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Abstract

In recent years, meta-learning has gained significant attention in recommending machine
learning algorithms. These recommendations rely on meta-features that are used to quan-
tify the characteristics of input datasets. However, existing meta-features are predominantly
designed for classification tasks, leaving a gap in their potential use for regression analysis.
This paper aims to address this gap by identifying seven data properties that might be cru-
cial in differentiating regression algorithms and by proposing a set of meta-features designed
to capture these properties. To evaluate the efficacy of these meta-features, we conduct a
simulation study that investigates their ability to reflect the desired data properties. The
simulation study systematically manipulates key factors, including data linearity, true er-
ror variance, the proportion of relevant explanatory variables, and the signal-to-noise ratio,
among others. This enables us to examine how the meta-features respond to changes in the
targeted data properties and whether they exhibit sensitivity or specificity toward those
specific properties. By analyzing the correlation between the identified data properties and
their corresponding meta-features, along with considering the computational time involved,
we demonstrate that many of these measures exhibit strong discriminative power without
imposing excessive computational complexity.

Keywords: meta-features; regression analysis; algorithm selection; meta-learning; simula-
tion

iii



Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Dr.
Thomas Loughin. Without his continuous support, this project would not have been com-
pleted with such smoothness. The guidance provided by Tom throughout my master’s
program went beyond just professional advice. Looking back on our regular meetings, I
find myself genuinely missing the knowledge and encouragement he provided. Tom created
a truly supportive and motivating environment that fostered my academic and personal
growth. What added a uniquely delightful layer to our talks was Tom’s wonderful sense
of humor. His anecdotes never failed to brighten my day, leaving a lasting smile on my
face and turning each meeting into an enlightening and enjoyable experience. Above all, he
showed genuine care for my development as an individual. His influence on my academic
and personal journey has been invaluable. I will always remember the support, wisdom and
warmth he shared.

I am also deeply thankful to Dr. Richard Lockhart for chairing my defence and to Dr.
Haolun Shi and Dr. Owen Ward for serving on my committee and providing insightful
suggestions that enhanced my work. Special thanks go to all the staff and faculty in the
Department of Statistics and Actuarial Science, especially Dr. Thomas Loughin, Dr. Richard
Lockhart, Dr. Rachel Altman, Dr. Boxin Tang, and Dr. Jinko Graham, for offering such
valuable courses. Their wisdom and expertise have played an enormous role in shaping my
academic journey and making it so fulfilling. Additionally, I am grateful for the opportunity
to work with Professor Ian Bercovitz as a statistical consultant. This experience has provided
me with valuable insights that I will carry with me into my future career.

I also want to give a big thank you to my fellow graduate students. Your companionship
and support made such a huge difference for me in this new environment. I especially want
to thank Linwan and Yuxin for always having my back and being such awesome friends.
Additionally, I would like to express my gratitude to my friends who, despite not being
physically present, still consistently showed me so much love and encouragement from afar.

Lastly, my deepest appreciation goes to my family, especially my parents, for their love
and support over the years. I would not be where I am today without them, and I am so
grateful for everything they have done for me.

iv



Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 4
2.1 Meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Meta-learning Definition . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Meta-learning Architecture . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Meta-features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Direct Characterization Measures . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Model-based Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Landmarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Complexity-related Meta-features . . . . . . . . . . . . . . . . . . . . 8

3 Review of Data Properties for Regression Problems 11
3.1 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 NL.1 - GAMs Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 NL.2 - MARS Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Interactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 INT.1 - F-test Measure . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 INT.2 - MARS Measure . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 HET.1 - Standard Deviation (SD) Ratio Measure . . . . . . . . . . . 17

v



3.3.2 HET.2 - Breusch Pagan Test Measure . . . . . . . . . . . . . . . . . 18
3.4 Signal Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 SS - SNR RF Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Data Richness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 DR Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6.1 SP.1 - LASSO Measure . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.2 SP.2 - MARS VI Score Measure . . . . . . . . . . . . . . . . . . . . . 20
3.6.3 SP.3 - RF Average VI Score Measure . . . . . . . . . . . . . . . . . . 21
3.6.4 SP.4 - RF Scaled VI Score Measure . . . . . . . . . . . . . . . . . . . 21
3.6.5 SP.5 - Boruta.conf. Measure . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.6 SP.6 - Boruta.tent. Measure . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7.1 MC.1 - Correlation Matrix Measure . . . . . . . . . . . . . . . . . . 23
3.7.2 MC.2 - Condition Number Measure . . . . . . . . . . . . . . . . . . 24
3.7.3 MC.3 - Variance Inflation Factor Measure . . . . . . . . . . . . . . . 24

4 Simulation Study 26
4.1 Model for Baseline Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Different Settings for Each Data Property . . . . . . . . . . . . . . . . . . . 28

4.2.1 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Interactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Signal Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.5 Data Richness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.6 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.7 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Experimental Results 31
5.1 Results of Sensitivity and Specificity . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Relative Change of Meta-features in Different Settings . . . . . . . . . . . . 32
5.3 Computational Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion and Future Work 37

Bibliography 39

Appendix A Simulation Results for All Settings 43

vi



List of Tables

Table 3.1 A summary table of meta-features, along with the corresponding func-
tions and packages used in R. . . . . . . . . . . . . . . . . . . . . . . 25

vii



List of Figures

Figure 5.1 Results of sensitivity and specificity based on Spearman correlation. 32
Figure 5.2 Relative change of meta-features in different settings (Part 1). . . . 33
Figure 5.3 Relative change of meta-features in different settings (Part 2). . . . 34
Figure 5.4 Median computational time. . . . . . . . . . . . . . . . . . . . . . . 36
Figure 5.5 Median computational time with scaled time. . . . . . . . . . . . . 36

viii



Chapter 1

Introduction

Over the past few decades, machine learning has become a revolutionary tool and fun-
damentally transformed how we do data analysis, prediction, and decision-making. It has
continuously been explored and applied in various fields, such as medical research, finan-
cial risk management, autonomous vehicles, and energy management. However, with the
growing complexity of data and the need for sophisticated analysis, it has been found that
machine learning is not a magical tool and has restrictions.

The effectiveness of machine learning algorithms heavily relies on their underlying data
assumptions, which can lead to bias when these assumptions do not hold in practice [1] [2]
[3]. For example, linear regression is often regarded as one of the most intuitive and widely
used supervised machine-learning algorithms, assuming a linear relationship between the
explanatory variable and the response variable, but this may not hold true in real-world
datasets. When non-linear relationships or interactions exist, more complex models need
to be applied to reduce bias caused by the overly simplistic model. However, the increase
in model complexity can lead to a higher variance and a greater risk of overfitting, which
indicates the model exhibits a stronger agreement with the sample data compared to the
true underlying relationship in the population data. This introduces a trade-off between
bias and variance that must be carefully handled [1]. To help with optimizing this trade-off,
most learning algorithms typically have some tunable parameters, such as the tree size in the
Random forest, the number of hidden layers in Neural networks, and regularized terms in
LASSO and Ridge regression. However, this tuning process generally means evaluating the
algorithms repeatedly on different subsets of data and using different values for the tuning
parameters, which can be time-consuming and, therefore, prohibitive in some real-world
situations.

Moreover, we cannot assume that there is one universally optimal algorithm that can
solve all problems in any domain, as stated in the “no free lunch” theorem [4]. Usually,
when choosing a model for the target dataset, researchers may need to evaluate multiple
potential algorithms, each with a set of optimal hyperparameter values, to determine the
most suitable one based on the training data [5]. Unfortunately, this process is often rather
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impractical for the same reasons that tuning can be prohibitive. Since selecting the proper
algorithm for a given dataset is crucial to obtaining a satisfactory model, it is important to
have efficient approaches to determine which machine learning algorithm to choose.

With the increasing interest in automatic learning, meta-learning has become a popular
and active research area. One application of meta-learning is algorithm selection, where the
goal is to automatically determine the most suitable algorithm or combination of algorithms
for a specific dataset without extensive experimental evaluation. The core idea of this tech-
nique is to understand how the properties of the input data relate to the performance of
individual machine-learning algorithms. There are two key components in meta-learning:
meta-features and meta-learner [6]. Specifically, meta-features are data characteristics mea-
sured from the data that are believed to be related to the performance of machine-learning
algorithms [7], while the meta-learner is a machine or model that is trained on meta-features
to predict a recommended learning algorithm.

Selecting a set of effective and generalizable meta-features presents a non-trivial chal-
lenge for two main reasons. First, there can be a large number of potential meta-features
to choose from; for example, Rivolli et al. [8] provides an extensive list of over 90 exist-
ing meta-features. OpenML [9], which is a public online platform for machine learning
research and discussion, provides a set of more than 70 data characteristics that can be
used for meta-learning. However, in order to mitigate unnecessary computational costs and
redundancy, it is crucial to carefully select a subset of meta-features that are relevant but
non-redundant. Second, many of the meta-features mentioned in prior research papers are
considered because they are easily extracted from the data rather than being carefully
designed to measure characteristics that are known to be related to methods’ differential
performance.

Most existing meta-features in meta-learning have been primarily developed for classi-
fication tasks. For example, the survey article by Rivolli et al. [8] categorizes the existing
meta-features based on their applicability to specific tasks. Most measures derived directly
from the dataset use only information about the explanatory variables, such as the number
of variables, the number of binary variables and the ratio of categorical versus numeric vari-
ables, and hence can be used in both supervised and unsupervised tasks. Certain measures
that relate to the response variable require a categorical response variable or rely on crite-
ria like entropy that are limited to classification problems. Additionally, there are measures
that cannot be directly extracted from the data and require a general response variable.
These measures can be applied to all supervised tasks but are less suitable or useful for
regression tasks. For example, measures that extract information from 1-nearest neighbor
models fail to adequately consider the intricate relationships between explanatory variables
and response variables.

This paper aims to bridge this gap by identifying various data properties that are ex-
plicitly critical in regression analysis in relation to the predictive performance of different
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learning methods, such as multicollinearity, heteroscedasticity, and nonlinearity. We refer to
the 7 data properties outlined in [10] and then identify a suitable set of meta-features that
are specified to capture these data properties. Then, we conduct a simulation study aimed
at demonstrating the efficacy of meta-features in accurately reflecting these data properties.
The objective is to assess whether the meta-features within specific groups exhibit specificity
and sensitivity in capturing the desired property of the data. By investigating the correla-
tion between data properties and meta-features, it is feasible to develop a well-selected set
of meta-features tailored for regression problems.

The outline of this paper is as follows. In Chapter 2, we briefly review the meta-learning
structure and summarize the commonly used meta-features in previous literature. Chapter
3 reviews the 7 data properties and provides details of the proposed meta-features. Chapter
4 describes the design of the simulation study to evaluate the performance of meta-features
in Chapter 3 with various settings, and the results are provided in Chapter 5. We discuss
the limitations of our approaches, challenges that need to be addressed, as well as some
possible suggestions for future work in Chapter 6.
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Chapter 2

Background

2.1 Meta-learning

2.1.1 Meta-learning Definition

In the past decade, the term “meta-learning”, also known as “learning to learn”, has been
used by many researchers in the field of machine learning in various ways. Lemke et al.
[11] propose a definition of meta-learning in their survey by rephrasing the common aspects
found in earlier definitions in prominent review papers and books. According to Lemke
et al., a meta-learning system should contain a learning subsystem that adapts through
experience. This experience can be obtained either from a) exploiting meta-knowledge,
which is derived from previous learning episodes on the same data, or b) from different
domains and problems.

The application of meta-learning can be observed in various contexts, such as ensemble
methods and hyperparameter optimization, whereas the existing literature exhibits some
discrepancies regarding the precise qualifications of a meta-learning problem [11] [12] [13].
One particularly intriguing application of meta-learning lies in the domain of algorithm se-
lection. Specifically, this approach involves training a meta-learning system to evaluate the
performances of diverse algorithms and generate rankings of candidate algorithms based
on their historical performances among different datasets. Subsequently, the system can
produce recommendations on which algorithm is likely to perform well on a new, unseen
dataset. In the following subsection, we introduce a framework that builds upon the ground-
work laid out in [13] and [14], providing more detailed steps in the meta-learning process
for algorithm selection.

