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Abstract

In physical and computer experiments, factorial designs and space-filling designs are fre-

quently employed to explore the relationship between several input factors and a response

variable. Several new developments for these designs are documented in this thesis.

Generalized resolution, projectivity, and hidden projection property are useful measures to

evaluate a factorial design, especially when only a few factors are believed to be active a

priori. In this thesis, we substantially expand existing theoretical results on these topics

by examining designs from Paley’s constructions of Hadamard matrices. Next, we study

two-level factorial experiments where the two levels are symmetrical for some factors but

asymmetrical for other factors. A mixed parametrization of factorial effects is proposed for

such situations. For robust estimation of main effects, we introduce two minimum aberration

criteria and provide theoretical and algorithmic constructions of optimal and nearly optimal

designs under these criteria.

Space-filling designs based on orthogonal arrays are attractive for computer experiments.

However, it’s not very clear how they perform under other space-filling criteria. In this

thesis, we justify the use of these designs under a broad class of space-filling criteria in-

cluding those of distance, orthogonality and discrepancy. Based on the theoretical results,

we investigate various constructions of space-filling orthogonal array-based designs. Finally,

we develop a construction method of space-filling designs using nonregular designs. Designs

obtained this way have very flexible run sizes as compared to those constructed from regular

designs.

Keywords: Baseline parametrization; mappable nearly orthogonal array; minimum aber-

ration; non-empty-cell design; orthogonal array; strong orthogonal array
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Chapter 1

Introduction

Statistical methods are ubiquitous and indispensable in modern science. Typically, a statis-

tical investigation of a scientific problem consists of five steps (MacKay and Oldford, 2000):

(i) specifying the problem, (ii) planning research, (iii) collecting data, (iv) analyzing data

and (v) drawing conclusions. To be successful in this process, data should be carefully col-

lected in step (iii). A good set of data provides insights into the problem as well as benefits

for modelling and data analysis; on the other hand, useful conclusions can hardly be drawn

from a dataset that is of poor quality or otherwise irrelevant to the problem of concern.

Experimental design is a branch of statistics that studies the collection of data through

experimentation. Humans have a long history of acquiring knowledge from experiments, but

statistical principles for designing experiments only came into being around 100 years ago

due to Sir R. A. Fisher at the Rothamsted Experimental Station (Fisher, 1926). Over 100

years of evolution, the subject of experimental design has grown into a full-fledged research

field with abundant theory and diverse applications.

The development of the subject can be roughly divided into three stages (Wu, 2015). The

early use of experimental designs centered around agricultural applications, which gave rise

to several major subbranches such as block designs, factorial designs and crossover designs

(Fisher, 1935; Yates, 1936; Cochran, 1939). After the Second World War, the focus of the

subject gradually shifted to industrial experiments and quality improvement; examples of

significant progresses include the response surface methodology (Box and Wilson, 1951) and

robust parameter design (Taguchi, 1986). In the late 20th century, computers gave birth
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to virtual computer experiments which are becoming increasingly popular nowadays (Sacks

et al., 1989).

This thesis is devoted to design strategies for two classes of experiments, namely, factorial

experiments and computer experiments. We split this chapter into two sections to introduce

the two topics and outline contributions of the thesis.

1.1 Factorial experiments and orthogonal arrays

People have long been curious about the causal effects of several input factors over a response

variable. Problems of this kind can be explored by factorial experiments in which effects of all

the input factors are studied simultaneously. Factorial experiments were first advocated by

Fisher and Yates as opposed to traditional one-factor-at-a-time experiments, because they

are more efficient and also allow interactions among factors to be investigated (Cochran

and Cox, 1957; Cox, 1958).

In a factorial experiment, the number of level combinations grows geometrically as the

number of factors increases, and soon goes beyond that permitted by resources. This was re-

alized by Finney (1945) who introduced fractional replications to address the issue. Around

the same time, Plackett and Burman (1946) also proposed some highly fractionated facto-

rial designs for main effects estimation. The designs studied by Finney and Plackett and

Burman all belong to a general class of designs called orthogonal arrays (Rao, 1947).

Orthogonal arrays are elegant mathematical structures. As fractional factorial designs,

they are the most widely-used in practice, because they provide optimal estimation of lower-

order factorial effects when higher-order ones are negligible (Cheng, 1980). Since there are

many orthogonal arrays for given numbers of runs and factors, many criteria have been

developed for design selection. Among them the most popular ones are the resolution (Box

and Hunter, 1961) and minimum aberration criterion (Fries and Hunter, 1980), which were

extended to the generalized resolution and the minimum G- and G2-aberration criteria for

general two-level orthogonal arrays (Deng and Tang, 1999; Tang and Deng, 1999), and to

the generalized minimum aberration criterion for multilevel orthogonal arrays (Xu and Wu,

2001).
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There are two classes of orthogonal arrays known as regular designs and nonregular

designs. As compared with regular designs, nonregular designs have flexible run sizes and

are attractive in terms of generalized resolution, projectivity (Box and Tyssedal, 1996) and

hidden projection property (Wang and Wu, 1995). The criterion of generalized resolution

aims at eliminating the most severe aliasing among the important lower-order effects, while

the properties of projectivity and hidden projection evaluate a design by looking at its

projections onto low-dimensions. In Chapter 2, we conduct a comprehensive study on these

topics by examining three classes of designs that are obtained from Paley’s two constructions

of Hadamard matrices. In terms of generalized resolution, we complete the study of Shi and

Tang (2023) on strength-two designs by adding results on strength-three designs. In terms of

projectivty and hidden projection property, our results substantially expand those of Cheng

(1995, 1998) and Bulutoglu and Cheng (2003). For the purpose of practical applications, we

conduct an extensive search of minimum G-aberration designs from those with maximum

generalized resolutions and results are obtained for strength-two designs with 36, 44, 48,

52, 60, 64, 96 and 128 runs and strength-three designs with 72, 88 and 120 runs. A paper

containing these results has been submitted to Electronic Journal of Statistics and is under

the second round of review after some minor revision.

The next problem investigated in this thesis concerns the parametrization of factorial ef-

fects for two-level factorial experiments. The most commonly used factorial effects are those

given by the orthogonal parametrization (Box and Hunter, 1961). While such a parametriza-

tion is appropriate for experiments where the two levels of each factor are symmetrical, the

baseline parametrization is well suited for experiments where the two levels of each factor

are asymmetrical and one level, called a baseline level, is more important than the other

(Mukerjee and Tang, 2012). Chapter 3 considers a general situation where some factors

have a baseline level while others do not. A mixed parametrization of factorial effects is

proposed and its connection with the existing parametrizations is established. Under this

new parametrization, we show that orthogonal arrays continue to be optimal for estimating

main effects, and then put forward two minimum aberration criteria for further design se-

lection. Both theoretical and algorithmic constructions of minimum aberration designs are

3



examined and useful designs are obtained. The results of this chapter have been submitted

for publication.

1.2 Computer experiments and space-filling designs

Physical experiments can sometimes be too expensive or even impractical to implement.

With the advancement of computing science, computer experiments are playing an impor-

tant role as alternatives to physical experiments in modern experimentation.

In a computer experiment, a simulator is often employed to simulate a physical process,

where the simulator refers to computer codes described by, for example, complex differential

equations. To examine the relationship between input factors and a response, a set of design

points for input factors is selected to feed into the simulator and then the responses are

recorded. Based on these data, experimenters hope to build a cheap surrogate model for

the simulator because the simulation is often time-consuming. The design of computer

experiments concerns how to select design points so that information can be efficiently

collected (Fang et al., 2006; Santner et al., 2018).

Most of the simulators are deterministic; that is, the same sets of input values always

yield the same outputs. In addition, prior knowledge on the relationship between the input

factors and the response is seldom available. These features render space-filling designs most

useful for computer experiments. Broadly speaking, a space-filling design is a design that

scatters its points in the design region in some uniform fashion. Justifications for the use

of such designs can be found in Box and Draper (1959), Sacks and Ylvisaker (1984) and

Vazquez and Bect (2011).

Space-filling designs can be evaluated by numerous space-filling criteria such as those of

distance (Johnson et al., 1990), orthogonality (Owen, 1994) and discrepancy (Fang et al.,

2000), but theoretical constructions of optimal designs under these criteria are challeng-

ing. On the other hand, space-filling designs based on orthogonal arrays (Tang, 1993) are

attractive for they can easily be generated with desirable low-dimensional stratification

properties. However, it is not very clear how they behave and how to construct good such

designs under other space-filling criteria. In Chapter 4, we justify orthogonal array-based
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designs under a broad class of space-filling criteria, which include commonly used distance-,

orthogonality- and discrepancy-based measures. To identify designs with even better space-

filling properties, we partition orthogonal array-based designs into classes by allowable level

permutations and show that the average performance of each class of designs is determined

by two types of stratifications, with one of them being achieved by strong orthogonal arrays

of strength 2+ (He et al., 2018). Based on these results, we investigate various new and ex-

isting constructions of space-filling orthogonal array-based designs, including some strong

orthogonal arrays of strength 2+ and mappable nearly orthogonal arrays (Mukerjee et al.,

2014). The results of this chapter have been published in The Annals of Statistics (Chen

and Tang, 2022a).

The results of Chapter 4 show that strong orthogonal arrays of strength 2+ are appealing

because of their space-filling properties in two-dimensions. Most of previous work on strong

orthogonal arrays of strength 2+ focuses on the use of regular designs. In Chapter 5, we

develop a method of constructing space-filling designs using nonregular designs. Designs so

constructed have very flexible run sizes compared to those constructed from regular designs.

Apart from some theoretical results, computer searches are conducted to find space-filling

designs using two-level nonregular designs of up to 40 runs and three-level nonregular designs

of 27 and 54 runs. The results of the chapter have been published in Journal of Statistical

Planning and Inference (Chen and Tang, 2022b).
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Chapter 2

Nonregular Designs from Paley’s
Hadamard Matrices: Generalized
Resolution, Projectivity and
Hidden Projection Property

2.1 Introduction

Two-level orthogonal arrays are a very useful class of fractional factorial designs for the

planning of factorial experiments, especially for those studies that involve a large number of

factors. They can be classified into regular designs and nonregular designs. Regular designs

are easy to construct and have simple aliasing structures, but their run sizes are limited

to powers of two. By comparison, nonregular designs allow for more flexible run sizes and

also enjoy better statistical properties in terms of generalized resolution (Deng and Tang,

1999), projectivity (Box and Tyssedal, 1996), and hidden projection property (Wang and

Wu, 1995). We refer to Xu et al. (2009) for an excellent review on nonregular designs.

Shi and Tang (2018, 2023) investigated the theoretical construction of nonregular designs

with maximum generalized resolutions. Except for a special case, their results focus on

orthogonal arrays of strength two. Prior to Shi and Tang (2018, 2023), finding designs with

maximum generalized resolution is largely computational; see, for example, Schoen and Mee

(2012) and Schoen et al. (2017).

Among all the factors investigated in an experiment, very often only a few of them are

active. It is therefore important to examine the properties of a design when projected onto
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low dimensions. One way to characterize the projection properties of a design is through

the concept of projectivity (Box and Tyssedal, 1996). A design is said to have projectivity

h if its projection design onto any h factors contains all possible level combinations. For an

orthogonal array of strength t, the existing results can only be used to determine whether

or not it has projectivity t+ 1 (Cheng, 1995; Box and Tyssedal, 1996).

The hidden projection property of a design provides another way of evaluating its pro-

jection designs if only the main effects and two-factor interactions are of interest (Wang

and Wu, 1995). A design is said to have the hidden projection property for h factors if its

projection design onto any h factors allows estimation of all main effects and all two-factor

interactions. Cheng (1995) showed that a strength-two orthogonal array has the hidden

projection property for 4 factors if it does not have defining words of length 3 or 4. Cheng

(1998) further established that if a strength-three array does not have any defining word of

length 4, it has the hidden projection property for 5 factors. Bulutoglu and Cheng (2003)

later proved that Paley designs with more than 8 runs do not have any defining words of

length 3 or 4, thereby showing that Paley designs have the hidden projection property for

4 factors and their foldovers have the hidden projection property for 5 factors.

In this chapter, we conduct a comprehensive study on three classes of designs from

Paley’s Hadamard matrices (Paley, 1933) in terms of generalized resolution, projectivity

and hidden projection property. The three classes of designs are denoted by Pn, P̃2n and

Q2n with their precise definitions to be given later in the chapter. For now, it suffices to

say that Pn is a saturated orthogonal array of strength two obtained from Paley’s first

construction of Hadamard matrix, P̃2n is the foldover of Pn, and Q2n is an orthogonal array

of strength two obtained by judiciously selecting n columns from Paley’s second construction

of Hadamard matrix of order 2n.

Shi and Tang (2023) examined theoretical construction of designs with maximum gen-

eralized resolutions with a focus on orthogonal arrays of strength two, and showed in par-

ticular that Pn and Q2n and their subdesigns have maximum generalized resolutions. We

complete their investigations by showing that P̃2n and many of its subdesigns, all of which

are orthogonal arrays of strength three, also have maximum generalized resolutions.
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More importantly, we provide a general investigation of all three classes of designs, Pn,

P̃2n andQ2n into their projectivity and hidden projection property for h factors. From Cheng

(1995, 1998) and Bulutoglu and Cheng (2003), we can draw conclusions on the projectivity

of Pn and Q2n for h = 3 and of P̃2n for h = 4, and on the hidden projection property of

Pn and Q2n for h = 4 and of P̃2n for h = 5. As will be seen in Section 2.3, our results

substantially expand these existing results of Cheng (1995, 1998) and Bulutoglu and Cheng

(2003).

For practical purposes, we also study the selection problem using the minimum G-

aberration criterion from the designs with maximum generalized resolutions. Besides our

main focus, which is the design selection from Pn, P̃2n and Q2n, we also consider those

designs with maximum generalized resolutions obtained by Shi and Tang (2023) using tensor

product construction. We tabulate our findings for strength-two designs with 36, 44, 48, 52,

60, 64, 96 and 128 runs and strength-three designs with 72, 88 and 120 runs.

The remainder of the chapter is organized as follows. Section 2.2 of the chapter intro-

duces necessary notation and reviews some background. Section 2.3 studies strength-three

orthogonal arrays with maximum generalized resolutions, and examines the projectivity and

hidden projection property of three classes of designs Pn, P̃2n and Q2n. Section 2.4 looks

into the design selection problem using the minimum G-aberration criterion. The proofs are

postponed to Section 2.5 and the chapter is concluded with a discussion in Section 2.6.

2.2 Notation and background

A two-level orthogonal array of N runs, m factors and strength t, denoted by OA(N, 2m, t),

is an N×m matrix of ±1 such that in any of its N×t submatrix, the 2t possible level combi-

nations occur equally often. Such an array can be characterized by its J-characteristics. Sup-

pose D = (dij) is an OA(N, 2m, t). Given a set u ⊆ Zm = {1, . . . ,m}, the J-characteristic

of the columns of D indexed by u is defined as Ju(D) =
∑N
i=1

∏
j∈u dij . Clearly, we have

Ju(D) = 0 if |u| ≤ t, where |u| is the cardinality of u. In addition, we note that |Ju(D)|

can only take values of {N,N − 8, . . . , N − 8bN/8c} for |u| = 3, 4 when t = 2, and
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{N,N − 16, . . . , N − 16bN/16c} for |u| = 4 when t = 3, where b·c is the floor function;

see, for example, Lemma 3 of Stufken and Tang (2007).

