results from this exercise are presented in Figure A.6, in the Appendix.

39The price index for each crop type is a Laspeyres index using self-reported unit prices and output shares of each
crop (within a crop group) in baseline year 2007. We then take natural logarithms.
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Table 5: Robustness checks

ln(output ln(area Tubers No.
Dep. variable: per ha) planted) % output obs.

(1) (2) (3) (4)

1. Interviewed in -0.106** 0.079*** 0.019*** 26,799
fall and winter (0.045) (0.026) (0.006)

2. Excluding individual -0.120** 0.065*** 0.023*** 53,493
controls (0.046) (0.020) (0.005)

3. Clustering by -0.114*** 0.055*** 0.022*** 53,493
province (n=159) (0.036) (0.020) (0.005)

4. Using no. of HHD days -0.529** 0.313** -0.118*** 53,493
during growing season (0.212) (0.126) (0.042)

5. Using average HDD -0.165*** 0.095*** 0.043*** 53,493
in last 12 months (0.051) (0.030) (0.009)

6. Diff. thresholds by region -0.113*** 0.046** 0.021*** 53,493
33℃ Coast, 36℃ Highlands (0.043) (0.018) (0.005)

7. Adding province-by- -0.121*** 0.052*** 0.022*** 53,480
growing season FE (0.042) (0.018) (0.005)

8. Adding local prices -0.122*** 0.061*** 0.024*** 49,713
(0.044) (0.021) (0.005)

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications, except in row 2 include
the same controls as baseline regression in Table 2. Row 1 restricts the sample to farmers
interviewed in fall and winter (i.e., April to August). Row 7 adds province-by-growing season
fixed effects while row 8 includes logs of price indexes for tubers and cereals at district level.

likely to have access to irrigation. Compared to highland farmers, coastal farmers are also more
likely to specialize on fruits and cereals, less likely to own livestock and cultivate a larger share of
their land.

Given these regional differences, a relevant question is whether our baseline specification, which
pools all observations, may be hiding relevant heterogeneity in the effects and responses to extreme
heat. We address this question by relaxing the baseline specification and allowing for different effects
of weather variables (DD, HDD, and precipitation) by climatic region. In particular, we modify
the baseline specification by including interaction terms of weather variables with an indicator of
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being located in the highlands. Table 6 shows the estimates of the effect of HDD for each region,
and displays the p-value of the test of equality of both estimates.

Our main conclusions still remain the same after allowing for regional differences: in both
regions, extreme heat has a negative effect on productivity and a positive effect on the quantity
of land used. Surprisingly, despite coastal farmers being normally exposed to higher temperatures,
there are no statistical differences in the magnitude of the effect on yields in both regions.40 There
are, however, some quantitative differences on the effect on land use. In particular, the increase in
area planted is smaller in the coast. In this region, there is also no significant change in crop mix,
measured by the share of tubers in total output.

A possible interpretation of these findings is that mitigation and adaptive responses vary by
baseline climate.41 For instance, warmer areas could have developed different ways to cope with
extreme heat other than using their land more intensively. This interpretation is in line with recent
papers that combine high-frequency temperature variation with long-run climate differences to
study adaptation to climate change (Auffhammer, 2018, Barreca et al., 2015, Heutel et al., 2017).

There are, however, other possible explanations that we cannot rule out. For instance, these
findings may reflect lower land availability in the coast. In this region, agriculture occurs in densely
populated valleys, surrounded by very arid deserts, and depends heavily on access to irrigation.42

These features can constrain the expansion of agricultural land. Similarly, they may be driven by
coastal farmers having access to other, non-agricultural, coping mechanisms. This is plausible given
that coastal farmers tend to be better off and are closer to cities and other urban areas. For these
reasons, we interpret with caution as only suggestive evidence of different responses by climatic
region.

4.4.4 Very cold days

Our previous results focus on the effect and responses to high temperatures. However, as hinted
in Figure 4, low temperatures could also have a negative effect on agricultural productivity. This
is especially relevant in the Highlands where around 6% of days in the growing season have tem-
peratures below 8℃. To examine this issue, we replicate our main results adding a measure of
low-temperature degree days. This measure is similar to our variables DD and HDD, but uses only
temperatures below 8 ℃

Table 7 shows the results. There are two relevant observations. First, our baseline results of
the effect of HDD on yields and land use remain unaffected. Second, similar to extreme heat, low

40This result echoes findings by Burke and Emerick (2016) among U.S. corn farmers. Using a long difference
approach, they find that extreme heat has similar detrimental effects on crop yields across time, despite the observed
increase in average temperatures. Burke and Emerick (2016) interpret this finding as suggestive evidence of limited
long-term adaptation to higher temperatures.

