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Abstract

Quantum Hall states for non-interacting electrons on graphene’s honeycomb lattice are pre-
dicted to occur for filling fractions ν= ± (4n+ 2), for integer n. Integer and fractional quantum
Hall states in graphene are observed in the zeroth Landau level with −2< ν < 2 and arise from
electron-electron interactions. It is generally agreed that there is symmetry breaking in these
states, and for the integer quantum Hall state at ν= 0 there has been considerable debate as to
whether this arises from quantum Hall ferromagnetism or chiral symmetry breaking (CSB) via
magnetic catalysis. There has been relatively little exploration of the orders associated with frac-
tional quantum Hall states in graphene with 0 < |ν| < 1. In this thesis we study the fractional
quantum Hall effect in graphene in the presence of CSB orders; in particular charge density
wave order (C), easy-axis Neél anti-ferromagnetic order (N) and ferromagnetic order (F).

A feature of incompressible fractional quantum Hall states in e.g. GaAs is that they usually have
odd denominators while even denominator states such as ν = 1/2 are compressible. Even de-
nominator fractional quantum Hall states (EDFQH) were recently observed in graphene in a
small range of magnetic fields at ν = ±1/2 and ±1/4. The existence of these states is a conse-
quence of degeneracies in the electronic spectrum of graphene that lead to a multicomponent
fractional quantum Hall effect. We use a Chern-Simons description of multicomponent fractional
quantum Hall states in graphene to investigate the properties of these states and suggest vari-
ational wavefunctions that may describe them. We find that the experimentally observed even
denominator fractions and standard odd fractions (such as ν = 1/3, 2/5, etc.) can be accom-
modated within the same flux attachment scheme and argue that they may arise from sublattice
or chiral symmetry breaking orders (such as charge-density-wave and antiferromagnetism) of
composite Dirac fermions, a phenomenon unifying integer and fractional quantum Hall physics
for relativistic fermions in the zeroth Landau level.

With the aim of finding ways to discriminate between different classes of symmetry breaking
we study the collective excitations of fractional quantum Hall states in graphene. We focus on
states which allow for chiral symmetry breaking orders. We investigate numerically how the
collective excitation spectra depend on filling and the flux attachment scheme for two classes
of variational states, the Töke-Jain sequence and the Modak-Mandal-Sengupta sequence. We
find qualitative similarities between our results and previous work. We propose a hierarchy of
stability of states with different flux attachment schemes. We focus on several different ν= 1/3,
1/2 and 2/5 states and compare with their observed order of stability in experiments. We find
that the stability is largely dominated by the flux attachment and that order parameters play a
more minor role. We comment on limitations of our approach.
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Quotation

The Wheel of Time turns, and Ages come and pass, leaving memories that become legend.
Legend fades to myth, and even myth is long forgotten when the Age that gave it birth
comes again. In one Age, called the Third Age by some, an Age yet to come, an Age long
past, a wind rose in the · · · 1. The wind was not the beginning. There are neither beginnings
nor endings to the turning of the Wheel of Time. But it was a beginning. -Robert Jordan,
Wheel of Time

1Every book in the Wheel of Time series begins with this paragraph. The only difference is the location of where
the wind rises, represented here by · · · .
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Chapter 1

Introduction

Carbon’s ability to catenate, i.e. form chains with other atoms, makes it the essential
ingredient in forming millions of organic compounds and hence for life itself. Physi-
cal properties may vary widely depending on the dimensionality of the carbon system.
Graphene is a two dimensional allotrope of carbon. In graphene the carbon atoms are ar-
ranged in a honeycomb structure made out of hexagons, Fig. 1.1. Some other higher (or
lower) dimensional allotropes of carbon can be constructed out of graphene. Graphite
is a three-dimensional (3D) allotrope of carbon, Fig. 1.1, that is a stack of graphene
layers held together by weak van der Waals forces and is well known for its use as pen-
cil lead. Carbon nanotubes can be constructed out of graphene by folding a graphene
strip in a particular direction and reconnecting the carbon atoms along the edges that
meet. Hence carbon nanotubes can be thought of as one-dimensional systems [2, 3].
Fullerenes can be constructed out of graphene wrapped into a sphere and by introduc-
ing positive curvature defects via pentagons [4].

Novoselov et al. in 2004 [5] were able to isolate and study graphene, a one-atom
thick layer of carbon atoms. The graphene films were prepared by repeated peeling of
a graphite sample using scotch tape and were spotted by their optical effects on a SiO2

substrate [5, 6]. For their work Konstantin Novoselov and Andre Geim were awarded
the Nobel prize in Physics in 2010.

In graphene the carbon atoms are sp2 hybridized which leads to a σ bond (overlap
of orbitals in an end to end fashion) between the carbon atoms with a separation of
1.42 Å. This gives rise to a trigonal planar structure for the carbon atoms in graphene.
The remaining p orbital is perpendicular to the plane of the carbon atoms and has an
extra valence electron. The out of plane p orbital can bond covalently with another p
orbital to give rise to a π-bond. Since there is only one electron in the p orbital the π
bands are only half filled [7]. This is illustrated in Fig 1.2.

The unique and unusual properties of graphene arise from its two dimensionality
and hexagonal lattice. In reciprocal space the lattice is also hexagonal and the valence

1



Figure 1.1: Graphene (top-left) is a two dimensional layer of carbon atoms comprised of
hexagons. Graphite (right) is composed of layers of graphene held together by weak van der
Waals forces. Carbon nanotubes (bottom) can be thought of as rolled up graphene strips.
Fullerene, C60, (top-center) can be made from graphene by introducing pentagons on a
hexagonal-lattice. Adapted from [1].

Figure 1.2: sp2 hybridization of carbon atoms in graphene showing the σ and π bonds.
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and conduction band touch each other at the corners of the Brillouin zone. These special
points are known as Dirac points. At half-filling, when there is one electron per carbon
atom on the lattice in the π band, the valence band is completely filled while the con-
duction band is completely empty. The chemical potential thus intercepts at these Dirac
points. The electronic dispersion at the Dirac points is linear at low energies. This indi-
cates that the low energy excitations in graphene behave as massless Dirac fermions. As
a consequence, graphene mimics quantum electrodynamics (QED) for Dirac fermions
albeit with role of the speed of light, c, played by the Fermi velocity, vF ∼ 106m/s which
is about 300 times smaller than the speed of light in vacuum [1, 8, 9].

The remarkable properties of graphene have led to its usefulness in a number of
applications. High electron mobility in graphene makes it ideal for semiconductor de-
vice applications that require fast response times [10]. High conductivity and high op-
tical transparency combined has led to proposals for transparent conductive layer for
photonic devices [11]. Other uses of graphene and graphene based compounds are in
biomedical engineering in the form of graphene oxide in drug/gene delivery and tissue
engineering [12] and in electronics in the form of graphene based metal-air batteries
[13], graphene woven fabrics used as sensors in wearable technology [14], supercapac-
itors [15], the formulation and deposition of conductive cotton fabric [16], in printing
technology in the form of graphene functional inks [17] and as nanoscale coating for
aerospace applications [18].

Two sheets of graphene stacked with a relative twist in their orientation generated
much recent excitement due to the discovery of interaction-induced insulating states
and superconductivity in these twisted bilayer graphene (TBG) systems at certain spe-
cific values of the twist angle known as magic angles [19–25]. Low-temperature electri-
cal transport measurements on high-quality tear-and-stack magic angle twisted bilayer
graphene (MATBG) revealed interaction-induced insulating states with nearby super-
conducting dome [19, 21]. The similarity between the phase diagram and phenomenol-
ogy of this relatively simple system and that of the high-temperature superconductors
(HTS) has led to exploration of the consequences and the possibility of answering long
standing problems in HTS [26–37].

A hallmark of Dirac fermion behaviour in graphene is the integer quantum Hall
effect. The quantum Hall effect refers to the phenomenon when a two dimensional
gas of electron is subjected to a high magnetic field, at low temperatures and the
Hall conductivity/Hall resistance (Eq. 1.2) becomes quantized and develops a series
of plateaux and simultaneously the transverse/diagonal conductivity/resistance goes
to zero (Fig. 1.3). Experiments performed by Wakabayashi and Kawaji [38] with Si-
MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) samples employing a
Corbino disk geometry observed the diagonal conductivity (Eq. 1.2) approaching very

3



Figure 1.3: The Hall resistance (RH) develops a series of plateaus concurrent with a minimum
in longitudnal resistance (R). Reproduced with permission from Ref. [42]

small values at high magnetic fields and at low temperature similar to predictions by
Ando et. al. [39] but it was not until the experiments perfomred by von Klitzing using
silicon-based MOSFET samples developed by Dorda and Pepper that the Hall resistance
was found to be exactly quantized [40] leading to the discovery of the integer quan-
tum Hall effect (IQHE). von Klitzing won the Nobel prize in Physics in 1985 for his
discovery. For a two dimensional electron gas placed under a strong magnetic field, at
low temperatures, the conductivity and resistivity tensor on the Hall plateaux have the
form:

σ =

�

0 −νe2

h
νe2

h 0

�

; ρ =

�

0 h
νe2

− h
νe2 0

�

, (1.1)

where h is the Planck’s constant and e is the charge of the electron and ν is an integer
known as the filling fraction and is related to the density of electrons and the magnetic
field. In terms of fundamental constants

σx y = σH =
νe2

h
; σx x = 0; ρx x = 0; ρx y = ρH =

h
νe2

. (1.2)

The quantization condition in Eq. 1.2 is exact up to one part in 109 and is indifferent to
impurities or geometric details of the two-dimensional system [41].

Soon after the discovery of the IQHE, Tsui et al. [43] observed the fractional quan-
tum Hall effect (FQHE) in GaAs-AlGaAs heterostructures of high quality (i.e. with low
disorder). They discovered a plateau in the Hall resistivity at ρx y =

3h
e2 and a vanishing

longitudinal resistivity ρx x for a partially filled Landau level (ν = 1/3). Subsequently
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other fractional quantum Hall (FQH) states have been discovered such as ν= 2/3 [44–
46], ν= 4/3 [44, 47] and ν= 5/3 [47]. The temperature dependence of the FQH states
was found to have an activated behaviour in the diagonal resistivity (ρx x) and Hall re-
sistivity (ρx y) present over some temperature ranges, corresponding to a gap in the
excitation spectrum [46]. The FQHE (Fig 1.3) does not fit into the non-interacting elec-
tron picture. The theoretical breakthrough on the problem of FQHE came from Laughlin,
who wrote down a trial wavefunction for the FQH states at ν = 1/m, where m is an
odd integer [48]. Laughlin’s theory was able to show that in a FQH state the system be-
haves like an incompressible fluid [48] and hence has a gap in the excitation spectrum
as observed in experiments. Laughlin, Tsui and Störmer were awarded the Nobel prize
in Physics in 1998 for their work.

In the presence of strong magnetic fields, at low temperatures, the IQHE is also
observed in graphene. The IQHE is qualitatively different from that observed in semi-
conductor heterostructures because the behaviour of Dirac fermions in a magnetic field
is different from that of non-relativistic fermions [49–52]. The fractional quantum Hall
effect has also been observed in graphene [53–59] and is the primary subject of this
thesis.

1.1 Outline

The first part of the thesis is a review of experiment and theory for quantum Hall effects,
integer and fractional in semiconductor heterostructures and in graphene. In Chapter 2
we give an overview of the quantum Hall effect in semiconductor heterostructures. Af-
ter a brief overview of the experiments we describe the quantum mechanical version
of the IQHE theory in the Landau gauge. The role of disorder and edge modes are
also touched upon. We then describe the FQHE along with Laughlin’s theory of FQHE,
the quasiparticles in the FQHE. We then describe Haldane’s pseudopotential method for
higher Landau levels. This naturally leads to the hierarchical schemes of which the com-
posite fermion (CF) approach to the problem of FQHE is an example. The Chern-Simons
(CS) theory is then introduced as a field theory that describes the FQHE. In Chapter 3
we begin with a description of the bandstructure of graphene and the symmetries of the
low energy theory of electrons in graphene and then move onto the nature of the IQHE
in graphene and its differences from the IQHE in traditional 2DEGs. We focus mainly on
the interaction-induced IQHE in the lowest Landau level in graphene. In particular we
focus on how electron-electron interactions in graphene lead to the breaking of chiral
symmetry through the mechanism of magnetic catalysis and we briefly touch upon the
FQHE in graphene, noting its similarities and differences from the FQHE in traditional
2DEGs.
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The second part of the thesis is based on extending the ideas described in the first
part and applying it to explain experimental observations of FQHE in graphene. In Chap-
ter 4 we begin with a brief introduction to the nature of even-denominator fractional
quantum Hall (EDFQH) states that have been studied, both theoretically and experi-
mentally, in semiconductor heterostructures. On the theory side we briefly touch upon
the theory of composite Dirac fermions (CDFs) and the Halperin-Lee-Read (HLR) theory
of EDFQH states. Following a brief overview of the experimental observation of EDFQH
states in graphene we describe an extension of the CF picture (multi-component flux
attachment scheme) to include the four-fold symmetry in graphene’s Landau levels. We
employ a multi-component flux attachment scheme to explain the experimental obser-
vation of EDFQH states in graphene in the presence of chiral symmetry breaking (CSB)
orders. We provide a list of possible variational wavefunctions that could be ground
states of the system at these EDFQH states along with the CSB orders that would be
present in the system for these ground states. Using this method we are unable to dis-
tinguish between the states with different order parameters. Chapter 4 is based on the
publication S. Narayanan, B. Roy and M. P. Kennett, Phys. Rev. B 98, 235411 (2018).

The final part of the thesis aims to attempt to answer the question raised in the previ-
ous chapter of how to distinguish CSB orders in FQH states in graphene and eventually
lead to a theory that leads to experimentally verifiable results. To this end we develop a
field theory of composite fermions in graphene and employing the Schwinger Keldysh
formalism we write down an effective action in Chapter 5. Using the effective action
we are able to calculate the electromagnetic response of the system. We study the col-
lective excitations of the system in the presence of CSB orders combined with the flux
attachment scheme described in Chapter 4. We observe a variation in the spectrum of
collective excitations for different flux attachment and compare the excitation spectra
of different FQH states. Chapter 5. is based on the publication S. Narayanan and M. P.
Kennett, Phys. Rev. B 106, 165119 (2022).

6



Chapter 2

The Quantum Hall Effect

When two dimensional electron systems are placed in a strong magnetic field, at low
temperatures, quantum Hall states are observed [40, 43]. The signature of the quan-
tum Hall effect (QHE) is the appearance of plateaux in the Hall conductivity/resistivity
(Fig. 1.3). The quantization of the Hall resistance is extremely accurate and is insen-
sitive to geometry of the sample or the amount of disorder present in the sample. The
accuracy of the quantization of the Hall resistance has been used to determine the value
of the fine structure constant α [40]. The fine structure constant in terms of the Hall
resistance RH is

α=
1
2
µ0c

e2

h
=

1
2
µ0c(RK)

−1, (2.1)

where µ0 is the permeability of vacuum, c is the speed of light and RK = h/e2 is defined
as the von Klitzing constant with RK = 25812.807± 0.05Ω.

The high density electron systems which are required to observe the QHE are present
in Si-MOSFETs and semiconductor heterostructures with almost perfect lattice matched
semiconductor-semiconductor interfaces like GaAs/AlxGa1−xAs (0< x ≤ 1) heterostruc-
tures. Fig 2.1 shows the energy level diagram of a n-channel Si-MOSFET device. It
consists of a semiconductor p-Si which shares a planar interface with a thin layer of
SiO2 (an insulator). On the other end is a metal gate electrode. A gate voltage (VG) is
applied between the gate and the Si/SiO2 interface which results in the energy bands
being bent as shown in Fig 2.1. For strong electric fields the conduction band falls be-
low the Fermi level and electrons can accumulate inside a small pocket in the form of
a two-dimensional well [60]. The width of the well is small (∼ 50 Å) which allows
the electrons to move freely in the plane of the interface but restricts their motion per-
pendicular to the interface and hence motion along the perpendicular is quantized. The
system is referred to as an inversion layer owing to the charge carriers being electrons
while the semiconductor is p-type [41].
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Figure 2.1: Energy level diagram of a n-channel Si-MOSFET.

The gallium arsenide system is similar to the Si-MOSFET system. GaAs is a weak p-
type semiconductor whereas AlAs, which has a wider energy gap, acts as an insulator.
The two materials have nearly the same lattice and dielectric constants. The band
gap of the AlGaAs alloy is much wider than that of the GaAs and it increases with the
aluminium concentration. Near the interface the carriers in the doped alloy transfer
through the interface into the low lying conduction bands of GaAs. The electric field
due to the charge transfer gives rise to bending of the bands at the interface as shown
in Fig. 2.2. As with the Si-MOSFET a well is formed on the GaAs side, which owing to
its width (∼ 100 Å) acts as a two-dimensional plane for the electrons to move in.

After von Klitzing’s initial experiment [40] integral quantization of Hall resistance
was demonstrated in a variety of systems such as GaAs-heterostructures [61–63], GaAs/InP
heterostructures [64–66], HgTe/CdTe heterostructures [67], InAs/GaSb heterostruc-
tures [68] and in Si/Ge systems [69].

2.0.1 Classical Theory of Electrons in a Magnetic Field

Consider the motion of an electron restricted to moving in the xy-plane with velocity
v= vx x̂+vy ŷ and subjected to a magnetic field, B= Bẑ. The classical equation of motion

8



Figure 2.2: Energy level diagram of a GaAs-AlGaAs heterostructure device.

is
me

dv
d t
= −ev×B. (2.2)

The force on the electron is always perpendicular to its velocity and hence the electron
undergoes a uniform circular motion with an angular frequency, ωc = eB/me, known
as the cyclotron frequency.

If we now add an electric field, E, and a linear (in velocity) friction term which
mimics the effect of electrons colliding with impurities, then the resulting equation of
motion becomes

me
dv
d t
= −ev×B−

mev
τ
− eE, (2.3)

where τ is the average time between collisions also known as the scattering time.
In equilibrium (dv/d t = 0) the equation of motion takes the form

eτ
me

v×B+ v= −
eτ
me

E. (2.4)
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In terms of the current density (J = −neev, where ne is the density of electrons) the
equation of motion takes the form

�

1 ωcτ

−ωcτ 1

�

J=
e2neτ

me
E. (2.5)

The current density is related to the applied electric field through Ohm’s law, J = σE,
where σ is the conductivity tensor. From Eq. 2.5 the conductivity tensor has the form

σ =

�

σx x σx y

−σx y σx x

�

=
nee

2τ

me

1
1+ω2

cτ
2

�

1 −ωcτ

ωcτ 1

�

. (2.6)

The resistivity tensor is defined as the inverse of the conductivity tensor (Eq. 2.6) and
has the form

ρ = σ−1 =

�

ρx x ρx y

−ρx y ρx x

�

=

�

me/nee
2τ B/nee

−B/nee me/nee
2τ

�

. (2.7)

The diagonal components, ρx x = ρy y = me/nee
2τ, correspond to the longitudinal resis-

tance and the off-diagonal component, ρx y = B/nee, corresponds to the Hall resistance.
The Hall resistance is independent of the details of scattering (encoded by the scatter-
ing time τ) and only depends on the applied magnetic field, B, electron density, ne, and
the sign of the charge carriers.1

In two dimensions resistivity and resistance have the same units and measurements
of resistance in Hall experiments are actually measuring the resistivity which is an in-
trinsic property of the material itself. In a typical Hall experiment setup a current passes
through the sample, in say the x-direction, and a magnetic field is applied perpendicualr
to the plane of the sample, in the z-direction. In the presence of the magnetic field the
charged particles are deflected and an electric field EH is induced in the y-direction and
in equilibrium the force due to the induced field balances the Lorentz force due to the
magnetic field. Mathematically this is expressed as

eEH = evx B. (2.8)

The Hall coefficient is defined as the ratio of the induced electric field, EH , to the Hall
resistivity, ρx y :

RH =
EH

ρx y
=

1
nee

. (2.9)

1Here we have assumed the charged particles are electrons with a charge, −e. We could have started with an
arbitrary charge, q and the Hall resistance would then be ρx y = −B/neq
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The Hall coefficient characterizes the material and indicates the sign of the majority
charge carriers and is also a measure of their density.

2.0.2 Quantum Theory of Electrons in a magnetic field

The IQHE can be understood from a picture of non-interacting electrons. The quan-
tum mechanical problem is that of independent two-dimensional spinless electrons in
a perpendicular magnetic field. The Hamiltonian for a single electron is2 [70]

H =
1

2m
(p+ eA)2. (2.10)

Choosing the two dimensional plane as the xy-plane the magnetic field B= Bẑ=∇×A.
Define operators

πππ= p+ eA= mẋ, (2.11)

with x= (x , y). The operators πi (i = x , y) satisfy the commutation relations

�

πx ,πy

�

= −ieℏB. (2.12)

Define raising (a†) and lowering (a) operators

a =
1

p
2eℏB

(πx − iπy); a† =
1

p
2eℏB

(πx + iπy), (2.13)

which satisfy [a, a†] = 1. In terms of these operators the Hamiltonian becomes

H = ℏωc(a
†a+ 1/2), (2.14)

whereωc = eB/m is the cyclotron frequency (and takes the same value as in the classical
case). The eigenstates, {|n〉}, are labelled by integers, n, and they satisfy

a† |n〉=
p

n+ 1 |n+ 1〉 ; a |n〉=
p

n |n− 1〉 . (2.15)

The state |n〉 has energy

En = ℏωc(n+ 1/2), n ∈ N . (2.16)

The energy levels are called Landau levels and they are equally spaced by energy ℏωc

which is proportional to the magnetic field B. In order to specify the eigenfunction a

2The magnetic field is assumed to be strong enough that we are dealing with spin polarized electrons and hence
the Zeeman term can be ignored.
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choice of gauge has to be made. One such choice is the Landau gauge 3

A= xBŷ. (2.17)

The Landau gauge breaks translation symmetry in the x-direction but the physical mag-
netic field B preserves it. In the Landau gauge the Hamiltonian in Eq. 2.10 becomes

H =
1

2m

�

p2
x + (py + eBx)2

�

. (2.18)

Due to translation invariance in the y-direction the wavefunctions are plane waves in
that direction and we can use the ansatz [70]

ψk(x , y) = eik y fk(x). (2.19)

When the Hamiltonian acts on this wavefunction, py gets replaced with ℏk i.e. Hψk =
Hkψk, where Hk is given by

Hk =
1

2m
p2

x +
mω2

c

2
(x + kl2

B)
2, (2.20)

where lB is the magnetic length. The magnetic length is a characteristic length scale in
quantum phenomena involving magnetic fields

lB =

√

√ ℏ
eB

. (2.21)

Equation 2.20 is the Hamiltonian for a harmonic oscillator centered at x = −kl2
B. The

energy eigenvalues are those given in Eq. 2.16. The explicit wavefunction is

ψn,k(x , y) =N eik y Hn(x + kl2
B)e
−(x+kl2

B)
2/2l2

B (2.22)

whereN is a normalization constant. Here Hn is the nth Hermite polynomial. The wave-
function depends on two quantum numbers, n ∈ N the Landau level index and k ∈ R
the momentum.

Landau levels have a large degeneracy. The energy levels depend on the Landau
level index n whereas the wavefunction depends on both n and k. Suppose we have a
system of finite size in the xy-plane with side lengths Lx and L y . In the y-direction the
momentum will be quantized in units of 2π/L y . In the x-direction, for our choice of
gauge, there is no manifest translational invariance. The wavefunctions in Eq. 2.22 are

3See Appendix A for a description of the symmetric gauge.
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localised exponentially around x = −kl2
B and since 0 ≤ x ≤ Lx the allowed values of k

are −Lx/l
2
B ≤ k ≤ 0. The number of allowed states then becomes

NB =
L y

2π

∫ 0

−Lx/l
2
B

dkx =
Lx L y

2πl2
B

=
eBA
2πℏ

, (2.23)

where A is the area of the sample. Thus each Landau level has a macroscopic degeneracy.
For a fixed magnetic field we can define the fraction of Landau level filled up by electrons
as the filling fraction, ν. The filling fraction, ν, is given by

ν= 2πl2
Bne, (2.24)

where ne is the density of electrons. When ν is an integer, k, then Landau levels n =
0,1, ...., k are all completely filled. Filling fraction, ν, can alternatively be defined in
terms of the density of flux quanta, Φ0 = 2πℏ/e present in the system. The density of
flux quanta present in the system is given by

nΦ =
1
A

�

Φ

Φ0

�

=
B
Φ0
=

1
2πl2

B

, (2.25)

where A is the area. From Eqs. 2.24 and 2.25 we find that

ν=
ne

nΦ
. (2.26)

Thus the filling fraction is the ratio of the density of electrons to the density of the flux
quantum present in the system.

At low temperatures and high magnetic field the integer quantum Hall effect (IQHE)
is observed [40, 43]. The IQHE is characterized by the appearance of plateaux in the
Hall conductivity/resistivity (implying the Hall conductivity/resistivity is quantized)
and concomitantly the longitudinal conductivity/resistivity vanishes. These features can
be seen in the plot of resistance (longitudinal and Hall resistance) versus the magnetic
field in Fig. 1.3. In the limit of high magnetic field and low temperatures the dimension-
less parameter, ωcτ, becomes large and from Eqs. 2.7 and 2.24, the resistivity tensor
has the form

ρ =

�

0 h
νe2

h
νe2 0

�

. (2.27)

This expression suggests that the Hall resitivity, ρH = h/νe2 varies continuously with
ν or alternatively the magnetic field, B. In experiments instead what is seen are broad
plateaux as the magnetic field is varied.