Let r be the smallest integer such that max|u|=r |Ju(D)| > 0. The generalized res-

olution of D is defined as r + 1 − max|u|=r |Ju(D)|/N (Deng and Tang, 1999). When

N/2 < m ≤ N − 1, we have r = 3. Shi and Tang (2023) derived the following lower

bound on max|u|=3 |Ju(D)|.

Lemma 2.1. Suppose D is an OA(N, 2m, 2) with N/2 < m ≤ N−1. Then max|u|=3 |Ju(D)| ≥

N − 8b(N/8)(1− ξ1/2)c, where ξ = (2m−N)/((m− 1)(m− 2)).

To distinguish designs with the same generalized resolution, Deng and Tang (1999) fur-

ther proposed the minimum G-aberration criterion as a refinement. This criterion sequen-

tially minimizes F1(N), . . . , F1(0), F2(N), . . . , F2(0), . . . , Fm(N), . . . , Fm(0), where Fk(l) is

the frequency of u’s such that |u| = k and |Ju(D)| = l for k = 1, . . . ,m and l = 0, . . . , N .

For theoretical convenience, Tang and Deng (1999) introduced the criterion of minimum G2-

aberration, which aims to sequentially minimize the entries of (A1(D), . . . , Am(D)) where

Ak(D) =
∑
|u|=k |Ju(D)/N |2.

Orthogonal arrays can be constructed from Hadamard matrices. A Hadamard matrix

of order N is an N ×N matrix H of ±1 satisfying HTH = NIN , where IN is the identity

matrix of order N . Given a Hadamard matrix of order N , we can normalize one column

by switching the signs of rows such that this column contains all ones, and then obtain an

OA(N, 2N−1, 2) by dropping this normalized column.

Two constructions of Hadamard matrices were proposed by Paley (1933). Suppose s is

a prime or prime power. Denote the Galois field of order s by GF (s) = {α1, . . . , αs} and

define the function χ over GF (s) such that χ(α) = 0 if α = 0, χ(α) = 1 if α = β2 for some

nonzero β ∈ GF (s), and χ(α) = −1 otherwise. Let K be the s × s matrix with its (i, j)th

entry being χ(αi − αj). Then Paley’s first construction works if s = 4l+ 3 for some integer

l and leads to following Hadamard matrix of order n = s+ 1:

H =

 1 −1Ts

1s K + Is

 , (2.1)
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where 1s is a column vector of s ones. The OA(n, 2n−1, 2) obtained by removing the first

column of H in (2.1) is called a Paley design and is denoted by Pn hereafter. A sharp upper

bound on max|u|=3,4 |Ju(Pn)| was established by Shi and Tang (2018).

Lemma 2.2. We have max|u|=3,4 |Ju(Pn)| ≤ UP (n) = n − 8dn/8 − (n − 1)1/2/4 − 1/2e,

where d·e is the ceiling function.

Using Lemma 2.2 together with Lemma 2.1, Shi and Tang (2023) obtained many designs

with maximum generalized resolutions by dropping columns from Pn for n = 12, 20, 24, 28,

32, 44, 60, 72 and 80. Paley’s second construction applies to the case s = 4l + 1 for some

integer l, and yields a Hadamard matrix H of order 2n = 2s+ 2, as displayed in (2.2).

H =



1 1Ts −1 1Ts

1s K + Is 1s K − Is

−1 1Ts −1 −1Ts

1s K − Is −1s −K − Is


, Q2n =



−1 1Ts

1s K − Is

1 1Ts

−1s −K − Is


. (2.2)

By multiplying the (s + 2)th row of H in (2.2) by −1 and then removing the first s + 1

columns, Shi and Tang (2023) obtained the design Q2n in (2.2). Shi and Tang (2023) proved

that Q2n achieves the minimum possible max|u|=3 |Ju(D)| value, as given in the next lemma.

Lemma 2.3. The design Q2n in (2.2) is an OA(2n, 2n, 2) with max|u|=3 |Ju(Q2n)| = 4.

2.3 Main results

2.3.1 Strength-3 arrays with maximum generalized resolutions

Lemma 2.1 provides a lower bound on max|u|=3 |Ju(D)| for orthogonal arrays of strength

2. We establish a similar lower bound on max|u|=4 |Ju(D)| for strength-3 arrays.

Theorem 2.1. Suppose D is an OA(N, 2m, 3) with N/3 ≤ m ≤ N/2. Then

max
|u|=4

|Ju(D)| ≥ N − 16
⌊
(N/16)(1− ζ1/2)

⌋
,

where

ζ = 4m3 − 3m2N +mN2 − 3mN + 4m−N3/8 + 3N2/4−N
m(m− 1)(m− 2)(m− 3) .
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Based on Theorem 2.1, some designs can be shown to have maximum generalized reso-

lutions. For a Paley design Pn, consider its foldover design

P̃2n =

 1n Pn

−1n −Pn

 .

Clearly, P̃2n is an OA(2n, 2n, 3). Since max|u|=4 |Ju(P̃2n)| = 2 max|u|=3,4 |Ju(Pn)|, a sharp

upper bound on max|u|=4 |Ju(P̃2n)| follows directly from Lemma 2.2:

max
|u|=4

|Ju(P̃2n)| ≤ 2UP (n) = 2n− 16dn/8− (n− 1)1/2/4− 1/2e. (2.3)

This shows that design P̃2n has a large generalized resolution as the upper bound 2UP (n)

on max|u|=4 |Ju(P̃2n)| is in the order of O(n1/2). Some of the max|u|=4 |Ju(P̃2n)| values and

the corresponding lower bounds obtained in Theorem 2.1 are given in Table 2.1 for small

run sizes. Comparing the upper bound in (2.3) with the lower bound in Theorem 2.1, we

deduce the next result.

Corollary 2.1. Designs obtained by selecting any m columns from P̃2n have the maximum

generalized resolutions for 2n = 24, 40, 48, 56, 64, 88, 120, 144, 160 and 2n/3 ≤ m ≤ n.

We note that the special cases given by m = n in Corollary 2.1 were previously obtained

in Shi and Tang (2018).

Remark 2.1. Shi and Tang (2018) found by computer search two Hadamard matrices H of

order 36 with max|u|=4 |Ju(H)| = 12. Folding over any of these two Hadamard matrices by

[HT −HT ]T and then selecting any m columns, we obtain OA(72, 2m, 3)s with the maximum

generalized resolutions for 24 ≤ m ≤ 36 by an application of Theorem 2.1.

Table 2.1: Some values of max|u|=4 |Ju(P̃2n)| and the corresponding lower bounds.
run size 2n 24 40 48 56 64 88 96 120 136 144 160 168 208

max|u|=4 |Ju(P̃2n)| 8 24 16 24 16 24 32 24 40 32 32 40 48
Lower bounds 8 24 16 24 16 24 16 24 24 32 32 24 32
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2.3.2 Projectivities of Pn, P̃2n and Q2n

Cheng (1995) pointed out that the projection of an OA(N, 2m, t), say D, onto t+ 1 factors

indexed by u has (N − |Ju(D)|)/2t+1 copies of the full factorial plus |Ju(D)|/2t copies of

a half replicate of the full factorial. This settles projections of Pn, P̃2n and Q2n onto 3, 4,

and 3 factors, respectively. In this subsection, we investigate the projections of these designs

onto more factors. A result from Tang (2001) is useful here. We describe it next.

For any s ⊆ Zm, let rs be an m-dimensional row vector with its jth entry being 1 if

j ∈ s, and −1 otherwise for j = 1, . . . ,m. Define a matrix C as

C =
[
rT∅ , r

T
{1}, r

T
{2}, r

T
{1,2}, r

T
{3}, r

T
{1,3}, r

T
{2,3}, r

T
{1,2,3}, r

T
{4}, . . . , r

T
{1,2,...,m}

]T
.

Clearly, C contains all possible level combinations for m factors as rows. For u ⊆ Zm, let

hu denote the Hadamard product of all the columns of C indexed by u and define

H =
[
h∅,h{1},h{2},h{1,2},h{3},h{1,3},h{2,3},h{1,2,3},h{4}, . . . ,h{1,2,...,m}

]
,

where h∅ is a column of all ones. Then the result of Tang (2001) can be stated as follows.

Lemma 2.4. Suppose D is an OA(N, 2m, t). Let Ns be the frequency that rs occurs in D

for s ⊆ Zm. Then Ns = 2−m
∑

u⊆Zm
hsuJu(D), where hsu is the element on the sth row and

uth column of H.

Lemma 2.4 reveals that any design, up to row permutations, is uniquely determined by

its J-characteristics. This enables us to study the projections of a design D onto k factors

through Ju(D) for |u| ≤ k.

Proposition 2.1. The projection of Pn (respectively, P̃2n) onto any 4 (respectively, 5)

factors has at least dn/16− 5UP (n)/16e copies of the full factorial.

Proposition 2.1 indicates that the number of full factorials contained in any four-factor

projection of Pn, or five-factor projection of P̃2n, is approximately n/16 for large n, since

UP (n) is of order O(n1/2). A design is said to have projectivity h if its projection onto any

h factors contains at least one full factorial. Using Proposition 2.1, one can check that Pn
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(respectively, P̃2n) has projectivity 4 (respectively, 5) when n ≥ 108. Next, we examine

the projections of Q2n onto 4 and 5 factors, for which we need the following knowledge on

|Ju(Q2n)| for |u| = 4 and 5.

Lemma 2.5. We have that max|u|=4 |Ju(Q2n)| ≤ UQ(2n) = 2n− 8dn/4− (n− 1)1/2/2e and

that |Ju(Q2n)| is either 0 or 8 for |u| = 5.

Remark 2.2. The bound UQ(2n) for Q2n appears quite sharp. We have checked that the

bound is attained by all 2n = 2s+2 < 600 with s being a prime power and all 2n = 2s+2 <

5000 with s being a prime. We also see that UQ(2n) is asymptotically equivalent to the bound

2UP (n) for P̃2n. This is because the inequalities (2.4) in the proof of Lemma 2.5 hold no

matter whether s ≡ 1 (mod 4) or s ≡ 3 (mod 4), and are therefore an intrinsic property

of the matrix K in (2.1) and (2.2). We note that this property has been used to construct

definitive screening designs by Wang et al. (2022b) recently.

Lemma 2.5 allows us to study the projections of Q2n onto 4 and 5 factors.

Proposition 2.2. The projection of Q2n onto any 4 (respectively, 5) factors has at least

dn/8−UQ(2n)/16− 1e (respectively, dn/16−UQ(2n)/8− 6/5e) copies of the full factorial.

The proof of Proposition 2.2 is similar to that of Proposition 2.1 and thus omitted. It

follows immediately that Q2n has projectivity 4 when the run size 2n ≥ 36, and projectivity

5 when the run size 2n ≥ 196.

We now use a computer to take a closer look at the projections of Pn, P̃2n and Q2n

for small run sizes. For a design D with N runs, we denote by fk(l) the proportion of k-

factor projections of D that contains l full factorials, and summarize the k-factor projection

properties of D by the vector

PVk(D) = (fk(0), fk(1), . . . , fk(bN/2kc)).

The vectors PV4(Pn), PV4(Q2n) and PV5(Q2n) are displayed in Tables 2.2 and 2.3. The

vectors PV5(P̃2n) are omitted because we find PV4(Pn) = PV5(P̃2n) for all n < 108. We

conjecture this relationship holds for all n, though we cannot prove it for the moment.
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Table 2.2: The four-factor projections of Pn for n < 108.
n PV4(Pn) = (f4(0), f4(1), . . . , f4(bn/16c))
20 (100%, 0)
24 (57.1%, 42.9%)
28 (50.0%, 50.0%)
32 (39.4%, 59.1%, 1.4%)
44 (7.3%, 67.1%, 25.6%)
48 (6.1%, 51.5%, 42.4%, 0)
60 (0.4%, 24.4%, 65.8%, 9.4%)
68 (0, 10.1%, 56.7%, 33.2%, 0)
72 (0, 6.4%, 43.7%, 44.8%, 5.1%)
80 (0, 2.1%, 29.9%, 53.7%, 14.4%, 0)
84 (0, 0.9%, 18.5%, 63.9%, 16.7%, 0)
104 (0, 0.2%, 1.2%, 22.0%, 55.3%, 20.2%, 1.2%)

Table 2.3: The four- and five-factor projections of Q2n for 2n < 196.
2n PV4(Q2n) = (f4(0), f4(1), . . . , f4(bn/8c)) PV5(Q2n) = (f5(0), f5(1), . . . , f5(bn/16c))
20 (100%, 0) 100%
28 (27.3%, 72.7%) 100%
36 (0, 100%, 0) (100%, 0)
52 (0, 8.7%, 91.3%, 0) (90.0%, 10.0%)
60 (0, 0, 55.6%, 44.4%) (76.6%, 23.3%)
76 (0, 0, 0, 57.1%, 42.9%) (39.1%, 57.2%, 3.7%)
84 (0, 0, 0, 23.1%, 76.9%, 0) (22.9%, 76.3%, 7.7%)
100 (0, 0, 0, 0, 31.9%, 68.1%, 0) (7.7%, 65.2%, 27.0%, 0)
108 (0, 0, 0, 0, 5.9%, 70.6, 23.5%) (4.5%, 65.8%, 29.7%, 0)
124 (0, 0, 0, 0, 0, 13.6%, 45.8%, 40.7%) (1.9%, 32.4%, 59.8%, 5.9%)
148 (0, 0, 0, 0, 0, 0, 0, 45.1%, 54.9%, 0) (0.1%, 8.9%, 59.4%, 30.4%, 1.1%)
164 (0, 0, 0, 0, 0, 0, 0, 1.2%, 53.2%, 45.6%, 0) (0.4%, 0.3%, 42.9%, 45.8%, 10.4%, 0)
180 (0, 0, 0, 0, 0, 0, 0, 0, 6.9%, 37.9%, 55.2%, 0) (0, 0.1%, 22.4%, 58.5%, 18.3%, 0.6%)
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Table 2.3 suggests that the bound dn/8−UQ(2n)/16−1e on the number of full factorials

in 4-factor projections of Q2n is sharp as it is attained by all run sizes less than 196. More

importantly, combining the computational results in Tables 2.2 and 2.3 and theoretical

results in Propositions 2.1 and 2.2, we know exactly when designs Pn, P̃2n and Q2n have

projectivities 4 or 5. This we summarize as Theorem 2.2.

Theorem 2.2. The design Pn (respectively, P̃2n) has projectivity 4 (respectively, 5) when

n ≥ 68. The design Q2n has projectivity 4 when 2n ≥ 36, and projectivity 5 when 2n ≥ 180.

2.3.3 Hidden projection properties of Pn, P̃2n and Q2n

An orthogonal array is said to have the hidden projection property for h factors if in its

projection onto any h factors, all the main effects and two-factor interactions are estimable

under the assumption that higher-order interactions are negligible.

Bulutoglu and Cheng (2003) showed that Pn does not have defining words of lengths

three or four as long as n ≥ 12 and thus has the hidden projection property for 4 factors

by a result of Cheng (1995). It is also easy to deduce, according to Cheng (1998), that P̃2n

has the hidden projection property for 5 factors as long as the run size 2n is at least 24. In

this subsection, we show that even better hidden projection properties can be achieved by

Pn, P̃2n and also Q2n for moderate n.