2.1.2 Meta-learning Architecture

As defined by Vilalta et al. in [13], the meta-learning system can be structured into two
stages: knowledge acquisition mode and advisory mode. During the knowledge acquisition
mode, the meta-learning system initiates by generating a set of meta-features, also known as
meta-knowledge or meta-data in other literature, with slight variations in definition depend-
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ing on the task domain. Essentially, these meta-features attempt to relate the characteristics
of the data to the performance of various learning algorithms. These meta-features are then
used as input in the subsequent stage of meta-learning to determine the most suitable algo-
rithm along with an optimal set of hyperparameters without evaluating all candidate models
[15]. To illustrate, suppose certain meta-features indicate a given dataset is high-dimensional
with substantial noise, intricate interactions, and complex, nonlinear relationships between
explanatory and response variables. In this case, a meta-learning model should infer that a
flexible method like the random forest or gradient boosting with a reasonably large num-
ber of deep trees would be more suitable than a linear regression model. Conversely, if the
meta-features indicate that the dataset has a limited sample size or exhibits a strong linear
relationship, linear regression may be preferred over random forest.

In the advisory mode, a meta-learner, typically a machine algorithm itself, is generated
using aggregated information obtained from the previous phase. The choice of machine
learning algorithms employed as meta-learner depends on several factors, including pre-
dictive accuracy, computational time, and the task’s objective [12]. The first two factors,
predictive accuracy and computational time, are intuitive considerations, and the third fac-
tor, the task’s objective, refers to the various forms of results a meta-learner can produce.
These results can include recommending the best algorithm for a given dataset, generating
a ranking of different algorithms, or predicting a subset of the top-performing algorithms
[14]. However, similar to the conventional process of choosing machine learning algorithms,
there are no strict rules or direct guidelines for determining the most suitable meta-learner
[16][17]. Since the main focus of this paper is to explore potential meta-features for regres-
sion, we will not delve into the specific details of the meta-learner. Instead, the remaining
portion of this chapter provides an overview of the meta-features.

2.2 Meta-features

Meta-features are descriptive statistics extracted from the given dataset, aiming to carry
a wide range of relevant information such as data types, relationships between variables,
statistical distribution, the presence of random noise or irrelevant data, and more [2]. Some
meta-features may be derived from outcomes produced by trained models or even directly
defined based on their predictive performances, but it should be emphasized that the suit-
ability of an algorithm for developing meta-features is not solely determined by its model
performance. For instance, Gradient Boosting, a known greedy algorithm that can occasion-
ally outperform random forest, demonstrates significant improvements in test error when
using small learning rates [18]. However, this improvement comes at the cost of increased
computational time during training, which contradicts the original intent of using meta-
features. Therefore, as a general guideline, algorithms that require extensive tuning or in-
volve high computational costs are not preferred for creating meta-features.

5



Within the field of meta-learning, meta-features are commonly classified into five cat-
egories: simple, statistical, information-theoretic, model-based, and landmarking [6][8][19].
Among these categories, the first three — simple, statistical, and information-theoretic —
are the most common and traditional meta-features, as they can be directly computed
from the dataset and be free of hyperparameters, whereas the remaining two categories
involve applying machine learning algorithms. As a result, an alternative categorization
suggests grouping meta-features into three distinct categories: direct characterization mea-
sures, model-based meta-features, and landmarkers [8][20]. In the following subsections, we
will provide explanations for each category of meta-features and also introduce an additional
category, complexity-related meta-features.

2.2.1 Direct Characterization Measures

Simple measures contain basic information obtained from the dataset, such as sample size
and the number of numeric variables. Statistical measures focus on numeric variables and
provide insights into the data distribution, including properties like outliers, skewness, and
kurtosis. Information-theoretic measures, on the other hand, are mainly used for classifica-
tion problems and describe the characteristics of categorical response variable [6][8]. Since
measures falling within these three groups are relatively straightforward and can be easily
extracted or computed directly from the dataset, we focus on the remaining categories of
meta-features.

2.2.2 Model-based Measures

Model-based meta-features are measures obtained from a fitted model or algorithm; how-
ever, they should not incorporate or rely on any performance metrics. A simple example
includes coefficients and their statistical significance in linear models, which are estimated
during the optimization process inherent to machine learning algorithms using training
data. By exploring the model-based measures, we gain valuable insights into how the model
generates predictions and understand the relationships between variables and predicted out-
comes. It is important to distinguish model parameters from hyperparameters, as the latter
are predefined rather than learned during training [14].

The choice of algorithm for constructing model-based meta-features depends on the task.
Given that the majority of existing meta-features are primarily developed for classification
problems, the decision tree is the most popular option [8][21]. A trained classification tree
model provides interpretable information regarding its size and tree structure, including
attributes like the splitting conditions and class predictions associated with each node. These
outputs are developed into meta-features to quantify data characteristics in classification
problems. In their work [22], Bensusan et al. propose 10 meta-features extracted from an
unpruned decision tree. For example, one of these meta-features is the ratio of the number
of nodes to the number of variables, where lower values indicate the presence of irrelevant

6



attributes. Another meta-feature is the maximum depth of the tree, which measures the
longest path from the root to a leaf node. A deeper tree potentially indicates a more complex
dataset, as the model draws intricate decision boundaries by recursively splitting to capture
relationships between variables.

Considering the broader context of utilizing a trained tree-based algorithm, an impor-
tant factor to consider is the tree’s size or complexity, which can be controlled through
predefined hyperparameters. A larger tree size allows for a more complex model with more
splits, while a smaller tree size results in a simpler model with fewer decision rules. This
introduces a trade-off: growing a larger tree increases the computational time and the po-
tential for misleading results due to overfitting, while a shallow tree may limit the usefulness
of the measures, as the model prematurely stops splitting for complex datasets, resulting in
insufficient information and potentially overlooking important variables. Similar considera-
tions apply when developing model-based meta-features using other algorithms. Specifically,
these meta-features are designed for supervised learning problems, including regression, and
are expected to be deterministic conditional on the sample but sensitive to the choice of
models and their associated hyperparameters [8]. Therefore, determining suitable hyperpa-
rameter values prior to training is essential to develop these meta-features. Prior knowledge
or techniques such as cross-validation or grid search may be necessary for this process,
but this then increases the cost of computing meta-features. Hence, it is worth exploring
other simple algorithms like linear regression, which are free of hyperparameters, or some
simplified versions of flexible algorithms that provide outputs with discriminatory power
across different learning methods. This consideration also applies to the next category of
meta-features, landmarkers.

2.2.3 Landmarkers

Landmarking is an approach used to characterize datasets by evaluating the performance
of a predefined set of simple supervised learning algorithms. The essential idea of using
landmarkers is to guide the choice of more complex learners based on the results obtained
from these simpler and faster algorithms, such as linear regression and a shallow decision
tree, or simplified versions of algorithms. The latter may be either abbreviated to run quickly
or fully trained on a small fraction of the data, which is particularly useful when dealing
with large sample sizes, whereas training complex models on small subsets is infeasible.
Another valuable technique is the use of relative landmarkers, which involves comparing the
performance of different algorithms or the same algorithm under different configurations.
Relative landmarks are computed comparisons of performance between two landmarks, such
as ratios or differences of error, or functions thereof [14].

There are two critical concerns raised and examined by Pfahringer [19] regarding the
use of landmarking measures: the feasibility of using such measures and the appropriate
choice of landmarkers. The feasibility issue arises from the reliability of using landmarking
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measures as indicators for algorithm selection. While fitting simple models is convenient,
there is no guarantee that the performance results from these simple learners adequately
reflect the characteristics of the dataset. Additionally, the choice of landmarkers presents
another significant challenge. With a wide range of available algorithms and a vast domain of
learning problems, the selected model must be somehow related to the candidate algorithms
to provide useful landmarkers.

In previous studies, such as [19] and [23], some widely used landmarkers include the
decision node learner, randomly chosen node learner, and worst node learner. These three
landmarkers are generated by fitting different versions of decision trees, which is reasonable
for classification tasks. The decision node learner, for instance, indicates linear separability
by choosing the most informative variable for a single split, and the other two serve similar
purposes. However, in this case, these three measures are highly correlated with each other
and provide limited additional information when used in combination. Besides these three,
the work presented by [19] also explores the landmarkers applying other algorithms, such
as the 1-nearest neighbor classifier, linear discriminant analysis, and naive Bayes classifier.

In the context of our study, which focuses on regression problems, potential candidates
for simple learners include linear regression, LASSO regression, generalized additive mod-
els (GAMs), and random forest. As discussed in the previous subsection on model-based
meta-features, the issue of potential needs for tuning parameters also arises for landmarkers.
Fortunately, based on the findings of [24], it is observed that the default values for tuning
parameters in random forest as set in the R package randomForest typically yield satis-
factory results across various cases. Consequently, we decide to utilize the default random
forest in most cases when developing our own meta-features to reduce complexity. Further
details on the proposed meta-features are provided in Chapter 3.

2.2.4 Complexity-related Meta-features

As mentioned in Chapter 1, the study of meta-features for classification problems is fairly
well-explored. Ho and Basu [25] propose three primary factors contributing to the complex-
ity of a classification problem: (i) class ambiguity; (ii) data sparsity and dimensionality;
and (iii) the complexity of the boundary separating the classes. Building upon this work,
Lorena et al. [2] transfer and extend the measures in [25] to the regression context, catego-
rizing them into four groups: (i) feature correlation measures; (ii) linearity measures; (iii)
smoothness measures; and (iv) geometry, topology, and density measures.

Feature correlation measures primarily capture the correlation between explanatory and
response variables, as well as between pairs of explanatory variables. Higher correlation
suggests that simpler models may be more appropriate for the data.

Linearity measures are determined by computing the mean absolute value of residuals
and the average of squared residuals obtained from a multiple linear regression model. When
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these measures yield small values, it indicates that the data exhibits a more linear pattern.
In such cases, simpler models are likely to be appropriate.

Smoothness measures adapt the measures proposed by Ho and Basu [25]. For instance,
the Output distribution measure applies the Minimum Spanning Tree (MST) technique to
the dataset. MST connects the most similar input data points, with the edges weighted by
the Euclidean distance. This measure provides an estimate of the mean distance between the
output values for neighboring points. Similarly, the Input distribution measure orders the
data points based on their output values and computes the Euclidean distance of the ordered
input data for one dimension. Another measure, the Error of a nearest neighbor regressor,
calculates the mean squared errors of 1-nearest neighbor to investigate the associations and
variations in the input and/or output data.

The final category of complexity measures focuses on the distribution and density in
the input/output space. One of the measures used is the Average number of examples per
dimension, which provides insight into the data’s density along a single dimension, referred
to as “data richness” in Chapter 3. The other two measures in this category require a new
test set, which is generated by randomly interpolating pairs of input data points with similar
outputs. Subsequently, the difference between the training and test errors is calculated for
two regression models: the linear regression model (Non-linearity of a linear regressor) and
the 1-nearest neighbor (Non-linearity of nearest neighbor regressor).

The primary objective of Lorena et al.’s study is to formalize a set of meta-features
specifically designed to assess the complexity of regression problems. Rather than cate-
gorizing meta-features based on their function and characteristics, their emphasis is on
understanding the intrinsic properties of the data itself. Their research also includes the
evaluation of these meta-features using both synthetic and real datasets, making a valuable
contribution to the field of meta-learning regression. Nevertheless, upon careful analysis, we
identified certain areas where further improvements could be made in the development of
these measures.

Firstly, the existing meta-feature categories adapted from the classification domain in
[2] may not provide specific relevance or advantages to regression problems. It is acknowl-
edged that measuring data properties like nonlinearity poses inherent difficulties due to the
lack of straightforward quantification methods. Additionally, certain data properties, like
multicollinearity, may have multiple measurement options, thereby adding difficulty to the
process of selecting suitable measures. Still, further considerations should be given to in-
cluding more explicit categories that align with the data properties influencing the selection
of regression learning methods.