The presence of plateaux can be explained once disorder is taken into account. Dis-
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Figure 2.3: Schematic density of states without disorder (left) and in the presence of disorder
(right). The localized states are represented by the orange shaded area and the extended states
are represented by the sharp red lines in the presence of disorder.

order in the system lifts the degeneracy of the Landau levels. As long as the disorder
strength is small compared to the energy gap between the Landau levels

Vdis≪ ℏωc, (2.28)

the effect of the disorder is to broaden the energy spectrum as illustrated in Fig. 2.3.
Disorder also turns extended states into localized states. Extended states are present at
the centre of each Landau level band of the broadened spectrum while states beyond
the centre are localized. It is the extended states that are responsible for conduction of
electrons in the system. If all the extended states in a given Landau level are filled and
the magnetic field is varied, keeping the electron density fixed, then the electrons start
occupying the empty localized states but since localized states do not contribute to the
conduction the conductivity remains the same even if the magnetic field is varied. This
explains the observation of plateaux in the experiments.

The vanishing of the longitudinal conductivity/resistivity and non-zero Hall resisitiv-
ity together implies that there is a current flowing at the edges of the system. Figure 2.4
shows the semi-classical orbits of an electron is a two-dimensional sample of finite size.
The orbits in the bulk are clockwise if the magnetic field points into the plane (out of
the plane). At the edge of the sample the electrons cannot complete their orbits and
instead skip along the boundary. In Fig. 2.4 this means that the only direction the elec-
trons on the left can go is up and on the right, down. Hence the motion is one where
the particles move along a one-dimensional boundary in a single direction.
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Figure 2.4: Edge Modes in a two-dimensional sample.

2.1 The Fractional Quantum Hall Effect

The discovery of IQHE by von Klitzing was soon followed by the discovery of the frac-
tional quantum Hall effect by Tsui et al.[43]. The FQHE was observed in very clean
(less disorder/impurities) samples and at higher magnetic fields (B ∼ 10T) than the
IQHE. The experimental signature of the FQHE is the appearance of plateaux in the
Hall resistivity at rational fractions i.e., ρx y = h/νe2 with ν = p/q where p and q are
both integers. Although the experimental signatures of the IQHE and the FQHE are
associated with the appearance of Hall plateaus and the vanishing of the longitudinal
resistivity the physics behind each effect is quite different. The IQHE is observed when
a Landau level is completely filled and hence the Fermi energy lies in the gap between
the filled Landau level and the next empty one. In the case of FQHE the Fermi energy
lies inside the partially filled Landau level and electrons can be added within the same
Landau level implying the absence of a single particle gap [71]. The gap in the spec-
trum, ∆, is a consequence of Coulomb interactions between the electrons and hence is
a many-body gap:

∆≃
e2

p
ndε

, (2.29)

where
p

nd is the average interparticle distance and ε is the dielectric constant of the
medium. Clearly the Coulomb interaction energy should be greater than any disorder
potential present in the system if the energy gap is to be robust and thus there is a
hierarchy of energy scales

Vdis≪∆≪ ℏωc. (2.30)

The effect of interaction is to lift the degeneracy of the Landau levels. Since the de-
generacy of the Landau levels is huge the problem of identifying the ground state of a
FQH state cannot be solved using degenerate perturbation theory. The explanation of
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the FQHE was provided by Laughlin [48] for which he was awarded the Nobel prize in
1998.

Laughlin’s Theory

Laughlin treated the fractional quantum Hall state at ν = 1/m as an incompressible
fluid and proposed a class of trial wavefunctions, in the symmetric gauge (cf. Eq. A.8),
describing the FQH liquid that have the form

Ψ(z1, ..., zN) =

�

∏

i< j

f (zi − z j)

�

e
−
∑N

i=1 |zi |
2

4l2B , (2.31)

where f (z) is an analytic function of the complex coordinates of the particles, zi =
x i + i yi; i = 1, ...., N . Fermi statistics demands that f (zi − z j) be odd under exchange
of pair of particles and that it vanishes when zi → z j. These requirements along with
requiring that Ψ be an eigenstate of the total angular momentum 4 is met by f (z) having
the form f (z)∼ zm, where m is an odd integer. Thus the Laughlin wavefunction is

Ψ(z1, ...., zN ) =
∏

i< j

(zi − z j)
m e
−
∑N

i=1 |zi |
2

4l2B . (2.32)

The trial wavefunction proposed by Laughlin is quite remarkable. Laughlin computed
[48] the overlap between the trial wavefunction, Ψ and the exact wavefunction for a
small number (N ≤ 3) of electrons interacting through pair potentials u(r) of the form
u(r) ∼ 1/r,−ln(r), exp(−r2/2) and found the overlap to be almost 99%. Trugman and
Kivelson [72] showed that Ψ is the exact ground-state wavefunction, for all m, for an
interaction potential of the form u(r) = u0∇2δ(r). Haldane [73] constructed a class of
Hamiltonians for which Laughlin-like wavefunctions are the exact ground state.5 The
Laughlin states have been generalized to describe filling fractions other than ν= 1/m.
These hierarchical constructions were considered by Halperin [74] and Haldane [73].

The Laughlin wavefunction has no variational parameters in it. The ground state is
determined by values of m that minimize the energy but m is determined by the total
angular momentum. It is amazing thatΨ in Eq. 2.32 works so well! Laughlin determined
the optimal value of m which minimizes the energy by mapping the wavefunctions to
a classical plasma in two dimensions [48]. The probability density (setting lB = 1)

4See Eq. A.12.

5See Sec. 2.1.1
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associated with the Laughlin wavefunction has the form

P(zi) =
∏

i< j

(zi − z j)
2me

∑N
i=1 |zi |2/2. (2.33)

We can write this in the form of a Boltzmann distribution function

P(zi) = e−βU(zi), (2.34)

with

βU(zi) = −2m
∑

i< j

log(|zi − z j|) +
N
∑

i=1

|zi|2. (2.35)

If we further assume β = 1/m the potential U(zi) has the form

U(zi) = −2m2
∑

i< j

log(|zi − z j|) +m
N
∑

i=1

|zi|2. (2.36)

The first term is the same as a Coulomb potential between two particles carrying charge
q = m each and restricted to two dimensions.

A constant charge density creates an electric potential of the form −∇2φ = 2πρ0

and the second term in the potential in Eq. 2.36 satisfies

−∇2(|zi|2) = −4, (2.37)

and hence each electron feels a background charge density

ρ = −
1

2πl2
B

, (2.38)

where we have put back the magnetic length to make sense of the result physically. The
plasma will try to neutralise the background charge density and the density of particles
carrying charge m required to do so satisfies the condition

nm= ρ0⇒ n=
1

2πl2
Bm

, (2.39)

which is the density of electrons for a state at filling fraction ν = 1/m. Hence we see
that the Laughlin wavefunction describes the FQHE state at ν= 1/m.
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Quasiparticles

Charged excitations of the quantum Hall state are either quasi-holes or quasi-particles.
Mathematically they can be generated by introducing an infinitely thin solenoid at some
point η in the quantum Hall fluid and then passing a flux quantum through it adiabat-
ically. For the single particle wavefunction this amounts to a change from m to m+ 1

(z −η)me−|z|
2/4→ (z −η)m+1e−|z|

2/4. (2.40)

For the quasi-hole the wavefunction has the form

ψhole =
N
∏

i=1

(zi −η)
∏

j<k

(z j − zk)
me

∑N
j=1−|z j |2/4. (2.41)

The electronic wavefunction now vanishes at z = η and hence a hole has been intro-
duced into the system. Consider introducing m such holes in the system at the same
position η; then the m-hole wavefunction is

ψm−hole =
N
∏

i=1

(zi −ηl)
m
∏

j<k

(z j − zk)
me

∑N
j=1−|z j |2/4. (2.42)

Once again if we associate a Boltzmann distribution with the probability density of the
m-hole wavefunction the potential in Eq. 2.36 is modified to

U(zi) = −m2
∑

i< j

log(|zi − z j|)−m
∑

i

log(|zi −η|) +m
N
∑

i=1

|zi|2. (2.43)

Now, the second term in the expression looks like an impurity in the plasma with a net
charge of +1. Given there are m holes introduced in the system the charge of each of
these quasi-holes is +1/m. Hence quasi-holes are charged excitations of the FQH liquid
which carry fractional charge.

The other type of charged exciations are quasi-particles. Quasi-particles ought to
carry a charge e∗ = −1/m with the same sign as that of an electronic charge. Measure-
ments of shot noise are consistent with the charge carriers of the state ν = 1/3 having
fractional charge −e/3 [75].

2.1.1 Haldane Pseudopotentials

When the magnetic field is strong, in the fractional quantum Hall regime, the Landau
level separation, ℏωc, is large enough that the degrees of freedom are restricted to
a single Landau level, i.e. ℏωc ≫ Eother where Eother are other energy scales in the
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problem. Thus, excitations between Landau levels can be considered to be high energy
degrees of freedom and low energy excitations are those within the same Landau level.
Within a single Landau level the kinetic energy is quenched and hence the Hamiltonian
of the system can be described solely in terms of interactions between particles within
the Landau level.

Haldane [73, 76] showed that a translationally and rotationally invariant two-body
interaction, within a single Landau level, can be decomposed in terms of pseudopo-
tential parameters (Vm, m ≥ 0). The pseudopotential parameters describe the cost of
having a pair of particles in a state with relative angular momentum, m, which is an odd
number for electrons. The pseudopotential also leads to a description of the fractional
quantum Hall state within the Landau level.

The Hamiltonian projected to a single Landau level is described solely in terms of
the interaction term

H =
∑

i< j

V (ri − r j). (2.44)

The Hamiltonian acts on two particles at a time and the two-particle wavefunction can
be decomposed in terms of the center of mass and relative degrees of freedom [77]

Ψ(ri, r j) =
∑

α,β

Aα,βΨ
c.o.m.
α

Ψ rel
β
(ri − r j). (2.45)

Translational invariance implies that the Hamiltonian only acts on the relative degrees
of freedom. In the lowest Landau level the single particle wavefunction is given by
Eq. A.8 and hence for the two-particle case the product of the center of mass and the
relative wavefunctions in Eq. 2.45 can be written as (setting lB = 1)

Ψ c.o.m.
�zi + z j

2

�

Ψ rel(zi − z j)e
− 1

4 (|zi |2+|z j |2). (2.46)

The interaction and hence the Hamiltonian is diagonal in a basis of the center of mass
degrees of freedom. Hence the Hamiltonian can be expanded in terms of a complete
basis of relative wavefunctions as

H =
∑

i< j

∑

m,m′
|m; i j〉 〈m; i j|V (ri − r j) |m′, i j〉 〈m′; i j| , (2.47)

where
|m; i j〉= Cm(zi − z j)

m, (2.48)

where m is the relative angular momentum between the particles and Cm are normaliza-
tion constants. As a consequence of rotational invariance of the interaction the Hamil-
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Figure 2.5: Pseudopotential parameters Vm plotted as a function of relative angular momentum
m for the Coulomb interaction V (q) = e2/4πε|q|, for the n = 0 Landau level (in black) and
n= 1 Landau level (in blue).

tonian is diagonal in the relative angular momentum m,

H =
∑

i< j

∑

m

VmPm
i j , (2.49)

where Vm are the pseudopotential parameters given by

Vm = 〈m; i j|V (ri − r j) |m; i j〉 , (2.50)

and Pm
i j is the projection onto a two-particle state with relative angular momentum, m

Pm
i j = |m; i j〉 〈m; i j| . (2.51)

The ν = 1/3 state is the ground state for the Hamiltonian obtained by setting V1 > 0
and all the other Vm≥3 = 0. This ensures that a pair wavefunction of the form (zi − z j)
is assigned a positive energy cost whereas a wavefunction that has the form (zi− z j)3 is
formed without any energy cost. The latter wavefunction is the Laughlin wavefunction
for the ν= 1/3 state.

The pseudopotential approach can be generalized to higher Landau levels by map-
ping the system in a single Landau level to another system with a modified interaction
[41, 78–80]. In the nth Landau level the Hamiltonian in momentum space takes the
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form 6

Hn =

∫

d2qV (q)ρn(−q)ρn(q), (2.52)

where ρn is the projected density describing electrons in the nth Landau level [81] and
is given by

ρn(q) = Fn(q)ρ̂n(q), (2.53)

with ρ̂(q) the bare density and Fn(q) the Landau level form factor

Fn(q) = Ln(q
2/2)e−q2/4. (2.54)

With this the Hamiltonian becomes

Hn = V (q)[Fn(q)]
2ρ̂n(−q)ρ̂n(q). (2.55)

Expanding the interaction potential in a series of Laguerre polynomials

V (q)[Fn(q)]
2 =

∑

m

Vm Lm(q
2)e−q2/2, (2.56)

we can identify Vm as the pseudopotential parameters and these are then given by

Vm =

∫ ∞

0

qdqV (q)[Ln(q
2/2)]2 Lm(q

2)e−q2
. (2.57)

The first few pseudopotential parameters for the Coulomb interaction V (q) = e2/4πε|q|
for the n= 0 and n= 1 Landau levels are shown in Fig. 2.5.

2.1.2 Composite Fermion Approach to FQHE

FQH states with ν= 1/m are described in terms of Laughlin’s wavefunctions. The other
fractions observed in experiments have been obtained in various hierarchical schemes
[73, 74, 82].

The composite fermion (CF) picture seeks to unify the FQHE and the IQHE while
providing a scheme for the hierarchy of FQH states observed in experiments [83, 84].
Consider the IQH state ν = p. This corresponds to Φ0/p flux per electron on average.
The many body wavefunction for this state, Ψp, is rigid and is not affected by the inter-
actions between electrons and the IQH state’s characteristics follow from the electrons
being fermions and obeying Fermi statistics. To each electron we attach an infinitely thin

6See Appendix B for details.
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solenoid carrying a flux θΦ0 pointed in the direction opposite to the magnetic field. Such
an object is referred to as a composite particle. The composite particles are known to
obey fractional statistics [85] and under an exchange the phase is known to be (−1)1+θ

[86]. When θ = 2m i.e., an even number of flux is attached to each electron, the phase
factor is the same as the situation where there are no flux tubes attached to the elec-
tron, θ = 0. The state thus obtained can be labelled as Ψ2m

p . Hence composite particles
where an even number of flux are attached to the electrons behave like fermions and
hence have Fermi statistics. Thus we can expect that if a system of electrons is rigid and
exhibits the IQHE then a system of composite fermions made up of electrons with an
even number of flux quanta attached to them is also rigid and hence exhibits the IQHE
[83].

The CFs are electrons bound to an even number of flux quanta, 2m. Because of the
additional flux the CFs experience an effective magnetic field

Beff = B − 2mΦ0ρ0, (2.58)

where ρ0 is the density of electrons and B = Φ0ρ0/ν is the magnetic field giving rise
to the FQHE state. The CFs are in a IQHE state with νC F = p and hence the effective
magnetic field is

Beff = Φ0ρ0/p. (2.59)

The filling fraction of electrons can be expressed as

ν=
p

2mp+ 1
. (2.60)

The CF method hence relates the IQHE of composite fermions to the FQHE of electrons.
The assumptions made here work if the original electron liquid is itself incompressible.
The arguments of gauge invariance introduced before [87, 88] still hold. For the ν= p
IQHE state p electrons are transferred, in a Corbino geometry, from the inner edge to
the outer one as the flux through the center is increased by one flux quanta. For the
Ψ2m

p state an additonal 2mp flux quanta has to be supplied to transfer p electrons. The
Hall resistivity hence becomes Rx y = h/νe2 with ν= p/(2mp+ 1).

The fractions obtained using the CF method all have odd denominator with the
exception of ν= 1/2m states which are obtained when p→∞. The order of stability of
the fractions can be seen if we assume that due to the likelihood of flux unbinding being
higher in states with larger m the gap is also likely to be less stable for larger m. Hence
if a state with filling fraction ν= p/(2mp+1) exists then a state with ν= p/(2m

′
p+1)

will exist provided m
′
< m.
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Wavefunctions of IQHE states at filling fraction ν = p can be constructed starting
from a picture of non-interacting electrons in a magnetic field. The Hamiltonian for this
system is given by Eq. 2.10 and the wavefunctions are Ψp. At the mean field level the
CFs, for the FQHE state at ν = p/(2mp + 1), experience an effective magnetic field as
given in Eq. 2.58. Additionally the CFs are described by electrons with 2m flux quanta
attached to them. The binding of flux tubes to electrons is generated by a singular gauge
potential of the form [83, 85, 86]

a(ri) =
2m
2π
Φ0

∑

j ̸=i

∇iθi j, (2.61)

with
θi j = −iln

zi − z j

|zi − z j|
, (2.62)

the relative angle between particles i and j in the complex plane. The potential a(ri)
generates a magnetic field given by

bi =∇× a(ri) = 2mΦ0

∑

i ̸= j

δ2(ri − rj). (2.63)

Each electron thus sees 2m flux attached to every other electron.
The mean field Hamiltonian for the composite fermions then becomes

HC F =
1

2me

∑

i

�

pi + eA
′
(ri) + a(ri)

�2
, (2.64)

where the gauge field A
′
(ri) generates the effective magnetic field Beff.

For large magnetic fields the gap between Landau levels is also large and only the
lowest Landau level (LLL) becomes important. Eliminating the gauge field, a(ri), from
Eq. 2.64 and requiring that at ν= 1/m the wavefunction should correspond to Laughlin
wavefunction leads to the wavefunction being [83, 89],

Ψν =PLLLΦe−i2m
∑

i< j θi j = Φ
∏

j<k

�

zi − z j

�2m
, (2.65)

where Φ satisfies Schrödinger’s equation for ν∗ = m and ν∗ = Beffρ0. Experimental
evidence for composite fermions will be discussed in Chapter 4, where we discuss
even denominator fractional quantum Hall effects (EDFQHs). The theory of CFs can
be extended to include spin and other degrees of freedom. We discuss these "multi-
component" CF theories in the context of graphene in Chapter 4.
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2.2 Chern-Simons Theory

An alternative to the wavefunction approach is an effective field theory which tries
to capture the response of the low energy excited state just above the ground state.
The effective theory that describes the quantum Hall effect is known as Chern Simons
theory. 7

Building on ideas of Girvin and Macdonald [92] and Read [93], Zhang et al. pro-
posed a theory of the FQHE using a Chern Simons effective field theoretic description
in terms of a bosonic superfluid. Lopez and Fradkin [94] used fermionic Chern-Simons
field theory to describe the fractional quantum Hall system, motivated by the composite
fermion wavefunction approach of Jain [83]. This was further extended by Halperin,
Lee and Read [95], Murthy and Shankar [96] and others.

The Chern-Simons term is defined through the action

SCS[A] =
k

4π

∫

d3 x εµνρAµ∂ν Aρ, (2.66)

where Aµ is a fixed field that does not have any fluctuations and x = (x0, x1, x2) is
the space-time coordinate in 2+1 dimensions. The lack of fluctuations is related to the
assumption that at low energies there are no low lying excitations in response to pertur-
bations to the system. This is true for the IQHE where there is a gap to the first excited
state. Typically we are interested in writing down a partition function of the form

Z[Aµ] =

∫

Dc eiS[c; Aµ], (2.67)

where S[c; Aµ] is the action and c are fermionic operators. The action S is arbitrary
aside from the requirement that it has to include a coupling to the field Aµ through a
current Jµ as

SA =

∫

d3 x JµA
µ. (2.68)

Once we integrate out the fields c, we have a low energy effective theory given by

Z[Aµ] = eiSeff[Aµ], (2.69)

where Seff[Aµ] is the effective action which turns out to be the Chern-Simons action.

7The discussion in this section is primarily based on Refs. [70, 90, 91].
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Varying the effective action with respect to the field Aµ leads to

δSeff

δAµ(x)
=



Jµ(x)
�

, (2.70)

where for the spatial components

Ji = σi j E j; E j = ∂0A j. (2.71)

The presence of a non-zero Hall conductivity, σx y , implies the existence of a term in
the action of the form ∼ Axσx y∂0Ay . This can be made gauge invariant and we get the
form of the effective action as the Chern-Simons term

Seff = SCS[A] =
k

4π

∫

d3 x εµνρAµ∂νAρ. (2.72)

The Chern-Simons term is gauge invariant up to a boundary term i.e., if we make a
gauge transformation Aµ→ Aµ + ∂µλ, then the effective action becomes

SCS → SCS +
k

4π

∫

d3 x ∂µ(λε
µνρ∂νAρ), (2.73)

which is a total derivative. Given the Chern-Simons action in Eq. 2.72 we can compute
the current as

Ji =
δSCS[A]
δAi

= −
k

2π
εi j Ei, (2.74)

and we can obtain the Hall conductivity as

σx y =
k

2π
. (2.75)

If we compare Eq. 1.2 and Eq. 2.75 we see that the Hall conductivity of ν filled Landau
levels is related to the level of the Chern-Simons term k via

k =
νe2

ℏ
. (2.76)

Quantization of Chern-Simons Theory

If Eq. 2.76 has to hold, then the level of the Chern-Simons term, k, can only take inte-
ger values. In order to see the quantization of the Chern-Simons theory we make time
periodic or Euclidean, parameterised by τ. This is equivalent to formulating the theory
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such that the time variable lives on a circle S1 and obeys the periodicity condition

τ≡ τ+ β . (2.77)

Under a gauge transformation, a field that carries a charge, e, transforms as

ψ→ eieλ/ℏψ. (2.78)

Usually the function λ is taken to be single valued but the actual requirement is that
eieλℏ is single valued and hence we need to consider λ modulo 2π

eλℏ∼= eλ/ℏ+ 2π. (2.79)

This allows for gauge transformations that can wind around the circle S1

λ=
2πℏτ

eβ
, (2.80)

which leads to the temporal component of the gauge field A0 transforming as

A0→ A0 +
2πℏ
eβ

, (2.81)

which is a constant shift. We consider the two dimensional system to form a sphere S2

instead of a plane and then thread a magnetic flux through the sphere given by

1
2π

∫

S2

F12 =
ℏ
e

, (2.82)

where Fµν is the field strength [90]. This is equivalent to placing a magnetic monopole
inside of the sphere. With a constant A0 = s the Chern-Simons term in Eq. 2.72 becomes

SCS =
k

4π

∫

d3 x [A0F12 + A1F20 + A2F10] . (2.83)

Integration by parts of the second and third terms gives a factor of 2 and with a constant
flux the result is

SCS = βs
ℏk
e

, (2.84)

where the factor of β comes from the time integral in Eq. 2.83. Thus, under a gauge
transformation of the form in Eq. 2.80 the temporal component of the gauge field A0 is
changed according to Eq. 2.81 and the Chern-Simons term is not gauge invariant and
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instead transforms as

SCS → SCS + βs
ℏ2k
e2

. (2.85)

Even though the Chern-Simons action is not gauge invariant, the partition function in
Eq. 2.69 is gauge invariant provided

ℏk
e2
∈ Z. (2.86)

Again if we make the association k = νe2

ℏ then we can see that indeed k takes integer
values.

Chern-Simons Theory for the Fractional Quantum Hall Effect

The argument for the level of the Chern-Simons term taking integer values shows why
the Hall conductivity is quantized for the IQHE. For the FQHE the argument above
seemingly does not hold. The issue is with the assumption that at low energies there is
a energy gap in the system and hence there are no low lying excitations in the system.
For the FQHE while it is true that there is an energy gap in the system there can be
topological excitations that affect the system at low energies. Moreover these excitations
can be described by an emergent U(1) gauge field aµ that propagates only inside the
material [90].

Consider the ν = 1/m state. For this state there is a single emergent U(1) gauge
field aµ. After integrating out the dynamical fields corresponding to the fermions the
partition function is

Z[Aµ] =

∫

DaµeiSeff[a; A]/ℏ. (2.87)

The aim is to find a suitable effective action Seff[a; A] that describes the FQHE. To this
end there has to be a coupling between the gauge fields Aµ and aµ. The field Aµ couples
to the electron current Jµ which is given by [70, 90]

Jµ =
e2

2πℏ
εµνρ∂νaρ. (2.88)

If we look at the electron density J0 = ρ it is given by

ρ =
e2

2πℏ
B , (2.89)

where
B = ∂1a2 − ∂2a1, (2.90)
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is the magnetic field generated by the gauge field, aµ, which is different from the phys-
ical external magnetic field, B. Hence it is the magnetic flux of aµ that couples to the
field Aµ. This magnetic flux can also be interpreted as the charge of the field aµ.

Thus, at low energies the action can be postulated to be

Seff =
e2

ℏ

∫

d3 x
�

1
2π
εµνρAµ∂νaρ −

m
4π
εµνρaµ∂νaρ

�

. (2.91)

The effective action has a term which couples the field Aµ to a current which is a mixed
Chern-Simons term and a Chern-Simons term involving aµ . Terms with higher deriva-
tives of aµ are omitted since at low energies and large wavelength, these terms become
unimportant. A Chern-Simons term for the field Aµ could be added to the effective ac-
tion in Eq. 2.91 but such a term would just be describing the integer contribution to
the Hall conductivity.