Lemma 2.6. The design Pn (respectively, P̃2n) has the hidden projection property for h

(respectively, h + 1) factors if n > (h − 1)(h − 2)UP (n)/2. The design Q2n has the hidden

projection property for h factors if 2n > 4(h− 2) + (h− 2)(h− 3)UQ(2n)/2.

Lemma 2.6 guarantees that Pn (respectively, P̃2n) has the hidden projection property

for 5 (respectively, 6) factors when n = 132, 140, 152 and n ≥ 168, and that Q2n has the

hidden projection property for 5 factors when 2n ≥ 76, and for 6 factors when 2n ≥ 300. We

then proceed with a computer study of those cases not covered by Lemma 2.6. Combining

our computational findings with Lemma 2.6, we obtain Theorem 2.3.

Theorem 2.3. The design Pn (respectively, P̃2n) has the hidden projection property for 5

(respectively, 6) factors when n ≥ 28. The design Q2n has the hidden projection property

for 5 factors when 2n ≥ 28, and for 6 factors when 2n = 28 and 2n ≥ 52.
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Table 2.4: Some values of hmax(Pn), hmax(P̃2n) and hmax(Q2n).
n 20 24 28 32 44 48 60 68 72 80 84

hmax(Pn) 4 4 5 6 8 7 ≥ 7 ≥ 7 ≥ 7 ≥ 6 ≥ 6
hmax(P̃2n) 5 5 6 7 9 8 ≥ 8 ≥ 8 ≥ 8 ≥ 7 ≥ 7

2n 20 28 36 52 60 76 84 100 108 124 148
hmax(Q2n) 4 6 5 6 7 7 ≥ 8 ≥ 8 ≥ 8 ≥ 7 ≥ 7

For a design D, let hmax(D) be the largest integer h such that D has the hidden pro-

jection property for h factors. We obtain the following computational results on hmax(Pn),

hmax(P̃2n) and hmax(Q2n) as displayed in Table 2.4, which strengthen the general theoretical

results in Theorem 2.3 for many cases.

When n ≥ 60 for Pn, P̃2n and 2n ≥ 84 for Q2n, we only provide a lower bound for hmax

as the computation becomes too heavy to handle. Nonetheless, we can still see a trend that

better hidden projection properties can be achieved by designs with larger run sizes. This

is expected because, by Lemma 2.6, hmax should be in the order of O(n1/4).

2.4 Design selection by minimum G-aberration

The generalized resolution, as a design selection criterion, only looks at the most severe

aliasing among factorial effects. A more general design selection criterion is that of minimum

G-aberration. This section is devoted to finding minimum G-aberration designs from those

with maximum generalized resolutions. Our focus is on design selection from the three

classes of designs Pn, P̃2n and Q2n. Also considered are some designs by tensor product

construction from Shi and Tang (2023). In our computer search, we use J-characteristics

for up to four factors, as done by most authors.

A brief review on designs with minimum G-aberration is necessary. Specifically, such

OA(N, 2m, t)s are already available for N = 12, 16, 20 and m ≤ N − 1 (Sun et al., 2008);

N = 24 and m ≤ 23, N = 28 and m ≤ 14, N = 36 and m ≤ 18 (Schoen et al., 2017);

N = 32, 40 and 48 andm ≤ N/2 (Schoen and Mee, 2012). Recently, Vazquez and Xu (2019);

Vazquez et al. (2019, 2022) algorithmically studied some strength-3 designs with larger run

sizes. It should be noted that Schoen et al. (2017); Vazquez et al. (2022, 2019) have examined
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strength-2 designs from projections of P32, strength-3 designs from projections of P̃56 and

P̃64, respectively.

2.4.1 Designs from Paley’s constructions

The orthogonal arrays in this subsection come from Paley’s constructions of Hadamard

matrices, except for those with 36 and 72 runs, which are from the two Hadamard matrices

of order 36 in Remark 2.1.

We first consider Hadamard matrices from Paley’s first construction as well as the two of

order 36. Given a Hadamard matrix of order n, we first randomly select a submatrix with m

columns, then obtain an OA(n, 2m−1, 2) by normalizing and removing a randomly selected

column, and an OA(2n, 2m, 3) by folding over the submatrix. The procedure is repeated

200,000 times and the designs with minimum G-aberrations are selected. A complete search

is done when
(n
m

)
is less than 200,000. We apply this approach to Paley’s first Hadamard

matrices of order 44, 60 and the two Hadamard matrices of 36. It should also be mentioned

that the strength-2 designs of 44 and 60 runs obtained this way may not be subdesigns of

P44 and P60, since the normalized column need not be the first column of the Hadamard

matrix. We present the search results for strength-2 orthogonal arrays of n = 36, 44 and 60

runs in Table 2.5 and strength-3 orthogonal arrays of 2n = 72, 88 and 120 runs in Table

2.6. Details of all the designs in this chapter are available upon request.

For these projection designs the |Ju|’s can only take two values, thus the criteria of min-

imum G- and G2-aberration are equivalent. Let E be the complement of an OA(n,m, 2, 2),

say D, in an OA(n, n − 1, 2, 2). Then the complementary design theory (Tang and Deng,

1999) states that the sequential minimization of A3(D) and A4(D) can be done by se-

quentially maximizing A3(E) and minimizing A4(E), where the latter is much faster when

m > n/2. In addition, when |Ju(E)| can only be 4 or 12, we have A3(E) ≤
(n−1−m

3
)
(12/n)2

and A4(E) ≥
(n−1−m

4
)
(4/n)2. Similar bounds can also be derived for strength-3 designs.

These simple bounds enable us to identify the best projection designs when the search is in-

complete. In Tables 2.5 and 2.6, we mark a value or a vector by an asterisk if it is minimized

or sequentially minimized among all projections, respectively.
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Table 2.5: Strength-2 designs of 36, 44 and 60 runs.
n×m (A3, A4) (F3(12), F4(12)) n×m (A3, A4) (F3(12), F4(12))
36× 19 (26.6, 122.5) (148, 756) 36× 26 (76.5, 456.9) (450, 2757)
36× 20 (32.2, 150.4) (184, 917) 36× 27 (86.2, 536.5) (507, 3238)
36× 21 (37.7, 187.0) (215, 1145) 36× 28 (97.9, 622.7) (582, 3745)
36× 22 (44.1, 225.9) (254, 1373) 36× 29 (109.1∗, 722.6) (648∗, 4347)
36× 23 (50.7, 273.7) (292, 1664) 36× 30 (122.2∗, 831.7) (730∗, 4995)
36× 24 (59.5, 324.7) (349, 1959) 36× 31 (135.9∗, 953.9) (814∗, 5725)
36× 25 (67.7, 386.3) (398, 2330) 36× 32 (150.2, 1089.8)∗ (901, 6539)∗

44× 23 (41.5, 216.9) (407, 2174) 44× 32 (120.0, 878.1) (1195, 8786)
44× 24 (47.7, 262.4) (469, 2641) 44× 33 (132.2, 999.5) (1317, 10003)
44× 25 (54.4, 311.5) (536, 3130) 44× 34 (145.2, 1131.5) (1448, 11317)
44× 26 (61.9, 365.0) (611, 3652) 44× 35 (159.0, 1277.4) (1587, 12776)
44× 27 (69.9, 430.5) (691, 4317) 44× 36 (173.7, 1437.2) (1734, 14374)
44× 28 (78.4, 501.0) (777, 5019) 44× 37 (189.1, 1611.3) (1889, 16116)
44× 29 (87.9, 582.0) (872, 5834) 44× 38 (205.5, 1800.5) (2054, 18006)
44× 30 (97.9, 670.5) (973, 6715) 44× 39 (222.8, 2006.2) (2227, 20063)
44× 31 (108.6, 767.8) (1081, 7680) 44× 40 (240.9, 2229.1)∗ (2409, 22291)∗

60× 31 (77.2, 554.0) (1610, 11647) 60× 44 (231.3, 2382.9) (4849, 50049)
60× 32 (85.2, 631.4) (1775, 13262) 60× 45 (248.0, 2615.0) (5201, 54923)
60× 33 (94.1, 718.0) (1964, 15078) 60× 46 (265.4, 2863.7) (5566, 60143)
60× 34 (103.3, 813.9) (2156, 17093) 60× 47 (283.6, 3130.1) (5948, 65739)
60× 35 (113.0, 920.2) (2360, 19336) 60× 48 (302.7, 3414.5) (6351, 71709)
60× 36 (123.7, 1033.2) (2586, 21697) 60× 49 (322.5, 3717.9) (6768, 78081)
60× 37 (134.8, 1158.5) (2820, 24327) 60× 50 (343.2, 4041.0) (7202, 84867)
60× 38 (146.4, 1295.4) (3062, 27206) 60× 51 (364.9, 4384.8) (7659, 92085)
60× 39 (158.8, 1444.4) (3323, 30343) 60× 52 (387.3, 4750.1) (8130, 99755)
60× 40 (171.8, 1603.3) (3597, 33670) 60× 53 (410.7, 5137.6) (8623, 107891)
60× 41 (185.7, 1777.6) (3889, 37337) 60× 54 (435.0, 5548.5) (9133, 116520)
60× 42 (200.1, 1964.4) (4193, 41258) 60× 55 (460.2, 5983.5)∗ (9663, 125654)∗
60× 43 (215.3, 2166.2) (4514, 45497) 60× 56 (486.3, 6443.7)∗ (10212, 135318)∗
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Table 2.6: Strength-3 designs of 72, 88 and 120 runs.
2n×m A4 F4(24) 2n×m A4 F4(24) 2n×m A4 F4(24)
72× 9 2.8 13 72× 17 70.2 413 72× 25 381.9 2285
72× 10 5.1 25 72× 18 90.7 536 72× 26 451.7 2705
72× 11 8.5 45 72× 19 115.5 685 72× 27 530.8 3181
72× 12 13.4 74 72× 20 144.9 861 72× 28 619.6 3714
72× 13 20.0 113 72× 21 179.4 1068 72× 29 719.2 4313
72× 14 28.5 163 72× 22 219.8 1311 72× 30 830.2∗ 4980∗
72× 15 39.4 228 72× 23 266.7 1593 72× 31 953.4∗ 5720∗
72× 16 53.2 311 72× 24 320.4 1916 72× 32 1089.7∗ 6538∗

88× 9 2.0 14 88× 20 115.5 1142 88× 31 765.7 7648
88× 10 3.9 33 88× 21 143.1 1416 88× 32 875.6 8748
88× 11 6.8 61 88× 22 175.6 1741 88× 33 996.8 9961
88× 12 10.6 98 88× 23 213.1 2116 88× 34 1129.9 11293
88× 13 15.7 148 88× 24 256.5 2552 88× 35 1276.0 12754
88× 14 22.4 214 88× 25 305.8 3044 88× 36 1436.0 14357
88× 15 31.2 302 88× 26 362.0 3607 88× 37 1610.4 16102
88× 16 42.1 409 88× 27 425.3 4239 88× 38 1800.1∗ 18000∗
88× 17 55.3 539 88× 28 497.1 4959 88× 39 2006.0∗ 20060∗
88× 18 72.0 707 88× 29 577.2 5762 88× 40 2229.0∗ 22290∗
88× 19 91.8 904 88× 30 666.4 6654

120× 9 1.6 29 120× 25 218.6 4567 120× 41 1774.2 37241
120× 10 2.9 55 120× 26 259.1 5418 120× 42 1961.4 41172
120× 11 4.7 92 120× 27 304.3 6365 120× 43 2162.8 45403
120× 12 7.5 149 120× 28 355.6 7443 120× 44 2379.6 49957
120× 13 11.2 227 120× 29 413.0 8646 120× 45 2612.0 54839
120× 14 15.9 323 120× 30 477.3 9998 120× 46 2861.3 60075
120× 15 22.0 449 120× 31 548.3 11488 120× 47 3127.9 65677
120× 16 29.9 614 120× 32 627.3 13148 120× 48 3412.5 71654
120× 17 39.5 813 120× 33 714.3 14975 120× 49 3716.1 78030
120× 18 51.4 1062 120× 34 810.4 16996 120× 50 4039.6 84825
120× 19 65.5 1359 120× 35 915.3 19197 120× 51 4383.6 92051
120× 20 82.2 1707 120× 36 1030.3 21613 120× 52 4749.1 99727
120× 21 101.9 2118 120× 37 1155.6 24245 120× 53 5137.0 107874
120× 22 125.3 2611 120× 38 1292.0 27111 120× 54 5548.1∗ 116508∗
120× 23 152.2 3175 120× 39 1439.9 30216 120× 55 5983.4∗ 125650∗
120× 24 183.3 3826 120× 40 1600.6 33592 120× 56 6443.7∗ 135317∗
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Next we study designs from Q2n’s with run sizes 52, 60 and 76 and search for those

with minimum G-aberration. Although the minimum G2-aberration criterion and comple-

mentary design theory cannot be applied to find such designs because |Ju(Q2n)| takes

three values for |u| = 4, we can still use the minimum Ge-aberration to accelerate the

search as suggested by Ingram and Tang (2005). For a design D with N runs, the criterion

of minimum Ge-aberration sequentially minimizes A1,e(D), . . . , Am,e(D) where Ak,e(D) =∑
|u|=k |Ju(D)/N |e for some e > 0. It can be shown that for OA(2n, 2m, 2)s studied here,

the minimum G- and Ge-aberration criteria are equivalent if we take e > log
(m

4
)
/{log(20)−

log(12)}. For each 2n×m, a complete search is done if
(n
m

)
< 200,000 otherwise a total of

200,000 random subdesigns from Q2n are compared then the best one is selected. The results

are displayed in Table 2.7. We mark a value or a vector by an asterisk if it is minimized or

sequentially minimized among all projections, respectively.

2.4.2 Designs from the tensor product method

Besides designs from Paley’s constructions, Shi and Tang (2023) constructed some strength-

2 orthogonal arrays with maximum generalized resolutions by the tensor product D =

Hn1 ⊗B for n1 = 2 and 4, where B = (b1, . . . , bm2) is an OA(n2, 2m2 , 2),

H2 =

1 1

1 −1

 , and H4 =



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


.

We provide some theoretical results to select such designs by the minimum G-aberration

criterion. For convenience, we use again the equivalence of minimum G- and Ge-aberrations

for large e and present our results in terms of the latter.

Proposition 2.3. Suppose D = Hn1 ⊗B for n1 = 2 or 4.