41Indeed, we observe similar results when using an indicator of cool and warm regions instead of a climatic region
dummy (see Table B.8 in the Appendix).

42The share of uncultivated land is almost 45% in the highlands and 11.5% in the coast (see Table 1).
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Table 6: Effect of HDD on land productivity, output and land use -
by climatic region

ln(output ln(total ln(area Tubers
per ha) output) planted) % output
(1) (2) (3) (4)

(A) Average HDD × -0.114** -0.063 0.034* 0.006
Coast (0.047) (0.047) (0.019) (0.004)

(B) Average HDD × -0.142** 0.016 0.118** 0.038***
Highlands (0.057) (0.044) (0.047) (0.010)

Diff. (B)-(A) 0.706 0.226 0.097 0.002
p-value

No. obs 53,493 53,619 53,493 53,619
R-squared 0.336 0.348 0.443 0.526

Notes: Standard errors clustered at the district level (in parenthesis). Stars indi-
cate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications
include district, month of interview, and climatic region-by-growing season fixed
effects, and the same farmer controls as baseline regression in Table 2.

temperatures have a negative effect on yields, and increase land use and share of tubers. These
last results are consistent with our interpretation that farmers increase land use as a response to
negative productivity shocks.
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Table 7: Effect of low temperatures on land productivity, output,
and land use

ln(output ln(total ln(area Tubers
per ha) output) planted) % output
(1) (2) (3) (4)

Average low DD -0.122* 0.071 0.212*** 0.047***
(0.067) (0.051) (0.053) (0.014)

Average DD 0.010 0.017 0.012 -0.024***
(0.013) (0.010) (0.009) (0.003)

Average HDD -0.105*** -0.047 0.040** 0.018***
(0.039) (0.041) (0.017) (0.004)

Observations 53,389 53,515 53,389 53,515
R-squared 0.336 0.348 0.444 0.525

Notes: Standard errors clustered at the district level (in parenthesis). Stars
indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All spec-
ifications include district, month of interview, and climatic region-by-growing
season fixed effects, and the same farmer controls as baseline regression in
Table 2. Low DD = degree days below 8 ℃.

5 Other coping mechanisms

Our main results suggest that farmers adjust input use as a mechanism to cope with the negative
effects of extreme temperatures. In this section, we study other coping mechanisms previously
documented in the consumption smoothing literature, such as working in non-agricultural activities
(Colmer, 2018, Kochar, 1999, Rosenzweig and Stark, 1989), migrating (Feng et al., 2012, Jessoe
et al., 2017, Kleemans and Magruder, 2017, Munshi, 2003) or selling livestock (Rosenzweig and
Wolpin, 1993). Then, we examine how these coping mechanisms interact with changes in land use.

We start by examining whether farmers in our context use other coping mechanisms (see Table
8). Our first set of outcomes focuses on the use of livestock as a buffer against income shocks
(columns 1 to 3). We find that HDD is associated with an increase in the probability that a farmer
reports a decrease in livestock value.43 This reduction seems to come from households selling,
rather than consuming their livestock. These results are consistent with farmers selling livestock
to offset the adverse effects of extreme heat.

Next, we focus on indicators of off-farm work (columns 4 and 5). We use an indicator of a
household member having a non-agricultural job, as well as the total number of hours worked
off-farm (conditional on having a non-agricultural job). As in Table 4, we restrict the sample

43Our definition of livestock includes cattle, horses, sheep, llamas, and pigs.
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to households interviewed during the growing season (i.e., spring and summer). These outcomes
capture supply of off-farm employment in the extensive and intensive margin. In the extensive
margin, the estimate is insignificant. However, the estimate on the intensive margin is positive and
statistically significant: farmers with off-farm jobs seem to increase the number of hours worked
in that activity. While suggestive of off-farm employment as a coping strategy, this result is not
robust to using the whole sample of farmers.

In columns 6 and 7, we look for evidence of short-term migration. Due to data limitations, we
cannot measure migration directly. Instead, we use proxy variables such as an indicator of whether
any member has been away for more than 30 days and household size. Similar to the results on off-
farm employment, none of these outcomes seems to be affected by extreme temperature. However,
we should interpret these last results with caution. Our analysis focuses on a short period (within
a year), and these adjustments may happen over a longer time frame. In addition, our measures of
labor and migration may be noisy proxies of actual behavior. These factors likely reduce the power
of our statistical analysis and could explain the insignificant results.
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Table 8: Other responses to extreme heat

Livestock buffer Off-farm work Short-term migration

Dep. variable: Decrease in Sold Consumed HH member ln(hours HH member
livestock livestock livestock has off-farm worked away 30+ HH size
value job off-farm) days
(1) (2) (3) (4) (5) (6) (7)