Secondly, the current set of measures may not be sufficient for accurately identifying the
complexity level of datasets. While linear regression and 1-nearest neighbour methods can
differentiate between simple and complex datasets to some extent, our aim is to determine
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complexity levels more precisely. Hence, more flexible methods should be considered and
applied to develop meta-features.

Lastly, it is predictable and acceptable that measures within the same category exhibit
correlations with each other. However, we expect that meta-features from different categories
should capture specific data properties relevant to regression without exhibiting a significant
correlation to measures from other distinct groups.

In the upcoming chapter, we intend to introduce measures for 7 distinct properties to
address the aforementioned areas for improvement.
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Chapter 3

Review of Data Properties for
Regression Problems

In this chapter, our main objective is to explore and understand 7 data properties that have
the potential to impact the performance of learning algorithms for regression problems. We
aim to create a set of meta-features that capture and quantify the characteristics associated
with each of these properties. These meta-features are either derived from existing measures
or newly developed measures specifically designed to estimate each respective property.

Notation and Review of Some Regression Methods

We use the following notation throughout the paper. We define Y as a continuous response
variable, and X as a set of p explanatory variables, which includes X1, X2, . . . , Xp.

The general regression model can be stated as follows:

Y = f(X, β) + ϵ,

where f(X, β) is the function describing the true relationship between the expected value
of the response and the explanatory variables, also called the response surface; β represents
a vector of the unknown parameters, and ϵ represents the random error between the actual
response variable Y and its expected value. Unless otherwise stated, ϵ1, . . . ϵn are assumed
to be independent and normally distributed with an expected value of zero (E(ϵi) = 0) and
a constant variance (V ar(ϵi) = σ2

ϵ ).
Multiple linear regression is widely used in practice and can be considered a special

case of a general regression model. A multiple linear regression model assumes that the
relationship between the response variable Y and the explanatory variables X1, X2, . . . , Xp

can be expressed as a linear combination,

Yi = β0 + β1Xi1 + . . . + βpXip + ϵi. (3.1)
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In matrix form, the observed values of the response variable are represented as the
vector Y consisting of n elements (Yi, i = 1, . . . , n). X is the design matrix consisting of
p + 1 n-dimensional column-vectors [1, Xj ] (j = 1, . . . , p). The regression coefficients are
represented as the (p + 1)-dimensional vector β, and the unobserved errors are represented
as the n-dimensional vector ϵ, where ϵ ∼ N(0, σ2

ϵ I). The equation (3.1) can then be written
as

Y = Xβ + ϵ.

Under these model assumptions, the regression coefficients β can be estimated using the
ordinary least squares (OLS) method, which minimizes the residual sum of squares (RSS)
and provides an unbiased estimator:

β̂ = (X ′X)−1
X ′Y . (3.2)

The variance of the OLS estimator is

V ar(β̂) = σ2(X ′X)−1.

The Least Absolute Shrinkage and Selection Operator (LASSO) is a popular and pow-
erful penalized regression technique used in linear regression models. By introducing an L1-
norm penalty to RSS, LASSO seeks to determine the optimal coefficient estimates, which
minimize the combined objective function as given below:

(Y − Xβ̂)′(Y − Xβ̂) + λ
p∑

j=1
|β̂j |,

where λ is a tuning parameter that controls the amount of shrinkage and is selected through
cross-validation [18]. If λ is not zero, the coefficient estimates are shrunk in comparison to the
OLS estimates determined in (3.2). This process can lead to some coefficients for variables
that do not substantially contribute to the model being reduced to zero. As a result, LASSO
serves as a means of both model regularization and variable selection [26].

Regression splines offer a more flexible method to model nonlinear relationships between
variables, mainly for p = 1. They are based on piecewise polynomial regression, dividing
the range of X into distinct regions with cutpoints, known as knots, denoted as ξk, where
k = 1, . . . , K [18]. Within each region, a polynomial function is fitted separately with
added constraints that ensure the polynomials join smoothly at the knots. By introducing
more knots and maintaining a fixed polynomial degree, regression splines increase flexibility,
allowing the model to capture intricate non-linear patterns in the data without becoming
excessively complex. This property makes regression splines and their extended methods
valuable approaches for handling nonlinearity effectively in various practical applications.
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However, determining the optimal number of knots (K) and their placement requires tuning.
Typically, the knots are placed uniformly, which means we have equal numbers of data points
between knots, and cross-validation techniques are commonly used to select the appropriate
value of K that results in the smallest RSS.

By contrast, smoothing splines consider the infinite space of functions with continu-
ous second derivatives, controlling overfitting by penalizing the amount of wiggliness in
the model. It turns out that smoothing splines can be estimated by fitting cubic regres-
sion splines with a knot at each observed value of Xi and estimating the parameters by
minimizing penalized residual sum of squares [18].

Generalized Additive Models (GAMs) are a direct extension of splines to the multiple
regression problem. In a GAM, each linear term in (3.1) is replaced by a smoothing spline
in the respective variable Xj ,

g(µ(X)) = α +
p∑

j=1
hj(Xj),

where g(·) represents a link function that connects the expected value of the response
variable with linear predictors [18]. In linear regression, the link is the identity function. By
applying the smoothing spline technique, GAMs provide a flexible framework that relaxes
the additivity assumption inherent in linear models.

Multivariate Adaptive Regression Splines (MARS) offers another approach to capturing
nonlinear relationships by using linear splines with adaptive knot selection. MARS considers
each data point Xij of Xj as a potential knot and creates pairs of piecewise linear basis
functions called reflected pairs [18], which can be expressed as:

(Xj − t)+ =

Xj − t, if Xj > t,

0, otherwise,
and (t − Xj)+ =

t − Xj , if Xj < t

0, otherwise,

where the knot value t ∈ {X1j , X2j , . . . , Xnj}
MARS iteratively selects knots and their related basis functions that lead to the most

significant reduction in the residual sum of squares. The process continues until a predefined
maximum model size is reached, and subsequently, backward elimination is used to remove
terms with the smallest reductions in the generalized cross-validation (GCV) error. This
helps in determining the most relevant predictor variables and their contributions to the
model’s predictive performance. The optimization of the model’s performance involves tun-
ing two key parameters: the degree of interactions (cross-products of basis functions) and
the number of retained terms, which can be achieved using grid search and cross-validation.

Random forest (RF) is a popular supervised learning algorithm that aggregates infor-
mation from multiple regression trees. A regression tree recursively partitions the data into
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subsets based on the values of the explanatory variables. The algorithm selects the variable
and corresponding splitting point that best reduces the RSS of the previous split. This
partitioning process continues until a stopping criterion is met, such as a predefined max-
imum tree depth or a minimum number of samples in each leaf node. This process cuts
p-dimensional space into hyper-rectangular regions. Within each region, the sample mean
of responses is used to estimate the response surface. The Random Forest algorithm gen-
erates B bootstrap samples from the original training data, randomly drawing them with
replacement, usually of size n. It then constructs B regression trees using bootstrapped
samples, considering only a predefined number of randomly sampled explanatory variables
for splitting. The trees create different partitionings of p-dimensional space, resulting in
different estimated means. The final predicted value at any point in space is the average
of all tree means there. As for the data that are not included in the bootstrapped sample,
they form the out-of-bag (OOB) sample. For each observation in the training sample, an
OOB prediction can be created. This OOB prediction consists of the average tree mean
from all trees to which the observation does not contribute. Since this predicted value is
independent of the training observation, the OOB mean squared prediction error, MSPEb,
is a measure of generalization error for the RF.

3.1 Nonlinearity

Nonlinearity in regression describes a situation where there is a departure from a linear rela-
tionship between the explanatory variables and the response variable. The relationship may
take various forms, such as quadratic (α + βX + βX2), power (αXβ), exponential (αe−βX),
or other forms. Theoretically, when we have prior knowledge of the specific nonlinear form,
we can use that form in a model for the response. However, in many real-world situations,
the true form of the nonlinear relationship remains unknown or undetectable through hu-
man inspection, especially when the dimension of data is high. If linear models are blindly
fitted to data that exhibits a nonlinear relationship, it results in significant bias and inad-
equate predictions, regardless of how many predictors are added. In that case, it becomes
essential to employ more flexible regression techniques capable of capturing nonlinearity.

One easy and commonly used technique to model nonlinearity is polynomial regression,
where the linear model is extended to include polynomial terms, adding curvature to the
model. For example, a polynomial regression model with a degree of d can be represented
as:

Yi = β0 +
p∑

j=1
(β1jXij + β2jX2

ij + β3jX3
ij · · · + βdjXd

ij) + ϵi.

However, the fully specified polynomial regression still specifies a shape that may not
match the actual response surface or may overfit in some or all dimensions. To mitigate the
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latter concern, higher-degree polynomial models above degree 3 are usually avoided to limit
the potential for overfitting, which restricts the applicability of polynomial regression [26].

In our study, we aim to develop meta-features that can effectively differentiate the
performance of more general models without assuming a specific structured form for the
unknown regression function. To quantify the degree of nonlinearity in our data, we compare
the mean square error (MSE) obtained from fitting models that assume linearity to those
that allow for nonlinear relationships. Specifically, we use MLR as our baseline model for
linearity. As for nonlinearity, we seek algorithms that do not require manual specifications
for various nonlinear transformations on individual variables. Also, the selected algorithm
must respond to nonlinearity and its unique characteristics while avoiding any reaction
to additional complexities associated with other properties, such as interactions among
variables. Consequently, we opt to explore extensions of linear models to detect nonlinearity
without influence from non-additivity. A GAM requires determining the appropriate degree
of smoothness by generalized cross-validation or by restricted maximum likelihood (REML),
and we consider both methods when developing our measures in the following subsections.
MARS offers computational efficiency advantages over GAMs [27], but in cases involving
complex nonlinear relationships that require smoother curves, MARS might be less effective.

3.1.1 NL.1 - GAMs Measure

Regarding the selection of smoothing parameters, the Generalized Cross-Validation (GCV)
method is widely employed for prediction, as it utilizes prediction error-based criteria to
make such selections. This approach is particularly advantageous when dealing with a large
number of predictors due to its computational efficiency. Meanwhile, Wood [28] introduces
the method of Restricted Maximum Likelihood (REML), treating the smooth components
as random effects, and smoothing parameters are chosen based on the likelihood of the
model residuals. In his analysis, REML outperforms GCV in terms of mean square er-
ror. Moreover, it effectively addresses the issue of potential severe undersmoothing failures
commonly observed with GCV. Importantly, these performance enhancements are achieved
without increasing computational cost relative to GCV.

We construct two metrics, denoted as NL.1-gam.REML and NL.1-gam.GCV, indicating
GAM with different methods of choosing smoothing parameters. These metrics are defined
as the ratio of MSE obtained from the MLR model to that from the GAM model. A higher
ratio indicates a more pronounced deviation from linearity and suggests a stronger presence
of nonlinearity in the data.

3.1.2 NL.2 - MARS Measure

To explore nonlinearity in another manner, we adopt the MARS model with a constraint
of one degree of interaction. By restricting the upper limit of interaction to one, MARS
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becomes an additive model that is suitable to measure nonlinearity while employing a
different spline approach compared to GAMs.

Similar to NL1-gam, the metric NL2-mars is defined as the ratio of the MSE obtained
from the MLR model to the MSE obtained from the one-degree MARS. All of these measures
are relative-landmarking-based meta-features.