Since the field aµ appears in Eq. 2.91 quadratically we can integrate it out from the
equations of motion to obtain a

fµν =
1
m

Fµν, (2.92)

where fµν = ∂µaν − ∂νaµ and Fµν = ∂νAµ − ∂νAµ. This indicates that up to a gauge
transformation a is related to A by a = A/m. Substituting this back into Eq. 2.91 we
arrive at the effective action

Seff =
e2

ℏ

∫

d3 x
1

4πm
εµνρAµ∂ν Aρ. (2.93)

Comparing this with Eq. 2.72 we read off the level of the Chern-Simons term as being
k = e2/ℏm and hence the Hall conducitivity is

σx y =
e2

2πℏm
, (2.94)

which is the required conductivity for the Laughlin state.
Although the expression in Eq. 2.94 is the correct form of the Hall conductivity

the form of the action in Eq. 2.93 violates gauge invariance [70, 90] as can be seen
by following the arguments that led to the condition given in Eq. 2.86. The problem
lies with integrating out the gauge field aµ. The system has properties like fractionally
charged quasiparticles and topological degeneracies that can only be understood in a
theory which includes both A and a fields. The reason integrating out the field aµ gives
the correct Hall conductivity is that it is valid locally since the action is gauge invariant
locally as long as we are far away from the boundary and this is enough to determine
the Hall conductivity [70, 90].
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2.2.1 Quasiparticles and Fractional Statistics

We can add a term to the action Eq. 2.91 that describes the gauge field aµ that is coupled
to its own current jµ. Switching off the background field Aµ leads to the equations of
motion for aµ

e2

2πℏ
fµν =

1
m
εµνρ jρ. (2.95)

The charge density can be read off as

j0 =
e2

2πℏ
mB . (2.96)

If we consider a static point charge at the origin for which j0 = eδ2(x) then

B =
Φ0

m
δ2(x), (2.97)

which implies that the effect of the Chern-Simons term is to bind a flux Φ0
m to each

particle of charge e. In this case the only non-zero component of the current, jµ, is j0
which from Eq. 2.74 becomes

j0 =
e2

2πℏ
B =

e
m
δ2(x). (2.98)

This is the charge density of a stationary particle which carries a charge e
m . We can

generalize the result to include N such particles carrying a charge e at positions xa. In
this case the charge density and current densities are given by

j0(x) = e
N
∑

a=1

δ2(x− xa(t)) and j= e
N
∑

a=1

ẋaδ
2(x− xa(t)). (2.99)

We can fix the gauge by imposing a0 = 0 and ∂iai = 0 and solve the equation of motion
Eq. 2.95 to get [91]

ai(x, t) =
ℏ

em

N
∑

a=1

εi j

x j − x j
a(t)

|x− xa(t)|2
, (2.100)

where we used the Green’s function for the two dimensional Laplacian,

∇2log|x− y|= 2πδ(x− y). (2.101)
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Using the identity ∂iarg(x) = −εi j
x j

|x | we can rewrite Eq. 2.100 as

ai(x, t) =
ℏ

em

N
∑

a=1

∂iarg(x− xa). (2.102)

Under such a gauge transformation a particle represented by a fieldψ(x) transforms as
[91]

ψ(x)→ ψ̃(x) = exp

�

−i
N
∑

a=1

∂iarg(x− xa)

�

ψ(x). (2.103)

As each particle carries a flux ℏ
em , when one particle is moved in a closed curve C around

another it picks up an Aharonov-Bohm phase given by [91]

exp

�

i
e
ℏ

∮

C

a · dxa

�

= exp
�

2πi
m

�

. (2.104)

Taking one particle around the other is equivalent to a double exchange of particles and
hence we find that the statistical exchange phase, α, of these quasiparticles are [91]

α=
1
m

. (2.105)

Heirarchy of states and K -matrices

The Chern-Simons formalism can be extended to include fractions other than the Laugh-
lin fractions. The most natural way to extend the formalism is by introducing a set of
emergent gauge fields aI . In terms of these fields the low energy effective theory (in
units of ℏ= e = 1) of a FQH liquid can be written in the form 8

L =
1

4π
Kαβεµνρaαµ∂νaβρ − tαε

µνρAµ∂νaαρ, (2.106)

where theK matrix is a symmetric integer matrix and t is known as the charge vector
[97]. Properties like statistics of exchange, ground state degeneracy etc. can be obtained
from both K and t. Integrating out the gauge fields we can get the Hall conductivity
[98] as

σx y = (K −1)αβ tα tβ . (2.107)

8The indices α and β , unlike the indices µ ,ν and ρ, are not space-time indices so we do not worry about whether
they are up or down.
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The charges of the quasiparticles are given by

(e∗)α = (K −1)αβ tβ , (2.108)

and the statistics of quasiparticles that couple to aα with that which couple to aβ are

ααβ = (K −1)αβ . (2.109)

In these units, the Hall conductivity, σx y , and the filling fraction, ν, are the same and
hence the filling fraction is also given by

ν= (K −1)αβ tα tβ . (2.110)

The parametrization ofK matrix and t-vector that gives rise to the hierarchical scheme
[73] is

K =











m ±1 0 · · ·
±1 2p1 ±1
0 ±1 2p2
...

. . .











and t = (1,0, 0, · · · ). (2.111)

The benefit of using the K matrix is that it can be used to describe multicomponent
FQH states such as multi-layer systems, systems with spin or systems with other degrees
of freedom. In the context of multi-layer systems an element of the matrix, Kαβ , has
the physical interpretation of being the number of flux quanta attached to particles in
layer α as seen by those in layer β . The K matrix formalism will be important in the
discussion of the FQHE in graphene. In the next chapter we will give a brief introduction
to graphene and its properties followed by an introduction to the IQHE and the FQHE
in graphene.
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Chapter 3

Quantum Hall Effects in Graphene

Graphene is composed of carbon atoms arranged in a honeycomb lattice as shown in
Fig. 3.1. The lattice structure is comprised of two inter-penetrating triangular sublat-
tices, A and B. The sublattice A is generated by the vectors [99, 100]

a1 = (
p

3,−1) a; a2 = (0, 1) a; (3.1)

where a = 1.42 Å is the lattice spacing. The sublattice B is then given by B = A+ bi,
i = 1,2, 3, with the bi being

b1 =
�

1
p

3
, 1
�

a
2

; b2 =
�

1
p

3
,−1

�

a
2

; b3 =
�

−1
p

3
, 0
�

a. (3.2)

The reciprocal lattice is also hexagonal and is generated by the vectors

R1 =
4π
p

3a

�

1
2

,

p
3

2

�

; R2 =
4π
p

3a

�

1
2

,−
p

3
2

�

. (3.3)

The inequivalent Dirac points K and K′ at the corners of the Brillouin zone in Fig. 3.1,
are of particular importance to the physics of graphene and are given by

K=
4π
p

3
a
�

1
2

,
1

2
p

3

�

; K′ =
4π
p

3
a
�

1
2

,−
1

2
p

3

�

. (3.4)

As described in Fig. 1.2, the carbon atoms are sp2 hybridized with an extra elec-
tron in the p-orbital perpendicular to the plane of the carbon atoms. The overlap of
neighbouring p-orbitals gives rise to a hopping amplitude of t ∼ 2.7eV in graphene [7].
Including the nearest-neighbour hopping, the tight-binding Hamiltonian for graphene
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Figure 3.1: Right: Hexagonal lattice structure of graphene showing the inter-penetrating trian-
gular sublattices A (red) and B (blue) with dashed lines. The lattice vectors a1, a2 generate the
A (red) sublattice and the B (blue) sublattice is generated by B = A + bi with i=1, 2, 3. Left:
The reciprocal lattice of graphene is also hexagonal and generated by lattice vectors R1 and R2.
The points K and K′ are inequivalent Dirac points where the Dirac cones are located.

can be written as [100, 101]

Ht = −t
∑

A,i,σ=±1

[uσ(A)vσ(A+ bi) +H.c.]

+β
∑

A,σ=±1

�

u†
σ
(A)uσ(A)− v†

σ
(A+ bi)vσ(A+ bi)

�

, (3.5)

where u†
σ

(v†
σ
) and uσ (vσ) are the creation and annihilation operators for an electron

with spin, σ, on the sublattice A (B) with A + bi = B. The first term is the nearest
neighbour hopping term and the second term measures the difference in onsite energy
between the two sublattices. In terms of Fourier modes (supressing the spin index)

u(A) =

∫

d2k
(2π)2

eik·Au(k); v(B) =

∫

d2k
(2π)2

eik·Bv(k). (3.6)

The Hamiltonian in momentum-space is

Ht =

∫

d2k
(2π)2

�

u†(k), v†(k)
�

�

β −t
�

eik·b1 + eik·b2 + eik·b3
�

−t
�

eik·b1 + eik·b2 + eik·b3
�

−β

��

u(k)
v(k)

�

.

(3.7)

The energy eigenvalues of the tight-binding Hamiltonian are given by [100, 101]
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Figure 3.2: Energy dispersion of graphene. Right: Energy spectrum (in units of t). Left: Enlarged
view of energy band near one of the Dirac points showing the linear dispersion at low energies.

E(k) = ±
�

β2 + t2|eik·b1 + eik·b2 + eik·b3 |2
�1/2

. (3.8)

The energy eigenvalues can be either positive or negative and at half-filling, when there
is one electron per site on the lattice, the negative-energy states (valence band) are com-
pletely filled and the positive-energy (conduction band) states are completely empty.
The separation between the conduction and valence band is minimal when the func-
tion f (k) = eik·b1 + eik·b2 + eik·b3 goes to zero. The zeros of f (k) define the Dirac points
located at the six vertices of the Brillouin zone. Out of the six points only two are in-
equivalent and they are given in Eq. 3.4. K′ = −K is also equivalent to the choice in
Eq. 3.4 [100]. At the Dirac points there is a band gap of 2|β | for β ̸= 0. When β = 0 the
band gap goes to zero at the Dirac points and thus the conduction and valence band
touch. For graphene, β = 0 since both the sublattices are composed of carbon atoms
and hence there is no difference in energies between the two sublattices. Hence neutral
graphene is a semi-metal. Hexagonal boron nitride (hBN) has the same structure as
graphene but since it has a mixture of boron and nitrogen atoms in the hexagon, β ̸= 0
and thus boron nitride is an insulator [102]. Graphene on a hBN substrate can also end
up with β ̸= 0. With β = 0 we can expand the function f (k) around one of the Dirac
points, e.g. K, with k= K+ q and |q| ≪ |K|

f (K+ q)≃ −i
t
p

3
2

e−i 2π
3 qx k̂x + i

t
2

�

ei 2π
3 − 1

�

qy k̂y . (3.9)
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The energy dispersion near the Dirac points then becomes

E(k) = λvF |q|+O
�

� q
K

�2�

, (3.10)

where vF = 3ta/2 is the Fermi velocity [7, 99]. λ = ± is the band index with λ = +
corresponding to the conduction band and λ = − corresponding to valence band. The
energy dispersion, including a small next nearest neighbour hopping contribution, is
shown in Fig. 3.2 with a blow up of the dispersion near one of the Dirac points. As
opposed to a quadratic dispersion, E(k) = k2/2m, the dispersion in Eq. 3.10 is linear
in momentum and the Fermi velocity does not depend on the mass or the momentum
and is a constant.1 Including the spin degrees of freedom it is possible to rewrite the
low energy Hamiltonian around the points K and K′ = −K as [100, 101]

Ht = −
t
p

3
2

∑

σ=±

∫ Λ

K+q

d2q
(2πa)2

�

u†
σ
(K+ q), v†

σ
(K+ q)

�

P+

�

u(K+ q)
v(K+ q)

�

−
t
p

3
2

∑

σ=±

∫ Λ

K′+q

d2q
(2πa)2

�

u†
σ
(K′ + q), v†

σ
(K′ + q)

�

P−

�

u(K′ + q)
v(K′ + q)

�

, (3.11)

where P± = ±qxσx −qyσy with σx ,σy being Pauli matrices and Λ an ultraviolet (long
wavelength) cutoff marking the limit where the linear dispersion approximation holds.
The reference frame here has been rotated to qx = q ·K/q and qy = (K×q)×K/K2. The
low energy Hamiltonian can be recast in a condensed form as a Dirac Hamiltonian

Ht =
∑

σ=±

Ψ†
σ
(x)(iγ0γiqi)Ψσ(x), (3.12)

with

Ψ†
σ
(x) =

∫ Λ
d2q
(2πa)2

eiq·x
�

u†
σ
(K+ q), v†

σ
(K+ q), u†

σ
(−K+ q), v†

σ
(−K+ q)

�

, (3.13)

where we have introduced gamma matrices which are 4× 4 Hermitian matrices. They
are defined as [105]

γ0 = I2 ⊗σ3; γ1 = σ3 ⊗σ2; γ2 = I2 ⊗σ1. (3.14)

1Interactions do renormalize vF [103, 104].
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We can define two more anticommuting gamma matrices that close the Clifford algebra
as

γ3 = σ1 ⊗σ2; γ5 = σ2 ⊗σ2, (3.15)

and the 5 gamma matrices satisfy the algebra {γµ,γν} = 2δµν with µ,ν = 0, 1,2, 3,5
[105].

Using the representation of the gamma matrices in Eqs. 3.14 and 3.15 we can
rewrite the Hamiltonian in Eq. 3.12 after a unitary transformation as [106]

Hξ
t = ξvF(qxσx + qyσy), (3.16)

with vF = −3ta/2. Here the 4× 4 Hamiltonian has been split into two 2× 2 matrices.
ξ= ± is referred to as the "valley pseudospin". ξ= + corresponds to the point K at +K
and ξ = − corresponds to the point K ′ at −K. The energy in Eq. 3.10 is independent
of the valley pseudospin. In the Hamiltonian Eq. 3.16 the Pauli matrices, σi; i = x , y ,
act on the "sublattice pseudospin". Pseudospin up corresponds to one of the sublattices,
say A, and pseudospin down to the other sublattice, B. The Hamiltonian acts on spinor
components given by

Ψξ=+ =

�

ψA
+

ψB
+

�

; Ψξ=− =

�

ψB
−

ψA
−

�

. (3.17)

The role of the sublattices are inverted for the two valleys.

3.1 Quantum Hall Effect in Graphene

As mentioned in the introduction one of the key pieces of experimental evidence con-
firming the underlying relativistic nature of electrons in graphene was the discovery
of the quantum Hall effects in graphene [51, 107]. In order to understand the phe-
nomenon of the quantum Hall effect in graphene we first discuss relativistic massless
2D fermions in a strong perpendicular magnetic field. The Hamiltonian in the presence
of magnetic field can be obtained from the Hamiltonian in Eq. 3.16, by substituting
p→ p+ eA=ΠΠΠ to obtain

Hξ
B = ξ
p

2
vF

lB

�

0 a
a† 0

�

, (3.18)

where the expressions for a, a† in the symmetric gauge can be obtained from Eq. 2.13,
lB is the magnetic length, vF is the Fermi velocity and ξ is the valley index. From Eq. 3.18
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Figure 3.3: Relativistic Landau level as a function of magnetic field.

we obtain the cyclotron frequency

ωc =
p

2
vF

lB
. (3.19)

Unlike the cyclotron frequency in the non-relativistic case, ωc = eB/m, the cyclotron
frequency given in Eq. 3.19 does not depend on the mass, which is to be expected since
the band mass in graphene is zero.

The eigenvalues of the Hamiltonian can be obtained by solving the eigenvalue equa-
tion, Hξ

Bψn = εnψn where the meaning of the subscript n will be made explicit later.
The spinor has two components and is of the form [106]

ψn =

�

un

vn

�

. (3.20)

Solving the eigenvalue equation yields

a†avn =
�

εn

ωc

�2

vn, (3.21)

for the second spinor component. Thus, up to a constant, we can identify the second
spinor component, vn, with an eigenstate, |n〉, of a quantum harmonic oscillator number
operator a†a which satisfies a†a |n〉= n |n〉 for n≥ 0 and n labels the Landau level.

Hence, from Eq. 3.21, we find that the energy of the eigenstate is given by

�

εn

ωc

�2

= n⇒ ελ,n = λωc
p

n, (3.22)
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where λ= ±. Thus there are states with both positive and negative energies. We previ-
ously defined λ to be the band index with λ= + for the conduction band and λ= − for
the valence band in the absence of the magnetic field. Expressing the energy in terms
of the magnetic field we obtain

ελ,n∝ λ
p

2nB. (3.23)

The relativistic Landau levels disperse as λ
p

nB, Fig. 3.3, as opposed to nB in the non-
relativistic case, Fig. 2.3. The first component of the spinor can be obtained by noting
that un ∼ avn ∼ a |n〉 ∼ |n− 1〉. The zeroth Landau level (ZLL), n = 0, is special since
a |n= 0〉= 0 and hence un = 0 and hence the spinor is given by

ψ0 =

�

0
|0〉

�

. (3.24)

For higher Landau levels, n ̸= 0, the spinor is given by

ψ
ξ

λ,n̸=0 =

�

|n− 1〉
ξλ |n〉

�

. (3.25)

For the n= 0 Landau level, only one of the components is non-zero. From Eq. 3.17 this
component corresponds to the K valley (ξ= +) for the B sublattice and to the K ′ valley
(ξ = −) for the A sublattice. Thus the valley pseudospin and sublattice pseudospin
coincide for the ZLL.

Electrons in graphene have not only a twofold spin degeneracy but also a twofold
valley degeneracy as a consequence of there being two inequivalent points, K and K ′,
which determine the low energy properties of electrons. Hence for the IQHE in graphene
the filling fraction changes in steps of 4 between Hall plateaux. The Hall resistance is
quantized at filling fractions [49, 50]

ν= ±4
�

n+
1
2

�

= ± (4n+ 2) . (3.26)

The shift of 2 can be explained as follows: in the non-relativistic case for the zeroth
Landau level, in the absence of charge-carriers, ν = 0 corresponds to a completely
empty Landau level. In the case of graphene, at charge neutrality ν = 0, the lowest
Landau level is only half filled. The Fermi level lies inside the lowest Landau level rather
than in between two Landau levels which is the criterion for the IQHE. The condition
for the IQHE is that the zeroth Landau level is either completely filled, ν= 2, or that it
is completely empty, ν = −2. The sequence of IQHE states given by Eq. 3.26 has been
demonstrated experimentally [51, 52].
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Interaction Induced Integer Quantum Hall Effect

The sequence of IQHE states in graphene given in Eq. 3.26 occur at low magnetic fields
(≲ 10T) and can be understood solely in terms of a picture of noninteracting fermions.
As the magnetic field is increased, additional plateaux are observed at ν = 0,±1,±4
[108, 109] which are not compatible with a non-interacting picture. Graphene on a
h − BN substrate also showed Hall states at ν = ±3 [55]. For the ν = ±4 state the
energy gap was found to scale linearly with the total magnetic field, implying that the
spin degeneracy of the n = ±1 Landau level is lifted by the Zeeman coupling while for
ν= 0,±1 the gap was seen to be independent of the parallel component of the applied
magnetic field for small parallel field [108]. The presence of a quantum Hall state at
ν = 0,±1 implies that the four fold spin-valley degeneracy of the lowest Landau level
has been lifted (breaking of symmetry). Such a lifting of degeneracy cannot be explained
without the inclusion of electron-electron interactions.2

Several mechanisms have been proposed for the breaking of symmetry [105, 110–
124]. These symmetry breaking proposals fall into three general categories. One set of
proposals take the broken symmetry broken to be the chiral (sublattice) symmetry, lead-
ing to the presence of chiral symmetry breaking (CSB) orders like charge-density wave
(C) and anti-ferromagnetism (N) [105, 110–112, 116, 118, 119, 125, 126]. Another
proposal corresponds to valley-odd quantum Hall ferromagnetism (QHFM) [113, 114,
117, 122, 124, 127]. A third set of proposals showed that the magnetic catalysis orders
and the QHFM orders necessarily coexist indicating that the two sets of orders have a
common dynamical origin. This proposal goes under the broad category of generalized
magnetic catalysis [121, 125, 126, 128].

Quantum Hall Ferromagnetism

The QHFM state minimizes the Coulomb energy within a single Landau level. The way
to achieve this is by making the electrons stay as far apart as possible to lower the inter-
action energy which in turn implies that the wavefunction be spatially antisymmetric. In
the zeroth Landau level this leads to the spin and valley parts of the wavefunction being
symmetric at commensurate fillings. Thus, within the zeroth Landau level in the QHFM
picture there is a SU(4) symmetry in the spin + valley indices at integer fillings listed
in Eq. 3.27. At quarter-filling (ν = −1), half-filling (ν = 0), and three-quarters-filling
(ν = 1) the SU(4) symmetry is spontaneously broken by a SU(4) ferromagnetic state.
Symmetry breaking within the zeroth Landau level leads to the splitting of the four-fold

2Although the presence of a substrate, like hBN, might also be able to lift the degeneracy, ν = 0,±1 have been
observed in suspended graphene where there are no substrate effects [56].
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degenerate levels into either two two-fold degenerate levels or four non-degenerate lev-
els. In order to get a better understanding of how this comes about it is useful to define a
reduced filling factor for the highest filled Landau level, with index n, that is completely
filled, νG as [127],

νG = ν− 4n+ 2≤ 4. (3.27)

Thus for the sequence in Eq. 3.26 a completely filled Landau level, for any n, corre-
sponds to νG = 4 and for νG = 1, 2,3 the Landau level is partially filled. QHFM occurs
at these partial fillings of the Landau level.

Given that the system has an SU(4) symmetry, the wavefunction that describes the
system at these partial fillings is [113, 127]

|Ψ0〉=
∏

1≤σ≤νG

∏

k

c†
k,σ |0〉 , (3.28)

where σ labels the internal states and runs from 1 to 4 and k labels an intra Landau
level orbital index. For the Landau gauge, k is the wave-vector in the direction of the
plane wave propagation and for the symmetric gauge, k labels the angular momentum.
|0〉 is the vacuum state and c†

k,σ is the electron creation operator. As an example, in Ref.
[124] the ν = ±1 state was proposed to be a spin-polarized charge density wave state
with a larger electron density on one of the sublattices. For this state the wavefunction
in Eq. 3.28 can be written as

|ν= ±1〉=
∏

m

c†
↑A,m |0〉 , (3.29)

where the electron creation operator c†
↑A,m, creates an electron in the n= 0 Landau level

with spin up and angular momentum m that lies on the A sublattice of the honeycomb
lattice.

The state in Eq. 3.28 was proposed to be the exact ground state for a broad class
of repulsive interactions, especially for νG = 1 [113]. Electrons added to the system
occupy the empty internal state and thereby lose exchange energy [127] which results
in an energy cost leading to the incompressibility of the state.

The result of the presence of a QHFM order, ∆Q, is to split the energy levels and
lower the energy by such a splitting. Thus at half-filling when all the negative energy
Landau levels are completely filled we have, from Eq. 3.23,

ε−;n = −
p

2nB ±∆Q. (3.30)

This is to be contrasted to the chiral symmetry breaking (CSB) picture, discussed below,
where the effect of the presence of the chiral symmetry breaking order, ∆CSB is to push
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down all of the filled energy levels [129, 130] and thus

ε−,n = −
q

2nB +∆2
CSB. (3.31)

The CSB picture of quantum Hall states at ν= 0,±1 arises out of interaction driven CSB
orders that are induced by the process of magnetic catalysis which we briefly review.

Magnetic catalysis

Magnetic catalysis refers to the enhancement of dynamical symmetry breaking in the
presence of an external magnetic field [129]. The essence of magnetic catalysis lies in
the dimensional reduction that occurs in the presence of an external magnetic field and
the formation of fermion-antifermion condensates that are associated with spontaneous
symmetry breaking leading to the dynamical generation of a mass/energy gap in the
energy spectrum. For a system of Dirac fermions in 2+1 dimensions in the presence of
an external magnetic field the energy is found to be [129]

ελ,n = λ
p

2nB +m2, (3.32)

where m is the mass and λ = ± labels the conduction (+) or the valence (−) band.
Importantly we note that for all the Landau levels with n > 0, the energy is shifted
up (λ = +) or down (λ = −) with the exception of the n = 0 Landau level which
is now split into two with one sublevel having positive energy ε = m and the other
sublevel having negative energy ε = −m. The degeneracy of states for the n = 0 level
is eB/2π while that for n> 0 is eB/π. The factor of two difference in the degeneracies
comes from half-filled vs filled LLs [129]. When the mass term is much smaller than the
magnetic energy term, m≪

p
eB, the low energy theory is completely described by the

zeroth Landau level. There is no dependence on momentum, which is not surprising,
since the magnetic field quenches the kinetic energy completely in two-dimensions.