(i) For any e > 0, we have A3,e(D) = γ1A3,e(B) and A4,e(D) = γ2A4,e(B) + γ3, where

γ1, γ2 and γ3 are positive constants depending on Hn1 and e.
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Table 2.7: Strength-2 designs of 52, 60 and 76 runs.
2n×m A4 F4(20, 12) 2n×m A4 F4(20, 12) 2n×m A4 F4(20, 12)
52× 4 0.01∗ (0, 0)∗ 52× 12 17.84 (30, 225) 52× 20 178.07 (420, 1896)
52× 5 0.08∗ (0, 1)∗ 52× 13 25.77 (50, 305) 52× 21 220.08∗ (520, 2341)∗
52× 6 0.37 (0, 6) 52× 14 36.46 (74, 423) 52× 22 269.08∗ (636, 2862)∗
52× 7 1.01 (0, 17) 52× 15 49.97 (110, 555) 52× 23 325.77∗ (770, 3465)∗
52× 8 2.02 (0, 34) 52× 16 66.15 (149, 723) 52× 24 390.92∗ (924, 4158)∗
52× 9 3.96 (5, 53) 52× 17 86.89 (201, 935) 52× 25 465.38∗ (1100, 4950)∗
52× 10 6.92 (9, 93) 52× 18 112.02 (260, 1204)
52× 11 11.89 (20, 150) 52× 19 142.32 (334, 1520)

60× 5 0.02∗ (0, 0)∗ 60× 14 31.15 (97, 460) 60× 23 283.91 (980, 3938)
60× 6 0.28 (0, 6) 60× 15 41.80 (135, 600) 60× 24 340.88 (1179, 4722)
60× 7 0.80 (0, 18) 60× 16 57.44 (188, 824) 60× 25 405.91∗ (1405, 5620)∗
60× 8 1.63 (0, 37) 60× 17 75.68 (251, 1078) 60× 26 479.85∗ (1661, 6644)∗
60× 9 3.23 (5, 60) 60× 18 97.19 (328, 1367) 60× 27 563.33∗ (1950, 7800)∗
60× 10 5.91 (14, 98) 60× 19 123.50 (420, 1729) 60× 28 657.22∗ (2275, 9100)∗
60× 11 9.68 (26, 153) 60× 20 154.69 (529, 2158) 60× 29 762.38∗ (2639, 10556)∗
60× 12 14.86 (43, 227) 60× 21 191.29 (656, 2664)
60× 13 22.24 (66, 338) 60× 22 234.18 (805, 3257)

76× 6 0.04∗ (0, 0)∗ 76× 17 58.80 (514, 814) 76× 28 522.71 (4666, 7030)
76× 7 0.47 (2, 11) 76× 18 75.62 (660, 1050) 76× 29 606.27 (5417, 8138)
76× 8 1.06 (5, 24) 76× 19 96.90 (853, 1329) 76× 30 699.85 (6253, 9396)
76× 9 2.32 (17, 38) 76× 20 122.14 (1079, 1669) 76× 31 803.95 (7186, 10787)
76× 10 4.11 (33, 60) 76× 21 150.89 (1336, 2053) 76× 32 918.94 (8216, 12324)
76× 11 7.23 (60, 105) 76× 22 185.18 (1641, 2519) 76× 33 1045.96 (9352, 14028)
76× 12 11.43 (92, 178) 76× 23 224.66 (1999, 3034) 76× 34 1185.53∗ (10600, 15900)∗
76× 13 16.78 (142, 242) 76× 24 270.32 (2405, 3655) 76× 35 1338.53∗ (11968, 17952)∗
76× 14 24.14 (205, 349) 76× 25 322.13 (2868, 4351) 76× 36 1505.84∗ (13464, 20196)∗
76× 15 33.32 (285, 478) 76× 26 381.22 (3399, 5137) 76× 37 1688.37∗ (15096, 22644)∗
76× 16 44.71 (385, 635) 76× 27 447.44 (3996, 6009)
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Table 2.8: Strength-2 designs of 48 runs.
N ×m A3 F3(8) N ×m A3 F3(8) N ×m A3 F3(8)
48× 25 42.2 1520 48× 32 99.6 3584 48× 39 197.3 7104
48× 26 48.9 1760 48× 33 112.0 4032 48× 40 213.3 7680
48× 27 55.6 2000 48× 34 124.4 4480 48× 41 233.3 8400
48× 28 62.2 2240 48× 35 136.9 4928 48× 42 253.3 9120
48× 29 71.6 2576 48× 36 149.3 5376 48× 43 273.3 9840
48× 30 80.9 2912 48× 37 165.3 5952 48× 44 293.3 10560
48× 31 90.2 3248 48× 38 181.3 6528

(ii) Let g(k) =
∑
i<j |J(bi, bj , bk)/n2|e for k = 1, . . . ,m2 and suppose g(k0) = max1≤k≤m2 g(k).

Then designs obtained by successively removing columns of Hn1 ⊗ bk0 from D have

minimum A3,e values among all projections of D.

With a sufficiently large e, part (i) of Proposition 2.3 implies that the G-aberration

property of D is determined by that of B, and that it is preferable to use a B with minimum

G-aberration. This is feasible as catalogues of designs with minimum or small G-aberration

for small run sizes are readily available in Sun et al. (2008) and Schoen et al. (2017). After

that, we apply part (ii) of Proposition 2.3 to delete columns from Hn1 ⊗ B to cover all

cases. Following this procedure, we obtain the designs of 48, 64, 96 and 128 runs displayed

in Tables 2.8 and 2.9. We note that when m ≤ 56 for 64-run designs, it is better to take

A = H4 and B as 16-run minimum G-aberration designs in Sun et al. (2008) than to take

A = H2 and B as the 32-run designs in Schoen et al. (2017).

2.5 Proofs

Proof of Theorem 2.1. Butler (2007) showed that for N/3 ≤ m ≤ N/2, any OA(N, 2m, 3)

can be written asD = [V T −V T ]T where V = [v1, . . . , vm] is an (N/2)×mmatrix of ±1 with

orthogonal columns. Clearly, we have max|u|=4 |Ju(D)| = 2 max|u|=4 |Ju(V )|. The rest of the

proof is similar to that for Theorem 1 in Shi and Tang (2023). Let n′ = N/2 andm′ = n′−m.

Then there exist real vectors w1, . . . , wm′ such that (n′)−1/2[v1, . . . , vm, w1, . . . , wm′ ] form

an orthonormal basis for the n′-dimensional Euclidean space. We first consider the scenario
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Table 2.9: Strength-2 designs of 64, 96 and 128 runs.
N ×m A3 F3(16) N ×m A3 F3(16) N ×m A3 F3(16)
64× 33 16.0 256 64× 43 178.0 2848 64× 53 376.0 6016
64× 34 32.0 512 64× 44 192.0 3072 64× 54 400.0 6400
64× 35 48.0 768 64× 45 208.0 3328 64× 55 424.0 6784
64× 36 64.0 1024 64× 46 224.0 3584 64× 56 448.0 7168
64× 37 92.0 1472 64× 47 240.0 3840 64× 57 477.9 7646
64× 38 104.0 1664 64× 48 256.0 4096 64× 58 504.0 8064
64× 39 116.0 1856 64× 49 280.0 4480 64× 59 532.0 8512
64× 40 128.0 2048 64× 50 304.0 4864 64× 60 560.0 8960
64× 41 150.0 2400 64× 51 328.0 5248 64× 61 590.0 9440
64× 42 164.0 2624 64× 52 352.0 5632 64× 62 620.0 9920

96× 49 124.0 4464 96× 64 398.2 14336 96× 79 821.3 29568
96× 50 136.0 4896 96× 65 427.1 15376 96× 80 853.3 30720
96× 51 148.0 5328 96× 66 450.7 16224 96× 81 904.0 32544
96× 52 160.0 5760 96× 67 474.2 17072 96× 82 940.4 33856
96× 53 191.1 6880 96× 68 497.8 17920 96× 83 976.9 35168
96× 54 208.0 7488 96× 69 522.7 18816 96× 84 1013.3 36480
96× 55 224.9 8096 96× 70 547.6 19712 96× 85 1053.3 37920
96× 56 241.8 8704 96× 71 572.4 20608 96× 86 1093.3 39360
96× 57 261.3 9408 96× 72 597.3 21504 96× 87 1133.3 40800
96× 58 280.9 10112 96× 73 634.7 22848 96× 88 1173.3 42240
96× 59 300.4 10816 96× 74 664.9 23936 96× 89 1217.3 43824
96× 60 320.0 11520 96× 75 695.1 25024 96× 90 1261.3 45408
96× 61 342.2 12320 96× 76 725.3 26112 96× 91 1305.3 46992
96× 62 360.9 12992 96× 77 757.3 27264 96× 92 1349.3 48576
96× 63 379.6 13664 96× 78 789.3 28416

128× 65 310.5 19872 128× 85 749.2 47952 128× 105 1476.2 94480
128× 66 327.0 20928 128× 86 778.5 49824 128× 106 1521.5 97376
128× 67 343.5 21984 128× 87 807.8 51696 128× 107 1566.8 100272
128× 68 360.0 23040 128× 88 837.0 53568 128× 108 1612.0 103168
128× 69 379.8 24304 128× 89 869.2 55632 128× 109 1660.8 106288
128× 70 398.5 25504 128× 90 901.5 57696 128× 110 1709.5 109408
128× 71 417.2 26704 128× 91 933.8 59760 128× 111 1758.2 112528
128× 72 436.0 27904 128× 92 966.0 61824 128× 112 1807.0 115648
128× 73 457.0 29248 128× 93 1001.5 64096 128× 113 1859.2 118992
128× 74 478.0 30592 128× 94 1037.0 66368 128× 114 1911.5 122336
128× 75 499.0 31936 128× 95 1072.5 68640 128× 115 1963.8 125680
128× 76 520.0 33280 128× 96 1108.0 70912 128× 116 2016.0 129024
128× 77 544.5 34848 128× 97 1147.5 73440 128× 117 2072.0 132608
128× 78 568.0 36352 128× 98 1186.0 75904 128× 118 2128.0 136192
128× 79 591.5 37856 128× 99 1224.5 78368 128× 119 2184.0 139776
128× 80 615.0 39360 128× 100 1263.0 80832 128× 120 2240.0 143360
128× 81 642.0 41088 128× 101 1304.8 83504 128× 121 2300.0 147200
128× 82 668.0 42752 128× 102 1346.5 86176 128× 122 2360.0 151040
128× 83 694.0 44416 128× 103 1388.2 88848 128× 123 2420.0 154880
128× 84 720.0 46080 128× 104 1430.0 91520 128× 124 2480.0 158720
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m′ ≥ 4. Note that

∑
distinct i1,i2,i3,i4

J(vi1 , vi2 , vi3 , vi4)2

=
∑

distinct i1,i2,i3

(n′)2 −
m′∑
i4=1

J(vi1 , vi2 , vi3 , wi4)2


= m(m− 1)(m− 2)(n′)2 −

∑
i1 6=i2

m′∑
i4=1

(n′)2 −
∑
i3 6=i4

J(vi1 , vi2 , wi3 , wi4)2


= {m(m− 1)(m− 2)−m(m− 1)m′}(n′)2

+
m∑
i1=1

∑
i3 6=i4

(n′)2 −
∑

i2 6=i3,i4
J(vi1 , wi2 , wi3 , wi4)2


= {m(m− 1)(m− 2)−m(m− 1)m′ +mm′(m′ − 1)−m′(m′ − 1)(m′ − 2)}(n′)2

+
∑

distinct i1,i2,i3,i4

J(wi1 , wi2 , wi3 , wi4)2,

where, for example, we use J(vi1 , vi2 , vi3 , vi4) to denote the J-characteristics of columns vi1 ,

vi2 , vi3 and vi4 . Thus we have that
∑
distinct i1,i2,i3,i4 J(vi1 , vi2 , vi3 , vi4)2 ≥ {m(m − 1)(m −

2)−m(m− 1)m′ +mm′(m′ − 1)−m′(m′ − 1)(m′ − 2)}(n′)2. It can be easily verified that

the equality holds for m′ ≤ 3. Therefore, max|u|=4 J
2
u(V ) ≥ {m(m − 1)(m − 2) −m(m −

1)m′ + mm′(m′ − 1) − m′(m′ − 1)(m′ − 2)}(n′)2/{m(m − 1)(m − 2)(m − 3)}. Note that

n′ −max|u|=4 |Ju(V )| must be a multiple of 8 (Shi and Tang, 2018). The result follows by

some tedious algebra.

Proof of Proposition 2.1. Let D0 be the projected design of Pn onto certain 4 factors. By

Lemma 2.4, for any s ⊆ Z4, the frequency of rs occurs in D0 is given by Ns = 2−4{n +∑
∅6=u⊆Z4 hsuJu(D0)}. Recall that Ju(D0) = 0 for |u| = 1, 2 and that |Ju(D0)| ≤ UP (n) for

|u| = 3, 4. Then we have Ns ≥ 2−4{n−5UP (n)} since hsu = ±1. The result on Pn follows by

the fact that Ns must be an integer and that s is arbitrary. The proof for P̃2n can be done

similarly by noting that Ju(P̃2n) = 0 for |u| ≤ 3 and |u| = 5 and that |Ju(P̃2n)| ≤ 2UP (n)

for |u| = 4.

Proof of Lemma 2.5. The arguments are similar to the proofs for Theorem 2.1 of Buluto-

glu and Cheng (2003) and Theorem 5 of Shi and Tang (2023). For simplicity, we outline
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the proof for |u| = 4 and omit that for |u| = 5. Let’s write Q2n = [q0, q1, . . . , qs], where

s = n − 1. Then for any distinct integers i1, i2, i3, i4 ∈ {1, . . . , s}, by some simple alge-

bra we have J(q0, qi1 , qi2 , qi3) = 2
∑
y∈GF (s)\{αi1 ,αi2 ,αi3}

χ((y − αi1)(y − αi2)(y − αi3)) and

J(qi1 , qi2 , qi3 , qi4) = 2
∑
y∈GF (s)\{αi1 ,αi2 ,αi3 ,αi4}

χ((y − αi1)(y − αi2)(y − αi3)(y − αi4)) + 2.

Let N(s, k) be the number of solutions (z, y) ∈ GF (s)×GF (s) of z2 =
∏k
j=1(y−αij ). Then

we have J(q0, qi1 , qi2 , qi3) = 2N(s, 3) − 2s and J(qi1 , qi2 , qi3 , qi4) = 2N(s, 4) + 2 − 2s. By a

result of Hasse (1936) quoted by Stark (1973), we know that

|N(s, 3)− s| ≤ 2s1/2 and |N(s, 4)− s+ 1| ≤ 2s1/2, (2.4)

from which it follows that max|u|=4 |Ju(Q2n)| ≤ 4s1/2. The upper bound on max|u|=4 |Ju(Q2n)|

follows by noting that (2n− |Ju(Q2n)|)/8 must be an integer.

Proof of Lemma 2.6. Suppose X is a subdesign of Pn for h factors. Then the model matrix

M for all the main effects and two-factor interactions of these h factors can be written as

M = [1n X Y ], where Y is an n×{h(h−1)/2}matrix consisting of all the pairwise Hadamard

products of columns of X. It can then be checked that in each row of the information matrix

MTM , there are at most (h − 1)(h − 2)/2 nonzero off-diagonal elements whose absolute

values are all bounded above by max|u|=3,4 |Ju(Pn)| ≤ UP (n). A square matrix Z = (zij) is

said to be strictly diagonally dominant if |zii| >
∑
j 6=i |zij | for all i; by Levy-Desplanques

theorem, such a matrix must be nonsingular. Therefore, if n > (h−1)(h−2)UP (n)/2,MTM

is strictly diagonally dominant and thus nonsingular. This completes the proof for Pn. The

proofs for P̃2n and Q2n are similar and thus omitted.