3.2 Interactivity

Interactivity refers to a situation where the effect of one explanatory variable on the response
is influenced by the values of other independent variables. In this case, additive models that
contain only terms involving individual variables are insufficient for accurately predicting
the response. In linear regression, interactions are typically modeled as cross-products of
two or more variables, but their actual structure can be more flexibly modeled in other
machine learning algorithms. Model interactions using cross-products require either knowing
which cross-product terms are needed or including all of them, resulting in a potential
explosion of the number of parameters in the model, and we still assume linear relationships
between the response and each explanatory variable. We can modify GAM models in a
similar way by replacing linear cross-products with smoothing spline on the cross-products.
Again, this requires knowing which terms to include or fitting a potentially enormous model.
Consequently, we prefer algorithms like MARS, which possess both interactive and additive
versions and automatically capture nonlinearity and interactivity effectively according to
where it appears to be needed.

3.2.1 INT.1 - F-test Measure

In the context of linear regression, one common approach to evaluate the significance of
interaction terms is to use an Analysis of Variance (ANOVA) to conduct an F-test. This
test involves comparing the RSS between a multiple regression model that only contains the
main effects with a larger model that includes both main effects and two-way interaction
terms. The first meta-feature, denoted as INT.1-F, is the F statistic from the ANOVA F-test.
A higher value of the F-statistic suggests that incorporating interaction terms in the model
provides valuable additional information, enabling a better explanation of the relationship
between predictors and the response variable. Consequently, interactivity exists.

3.2.2 INT.2 - MARS Measure

In scenarios where nonlinearity and interactivity may both exist in the response surface, an
alternative measure based on MARS may be more responsive and useful. For the detection
of interactivity, MARS allows the flexibility of controlling an upper limit on the order of
interaction. By setting this upper limit, we can control the consideration of cross-products
within piecewise linear functions. Specifically, an upper limit of 2 permits the inclusion of

16



second-order interactions, while an upper limit of 1 corresponds to an additive model with
no interactions [18].

Hence, INT.2-mars [10] is calculated by dividing the MSE obtained from MARS with
no interaction by the MSE obtained from MARS with second-order interactions.

3.3 Heteroskedasticity

Heteroskedasticity, which refers to the existence of non-constant error variance in regres-
sion analysis, violates one of the key assumptions of linear regression, leading to inefficiency
in the OLS estimates. In general, in situations where algorithms do not account for het-
eroscedasticity, certain data points with higher error variance might be assigned excessive
weight. The model tends to accommodate noisy and uncertain observations with greater
variability, leading to inaccurate predictions.

Despite the importance of this issue, there are relatively few existing papers that study
the impact of heteroskedasticity on prediction accuracy across different algorithms. In
Gelfand’s study [29], she evaluates the effect of heteroskedasticity on the prediction per-
formance of various predictive methods. The study finds that tree-based methods perform
relatively less well than other methods on heteroscedastic data than on data with constant
variance.

3.3.1 HET.1 - Standard Deviation (SD) Ratio Measure

The ‘Standard Deviation (SD) Ratio’ measure was introduced by Gelfand [29] to quantify
heteroscedasticity. This measure aims to address the challenge of explaining inequality in
error variance when the model is unknown and/or the dimension is large. To calculate the
SD Ratio, we first fit the data using a default Random forest model. RF is chosen for its
ability to effectively adapt to various surface patterns in data with arbitrary dimensions.
Then, we obtain the prediction residuals from the RF model using the out-of-bag sample. By
treating the residuals ei as a proxy for the error term ϵi, the absolute values of the residuals,
|ei|, are considered to represent the standard deviation. The HET.1-sdRatio is calculated
by dividing the average absolute residuals for the largest 10 percent of predicted responses
(Ŷ ) by the average for the smallest 10 percent of Ŷ . In cases of homoscedastic data, this
ratio tends to be close to 1 to indicate constant variance in Ŷ . However, if the variance
increases with the mean, which is a very common manifestation of heteroscedasticity, the
ratio is expected to be greater than 1. Conversely, if the variance decreases with the mean,
the ratio will be less than 1.
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3.3.2 HET.2 - Breusch Pagan Test Measure

Various tests for heteroscedasticity have been developed for linear regression models. A
classic one is the Breusch–Pagan test, which examines whether the variance of the errors is
associated with any of the explanatory variables.

To conduct this test, the linear regression model is first fitted under the assumption that
the error variance is independent of the explanatory variables. Squared residuals are then
calculated to estimate the error variance. Next, a new regression model is fitted using the
squared residuals as the response values. The purpose of this step is to test whether there is a
significant linear relationship between the squared residuals and the independent variables,
which is essentially a chi-square test. The distribution of test statistic nR2 approaches the
χ2

p−1 distribution asymptotically. HET.2-bp is defined as the p-value associated with this
test statistic. If this p-value is found to be lower than a pre-selected significance level (e.g.,
α = 0.05), it indicates the existence of heteroscedasticity.

However, the limitation of the Breusch–Pagan test is obvious as it only detects linear
associations between the squared residuals and explanatory variables. An alternative com-
monly used test called the White test expands upon the Breusch-Pagan test by considering
quadratic terms and cross-product interactions among the predictors [30]. Nevertheless, we
decide to use the Breusch-Pagan test due to potential issues with degrees of freedom. When
there is a large number of explanatory variables, the White test intends to include an exces-
sive number of terms in the regression equation involving linear, quadratic, and interaction
terms.

3.4 Signal Strength

Signal strength, adapted from the concept of the signal-to-noise ratio (SNR), quantifies
how much of the variability in a set of data comes from changes in the response surface
as opposed to the variability of the errors in the data. Specifically, the SNR is the ratio
of the variance of the true mean to the variance of the noise. Higher SNR indicates that
the changes in the response surface are more easily distinguished from random noise. In
such cases, flexible regression models can be applied to reduce bias without being overly
concerned about variance.

3.4.1 SS - SNR RF Measure

Theoretically, a model-free version of SNR can be represented as

SNR = V ar(f(X; β))
V ar(ϵ) . (3.3)

However, to compute signal strength in practice, a model needs to be fitted to assess
the variability explained by the model and the variability that the model fails to capture.
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Jiang [10] suggests using a default RF to measure signal strength, as RF models are known
for their flexibility in capturing complex relationships in arbitrary dimensions and their
ability to adapt to unknown interactions. By fitting a default RF model, the ratio of mean
square regression to mean squared error can be calculated as a measure of signal strength.
Our measure SS(snr)-rf is the ratio of the signal obtained from the variance of the OOB
predicted values to the mean squared prediction error, which is computed based on the
OOB sample.

3.5 Data Richness

The dimensionality of data plays a crucial role in algorithm selection. As indicated in [31],
as the dimensionality increases, an exponential increase in the amount of data is required
to maintain model accuracy. This phenomenon is commonly referred to as the curse of
dimensionality. In other words, as the dimensionality increases, the prediction error grows
more rapidly. This is because higher-dimensional spaces allow for potential more complex
relationships that are challenging to capture using simple models. Additionally, with the
growth in dimensionality, a fixed number of observations becomes more dispersed in space,
leading to less informative data about the underlying response surface and its potential for
complexity.

Data richness explores the relationship between the sample size and the number of
explanatory variables. In the context of regression analysis, simple algorithms like MLR
are commonly used because they are easy to implement, not prone to overfitting, and
computationally efficient. By taking on bias and lowering variance, they are particularly
useful in situations where there are limited training cases or sparse data. However, when
the sample size is large relative to the number of variables, more complex algorithms may
perform better. In general cases, data richness guides algorithm selection by signaling when
controlling variance maybe more important than controlling bias.

3.5.1 DR Measure

Unlike most measures discussed in this paper, DR is a direct characterization measure that
does not require fitting a model. DR is calculated by n(1/p), which adopts measure of sampling
density [10] [18].

3.6 Sparsity

A regression problem is said to be sparse in its variables if the true response surface depends
on only a fraction of the available explanatory variables. Recognizing the level of sparsity is
particularly valuable when working with high-dimensional datasets. The presence of sparsity
implies the reduction of variables, resulting in more data per variable and potentially im-
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proved fit with more complex models. Algorithms with the internal capacity to completely
ignore unimportant variables may gain an advantage in sparsity settings, whereas methods
utilizing all variables, like neural networks and Multiple Linear Regression (MLR), might
not be suitable.

To quantify sparsity, it is crucial to establish a connection with variable selection meth-
ods with low computational costs. One such method is LASSO Regression, which incorpo-
rates regularization by selecting an appropriate parameter λ to balance model complexity
and prediction accuracy [18]. Despite the need for parameter tuning, the LASSO algorithm
remains relatively fast compared to some other techniques. Some additional variable selec-
tion methods embedded in algorithms are capable of handling higher-order interactions of
the variables, such as Random forest and MARS. These methods offer variable importance
scores, which are scores assigned to explanatory variables based on their usefulness in pre-
dicting response. Throughout the training process, these methods iteratively calculate the
contribution of predictors and rank the candidate predictors accordingly at the end.

3.6.1 SP.1 - LASSO Measure

As in Jiang’s study [10], we use LASSO to measure sparsity, with a chosen λ to minimize
the CV error. SP.1-lasso is defined as the proportion of coefficients that are constrained
to zero in LASSO.

3.6.2 SP.2 - MARS VI Score Measure

MARS extends beyond linear models and has the ability to identify the relevant variables
during the training process automatically. In particular, MARS uses backward elimination
to progressively select and remove terms that model changes in the surface with one variable.
During this process, an explanatory variable can be entirely removed from the model if none
of its basis functions significantly contribute to predictive performance. After obtaining a
MARS model, three metrics associated with each predictor’s importance - nsubsets, GCV,
and RSS are provided in earth [32]. GCV and RSS metrics are quantified by the relative
amount of decrease in errors, depending on the scale of the response variable, and are
therefore not useful for comparing different data sets. Hence, we focus on the nsubsets
to gauge variable importance. Each subset represents the best set of terms corresponding
to a particular model size, ranging from 1 to the size of the selected model. The nsubsets
measure for each variable is the number of these subsets in which the variable is present. The
metric SP.2-mars.vi is a model-based measure, calculated by the proportion of nsubsets
that exceed 0. This approach implies that we consider variables to be important if they are
included in at least one of the subsets that are smaller than or equal in size to the final
model.
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3.6.3 SP.3 - RF Average VI Score Measure

Random forests is a popular technique for assessing variable importance in statistical mod-
elling. Two different metrics are commonly recommended.

The first metric, denoted as %IncMSE, measures the impact of excluding each predictor
variable on the model’s accuracy [33]. In each tree, after we compute the mean squared
prediction error with OOB data, denoted as MSPEb, predictor variable Xj is randomly
permuted, and the model’s performance is evaluated again on the same trees. The variable
importance measure for variable Xj is calculated by taking an average of the difference in
the MSPE of the original OOB data versus permuted OOB data over all B trees, which can
be expressed as follows:

V Ip(Xj) = 1
B

∑
b∈B

MSPEb(X ′, Y ′) − MSPEb(X ′
permute j, Y ′), (3.4)

where X ′ and Y ′ represent the corresponding OOB sample.
If a variable is important, the corresponding permuted OOB error will increase substan-

tially [34]. The %IncMSE is calculated as the percentage change in the permuted model’s
performance compared to the original model’s performance.

The second metric, IncNodePurity, measures the total decrease in RSS in the bootstrap
training data accounted for by splits on each variable, averaged across all trees. Variables
that contribute more substantially to reducing RSS exhibit higher values. For regression
problems, the %IncMSE metric is generally preferred as it is based on prediction error,
providing a more reliable measure of variable importance compared to the IncNodePurity
metric. SP.3-rf.avg.vi is defined as the proportion of variables that has an importance
score calculated by %IncMSE above the average.