Average DD -0.008*** -0.012*** -0.013*** 0.009** 0.026*** 0.003** -0.006
(0.002) (0.002) (0.003) (0.004) (0.009) (0.001) (0.014)

Average HDD 0.022*** 0.016* 0.007 0.006 0.054** -0.002 0.016
(0.007) (0.009) (0.009) (0.011) (0.025) (0.002) (0.033)

Mean outcome 0.332 0.517 0.476 0.464 57.548 0.085 4.339

No. obs. 48,169 48,169 48,169 26,726 12,377 53,619 53,619
R-squared 0.077 0.146 0.240 0.213 0.169 0.083 0.244

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05,
*** p <0.01. All specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same
farmer controls as baseline regression in Table 2. Columns 1 to 3 restrict the sample to farmers who reported having livestock 12
months ago. Columns 4 and 5 restrict the sample to farmers interviewed in spring and summer. Column 5 further restricts the sample
to households in which at least one member has an off-farm job. All regressions are estimated using OLS. All regressions, except in
columns 5 and 7, have a binary outcome variable.
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5.1 Interactions with productive responses

Our results suggest that, in our sample, farmers seem to use livestock sales as a coping strategy
to smooth negative weather shocks. A natural question is how this coping strategy interacts with
the productive responses, such as increasing input use, identified in our main results. Does having
livestock eliminate the need to change land use, or do they complement each other? These are
relevant questions to better understand the portfolio of coping strategies available to subsistence
farmers.

We examine these issues by estimating heterogeneous responses to extreme heat for farmers
with different ability to use other coping strategies. Based on our previous findings, we interact
HDD with indicators of owning livestock 12 months ago and having at least one household member
employed in a non-agricultural activity. We use these indicators as proxies of farmers’ ability to
use livestock and off-farm employment as buffers to negative income shocks.

Our results in Table 9 suggest that the effect of HDD on land use (area planted and relative
share of tubers) is qualitatively similar between farmers with and without livestock (columns 2 and
3). However, the magnitude of the effect is larger among farmers who do not own livestock. This
result is not driven by these latter farmers experiencing a larger negative productivity shock. As
shown in column 1, the effect of HDD on agricultural yields is similar for both types of farmers and,
if anything marginally smaller for farmers without livestock. In the case of off-farm employment
(columns 4 to 6), there are no significant quantitative differences in the effect of HDD in any
outcome.

We interpret these results as evidence that farmers do not use one strategy exclusively but
instead use a combination of responses to cope with extreme heat. These responses include both
sale of disposable assets (such as livestock) and adjustments in production decisions (such as changes
in land use).
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Table 9: Interaction with changes in land use

Livestock buffer Off-farm work

ln(output ln(area Tubers ln(output ln(area Tubers
Dep. variable: per ha) planted) % output per ha) planted) % output

(1) (2) (3) (4) (5) (6)

(A) Average HDD × -0.087* 0.055*** 0.024*** -0.100** 0.041** 0.017***
D = 0 (0.044) (0.019) (0.005) (0.048) (0.018) (0.005)

(B) Average HDD × -0.121** 0.018 0.015*** -0.112** 0.040** 0.020***
D = 1 (0.047) (0.018) (0.005) (0.046) (0.018) (0.005)

Diff. (B)-(A) 0.059 0.002 0.000 0.392 0.956 0.113
p-value

D is indicator = 1 if HH owns livestock Any HH member has off-farm job

No. obs. 53,493 53,493 53,619 53,493 53,493 53,619
R-squared 0.336 0.452 0.525 0.335 0.444 0.525

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p
<0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and climatic region-by-
growing season fixed effects, and the same farmer controls as baseline regressions in Table 2. Regressions includes
interaction of HDD with an indicator variable D of whether household owned livestock 12 month ago (columns 1
to 3) or has a member with a non-agricultural job (columns 4 to 6). All regressions also include the interaction of
HDD with an indicator of climatic region. The third row reports the p-value of test of equality of estimates in first
two rows.

6 Implications for estimating damages from climate change

Most models assessing climate change damages use estimates of the effect of temperature on crop
yields to calculate the loss of agricultural output and, hence, rural income. This approach is correct
if, among other things, the amount of land used is constant. However, if farmers increase land use,
as we have documented above, this approach would ignore an important margin of productive
adaptation and overestimate the actual fall in agricultural output.

In this section, we quantitatively assess the magnitude of this overestimation of damages. To do
so, we obtain end-of-the-century predictions of temperature over our study area from current climate
change projections. Then, we calculate the predicted change in agricultural output by extrapolating
the effect of these temperatures on agricultural yields. This is the approach commonly used in the
literature.44 Finally, we compare these results to predictions obtained using our estimates of the
effect of temperature on output. These latter estimates take into account changes in land use.