For Dirac fermions placed in a magnetic field in 2+1 dimensions there is a sponta-
neous symmetry breaking which leads to a nonzero chiral condensate which in the limit
of a vanishing mass m→ 0 is [129]

〈Ψ̄Ψ〉= −
eB
2π

. (3.33)

The term on the right hand side is exactly the degeneracy of states in the lowest Lan-
dau level. Thus even when the mass term is zero, in the presence of a magnetic field
there is spontaneous breaking of chiral symmetry. In [129] it was further shown that
in the presence of weak interactions there is a dynamical mass that is generated by the
magnetic field.
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3.1.1 Magnetic catalysis in Graphene

At strong magnetic fields there are additional plateaux at ν = 0,±1 in graphene. The
presence of these states cannot be explained in a picture of non-interacting electrons. It
is necessary to include interactions. In the case of the zeroth Landau level in graphene
the four fold degeneracy of the Landau level can be removed when there is dynami-
cal generation of a Dirac mass [110, 116, 118, 119, 131]. The mechanism of magnetic
catalysis at half filling leads to pushing of the filled Landau levels down below the chem-
ical potential, opening up a gap in the quasiparticle spectrum. Within this framework
it is the sublattice degeneracy that is lifted in the zeroth Landau level with the sym-
metry breaking being equal or opposite for the two spin projections depending on the
interaction strength. A charge density wave would correspond to the former and anti-
ferromagnetism to the latter. Here we follow the mechanism proposed in [118, 119].

We begin by defining the extended Hubbard model [119] as H = H0 +H1

H0 = −t
∑

A,i,σ=±

u†
σ
(A)vσ(B) +H.c., (3.34)

H1 = U
∑

X∈A,B

n+(X )n−(X ) +
V
2

∑

A,i,σ,σ′
nσ(A)nσ′ (B), (3.35)

where H0 is a non-interacting tight binding Hamiltonian for graphene in the low energy
limit. nσ(A) = u†

σ
uσ and nσ(B) = v†

σ
vσ with σ = ±1. H1 contains two terms. The first

term corresponds to the on-site interaction and the second to the nearest neighbour in-
teraction. The nearest neighbour repulsive interaction can be thought of as arising from
the short range part of a Coulomb interaction between the electrons. In the presence of
a magnetic field perpendicular to the plane of graphene sheet, H0 can be rewritten in
the form

H0 =

∫

dx
∑

σ

Ψ†
σ
(x)iγ0γi DiΨσ(x), (3.36)

where Ψσ was defined in Eq. 3.13 and Di = i∂i − Ai and the magnetic field B = ∂1A1 −
∂2A2. Consider an auxiliary Hamiltonian [119] of the form

H = mM + iγ0γi Di, (3.37)

with M being a 4× 4 Hermitian matrix. Clearly when m= 0 then H = H0. If the matrix
M satisfies {H0, M}= {γ0γi, M}= 0 and M2 = 1 then squaring the Hamiltonian gives

H2 = D2
i + B(σz ⊗σz) +m2. (3.38)
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One of the possible forms the matrix M can have is [119]

M = a(I2 ⊗σz) + b(σx ⊗σx) + c(σy ⊗σx), (3.39)

with real coeffcients a, b, c which satisfy a2 + b2 + c2 = 1.
The eigenvalues of H2 are 2nB+m2 for n= 0,1, 2, . . .. When n> 0 this implies that

the eigenvalues of H are ±
p

2nB +m2 with a degeneracy of B/π per unit area. This is
the same as when m= 0. For n= 0 the eigenvalues of H for any choice of (a, b, c) in M
are ε= ±|m| and the degeneracy is halved, B/2π per unit area.

The spectrum of H is invariant under rotations of the combination (a, b, c). This
is a consequence of the SU(2) chiral symmetry of H0. Any particular choice of of M
in H breaks this SU(2) symmetry and it leads to the same eigenvalues. Such a chiral-
symmetry breaking gap and further splitting of the Landau levels by a Zeeman effect
can lead to IQH states at ν = 0,±1. We can add the Zeeman term explicitly to the
non-interacting part, H0, and we get

HD = σ0 ⊗ iγ0γi Di +λ(σ3 ⊗ I4), (3.40)

where λ= gµBB is the Zeeman coupling. Here we have enlarged the degrees of freedom
considered by including the spin degrees of freedom with the 2× 2 matrices acting on
spin index on top of the valley + sublattice degree of freedom with the 4× 4 γmatrices
acting on valley + sublattice indices. The effect of mass generation is to split the n= 0
Landau level (LL) whereas for n ̸= 0 LLs the negative energy states are all pushed down
and the positive energy states are all pushed up. In non-relativistic systems, like GaAs
heterostructures, there is a lowest Landau level (LLL), n = 0, and the quantum Hall
states appear within the first few LLs. In graphene the n = 0 LL is in the middle rather
than the bottom of the spectrum as a result of the relativistic spectrum with all the
negative energy states completely filled at half-filling of the n = 0 LL. Hence the total
energy of the filled LLs is maximally lowered by formation of CSB orders.

When there is chiral-symmetry breaking leading to mass generation it is natural to
ask what kind of order parameters are present in the IQH states at ν = 0,±1. Start-
ing from the interaction part of the extended Hubbard Hamiltonian, Eq. 3.35, we can
define the easy-axis Neél (N), ferromagnetic (F) and charge-density wave (C) order
parameters as

N= 〈m(A)−m(B)〉; F= 〈m(A) +m(B)〉; C = 〈n(A)− n(B)〉, (3.41)

where m(A) = u†
σ
σσσσσ′uσ′ is the magnetization on sublattice A. Similarly m(B) = v†

σ
σσσσσ′ vσ′

is the magnetization for sublattice B. Setting the magnetization to be parallel to the
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magnetic field, F→ F3 = F we finally have the full single particle effective Hamiltonian
in the presence of a magnetic field :

H = σ0 ⊗ iγ0γi Di + (λ+ F)(σ3 ⊗ I4) + (N ·σσσ+ C I2)⊗ γ0. (3.42)

Using compressibility [132], capacitance [133] and transport [134] the dependence
of the gaps at ν= 0,±1 on the magnetic field has been studied extensively. The results
of these experiments showed a crossover from a linear dependence [134] on magnetic
field, B, to sublinear [133] to almost a

p
B dependence [132] with increasing field

strength. This type of crossover of scaling of the gap with the magnetic field cannot be
captured by a simple estimate of

p
B scaling due to the long-range Coulomb interaction,

necessitating the inclusion of the finite-range components of Coulomb interaction. In
pristine graphene in the presence of even weak on-site interactions the ν= 0 state has
an underlying antiferromagnetic order (N) [118, 119] and the inclusion of the Zeeman
term, (λ), projects the anti-ferromagnetic order to be easy-plane and perpendicular to
the magnetic along with the simultaneous appearance of a ferromagnetic order parallel
to the magnetic field (F) [118].

The magnetic field dependence of the gaps arising from CSB orders for quantum
Hall states at ν = 0,±1 was compared with experiments in Ref. [130], finding good
agreement. Edge states in the presence of chiral symmetry breaking orders were also
studied in Ref. [135] and were found to be in agreement with experimental results in
Ref. [136]. In particular comparison of numerical studies in Ref. [130]with experiments
[132–134] lead to the pciture that ν = 0 has an underlying easy-plane antiferromag-
netic order N⊥ with a weak ferromagnetic order F when a Zeeman term is included. The
ν = 1 state on the other hand was found in Ref. [130] to be consistent with a charge
density wave order, C , with an easy-axis antiferromagnetic order, N3.

There have been some more recent experimental [137–139] and theoretical [140,
141] papers that suggest the true nature of states in the ZLL may be more complicated
than the picture put forward in the CSB scenario.

3.1.2 Fractional Quantum Hall Effect In Graphene

The fractional quantum Hall effect has also been observed in graphene [53–59].
Fig. 3.4 shows incompressible states at fractional filling in graphene [56]. Theoretical
interest in the FQHE in graphene has also been considerable [142–156]. The IQHE in
graphene differs from the IQHE in other two-dimensional electron gases (2DEG) due to
the relativistic dispersion and the underlying SU(4) symmetry of electrons in graphene
when placed in a magnetic field. Naturally we would like to compare the FQHE in
graphene and other 2DEG. In Sec. 2.1.1 we saw how the pseudopotential description
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Figure 3.4: FQHE in graphene: , Magnetoresistance, Rx x , (left axis) and Hall conductivity, σx y ,
(right axis) in the n = 0 and n = 1 Landau levels in graphene plotted as a function of applied
gate voltage, Vg . Reprinted with permission from Ref. [55].

is well suited to describe FQHE in not only the lowest but also higher Landau levels in
terms of an effective interaction. The Landau level form factors for the case of 2DEG
were found to be

F2DEG
n (q) = Ln(q

2l2
B/2)e

−q2 l2
B/4. (3.43)

The form factors for graphene have the form [157]

F G
n=0(q) = e−q2 l2

B/4; F G
n̸=0(q) =

1
2
[Ln−1(q

2l2
B/2) + Ln(q

2l2
B/2)]e

−q2 l2
B/4. (3.44)

As mentioned earlier, within a partially filled Landau level that is well separated from
other Landau levels the kinetic energy of the particles is quenched and the Hamiltonian
of the system is solely determined by the interactions between particles within the Lan-
dau level. For electrons in the nth Landau level, considering only Coulomb interactions,
the effective interaction potential is given by

V D
eff(q)∼

1
ε(q)|q|

[F D
n (q)]

2 D = G, 2DEG . (3.45)

We see that the effective interaction potential is dependent on the Landau level form
factor. We can also calculate the pseudopotential parameters given in Eq. 2.57 with the
form factors given in Eq. 3.44. A comparison of the pseudopotential parameters for the
n = 0 and n = 1 Landau level in a "non-relativistic" system and graphene is shown in
Fig. 3.5. In the zeroth Landau level the form factor, and hence the effective potential,
is the same for both graphene and other 2DEGs and hence within the pseudopotential
formalism there is no difference between the two systems. For n = 1 we see that the
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Figure 3.5: Pseudopotential Vm as a function of relative angular momentum m. Pseudopotentials
for n = 0 for graphene/non-relativistic system (black), for n = 1 in graphene (red) and n = 1
in non-relativistic system (blue).

effective interaction is different and hence we expect there to be a difference in the FQH
states in the n = 1 Landau level of non-relativistic 2DEG and the n = 1 FQH state of
graphene. The same is true for higher Landau levels too.

From the above discussion it seems clear that FQHE in graphene and 2DEG are
not different due to the underlying form of the Landau level i.e. relativistic or non-
relativistic energy spectrum. The major difference (for n ̸= 0) arises from the difference
in effective interaction potential which in turn is a consequence of different wavefunc-
tions that describe the system. The other key difference is the underlying SU(4) sym-
metry of the Landau levels in graphene. In this thesis we primarily focus on the n = 0
Landau level of graphene and hence we will focus on the underlying SU(4) symmetry
of the Landau levels and describe the FQHE in graphene in the presence of the chiral
symmetry breaking orders described in the previous section.

In the next chapter we will develop the theory of FQHE in graphene in terms of a
multi-component flux attachment scheme which is a generalization of the composite
fermion picture described in Sec. 2.1.2.
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Chapter 4

Even Denominator Fractional
Quantum Hall Effect in Graphene

The fractions ν initially observed in experiments on the FQHE had odd denominators.
The absence of experimental observation of even denominator fractional quantum Hall
(EDFQH) states remained a puzzle. Laughlin’s many particle wavefunction [48], due to
its anti-symmetry, was mainly applied to odd denominator, ν = 1/m, FQH states. The
hierarchical schemes also inherited the anti-symmetry feature and thus were used to
explain the other odd denominator fractions [73, 74]. No symmetry based arguments
could be given for the apparent absence of EDFQH states. Theoretical studies predicted
a state at ν = 1/2 [158, 159] without the formation of a FQH state. A minimum in
the longitudinal resistivity, ρx x , was observed at even denominator fractions in higher
LLs, n ̸= 0, [47, 160] and a plateau in the Hall resistivity, ρx y , was observed for the
ν= 2+1/2= 5/2 state in the n= 2 LL [161]. EDFQH states were observed for ν= 1/2
[162–164] and ν = 1/4 [165, 166] in the n = 0 LL of multicomponent systems (in
semiconductors) but no incompressible states have been observed in the lowest Landau
level of a single component system. 1

Halperin, Lee and Read (HLR) [95] and Zhang and Kalmeyer [167] independently
proposed theories for the ν = 1/2 state. The HLR theory was based on the the Chern-
Simons composite Fermion (CS-CF) theory proposed by Fradkin and Lopez [168] to
explain the "Jain" sequence [83] of FQH states given by

ν=
p

2mp+ 1
. (4.1)

1In this context single and multicomponent refers to the internal degrees of freedom of the electrons in the system.
Unpolarized electrons, electrons confined to two spatially separated layers or electrons confined to two electronic
subbands all would constitute two-component systems. Graphene with spin and valley and sublattice pseudospin all
considered would correspond to an eight-component system. Completely spin polarized electrons on the other hand
would be an example of a single component system.
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To recapitulate, in the composite fermion picture, a system of electrons in a FQH
state with filling fraction given by Eq. 4.1 is mathematically equivalent to a system of
composite fermions (electrons bound to an even number of flux quanta 2m) that are
in an IQH state with m composite fermion Landau levels filled. In field theoretic terms
a system of electrons in the FQH state with ν = p/(2mp + 1) is equivalent to a system
of composite fermions interacting with a Chern-Simons gauge field in a magnetic field
different from the external applied field (Eq. 2.58).

The sequence of fractions (setting m = 1, i.e. attaching 2 flux quanta per electron)
given in Eq. 4.1 leads to even denominator fraction, ν = 1/2 in the limit p→∞. The
effective field (Eq. 2.59) that the CFs experience in this limit becomes zero

Beff = B − B1/2 =
Φ0ρ0

p
−−−→
p→∞

0, (4.2)

where we have defined B1/2 = 2Φ0ρ0.
The limit p →∞ also describes a situation with an infinite number of CF Landau

levels filled. For 2DEGs at zero magnetic field there is a well defined Fermi surface. If the
density of fermions is held constant, the system exhibits IQH states at filling fractions
given by Eq. 2.25 as the magnetic field is changed. Similarly for CFs when the effective
magnetic field is zero (corresponding to a half filled Landau level of electrons, ν= 1/2)
there is a well defined Fermi surface and as the effective magnetic field is tuned the CFs
exhibit IQH states at "filling fractions" νC F = p which correspond to an FQH state for
electrons given by (with m= 1) Eq. 4.1.

The Fermi surface comes associated with a well defined Fermi wave-vector given by
[95]

kF = (4πρ0)
1/2. (4.3)

Away from ν= 1/2 the fermions are expected to exhibit cyclotron motion with

RC =
ℏkF

eBeff
, (4.4)

in the effective magnetic field [95, 169]. Using surface acoustic waves Willett et al.
[170], were able to observe a geometric resonance with cyclotron orbits of the charge
carriers thus solidifying not only the theory proposed by HLR but also giving physical
confirmation to the existence of the composite fermions.

Even denominator FQH states were observed in graphene recently [171]. As was
mentioned in Sec. 3.1.2 the spatial wavefunctions for FQH states in the n = 0 Landau
level in graphene are expected to be the same as in the non-relativistic case owing to the
Landau level form factor (or the orbital wavefunctions), Eq. 2.54, being the same for
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Figure 4.1: Top: Penetration field capacitance Cp/c plotted as a function of magnetic field, B and
the charge density n0/c where c is the average geometric capacitance of the two gates. Bottom:
Incompressible states (indicated with red arrows) at even denominator fractions ν = ±1/2
shown in a plot of CP/c vs ν for B = 28.3T . Note that the ν= ±3/2 states that are further away
from the charge neutrality point remain compressible. Reprinted with permission from [171].

Figure 4.2: Left to right : CP as a function of filling factor ν in the vicinity of ν= −1/2, ν= 1/2,
ν= −1/4 and ν= 1/4 at different temperatures. Reprinted with permission from [171].
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both the systems. As a consequence, single component EDFQH states are not expected
to be seen. As also mentioned, in the introductory paragraph of the chapter, EDFQH
states have been observed in multicomponent systems which implies that the EDFQH
state likely has a multicomponent nature. The underlying spin and valley degrees of
freedom of electrons in graphene play the role of layer/subband in the non-relativistic
case. Before getting into a theoretical description of these states we give a brief overview
of the experiment that observed the EDFQH state in graphene [171].

4.1 Experimental Observation of ν= 1/2, 1/4 States in Graphene

The setup used by Zibrov et al. [171] consisted of a heterostructure of monolayer
graphene sandwiched between layers of hexagonal boron nitride (hBN) and gate elec-
trodes that were made up of graphite, on either side [171, 172]. They measured the
penetration field capacitance, Cp, which is the differential capacitance between the top
and bottom gates while the monolayer graphene is held at constant chemical poten-
tial. Penetration field capacitance is proportional to the inverse of the thermodynamic
incompressibility (κ−1∝ dµ/dn) [171–174].

Figure 4.1(top) is a colour plot of the penetration field capacitance, Cp, divided by
the average geometrical capacitance of the top and bottom gates, c, as a function of the
magnetic field, B, and the charge density, n0/c = Vt+Vb−2Vs where Vt , Vb and Vs are the
voltages applied to the top gate, bottom gate and sample respectively. Incompressible
states appear as high values of Cp. The quantized Hall conductance of gapped states at
fixed filling factors is equal to the slope in the density-magnetic field (n−B) plane given
by the Strěda formula [175]. The bottom of Fig. 4.1 is a plot of Cp/c as a function of
the filling factor ν at a fixed magnetic field, B = 28.3T. There are sharp peaks in Cp/c
indicating incompressible states at ν= ±1/2 whereas the states ν= ±3/2 do not show
a sharp peak in Cp/c indicating that the states are likely to be compressible. In Fig. 4.2
there is also a peak in the Cp/c value at ν = ±1/4, again indicating an incompressible
state.

The key features observed by Zibrov et. al. [171] are:

• Only the EDFQH states ν= ±1/2 and ν= ±1/4 are incompressible whereas other
incompressible EDFQH states are absent (Fig. 4.1). This is most likely owing to
the proximity of the observed incompressible state to the charge neutral state at
ν= 0 .

• The EDFQH states appear for a small range of magnetic fields and then subse-
quently disappear (Fig. 4.2) at higher or lower magnetic fields
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• At the magnetic fields at which these two EDFQH states are observed, some odd
denominator fractions coexist with them (ν= 1/3, 1/5,2/3, 2/7,3/7, 4/9), while
other fractions disappear or weaken (ν = 2/9, 3/11) (with some sample depen-
dence).

Zibrov et al. proposed that the EDFQH states are associated with a phase transition from
a partially sublattice polarized (PSP) to a canted antiferromagnet (CAF) phase [171].
Below we compare to their experimental observation using the framework of the Chern-
Simons theory of multicomponent FQH states in graphene in the presence of symmetry
breaking orders [145, 176].

4.2 Multicompnent Flux Attachment Scheme and Chern-Simons The-
ory

One2 of the distinguishing features of the FQH effect in monolayer graphene is that
there are four isospin components in the zeroth LL, corresponding to two valley and two
spin degrees of freedom [142, 143, 145–149, 152, 153, 155, 156, 177]. In addition, due
to strong electronic interactions (e.g. onsite Hubbard repulsion), these states cannot be
assumed to be spin polarized. This allows for more degrees of freedom than in systems
that have previously demonstrated EDFQH states at ν = ±1

2 and ν = ±1
4 , and a wide

variety of possible states need to be considered in composite fermion or Chern-Simons
theories. Previous theoretical studies of the integer Quantum Hall states at ν = 0 and
ν = ±1 that take into account filled LLs [130, 178, 179] have inferred a preference
for CSB orders due to strong LL mixing. Calculations based on this idea have shown
good agreement with experiment [130, 180]. Ref. [130] argued for the presence of a
canted antiferromagnet for ν = 0 and charge-density-wave (CDW) order with a small
component of Neel antiferromagnetism (AFM) at ν = 1. Hence we suggest that CSB
may be operative for FQH states with 0 < |ν| < 1. We make use of the framework for
the Chern-Simons theory of multi-component FQH states in graphene in the presence
of symmetry breaking orders [145, 153, 181] to investigate possible composite fermion
wavefunctions for the observed EDFQH states. In the n = 0 LL of graphene, sublattice
and valley degrees of freedom are equivalent in the absence of sublattice-symmetry
breaking orders. We start from a chirally symmetric theory and allow for the possibility
of dynamical symmetry breaking in the FQH states.

The possibility of incompressible EDFQH states in monolayer graphene was noted in
Ref. [145]. However, there are numerous ways to realize such fractions. Our approach

2The rest of the chapter is based on the publication S. Narayanan, B. Roy and M. P. Kennett, Phys. Rev. B 98,
235411 (2018).
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to identifying candidate variational states is as follows. First, we consider flux attach-
ment schemes that give either ν = 1

2 or ν = 1
4 . Second, we use the key features of the

observations mentioned in the previous section to winnow out candidate states by pos-
tulating that for filling fractions close to the EDFQH the most likely states to be seen
at the same magnetic field are those with the same flux attachment scheme. We also
determine the other fractions that naturally arise from the flux attachments that give
rise to EDFQH states and compare with the experimental observations to narrow down
the possible states that might give rise to EDFQH effects.

We identify candidate variational wavefunctions for the observed EDFQH states
which are summarized in Tables 4.1 and 4.5. We observe that the majority of these
candidate states show CSB in the form of either a CDW or AFM. In light of this result
and the role that chiral symmetry plays in the integer quantum Hall effect in the zeroth
LL [130], we suggest that CSB is likely a unifying phenomenon for both regular and
composite Dirac fermions in the zeroth LL in monolayer graphene. We discuss experi-
ments that can be used to test this idea and to discriminate between potential orderings
for a given flux attachment scheme.

4.2.1 Composite Fermions and Symmetry Breaking

The effective low energy Hamiltonian for graphene is H = H+ ⊕ H−, which acts on
eight component spinors Ψ = [ΨK,Ψ−K]

⊤, where for τ = ±, Ψ⊤
τK = [u↑, v↑, u↓, v↓](τK),

±K label the two valleys and u(v) is the amplitude on the A(B) sublattice of graphene’s
honeycomb lattice. In the absence of symmetry breaking orders H± can be written as
(setting ℏ, vF = 1)

H± = ±I2 ⊗σ1 D1 − I2 ⊗σ2 D2, (4.5)

where Di = −i∂i − eAi, A is the vector potential. We label the valley-spin configurations
(K ↑), (K ↓), (−K ↑), (−K ↓) by α = 1, 2,3, 4, respectively. We can thus write the kinetic
part of the Hamiltonian as [145]

H =
∑

α

Ψ†
α
(±σ1D1 −σ2D2)Ψα,

where Ψ†
α
=
�

u†
α
, v†
α

�

. We introduce the transformation

Ψα = eiΦαψ̃α, (4.6)
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where ψ̃α is a composite fermion (CF) field and

Φα =Kαβ

∫

dr′arg(r− r′)ρβ(r
′).

Under this transformation

Ψ†
α
(±σ1D1 −σ2D2)Ψα −→ ψ̃†

α

�

±σ1D̃1 −σ2D̃2

�

ψ̃α,

where D̃1,2 = D1,2 − aα1,2, with Chern-Simons field

aα =Kαβ

∫

dr′g(r− r′)ρβ(r
′); g(r) =

ẑ× r
r2

.

HereKαβ is called the flux attachment matrix. The form of theK -matrix considered in
Ref. [145] is given by

K =











2k1 m1 n1 n2

m1 2k2 n3 n4

n1 n3 2k3 m2

n2 n4 m2 2k4











. (4.7)

It describes the amount of flux quanta attached to a CF species, labelled by α as seen
by another CF species, labelled by β . In this particular instanceK12 = m1, for example,
would correspond to the flux attached to composite fermion species labelled by α= K ↑
as seen by the CF species labelled by β = K ↓.

Requiring the ψ̃α to be fermionic places contstraints on K [182]. Consider the fol-
lowing identity for fermions :

�

ρα(x),ψβ(x
′)
�

= −δαβψα(x)δ(x− x′), (4.8)

where ρα(x) =ψ†
α
(x)ψα(x). Then from Eq. 4.7 we have the relation

�

Φα(x),ψβ(x
′)
�

=Kαβarg(x− x′)ψβ(x
′). (4.9)

From this we can obtain the following relations

eiΦα(x)ψβ(x
′) = e−iKαβarg(x−x′)ψβ(x

′)eiΦα(x),

ψ†
β
(x′)eiΦα(x) = e−iKαβarg(x−x′)eiΦαψ†

β
(x′). (4.10)
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For two CF operators then we have the following relation (using Eq. 4.6)

ψ̃†
α
ψ̃†
β
= (−1)eiKαβarg(x−x′) e−iKβαarg(x′−x) ψ̃†

β
ψ̃†
α
, (4.11)

where
eiarg(z) =

z
|z|

, (4.12)

and finally we get

ψ̃†
α
ψ̃†
β
= (−1)1−Kβα

�

z − z′

|z − z′|

�Kαβ−Kβα
ψ̃†
β
ψ̃†
α
. (4.13)

For the operators ψ̃†
α

to be fermionic the constraints on K are

Kαβ =Kβα
Kαα = 2k; k ∈ Z. (4.14)

Hence theK -matrix is a symmetric matrix with even integers as its diagonal elements.
There is no constraint on the off diagonal elements although we do work with off-
diagonal elements being integers. If they are odd integers then mutual statistics between
the different species might be bosonic.