Proof of Proposition 2.3. With a slight abuse of notation, write Hn1 = [h1, . . . , hn1 ]. Then

invoking Lemma 2 of Tang (2006), we have

A3,e(D) =
∑

distinct {(i1,i2), (j1,j2), (k1,k2)}
|J(hi1 ⊗ bi2 , hj1 ⊗ bj2 , hk1 ⊗ bk2)/(n1n2)|e

=
∑

1≤i1,j1,k1≤n1

∑
i2<j2<k2

|J(hi1 , hj1 , hk1)/n1|e|J(bi2 , bj2 , bk2)/n2|e,
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since J(bi2 , bj2 , bk2) = 0 as long as i2, j2 and k2 have common elements. Therefore A3,e(D) =

γ1A3,e(B) with γ1 =
∑

1≤i1,j1,k1≤n1 |J(hi1 , hj1 , hk1)/n1|e. The proof for the result on A4,e(D)

is similar. Part (ii) can be done by observing that at each time a column ofH⊗bk0 is removed,

A3,e decreases by the same and also the maximum possible amount.

2.6 Concluding remarks

The three- and four-column J-characteristics of a design, as we have seen, play a crucial

role in its generalized resolutions and projection properties. Shi and Tang (2018) showed

that these J-characteristics bear a close relationship to the type of Hadamard matrices. We

conclude the chapter with more results on the type of certain Hadamard matrices.

The concept of type was introduced by Kimura (1994) and further studied in Kharaghani

and Tayfeh-Rezaie (2013). Let H be a Hadamard matrix of order N . By permutation and

negation of rows and columns, any four columns of H that can be transformed into the

following form 

1a 1a 1a 1a
1b 1b 1b −1b
1b 1b −1b 1b
1a 1a −1a −1a
1b −1b 1b 1b
1a −1a 1a −1a
1a −1a −1a 1a
1b −1b −1b −1b


where a + b = N/4 and 0 ≤ b ≤ bN/8c, is said to be of type b. A Hadamard matrix is

of type b if it has a set of four columns of type b but has no set of four columns of type

less than b. Shi and Tang (2018) established a connection between the type of H and the

OA(N, 2N−1, 2) derived from H, which can be rephrased as the following lemma.

Lemma 2.7. A Hadamard matrix H has type b if and only if max|u|=4 |Ju(H)| = N − 8b.

Lemma 2.7 is useful for finding the type of a Hadamard matrix; it can also be taken as

a definition of type for anyone who finds the original definition cumbersome.

Proposition 2.4. Let H1 and H2 be any two Hadamard matrices of orders N1 and N2,

respectively. Then H1 ⊗H2 has type 0.
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Proof. Let h(1)
1 , h

(1)
2 be two columns ofH1 and h(2)

1 , h
(2)
2 be two columns ofH2. Then we have

that J(h(1)
1 ⊗h

(2)
1 , h

(1)
1 ⊗h

(2)
2 , h

(1)
2 ⊗h

(2)
1 , h

(1)
2 ⊗h

(2)
2 ) = J(h(1)

1 , h
(1)
1 , h

(1)
2 , h

(1)
2 )J(h(2)

1 , h
(2)
2 , h

(2)
1 , h

(2)
2 )

= N1N2. Proposition 2.4 now follows from Lemma 2.7.

The special case thatH1 is of order 2 was considered by Shi and Tang (2018). Proposition

2.4 shows that a tensor product inevitably introduces defining words of lengths 4, and thus

cannot be used to construct designs with the attractive properties as described in Section

2.3.

Proposition 2.5. Hadamard matrices from Paley’s second construction are of type 1.

Proof. Write H in (2.2) as

H =

F G

G −F

 , where F =

 1 1Ts

1s K + Is

 and G =

−1 1Ts

1s K − Is

 .
For 1 ≤ i < j ≤ n, let fi and fj (respectively, gi and gj) be the ith and jth column of F

(respectively, G). Then the J-characteristic of the following four columns of H

fi fj gi gj

gi gj −fi −fj


is 2J(fi, fj , gi, gj) = 2J(figi, fjgj). Note that the column figi is all ones except for the ith

entry, which is −1. One can easily see that 2J(figi, fjgj) = 2{(n− 2)− 2} = 2n− 8. On the

other hand, since 2n is not a multiple of 8, max|u|=4 |Ju(H)| can be at most 2n− 8 (Cheng,

1995). Therefore, we have max|u|=4 |Ju(H)| = 2n− 8 and result follows by Lemma 2.7.

Proposition 2.2 implies that appending more columns to Q2n will lead to severe aliasing

among certain three or four columns. As a result, we cannot obtain designs with large

generalized resolutions or good projection properties from them.

Propositions 2.4 and 2.5 are worth documenting even though they are somewhat neg-

ative. They convey a message that we should look elsewhere if we want to find Hadamard

matrices of large types.
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Chapter 3

Minimum Aberration Factorial
Designs Under A Mixed
Parametrization

3.1 Introduction

Two-level factorial designs are a class of experimental plans useful in scientific and tech-

nological investigations for studying the causal relationship between several input factors

and a response variable. Factorial effects are utilized to attribute changes of the mean re-

sponse due to various level combinations to the factors under study. The most commonly

used factorial effects are those given by the orthogonal parametrization (Box and Hunter,

1961), which is termed so because those factorial effects form a set of orthogonal treatment

contrasts. When it is too expensive to examine all level combinations, factorial effects can-

not be all estimated and a fractional factorial design needs to be selected to entertain the

estimation of the lower-order effects. One popular approach to design selection is to employ

the minimum aberration criterion (Fries and Hunter, 1980; Tang and Deng, 1999). We refer

to Mee (2009), Cheng (2014) and Wu and Hamada (2021) for comprehensive accounts on

factorial designs under the orthogonal parametrization.

Under the orthogonal parametrization, the two levels of the factors are symmetrical and

hence equally important. While this is true in most applications, there are situations, such

as in microarray experiments (Yang and Speed, 2002; Glonek and Solomon, 2004; Banerjee

and Mukerjee, 2008), where one of the two levels represents a baseline or default setting

and is thus more important than the other level. Investigators are interested in the impact
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on the mean response by changing the levels of a few factors while keeping other factors set

at the baseline levels. This calls for a baseline parametrization in which factorial effects are

defined in relation to the baseline levels. To select a fractional factorial design under this

parametrization, Mukerjee and Tang (2012) put forward a minimum aberration criterion

which aims at minimizing the bias caused by higher-order interactions on the estimation of

main effects.

The blanket approach to defining factorial effects via either the orthogonal parametriza-

tion or the baseline parametrization can hardly represent all practical situations. Entirely

conceivable are the scenarios that we know the importance of one of the two levels for some

factors but are indifferent to the two levels for other factors. In an industrial experiment on

quality improvement, besides studying the potential impact of changing the current settings

of several machine components in a production line, we may also want to examine some

additional factors along the way. Then the current settings may be regarded as the baseline

levels for the machine components, but no importance can be attached to any of the two

levels for the additional factors. To deal with such practical situations, we propose a mixed

parametrization of factorial effects in which some factors have baseline levels while the oth-

ers do not. Our mixed parametrization includes as special cases of both the orthogonal and

baseline parametrizations.

The remainder of the chapter is arranged as follows. Section 3.2 first reviews orthogonal

and baseline parametrizations, and then introduces the mixed parametrization. A connec-

tion between the mixed parametrization and the existing parametrizations is established,

through which we show that orthogonal arrays are optimal for estimating the main ef-

fects under the main-effects model. To protect the main effects from the contamination

of nonnegligible higher-order interactions, two minimum aberration criteria are developed

in Section 3.3, depending on whether or not the main effects of the factors with baseline

levels need more protection than those of the other factors. Theoretical constructions are

then provided to minimize the leading terms of these criteria. In Section 3.4, we present

two algorithms to search for designs that are exactly optimal or nearly optimal under these

criteria. All designs with 8, 12, 16 and 20 runs are found and made available online, and
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selected designs are provided in Section 3.5. All the proofs are relegated to Section 3.6. The

chapter is concluded with a discussion in Section 3.7.

3.2 A mixed parametrization and optimality results

Consider a factorial experiment for m two-level factors F1, F2, . . . , Fm in which the two

levels are denoted by −1 and +1. Let S = {1, 2, . . . ,m} collect the indices of these factors.

Then for any subset u ⊆ S, there corresponds a treatment combination xu = (xu1, . . . , xum)

where xuj = +1 if j ∈ u and xuj = −1 otherwise. We use τu to represent the treatment

mean under the treatment combination xu.

We first review the orthogonal parametrization of factorial effects. For any subset w =

{j1, . . . , jk} ⊆ S, let βw be the factorial effect involving the k factors Fj1 , . . . , Fjk under the

orthogonal parametrization. Then we have

τu =
∑
w⊆S

βw
∏
j∈w

xuj and βw = 1
2m

∑
u⊆S

τu
∏
j∈w

xuj . (3.1)

Mathematically, the treatment means τu’s and the factorial effects βw’s are just a linear

transformation of each other. However, the βw’s are statistically meaningful because they

describe the change in treatment means due to the level changes of factors indexed by w.

More concretely, the factorial effect βw defines a treatment contrast by averaging over all

possible level combinations of factors not contained in w. For example, the main effects are

given by βj = (1/2m)
∑
u⊆S\{j}(τu∪{j} − τu) for j = 1, . . . ,m.

The orthogonal parametrization is well suited for situations where the two levels are

symmetrical. For the opposite situations where one of the two levels corresponds to a baseline

or default setting, the baseline parametrization may be more appropriate. We suppose the

level −1 is the baseline level. For w ⊆ S, let θw be the factorial effect involving factors

indexed by w under the baseline parametrization. Let zuj = xuj + 1 for u ⊆ S and j =

1, . . . ,m. Then we have

τu =
∑
w⊆S

θw
∏
j∈w

zuj and θw = 1
2|w|

∑
u⊆w

τu
∏
j∈w

xuj , (3.2)
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where |w| denotes the cardinality of w. In contrast to βw’s, the θw’s characterize the factorial

effect due to factors in w by fixing all other factors at the baseline level −1. For example,

the main effects under the baseline parametrization are θj = (τj − τφ)/2 for j = 1, . . . ,m.

In the existing work on baseline designs, the two levels ±1 are converted to 0 and 1 by

zuj = (xuj + 1)/2. Our slightly different definition transforms ±1 to 0 and 2, which is to

ensure that βw and θw have the same scale and are comparable. This modification gives rise

to the extra 1/2|w| in the expression of θw in (3.2).

We now consider a general situation in which the two levels are asymmetrical for some

factors and symmetrical for the others. Without loss of generality, we assume the level −1

is the baseline level for the first m1 factors F1, . . . , Fm1 , and for the remaining m2 = m−m1

factors Fm1+1, . . . , Fm, the two levels are symmetrical. For convenience, we call the first

m1 factors B-factors and the last m2 factors O-factors. To define a mixed parametrization

of factorial effects, we need to introduce some notation. Let S1 = {1, . . . ,m1} and S2 =

{m1 + 1, . . . ,m}, representing the index sets of B-factors and O-factors, respectively. For

w1 ⊆ S1 and w2 ⊆ S2, let ξw1∪w2 be the factorial effect involving factors in w1 ∪ w2 under

the mixed parametrization. Then we have

τu =
∑

w1⊆S1

∑
w2⊆S2

ξw1∪w2

∏
j∈w1

zuj
∏
j∈w2

xuj and ξw1∪w2 = 1
2|w1|+m2

∑
u⊆w1∪S2

τu
∏

j∈w1∪w2

xuj ,

(3.3)

where zuj = xuj + 1. Clearly, (3.3) reduces to (3.1) if S1 = φ and to (3.2) if S2 = φ.

Therefore, our mixed parametrization includes as special cases the orthogonal and baseline

parametrizations. The factorial effects under the mixed parametrization inherit features of

the two parametrizations introduced above—the parameter ξw1∪w2 measures the effect of

factors in w1∪w2 by averaging over all level combinations of O-factors in S2\w2 while fixing

the B-factors in S1 \ w1 at the baseline level. For example, the main effects for B-factors

are given by ξj = (1/2m2+1)
∑
u⊆S2(τu∪{j} − τu) for j = 1, . . . ,m1, and those for O-factors

are defined as ξj = (1/2m2)
∑
u⊆S2\{j}(τu∪{j} − τu) for j = m1 + 1, . . . ,m. The following

example illustrates the three parametrizations by a 22 factorial.
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Example 3.1. Suppose that m = 2 with m1 = m2 = 1 so the first factor is a B-factor and

the second is an O-factor. There are 4 treatment combinations τφ, τ1, τ2 and τ12. Under the

three parametrizations discussed above, we obtain that

βφ = (τφ + τ1 + τ2 + τ12)/4, θφ = τφ, ξφ = (τφ + τ2)/2;

β1 = ξ1 = (−τφ + τ1 − τ2 + τ12)/4, θ1 = (τ1 − τφ)/2;

β2 = (−τφ − τ1 + τ2 + τ12)/4, θ2 = ξ2 = (τ2 − τφ)/2;

and β12 = θ12 = ξ12 = (τφ − τ1 − τ2 + τ12)/4.

As can be seen from (3.1), (3.2) and (3.3), the factorial effects under the three parametriza-

tions are all linear transformations of the treatment means, and hence must be linearly

related to each other. Sun and Tang (2022) established a linear relationship between the or-

thogonal and baseline parametrizations. Theorem 3.1 further reveals relationships between

the mixed parametrization and the other two.

Theorem 3.1. For any w1 ⊆ S1 and w2 ⊆ S2, we have that

(i) ξw1∪w2 =
∑
v1⊇w1(−1)|v1|−|w1|βv1∪w2 and βw1∪w2 =

∑
v1⊇w1 ξv1∪w2; and

(ii) ξw1∪w2 =
∑
v2⊇w2 θw1∪v2 and θw1∪w2 =

∑
v2⊇w2(−1)|v2|−|w2|ξw1∪v2.

We note that the relationship between orthogonal and baseline parametrizations can be

obtained by taking S1 = S and S2 = φ in part (i) of Theorem 3.1. More importantly, one

can easily deduce from Theorem 1 the equivalency of the three conditions: (a) ξw = 0 for

all |w| ≥ k, (b) βw = 0 for all |w| ≥ k, and (c) θw = 0 for all |w| ≥ k, for any given positive

integer k. This leads to the following result.

Corollary 3.1. The factorial effects involving k or more factors are negligible under any

one parametrization implies the same under the other two parametrizations. In particular,

if all interactions are negligible under one parametrization, they must be negligible under

the two parametrizations, in which case we have that ξj = βj = θj for j = 1, . . . ,m.

Now let’s focus on the estimation of main effects ξj ’s under the mixed parametrization,

using a design D = (dij) of N runs form factors. Let X1 be an N×m matrix with its (i, j)th
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element equal to (dij + 1) if j ≤ m1 and dij otherwise. Consider the following main-effects

model

Y = 1Nξφ + X1ξ1 + ε, (3.4)

where Y = (Y1, . . . , YN )T is the vector of responses, 1N is a column of N ones, ξ1 =

(ξ1, . . . , ξm)T and ε is the vector of uncorrelated random errors that have a zero mean and

a constant variance σ2. The results of Corollary 3.1 imply that such a model is equivalent

to a main-effects model under the orthogonal parametrization. Also note that ξj = βj for

j = 1, . . . ,m. Then the following results follow directly from the optimality results under

the orthogonal parametrization, and are parallel to Propositions 1 and 2 of Mukerjee and

Tang (2012). Recall that D is an orthogonal array of strength t if any t columns of D contain

all possible level combinations of −1 and +1 the same number of times; we denote such an

array by OA(N, 2m, t).