44See, for example, Deschenes and Greenstone (2007)
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Importantly, this exercise only assumes changes in temperature (DD and HDD) and keeps
everything else constant. Thus, it does not account for other potential factors and responses
associated with climate change such as changes in CO2, increase risk of natural disasters, changes
in water availability, degradation of land quality, migration, changes in sectoral employment, etc.
For that reason, our results should be interpreted with caution: they do not attempt to predict the
effect of global warming on Peruvian agriculture, but only to highlight the importance of accounting
for farmers’ changes of land use when estimating damages from climate change.

6.1 Climate change projections

We obtain temperature projections from two climate change scenarios: RCP45 and RCP85. These
scenarios, used in the IPCC’s Fifth Assessment Report (IPCC, 2014), represent two different sets
of assumptions about the future trajectory of global greenhouse gas emissions.45 RCP85 is a
‘business as usual’ framework in which no additional policies to reduce greenhouse gas emissions
are introduced. This scenario forecasts an increase of 4.9 ℃ in global temperatures by the end of
the century. RCP45 is a more optimistic scenario that assumes increased efforts to curb emissions
at a global scale and forecasts an average 2.4 ℃ increase in global temperatures.46

For each scenario, we obtain gridded data at a resolution 1.25 x 1.875 degrees of monthly
temperatures for the baseline year 2005 and the forecast for the year 2099. We then adjust for
model-specific error in a similar way to Deschenes and Greenstone (2011) to account for the fact
that the historical temperatures (from MODIS) and predicted temperatures (from the HadGEM2-
ES model) are from different sources.47 Then, we use the predicted temperature distribution for
each scenario j and location k to calculate DDjk and HDDjk for the end of the century. 48

Panel A in Table 10 presents the predicted average ∆DD and ∆HDD for our whole sample
and each climatic region in both scenarios.49 Note that the increase in average HDD is 0.639 ℃
in the RCP45 scenario and more than double, 1.323 ℃ in the ‘business as usual’ scenario. The
increase in temperature will create substantially more harmful temperatures in the coast than in the
highlands. While the coast is expected to experience 3-5 additional harmful degrees a day during
growing season months, the highlands are expected to experience just up to 0.7 HDD a day, in the
most pessimistic scenario. These results are a natural consequence of the current distribution of

45We use the model output produced by the Hadley Centre Global Environment Model version 2 (HadGEM2-ES).
46In Table B.12 in the Appendix, we also include precipitation projections. While the results are qualitatively

similar, we focus on temperatures only as there is less consensus (‘low confidence’) about the sign and the magnitude
of projected precipitations patterns (IPCC, 2014, Ch. 27).

47We calculate the implied temperature change (i.e., 2099 compared to 2005) for each month-location according to
each HadGEM2 scenario, and then add this to the average temperature in our (MODIS) dataset for each day of the
year.

48We assume the same optimal temperature threshold as discussed in the previous section, 33℃. In both scenarios,
average precipitation is predicted to stay within one standard deviation of its natural internal variability, so we do
not assume any change in this respect (IPCC, 2014).

49Formally, ∆HDDjk = HDDk − ¯HDDk where ¯HDDk is the average historical HDD in location j. We use a
similar procedure to calculate the change in degree-days ∆DDjk.
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temperatures in both regions: as previously mentioned, the coast is already drier and hotter than
the highlands. Thus, a shift in the distribution of temperature has a larger effect on the frequency
of extremely hot days.

6.2 Predicted effects on agriculture

We calculate the predicted change on agricultural yields and output using the estimated effect
of temperature on agricultural outcomes and the predicted changes in temperatures from climate
change forecasts. In particular, we calculate the predicted effects as follows:

∆yijk = β̂1∆DDjk + β̂2∆HDDjk

where y is the outcome (i.e, yield or output) of farmer i in location k, while β̂1 and β̂2 correspond
to the estimated effect of DD and HDD for each climatic region (coast and highlands) taken from
columns 1 and 2 in Table 6.

Panels B and C in Table 10 present our results. The main observation is that using yields
to predict the effect of climate change can lead to a substantial overestimation of the loss of
agricultural output. This finding suggests that taking into account farmers’ adjustments in land
use is quantitatively important when estimating damages associated with climate change.