The magnetic field, bα, generated by the Chern-Simons field, aα, is given by [145,
176]

bα = (1/e)∇× aα = −Φ0Kαβρβ . (4.15)

The effective field thus experienced by CF species α, is then

Bα = B −Φ0Kαβρβ . (4.16)

The magnetic field, B, corresponds to the electrons being in a FQH state with filling
fraction ν and the effective magnetic field, Bα, for CF species α, corresponds to the
CF species being in an IQH state with filling fraction να. If the density of CF species is
ρα = Ψ†

α
Ψα = ψ̃†

α
ψ̃α then Eq. 4.16 can be rewritten as:

ρα
να
=
ρ

ν
−Kαβρβ . (4.17)

We can define the CSB order parameters by relating them to the CF densities as

1 =
ρ1 +ρ2 +ρ3 +ρ4

ρ
, C =

ρ1 +ρ2 −ρ3 −ρ4

ρ
,

F =
ρ1 −ρ2 +ρ3 −ρ4

ρ
, N =

ρ1 −ρ2 −ρ3 +ρ4

ρ
, (4.18)
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where C represents charge density wave (CDW) order, F ferromagnetism and N easy
axis Neel order.

The Case of Order Parameters

In the spin ⊗ valley subspace the CDW order, C , enters the Hamiltonian (Eq. 3.42)
through a term of the form C I2⊗σ3, the ferromagnetic order, F , through Fσ3⊗ I2 and
the easy axis Neel order, N , through a term of the form Nσ3 ⊗ σ3. Hence the order
parameters considered in Eq. 4.18 are all diagonal in the the spin ⊗ valley subspace.

It is natural to wonder why order parameters that are off-diagonal in the spin ⊗
valley subspace are not considered since we argued in Sec. 3.1.1 that an order parameter
present in the ν = 0 state, within the picture of magnetic catalysis, is the easy-plane
antiferromagnetic order, N⊥ that is present in the Hamiltonian in Eq. 3.42 as N1σ1⊗σ1+
N2σ2⊗σ2 which is clearly off diagonal in both spin and valley indices. Moreover Zibrov
et al. [171] consider the EDFQH state as a consequence of a phase transition from a
CAF to a PSP state, both of which are off diagonal orders in the spin-valley index.

The reason for this becomes clear when we consider the transformation that takes
us from fermions to CFs in Eq. 4.6. Let us consider an order parameter, O that is off-
diagonal in one or both of the indices is present in the Hamiltonian. Under the trans-
formation in Eq. 4.6, the term in the Hamiltonian containing O transforms as

Ψ†
α
OαβΨβ → ψ̃†

α
Oαβ e−i(Φα−Φβ )ψ̃β α ̸= β . (4.19)

If the order parameter were diagonal (α= β) then the exponential phase factor would
cancel out and all would be well. The phase field Φα is in general dependent on the
density of the CF species, ρα and the K -matrix elements (Eq. 4.7) and only under
certain conditions is it true that the exponential term in the equation vanishes but there
is no a priori reason to assume it will. The same issue arises if we have a multi-layer
system and we include tunneling between the different layers. If we define a layer index
and perform the transformation in Eq. 4.6 a tunneling term would be like an off diagonal
term in the layer index and hence would run into the same problem. To our knowledge
this issue has not been resolved. Since our work is based on the flux-attachment scheme
we stick to CSB orders that are diagonal in the spin-valley index. We can now rewrite
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the CF densities in terms of the order paramters

ρ1

ρ
= 1+ C + F + N , (4.20)

ρ2

ρ
= 1+ C − F − N , (4.21)

ρ3

ρ
= 1− C + F − N , (4.22)

ρ4

ρ
= 1− C − F + N . (4.23)

Now we can expand Eq. 4.17 (dividing throughout by ρ) explicitly as

�

1
ν1
+ 2k1

�

(1+ C + F + N) =
4
ν
−m1(1+ C − F − N)

−n1(1− C + F − N)− n2(1− C − F + N),(4.24)
�

1
ν2
+ 2k2

�

(1+ C − F − N) =
4
ν
−m1(1+ C + F + N)

−n3(1− C + F − N)− n4(1− C − F + N),(4.25)
�

1
ν3
+ 2k3

�

(1− C + F − N) =
4
ν
− n1(1+ C + F + N)

−n3(1+ C − F − N)−m2(1− C − F + N),(4.26)
�

1
ν4
+ 2k4

�

(1− C − F + N) =
4
ν
− n2(1+ C + F + N)

−n4(1+ C − F − N)−m2(1− C + F − N).(4.27)

We consider the following simplification of the K -matrix where k1 = k2, k3 = k4, n =
n1 = n2 = n3 = n4, so that the flux attachment is the same within a valley (sublattice),
but not necessarily the same as the other valley (sublattice). With this simplification we
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can rewrite the set of equations in Eqs. 4.24- 4.27 as

4ν∗
ν

= 4+ [(2k1 +m1 + 2n)(ν1 + ν2) + (ν3 + ν4)(2k3 + 2n+m2)]

+C[(ν1 + ν2)(2k1 +m1 − 2n)− (ν3 + ν4)(2k3 +m2 − 2n)]

+F[(ν1 − ν2)(2k1 −m1)− (ν3 − ν4)(2k3 −m2)]

+N[(ν1 − ν2)(2k1 −m1)− (ν3 − ν4)(2k3 −m2)], (4.28)
4νC

ν
= 4C + [(2k1 +m1 + 2n)(ν1 + ν2)− (ν3 + ν4)(2k3 + 2n+m2)]

+C[(ν1 + ν2)(2k1 +m1 − 2n) + (ν3 + ν4)(2k3 +m2 − 2n)]

+F[(ν1 − ν2)(2k1 −m1)− (ν3 − ν4)(2k3 −m2)]

+N[(ν1 − ν2)(2k1 −m1) + (ν3 − ν4)(2k3 −m2)], (4.29)
4νF

ν
= 4F + [(2k1 +m1 + 2n)(ν1 − ν2) + (ν3 − ν4)(2k3 + 2n+m2)]

+C[(ν1 − ν2)(2k1 +m1 − 2n)− (ν3 − ν4)(2k3 +m2 − 2n)]

+F[(ν1 + ν2)(2k1 −m1) + (ν3 + ν4)(2k3 −m2)]

+N[(ν1 + ν2)(2k1 −m1)− (ν3 + ν4)(2k3 −m2)], (4.30)
4νN

ν
= 4N + [(2k1 +m1 + 2n)(ν1 − ν2)− (ν3 − ν4)(2k3 + 2n+m2)]

+C[(ν1 − ν2)(2k1 +m1 − 2n) + (ν3 − ν4)(2k3 +m2 − 2n)]

+F[(ν1 + ν2)(2k1 −m1)− (ν3 + ν4)(2k3 −m2)]

+N[(ν1 + ν2)(2k1 −m1) + (ν3 + ν4)(2k3 −m2)], (4.31)

where we introduce the following quantities:

ν∗ = ν1 + ν2 + ν3 + ν4, νC = ν1 + ν2 − ν3 − ν4,

νF = ν1 − ν2 + ν3 − ν4, νN = ν1 − ν2 − ν3 + ν4.

Finally the set of Eqs. 4.28-4.31 can be written in a condensed form as

M











1
C
F
N











=
1
ν











ν∗
νC

νF

νN











, (4.32)
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where the matrix M can be read off from Eqs. 4.28-4.31. Assuming that M is non-
singular we can take the inverse to obtain











1
C
F
N











=
1
ν

M−1











ν∗
νC

νF

νN











, (4.33)

with

M−1 =
1

det(M)











b11 b21 b31 b41

b12 b22 b32 b42

b13 b23 b33 b43

b14 b24 b34 b44











, (4.34)

where bi j is the cofactor of Mi j. Expressions for the cofactors, bi j and the determinant
det(M) can be found in Appendix C.

Using the above relation we have

ν =
b11ν∗ + b21νC + b31νF + b41νN

det(M)
,

C =
1
ν

b12ν∗ + b22νC + b32νF + b42νN

det(M)
,

F =
1
ν

b13ν∗ + b23νC + b33νF + b43νN

det(M)
,

N =
1
ν

b14ν∗ + b24νC + b34νF + b44νN

det(M)
. (4.35)

Solutions can always be obtained in this way but are not always amenable to a compact
analytic expression.

The entries of the matrixKαβ specify the flux attachment scheme. In the framework
of Modak et al. this corresponds to a variational wavefunction of the form (omitting
Gaussian factors) [145]

Ψ ({zα}) =PZLL

�

4
∏

α=1

Φνα

�

zα1 , . . . , zαNα

�

� Nα
∏

i< j

�

zαi − zαj
�2kα

Nα,Nβ
∏

i, j,α,β;α̸=β

�

zαi − zβj
�Kαβ

,(4.36)

where for the Nα particles of species α, zαi = xαi − i yαi are the complex coordinates for
the ith particle, Φνα is the wavefunction for να filled Landau levels of species α and PZLL

indicates projection into the zeroth LL (ZLL). Different parameterizations of theK ma-
trix correspond to different variational wavefunctions. We consider parameterizations
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of theK matrix of increasing complexity and first search for solutions of Eq. 4.32 which
have either ν= 1

2 or ν= 1
4 .

We use the information about which fractions are seen at the same magnetic field
as the EDFQH states to constrain flux attachment schemes that may give rise to these
states [171]. In particular, we postulate that states with the same parameterization of
theK matrix are more likely to be robust at the same field, since they differ only in the
occupation of composite fermion LLs but not in the nature of the flux attachment. We
also expect that states which can be specified with the fewest number of independent
entries in the K matrix are the most likely to occur and focus on these as candidate
variational states.

4.2.2 Töke-Jain Fractions

We first consider Toke-Jain states [143]. The simplest construction of theK matrix is
when all elements are equal, i.e. 2k = 2k1 = 2k3 = m= m1 = m2 = n and parametrized
by a single parameter, k. This is equivalent to having a single species CF. This leads
to the Toke-Jain sequence of states: ν = ν∗/(2kν∗ + 1) [143], yielding the sequence
1
3 , 2

5 , 3
7 , 4

9 , . . . for k = 1. They are always odd denominator states (except in the limit
ν∗→∞, for which ν→ 1/(2k) which corresponds to an even denominator state for a
single component system which is a compressible state( [95, 145]) and hence are not
candidates for EDFQH states.

(k, 2k, n) states

We next consider more general Modak-Mandal-Sengupta (MMS) [145] states with
k = k1 = k3 and m = m1 = m2, which are labeled by the triplet (k, m, n). A simple
limit is when 2k = m and n ̸= 2k, so the flux attachment is of the form (k, 2k, n) and
specified by two parameters, k and n. For the states with flux attachment (k, 2k, n) we
have k = k1 = k3, m= 2k and n ̸= 2k and Eqs. 4.28-4.31 take the simpler form











1+ q0ν∗ q1νC 0 0
q0νC 1+ ν∗q1 0 0
q0νF q1νN 1 0
q0νN q1νF 0 1





















1
C
F
N











=
1
ν











ν∗
νC

νF

νN











, (4.37)

with
q0 = k+

n
2

, q1 = k−
n
2

. (4.38)

59



(k, m, n) (ν1,ν2,ν3,ν4) (C , F, N) Other fractions
(1,2,1) (1, 0, 1, 0) (0, 1, 0) 1

3 , 2
5 , 3

7 , 4
9(1, 0, 0, 1) (0, 0, 1)

(0, 1, 1, 0) (0, 0, -1) 7
13 , 5

9 , 4
7 , 5

11(0, 1, 0, 1) (0, -1, 0)
(1,1,2) (1, 1, 0, 0) (1, 0, 0) 1

3 , 2
5 , 3

7 , 4
9(0, 0, 1, 1) (-1, 0, 0)

(1, 1, 1, 0) (1, 0, 0) 7
13 , 5

9 , 4
7 , 5

11(1, 1, 0, 1) (1, 0, 0)
(1, 0, 1, 1) (-1, 0, 0)
(0, 1, 1, 1) (-1, 0, 0)
(1, 1, 2, 0) (1, 0, 0)
(1, 1, 0, 2) (1, 0, 0)
(1, 1, 1, 2) (1, 0, 0)
(1, 1, 2, 1) (1, 0, 0)
(1, 2, 1, 1) (-1, 0, 0)
(2, 1, 1, 1) (-1, 0, 0)
(1, 1, 0, 3) (1, 0, 0)
(1, 1, 3, 0) (1, 0, 0)
(0, 3, 1, 1) (-1, 0, 0)
(3, 0, 1, 1) (-1, 0, 0)

Table 4.1: Parameters for possible ν = 1
2 states. Other fractions that can occur for the same

(k, m, n) are indicated. Fractions observed in Ref. [171] are indicated in bold.

These equations can be solved using Eq. 4.35. The order parameters are given by

C =
νC

ν∗ +
�

k− n
2

� �

ν∗2 − ν2
C

� , (4.39)

F =
νF +

�

k− n
2

�

(ν∗νF − νNνC)

ν∗ +
�

k− n
2

� �

ν∗2 − ν2
C

� , (4.40)

N =
νN +

�

k− n
2

�

(ν∗νN − νFνC)

ν∗ +
�

k− n
2

� �

ν∗2 − ν2
C

� . (4.41)

We use slightly different notation, but these expressions are equivalent to Eq. (12) in
Ref. [145] and the allowed fractions for such states are

ν=
ν∗ + (k− n/2)

�

ν2
∗ − ν

2
C

�

1+ 2 k ν∗ + (k2 − n2/4)
�

ν2
∗ − ν

2
C

� . (4.42)

4.2.3 (k, m, 2k) states

A second class of two parameter MMS states can be obtained by assuming 2k = n and
m ̸= 2k in which case the flux attachment is of the form (k, m, 2k). The states with flux
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ν (k, m, n) (ν1,ν2,ν3,ν4) (C , F, N)
1/3 (1,2,1) (1,0,0,0) (1,1,1)
1/3 (1,1,2) (1,0,0,0) (1,1,1)
2/5 (1,2,1) (2,0,0,0) (1,1,1)
2/5 (1,1,2) (2,0,0,0) (1,1,1)
3/7 (1,2,1) (0,0,2,1) (-1,1/3,-1/3)
3/7 (1,1,2) (1,0,2,0) (-1/3,1,-1/3)
4/9 (1,2,1) (3,1,0,0) (1,1/2,1/2)
4/9 (1,1,2) (3,0,1,0) (1/2,1,1/2)
7/13 (1,2,1) (2,0,1,0) (1/7,1,1/7)
7/13 (1,1,2) (2,1,0,0) (1,1/7,1/7)
5/9 (1,2,1) (3,0,1,0) (1/5,1,1/5)
5/9 (1,1,2) (3,1,0,0) (1,1/5,1/5)
4/7 (1,2,1) (1,1,1,1) (0,0,0)
4/7 (1,2,1) (1,1,1,1) (0,0,0)
4/7 (1,1,2) (1,1,1,1) (0,0,0)
5/11 (1,2,1) (3,2,0,0) (1,1/5,1/5)
5/11 (1,1,2) (3,0,2,0) (1/5,1,1/5)

Table 4.2: Parameters for other fractions that have the same (k, m, n) as the ν = 1/2 states in
Table 4.1.

attachment (k, m, 2k) are those for which 2k = 2k1 = 2k3, n = 2k and m ̸= 2k. In this
case we can write:

ν∗
ν
= (1+ q0ν∗) + Cq1νC + Fq2νF + Nq2νN ,

νC

ν
= q0νC + (1+ q1ν∗)C + Fq2νN + Nq2νF ,

νF

ν
= q0νF + q1νN C + F(1+ q2ν∗) + Nq2νC ,

νN

ν
= q0νN + q1νF C + Fq2νC + N(1+ q2ν∗),

(4.43)

with

q0 =
3k
2
+

m
4

, q1 =
m
4
−

k
2
= −q2.

We find that the EDFQH state at ν= 1
2 can be described in terms of these two types

of flux attachments, but they are insufficient to describe the EDFQH state at ν= 1
4 .

There are many different triplets (k, m, n) which can give rise to EDFQH states at
ν= 1

2 . However, if we apply the condition that these triplets should also give rise to the
fractions ν = 1

3 , 2
5 , 3

7 , 4
9 , then we find that this restricts us to (k, 2k, n) states with k = 1

and n = 1, i.e. (1,2,1) states and (k, m, 2k) states with k = 1 and m = 1, i.e. (1,1,2)
states. For the (1,2,1) combination we would also expect to see incompressible states at
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ν = 7
13 , 5

9 , 4
7 , and 5

11 and similarly for (1,1,2). The ν = 5
9 and 4

7 states were observed by
Zibrov et al. [171] but were weaker at the fields where the ν = 1

2 state was observed.
The twenty states that fit these criteria are listed in Table 4.1 and the other fractions
that were observed or have the same set of (k, m, n) values is given in Table 4.2. The
(1,1,2) states all have C ̸= 0, N = 0, F = 0 while the (1,2,1) states all have C = 0 and
either N or F non-zero.

(k, m, n) (ν1,ν2,ν3,ν4) (C , F, N) Other fractions
(2,4,3) (1, 0, 1, 0) (0, 1, 0)

1
5 , 2

9 , 3
13

(1, 0, 0, 1) (0, 0, 1)
(0, 1, 1, 0) (0, 0, -1)
(0, 1, 0, 1) (0, -1, 0)

(2,3,4) (1, 1, 0, 0) (1, 0, 0)

1
5 , 2

9 , 3
13 , 3

11

(0, 0, 1, 1) (-1, 0, 0)
(1, 1, 1, 0) (1, 0, 0)
(1, 1, 0, 1) (1, 0, 0)
(1, 0, 1, 1) (-1, 0, 0)
(0, 1, 1, 1) (-1, 0, 0)

(3,6,1) (1, 0, 1, 0) (0, 1, 0)

1
7 , 2

13
(1, 0, 0, 1) (0, 0, 1)
(0, 1, 1, 0) (0, 0, -1)
(0, 1, 0, 1) (0, -1, 0)

Table 4.3: Parameters for possible (k, 2k, n) and (k, m, 2k) ν = 1
4 states. Fractions observed in

Ref. [171] are indicated in bold.

For the incompressible state at ν= 1
4 we first considered states with flux attachment

in the form (k, 2k, n) and (k, m, 2k) and found possibilities with (k, m, n) = (2,4,3),
(2,3,4) or (3,6,1) as listed in Table 4.3 and the corresponding odd denominator fractions
are listed in Table 4.4. For k = 2 it is easy to find (k, 2k, n) states at the fractions ν =

ν (k, m, n) (ν1,ν2,ν3,ν4) (C , F, N)
1/5 (2,4,3) (1,0,0,0) (1,1,1)
1/5 (2,3,4) (1,0,0,0) (1,1,1)
2/9 (2,4,3) (1,0,0,0) (1,1,1)
2/9 (2,3,4) (1,0,0,0) (1,1,1)

3/13 (2,4,3) (0,0,2,1) (-1,1/3,-1/3)
3/13 (2,3,4) (1,0,2,0) (-1/3,1,-1/3)
3/11 (2,3,4) (2,2,0,1) (5/3,1/5,-1/5)
1/7 (3,6,1) (1,0,0,0) (1,1,1)

2/13 (3,6,1) (2,0,0,0) (1,1,1)

Table 4.4: Parameters for other fractions that have the same (k, m, n) as the ν = 1/4 state in
Table 4.3.
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1
5 , 2

9 , 3
13 , 4

9 , which are seen in Ref. [171], while for k = 3 and n= 1 one finds the fractions
ν= 1

7 and 2
13 which are not seen in Ref. [171], instead of ν= 1

5 and 2
9 . However, neither

of the combinations (k, 2k, n) or (k, m, 2k) above support states at the experimentally
observed fraction ν= 2

7 .
Hence, we consider more general MMS states for which m ̸= 2k and n ̸= 2k, which

depend on the three parameters (k, m, n).

4.2.4 (k, m, n) states

For general MMS states with flux attachment (k, m, n) we have three parameters, k,
m ̸= 2k and n ̸= 2k. In this case we can write

ν∗
ν
= (1+ q0)ν∗ + Cq1νC + Fq2νF + Nq2νN , (4.44)

νC

ν
= q0νC + (1+ q1ν∗)C + Fq2νN + Nq2νF , (4.45)

νF

ν
= q0νF + q1νN C + F(1+ q2ν∗) + Nq2νC , (4.46)

νN

ν
= q0νN + q1νF C + Fq2νC + N(1+ q2ν∗), (4.47)

where

q0 =
k
2
+

m
4
+

n
2

, q1 =
k
2
+

m
4
−

n
2

, q2 =
k
2
−

m
4

.

The set of equations 4.44- 4.47 can be recast in matrix form as,











1+ q0ν
∗ q1νC q2νF q2νN

q0νC 1+ ν∗q1 q2νN q2νF

q0νF q1νN 1+ q2ν∗ q2νC

q0νN q1νF 1+ q2νC 1+ q2ν∗





















1
C
F
N











=
1
ν











ν∗

νC

νF

νN











. (4.48)

We solved Eq. 4.48 for the filling fraction and order parameters but were not able
to find compact analytic forms for the order parameter solutions.

Noting that the k = 2 states appear to be more promising for ν = 1
4 than the k = 3

states, we found the following combinations in addition to (2,4, 3) and (2, 3,4) that
can give rise to a ν = 1

4 EDFQH state: (2, 0,3), (2, 1,3), (2, 2,3), (2, 3,0), (2,3, 1),
(2, 3,2), and (2, 3,3). When we investigate the above combinations of (k, m, n) to see
which combinations also allow for FQHE states at ν = 1

5 and ν = 2
7 , three prominent

candidates emerge: (2, 2,3), (2,3, 2) and (2,3, 3). All three combinations can also have
ν= 2

9 states, but only the (2,3, 3) combination also allows for a ν= 3
11 state. Given that

the ν = 3
11 state disappears at fields at which the ν = 1

4 state is observed, we eliminate
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(k, m, n) (ν1,ν2,ν3,ν4) (C , F, N) Other fractions
(2, 3, 2) (1, 1, 0, 0) (1, 0, 0) 1

5 , 2
9 , 3

13 , 2
7 , 4

9(0, 0, 1, 1) (-1, 0, 0)
(2, 2, 3) (1, 0, 1, 0) (0, 1, 0)

1
5 , 2

9 , 3
13 , 2

7 , 4
9

(1, 0, 0, 1) (0, 0, 1)
(0, 1, 1, 0) (0, 0, -1)
(0, 1, 0, 1) (0, -1, 0)

Table 4.5: Parameters for candidate ν = 1
4 states. Other fractions that can occur for the same

(k, m, n) are indicated. Fractions observed in Ref. [171] are indicated in bold.

ν (k, m, n) (ν1,ν2,ν3,ν4) (C , F, N)
1/5 (2,3,2) (1,0,0,0) (1,1,1)
1/5 (2,2,3) (1,0,0,0) (1,1,1)
2/9 (2,3,2) (2,0,0,0) (1,1,1)
2/9 (2,2,3) (2,0,0,0) (1,1,1)

3/13 (2,3,2) (3,0,0,0) (1,1,1)
3/13 (2,2,3) (3,0,0,0) (1,1,1)
4/9 (2,3,2) (2,0,2,0) (0,1,0)
4/9 (2,2,3) (2,2,0,0) (1,0,0)
2/7 (2,3,2) (1,0,1,0) (0,1,0)
2/7 (2,2,3) (1,1,0,0) (1,0,0)

Table 4.6: Parameters for other fractions that have the same (k, m, n) as the ν = 1/4 state in
Table 4.5.

the (2, 3,3) combination, leaving (2,2, 3) and (2,3, 2) as competing flux attachment
schemes. The parameters for these candidate ν = 1

4 states are listed in Table 4.5 and
the parameters for the corresponding odd denominator fractions are given in Table 4.6.

The (2,3,2) combination has C ̸= 0, with F = 0, N = 0, while the (2,2,3) combina-
tion has C = 0 and allows for either F ̸= 0 or N ̸= 0. We observed that the ν= 2

7 state is
quite robust when the ν= 1

4 state forms and differs from the ν= 1
5 and 2

9 states in that
only one order parameter is non-zero when it occurs. In contrast, the ν = 1

5 and ν = 2
9

states have |C | = |N | = |F | = 1, and appear to be weaker at the fields where the ν = 1
4

EDFQH is observed, suggesting similarities in the broken symmetry states for ν= 1
4 and

2
7 .

4.3 Conclusion

Based on the idea that fractions that coexist with EDFQH states at the same magnetic
field are likely to have the same K matrix, but different fillings of Dirac composite
fermion LLs, we suggest that the likely candidate variational wavefunctions for ν = 1

2

have (k, m, n) = (1,1, 2) or (1,2, 1) and those for ν = 1
4 have (k, m, n) as (2,2,3) or
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(2,3,2). Even within this limited set of flux attachments there is a degeneracy associ-
ated with the pattern of symmetry breaking orders present in the states, as shown in
Tables 4.1 and 4.5. In order to discriminate further, we need information about the na-
ture of the broken symmetries in the various EDFQH states. Note that C and N are CSB
orders and therefore cause strong LL mixing. As a result, the onset of CDW and AFM
orders for composite Dirac fermions may cause the system to lower its energy by push-
ing filled LLs of composite Dirac fermions further down in energy. Hence we expect any
FQH state with C ̸= 0 or N ̸= 0 to be energetically superior to those with F ̸= 0. Such
states can be expected to arise in graphene due to electron-electron interactions. The
actual pattern of symmetry breaking depends on the relative strength of various finite
range components of the Coulomb interaction.