Corollary 3.2. With reference to the model (3.4), we have that

(i) the best linear unbiased estimator ξ̂j of ξj satisfies var(ξ̂j) ≥ σ2/N for j = 1, . . . ,m,

where the equality holds if and only if D is an OA(N, 2m, 2); and

(ii) design D is universally optimal for estimating ξ1 if D is an OA(N, 2m, 2).

3.3 Two minimum aberration criteria

Corollary 3.2 shows that under the model (3.4) which ignores interactions, an orthogonal

array is optimal for estimating the main effects ξ1 in a very broad sense. The best linear un-

biased estimator for (ξφ, ξT1 )T is given by (ξ̂φ, ξ̂T1 )T = (XTX)−1XTY, where X = (1N ,X1).

However, this estimator is actually biased if interactions are not negligible. Suppose the

true model is the full model

Y = 1Nξφ + X1ξ1 + X2ξ2 + · · ·+ Xmξm + ε,
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where ξk collects all k-factor interactions ξw’s with |w| = k, and Xk is the corresponding

model matrix for k = 1, . . . ,m. Then the bias in the estimator (ξ̂φ, ξ̂T1 )T is given by

E
[
(ξ̂φ, ξ̂T1 )T

]
− (ξφ, ξT1 )T = (XTX)−1XTX2ξ2 + · · ·+ (XTX)−1XTXmξm. (3.5)

In this section, we concentrate on selecting an orthogonal array that minimizes the contami-

nation of the potentially active interactions on the estimation of main effects. Two minimum

aberration criteria are proposed to implement the idea, depending on whether or not the

main effects of the B-factors need more protection than those of the O-factors.

3.3.1 Main effects of B-factors are more important

Under the mixed parametrization, there are two sets of main effects, one for the B-factors

and the other for the O-factors. In practice, the two sets of main effects may not be of equal

interest and thus ought to be treated differently. In this subsection, we consider the situation

that the main effects of the B-factors are more important than those of the O-factors, and

therefore need more protection from contamination by nonnegligible interactions. This is

reasonable because the B-factors may well be those that have current default settings and

the O-factors are some additional factors the investigator want to study. Default settings

need to be protected; so do the B-factors that have default settings.

From the bias expression (3.5), one can see that for k = 2, . . . ,m, the k-factor inter-

actions ξk contribute a bias term of Bkξk to the estimation of main effects for B-factors,

where Bk collects the rows 2, . . . ,m1 + 1 of the matrix (XTX)−1XTXk. Similarly, the bias

caused by ξk on the estimation of main effects for O-factors is Okξk, where Ok collects the

last m2 rows of the matrix (XTX)−1XTXk. If all components of ξk are equally likely to

be active with the same scale, then πBk = tr(BT
k Bk) and πOk = tr(OT

k Ok) provide reason-

able measures of the amount of bias from ξk on main-effects estimation for B-factors and

O-factors, respectively.

Under the assumption that the main effects of B-factors are more important, it is a

priority to protect these main effects from the contamination of interaction terms. On the

other hand, the effect hierarchy principle says that lower-order interactions are more likely
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to be active than the higher-order ones. Therefore, when only two-factor interactions are

present, an orthogonal array that sequentially minimizes πB2 and πO2 is desirable. If, in

addition, there are nonnegligible three-factor interactions, we then proceed to minimize πB3

and πO3 . Continuing this line of arguments, we obtain the following minimum πB-aberration

criterion for design selection.

Definition 3.1. An orthogonal array for m factors is said to have minimum πB-aberration

if it sequentially minimizes πB2 , πO2 , πB3 , πO3 , . . . , πBm, πOm.

The idea of minimum πB-aberration criterion is similar in spirit to those of the mini-

mum G2-aberration under the orthogonal parametrization (Tang and Deng, 1999) and the

minimum K-aberration under the baseline parametrization (Mukerjee and Tang, 2012). To

find a minimum aberration design is challenging, and our problem is further complicated by

the presence of two types of factors. Nevertheless, good designs can still be obtained theo-

retically by concentrating on the leading terms in the criterion of minimum πB-aberration.

Given k vectors a1, . . . , ak where aj = (a1j , . . . , aNj) for j = 1, . . . , k, the J-characteristic

of these vectors is defined as J(a1, . . . , ak) =
∑N
i=1

∏k
j=1 aij (Tang, 2001). The next result

expresses πB2 and πO2 in terms of the J-characteristics of columns of a design.

Lemma 3.1. Suppose that D = (b1, . . . , bm1 , o1, . . . , om2) is an orthogonal array of N runs

for m1 B-factors and m2 O-factors. Then we have that

πB2 = 3
N2

∑
i<j<k

J2(bi, bj , bk)+ 2
N2

∑
i<j

∑
k

J2(bi, bj , ok)+ 1
N2

∑
i

∑
j<k

J2(bi, oj , ok)+m1(m1−1)

and

πO2 = 1
N2

∑
i<j

∑
k

J2(bi, bj , ok) + 2
N2

∑
i

∑
j<k

J2(bi, oj , ok) + 3
N2

∑
i<j<k

J2(oi, oj , ok) +m1m2.

The J-characteristics are 0 for any three columns of an OA(N, 2m, 3), which exists

whenever m ≤ N/2 and a Hadamard matrix of order N/2 exists (Cheng, 2014). By Lemma

3.1, such a design minimizes the bias from two-factor interactions in estimating main effects
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of B-factors and O-factors. Another implication of Lemma 3.1 is that switching signs of

columns of a design does not affect the values of πB2 and πO2 .

For m > N/2, we use regular designs to minimize πB2 and πO2 . Let the columns of D

be selected from a saturated regular design OA(2h, 22h−1, 2) for some integer h. Such an

OA(2h, 22h−1, 2) can be constructed by first writing down h independent columns that form

a full factorial and then adding all possible Hadamard products thereof. We assume that

the columns of a regular OA(2h, 22h−1, 2) are arranged in Yates order. For example, the 15

columns of an OA(24, 215, 2) are given by

(1,2,12,3,13,23,123,4,14,24,124,34,134,234,1234)

where 1, 2, 3 and 4 are independent columns. For experiments involving only O-factors,

Chen and Hedayat (1996) showed that a design obtained by taking the last m columns

of a regular OA(2h, 22h−1, 2) minimizes πO2 among all regular designs. Inspired by their

construction, we establish Theorem 3.2.

Theorem 3.2. Suppose S is a regular OA(2h, 22h−1, 2). Let DB select the last m1 columns

of S and DO select the remaining m2 columns from the last m = m1 +m2 columns of S that

are not already in DB. Then we have the following results for the design D = (DB,DO).

(i) If m1 and m satisfy that m1 ≤ 2h − 2h1 and m ≥ 2h − 2h1 for some integer h1, then

design D minimizes πB2 over all OA(2h, 2m, 2)s and sequentially minimizes πB2 and

πO2 over all regular OA(2h, 2m, 2)s.

(ii) If m satisfies that m = 2h − 2h1 for some integer h1, then D sequentially minimizes

πB2 and πO2 over all OA(2h, 2m, 2)s.

It is worth remarking that although the constructed design D in Theorem 3.2 is regular,

its optimality properties are established in the whole class of orthogonal arrays in two of

the three optimality statements. Specifically, design D minimizes πB2 over all OA(2h, 2m, 2)s

in part (i) of Theorem 3.2, and sequentially minimizes πB2 and πO2 over all OA(2h, 2m, 2)s

in part (ii) of Theorem 3.2.
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The restriction on m1 and m values in part (i) of Theorem 3.2 is fairly mild. Because

m > N/2 = 2h−1, we see that the condition is always satisfied so long as m1 ≤ 2h−1.

Example 3.2 further illustrates Theorem 3.2 with a case for m1 > 2h−1.

Example 3.2. Suppose we would like to study m1 = 18 B-factors and m2 = 7 O-factors

with 25 = 32 runs. Then for h1 = 3, we have that m1 ≤ 32 − 2h1 and m ≥ 32 − 2h1. Let

DB = (234,1234,5, . . . ,12345) and DO = (123,4,14,24,124,34,134). By Theorem 3.2,

the design D = (DB,DO) minimizes πB2 over all OA(32, 225, 2)s and sequentially minimizes

πB2 and πO2 over all regular OA(32, 225, 2)s.

Remark 3.1. As careful readers may observe, the results of Theorem 3.2 hold no matter

whether baseline or orthogonal parametrization is used for each factor of the design D. As

long as the main effects are divided into two groups and more protection from two-factor

interactions is needed for one of the two groups, the results of Theorem 3.2 are applicable.

The existence of two types of factors provides a natural application scenario for these results.

3.3.2 Main effects of all factors are equally important

If the main effects of the B-factors and the O-factors are of equal interest, then, naturally,

one wishes to minimize πk = πBk +πOk for k = 2, . . . ,m, as πk measures the contamination of

k-factor interactions on the estimation of all main effects. Combined with the effect hierarchy

principle, the idea can be formulated as the following minimum π-aberration criterion.

Definition 3.2. An orthogonal array for m factors is said to have minimum π-aberration

if it sequentially minimizes π2, π3, . . . , πm.

Lemma 3.1 indicates that for a design D = (d1, . . . , dm) of N runs for m factors, we

have π2 = 3A3 + m1(m − 1) where A3 =
∑
i<j<k J

2(di, dj , dk)/N2 is the leading term in

the minimum G2-aberration criterion. However, for π3, π4, . . . , πm, such a simple connection

with the minimumG2-aberration criterion no longer exists. The expressions of π3, π4, . . . , πm

become more complex as sign-switching columns of D may affect their values.

In the following, we focus on sequential minimization of π2 and π3 through the use of

regular designs. Consider a regular design D of 2h runs for a total of m = 2h − 2h1 factors
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where h1 and h are integers. Chen and Hedayat (1996) and Tang and Wu (1996) proved

that A3, and thus π2, are minimized if and only if columns of D are isomorphic to the last

m columns of a saturated regular design. We show that π3 of such a design D is determined

by the J-characteristics of the B-factors alone.

Lemma 3.2. Suppose that D = (b1, . . . , bm1 , o1, . . . , om2) is a regular OA(2h, 2m, 2) that

minimizes π2, where m = 2h − 2h1 for some integer h1. Then we have that π3 = c1
∑
i<j<k

J(bi, bj , bk) + c0, where c0 and c1 > 0 are constants.

Lemma 3.2 enables us to decide which columns should be assigned to the B-factors and

how to switch their signs to minimize π3. Note that among the lastm = 2h−2h1 columns of a

regular OA(2h, 22h−1, 2), there are h−h1 independent columns (h1+1), . . . ,h. Let’s arrange

these h−h1 columns and all their possible Hadamard products in Yates order. Then let DB

collect the first m1 columns with their signs all switched, where m1 ≤ 2h−h1 − 1. Let DO

include the remainingm−m1 columns in the lastm columns of the regular OA(2h, 22h−1, 2).

Finally, let D = (DB,DO). We have the following result for this design D.

Theorem 3.3. The design D sequentially minimizes π2 and π3 over all regular designs.

The design D in Theorem 3.3 can be constructed as long as the total number m of

factors satisfies m = 2h − 2h1 for some integer h1 and the number m1 of B-factors sat-

isfies m1 ≤ 2h−h1 − 1. In the saturated case of m = 2h − 1, such a design is obtain-

able for any choice of m1 and m2. In particular, if m1 = m = 2h − 1, then we have

D = (−1,−2,−12,−3,−13, . . . ,−123 · · ·h) which must have a row of −1’s. Mukerjee and

Tang (2012) showed that a saturated orthogonal array has minimum aberration under the

baseline parametrization if it contains a run of all baseline levels. Therefore our result is

consistent with theirs in this special case.

We illustrate Theorem 3.3 with an example.

Example 3.3. Suppose 64 experiments are allowed to examine the main effects of m1 = 6

B-factors and m2 = 50 O-factors. Let DB = (−4,−5,−45,−6,−46,−56) and DO =

(456,14, . . . ,123456) which consists of all columns that do not occur in DB but do occur
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in the last 56 columns of the regular OA(64, 263, 2). According to Theorem 3.3, the design

D = (DB,DO) sequentially minimizes π2 and π3 over all regular OA(64, 256, 2)s.

Theorems 3.2 and 3.3 provide two theoretical constructions for minimum πB- and π-

aberration designs. These methods have some restrictions on the run size as well as the

numbers of B-factors and O-factors. In the next section, we develop efficient algorithms to

search for minimum πB- and π-aberration designs for general cases.

3.4 Searching designs by algorithms

3.4.1 A complete search algorithm

Two orthogonal arrays are combinatorially isomorphic if one can be obtained from the other

by permuting rows, permuting columns, switching signs of columns, or a combination of

these operations (Hedayat et al., 1999). All orthogonal arrays can be generated by applying

these operations to a complete set of non-isomorphic orthogonal arrays. Complete sets

of non-isomorphic orthogonal arrays are available for small run sizes (Sun et al., 2008;

Schoen et al., 2010), which allows us to find minimum πB- and π-aberration designs over

all orthogonal arrays.

When using an OA(N, 2m, 2) as a design for m1 B-factors and m2 O-factors, there is

no need to inspect all isomorphic operations, as many of them lead to designs with the

same πB- or π-aberration. Clearly, permuting rows, permuting the first m1 columns and

permuting the last m2 columns won’t affect the πB- or π-aberration. In addition, we have

the following results on sign-switching columns.

Lemma 3.3. Switching the signs of O-factors in an OA(N, 2m, 2) does not change πBk , πOk
and thus πk values for k = 2, . . . ,m.

Based on the above, we propose the following complete search algorithm for minimum

aberration designs. The algorithm used by Mukerjee and Tang (2012) for the baseline

parametrization can be seen as a special case where all factors are B-factors.

Step I: Obtain a complete list of non-isomorphic OA(N, 2m, 2)s.
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Step II: For each array in the list, select m1 columns for B-factors. The remaining m2

columns are used for O-factors.

Step III: For every choice of B-factors and O-factors in Step II, switch signs of the m1

columns of the B-factors in all possible ways. Calculate the πBk , πOk and πk values for

this design.

Note that for the minimum π-aberration criterion, only those OA(N, 2m, 2)s with min-

imum π2 values need to be considered in Step I. We apply this complete search algo-

rithm to obtain minimum πB- and π-aberration designs of N = 8, 12 and 16 runs for

all choices of m1 and m2, the numbers of B-factors and O-factors. For N = 20 runs,

the complete search is done for m ≤ 13. All the obtained designs are available online at

https://github.com/gz-chen/Mixed-Param.

Suppose there are q(N,m) non-isomorphic OA(N, 2m, 2)s to be considered in Step I.

Then the total number of designs to be compared in a complete search is q(N,m)
(m
m1

)
2m1 ,

which, as N , m and m1 increases, soon becomes too large for computer to handle, not to

mention that the computation of J-characteristics also grows rapidly and that complete sets

of non-isomorphic orthogonal arrays are no longer available for large designs. Therefore, it

is necessary to come up with an efficient algorithm for the cases where the complete search

is impossible.

3.4.2 An algorithm based on minimum G2-aberration designs

The aim of this subsection is to conduct an algorithmic search for large designs that perform

well under the minimum πB- or π-aberration criterion. To achieve this, several measures are

taken to reduce the computation. The first is to focus on orthogonal arrays with minimum

G2-aberrations instead of all non-isomorphic ones in Step I of the complete search algorithm.