For instance, assuming the quantity of land used is fixed, we would predict that drops in output
are equal to drop in yields. This implies a drop in output of around 5 to 9 percent (columns
1 and 4). However, the predicted drop in output is much smaller: around 0.6 to 1.2 percent.
Overestimation is particularly salient in the coast. In that region, assuming land used is fixed,
output losses are estimated to range from 29 to 48 percent. These magnitudes are almost twice as
large as when allowing for changes in land used. In the highlands, the differences when using both
types of approaches are much smaller, but they produce qualitatively different results: a drop in
yields, but an increase in output.

Naturally, land is a finite resource, and thus this particular strategy is not dynamically con-
sistent. In other words, farmers will not be able to offset output losses in the face of higher
temperatures by adding more land to their production function indefinitely. Nevertheless, note
that the farmers in our sample keep large amounts of unused land during any given growing season
(see Table 1). In the case of highland farmers this is as high as 40% of their land holdings. It is,
therefore, a productive adaptation with a significant margin over the near term.

As a final point, our predictions highlight potentially heterogeneous impacts on agricultural
production: while the coast will experience sizable output losses, the impact in the highlands
would be slightly positive. This result is consistent with other studies that predict large negative
effects of climate change on warm (lower latituted) areas but smaller (albeit less conclusive) effects
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on cooler (higher latitude) areas (Auffhammer and Schlenker, 2014, Deschenes and Greenstone,
2007, 2012).

Table 10: Predicted effects of temperature on agriculture under two climate change
scenarios

RCP 4.5 RCP 8.5

All Coast Highlands All Coast Highlands
(1) (2) (3) (4) (5) (6)

A. Predicted change of temperature
∆ DD 1.132 1.232 1.115 3.402 1.789 3.668
∆ HDD 0.639 3.034 0.244 1.323 4.927 0.728

B. Predicted effect on agriculture
∆ Yields (ln Y/T) -0.053 -0.288 -0.014 -0.098 -0.477 -0.035
∆ Output (ln Y) -0.012 -0.154 0.011 -0.006 -0.256 0.035

C. Differences on estimate of damages
∆ yields - ∆ output -0.040 -0.133 -0.025 -0.092 -0.220 -0.071

Notes: Table presents predictions of the effect of increased temperatures on agriculture under two
climate change scenarios (RCP 4.5 and 8.5). Predictions uses region-specific estimates of the effect
of temperature on yields and output from columns 1 and 3 in Table 6. Precipitation is assumed to
remain constant.

7 Conclusion

This paper examines how subsistence farmers respond to extreme temperature. Using micro-data
from Peruvian farmers, we show that extreme temperatures decrease agricultural productivity, but
increase area planted. The expansion of area planted is coupled with changes in crop mix. We also
find suggestive evidence of an increase in domestic labor.

We interpret these results as evidence that farmers use productive adjustments, such as changes
in input use, as strategies to attenuate drops in output and consumption. This interpretation is
consistent with predictions of producer-consumer models in the presence of incomplete markets.

Our results point out to a margin of adjustment not previously documented in the literature.
This response could be relevant in other contexts with subsistence farmers and incomplete markets.
In addition, this paper highlights the importance of high temperature realizations, expected to keep
increasing due to climate change, as an income and productivity shock. This measure could be used
alongside other standard measures, such as rainfall, to study farmers’ decisions and would require
new policy instruments that would address the consequences of heat exposure among subsistence
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farmers.
There are, however, several unsolved issues. First, due to data limitations, we cannot investi-

gate other important topics such as the potential long-term effects, interactions with other long-run
adaptive strategies (like defensive investments or adoption of new technologies), Second, we can-
not directly examine the role of different market distortions on shaping this response to extreme
temperatures. Finally, while our findings are specific to the Peruvian case (with distinct regional
differences), our methodology could be used to study similar phenomena in other contexts. Exam-
ining these issues warrants future research.
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ONLINE APPENDIX - Not for publication

A Additional Figures

Figure A.1: ENAHO observations 2007-2015

Notes: Map depicts Peru’s climatic regions and location of the ENAHO clusters used in this
study.
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Figure A.2: Effect of lagged HDD on area planted in a given month

Notes: Figure displays results of regressing area planted with transitory (annual) crops in month t
on lagged values of HDD (t to t− 4). Regression uses data from the Peruvian National Agricultural
years 2014 to 2017. This dataset has farm-level data of monthly planting over a 12-month period.
Regression includes farmer, month-by-strata, and year-by-strata fixed effects. Dots are point esti-
mates and lines indicate 95% confidence intervals. Standard errors clustered at the farmer level.
Estimates and additional checks are available in Table B.1.
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Figure A.3: Distribution of daily average temperature by growing season

Notes: Figure depicts the share of days spent in each temperature bin by the farmers in our sample, during
the 2007-2015 growing seasons (i.e., October to March).
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Figure A.4: Optimal temperature threshold using the iterative regression approach
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Figure A.5: Effect of HDD on yields and land use using alternative DD/HDD thresholds