Zibrov et al. [171] noted that there was a sublattice gap in their experiments, the
size of which was correlated with the magnetic field at which EDFQH states were seen.
They proposed that the EDFQH states are associated with a phase transition from a
partially sublattice polarized (PSP) to a canted antiferromagnet (CAF) phase. Within
the variational states we consider this would correspond to a transition from a state
with C ̸= 0 to one with spin ordering. A more general variational state than we have
considered here might be achieved by taking linear combinations of states of the form
of Eq. (4.36) with the same (k, m, n) but different (ν1,ν2,ν3,ν4). These might give
ways to realize PSP or CAF states. On the other hand, experiments by Amet et al. [59]
reported that the FQHE states in the n = 0 LL do not show appreciable change in a
tilted magnetic field, leading them to conclude that the state is spin polarized, which
would favour F ̸= 0. However, as noted in Ref. [130] the order parameters in ν = 0
states (believed to be a CAF) can be relatively insensitive to even quite strong parallel
fields, and so it may be possible to have both F ≃ 0 and relatively little sensitivity to
tilted fields.

We suggest that measurement is the best way to resolve the ambiguity of the na-
ture of the broken symmetry in the EDFQH states. In the case of CDW order, sublattice
resolved STM measurements could determine the presence of non-zero C in EDFQH
states, and the spin ordering (either F or N) could be probed with spin resolved STM.
Such information could pare down the possible states quite significantly. Additionally,
studies of edge states via tunnelling measurements could provide additional constraints
on possible states [171]. Investigation of the excitation spectra for different possible
states might also provide ways to discriminate between different states. The recent
construction of a multicomponent Abelian Chern-Simons theory in a functional inte-
gral approach [146] is a step in this direction. This is the approach taken in Chapter 5.

Finally, we note that the multicomponent states we consider here are considerably
more complex in their flux attachment than the standard sequence of FQHE states that
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have been proposed for monolayer graphene but actually show many of the standard
fractions. This observation raises questions about the nature of states that have been ob-
served in graphene previously [56, 57, 59] and whether these do indeed belong to fam-
ilies with the simplest flux attachment. We also note an interesting observation about
the states we have identified. The flux attachments for the states at ν= 1

4 are related to
those found for ν = 1

2 by j → j + 1 for j = k, m, n (although the patterns of symmetry
breaking are not the same in going from one set of flux attachments to the other).

In summary, we propose candidate wavefunctions for the recently observed incom-
pressible EDFQH states at ν = 1

2 and ν = 1
4 . The possibilities we uncover indicate

that the lowest LL in graphene may harbour even more richness in possible electron
states than previously anticipated. We urge additional experimental efforts to uncover
the nature of these unusual states which may help to pin down the patterns of broken
symmetry states in graphene.
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Chapter 5

Collective Excitations

In chapter 4 we proposed a set of variational wavefunctions for the incompressible states
at ν= 1/2, 1/4 within the multi-component flux attachment scheme. The proposed set
of wavefunctions left the nature of the underlying symmetry breaking ambiguous. In
this chapter1 we investigate the excitation spectra for different possible states as a means
to discriminate between different states.

Interest in understanding collective excitations in FQH liquids dates back to mid-
1980s. Girvin, MacDonald and Platzman (GMP) [183, 184] studied the collective exci-
tations of the FQH liquid within a single mode approximation (SMA) in analogy with
Feynman’s theory of superfluid helium [185]. They observed a gap in the spectrum at
zero wave vector due to the incompressibility of the FQH liquid. GMP also observed
a minimum in the excitation spectra which they named magnetoroton in analogy to
rotons in theory of superfluid helium. Lopez and Fradkin showed how a system of elec-
trons coupled to a Chern-Simons gauge field is equivalent to a system of composite
fermions [168]. Employing a random phase approximation method they were able to
arrive at expressions for the electromagnetic response of these states for finite wave
vector, q⃗, and frequency, ω, [186]. Halperin, Lee and Read (HLR) [95] extended their
methods to study the FQH state at ν= 1

2 and Simon and Halperin [169] further devel-
oped this approach by taking into account the corrections due to mass renormalization
that the Chern-Simons term induces. These results were consistent with experiments in-
volving using inelastic light scattering [187] and observation of geometric resonances
in the cyclotron orbits of composite fermions (CFs) using surface acoustic waves [170].
The methods developed by Fradkin and Lopez [188] has been applied to the case of
graphene and expressions for the components of the electromagnetic response tensor

1Most of this chapter is based on the publication: S. Narayanan and M. P. Kennett, Phys. Rev. B, 106, 165119
(2022).

67



were obtained [146]. However these calculations did not take into account any form of
symmetry breaking orders, originally emphasized in Ref. [153].

We are primarily interested in studying the collective excitations of FQH states for
which the filling fraction lies between 0< ν < 1. For calculational convenience we focus
on the following symmetry breaking orders: out of plane antiferromagnetism, charge
density wave and ferromagnetism, since these are easily accommodated in the Chern-
Simons theory we employ [145, 176]. We work in the zeroth Landau level (ZLL) where
the sublattice and valley degrees of freedom coincide. The flux attachment scheme, de-
scribed in Sec. 4.2, determines the order parameters Eq. 4.18. Our aim is to understand
how the collective excitations change in the presence of the order parameters. This is
potentially a path to gain insight into the nature of symmetry breaking present in the
ZLL in graphene.

5.1 Model

Starting from the extended Hubbard model on the honeycomb lattice, and applying the
Hartree-Fock approximation [119] gives rise to a low energy Hamiltonian, in sublattice
space, including CSB orders mα and ferromagnetic order fα of

Hξ
α
= ξαℏvF (Π1σ1 +Π2σ2) +mασ3 + fασ0, (5.1)

whereΠi = pi+eAi; i = 1,2, with pi the momentum operator and Ai the vector potential.

The index α = 1, 2,3,4 labels components of the spin and valley degrees of freedom
(also called flavours or species) as 1 ≡ K↑, 2 ≡ K↓, 3 ≡ K ′↑ and 4 ≡ K ′↓. K and K ′

are the two inequivalent Brillouin-zone (BZ) points where the valence band touches
the conduction band in reciprocal lattice space. The sigma matrices act in the 2 × 2
sublattice space and ξα = ± correspond to the +(K) and −(K ′) valleys respectively. The
Hamiltonian Eq. 5.1 acts on the spinor Ψα = (uα, vα)T where uα(vα) is the amplitude on
the A(B) sublattice of graphene’s honeycomb lattice.

In Eq. 5.1 the mα are a combination of chiral symmetry breaking orders defined as:
m1 = C + N ; m2 = C − N ; m3 = −(C + N); and m4 = −(C − N) where C is the charge
density wave order and N is easy-axis Neel anti-ferromagnetic order. The ferromagnetic
order (F) enters Eq. 5.1 through fα, defined as: f1 = F ; f2 = −F ; f3 = F ; and f4 = −F .

Equation 5.1 describes interacting electrons in graphene in the presence of a mag-
netic field at the mean field level. A system of electrons in a magnetic field can be
equivalently described by a system of composite fermions (CFs) in an effective mag-
netic field [83]. We consider four different species or flavours of composite fermions,
corresponding to the different values of α as defined above. We begin by introducing
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the transformation in Eq. 4.6

Φα =Kαβ

∫

d r⃗′arg(⃗r− r⃗′)ρβ(r⃗′), (5.2)

where the matrix K was defined in Eq. 4.7. For our calculations we consider the ele-
ments ofK with the simplification ki = k, mi = m and ni = n which are labelled by the
triplet (k, m, n) as in Sec. 4.2.4.

The derivative terms in the Hamiltonian transform as

Ψ†
α
(±σ1Π1 −σ2Π2)Ψα→ψ†

α
(±σ1Π̃1 −σ2Π̃2)ψα,

where Π̃i = Πi − aαi , with the Chern-Simons field aαi defined as

aα =Kαβ

∫

d r⃗ ′g(r⃗ − r⃗ ′)ρβ(r⃗ ′); g(r⃗) =
ẑ × r⃗

r2
.

Here ρα corresponds to the density of composite fermion species of type α. In terms of
these densities we can define our order paramaters given by Eq. 4.18.

Figure 5.1: Schwinger-Keldysh closed contour with forward time branch (C+) and backward
time branch (C−). We set the reference time t0 = −∞.

The composite fermion Hamiltonian is thus

Hξ
α
= ξαvF(Π̃

α
1σ1 + Π̃

α
2σ2) +mασ3 + fασ0, (5.3)

where Παi = pi + eAi + aαi , with α again labelling the species.
Following Fräßdorf [146], we now employ the Schwinger-Keldysh technique [189–

192] to develop a field theoretic description of the multi-species composite fermions
coupled to four statistical U(1) gauge fields, aα. In the Schwinger-Keldysh technique the
time argument is promoted from a real variable to a complex variable corresponding
to a contour-time and the correlation functions are defined as path-ordered products of
the fields on the Schwinger-Keldysh contour. Since we work with an equilibrium system
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we take the reference time, t0 on the contour to be in the infinite past, thereby reducing
the kinetic equation solutions to well known equilibrium distributions. The Schwinger-
Keldysh technique leaves open the option to extend our theory to a finite temperature
and non-equilibrium scenarios.

5.2 Effective action

The generating functional for the Hamiltonian defined in Eq. 5.1 is given by

Z[ψα, Aµ,A α
µ

, aα
µ
] =

∫

Dψ†DψeiS[ψ,e(Aµ+A α
µ )+aαµ], (5.4)

where the external vector potential, Aµ +A α
µ

, is composed of two terms: a piece Aµ
corresponding to the perpendicular magnetic field and a small fluctuating term with
vanishing average, A α

µ
, which is used to probe the electromagnetic response of the

system.
The action S can be written as

S = SD + SCS, (5.5)

where SD is the composite fermion action corresponding to the Hamiltonian in Eq. 5.3:

SD[ψ, Aµ +A α
µ
+ aα

µ
] =

∫

C ,r⃗

ψ†,αĜ−1
0,αβψ

β , (5.6)

with
∫

C ,r⃗

≡
∫

C

d t

∫

d2r, (5.7)

and C is the Schwinger-Keldysh contour along which the integration is performed. The
matrix Ĝ−1

0 is the inverse contour-time propagator which is diagonal in the species in-
dex:

Ĝ−1
0 = diag(G−1

0,K↑, G−1
0,K↓, G−1

0,K ′↑, G−1
0,K ′↓), (5.8)

with
G−1

0,α(x , y) = δC(x − y)(iσµ
α
Dα
µ
−µα +mασ3 + fασ0). (5.9)

We note that we have already included interaction terms at the mean field level, which
leads to order parameters C and N (that combine to form mα) and F. Here δC(x − y) =
δC(x0− y0)δ( x⃗ − y⃗) is the contour-time delta function and σµ

α
= (σ0,καvFσ1,καvFσ2)
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and mα, fα have been defined above. The gauge covariant derivative

Dα
µ
= ∂µ + ieAµ + ieA α

µ
+ iaα

µ
,

contains the fields Aµ +A α
µ

and the statistical gauge field aα
µ
.

SCS is the Chern-Simons action which describes the dynamics of the statistical gauge
field aα

µ
and has the form

SCS =
1
2
(K )−1

αβ

∫

C ,r⃗

εµνλaα
µ
∂νa

β

λ
. (5.10)

We integrate out the fermionic fields ψ from the action S in Eq. 5.5 to obtain an
effective action in terms of the gauge fields only,

Seff[e(Aµ +A α
µ
), aα

µ
] = −iTr lnG−1

0

�

e(Aµ +A α
µ
), aα

µ

�

+ SCS

�

aα
µ

�

. (5.11)

We find the saddle point configuration of the path integral for the statistical gauge fields
aα
µ

and then perform an expansion of the effective action in terms of fluctuations around
this mean field solution. Following Fradkin and Lopez [168] we search for a solution
that leads to a vanishing charge carrier current and a non-zero, time independent charge
carrier density, ρα, which is given by

ρα = −(K )−1
αβ
Bβ , (5.12)

where Bβ is a uniform field due to the statistical gauge field experienced by a CF of
species β . Inverting this relation gives us

Bβ = −ραK αβ . (5.13)

The effect of this field is to reduce/enhance (depending on the sign of charge carriers
present in the sample) the original magnetic field so that a CF of species α experiences
an effective magnetic field given by

Bαeff = B +Bα = B −ρβK αβ . (5.14)

Here ρ is the total electron density and ν is the filling fraction for the electrons. From
Eq. 5.14 we get a relationship [145] between the composite fermion filling fraction να
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for species α, the density ρα and the flux attachment matrix of

ρα
να
=
ρ

ν
−K αβρβ . (5.15)

We now represent the effective action in Eq. 5.11 in a more convenient form by
performing a Keldysh rotation. The contour illustrated in Fig. 5.1 consists of a forward
(C+) and a backward (C−) piece, and the fields on the respective pieces of the contour
may be be written as ψ±, a±. We transform to a new set of double fields ψc,q and ac,q

which are symmetric and antisymmetric linear combinations of the± double fields with,
e.g. for ψ:

ψc =
1
p

2
(ψ+ +ψ−) , ψq =

1
p

2
(ψ+ +ψ−) . (5.16)

The labels c, q correspond to classical and quantum components respectively [193]. The
net result is that the derivatives of the action with respect to the gauge fields are now
performed with respect to the quantum components [191].

The gauge fields, aα, can be viewed as being comprised of a mean field part (āα) and
a fluctuation part (∆aα), aα = āα+∆aα, and we expand the effective action in terms of
the fluctuations up to the second order in ∆a. Terms linear in fluctuations vanish and
we get

Seff[A α
µ

, aα
µ
] =

∫

x y

�

(∆ac)
α
µ
+ (Ac)

α
µ
) (∆aq)

α
µ
+ (Aq)

α
µ

�

(x)

�

0 (ΠA)µν
αβ

(ΠR)µν
αβ
(ΠK)µν

αβ

�

(x , y)

�

(∆ac)βν + (Ac)βν)
(∆aq)βν + (Aq)βν)

�

(y)

+
�

(∆ac)
α
µ
(∆aq)

α
µ
)
�

(x)

�

0 (CA)µν
αβ

(CR)µν
αβ
(CK)µν

αβ

�

(x , y)

�

(∆ac)βν
(∆aq)βν

�

(y) ,

which can be written in a more compact form as :

Seff[A α
µ

,aα
µ
] =

∫

x y

�

(∆a)α
µ
+ (A )α

µ
)
�T
(x)Πµν

αβ
(x , y)

�

(∆a)β
ν
+ (A )β

ν

�

(y)

+ (∆a)α
µ
(x)Cµν

αβ
(x , y)(∆a)β

ν
(y). (5.17)
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Here the fieldsA α
µ

and aα
µ

are two component fields in Keldysh space

A =
�

A c

A q

�

,

and similarly for the fields aµ
α
. The polarization tensor Π and the Chern-Simons tensor

C are 2× 2 matrices with advanced (A), retarded (R) and Keldysh (K) components:

Cµν
αβ
=

�

0 (CA)µν
αβ

(CR)µν
αβ
(CK)µν

αβ

�

. (5.18)

We use bold font to indicate that a quantity has classical (c) and quantum (q) com-
ponents if a vector, or Advanced (A), Retarded (R) and Keldysh (K) components if a
2×2 matrix. As the system is in equilibrium, in the linear response regime, the different
components of Π satisfy the bosonic fluctuation-dissipation theorem. The polarization
tensor Π is given by

Πµν
αβ
= −

i
2

δ2

δaβνδaα
µ

Tr ln Ĝ−1
0 [eAµ + aα

µ
]
�

�

�

a=ā
, (5.19)

where Aµ is the electromagnetic field and Ĝ−1
0 is the inverse time propagator mapped

onto the Keldysh basis. Since the propagators are diagonal in the species index α, the
polarization tensor is also diagonal, Πµν

αβ
= Πµν

αβ
δαβ . To determine the collective exci-

tation spectra we only need consider the retarded (R) components of the polarization
tensor given in Appendix A.

The Chern-Simons tensor has the following form

Cµν
αβ
= (K )−1

αβ
εµνλ∂λ. (5.20)

The polarization tensor and the Chern-Simons tensor are transverse. As a conse-
quence of this the polarization tensor can be decomposed into scalars Π0, Π1 and Π2

[168] as follows:

Π00
αβ
(ω,q) = −q2Π0

αβ
, (5.21)

Π0i
αβ
(ω,q) = −ωqiΠ0

αβ
(ω,q) + iε0i jq jΠ

1
αβ
(ω,q), (5.22)

Πi0
αβ
(ω,q) = −ωqiΠ0

αβ
(ω,q)− iε0i jq jΠ

1
αβ
(ω,q), (5.23)

Πi j
αβ
(ω,q) = −ω2δi jΠ0

αβ
(ω,q) + iε0i jωΠ1

αβ
(ω,q)

+(δi jq2 − qiq j)Π2
αβ
(ω,q). (5.24)
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5.3 Electromagnetic response tensor

In order to obtain the electromagnetic response tensor we integrate over the statistical
gauge fields. Due to the transverse nature of the polarization and Chern-Simons tensor
the inverse of both is ill defined and so is the inverse of the sum of these two tensors,
(Π+C)−1 , which appears when we perform the integration over the statistical gauge
fields.

In order to overcome this problem one can employ the Fadeev-Poppov method [194].
The result of this is a gauge fixed generating functional of the form

ZGF[A α
µ
] =

∫

(D∆a) ei(Seff[A ,∆a]+SGF[∆a]), (5.25)

where the gauge fixing action has the form

SGF =
�

1
2η

�

∫

C ,x

(∂µ∆aµ)2 =
1
2

∫

C ,x

∆aµGµν∆aν, (5.26)

where η is a real valued parameter which we can set to be η = 1 [194]. Since the
electromagnetic tensor is a physical quantity the choice of gauge should not matter
and hence all references to the parameter η drop out in the end. Now we can perform
the integral over the gauge fields since the addition of G makes the sum Π+G +C
invertible. The object that we obtain as a consequence of performing the integral is the
electromagnetic response tensor which has the form

K= Π−Π(Π+G +C)−1Π. (5.27)

The electromagnetic tensor can be expressed, similarly to the polarization and Chern-
Simons tensors, in Keldysh space as a 2×2 matrix with advanced (A), retarded (R) and
Keldysh (K) components:

K=

�

0 (KA)µν
αβ

(KR)µν
αβ
(KK)µν

αβ

�

. (5.28)

The Keldysh component is related to the advanced and retarded components through
the bosonic fluctuation-dissipation theorem:

KK
ω,q = coth

� ω

2T

�

(KR
ω,q − KA

ω,q). (5.29)

The electromagnetic response tensor is also transverse and hence admits a decom-
position, similar to the polarization tensor, in terms of scalar kernels, K0, K1 and K2
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which can be written as2

KR
0 (ω,q) = −(K −1)2

ΠR
0(ω,q)

DR(ω,q)
, (5.30)

KR
1 (ω,q) = K −1 + (K −1)2

(K −1 +ΠR
1(ω,q))

DR(ω,q)
, (5.31)

KR
2 (ω,q) = (K −1)2

ΠR
2(ω,q)

DR(ω,q)
. (5.32)

Since the polarization tensor is diagonal in the species index α, it commutes withK −1.
Here DR/A is the denominator matrix which has the form

DR/A =ω2(ΠR/A
0 )

2 − (K −1 +ΠR/A
1 )

2 + q2(ΠR/A
0 Π

R/A
2 ). (5.33)

The retarded and advanced kernels are Hermitian conjugates of each other. Full expres-
sions for Π0, Π1, Π2 are given in Appendix F. The denominator matrix D is of central
importance to our work. The zeros of the determinant of the denominator matrix gives
us the location of poles for the electromagnetic response tensor.
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Figure 5.2: Location of poles as a function of ω
ωc

and qlB for ν= 1/3 for the Toke-Jain sequence

(black) and the MMS state for (k, m, n) = (1,1, 3) (red). Here ωc =
p

2 vF
lB

2Details of calculations are in Appendix E.
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Figure 5.3: Location of poles as a function of ωωc
and qlB for ν= 1/3 for the parameter set defined

in the text (k, m, n, C , N , F). (1, 1,1, 1,−1,−1) (red), (1, 3,2, 1,1, 1) (blue), (1,3, 3,1,−1,−1)
(black) and (2, 1,3,−1, 0,0) (orange).

5.4 Numerical Results

In this section we find the poles of the electromagnetic response tensor numerically
so as to determine the collective excitation spectra of various FQH states in graphene.
Specifically, we calculate the zeros of the determinant of the denominator matrix DR/A

given in Eq. 5.33. We calculate the excitation spectra for flux attachment schemes at
several different filling fractions ν.

Different flux attachment schemes are encoded in the matrix elements Kαβ . Using
the parametrization presented in Eq. 5.3, the simplest case is when the same number
of flux quanta, 2k, is attached to all the species [143, 145]. This is the same as con-
sidering a single species with 2k flux quanta attached to it. For this case the filling
fractions of FQH states are given by ν = ν∗

2kν∗+1 with ν∗ = ν1 + ν2 + ν3 + ν4, which is
known as the Töke-Jain sequence [143]. Here να, α= 1,2, 3,4, are the filling fractions
of the individual species. Hence the Töke-Jain sequence can be characterized by the
set of parameters (ν∗, k). Following Refs. [145, 176], we also consider the following
simplification of K : ki = k, mi = m and ni = n for all i, which we refer to as the
Modak-Mandal-Sengupta (MMS) states. This allows us to label MMS flux attachment
schemes by the triplet (k, m, n). In order to specify a FQH state with a given filling ν, we
also need to specify fillings να for the composite fermion Landau levels. Once να, ν and
(k, m, n) are specified this determines the values of the order parameters C , N and F
[145, 176]. We characterize the states we consider by the flux attachment parameters
(k, m, n) determined from the K matrix. In our numerical calculations we truncated
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the number of Landau levels (labelled by n and n′) included in the calculation of D to
Nc = 10 in Eq. F.2 in order to cut computational time. We confirmed that our results
were not sensitive to this choice of cut-off.

For each parameter set we calculate the collective modes and plot their angular
frequency ω

ωc
against qlB where ωc =

p
2vF/lB is the cyclotron frequency with vF being

the Fermi velocity and lB being the magnetic length. We characterize each dispersion
curve by the following parameters,ωg: the energy gap as q→ 0; qi

rm: the position of the
i th magnetoroton minimum; and∆i

r: the energy at the position of the i th magnetoroton
minimum. We observe the following generic features in the dispersion curves for the
lowest energy collective mode: i) a gap as q → 0 and ii) minima for qlB ∼ 1, and
qlB ∼ 2.1, which we attribute as a magnetoroton minima, similar to those seen for non-
relativistic FQH states. Numerous states also have an additional minimum or shoulder
for qlB ∼ 1.7. The sharp rise in the dispersion seen near qlB ∼ 2.5 marks the right edge
of the sequence of magnetoroton minima and the dispersion flattens for larger values of
qlB. 3 For higher energy collective modes, the dispersion is relatively flat in comparison
to the lowest energy mode.

The general structure of the collective mode spectrum has qualitative similarities to
the collective modes observed in non-relativistic FQH systems [169, 183, 184]. Recently
Golkar et al. [195] made estimates based on quantized shape deformations of the com-
posite fermion Fermi surface at ν= 1/2. We are not aware of similar arguments for the
FQH states in graphene, but this would appear to be an interesting direction for future
study.

In Fig. 5.2 we compare the dispersion curves for two different ν = 1/3 states, the
Töke-Jain state for the parameter set (ν∗ = 1, k = 1) and the MMS state for the param-
eter set (k = 1, m = 1, n = 3). We notice that the MMS state has a higher gap as q→ 0
and has a higher magnetoroton energy as compared to the Töke-Jain state. In the rest
of the results we focus on MMS states motivated by their relevance for EDFQH states
[176].

We consider several different MMS ν = 1/3 states and observe that: i) the ro-
ton energy is lowest for the state with order parameters (C , F, N) = (1,−1,−1) and
(k, m, n) = (1,1, 1); and ii) as we increase k, m or n the energy of the roton, ∆r , de-
creases. In addition, we also observe the appearance of a second minimum around
qlB ∼ 2.1 and what is sometimes a shoulder and sometimes a local minimum at around
qlB ∼ 1.7. Numerical values are tabulated in Table 5.1. The minima deepen with in-
creasing values of k, m, and n.

3See Appendix G for a plot to this end
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k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB ∆1

r/ωc ∆2
r/ωc ∆3

r/ωc

1 1 1 1 -1 -1 1.67 0.99 - - 1.58 - -
1 3 2 1 1 1 1.57 0.91 1.65 2.09 1.39 1.42 1.42
1 3 3 1 -1 -1 1.51 0.90 1.73 2.10 1.29 1.32 1.29
2 1 3 -1 0 0 1.46 0.89 1.74 2.11 1.24 1.26 1.22

Table 5.1: Dispersion parameters for selected ν = 1/3 states. ωg is the gap at q→ 0, the qi
rmlB

are the positions of magnetoroton minima and ∆i/ωc are the energies of the corresponding
rotons.
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Figure 5.4: Dispersion curves for ν = 1/3 varying the parameter m. The parameter set defined
in the text (k, m, n, C , N , F). (1,0, 2,1, 1,1) (red), (1, 1,2,1, 1,1) (blue), (1,3, 2,1, 1,1) (black),
(1,4, 2,1, 1,1) (orange).