3.6.4 SP.4 - RF Scaled VI Score Measure

SP.4-rf.scaled.vi is an adaptation of SP.3-rf.avg.vi that modifies the threshold for
important variables and takes into account the variability among trees, which is achieved by
adjusting (3.4). To calculate SP.4-rf.scaled.vi, the importance scores are standardized by
dividing the average loss of accuracy due to the permutation by its corresponding standard
error among all trees, analogous to the z score. It is important to note that the distribution
of the scaled importance scores is not necessarily a standard normal distribution, but the
standardization accounts for the fluctuations in mean squared prediction errors across trees.
Hence, the VI score for Xj is adjusted as V Ip(Xj)

σ̂ , and SP.4-rf.scaled.vi is defined as the
proportion of variables for which the corresponding z score, zj , exceeds the standard normal
critical value z0.05/2. The decision is somewhat arbitrary, so using the normal critical value
as a threshold makes an approximate parallel to significance.
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3.6.5 SP.5 - Boruta.conf. Measure

The algorithm ‘Boruta’ provides a feature selection method, aiming to obtain statistically
significant relevant variables by introducing extra randomness to the variable importance
techniques used in random forests [35]. The process begins by extending the dataset with
a minimum of 5 additional shadow attributes, which are copies of existing variables, even
if the original set has fewer than 5 variables. These added attributes are then shuffled to
remove any correlations with the response variable. Next, a random forest is applied to the
extended dataset to compute the importance score for each variable based on %IncMSE. The
maximum importance score among the shadow attributes serve as a threshold, and variables
with an importance score exceeding it are considered potentially important variables. A two-
sided t-test is employed to compare the importance score of each variable with the maximum
shadow score across all the trees in the forest. Variables with significantly higher scores are
labelled as important. To manage the potential complexity of this method, especially with
large datasets, a predefined limit is set to restrict the number of runs of fitting an RF
with the extended dataset and comparing the importance score [35]. In such cases, the
calculation can be stopped prematurely if the importance of variables is unclear, leaving
some variables marked as “tentative”, but the method still provides valuable information
about the significantly relevant variables, with reduced randomness involved. Therefore,
SP.5-Boruta.conf. is defined as the proportion of confirmed important variables, aiming
to identify the features that consistently demonstrate importance across the runs.

3.6.6 SP.6 - Boruta.tent. Measure

As we restricted the number of Boruta run, numerous variables may be labeled as “ten-
tative” due to incomplete confirmation, especially in complex datasets. To address this,
the TentativeRoughFix method introduces a straightforward test to determine which vari-
ables should be confirmed based on whether their median importance exceeds the median
importance of the maximum shadow attribute among all runs. Variables that do not meet
this criterion are classified as “Rejected.” SP.6-Boruta.tent. represents the proportion of
confirmed important variables after incorporating the tentative fixes.

3.7 Multicollinearity

In regression analysis, multicollinearity is a condition where two or more explanatory vari-
ables are correlated with one other. While it is a well-known concern in certain applications
of linear models, its significance in the context of machine learning remains less explored.
Nevertheless, understanding its impact on linear regression can provide valuable insights
that can be extended to more general methods.

The effects of multicollinearity depend on the extent of its presence and the objectives of
the study [36]. Strong multicollinearity can cause an increase in the variance of the regression
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coefficient estimates, making them more sensitive to even minor changes in the data. For
example, in the context of linear models, when X1 and X2 are highly correlated, the variation
in X1 is low while X2 is held constant, which implies a high variance in the regression
parameter estimate β̂1. One special case is that X1 and X2 are perfectly correlated, making
it impossible to ascertain the effect of a change in X1 with X2 held constant, as there is no
variation present. Additionally, it is possible for one explanatory variable Xj to be expressed
as a linear combination of other variables. In linear regression, this results in X not being
full rank and X ′X being non-invertible, thereby making it impossible to compute the
OLS estimator. In a broader sense, when sparsity is also a consideration, highly correlated
variables may need to be removed to enhance model accuracy by eliminating redundant
variables.

If the correlated variables are all important in the response surface, multicollinearity is
generally not a major concern for prediction in linear models. If one parameter β1 is overes-
timated, another parameter, such as β2, is typically underestimated to maintain consistent
predicted values. In other words, there can exist an infinite number of possible coefficient
combinations that yield similar predictions [37][38].

Correlated predictor variables can be a major issue for nonparametric methods in ma-
chine learning. For example, Veaux and Ungar [39] conducted a comparative study be-
tween the feedforward artificial neural network and multivariate adaptive regression splines
(MARS). They found that MARS encounters difficulties in selecting the knots and their
basis function when predictor variables are correlated. The forward selection may arbitrar-
ily choose one over the other, which may affect the predictors included in the final model.
On the other hand, neural networks, with their redundant architecture, do not suffer from
this issue and demonstrate better predictive capabilities in the presence of multicollinearity.
Therefore, multicollinearity does appear to have the potential to impact different algorithms
in different ways. Measuring it could be useful for recommending algorithms.

3.7.1 MC.1 - Correlation Matrix Measure

In the context where the explanatory variables are standardized, X ′X is the matrix of
correlations between explanatory variables. An intuitive measure of multicollinearity is the
average of the absolute value of off-diagonal elements rjk, j, k = 1, . . . , p, j ̸= k, in X ′X.
This measure is defined as MC.1-avg.cor = 1

p(p−1)
∑p

j=1
∑p

k=1 |rjk|, where j ̸= k. When
there is a high correlation between each Xj and Xk, this measure is close to one. Therefore,
MC.1-avg.cor can be used as a direct characterization measure to indicate the level of mul-
ticollinearity, with larger values suggesting a stronger presence of multicollinearity among
the explanatory variables.

23



3.7.2 MC.2 - Condition Number Measure

The condition number of a matrix is a measure of how close to singular the matrix is. A
large condition number indicates that the computed inverse of the matrix is sensitive to
small variations in the original data. In a general linear model, the condition number of X

is often computed on the correlation matrix derived from the standardized X ′X, and hence
is a direct measure of the potential presence of multicollinearity.

Given that X ′X is invertible, as required for the calculation in equation (3.2), the
matrix possesses p eigenvalues λ1, λ2, . . . , λp. The sum of these eigenvalues is equivalent
to the sum of diagonal values of the matrix, which is equal to p since X ′X is scaled as
the correlation matrix. If one of the p eigenvalues is substantially larger than the others,
it suggests that the remaining eigenvalues are relatively small and approaching zero [40],
indicating the explanatory variables exhibit high intercorrelation.

Therefore, the condition number measure is defined as MC.2-condition =
√

λmax
λmin

, cap-
turing the spread of the eigenvalues in X ′X [41]. In general, a condition number less than
10 suggests no significant issue with multicollinearity, while values between 10 and 30 indi-
cate moderate to strong multicollinearity. Condition numbers exceeding 30 indicate severe
or nearly perfect multicollinearity [40].

3.7.3 MC.3 - Variance Inflation Factor Measure

The variance inflation factor (VIF) for the jth explanatory variable is determined by taking
the inverse of 1 − R2

j , where R2
j is the coefficient of determination obtained by regressing

Xj on the remaining p − 1 predictors. VIF represents the proportion of variance in the Xj

that can be attributed to the rest of the explanatory variables [42]. In situations where Xj

is completely uncorrelated with the other predictors, resulting in R2
j = 0, the VIF reaches

its minimum value of 1. Several rules of thumb for interpreting VIF are presented in the
existing literature. In general, if the VIF value exceeds 10, it signals the presence of excessive
multicollinearity [42]. This implies that the variance of the regression coefficient associated
with the jth explanatory variable becomes 10 times as large when compared to the scenario
where the jth explanatory variable is linearly independent of the others. There is no known
upper limit for the VIF value.

Summary Table of Meta-features

Table 3.1 provides an overview of meta-features along with the primary functions and R
packages utilized for their computation.
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Meta-features Category Package::Function
NL.1-gam.REML rel. landmarks stats::lm; mgcv::gam
N1-gam-GCV rel. landmarks stats::lm; mgcv::gam
NL.2-mars rel. landmarks earth::earth
INT.1-F rel. landmarks car::anova
INT.2-mars rel. landmarks earth::earth
HET.1-sdRatio model-based randomForest::randomForest
HET.2-bp model-based lmtest::bptest
DR direct
SS(snr)-rf model-based randomForest::randomForest
SP.1-lasso model-based glmnet:cv.glmnet
SP.2-mars.vi model-based earth::evimp
SP.3-rf.avg.vi model-based randomForest::importance
SP.4-rf.scaled.vi model-based randomForest::importance
SP.5-Boruta.conf. model-based Boruta:Boruta
SP.6-Boruta.tent. model-based Boruta:TentativeRoughFix
MC.1-avg.cor direct stats::cor
MC.2-condition direct base::kappa
MC.3-vif direct car::vif

Table 3.1: A summary table of meta-features, along with the corresponding functions and
packages used in R.
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Chapter 4

Simulation Study

This chapter presents simulation studies aimed at investigating the efficacy of the meta-
features proposed in Chapter 3. The main goal is to assess the performance of these meta-
features under various experimental settings by manipulating different levels of variations
of a baseline dataset. Each experimental setting focuses on a specific data property, and
we incorporate key factors that reflect changes in that particular property. Throughout the
evaluation process, once the dataset manipulation is performed, other model parameters
are adjusted to maintain a constant signal-to-noise ratio. Ten replicate data sets, each con-
taining 800 observations, are simulated from each model, and all proposed meta-features
are evaluated on each data set. In each setting, the factor in question is incorporated into
the model at various levels, denoted by the flexible parameter m, starting from the base-
line model and gradually increasing its intensity. Subsequently, Spearman correlation is
computed between the evaluated meta-feature and the level of the property within each
setting. If a meta-feature is sensitive and specific to a particular property, it should have
a correlation of 1 with the levels of that property and close to 0 for all other properties.
To evaluate the performance of each meta-feature, we compute two metrics. The first met-
ric assesses the sensitivity of a meta-feature by calculating the average correlation across
all settings within the corresponding data property, using a predefined threshold value of
0.9. This threshold value is chosen arbitrarily to indicate strong correlations. The second
metric computes specificity as 1 minus the average correlations for the other 6 properties,
also using the same threshold value. While specificity is considered, our study prioritizes
sensitivity, since it measures the meta-feature’s ability to capture changes in the property
it was designed to detect. Such a meta-feature is considered qualified to be included in the
set of meta-features used to support the meta-learner in recommending suitable methods.
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4.1 Model for Baseline Synthetic Data

Since the baseline is compared with all other settings characterized by specific factors,
we simulate a basic multiple linear regression model as our baseline. The model can be
referenced from Equation (3.1):

Yi = β0 + (β1Xi1 + ... + βpXip) + ϵi. (4.1)

The explanatory variables X1, X2, . . . , Xp are generated from a multivariate normal distri-
bution, X ∼ Np(µ, Σ), with p-dimensional mean vector µ′ = [0, 0, 0, . . . , 0] and a variance-
covariance matrix Σ = σ2

XI of size p × p, where σ2
X is fixed at 1. The value of β0 is set to

10 to ensure the values of f(Xi) are positive, as required by some simulation settings, and
all other βj ’s are set to be 1. Unless otherwise stated, p = 5. The error term ϵi follows a
normal distribution with a mean of 0 and a standard deviation of 1 for the baseline model.

In our study, we pay attention to the value of SNR in all synthetic datasets since most
of the proposed meta-features are specifically designed to capture some aspect of the rela-
tionship between explanatory and response variables. We strive for a robust SNR, avoiding
excessively low values so that signal would not be overwhelmed by random noise. Similarly,
excessively high SNR values are undesirable as they indicate unrealistically inflated signals,
hindering generalizability. To determine the desired SNR, we use a relationship between
SNR and the coefficient of determination (R2) provided in [43]. The coefficient of determi-
nation measures the proportion of the total variance in the response variable that can be
explained by the explanatory variables in a model. This explained portion could be thought
of as the “signal,” and meanwhile, the unexplained variance that remains in the response
variable can be regarded as the “noise”, which can be expressed as:

SNR = SSR

RSS
= SSR/SST

RSS/SST
= R2

1 − R2 ,

where SSR represents the sum of squared regression, which measures the sum of the squares
of the deviations of the predicted values from the mean of a response variable; SST represents
the total sum of squares, which measures the sum of squared deviations between the observed
data and the mean of the response variable. Considering that an R2 value of 0.8 represents
a reasonably strong signal but not totally unrealistic, we decide that an SNR of 4 is an
appropriate value for our synthetic baseline dataset.