(a) Impacts on ln(output per hectare planted)

(b) Impacts on ln(hectares planted)
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Figure A.6: Non-linear relationship between temperature and agricultural yields by region

(a) Coast

(b) Highlands
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B Additional tables
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Table B.1: Effect of HDD on area planted in a given month

Area planted with transitory crops (has) in month t % annual
area planted

(1) (2) (3) (4) (5) (6)

HDDt−4 -0.0003 -0.0016** -0.0003 -0.0024 -0.0014*** 0.0388***
(0.000) (0.001) (0.000) (0.002) (0.000) (0.011)

HDDt−3 0.0002 -0.0001 0.0004 0.0020 -0.0014** 0.0831***
(0.000) (0.001) (0.000) (0.002) (0.001) (0.013)

HDDt−2 0.0024*** 0.0039*** 0.0010 0.0033** 0.0017*** 0.1257***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.015)

HDDt−1 0.0018*** 0.0022** 0.0017* 0.0024** 0.0024*** 0.0486***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.016)

HDDt -0.0003 -0.0003 0.0002 -0.0004 0.0017** -0.1069***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.015)

HDDt+1 -0.0028***
(0.001)

HDDt+2 -0.0011*
(0.001)

HDDt+3 -0.0021***
(0.001)

HDDt+4 0.0005
(0.001)

Specification Baseline Only Only Spring Adding Alternative
Coast Highlands planting leads outcome

No. obs. 480,462 98,317 382,145 192,348 438,298 480,280
R-squared 0.023 0.023 0.033 0.012 0.026 0.118
No. farmers 38,485 7,908 30,577 38,467 38,471 38,472

Notes: Standard errors clustered at farmer level (in parenthesis). Stars indicate statistical significance: *p
<0.10, ** p <0.05, *** p <0.01. Regression uses data from the Peruvian National Agricultural years 2014 to
2017. This dataset has farm-level data of monthly planting over a 12-month period. All specifications include
farmer, month-by-strata, and year-by-strata fixed effects. Columns 2 and 3 restrict sample to a climatic
region (Coast or Highlands). Column 4 restricts sample to planting done in months of August to December.
Column 5 adds leads of HDD, while column 6 uses the share of annual area planted in a given month (i.e.
area planted in month t / total area planted in a year) as outcome variable.
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Table B.2: Temperature variation under various sets of fixed effects (in ℃)

DD HDD

R2 σe |e| > 1℃ R2 σe |e| > 1℃
(1a) (1b) (1c) (2a) (2b) (2c)

No fixed effects (FE) 4.81 100.0% 1.34 28.6%
District FE 0.90 1.50 37.7% 0.86 0.44 23.2%
District + growing season FE 0.91 1.41 36.5% 0.86 0.43 23.1%
District + growing season-by-region FE 0.92 1.40 36.2% 0.87 0.42 23.1%

Notes: This table replicates Table 2 of Fisher et al. (2012), It summarises regressions of measures of tem-
perature on various sets of fixed effects and shows how much of the variation they absorb. The first three
columns use average degree days (DD), and the last three columns use harmful degree days(HDD), using a
threshold of 33℃. Columns (a) report the R2 of the regression; columns (b) report the standard deviation of
the residuals (remaining temperature variation) in degrees Celsius during the growing season; and columns
(c) report what fraction of the observations have a residual that is larger than 1℃ over the growing season.

Table B.3: Temperature variation under various sets of fixed effects (in oF )

Variable: DD HDD

Measure: R2 σe |e| > 1°F R2 σe |e| > 1°F
(1a) (1b) (1c) (2a) (2b) (2c)

No fixed effects (FE) 8.66 100.00 2.40 39.27
District FE 0.90 2.70 46.30 0.86 0.79 25.73
District + growing season FE 0.91 2.54 45.54 0.86 0.77 25.43
District + growing season-by-region FE 0.92 2.52 44.98 0.87 0.76 25.34

Notes: This table replicates Table 2 of Fisher et al. (2012), It summarises regressions of measures of tem-
perature on various sets of fixed effects and shows how much of the variation they absorb. The first three
columns use average degree days (DD), and the last three columns use harmful degree days(HDD), using a
threshold of 33oF . Columns (a) report the R2 of the regression; columns (b) report the standard deviation of
the residuals (remaining temperature variation) in Farenheit degrees during the growing season; and columns
(c) report what fraction of the observations have a residual that is larger than 1oF over the growing season.
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Table B.4: First stage of 2SLS regression (column 3 in Table
2)

Dep. Variable: ln(area planted) ln(no. HH members
members work in farm)