In Fig. 5.4 we show the variation of the position of the poles and the roton energy as
we change m in the triplet (k, m, n). As before, the states we studied are parameterized
by the set of parameters (k, m, n, C , F, N). We fixed all the parameters except m. The
results are summarized in Table 5.2.

In Fig. 5.5. we show the dispersions for several different ν = 1/3 MMS states with
k and m fixed, but varying n. The results are summarized in Table 5.3.

Figures 5.4 and 5.5 lead to the following observations: i) the gap at q→ 0 decreases
as we go from a low m(n) value to a higher m(n) value; ii) the position of the first roton
minimum shifts towards slightly lower q as we go from lower m(n) to higher values of
m(n); iii) the position of the second and third roton minima shifts to slightly higher q
as we go from lower m(n) to higher values; iv) the roton energies∆i

r decrease as we go
from lower m(n) to higher values for i = 1,2, 3. In Tables 5.2 and 5.3 we confirm that
the observations i)-iv) hold as we go from lower m(n) values to higher m(n) values.
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k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB ∆1

r/ωc ∆2
r/ωc ∆3

r/ωc

1 0 2 1 1 1 1.65 0.98 1.66 2.08 1.53 1.56 1.58
1 1 2 1 1 1 1.62 0.97 1.60 2.09 1.49 1.52 1.53
1 3 2 1 1 1 1.57 0.91 1.65 2.09 1.39 1.42 1.42
1 4 2 1 1 1 1.54 0.89 1.69 2.10 1.34 1.37 1.35

Table 5.2: Parameters for ν = 1/3 states varying m. All parameters have the same meaning as
in Table I.
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Figure 5.5: Dispersion curves for ν= 1/3 varying the parameter n. The parameter set defined in
the text is (k, m, n, C , N , F). (1,1, 1,1, 1,1) (black), (1,1, 2,1, 1,1) (red), (1,1, 3,1, 1,1) (blue),
(1,1, 4,1, 1,1) (orange).

k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB ∆1

r/ωc ∆2
r/ωc ∆3

r/ωc

1 1 1 1 1 1 1.67 0.99 - - 1.58 - -
1 1 2 1 1 1 1.62 0.97 1.60 2.09 1.49 1.52 1.53
1 1 3 1 1 1 1.57 0.93 1.69 2.10 1.38 1.42 1.40
1 1 4 1 1 1 1.50 0.90 1.68 2.13 1.29 1.31 1.25

Table 5.3: Parameters for ν= 1/3 states varying n. All parameters have the same meaning as in
Table I.
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Figure 5.6: Dispersion curves for ν = 1/3 (1,1,2,1,1,1), ν = 2/5 (1,1,2,1,-1,-1) and ν = 1/2
(1,1,2,1,0,0). For this plot (k, m, n) is the same for all three fractions while (C , F, N) varies.

In addition to comparing the effect of different values of m and n on the collective
mode spectrum for a given fraction, we also make a comparison of the collective mode
spectra for several different incompressible fractions: ν = 1/3, ν = 2/5 and ν = 1/2.
Unlike the single component case it is possible to have an incompressible FQH state for
ν= 1/2 in a multicomponent quantum Hall system such as graphene [145, 171, 176].
The relevant dispersion curves are plotted in Figs. 5.6 and 5.7.
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Figure 5.7: Dispersion curves for ν = 1/2 (1,1,2,1,0,0), ν = 1/3 (2,1,2,1,0,0) and ν = 2/5
(2,0,3,1,0,0). For this plot (C , F, N) is the same for all three fractions while (k, m, n) varies.
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ν k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB ∆1

r/ωc ∆2
r/ωc ∆3

r/ωc

1/3 1 1 2 1 1 1 1.62 0.97 1.60 2.06 1.49 1.52 1.53
2/5 1 1 2 1 -1 -1 1.62 0.97 1.60 2.06 1.49 1.52 1.53
1/2 1 1 2 1 0 0 1.59 0.92 1.63 2.07 1.45 1.48 1.49

Table 5.4: ν = 1/3, ν = 1/2 and ν = 2/5 for fixed (k, m, n). All parameters have the same
meaning as in Table I.

ν k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB ∆1

r/ωc ∆2
r/ωc ∆3

r/ωc

1/2 1 1 2 1 0 0 1.59 0.92 1.63 2.07 1.45 1.48 1.49
2/5 2 0 3 1 0 0 1.49 0.91 1.71 2.11 1.29 1.32 1.29
1/3 2 1 3 1 0 0 1.46 0.89 1.70 2.10 1.24 1.26 1.22

Table 5.5: ν = 1/3, ν = 1/2 and ν = 2/5 for fixed (C , F, N). All parameters have the same
meaning as in Table I.

For the spectra in Fig. 5.6 we consider the simplest flux attachment, (k, m, n), that is
consistent with all three of these states. We found that for this case different CF-LLs are
occupied, translating to different order parameter combinations, (C , F, N). The ν= 1/3
and the ν = 2/5 state have the same spectra and a higher gap, ωg than the ν = 1/2
states. For the spectra in Fig. 5.7 we consider CF-LL fillings (equivalently combinations
of CSB orders) that are the same for all three FQH states. In this case the flux attachment
parameters (k, m, n) differ in each case. We observe that in this case the ν = 1/2 state
is the most stable followed by the ν = 2/5 and then the ν = 1/3 state. The results are
summarized in Tables 5.4 and 5.5.
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Figure 5.8: Dispersion curves for ν = 1/3 (1,1,2,1,1,1), ν = 2/5 (1,1,2,1,0,0) and ν = 1/2
(1,4,2,1,1,1).
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5.5 Conclusion

We primarily studied the ν = 1/3 FQH state, considering various flux attachment
schemes parameterized by K . We considered the collective excitations for two classes
of variational states - the Töke-Jain sequence [143], parameterized by (ν∗,k) and the
MMS sequence [145, 176], parameterized by (k, m, n). We found that the MMS states
displayed a larger q → 0 gap, ωg , and a larger magnetoroton gap than the Töke-Jain
states for the variational states we considered. For the MMS states we considered, we
found that increasing k, m or n generally reduced ωg and the magnetoroton gap.

Within the framework of the Chern-Simons theory that we use to obtain the col-
lective excitation spectrum, the larger gaps we find for MMS states with low values of
(k, m, n) suggest that these are likely to be the most stable FQH states. However, there is
the caveat that as a mean-field like theory, the Chern-Simons approach will almost cer-
tainly over-estimate energy gaps and it is unknown whether fluctuations beyond mean
field theory will differ between Töke-Jain and MMS states, although we see no a priori
reason why they should be significantly different in the two cases.

We compared the excitation spectra for MMS states for several different fractions,
ν = 1/3, 2/5 and 1/2. The true nature of the ground states for these fractions are
not currently known [171, 176]. Hence we considered a variety of variational ground
states of the MMS type that give rise to incompressible states at these fractions. We
compared excitations for states with the same flux attachment scheme (fixed (k, m, n)),
but different composite fermion LL fillings (corresponding to differing order parame-
ters (C , F, N)). We also compared excitations for states with the same order parameters
(C , F, N) but different flux attachment schemes. The ordering of the states in terms of
which had the largest gap ωg is different in the two cases. Experimental observations
(Fig. S14a in Ref. [176]) show the ν = 1/3 and ν = 1/2 states persisting to a temper-
ature of T = 2.0 K, while the ν = 2/5 state is no longer present at that temperature.
Our calculation of the collective mode spectra do not take into account temperature de-
pendence of the order parameters C , F and N and so it is not possible to make a direct
comparison between our results and experiment. However, we do give an example of
states which lead to the same ordering in ωg as the stability of the experimental states
in Fig. 5.8.

In addition to the energy scales associated with the collective excitations, the posi-
tion of the magnetoroton minimum is also a quantity of interest. Previous work [169,
195–197] has elaborated on the position of the magnetoroton minimum for fractions in
the Jain sequence, ν= s/(2s+1), and it was found that for low values of s the minimum
was located around qlB ∼ 1. Ref. [196] calculated the positons of minima for n = 0,1
LLs in graphene. This is in agreement with our observations in Sec. V, although we find
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that for both Töke-Jain and MMS states, there may be secondary and tertiary minima
for qlB ∼ 1.7 and qlB ∼ 2 respectively.

In our calculations here we have shed some light on collective excitations for certain
classes of FQH states in graphene. The approach we have taken is restricted to order
parameters that can be written in terms of just spin and valley degrees of freedom, such
as CDW, Néel AFM and ferromagnetic order, For more general orders that may require
an eight component Dirac fermion description, such as in-plane antiferromagnetism
[130] or partially sublattice polarized (PSP) order [176], we are unable to calculate the
collective excitation spectra. This is because for those more general orders, the order
parameter leads to a problem which is mathematically equivalent to one in which one
is trying to calculate the collective excitations in a system where there is tunnelling
between two separate FQH systems. We are not aware of any succesful attempts to use
Chern-Simons approaches to calculate collective excitation spectra in FQH systems with
tunnelling between layers. Whilst there is a hope that collective excitations might allow
different patterns of symmetry breaking to be distinguished, our results show that at
least for the types of symmetry breaking we considered, there are not strong qualitative
differences in the dispersions that depend on the symmetry breaking order. Figures 5.6
and 5.7 demonstrate that the flux attachment scheme has more impact on the dispersion
than the order parameters we considered. It would be interesting to see if other patterns
of symmetry breaking also lead to similar collective excitations. Additionally, including
the effects of quantum fluctuations beyond mean field theory would be an interesting
avenue to explore in future work.
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Chapter 6

Summary and Outlook

The integer quantum Hall effect in graphene is different from the conventional IQHE in
semiconductors (e.g. GaAs) owing to the relativistic nature of the electrons in graphene.
In graphene the orbital wavefunctions (or form factors) for the zeroth Landau level
(ZLL) are identical to the wavefunctions for the lowest Landau level in semiconductor
systems. Hence the FQHE in graphene in the ZLL is expected to be similar to the FQHE in
semiconductor systems. Thus the particular form of the LLs in graphene does not play a
role in the FQHE in graphene [198]. The differences in the FQHE arise due to the SU(4)
symmetry of the Landau levels in graphene and the symmetry breaking associated with
this SU(4) symmetry. The SU(4) symmetry lends to a multicomponent description of
FQH states in graphene [143, 149] which have been observed in experiments [55, 56].
Even denominator states for single component systems are compressible [95, 170] and
the same might be expected to be the case in graphene. On the other hand, due to
its SU(4) symmetric Landau levels graphene constitutes a multicomponent system and
hence supports an even denominator FQH state observed recently in experiments [171]
which was argued to be associated with a transition in the underlying isospin order
[199]. There have been several theoretical proposals in addition to our work [176] that
have attempted to explain the EDFQH states in graphene [200, 201].

In this thesis we have studied the fractional quantum Hall effect in graphene in
the presence of chiral symmetry breaking orders : charge density wave (C), easy-axis
Neél antiferromagnetic order (N) and ferromagnetic order (F). We proposed candidate
variational wavefunctions for EDFQH states at ν= 1

2 and ν= 1
4 observed in experiments

[171, 199]. Subsequently Indra et al. [200] studied the ground state energies of various
variational wavefunctions that we proposed and several other that we did not propose
by including the Coulomb interactions and they observed that for the ν= 1/2 state the
parameter set that had the lowest energy was the MMS state with (k, m, n) = (1,1, 2)
which is one of the states we suggested (in Table 4.1). In addition, they also found that
parameter set for states with the lowest energy for the ν= 1/2 state was related to the
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parameter set of lowest energy states for the ν= 1/4 state by the relation j→ j+1 for
j = k, m, n which is consistent with our results [176]. We also found that within these
set of flux attachment there is a degeneracy associated with the pattern of symmetry
breaking present in these states.

In an attempt to develop tools to distinguish between different broken symmetry
states we studied the excitation spectra of the FQH states within the formalism devel-
oped in Ref. [146]. We primarily studied the ν = 1/3 FQH state, considering various
flux attachment schemes parametrized by flux attachment matrix K . We studied the
collective excitations for the Töke-Jain states and the MMS states. We found that the
MMS states had a larger direct gap (q → 0), ωg , and a larger magnetoroton gap, ∆,
than the Töke-Jain states. Thereafter, focusing on MMS states we found that the gaps,
ωg , ∆, were larger for lower values of k, m and n. The positions of the minima con-
sidered were found to be in agreement with previous work which elaborated on the
postion of magnetoroton minimum for fractions in the Jain sequence, ν = s/(2s + 1)
[169, 195–197]. We also compared the excitation spectra for ν = 1/3, 2/5 and 1/2
states and provided examples of parameters that could explain the relative stability of
these states observed in experiments. Although the pattern of symmetry breaking does
have some impact, the excitation spectra are largely dominated by the flux attachment
scheme.

The work presented in this thesis leads to possible research directions for the future.
The Schiwnger-Keldysh method developed in Ref. [146] and used to study the collective
excitations in this thesis can be extended to include temperature dependence of FQH
states, effects of disorder on the FQH states and applied to out of equilibrium dynamics
in the FQH states considered here. In the context of traditional FQHE, Halperin, Lee
and Read [95] argued that gauge fluctuations of the Chern-Simons gauge field leads to
corrections in the effective mass, m∗, that describes low energy excitations. In the case
of graphene with massless Dirac fermions there is no obvious analogy that can be made.
Going beyond the mean field theory used in the thesis to include the effects of gauge
fluctuations will thus be an interesting area of investigation. The multicomponent flux
attachment scheme could be used to study the FQHE in multilayer graphene systems like
bilayer graphene, twisted bilayer graphene or multilayer graphene systems in general.

Finally, we did not find a clear way to distinguish the pattern of symmetry breaking
using collective excitations. A limitation of our approach is that we are restricted to
order parameters that are diagonal in the valley + spin subspace namely the C, F, and
N orders. More general orders like canted anti-ferromagnetic (CAF) order or partially
sublattice polarized (PSP) order that have been proposed for quantum Hall states in
the zeroth Landau level are non-diagonal in the valley + spin subspace. In Ref. [138]
the authors observed a continuous field-tuned phase transition from a valley ordered
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state to a inter-valley coherent state with a Kekulé distortion of the electronic density
at ν= 0. A Kekulé type order would also be non-diagonal in the valley + spin subspace.
The problem with including the off-diagonal orders is mathematically equivalent to
the one with tunneling between two separate FQH systems. This problem has not been
resolved and a future resolution to this problem will benefit the multicomponent system
considered in this thesis which can then be extended to include interlayer tunneling in
multilayered systems.
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Appendix A

Eigenstates of electrons in a magnetic
field in the symmetric gauge

In the symmetric gauge the vector potential, A, that gives rise to a magnetic field,
B= Bẑ is

A= −
1
2

r×B=
1
2
(−yBx̂+ xBŷ) . (A.1)

The symmetric gauge breaks translation symmetry in both x and y directions but pre-
serves rotational symmetry about the origin and hence angular momentum is a good
quantum number. We can define a new set of operators

π̃ππ= p− eA. (A.2)

Unlike the gauge invariant momentum operators in Eq. 2.11 these operators are not
gauge invariant. The operators π̃i; i = x , y satisfy commutation relations

�

π̃x , π̃y

�

= ieℏB; [πx , π̃x] = 2ieℏ
∂ Ax

∂ x
;
�

πy , π̃y

�

= 2ieℏ
∂ Ay

∂ y
; (A.3)

�

πx , π̃y

�

=
�

πy , π̃x

�

= ieℏ
�

∂ Ax

∂ x
+
∂ Ax

∂ x

�

.

In the symmetric gauge all the commutators except for the first one vanish

[πi, π̃ j] = 0. (A.4)

This allows us to define a new set of raising and lowering operators of the form

b =
1

p
2eℏB

(π̃x + iπ̃y); b† =
1

p
2eℏB

(π̃x − iπ̃y). (A.5)

These operators also obey the usual commutation relations of raising and lowering
operators; [b, b†] = 1. Along with the raising and lowering operators defined in Eq.
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2.13 a general state can be defined as

|n, m〉=
a†n b†m

p
n!m!
|0,0〉 . (A.6)

Introduce complex variables z = x− i y and z̄ = x+ i y and derivatives ∂ = 1/2(∂x+ i∂y)
and ∂̄ = 1/2(∂x − i∂y) which obey ∂ z = ∂̄ z̄ = 1 and ∂ z̄ = ∂̄ z = 0. Using these we can
redefine the raising and lowering operators as

a = −i
p

2
�

lB∂̄ +
z

4lB

�

; a† = −i
p

2
�

lB∂ +
z̄

4lB

�

; (A.7)

b = −i
p

2
�

lB∂ +
z̄

4lB

�

; b† = −i
p

2
�

lB∂̄ −
z

4lB

�

.

The lowest Landau level wavefunctions are annihilated by operator a and have the form

ΨLLL(z, z̄) = f (z)e−|z|
2/4l2

B , (A.8)

where f (z) is an analytic function.

States with a non-zero value of m, |0, m〉 can be constructed from the lowest Landau
level by acting on the states in Eq. A.8 with the operator b†. A unique state that is
annihilated by both a and b is given by

ΨLLL,m=0(z, z̄) = e−|z|
2/4l2

B . (A.9)

States with m ̸= 0 then have the form

ΨLLL,m ∼
�

z
lB

�m

e−|z|
2/4l2

B . (A.10)

These are eigenstates of the angular momentum operator

J = ℏ(z∂ − z̄∂̄ ), (A.11)

and acting on the lowest Landau level states gives

JΨLLL,m = ℏmΨLLL,m. (A.12)

States in higher Landau levels can be constructed by acting with the raising operator
a†.
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Appendix B

Guiding Centre, Landau Level Form
Factor and Pseudopotentials

In an external magnetic field, B, electrons have a cyclotron motion. The position of
an electron r = (x , y) can be decomposed into the guiding centre coordinate X and a
relative coordinate R as shown in Fig. B.1 and we define R and X as

Rx = −
Py

eB
; R y = +

Px

eB
; X = x − Rx ; Y = y − R y , (B.1)

and the relative coordinates and the guiding centre coordinates obey the commutation
relations

[Rx , R y] = [X , Y ] = −il2
B. (B.2)

The low energy Hamiltonian for a two-particle interaction in the nth Landau level is
given by Eq. 2.52 [106]. For an alternate definition of the projected density we first
define a projected field operator ψn as

ψn(x) =
∑

m

〈x|n, m〉 cn(m), (B.3)

where |n, m〉 was defined in Eq. A.6 and ψn and cn(m) act only in the nth Landau level
with cn(m) being the electron annihilation operator. Then, the projected density (in
momentum space) can be defined as [81]

ρn(q) =
1

2π

∑

m

∫

d2 x 〈n, m|x〉 eiq·x 〈x|n, m′〉 c†
n(m)cn(m). (B.4)

We can rewrite the position in terms of guiding center X and relative R coordinates
which commute with each other and simplify the projected density to find

ρn(q) =
1

2π

∑

m

∫

d2 x 〈n| eiq·R |n〉 〈m| eiq·X |m〉 c†
n(m)cn(m), (B.5)
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Figure B.1: The coordinate of an electron (x , y) can be decomposed into its guiding centre (X , Y )
and its relative coordinate R.

and if we make the following identification

Fn(q) = 〈n| eiq·R |n〉 ; ρ̂n(q) = 〈m| eiq·X |m〉 c†
n(m)cn(m), (B.6)

then we arrive at Eq. 2.53 given in the main text. The expression for the form factor
in Eq. 2.54 can be derived by noting that q · R = −i lBp

2
(qa† − q∗a) where a, a† are the

Landau level raising and lowering operator. Then using the Haussdorf formula eA+B =
eAeBe[B,A]/2 the form factor becomes

Fn(q) =
1
n!
〈0| ane−lBqa†/

p
2elBq∗a/

p
2(a†)n |0〉 . (B.7)

The general expression for the form factor is then

Fn̸=0(q) = Ln(l
2
B|q|

2/2)e−q2 l2
B/4; Fn=0(q) = e−q2 l2

B/4, (B.8)

which is the form given in Eq. 2.54.

100



Appendix C

Cofactors and determinant of matrix M

The determinant of M (Eq. 4.34) and co-factors listed below (along with the various
qi; i = 0, , 1 defined in Sec. 4.2.1) to determine the allowed fractions and order param-
eters. The cofactors are as follows

b11 = (1+ q1ν∗)(1− q1ν∗)
2 + 2q3

1νNνCνF + q2
1(ν

2
F + ν

2
N )(1− q1ν∗)− q2

1ν
2
C(1+ q1ν∗),

b12 = −q1νC(1− q1ν∗)
2 − 2q2

1νFνF(1− q1ν∗) + q3
1νC(ν

2
C − ν

2
Fν

2
N ),

b13 = 2q3
1ν∗νCνN + q1νF(1+ q1ν∗)(1− q1ν∗)− q3

1νF(ν
2
C − ν

2
Fν

2
N ),

b14 = q1νN (1+ q1ν∗)(1− q1ν∗)− q3
1νN (ν

2
C + ν

2
F − ν

2
N ) + 2q3

1ν∗νFνC ,

b21 = −q0νC(1− q1ν∗)
2 − 2q0q1νFνN (1− q1ν∗) + q0q2

1νC(ν
2
C − ν

2
F − ν

2
N),

b22 = (1+ q0ν∗)(1− q1ν∗)
2 + q0q2

1νFνCνN + q0q1(ν
2
F + ν

2
N )(1− q1ν∗)− q2

1ν
2
C(1+ q0ν∗),

b23 = q1νN (1+ q0ν∗)(1− q1ν∗)− q0q2
1νN (ν

2
C + ν

2
F − ν

2
N )− q0q1νFνC(1− q1ν∗)

+q2
1νCνF(1+ q0ν∗),

b24 = q2
1νCνN (1+ q0ν∗)− q0q1νCνN (1− q1ν∗)− q0q2

1νF(ν
2
C − ν

2
F + ν

2
N )

+q1νF(1+ q0ν∗)(1− q1ν∗),

b31 = −2q0q2
1ν∗νCνN + q0q2

1νF(ν
2
C − ν

2
F + ν

2
N )− q0νF(1+ q1ν∗)(1− q1ν∗),

b32 = −q1νN (1+ q0ν∗)(1− q1ν∗) + q0q2
1νN (ν

2
C + ν

2
F − ν

2
n) + q0q1νCνF(1− q1ν∗)

−q2
1νCνF(1+ q0ν∗),

b33 = (1+ q0ν∗)(1+ q1ν∗)(1− q1ν∗)− 2q0q2
1νCνFνN + q0q1ν

2
N (1+ q1ν∗)− q0q1ν

2
C(1− q1ν∗)

+q2
1ν

2
F(1+ q0ν∗),

b34 = q1νC(1+ q0ν∗)(1+ q1ν∗)− q0q1νFνN (1+ q1ν∗)− q0q2
1νC(ν

2
c − ν

2
F − ν

2
N )

−q2
1νFνN (1+ q0ν∗),
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b41 = q0q2
1νN (ν

2
C + ν

2
F − ν

2
N )− q0νN (1+ q1ν∗)(1− q1ν∗)− 2q0q2

1ν∗νCνF(1+ q1ν∗),

b42 = −q2
1νCνN (1+ q0ν∗) + q0q1νCνN (1− q1ν∗) + q0q2

1νF(ν
2
C − ν

2
F + ν

2
N )

−q1νF(1+ q0ν∗)(1− q1ν∗),
b43 = q1νC(1+ q0ν∗)(1+ q1ν∗)− q0q1νFνN (1+ q1ν∗)

−q0q2
1νC(ν

2
C − ν

2
F − ν

2
N )− q2

1νFνN (1+ q0ν∗),

b44 = (1+ q0ν∗)(1+ q1ν∗)(1− q1ν∗)− 2q0q2
1νCνNνF + q0q1ν

2
F(1+ q1ν∗)

−q0q1ν
2
C(1− q1ν∗) + q2

1ν
2
N (1+ q0ν∗), (C.1)

and the determinant is given by

det(M) = (1+ q0ν∗)(1+ q1ν∗)(1− q1ν∗)
2 + q3

1νCνF(νF + νN )(1+ q0ν∗)

+q2
1(ν

2
F + ν

2
N)(1+ q0ν∗)(1− q1ν∗)− q2

1ν
2
C(1+ q0ν∗)(1+ q1ν∗)− q0q1ν

2
C(1− q1ν∗)

2

−4q0q2
1νCνFνN (1− q1ν∗) + q0q3

1(ν
4
C + ν

4
F + ν

4
N )− 2q0q3

1ν
2
Fν

2
N

+q0q1(ν
2
F − νFνN + ν

2
N )(1+ q1ν∗)(1− q1ν∗)− 2q0q3

1ν
2
C(ν

2
F + ν

2
N )

+q0q2
1νCνFνN (1+ q1ν∗). (C.2)
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Appendix D

Schwinger-Keldysh Technique

In this appendix 1 we provide a brief overview of the Green’s functions arising in the
Schwinger-Keldysh formalism and then discuss the Keldysh rotation to the physical real
time representation.