At the same time, maintaining a consistent SNR across different models is crucial for
effectively assessing the impact of manipulation on these meta-features. Since β1, . . . , β5 = 1,
the SNR value can be conveniently adjusted by introducing a scaling factor denoted as “c”.
The resulting model used for adjusting any newly generated dataset is expressed as follows:

Y = β0 + c (X1 + X2 + . . . + Xp) + ϵ, (4.2)
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where c is approximately 0.89 in the baseline model.

4.2 Different Settings for Each Data Property

4.2.1 Nonlinearity

In nonlinearity setting 1, we introduce a modified polynomial regression function to create
nonlinearity. With each level, we introduce additional terms that involve higher powers of
the corresponding explanatory variables, reaching up to degree 5. To start, in the first level,
the functional relationship between Y and X defined in 4.2 is modified as:

f(X) = β0 + c
(
β1X1 + . . . + βpXp + βp+1X2

1 + . . . + β2pX2
p

)
+ ϵ.

As we progress to the m-th level, f(X) is updated to include higher-order terms:

f(X) = β0+c
(
β1X1 + . . . + βpXp + βp+1X2

1 + . . . + β2pX2
p + . . . + βp(m−1)+1Xm

1 + . . . + βptX
m
p

)
+ϵ.

In nonlinearity setting 2, we include a modification to the scalar term of all second-degree
polynomial terms. The function f(X) is defined as follows:

f(X) = β0 + c
[
β1X1 + . . . + βpXp + m

(
βp+1X2

1 + . . . + β2pX2
p

)]
.

We adjust the scalar variable m applied to the second-degree terms in the polynomial,
where m varies as (0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1, 3, 5, 8, 10). This modification allows us
to explore the impact of scaling on the quadratic components of the model.

4.2.2 Interactivity

In interactivity setting 1, we introduce all two-way interaction terms. The function f(X) is
defined as

f(X) = β0 + c {β1X1 + ... + βpXp + m [(X1 × X2) + (X1 × X3) + ... + (Xp−1 × Xp)]} .

We consider various values of m: (0.01, 0.1, 0.3, 0.5, 1, 2, 3, 5, 8, 13, 21). By manipulating
this scalar, we can examine the increasing effects of the two-way interaction.

In interactivity setting 2, our objective is to investigate the performance interactivity
measures in the presence of three-way interactions. This is important because the proposed
meta-features for assessing interactivity either calculate the ratio of MSE between the first
and second-degree Multivariate Adaptive Regression Splines (MARS) models or utilize an F-
like statistic to measure the reduction in MSE when incorporating second-order interactions.
The function f(X) in setting 2 is represented as

f(X) = β0 + c {β1X1 + ... + βpXp + m [(X1 × X2 × X3) + ...(Xp−2 × Xp−1 × Xp)]} ,
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where there are again 10 added terms and m varies across the same range of values as
interactivity setting 1.

4.2.3 Heteroscedasticity

In heteroscedasticity setting 1, we introduce a modification to the true error variance, mak-
ing it proportional to a power of the mean value, denoted as f(X)m, where f(X) is defined
to be positive. For each level, we vary the value of m, which represents a different degree of
power applied to f(X), and m can take on the following values: 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5.

4.2.4 Signal Strength

To manipulate the signal strength within the dataset, we can adapt the regression coefficients
βj using the Signal-to-Noise Ratio (SNR) as defined in (3.3). For each level, we adjust these
coefficients by multiplying them with a scalar factor m, which ranges from 0.9 to 0.1 in a
decrement of 0.1. This modification allows us to control the SNR in the dataset effectively,
and the corresponding SNR values are 4.05, 3.20, 2.45, 1.80, 1.25, 0.80, 0.45, 0.20, and 0.05,
respectively, for each value of m. The adjusted expression for the function f(X) is as follows:

f(X) = β0 + m · (β1X1 + . . . + βpXp) .

4.2.5 Data Richness

To modify the level of data richness, we change the sample size taken from the following
values 30, 50, 100, 500, 800, 1100, 1400, where 800 is the baseline.

4.2.6 Sparsity

Our baseline dataset consists of 5 relevant variables. In sparsity setting 1, we introduce m

additional non-relevant variables to the dataset. These non-relevant variables are indepen-
dently drawn from a uniform distribution U[3,5].

The modified form of the function f(X) is given by:

f(X) = β0 + c (β1X1 + . . . + βpXp + βp+1Xp+1 + . . . + βp+mXp+m) ,

where βp+1 = . . . = βp+m = 0, indicating that the non-relevant variables have no effect on
the response variable. For each level, the number of irrelevant variables m varies as (1, 3,
5, 10, 15, 20).

In sparsity setting 2, we use the Friedman function to generate the synthetic dataset,
and the focus is on testing cases where the functional relationship between the response
variable and relevant explanatory variables is not linear. The modified form of the function
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f(X) in this setting is given by

f(X) = β0+c
(
10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + βp+1Xp+1 + . . . + βp+mXp+m

)
.

Similar to setting one, for each level, m irrelevant variables are added to the dataset.

4.2.7 Multicollinearity

For multicollinearity setting 1, we focus on testing the ability of measures to detect the
existence of multicollinearity. A rough rule of thumb for ascertaining the presence of mul-
ticollinearity suggests that if the absolute value of the correlation coefficient between two
explanatory variables is above 0.7, it indicates a sign of strong multicollinearity, whereas
when the absolute value of the correlation coefficient is between 0.3 and 0.7, the two vari-
ables are mildly correlated [41]. Hence, in each level, we keep the correlation coefficients rij

among all variables constant, with values ranging from 0.3 to 0.9 in increments of 0.2.
In multicollinearity setting 2, we fix the value of correlation coefficients to be either 0.3

or 0.8 and manipulate the number of highly correlated variables. Within the matrix X ′X,
there are a total of p(p−1)

2 = 10 pairs of off-diagonal elements. In this case, we assign a value
of 0.8 to m of these pairs, while the remaining pairs are set to 0.3. The value of m can range
from 1 to 10, allowing for different degrees of correlation among the variables.

In multicollinearity setting 3, in order to further examine the measures’ ability to detect
extreme cases of highly intercorrelated variables, we manipulate the correlations among the
explanatory variables to vary only at 0.7 and 0.9. Similar to setting 2, we assign a value
of 0.9 to m pairs of off-diagonal elements, while the rest are set to 0.7. It is expected that
as more explanatory variables approach perfect correlation, the degree of multicollinearity
will increase, thereby presenting a different challenge for the measures to accurately detect
and quantify the extent of multicollinearity.
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Chapter 5

Experimental Results

5.1 Results of Sensitivity and Specificity

In this section, we present the results of our experiments, focusing on the sensitivity and
specificity analyses of the meta-features. Our study consists of 7 data properties, and for
some of them, we have multiple settings to observe changes. In Appendix Tables A.1 - A.12,
we present the simulation outcomes for each setting. We calculated the Spearman correlation
coefficients between the evaluated meta-features and the parameter index of manipulated
changes. Figure 5.1 summarizes the correlation coefficients by data properties. In cases
where a data property has multiple settings, we averaged their correlation coefficients to
obtain a single metric. The sensitivity of a meta-feature is determined by its correlation
coefficient for its corresponding data property, while the specificity is calculated as 1 minus
the average correlation coefficient for the other six properties.

Regarding sensitivity, we found that all meta-features except MC.2-condition, MC.3-vif,
HET.2-bp, INT.2-mars, SP.1-lasso, and SP.3-rf.avg.vi achieved the threshold value of
0.9. In the first setting of multicollinearity, the two multicollinearity measures demonstrated
nearly perfect sensitivity when we varied the levels of multicollinearity and ensured that
all pairs of variables had the same correlations. However, in the second and third settings,
where we focused on the measures’ ability to distinguish the levels of multicollinearity while
keeping the correlation fixed and changing the number of correlated variable pairs, these
two meta-features exhibited poor discriminative power. The HET.2-bp, depending on the
Brausch-Pagan test, was recognized as an effective measure when explanatory variables were
treated as factors influencing the variance of the error term, as discussed in [30]. However, in
our study, when we examined situations where the variance of the error term changed with
the mean, HET.2-bp had a relatively lower Spearman correlation. INT.2-mars may have
experienced challenges due to the presence of three-way interactions in setting 2. The set-
ting involving three-way interactions can introduce complex relationships between variables,
which might have affected the ability of INT.2-mars with degree 2 to capture and repre-
sent these intricate interactions accurately. Additionally, SP.1-lasso and SP.3-rf.avg.vi
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failed to achieve high correlations, which was mainly due to the second setting of sparsity
when the functional relationship between X and Y was not linear.

Regarding specificity, only one meta-feature, MC.1-avg.cor, had a specificity of at least
0.9 as shown in Figure 5.1. We observed that all meta-features exhibited a strong correlation
with changes in the Data Richness case, which represents variations in sample size in our
setting. This result was anticipated, as most of the meta-features are model-based or derived
from landmarking methods, meaning they depend on fitted models. Consequently, their
outputs changed with the sample size. However, this high correlation with Data Richness
negatively affected the specificity of almost all meta-features.

Figure 5.1: Results of sensitivity and specificity based on Spearman correlation.

5.2 Relative Change of Meta-features in Different Settings

In this section, we investigate the relative performances of meta-features across various
experimental settings. While correlation is a valuable technique that effectively assesses
the consistency of meta-feature changes with the manipulation factors in matching data
properties, it can be sensitive to minor value fluctuations of the meta-feature. Furthermore,
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the extent of changes in meta-feature values across different settings remains unknown. To
complement the correlation analysis, we adopt an alternative approach that standardizes
each meta-feature’s performances across all settings, which is analogous to taking z scores.
Specifically, we consider the performance values of one meta-feature in all settings as a
dataset and calculate the z score for each performance value with respect to the mean and
standard deviation of performance values within that set.

This approach is useful because meta-features lack rules of thumb and standardized
units, making it challenging to interpret the explicit meaning of their values or compare their
relative changes with other measures. For instance, there are no strict rules for determining
the threshold at which the ratio between the MSE of MARS and the MSE of MLR should
be considered an indication of severe nonlinearity because these measures depend on the
units of measurement for the response.

Figure 5.2: Relative change of meta-features in different settings (Part 1).

In Figure 5.2 and Figure 5.3, each boxplot of the z scores provides insights into the
properties or manipulated settings that influence changes in meta-feature values. From

33



Figure 5.3: Relative change of meta-features in different settings (Part 2).

the figures, it is evident that most meta-features exhibit the longest range of values in
settings corresponding to their respective data properties. However, we observed that meta-
features associated with heteroskedasticity exhibited inaccurate responses in cases involving
nonlinearity and interaction. Surprisingly, INT.2-mars changed more dramatically in het-
eroskedasticity settings than in interactivity settings. Moreover, the random forest-related
measures, namely HET.1-sdRatio, SS(snr)-rf, and SP.3-rf.avg.vi, demonstrated less
specificity compared to other measures. The random forests are renowned for their ability to
capture complex relationships in arbitrary dimensions and adapt to unknown interactions.
As a result, they may change unanticipatedly in some scenarios. Another notable finding is
that in the data-richness setting, most measures did not experience relatively large changes,
indicating their resistance to changes in sample size.
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5.3 Computational Time

Efficiency and computational speed are crucial factors when selecting meta-features for
practical problems. Therefore, we track the computation time for each meta-feature to
assess its computational efficiency.

In Figure 5.4, we present a boxplot illustrating the median computational time for
each meta-feature based on 10 replicates across all settings. However, we observed that the
two GAM-based measures appear to consume relatively more time and have several large
outlying times, corresponding to the nonlinearity settings for which they were designed. To
improve overall computational efficiency, it may be prudent to consider removing one of
these measures, as long as doing so does not significantly compromise the overall quality of
the meta-learner.