(1) (2)

ln(area owned) 0.165*** 0.007***
(0.005) (0.001)

ln(HH size) 0.195*** 0.494***
(0.013) (0.006)

No. obs. 53,487 53,487
R-squared 0.478 0.481

Notes: Standard errors clustered at district level (in parenthesis). Stars
indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. Table
presents first stage of 2SLS regression presented in column 3 in Table
2. Regression has all included such as district, month of interview, and
climatic region-by-growing season fixed effects, and a set of farmer controls.
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Table B.5: Temperature and agricultural productiv-
ity (TFP), alternative specifications

Dep. Variable: ln(output)
(1) (2) (3)

Average DD in 0.014* 0.014* 0.013*
growing season (0.007) (0.007) (0.007)

Average HDD in -0.064* -0.063* -0.062*
growing season (0.033) (0.033) (0.033)

Inputs controls Yes Yes Yes
Endowment controls Yes No Yes
3rd degree Taylor No Yes Yes
expansion of inputs

No. obs. 53,487 53,487 53,487
R-squared 0.550 0.552 0.552

Notes: Standard errors clustered at district level (in paren-
thesis). Stars indicate statistical significance: *p <0.10, **
p <0.05, *** p <0.01. All specifications are estimated using
OLS and include district, month of interview, and climatic
region-by-growing season fixed effects, and the same farmer
controls as regression in column 2 of Table 2. Input controls:
log of area planted, number of household members working
in agriculture, and amount spent on hired labor. Endow-
ment controls: log of household size and area of land owned.
Columns 2 and 3 include a 3rd degree Taylor expansion of
two inputs: log of area planted, number of household mem-
bers working in agriculture.
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Table B.6: Effect of HDD on other farm inputs

Fertilizers Pesticides

(1) (2) (3) (4)
Dep var: Extensive Intensive Extensive Intensive

Average DD -0.003 -0.021 0.001 0.002
(0.003) (0.022) (0.004) (0.018)

Average HDD 0.003 0.002 0.005 0.029
(0.010) (0.052) (0.008) (0.043)

No. obs. 53,619 53,618 53,619 53,618
R-squared 0.272 0.375 0.245 0.354

Notes: Extensive margin use is studied using a dummy variable equal to one if
the farmer reports to have used fertilizers/pesticides during the last growing
season. Intensive margin use is defined as the logarithm of total amounts
spent on fertilizers/pesticides. Standard errors clustered at the district level
(in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05,
*** p <0.01. All specifications include district, month of interview, and
climatic region-by-growing season fixed effects, and the same farmer controls
as baseline regression in Table 2.

Table B.7: Effect of temperature on farm labor inputs, by type of farmer

Household Labor Hired Labor

(1) (2) (3) (4)

Dep var:
HH members

in farm
HH hours
in farm Child labor ln(wage bill)

Average HDD x Owns livestock 0.019 0.032∗ 0.024∗ -0.095
(0.012) (0.019) (0.012) (0.061)

Average HDD x No livestock 0.014 0.016 0.029∗ -0.038
(0.014) (0.024) (0.015) (0.055)

No. obs. 26,724 26,726 14,358 53,618
R-squared 0.513 0.361 0.315 0.247

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance:
*p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and climatic
region-by-growing season fixed effects, and the same farmer controls as baseline regression in Table 2. Sample
restricted to interviews conducted during the growing season (i.e. October to March) in columns 1 and 2,
since dependent variable is defined as work conducted over the past week. In column 3, we restrict the
sample to households with children between the ages of 6 and 15.
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Table B.8: Effect of HDD on land productivity, output and land use
- by baseline climate

ln(output ln(total ln(area Tubers
per ha) output) planted) % output
(1) (2) (3) (4)

(A) Average HDD x -0.126*** -0.066 0.039** 0.009**
Hot areas (0.040) (0.041) (0.018) (0.004)

(B) Average HDD x -0.228** 0.038 0.221** 0.050***
Cool areas (0.102) (0.068) (0.097) (0.019)

Diff. (B)-(A) 0.305 0.130 0.054 0.026
p-value

No. obs 53,493 53,619 53,493 53,619
R-squared 0.336 0.348 0.443 0.527

Notes: Standard errors clustered at the district level (in parenthesis). Stars
indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All spec-
ifications include district, month of interview, and climatic region-by-growing
season fixed effects, and the same farmer controls as baseline regression in Ta-
ble 2. Cool areas = clusters with average growing season temperature in period
2007-2015 below the sample median (22.4℃). Hot areas = clusters with average
growing season temperature in period 2007-2015 above the sample median.
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Table B.9: Effect of lagged HDD on land productivity