D.0.1 Green’s Functions for Schwinger Keldysh Technique

In the Schwinger-Keldysh technique the time arguments are promoted to contour (Schwinger-
Keldysh contour [191, 192, 202, 203]) times that lie along a closed time contour starting
at some reference point t0 and extending to +∞ and then returning to the reference
point t0 as shown in Fig. ??. Operators (Ô) in this case are split into two, Ô±, depending
on whether their time argument lies on the forward, Ô+, or backward (return) contour,
Ô−. Time ordering of operators is replaced by path ordering. In path ordering field op-
erators with a "higher" value of contour time are placed to the right of operators with a
"lower" contour time as illustrated in Fig. D.1

The single particle Green’s function has the form:

G(r, t; r′, t ′) = −i〈TCψ(r, t)ψ†(r′, t ′)〉, (D.1)

where TC is the contour-time ordering operator given by

TC (ψ(r, t)ψ†(r′, t ′)) =

(

ψ(r, t)ψ†(r′, t ′), t
C
> t ′, (D.2)

±ψ†(r′, t ′)ψ(r, t), t’
C
> t (D.3)

1The material in this Apendix is primarily based on Refs. [191, 192, 202, 203].
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Figure D.1: In path ordering field operators containing contour time t2 appears to the right of
operators containing contour time t1.

where t
C
≥ t ′ means that t is further along the contour than t ′ irrespective of their

corresponding numerical values on the real axis. The + sign corresponds to the field
operators being boson and the − sign to fermions. In terms of contour ordering we can
introduce "greater" and "lesser" Green’s functions as

G(r, t; r′, t ′) =

¨

G<(r, t; r′, t ′), t’
C
> t, (D.4)

G<(r, t; r′, t ′), t
C
> t’. (D.5)

For Green’s functions that depends on two contour-time variables the time variables can
either both belong to the forward contour C+ or the backward contour C− or a mix of
both. Thus the contour ordered Green’s function can be mapped onto a 2× 2 matrix in
the Schwinger-Keldysh space

G(r, t; r′, t ′) =
�

G++(r, t; r′, t ′) G+−(r, t; r′, t ′)
G−+(r, t; r′, t ′) G−−(r, t; r′, t ′)

�

=

�

GT (r, t; r′, t ′) G<(r, t; r′, t ′)
G>(r, t; r′, t ′) G T̃ (r, t; r′, t ′)

�

.

(D.6)

The elements of the matrix are the time ordered, lesser, greater and the anti-time or-
dered Green functions and they are defined as

GT (r, t; r′, t ′) = −i〈Tψ(r, t)ψ†(r′, t ′)〉, (D.7)
G<(r, t; r′, t ′) = ±i〈ψ(r′, t ′)ψ†(r, t)〉, (D.8)
G>(r, t; r′, t ′) = −i〈ψ(r, t)ψ†(r′, t ′)〉, (D.9)

G T̃ (r, t; r′, t ′) = −i〈T̃ψ(r, t)ψ†(r′, t ′)〉. (D.10)

The time ordered and anti-time ordered Green’s functions can also be defined in terms
of step functions as

GT (r, t; r′, t ′) = −iθ (t − t ′)〈Tψ(r, t)ψ†(r′, t ′)〉 ± iθ (t ′ − t)〈ψ(r′, t ′)ψ†(r, t)〉, (D.11)
GT (r, t; r′, t ′) = −iθ (t ′ − t)〈Tψ(r, t)ψ†(r′, t ′)〉 ± iθ (t − t ′)〈ψ(r′, t ′)ψ†(r, t)〉. (D.12)
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The four Green’s functions in, Eq. D.6 are not linearly independent and obey the identity

G++(r, t; r′, t ′) + G−−(r, t; r′, t ′) = G+−(r, t; r′, t ′) + G−+(r, t; r′, t ′), (D.13)

or
GT (r, t; r′, t ′) + G T̃ (r, t; r′, t ′) = G>(r, t; r′, t ′) + G<(r, t; r′, t ′). (D.14)

D.0.2 Real Time Representation

Equations D.13 and D.14 imply that there exists a transformation to basis with only
three, linearly independent, Green’s functions. Such a linear transformation is called
the real time representation and is given by [191, 192, 202, 203]

τ1 L Ĝ (τ1 L)−1 =
�

GK GR

GA 0

�

, (D.15)

where Ĝ is the 2× 2 matrix form of Green’s function in Eq. D.6 written in a compact
form. τ1 and L are given by

τ1 =
�

0 1
1 0

�

; L =
1
p

2

�

1 −1
1 1

�

. (D.16)

The Green’s functions in Eq. D.15 are called Keldysh, GK , retarded, GR and the advanced,
GA respectively. Under the same transformation operators we obtain a new set of double
operators Ôcl , Ôq defined by [191, 192, 202, 203]

Ôcl =
1
p

2
(Ô+ + Ô−); Ôq =

1
p

2
(Ô+ − Ô−), (D.17)

where the subscripts cl and q stands for classical and quantum components respectively.
The Keldysh, advanced and retarded Green’s functions are given by

GR =
1
2
(GT − G< + G> − G T̃ ), (D.18)

GA =
1
2
(GT + G< − G> − G T̃ ), (D.19)

GK =
1
2
(GT + G< + G> + G T̃ ), (D.20)

and they obey the relations

(GR)† = GA; (GK)† = −GK , (D.21)

as well as the causality relations

GR(r, t; r′, t ′) = 0, if t< t′, (D.22)
GA(r, t; r′, t ′) = 0, if t> t′. (D.23)
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Appendix E

Components of the Electromagnetic
Response Tensor

The expression for the electromagnetic response tensor is given by (restoring the index
structure while suppressing the species index of the tensors)

Kµν = Πµν −Πµδ
�

(M)−1
�

δγ
Πνγ, (E.1)

where µ,ν,δ,γ= 0,1, 2 and we have defined M̂ to be

Mµν = Πµν +Cµν +Gµν. (E.2)

Ĉ and Ĝ are :
Ĉ=K −1εµνλ∂⃗λ; Ĝ=

1
2α
(∂µaµ)2 gµν, (E.3)

where the arrow on the derivative, ∂⃗λ, in Ĉ indicates that the differential operator acts
on terms to the left. Ĉ is antisymmetric i.e., Cµν = 0 if µ= ν. Π̂ is given by the expres-
sion :

Π00
αβ
(ω,q) = q2Π0

αβ
, (E.4)

Π01
αβ
(ω,q) = ωq1Π0

αβ
(ω,q) + iq2Π

1
αβ
(ω,q), (E.5)

Π02
αβ
(ω,q) = ωq2Π0

αβ
(ω,q)− iq1Π

1
αβ
(ω,q), (E.6)

Π10
αβ
(ω,q) = ωq1Π0

αβ
(ω,q)− iq2Π

1
αβ
(ω,q), (E.7)

Π11
αβ
(ω,q) = ω2Π0

αβ
(ω,q) + q2

2Π
2
αβ
(ω,q), (E.8)

Π12
αβ
(ω,q) = +iωΠ1

αβ
(ω,q)− q1q2Π2

αβ
(ω,q), (E.9)

Π20
αβ
(ω,q) = ωq2Π0

αβ
(ω,q) + iq1Π

1
αβ
(ω,q), (E.10)

Π21
αβ
(ω,q) = −iωΠ1

αβ
(ω,q)− q2q1Π2

αβ
(ω,q), (E.11)

Π22
αβ
(ω,q) = ω2Π0

αβ
(ω,q) + q2

1Π
2
αβ
(ω,q). (E.12)

(E.13)
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The tensor M̂ has nine components (six are independent) as follows:

M00 = −q2Π0 +
ω2

α
, (E.14)

M01 = −ωq1Π
0 + iq2(Π

1 +K −1)−
ωq1

α
, (E.15)

M02 = −ωq2Π
0 − iq1(Π

1 +K −1)−
ωq2

α
, (E.16)

M10 = −ωq1Π
0 − iq2(Π

1 +K −1)−
ωq1

α
= (M10)∗, (E.17)

M11 = −ω2Π0 + q2
2Π

2 +
q2

1

α
, (E.18)

M12 = −q1q2Π
2 − iω(Π1 +K −1) +

q1q2

α
, (E.19)

M20 = −ωq2Π
0 + iq1(Π

1 +K −1)−
ωq2

α
= (M02)∗, (E.20)

M21 = −q1q2Π
2 + iω(Π1 +K −1) +

q1q2

α
= (M12)∗, (E.21)

M22 = −ω2Π0 + q2
1Π

2 +
q2

2

α
, (E.22)

The determinant of the matrix form of M̂ is

det(M) =
1
α3
{[(q2

2 +Π
2q2

1α+Π
0αω2)(Π0q2q2

1α− (Π
1 +K −1)2q2

2α−Π
0Π2q2q2

2α
2

+2Π0q2
1αω

2 +Π2q2
2αω

2 +Π2q2α2ω2 − (Π0)2q2
1α

2ω2 + (Π0)2αω4)]

[−(q1q2 −Π2q1q2α+ iω(Π1 +K −1))(−(−i(Π1 +K −1)α− q1ω+Π
0q1αω)

(−i(Π1 +K −1)α− q2ω+Π
0q2αω)

+(q1q2 −Π2q1q2α− iαω(Π1 +K −1))(Π0q2α+ω2))]
+[(iq1α(Π

1 +K −1)− q2ω+Π
0q2αω)((q1q2 −Π2q1q2α− iαω(Π1 +K −1))

(iq2α(Π
1 +K −1)− q1ω+Π

0q1αω)
−(−iαq1(Π

1 +K −1 − q2ω+Π
0q2αω))(q

2
1 +Π

2q2
2α+Π

0αω2))]}, (E.23)

which can be simplified to get the expression

det(M) =
1
α
(q2 +ω2)2

�

ω2(Π0)2 + q2Π0Π2 − (Π1 +K −1)2
�

. (E.24)
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For convenience of notation we define the inverse M̂−1 = L̂ whose components are

L00 = −
Π2(q2)(q2 +Π0αω2) +ω2(Π0(q2)− (Π1 +K −1)2α+ (Π0)2αω2)

α det(M)
,

L01 =
q1αω((Π1)2 + (K −1)2)− iq2(q2 +ω2)(Π1 +K −1)

α det(M)
+2Π1(K −1)q1αω− q1(−1+Π0α)ω(Π2q2 +Π0ω2)

α det(M)
,

L02 =
q2αω((Π1)2 + (K −1)2)− iq1(q2 +ω2)(Π1 +K −1)

α det(M)

+
2Π1(K −1)q2αω− q2(−1+Π0α)ω(Π2q2 +Π0ω

2)
α det(M)

,

L10 =
q1αω((Π1)2 + (K −1)2) + iq2(q2 +ω2)(Π1 +K −1)

α det(M)

+
2Π1(K −1)q1αω− q1(−1+Π0α)ω(Π2q2 +Π0ω2)

α det(M)
,

L11 =
(Π0)2q2

1αω
2 − q2

1((Π
1 +K −1)2α−Π2ω2) +Π0(Π2q2

1q2α+ q2
1q2

2 + (q
2
2 +ω

2)2)

α det(M)
,

L12 = q1q2
(−α(Π1 +K −1)2 + iω(q2 +ω2)(Π1 +K −1)

α det(M)

+q1q2
ω2((Π0)2α+Π2) +Π0(q2(−1+αΠ2)− 2ω2)

α det(M)
,

L20 =
q2αω((Π1)2 + (K −1)2) + iq1(q2 +ω2)(Π1 +K −1)

α det(M)

+
2Π1(K −1)q2αω− q2(−1+Π0α)ω(Π2q2 +Π0ω2)

α det(M)
,

L21 =
q1q2

�

−α(Π1 +K −1)2 − iω(q2 +ω2)(Π1 +K −1)
�

α det(M)

+q1q2
ω2((Π0)2α+Π2) +Π0(q2(−1+αΠ2)− 2ω2)

α det(M)
,

L22 =
q2

2((Π
0)2αω2 −α(Π1 +K−1)2 +Π2ω2) +Π0((q2

1 +ω
2)2 + q2

2(q
2
1 +Π

2q2
2α(1+ q2

2)))

α det(M)
.

(E.25)
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With L−1 we finally have (from Eq. E.1) the components of K:

K00 = q2
�

−(K −1)2Π0

D

�

, (E.26)

K01 = −q1ω

�

−Π0(K −1)2

D

�

+ iq2

�

K −1 +
(K −1)2(Π1 +K −1)

D

�

, (E.27)

K02 = q2ω

�

−(K −1)2Π0

D

�

− iq1

�

K −1 +
(K −1)2(Π1 +K −1)

D

�

, (E.28)

K10 = q1ω

�

−Π0(K −1)2

D

�

− iq2

�

K −1 +
(K −1)2(Π1 +K −1)

D

�

, (E.29)

K11 = ω2
�

(−K −1)2Π0

D

�

+ q2
2

�

(K −1)2Π2

D

�

, (E.30)

K12 = −q1q2

�

−Π2(K −1)2

D

�

− iω
�

K −1 +
(K −1)2(Π1 +K −1)

D

�

, (E.31)

K20 = q2ω

�

−(K −1)2Π0

D

�

+ iq1

�

K −1 +
(K −1)2(Π1 +K −1)

D

�

, (E.32)

K21 = −q1q2

�

−Π2(K −1)2

D

�

+ iω
�

K −1 +
(K −1)2(Π1 +K −1)

D

�

, (E.33)

K22 = ω2
�

(−K −1)2Π0

D

�

+ q2
1

�

(K −1)2Π2

D

�

. (E.34)

where D is the denominator matrix referred to in the text. D is given by

D = (Π0)2ω2 +Π0Π2q2 − (Π1 +K −1)2. (E.35)

We define the following terms:

K0 = −
Π0(K −1)2

D
, (E.36)

K1 = K −1 +
(K −1)2(Π1 +K −1)

D
, (E.37)

K2 = −
Π2(K −1)2

D
. (E.38)

In terms of the scalars, K0,K1,K2 the electromagnetic tensor can be decomposed and
has the same form as the polarization tensor :

K00(ω,q) = q2K0, (E.39)
K0i(ω,q) = ωqiK0(ω,q) + iε0i jq jK

1(ω,q), (E.40)

Ki0(ω,q) = ωqiK0(ω,q)− iε0i jq jK
1(ω,q), (E.41)

Ki j(ω,q) = ω2δi jK0
αβ
(ω,q) + iε0i jωK1(ω,q)

+(δi jq2 − qiq j)K2(ω,q). (E.42)
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Appendix F

Calculation of Polarization Tensor and
Denominator matrix

In this appendix we give more details on the calculation of the polarization tensor that
we use to find collective modes. We begin with Eq. (5.27) for the electromagnetic re-
sponse tensor

K= Π−Π(Π+C+G )−1Π, (F.1)

where Π is the polarization tensor, C is the Chern-Simons tensor and G is a gauge fixing
term added to the Lagrangian to make the inverse term finite. As mentioned in Sec. IV,
due to the transverse nature of the polarization tensor it can be decomposed in terms
of scalars, Π0, Π1 and Π2, as shown in Eq. 5.21. Here we are interested in the retarded
component of the polarization tensor (Πi)R and for simplicity we have dropped the R.

In the presence of chiral symmetry breaking orders the polarization tensor can be ex-
pressed as [146, 204]:

Πµν
α
(ω,q) =

1
32π2l4

α

∞
∑

n,n′=0

∑

λ,λ′=±1

F λλ
′

n,n′ (T,µα)

ω−λ
q

n+∆2
gω

α
c +λ

′
q

n′ +∆2
gω

α
c

×
∫

∆r

e−iq·∆re−∆r2/l2
αTr

�

σµ
α
Mα

n (λ∆r)σν
α
Mα

n′(−λ
′
∆r′)

�

, (F.2)

with

F λλ
′

n,n′ (T,µα) = tanh

 

λ
′q

n′ +∆2
gω

α
c −µα

2T

!

− tanh

 

λ
q

n+∆2
gω

α
c −µα

2T

!

. (F.3)

Here, T is the temperature, ∆g is the gap arising from linear combinations of mα and
fα, µα is the chemical potential of species α, λ(λ

′
) = ±1 refers to the conduction (+1)
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band or valence (−1) band, σµ
α
= (σ0,καvFσ1,καvFσ2), ωc =

p
2 vF

lα
and

Mα
n (λ∆r) =P+L0

n

�

∆r2

2lα

�

+P−L0
n−1

�

∆r2

2lα

�

+ i
λκ
p

2lα

σ ·∆r
p

n
L1

n−1

�

∆r2

2lα

�

, (F.4)

where Lk
n is a generalized Laguerre polynomial and P± are projection operators on the

sublattice space defined as:

P± =
1
2

�

σ0 ± sign(eBeff
α
)σ3

�

. (F.5)

The scalars Π0, Π1 and Π2 are given by:

Π0
α
(ω, q⃗) =

−1
32π2l4

α
q⃗2

∞
∑

n,n′=0

∑

λ,λ′=±1

F λλ
′

n,n′ (T,µα)

ω−λ
q

n+∆2
gω

α
c +λ

′
q

n′ +∆2
gω

α
c

×
�

I0
n−1,n′(Qα) + I0

n,n′−1(Qα) +
2λλ

′

p
nn′

I1
n−1,n′−1(Qα)

�

, (F.6)

Π1
α
(ω, q⃗) = −

v2
F

32π2l4
α
ω

∞
∑

n,n′

∑

λ,λ‘=±1

F λλ′n,n′ (T,µα)

ω−λ
q

n+∆2
gω

α
c +λ

′
q

n′ +∆2
gω

α
c

�

I0
n−1,n′(Qα)− I0

n,n′−1(Qα)
�

,

(F.7)

Π2
α
(ω, q⃗) =

v2
F

32π2l2
α

∞
∑

n,n′=0

∑

λ,λ′=±1

F λλ′n,n′ (T,µα)

ω−λ
q

n+∆2
gω

α
c +λ

′
p

n′ωαc

�

2λλ
′

p
nn′
∂ 2
Qα

Ĩ1
n−1,n′−1(Qα)

�

.

(F.8)
The terms I k

n,n′ and Ĩ k
n,n′ are given by [146]

I k
n,n′(Qα) = 2πℓ2

α
Q(n>−n<)
α

e−Qα
(n< + k)!

n>!
L(n>−n<)

n<
(Qα)L

(n>−n<)
(n<+k) (Qα), (F.9)

Ĩ1
n−1,n′−1(Qα) =

n−1
∑

m=0

n′−1
∑

m′=0

I0
m,m′(Qα), (F.10)

where Qα = q2l2
B/2, n< = min{n, n′} and n> = max{n, n′}. Clearly both Ĩ k

n−1,n′−1(Qα)
and I k

n,n′(Qα) are symmetric in the indices n and n′.

F.1 Sums of Laguerre Polynomials

To evaluate the scalars, Π0, Π1 and Π2 we have to evaluate sums of the form
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Sb =
∞
∑

n,n′=0

∑

λ,λ′=±1

tanh
�

λ′
p

n′+∆2
gω

α
c −µα

2T

�

− tanh
�

λ
p

n+∆2
gω

α
c −µα

2T

�

(ω± i0)−λ
q

n+∆2
gω

α
c +λ′

q

n′ +∆2
gω

α
c

T k,b
n,n′ , (F.11)

and of the form

Sb
1 =

∞
∑

n,n′=0

∑

λ,λ′=±1

2λλ′
p

nn′

tanh
�

λ′
p

n′+∆2
gω

α
c −µα

2T

�

− tanh
�

λ
p

n+∆2
gω

α
c −µα

2T

�

(ω± i0)−λ
q

n+∆2
gω

α
c +λ′

q

n′ +∆2
gω

α
c

T k,b
n,n′ , (F.12)

where b = 0, 1,2. The T k,b
n,n′ are terms involving I k

n,n′ , Ĩ k
n,n′ present in Πb . We have,

nF(ξ) = 1/2
�

1− tanh
�

β

2
ξ

��

⇒ tanh
�

β

2
ξ

�

= 1− 2nF(ξ),

where nF(ξ) is the Fermi-Dirac distribution and in the limit T → 0, nF becomes a step
function and we can write the sum as

Sb = 2
∞
∑

n,n′=0

∑

λ,λ‘=±1

Θ(λ
q

n+∆2
gω

α
c −µα)−Θ(λ

‘
q

n′ +∆2
gω

α
c −µα)

(ω± i0)−λ
q

n+∆2
gω

α
c +λ′

q

n′ +∆2
gω

α
c

T k,b
n,n′ . (F.13)

Now, depending on whether λ,λ′ is ± we have 4 different possible terms. The chemical
potential can be either positive or negative. We begin with the case for positive chemical
potential.

F.1.1 Positive Chemical Potential

Evaluating Sb for µα > 0 gives

Sb = 2
β
∑

n′=0

∞
∑

n=β+1

1

(ω± i0)−
q

n+∆2
gω

α
c +

q

n′ +∆2
gω

α
c

T k,b
n,n′

−2
β
∑

n=0

∞
∑

n′=β+1

1

(ω± i0)−
q

n+∆2
gω

α
c +

q

n′ +∆2
gω

α
c

T k,b
n,n′

−2
∞
∑

n=0

∞
∑

n′=β+1

1

(ω± i0) +
q

n+∆2
gω

α
c +

q

n′ +∆2
gω

α
c

T k,b
n,n′

+2
β
∑

n′=0

∞
∑

n=β+1

1

(ω± i0)−
q

n+∆2
gω

α
c −

q

n′ +∆2
gω

α
c

T k,b
n,n′ , (F.14)
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with β = ⌊ µ
2
α

(ωαc )2
⌋.

F.1.2 Negative Chemical Potential

Evaluating for Sb for µα < 0 gives

Sb = 2
∞
∑

n=0

∞
∑

n′=β+1

1

(ω± i0)−
q

n+∆2
gω

α
c −

q

n′ +∆2
gω

α
c

T k,b
n,n′

−2
β
∑

n=0

∞
∑

n′=0

1

(ω± i0) +
q

n+∆2
gω

α
c +

q

n′ +∆2
gω

α
c

T k,b
n,n′

+2
β
∑

n=0

∞
∑

n′=β+1

1

(ω± i0) +
q

n+∆2
gω

α
c −

q

n′ +∆2
gω

α
c

T k,b
n,n′

−2
β
∑

n′=0

∞
∑

n=β+1

1

(ω± i0) +
q

n+∆2
gω

α
c −

q

n′ +∆2
gω

α
c

T k,b
n,n′ . (F.15)

Since the terms I k
n,n′ and Ĩ k

n,n′ are symmetric in n and n′, the expressions for the sums are
exactly the same for µα > 0 and µα < 0 if we exchange n and n′ which are just dummy
variables. We can hence simplify Sb further by combining the terms carefully to get the
final expressions as:

Sb =



2
β
∑

n′=0

∞
∑

n=β+1

2
q

n+∆2
gω

α
c

�

(ω)2 − (n− n′)(ωαc )
2
�

ω4 −ω2(ωαc )2(n+ n′ + 2∆2
g) + (n− n′)2(ωαc )4



 T k,b
n,n′

+



2
∞
∑

n′=β+1

∞
∑

n=β+1

2ωαc (
q

n+∆2
g +
p

n′ +∆2
g)

ω2 − (ωαc )2(
q

n+∆2
g +

q

n′ +∆2
g)2



 T k,b
n,n′ . (F.16)

Our expression for Π1 [Eq. (F.6)] then becomes:

Π1
α
= −

v2
F

32π2l4
α
ω

S1. (F.17)

In Π0 and Π2 [Eq. (F.6)] and [Eq. (F.8)] respectively, we have a multiplicative factor of
2λλ
′

p
nn′

. Taking into account the multiplicative factor we get the sum, Sb
1 , over λ,λ′ and

n, n′ to be:
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Sb
1 =



−4
∞
∑

n=0

∞
∑

n′=β+1

1
p

nn′

ωαc (
q

n+∆2
g +

q

n′ +∆2
g)

ω2 − (
q

n+∆2
g +

q

n′ +∆2
g)2(ωαc )2



 T k,b
n,n′

+



4
β
∑

n′=0

∞
∑

n=β+1

1
p

nn′

ωαc (
q

n+∆2
g −

q

n′ +∆2
g)

ω2 − (
q

n+∆2
g −

q

n′ +∆2
g)2(ωαc )2



 T k,b
n,n′ . (F.18)

With this we can write down the expression for Π0 as,

Π0
α
= −

1
32π2l4

α
q2
[S0 + S0

1]. (F.19)

Similarly, Π2 is given by,

Π2
α
=

v2
F

32π2l2
α

(S2
1). (F.20)
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Appendix G

Excitation Spectra

The numerical results, Fig. 5.2 - 5.8, exhibit a sharp increase of the energy of the low-
lying excitations at the largest wavenumbers shown. We consider larger values of qlB,
in which case we can see that the sharp increase is the right edge of the magnetoroton
minima, and for larger values of qlB the dispersion flattens out. This is illustrated in the
Fig. G.1

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2  2.5  3

ω
/ω

c

qlB

ν=1/3, (k,m,n,C,F,N)=(2,3,4,1,1,1)

Figure G.1: Location of poles as a function of ω
ωc

and qlB for ν = 1/3 for the parameter set
defined in the text (k, m, n, C , N , F) = (2, 3,4, 1,1,1).
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