To understand the computation time of the remaining measures without the influence
of outliers, we scaled the y-axis by restricting the upper limit to 7 in Figure 5.5. This
rescaling allowed us to observe that the two measures from Boruta consume more time
than others. Also, certain measures related to random forests, such as HET.1-sdRatio and
SS(snr)-rf, tend to require relatively more time compared to other measures. However,
it is worth noting that certain measures utilize the same algorithm and can be efficiently
combined, enabling the model to be fitted only once while extracting necessary outputs.
For example, both HET.1-sdRatio and SS(snr)-rf are model-based features derived from
a fitted default random forest. Similarly, the two measures extracted from the Boruta func-
tion, while applying different rules to define the measures, still require running the function
once. This strategic approach significantly reduces the computation time and enhances the
overall computational efficiency of the meta-feature analysis.
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Figure 5.4: Median computational time.

Figure 5.5: Median computational time with scaled time.
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Chapter 6

Conclusion and Future Work

In this thesis, we aimed to explore a set of meta-features based on 7 data properties with the
potential to influence the prediction performance of supervised learning regression methods.
We discussed these data properties and developed measures to effectively recognize and
quantify them. Subsequently, we conducted a simulation study to evaluate the performance
of these measures in response to manipulated changes within the specified data properties.

The experimental results from our simulation study convincingly demonstrated that
most of the measures we used or developed were highly responsive to the corresponding
manipulated changes and sensitive to their respective data properties but not specific to
them. This lack of specificity can be partially attributed to intercorrelations between some
meta-features. For instance, sparsity and data richness may exhibit interdependence, as
changing the number of predictors to simulate sparsity automatically impacts data richness.
Also, meta-features associated with heteroskedasticity and interactivity are challenging to
separate, as both employ random forests and MARS, which can accommodate other chang-
ing features such as nonlinearity. The lack of specificity in some meta-features can also be
attributed to certain algorithms being adversely affected by the excessive presence of specific
data characteristics, such as heteroskedasticity, high nonlinearity, or interactions between
variables. INT.2-mars unexpectedly performed poorly in the heteroskedasticity setting, pos-
sibly because by using OLS as a loss function, MARS with degree 2 may mistake the high
error variability in high means as a signal in the data. These findings highlight the need to
carefully consider the development and relationships of meta-features when analyzing their
performance and relevance in specific data property settings. Despite this lack of specificity,
these meta-features remain valuable for a meta-learner as long as they are sensitive to at
least one property.

However, there are certain limitations in our study. Firstly, the primary focus on re-
gression analysis means that the explored 7 data properties may have specific relevance
to regression learning methods, particularly within the context of linear models. However,
their potential effects on more diverse and general data structures have not been extensively
explored. There also could be other data properties not covered in our investigation that
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significantly impact supervised learning methods, which should be further investigated. As
the field of supervised learning continues to evolve, exploring the effects of various data
properties on predictive performances can provide valuable insights into the selection and
evaluation of appropriate algorithms for different types of datasets and foster advancements
in machine learning.

In our simulated baseline model, we deliberately used relatively small sample sizes and
a limited number of variables to ensure the feasibility of computations. However, it would
be beneficial to explore larger sample sizes and higher variable dimensions to better under-
stand how meta-features behave when dealing with more extensive and complex datasets
commonly encountered in practical meta-learning applications. Additionally, while the use
of a multivariate normal distribution for generating X allowed us to easily control data
properties, particularly for manipulating factors like multicollinearity, considering different
data distributions or combinations of distributions when generating datasets could bet-
ter reflect real-world data scenarios that exhibit diverse distributional characteristics and
therefore provide valuable insights into the robustness and applicability of meta-features.
Further, our current focus is primarily on numeric variables, and it may be worthwhile to
incorporate categorical variables into the analysis.

Currently, our simulation study heavily focuses on variations based on linear models, and
we only applied some non-linear transformations and interaction cross-products to X while
maintaining a linear model structure. We did not extensively explore the impact of different
nonlinear or interactive models on meta-feature performance. For instance, functions like
f(X; β) = β1X1

X1+β2
cannot be expressed as a linear combination of the input variables. Inves-

tigating more complex nonlinear functions and their effects on meta-feature performance
could provide valuable insights into the suitability of different meta-features for nonlinear
modelling tasks. Also, our simulation settings were designed to apply common and easily
controlled changes for each data property. Real data may have different structures, but
we cannot simulate them all. By choosing simpler settings, we can manipulate them in a
controlled experimental environment and observe their effects clearly.

For future work, we recommend expanding the set of meta-features beyond model-
based or landmarking-related features to include traditional meta-features like simple, sta-
tistical, and information-theoretic measures introduced in Chapter 2 and in the study by
Lorena et al. [2]. These additional meta-features, which can be directly computed from the
dataset without requiring hyperparameters, may enrich our understanding when working
with real-world datasets. Also, we recommend considering the settings that contain interac-
tive changes in different data properties, like nonlinearity and heteroscakasity and see how
the meta-features behave. Looking at the broader context of meta-learning, the next step
would involve selecting a meta-learner and examining the meta-features’ ability to recom-
mend suitable algorithms for specific datasets, contributing to a more comprehensive and
practical meta-learning framework.
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Appendix A

Simulation Results for All Settings

Meta-features\Levels baseline m=2 m=3 m=4 m=5
NL.1-gam.REML 1.00 3.81 2.48 4.65 3.96
NL.1-gam.GCV 1.01 3.79 2.48 4.66 3.98
NL.2-mars 1.01 3.43 2.23 3.75 3.28
INT.1-F 0.84 1.43 1.27 1.58 1.44
INT.2-mars 1.01 1.00 1.00 1.00 1.01
HET.1-sdRatio 1.00 2.02 1.52 2.48 1.43
HET.2-bp 0.57 0.29 0.01 0.10 0.02
DR 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 1.17 0.99 0.88 0.70
SP.1-lasso 1.00 1.00 1.00 0.12 0.66
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.44 0.48 0.52 0.52 0.56
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01

Result table of meta-features in Nonlinearity Setting 1.
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Nonlinearity Setting 2 Table PART 1.

Meta-
features\Levels

baseline m=.01 m=.05 m=.1 m=.3 m=.5

NL.1-gam.REML 1.00 1.01 1.03 1.12 1.80 2.65
NL.1-gam.GCV 1.01 1.01 1.04 1.12 1.80 2.64
NL.2-mars 1.01 1.02 1.04 1.12 1.76 2.50
INT.1-F 0.84 0.84 0.85 0.94 1.25 1.36
INT.2-mars 1.01 1.02 1.01 1.01 1.00 1.00
HET.1-sdRatio 1.00 1.03 1.10 1.19 1.69 1.89
HET.2-bp 0.57 0.57 0.58 0.57 0.37 0.32
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 1.31 1.32 1.32 1.33 1.28
SP.1-lasso 1.00 1.00 1.00 1.00 1.00 1.00
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.44 0.46 0.38 0.48 0.48 0.52
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01

(a) Nonlinearity Setting 2 Table PART 2.

Meta-
features\Levels

m=0.8 m=1 m=3 m=5 m=8 m=10

NL.1-gam.REML 3.60 4.00 4.99 5.10 5.14 5.15
NL.1-gam.GCV 3.58 3.98 4.96 5.07 5.11 5.12
NL.2-mars 3.26 3.56 4.21 4.27 4.30 4.30
INT.1-F 1.42 1.44 1.46 1.47 1.47 1.47
INT.2-mars 1.00 1.00 1.00 1.00 1.00 1.00
HET.1-sdRatio 2.00 2.07 2.17 2.21 2.19 2.19
HET.2-bp 0.30 0.29 0.28 0.28 0.28 0.28
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.20 1.15 0.96 0.94 0.91 0.91
SP.1-lasso 1.00 1.00 0.08 0.00 0.00 0.00
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.48 0.60 0.46 0.56 0.42 0.44
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01

Result table of meta-features in Nonlinearity Setting 2.
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Interactivity Setting 1 Table PART 1.

Meta-
features\Levels

baseline m=.01 m=.1 m=.3 m=.5 m=1

NL.1-gam.REML 1.00 1.00 1.01 1.02 1.03 1.03
NL.1-gam.GCV 1.01 1.01 1.02 1.03 1.04 1.05
NL.2-mars 1.01 1.01 1.02 1.04 1.06 1.07
INT.1-F 0.84 0.88 2.93 7.90 11.44 15.57
INT.2-mars 1.01 1.01 1.08 1.34 1.56 1.76
HET.1-sdRatio 1.00 1.03 1.34 1.96 1.91 1.74
HET.2-bp 0.57 0.57 0.50 0.28 0.27 0.28
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 1.31 1.27 1.01 0.74 0.41
SP.1-lasso 1.00 1.00 1.00 1.00 1.00 0.98
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00 0.98
SP.3-rf.avg.vi 0.44 0.42 0.48 0.44 0.40 0.44
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01

Interactivity Setting 1 Table PART 2.

Meta-
features\Levels

m=2 m=3 m=5 m=8 m=13 m=21

NL.1-gam.REML 1.03 1.02 1.02 1.02 1.02 1.02
NL.1-gam.GCV 1.05 1.05 1.05 1.05 1.05 1.05
NL.2-mars 1.06 1.07 1.06 1.07 1.06 1.06
INT.1-F 17.46 17.86 18.06 18.12 18.13 18.14
INT.2-mars 1.77 1.81 1.84 1.80 1.81 1.77
HET.1-sdRatio 1.77 1.87 1.89 1.89 1.98 1.94
HET.2-bp 0.28 0.28 0.28 0.28 0.28 0.28
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 0.26 0.22 0.20 0.19 0.19 0.19
SP.1-lasso 0.22 0.00 0.00 0.00 0.00 0.00
SP.2-mars.vi 1.00 1.00 0.98 0.94 0.94 0.94
SP.3-rf.avg.vi 0.48 0.44 0.46 0.40 0.42 0.42
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01

Result table of meta-features in Interactivity Setting 1.
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Interactivity Setting 2 Table PART 1.

Meta-
features\Levels

baseline m=.01 m=.1 m=.3 m=.5 m=1

NL.1-gam.REML 1.00 1.00 1.01 1.04 1.06 1.07
NL.1-gam.GCV 1.01 1.02 1.03 1.07 1.09 1.10
NL.2-mars 1.01 1.02 1.02 1.06 1.09 1.11
INT.1-F 0.84 0.84 0.98 1.36 1.52 1.62
INT.2-mars 1.01 1.01 1.03 1.09 1.12 1.14
HET.1-sdRatio 1.00 0.98 0.98 0.93 0.89 0.90
HET.2-bp 0.57 0.56 0.39 0.09 0.09 0.10
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 1.31 1.22 0.84 0.53 0.23
SP.1-lasso 1.00 1.00 1.00 1.00 1.00 0.88
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.44 0.48 0.44 0.54 0.46 0.54
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01

Interactivity Setting 2 Table PART 2.

Meta-
features\Levels

m=2 m=3 m=5 m=8 m=13 m=21

NL.1-gam.REML 1.07 1.06 1.06 1.05 1.06 1.06
NL.1-gam.GCV 1.10 1.10 1.10 1.10 1.10 1.10
NL.2-mars 1.10 1.10 1.10 1.10 1.10 1.11
INT.1-F 1.65 1.66 1.66 1.66 1.66 1.66
INT.2-mars 1.14 1.13 1.13 1.14 1.12 1.12
HET.1-sdRatio 0.90 0.86 0.88 0.93 0.94 0.92
HET.2-bp 0.10 0.10 0.10 0.10 0.10 0.10
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 0.11 0.09 0.08 0.08 0.08 0.08
SP.1-lasso 0.00 0.00 0.00 0.00 0.00 0.00
SP.2-mars.vi 0.98 0.96 0.96 0.94 0.92 0.90
SP.3-rf.avg.vi 0.50 0.48 0.44 0.50 0.46 0.50
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 0.96
SP.5-Boruta.conf. 0.88 0.64 0.36 0.36 0.30 0.26
SP.6-Boruta.tent. 1.00 0.94 0.72 0.70 0.62 0.62
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01

Result table of meta-features in Interactivity Setting 2.
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Heteroscedasticity Setting Table PART 1.