An OA(N, 2m, 2), say D = (d1, . . . , dm), is said to have minimum G2-aberration if

it sequentially minimizes A3, A4, . . . , Am, where Ak =
∑

j1<···<jk J
2(dj1 , . . . , djk)/N2 for

k = 3, . . . ,m. As mentioned in Section 3.3.2, a minimum G2-aberration design minimizes

π2 in the minimum π-aberration criterion. The next result shows that such a design is also
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promising in sequentially minimizing higher-order terms πk for k = 3, . . . ,m and entries in

the minimum πB-aberration criterion.

Theorem 3.4. Suppose the B-factors of a design are generated by randomly selecting and

sign-switching m1 columns of an OA(N, 2m, 2) and the O-factors are given by the remaining

columns. Let π̄k be the average of πk’s over all possible designs generated in this way. Then,

for k = 2, . . . ,m, we have

π̄k = c
(k)
k+1Ak+1 + c

(k)
k Ak + · · ·+ c

(k)
3 A3 + c

(k)
0 ,

where c(k)
0 , c

(k)
3 , . . . , c

(k)
k+1 are positive constants, A3, . . . , Am are determined by the OA(N, 2m, 2)

and we define Am+1 = 0. Similar results also hold for πBk and πOk .

Theorem 3.4 provides a rationale for the use of minimum G2-aberration designs in Step I

of the complete search algorithm. Related to Theorem 3.4 is a result of Xiao and Xu (2018)

who justified the use of generalized minimized aberration designs in generating space-filling

designs.

Next, we improve the efficiency of Steps II and III of the complete search algorithm

through a local search algorithm (Aarts and Lenstra, 2003). The idea is to iteratively replace

a current design with the best one in a small neighbourhood of the current design, until

no further improvement can be made. A full description of our algorithm for minimum

π-aberration designs is given below.

Step I: Obtain a minimum G2-aberration design from a list of OA(N, 2m, 2)s. Ran-

domly permute and sign-switch its columns. Denote this design by D = (b1, . . . , bm1 , o1

. . . , om2) and calculate π = (π2, . . . , πm) for D.

Step II: Exchange a column bj (j = 1, . . . ,m1) and a column ±ok (k = 1, . . . ,m2).

Among all 2m1m2 designs generated this way, continue to the next step if none of

them improves π; otherwise select one with the least π-aberration, denote it by D

and update π. Then repeat this step.
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Step III: Exchange a column pair (bj1 , bj2) (1 ≤ j1 < j2 ≤ m1) and a column pair

(±ok1 ,±ok2) (1 ≤ k1 < k2 ≤ m2). Among all 4
(m1

2
)(m2

2
)
designs generated this way,

continue to the next step if none of them improves π; otherwise select one with the

least π-aberration, denote it by D and update π. Then go back to Step II.

Step IV: Replace a column bj by −bj (j = 1, . . . ,m1). Among all m1 designs generated

this way, continue to the next step if none of them improves π; otherwise select one

with the least π-aberration, denote it by D and update π. Then repeat this step.

Step V: Replace a column pair (bj1 , bj2) by (−bj1 ,−bj2) (1 ≤ j1 < j2 ≤ m1). Among all(m1
2
)
designs generated this way, continue to the next step if none of them improves π;

otherwise select one with the least π-aberration, denote it by D and update π. Then

go back to Step IV.

Step VI: Output the design D and the associated vector π = (π2, . . . , πm).

The algorithm above generalizes that for the baseline parametrization presented in Li

et al. (2014). One can replace the vector π = (π2, . . . , πm) in the algorithm by π =

(πB2 , πO2 , . . . , πBm, πOm) if a minimum πB-aberration design is the goal. If there is more than

one minimum G2-aberration design in Step I, then we can apply the algorithm to all those

designs and then find the best output design.

To evaluate the performance of our algorithm, we apply it to 20-run designs for 13

factors. There are 730 non-isomorphic OA(20, 213, 2)s in total, where 5 of them minimize

A3 (and equivalently, π2) and 3 of them have the minimum G2-aberration. Therefore in a

complete search, we search 730 orthogonal arrays for minimum πB-aberration designs and

5 orthogonal arrays for minimum π-aberration designs, whereas in the incomplete search

we focus on the 3 minimum G2-aberration designs. For each case of the number of B-

factors m1 = 1, . . . , 13, we run the incomplete search algorithm 200 times for minimum πB-

and π-aberration designs separately and compare the results with those obtained from the

complete search.

Under the minimum πB-aberration criterion, we are surprised to find that all the designs

obtained by the incomplete search algorithm sequentially minimize the leading terms πB2
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and πO2 among all orthogonal arrays. So we move on to the next term and compare the 200

πB3 values in the incomplete search with all the πB3 values of orthogonal arrays that have

sequentially minimized πB2 and πO2 . For each m1 = 1, . . . , 13, the distributions of these two

sets of πB3 values can be described by two boxplots, as shown in the left panel of Figure

3.1. It can be seen that the πB3 values from the incomplete search are all centered near

the minimum πB3 values from the complete search. A closer examination can be done by

calculating the proportion of designs in the complete search that are no better than the

worst design by the incomplete search algorithm. As displayed in the second and fifth rows

of Table 3.1, some of these proportions are 100%, implying the 200 incomplete searches

always find the design with minimum πB3 value, and other proportions are close to 100%,

showing that the even the worst design found by the incomplete search algorithm has good

performance in terms of πB3 value. Similar observations on π3 values can also be made from

the searching results for minimum π-aberration designs, as presented in the right panel of

Figure 3.1 and the third and sixth rows of Table 3.1.

These empirical results demonstrate that our incomplete search algorithm can be used

to obtain designs that perform well under the minimum πB- or π-aberration criterion. We

Figure 3.1: The πB3 and π3 values obtained by 200 incomplete searches and the complete
search. For each m1 = 1, . . . , 13, the left and right boxplots show the values from the
complete and incomplete searches, respectively.
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Table 3.1: Proportions of OA(20, 213, 2)s that are no better than the worst design found by
the incomplete search algorithm.

m1 1 2 3 4 5 6 7
πB3 100% 99.697% 100% 100% 99.989% 99.934% 99.967%
π3 98.462% 98.462% 99.528% 99.633% 99.863% 99.930% 99.981%
m1 8 9 10 11 12 13
πB3 99.953% 99.919% 99.828% 99.738% 99.775% 99.824%
π3 99.996% 99.994% 99.984% 99.859% 99.862% 99.864%

Table 3.2: Two saturated designs of 8 and 12 runs.

1 2 3 4 5 6 7
− − − − − − −
+ − + − + − +
− + + − − + +
+ + − − + + −
− − − + + + +
+ − + + − + −
− + + + + − −
+ + − + − − +

1 2 3 4 5 6 7 8 9 10 11
− − − − − − − − − − −
+ − + − − − + + + − +
+ + − + − − − + + + −
− + + − + − − − + + +
+ − + + − + − − − + +
+ + − + + − + − − − +
+ + + − + + − + − − −
− + + + − + + − + − −
− − + + + − + + − + −
− − − + + + − + + − +
+ − − − + + + − + + −
− + − − − + + + − + +

apply this algorithm to 20-run designs with more than 13 factors under the both criteria.

All findings are available at https://github.com/gz-chen/Mixed-Param.

3.5 Some selected designs

We present minimum πB- and π-aberration designs of 8 and 12 runs in Tables 3.3, 3.4

and 3.5. All these designs are generated by selecting and sign-switching columns of the two

saturated designs displayed in Table 3.2.

3.6 Proofs

Proof of Theorem 3.1. The proof is similar to that of Theorem 1 in Sun and Tang (2022).

Let τ , θ, β and ξ collect all τu’s, θw’s, βw’s and ξw’s in Yates order. Define Lm = ⊗mk=1L
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Table 3.3: Minimum πB and π-aberration designs of 8 runs.
m m1 m2 Columns of DB Columns of DO (πB2 , πO2 , πB3 , πO3 ) Criterion
3 1 2 −1 (2, 4) (0, 2, 0, 0) πB, π
3 2 1 (−1,−2) 4 (2, 2, 0, 1) πB, π
4 1 3 −1 (2, 4, 7) (0, 3, 1, 3) πB, π
4 2 2 (−1,−2) (4, 7) (2, 4, 2, 4) πB, π
4 3 1 (−1,−2,−4) 7 (6, 3, 6, 4) πB, π
5 1 4 −2 (1, 3, 4, 5) (1, 9, 2, 6) πB
5 1 4 −1 (2, 3, 4, 5) (2, 8, 2, 4) π
5 2 3 (−2,−3) (1, 4, 5) (4, 10, 4, 11) πB
5 2 3 (−1,−2) (3, 4, 5) (5, 9, 5, 8) π
5 3 2 (−2,−3,−4) (1, 5) (9, 9, 13, 12) πB
5 3 2 (1,−2,−3) (4, 5) (10, 8, 5, 12) π
5 4 1 (2,−3,−4,−5) 1 (16, 6, 28, 10) πB
5 4 1 (1,−2,−3,−4) 5 (17, 5, 21, 9) π
6 1 5 −1 (2, 3, 4, 5, 6) (2, 15, 4, 16) πB, π
6 2 4 (−1,−2) (3, 4, 5, 6) (6, 16, 10, 22) πB
6 2 4 (−1,−6) (2, 3, 4, 5) (6, 16, 12, 20) π
6 3 3 (1,−2,−3) (4, 5, 6) (12, 15, 15, 27) πB, π
6 4 2 (1,−2,−3,−4) (5, 6) (20, 12, 36, 26) πB, π
6 5 1 (1,−2,−3,−4,−5) 6 (30, 7, 62, 18) πB, π
7 1 6 −1 (2, 3, 4, 5, 6, 7) (3, 24, 7, 36) πB, π
7 2 5 (−1,−2) (3, 4, 5, 6, 7) (8, 25, 18, 45) πB, π
7 3 4 (1,−2,−3) (4, 5, 6, 7) (15, 24, 30, 52) πB, π
7 4 3 (1,−2,−3,−4) (5, 6, 7) (24, 21, 58, 54) πB, π
7 5 2 (1,−2,−3,−4,−5) (6, 7) (35, 16, 93, 48) πB, π
7 6 1 (1, 2, 3,−4,−5,−6) 7 (48, 9, 138, 31) πB, π
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Table 3.4: Minimum πB and π-aberration designs of 12 runs for m = 3, . . . , 8 factors.
m m1 m2 Columns of DB Columns of DO (πB2 , πO2 , πB3 , πO3 ) Criterion
3 1 2 −1 (2, 3) (0.11, 2.22, 0.11, 0) πB, π
3 2 1 (−1,−2) 3 (2.22, 2.11, 0.22, 1) πB, π
4 1 3 −1 (2, 3, 4) (0.33, 4, 0.44, 0) πB, π
4 2 2 (−1,−2) (3, 4) (2.67, 4.67, 0.67, 2.22) πB, π
4 3 1 (−1,−2, 3) 4 (7, 3.33, 2.33, 3.44) πB, π
5 1 4 −1 (2, 3, 4, 6) (0.67, 6.67, 1.11, 0.44) πB, π
5 2 3 (−1,−2) (3, 4, 6) (3.33, 8, 1.56, 3.67) πB
5 2 3 (−1,−2) (3, 4, 6) (3.33, 8, 1.56, 3.67) π
5 3 2 (−1,−2, 3) (4, 6) (8, 7.33, 3.67, 7.56) πB, π
5 4 1 (−1,−2, 3,−4) 6 (14.67, 4.67, 9.78, 7.78) πB, π
6 1 5 −1 (2, 3, 4, 5, 6) (1.11, 10.56, 2.22, 7.56) πB, π
6 2 4 (−1,−2) (3, 4, 5, 6) (4.22, 12.44, 4.89, 12.89) πB, π
6 3 3 (−1,−2, 3) (4, 5, 6) (9.33, 12.33, 10.11, 18.56) πB
6 3 3 (1,−2,−3) (4, 5, 10) (9.33, 12.33, 11, 16.33) π
6 4 2 (−1,−2, 3,−4) (5, 6) (16.44, 10.22, 20, 20.44) πB, π
6 5 1 (−1,−2, 3,−4, 6) 5 (25.56, 6.11, 36.67, 14.44) πB, π
7 1 6 −2 (1, 3, 4, 5, 6, 7) (1.67, 16, 3.89, 17.33) πB, π
7 2 5 (−1, 3) (2, 4, 5, 6, 7) (5.33, 18.33, 9.11, 29) πB
7 2 5 (−1,−2) (3, 4, 5, 6, 7) (5.33, 18.33, 9.56, 25) π
7 3 4 (1,−2,−3) (4, 5, 6, 7) (11, 18.67, 18.44, 33.33) πB
7 3 4 (−1,−3, 5) (2, 4, 6, 7) (11, 18.67, 19.33, 31.56) π
7 4 3 (−1, 3,−4, 6) (2, 5, 7) (18.67, 17, 32.89, 43.33) πB
7 4 3 (1, 3, 4, 5) (2, 6, 7) (18.67, 17, 33.78, 37.11) π
7 5 2 (−1,−2, 3,−4, 6) (5, 7) (28.33, 13.33, 55.22, 34.67) πB, π
7 6 1 (−1,−2, 3,−4,−5, 6) 7 (40, 7.67, 99.78, 23.44) πB
7 6 1 (−1, 3, 4,−5,−6,−7) 2 (40, 7.67, 100.67, 21.22) π
8 1 7 1 (2, 3, 4, 5, 6, 7, 8) (2.33, 23.33, 6.22, 38.22) πB, π
8 2 6 (−1, 3) (2, 4, 5, 6, 7, 8) (6.67, 26, 14.44, 53.33) πB
8 2 6 (1,−2) (3, 4, 5, 6, 7, 8) (6.67, 26, 15.33, 48) π
8 3 5 (1,−2, 4) (3, 5, 6, 7, 8) (13, 26.67, 28.11, 60.78) πB
8 3 5 (1,−2,−7) (3, 4, 5, 6, 8) (13, 26.67, 29, 56.78) π
8 4 4 (1,−2,−3, 8) (4, 5, 6, 7) (21.33, 25.33, 48.89, 64.44) πB, π
8 5 3 (−1,−2, 3,−4, 6) (5, 7, 8) (31.67, 22, 78.44, 64.67) πB
8 5 3 (−1,−2, 3,−4, 6) (5, 7, 8) (31.67, 22, 78.44, 64.67) π
8 6 2 (1,−2,−3,−4,−7, 8) (5, 6) (44, 16.67, 127.33, 56.44) πB, π
8 7 1 (1,−2, 3, 4, 5,−6,−7) 8 (58.33, 9.33, 194.11, 35.22) πB, π