Dep. Variable: ln(output/ha)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Average HDD in -0.105** -0.106** -0.096** -0.092* -0.111*** -0.102*** -0.071** -0.077** -0.042
growing season t (0.042) (0.041) (0.038) (0.047) (0.041) (0.039) (0.034) (0.033) (0.039)
Average HDD in -0.015 0.026
growing season t-1 (0.025) (0.033)
Average HDD in -0.016 0.028
growing season t-2 (0.027) (0.039)
Average HDD in -0.031 0.003
growing season t-3 (0.028) (0.039)
Average HDD in -0.042 -0.043
growing season t-4 (0.031) (0.038)
Average HDD in -0.007 0.014
growing season t-5 (0.020) (0.026)
Average HDD in -0.036 -0.020
growing season t-6 (0.024) (0.027)
Average HDD in -0.049* -0.045
growing season t-7 (0.028) (0.032)
Average HDD in -0.044 -0.047
growing season t-8 (0.030) (0.040)
No. obs. 53,493 53,493 53,493 53,493 53,493 52,056 46,636 41,465 41,465
R-squared 0.335 0.335 0.335 0.335 0.335 0.332 0.333 0.330 0.330

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, ***
p <0.01. All specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same farmer
controls as baseline regression in Table 2.
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Table B.10: Effect of temperature on land uses, by proxies of market development

ln(area planted)
(1) (2) (3) (4) (5) (6)

Average HDD 0.180*** 0.075** 0.279** 0.211* 0.150** 0.573**
(0.068) (0.034) (0.138) (0.113) (0.068) (0.280)

Average HDD -0.297** -0.098 -0.438* -0.315 -0.631 -0.184*
×W (region level) (0.143) (0.142) (0.255) (0.224) (0.397) (0.098)

W = % output % land with % farmers % use % apply to ln(no. branches per
sold registered title hire workers pesticides agric. credit 100,000 inhab. 2009)

Mean W 0.276 0.158 0.497 0.449 0.082 2.570

No. obs 53,493 53,493 53,493 53,493 53,493 53,493
R-squared 0.443 0.443 0.443 0.443 0.443 0.443

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, ***
p <0.01. All specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same farmer
controls as baseline regression in Table 2. W are proxies of market distortions calculated at region (n=24) level. Data for constructing
these measure comes from the ENAHO survey, except in columns 5 and 6 which were obtained from the National Agricultural Census
2007 and the Superintendencia de Banca, Seguros y AFP (SBS). Column 6 refers to the number if of branches of banks providing credit
to farmers.
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Table B.11: Effect of temperature on household income, consumption and poverty rates

ln(inc/capita) ln(cons/capita) Poor (Yes=1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Sample: All Coast Highlands All Coast Highlands All Coast Highlands

Average DD 0.023∗∗∗ 0.010 0.024∗∗∗ 0.021∗∗∗ 0.013 0.021∗∗∗ -0.014∗∗∗ -0.009 -0.013∗∗∗

(0.004) (0.012) (0.004) (0.004) (0.014) (0.004) (0.003) (0.012) (0.003)

Average HDD -0.017 -0.015 -0.008 -0.014 -0.016 0.001 0.003 0.009 -0.008
(0.013) (0.013) (0.022) (0.010) (0.010) (0.017) (0.007) (0.008) (0.015)

No. obs. 53,619 7,439 46,180 53,619 7,439 46,180 53,619 7,439 46,180
R-squared 0.380 0.388 0.335 0.452 0.451 0.416 0.264 0.282 0.244

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, ***
p <0.01. All specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same farmer
controls as baseline regression in Table 2.
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Table B.12: Predicted effects of temperature and precipitation on agriculture under
two climate change scenarios

RCP 4.5 RCP 8.5

All Coast Highlands All Coast Highlands
(1) (2) (3) (4) (5) (6)

A. Predicted change of temperature
∆ DD 1.132 1.232 1.115 3.402 1.789 3.668
∆ HDD 0.639 3.034 0.244 1.323 4.927 0.728
∆ Precipitation 0.910 0.137 1.038 0.122 -0.560 0.235

B. Predicted effect on agriculture
∆ Yields (ln Y/T) -0.113 -0.299 -0.082 0.031 -0.545 0.126
∆ Output (ln Y) 0.030 -0.169 0.063 0.067 -0.391 0.143

C. Differences on estimate of damages
∆ yields - ∆ output -0.143 -0.130 -0.145 -0.036 -0.154 -0.016

Notes: Table presents predictions of the effect of increased temperatures on agriculture under two
climate change scenarios (RCP 4.5 and 8.5). Predictions uses region-specific estimates of the effect
of temperature and precipitation on yields and output from columns 1 and 3 in Table 6.
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