Meta-
features\Levels

baseline m=0.1 m=0.3 m=0.5 m=1 m=1.5

NL.1-gam.REML 1.00 1.52 1.53 1.55 1.56 1.57
NL.1-gam.GCV 1.01 1.55 1.56 1.57 1.59 1.60
NL.2-mars 1.01 1.53 1.54 1.54 1.56 1.58
INT.1-F 0.84 7.86 7.93 7.99 8.04 8.01
INT.2-mars 1.01 12.27 13.18 14.73 21.57 22.99
HET.1-sdRatio 1.00 1.05 1.08 1.10 1.21 1.29
HET.2-bp 0.57 0.00 0.00 0.00 0.06 0.26
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 3.42 3.36 3.36 3.37 3.30
SP.1-lasso 1.00 1.00 1.00 1.00 1.00 1.00
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.44 0.22 0.20 0.20 0.20 0.20
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01

Heteroscedasticity Setting 1 Table PART 2.

Meta-
features\Levels

m=2 m=2.5 m=3 m=3.5 m=4 m=4.5 m=5

NL.1-gam.REML 1.58 1.59 1.59 1.58 1.58 1.57 1.56
NL.1-gam.GCV 1.62 1.62 1.62 1.62 1.62 1.61 1.60
NL.2-mars 1.59 1.59 1.60 1.60 1.60 1.59 1.59
INT.1-F 7.93 7.82 7.70 7.56 7.41 7.25 7.09
INT.2-mars 23.58 23.99 19.03 16.00 13.70 14.34 11.64
HET.1-sdRatio 1.38 1.47 1.54 1.62 1.67 1.75 1.78
HET.2-bp 0.33 0.27 0.17 0.07 0.02 0.00 0.00
DR 3.81 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 3.23 3.23 3.15 3.07 2.96 2.95 2.82
SP.1-lasso 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.22 0.22 0.20 0.20 0.20 0.20 0.20
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Result table of meta-features in Heteroscedasticity Setting.
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Meta-
features\Levels

baseline .9 .8 .7 .6 .5 .4 .3 .2 .1

NL.1-gam.REML 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
NL.1-gam.GCV 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01
NL.2-mars 1.01 1.01 1.01 1.02 1.01 1.01 1.02 1.02 1.01 1.01
INT.1-F 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
INT.2-mars 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00
HET.1-sdRatio 1.00 1.00 0.99 0.99 0.99 0.96 0.97 0.96 0.95 0.98
HET.2-bp 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
DR 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 1.32 1.14 0.96 0.78 0.60 0.43 0.28 0.16 0.08
SP.1-lasso 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.84
SP.3-rf.avg.vi 0.44 0.48 0.44 0.44 0.38 0.46 0.48 0.54 0.48 0.46
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.16
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17
MC.3-vif 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Result table of meta-features in Signal Strength Setting.

Meta-features\Levels m=30 m=50 m=100 m=500 m=800 m=1100 m=1400
NL.1-gam.REML NA 1.23 1.10 1.01 1.00 1.01 1.00
NL.1-gam.GCV NA 2.76 1.18 1.03 1.01 1.01 1.01
NL.2-mars 1.08 1.12 1.13 1.03 1.01 1.02 1.01
INT.1-F 0.71 0.77 0.91 0.84 0.84 0.79 0.71
INT.2-mars 1.34 1.05 0.98 1.02 1.01 1.01 1.01
HET.1-sdRatio 1.25 1.07 1.32 1.03 0.99 1.00 1.01
HET.2-bp 0.42 0.51 0.55 0.52 0.57 0.58 0.46
DR 1.97 2.19 2.51 3.47 3.81 4.06 4.26
SS(snr)-rf 0.31 0.42 0.55 1.11 1.29 1.45 1.56
SP.1-lasso 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP.2-mars.vi 0.88 1.00 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.46 0.50 0.56 0.54 0.48 0.52 0.46
SP.4-rf.scaled.vi 0.88 0.94 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 0.44 0.70 0.98 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 0.72 0.96 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.01 0.01 0.01 0.00 0.00 0.00
MC.2-condition 2.02 1.79 1.48 1.20 1.17 1.17 1.12
MC.3-vif 1.14 1.10 1.04 1.01 1.01 1.01 1.00

Result table of meta-features in Data Richness Setting.
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Meta-features\Levels baseline m=6 m=8 m=10 m=15 m=20 m=25
NL.1-gam.REML 1.00 1.01 1.01 1.01 1.00 1.00 1.01
NL.1-gam.GCV 1.01 1.02 1.02 1.02 1.04 1.05 1.06
NL.2-mars 1.01 1.02 1.02 1.02 1.04 1.03 1.02
INT.1-F 0.84 0.79 0.75 0.77 0.79 0.78 0.78
INT.2-mars 1.01 1.01 1.02 1.02 1.04 1.06 1.08
HET.1-sdRatio 1.00 0.98 0.98 1.01 1.00 1.01 1.04
HET.2-bp 0.57 0.61 0.59 0.58 0.57 0.56 0.51
DR 3.81 3.05 2.31 1.95 1.56 1.40 1.31
SS(snr)-rf 1.30 1.51 1.16 1.17 1.06 0.90 0.87
SP.1-lasso 1.00 0.83 0.64 0.51 0.33 0.25 0.20
SP.2-mars.vi 1.00 0.93 0.82 0.69 0.65 0.54 0.49
SP.3-rf.avg.vi 0.44 0.82 0.62 0.50 0.33 0.25 0.20
SP.4-rf.scaled.vi 1.00 0.87 0.66 0.53 0.33 0.31 0.25
SP.5-Boruta.conf. 1.00 0.83 0.62 0.50 0.00 0.00 0.00
SP.6-Boruta.tent. 1.00 0.85 0.65 0.50 0.35 0.26 0.20
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.20 1.26 1.33 1.53 1.78 1.99
MC.3-vif 1.01 1.01 1.01 1.01 1.02 1.02 1.03

Result table of meta-features in Sparsity Setting 1.

Meta-features\Levels baseline m=6 m=8 m=10 m=15 m=20 m=25
NL.1-gam.REML 1.00 1.13 1.14 1.14 1.14 1.14 1.14
NL.1-gam.GCV 1.01 1.14 1.15 1.16 1.17 1.19 1.21
NL.2-mars 1.01 1.19 1.19 1.18 1.22 1.24 1.29
INT.1-F 0.84 3.90 2.60 1.97 1.32 1.05 0.95
INT.2-mars 1.01 1.66 1.64 1.65 1.93 2.01 2.03
HET.1-sdRatio 1.00 3.12 3.31 3.32 3.48 3.50 3.50
HET.2-bp 0.57 0.00 0.00 0.00 0.00 0.00 0.00
DR 3.81 3.05 2.31 1.95 1.56 1.40 1.31
SS(snr)-rf 1.30 0.25 0.20 0.20 0.19 0.17 0.17
SP.1-lasso 1.00 0.23 0.17 0.15 0.09 0.07 0.05
SP.2-mars.vi 1.00 0.88 0.70 0.57 0.54 0.52 0.44
SP.3-rf.avg.vi 0.44 0.58 0.56 0.50 0.35 0.32 0.30
SP.4-rf.scaled.vi 1.00 0.83 0.62 0.55 0.37 0.30 0.22
SP.5-Boruta.conf. 1.00 0.72 0.52 0.39 0.00 0.00 0.00
SP.6-Boruta.tent. 1.00 0.80 0.64 0.48 0.29 0.22 0.18
MC.1-avg.cor 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MC.2-condition 1.17 1.20 1.26 1.33 1.53 1.78 1.99
MC.3-vif 1.01 1.01 1.01 1.01 1.02 1.02 1.03

Result table of meta-features in Sparsity Setting 2.
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Meta-features\Levels baseline r=0.3 r=0.5 r=0.7 r=0.9
NL.1-gam.REML 1.00 1.02 1.01 1.01 1.01
NL.1-gam.GCV 1.01 1.03 1.02 1.02 1.02
NL.2-mars 1.01 1.03 1.03 1.03 1.03
INT.1-F 0.84 0.91 0.93 0.90 0.91
INT.2-mars 1.01 1.02 1.01 1.01 1.01
HET.1-sdRatio 1.00 0.98 0.99 0.98 1.03
HET.2-bp 0.57 0.52 0.52 0.52 0.52
DR 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 2.56 3.07 3.44 3.66
SP.1-lasso 1.00 1.00 1.00 1.00 1.00
SP.2-mars.vi 1.00 1.00 1.00 1.00 1.00
SP.3-rf.avg.vi 0.44 0.52 0.58 0.52 0.48
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.31 0.51 0.71 0.90
MC.2-condition 1.17 2.15 2.85 3.77 6.16
MC.3-vif 1.01 1.26 1.71 2.81 8.37

Result table of meta-features in Multicollinearity Setting 1.

Meta-
features\Levels

baseline n.8=1 n.8=2 n.8=3 n.8=6 n.8=10

NL.1-gam.REML 1.00 1.01 1.01 1.02 1.02 1.01
NL.1-gam.GCV 1.01 1.02 1.02 1.03 1.03 1.02
NL.2-mars 1.01 1.02 1.03 1.03 1.03 1.03
INT.1-F 0.84 0.99 0.72 1.00 0.93 1.02
INT.2-mars 1.01 1.02 1.00 1.00 1.01 1.01
HET.1-sdRatio 1.00 1.00 0.98 0.97 0.98 0.98
HET.2-bp 0.57 0.52 0.52 0.52 0.52 0.52
DR 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 2.73 2.98 3.09 3.37 3.56
SP.1-lasso 1.00 1.00 0.74 1.00 1.00 1.00
SP.2-mars.vi 1.00 1.00 0.88 1.00 1.00 1.00
SP.3-rf.avg.vi 0.44 0.46 0.38 0.40 0.28 0.46
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.36 0.42 0.46 0.61 0.81
MC.2-condition 1.17 3.57 51.35 3.82 4.56 4.59
MC.3-vif 1.01 1.91 62.90 2.63 3.40 4.20

Result table of meta-features in Multicollinearity Setting 2.
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Meta-
features\Levels

baseline n.9=1 n.9=2 n.9=3 n.9=4 n.9=6 n.9=7 n.9=10

NL.1-gam.REML 1.00 1.01 1.01 1.02 1.01 1.01 1.01 1.01
NL.1-gam.GCV 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
NL.2-mars 1.01 1.02 1.02 1.04 1.03 1.03 1.03 1.03
INT.1-F 0.84 0.96 0.91 0.99 0.96 0.93 0.92 0.91
INT.2-mars 1.01 1.02 1.02 1.01 1.01 1.01 1.00 1.01
HET.1-sdRatio 1.00 0.97 1.00 1.00 1.01 1.00 0.99 1.03
HET.2-bp 0.57 0.52 0.52 0.52 0.52 0.52 0.52 0.52
DR 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81
SS(snr)-rf 1.30 3.45 3.50 3.55 3.57 3.62 3.63 3.66
SP.1-lasso 1.00 1.00 1.00 1.00 0.96 1.00 0.92 1.00
SP.2-mars.vi 1.00 1.00 1.00 1.00 0.96 0.98 0.96 1.00
SP.3-rf.avg.vi 0.44 0.50 0.52 0.46 0.44 0.46 0.48 0.48
SP.4-rf.scaled.vi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP.5-Boruta.conf. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP.6-Boruta.tent. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MC.1-avg.cor 0.00 0.73 0.75 0.77 0.79 0.83 0.84 0.90
MC.2-condition 1.17 5.66 16.21 5.66 14.21 6.26 13.19 6.16
MC.3-vif 1.01 4.01 10.65 5.34 15.93 6.78 15.72 8.37

Result table of meta-features in Multicollinearity Setting 3.
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