46



Table 3.5: Minimum πB and π-aberration designs of 12 runs for m = 9, 10, 11 factors.
m m1 m2 Columns of DB Columns of DO (πB2 , πO2 , πB3 , πO3 ) Criterion
9 1 8 −1 (2, 3, 4, 5, 6, 7, 8, 9) (3.11, 32.89, 9.33, 68.44) πB
9 1 8 −1 (2, 3, 4, 5, 6, 7, 8, 9) (3.11, 32.89, 9.33, 68.44) π
9 2 7 (1,−2) (3, 4, 5, 6, 7, 8, 9) (8.22, 35.78, 22.89, 84.11) πB
9 2 7 (−1,−2) (3, 4, 5, 6, 7, 8, 9) (8.22, 35.78, 23.33, 82.78) π
9 3 6 (1,−2, 4) (3, 5, 6, 7, 8, 9) (15.33, 36.67, 40.33, 101.33) πB
9 3 6 (−1,−2,−4) (3, 5, 6, 7, 8, 9) (15.33, 36.67, 43.89, 96) π
9 4 5 (−1, 2,−3, 5) (4, 6, 7, 8, 9) (24.44, 35.56, 68.44, 107.78) πB, π
9 5 4 (−1,−2, 3,−4, 6) (5, 7, 8, 9) (35.56, 32.44, 106.89, 108.89) πB, π
9 6 3 (−1,−2,−3, 4, 7,−8) (5, 6, 9) (48.67, 27.33, 167.78, 107.44) πB
9 6 3 (−1,−2, 3,−4, 5, 6) (7, 8, 9) (48.67, 27.33, 169.11, 102.11) π
9 7 2 (−1,−2, 3,−4, 5, 6, 7) (8, 9) (63.78, 20.22, 242.33, 85.78) πB, π
9 8 1 (1, 2,−3,−4,−5, 6,−7,−8) 9 (80.89, 11.11, 336, 52) πB, π
10 1 9 −1 (2, 3, 4, 5, 6, 7, 8, 9, 10) (4, 45, 13.33, 112) πB, π
10 2 8 (−1,−2) (3, 4, 5, 6, 7, 8, 9, 10) (10, 48, 32.89, 132.44) πB
10 2 8 (−1,−2) (3, 4, 5, 6, 7, 8, 9, 10) (10, 48, 32.89, 132.44) π
10 3 7 (−1, 2,−3) (4, 5, 6, 7, 8, 9, 10) (18, 49, 59, 152.33) πB
10 3 7 (1,−2,−3) (4, 5, 6, 7, 8, 9, 10) (18, 49, 59.89, 151.44) π
10 4 6 (−1, 2,−3, 5) (4, 6, 7, 8, 9, 10) (28, 48, 92, 169.33) πB
10 4 6 (−1,−2, 3,−4) (5, 6, 7, 8, 9, 10) (28, 48, 95.56, 165.78) π
10 5 5 (−1,−2, 3,−4, 6) (5, 7, 8, 9, 10) (40, 45, 141.11, 172.22) πB
10 5 5 (−1,−2, 3,−4, 6) (5, 7, 8, 9, 10) (40, 45, 141.11, 172.22) π
10 6 4 (−1,−2, 3,−4,−5, 6) (7, 8, 9, 10) (54, 40, 215.11, 170.22) πB
10 6 4 (−1,−2, 3,−4,−5, 6) (7, 8, 9, 10) (54, 40, 215.11, 170.22) π
10 7 3 (1,−2,−3,−4, 5,−6,−7) (8, 9, 10) (70, 33, 302.78, 156.56) πB
10 7 3 (1,−2, 3, 4, 5,−6,−7) (8, 9, 10) (70, 33, 305.44, 153.89) π
10 8 2 (1, 2,−3,−4,−5, 6,−7,−8) (9, 10) (88, 24, 410.67, 122.67) πB, π
10 9 1 (−1, 2,−3, 4, 5, 6,−7,−8,−9) 10 (108, 13, 540, 73.33) πB, π
11 1 10 −1 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11) (5, 60, 18.33, 173.33) πB, π
11 2 9 (−1,−2) (3, 4, 5, 6, 7, 8, 9, 10, 11) (12, 63, 44.67, 201) πB, π
11 3 8 (1,−2,−3) (4, 5, 6, 7, 8, 9, 10, 11) (21, 64, 80, 226.67) πB, π
11 4 7 (−1,−2, 3,−4) (5, 6, 7, 8, 9, 10, 11) (32, 63, 125.33, 247.33) πB, π
11 5 6 (−1,−2, 3,−4, 6) (5, 7, 8, 9, 10, 11) (45, 60, 181.67, 260) πB, π
11 6 5 (−1,−2, 3,−4,−5, 6) (7, 8, 9, 10, 11) (60, 55, 270, 261.67) πB, π
11 7 4 (1,−2,−3,−4, 5,−6,−7) (8, 9, 10, 11) (77, 48, 375.33, 249.33) πB
11 7 4 (1,−2,−3,−4, 5,−6,−7) (8, 9, 10, 11) (77, 48, 375.33, 249.33) π
11 8 3 (1, 2,−3,−4,−5, 6,−7,−8) (9, 10, 11) (96, 39, 498.67, 220) πB, π
11 9 2 (−1, 2,−3, 4, 5, 6,−7,−8,−9) (10, 11) (117, 28, 649, 170.67) πB, π
11 10 1 (−1,−2, 3,−4, 5, 6, 7,−8,−9,−10) 11 (140, 15, 823.33, 98.33) πB, π
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and Hm = ⊗mk=1H where

L =

1 0

1 2

 and H =

1 −1

1 1


and ⊗mk=1 denotes m-fold Kronecker product. Then in matrix notation (3.1), (3.2) and (3.3)

can be written as

τ = Hmβ, τ = Lmθ and τ = Hm2 ⊗ Lm1ξ. (3.6)

Then the results in Theorem 3.1 can be verified directly. For example, ξ = ⊗m2
k=1(H−1L)⊗

I2m1θ where I2m1 is the identity matrix of order 2m1 .

Proof of Lemma 3.1. Note that the matrix B2, which contains the rows 2, . . . ,m1 + 1 of

the matrix (XTX)−1XTX2, can be written as B2 = (B2,B×B,B2,B×O,B2,O×O), where the

three submatrices correspond to the interactions of two B-factors, one B-factor and one

O-factor, and two O-factors, respectively. Hence πB2 = tr(BT
2 B2) = tr(BT

2,B×BB2,B×B) +

tr(BT
2,B×OB2,B×O) + tr(BT

2,O×OB2,O×O). Since D is an orthogonal array, it can be easily

checked that

XTX = N


1 1Tm1 0

1m1 Im1 + Jm1 0

0 0 Im2

 and (XTX)−1 = 1
N


m1 + 1 −1Tm1 0

−1m1 Im1 0

0 0 Im2

 ,

where Jm1 is an m1 ×m1 matrix of all ones. Through some tedious algebra, one can show

that tr(BT
2,B×BB2,B×B) = 3

∑
i<j<k J

2(bi, bj , bk)/N2 + m1(m1 − 1), tr(BT
2,B×OB2,B×O) =

2
∑
i<j

∑
k J

2(bi, bj , ok)/N2 and tr(BT
2,O×OB2,O×O) =

∑
i

∑
j<k J

2(bi, oj , ok)/N2. This gives

the expression of πB2 in the Lemma. One can also define O2,B×B, O2,B×O and O2,O×O sim-

ilarly and show that tr(OT
2,B×BO2,B×B) =

∑
i<j

∑
k J

2(bi, bj , ok)/N2, tr(OT
2,B×OO2,B×O) =

2
∑
i

∑
j<k J

2(bi, oj , ok)/N2 + m1m2 and tr(OT
2,O×OO2,O×O) = 3

∑
i<j<k J

2(oi, oj , ok)/N2,

leading to the expression of πO2 in the Lemma.
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Proof of Theorem 3.2. First, we do not assume that D = (b1, . . . , bm1 , o1, . . . , om2) is reg-

ular. Since D is an orthogonal array, there exists a set of m3 = N − 1 − m orthogonal

real columns E = (e1, . . . , em3) such that eTj ej = N2 and ej ’s are orthogonal to columns

of D and the column 1N for j = 1, . . . ,m3. Hence, for any 1 ≤ i 6= j ≤ m1, we have that∑m1
k=1 J

2(bi, bj , bk) +
∑m2
k=1 J

2(bi, bj , ok) +
∑m3
k=1 J

2(bi, bj , ek) = N2. Summing this equation

over all (i, j)’s, one can show that

∑
i<j

∑
k

J2(bi, bj , ok) = −3
∑
i<j<k

J2(bi, bj , bk)−
∑
i<j

∑
k

J2(bi, bj , ek) + C1 (3.7)

for some constant C1. Using similar arguments, we can express
∑
i

∑
j<k J

2(bi, oj , ok) and∑
i<j<k J

2(oi, oj , ol) in terms of J-characteristics of columns not involving oj ’s. In particular,

we have

∑
i

∑
j<k

J2(bi, oj , ok) = 3
∑
i<j<k

J2(bi, bj , bk)+2
∑
i<j

∑
k

J2(bi, bj , ek)+
∑
i

∑
j<k

J2(bi, ej , ek)+C2

(3.8)

for some constant C2 and

∑
i<j<k

J2(oi, oj , ok) = −
∑
i<j<k

J2(bi, bj , bk)−
∑
i<j

∑
k

J2(bi, bj , ek)

−
∑
i

∑
j<k

J2(bi, ej , ek)− J2(ei, ej , ek) + C3 (3.9)

for some constant C3. Combining (3.7), (3.8) and (3.9), we have πB2 =
∑
i

∑
j<k J

2(bi, ej , ek)/N2

+ CB and πO2 = −
∑
i

∑
j<k J

2(bi, ej , ek)/N2 − 3
∑
i<j<k J

2(ei, ej , ek)/N2 + CO for some

constants CB and CO. Therefore, we have proved that sequentially minimizing πB2 and πO2

amounts to sequentially minimizing
∑
i

∑
j<k J

2(bi, ej , ek) and −
∑
i<j<k J

2(ei, ej , ek).

Now suppose that columns of D are selected from a saturated regular design as specified

in Theorem 3.2. Then E can be taken as the complement of D in the saturated regular

design. Then we have that J2(bi, ej , ek) = N2 if bi, ej and ek forms a defining word and

J2(bi, ej , ek) = 0 otherwise. It can be verified that when the conditions in part (i) of the

theorem are met, bi must contain an independent column not contained in ej and ek,
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leading to J2(bi, ej , ek) = 0. In addition, the results of Chen and Hedayat (1996) imply that∑
i<j<k J

2(ei, ej , ek) is maximized by design D among all regular OA(2h, 2m, 2)’s, and in

particular, among all OA(2h, 2m, 2)’s if m = 2h − 2h1 for some integer h1. The results of

Theorem 3.2 then follow.

Proof of Lemma 3.2. We use similar notations to those in the proof of Lemma 3.1. For

example, B3,B×B×B is the submatrix of (XTX)−1XTX3 corresponding to contamination of

interaction involving three B-factors on the main effects of B-factors. Then we have

tr(BT
3,B×B×BB3,B×B×B) = 3

N2

∑
i<j<k

{J(bi, bj , bk) +N}2

+ 1
N2

∑
i<j<k

∑
l

{J(bi, bj , bk, bl) + J(bi, bj , bl) + J(bi, bk, bl) + J(bj , bk, bl)}2 ,

tr(BT
3,B×B×OB3,B×B×O) = 2

N2

∑
i<j

∑
k

J2(bi, bj , ok)

+ 1
N2

∑
i<j

∑
k

∑
l

{J(bi, bj , bk, ol) + J(bi, bk, ol) + J(bj , bk, ol)}2 ,

tr(BT
3,B×O×OB3,B×O×O) = 1

N2

∑
i

∑
j<k

J2(bi, oj , ok) + 1
N2

∑
i 6=j

∑
k<l

{J(bi, bj , ok, ol) + J(bi, ok, ol)}2 ,

tr(BT
3,O×O×OB3,O×O×O) = 1

N2

∑
i

∑
j<k<l

J2(bi, oj , ok, ol),

tr(OT
3,B×B×BO3,B×B×B) = 1

N2

∑
i<j<k

∑
l

{J(bi, bj , bk, ol) + J(bi, bj , ol) + J(bi, bk, ol) + J(bj , bk, ol)}2 ,

tr(OT
3,B×B×OO3,B×B×O) = 2

N2

∑
i<j

∑
k<l

{J(bi, bj , ok, ol) + J(bi, ok, ol) + J(bj , ok, ol)}2 + 1
2m1m2(m1 − 1),

tr(OT
3,B×O×OO3,B×O×O) = 3

N2

∑
i

∑
j<k<l

{J(bi, oj , ok, ol) + J(oj , ok, ol)}2 ,

tr(OT
3,O×O×OO3,O×O×O) = 4

N2

∑
i<j<k<l

J2(oi, oj , ok, ol).

Then π3 is obtained by taking the sum of all the terms above. Since any two J-characteristics

in the same curly bracket cannot be nonzero at the same time, their product will be zero if

we expand the square term. By some tedious algebra, we have

π3 = 4A4 + (3m1− 6)A3 + 2πO2 + 6
N

∑
i<j<k

J(bi, bj , bk) + 1
2m1(m1− 1)(m1 +m2− 2). (3.10)
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In the proof of Theorem 3.2, we have already obtained that πO2 = −
∑
i

∑
j<k J

2(bi, ej , ek)/N2−

3
∑
i<j<k J

2(ei, ej , ek)/N2 + CO for some constant CO, where e1, . . . , eN−1−m are columns

of the complement of D. Clearly, if e1, . . . , eN−1−m takes the first 2h1 − 1 columns of a

saturated regular design, then the first three terms of π3 in (3.10) are constant. Then the

result of the lemma follows.

Proof of Theorem 3.3. Since D is regular, the value of J(bi, bj , bk) is either 0 or ±N for any

1 ≤ i < j < k ≤ m1. Thus we have

π3 = c1N
∑
i<j<k

J(bi, bj , bk)/N+c0 ≥ −c1N
∑
i<j<k

J2(bi, bj , bk)/N2 +c0 = −c1NA3(DB)+c0,

(3.11)

where A3(DB) is the A3 value of DB. By results of Chen and Hedayat (1996), we have

A3(DB) is maximized among all regular designs by the choice of DB in the construction. In

addition, since J(bi, bj , bk)/N = −J2(bi, bj , bk)/N2, we conclude the lower bound in (3.11)

is achieved. Therefore, D = (DB,DO) sequentially minimizes π2 and π3 over all regular

designs.

Proof of Lemma 3.3. The proof can be done by a direct verification. For example, the con-

tamination of k-factor interaction odj1 · · · djk−1 on the estimation of main effect of djk , where

o is an O-factor and dj1 , . . . , djk are either B-factors or O-factors, will contribute a term

(
∑N
i=1 oizi,j1zi,j2 · · · zi,jk−1di,jk)2/N2, where zi,jl = di,jl if djl is an O-factor and zi,jl = di,jl +1

if djl is a B-factor for l = 1, . . . , k − 1, in πBk or πOk depending on whether djk is a B-factor

or an O-factor. One can see that replacing oi by −oi does not affect the value of this term.

Therefore, the conclude switching the signs of O-factors in an OA(N, 2m, 2) does not affect

its aberration.

Proof of Theorem 3.4. For the design D generated in the theorem, we study the contam-

ination of k-factor interaction bj1 · · · bjk1
ol1 · · · olk2

(k1 + k2 = k) on the estimation of

the main effect of certain factor d0. Such a contamination will contribute a term Q =
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{
∑N
i=1(bi,j1 + 1) · · · (bi,jk1

+ 1)oi,l1 · · · oi,lk2
di,0}2/N2 in πk. Thus we have

Q = 1
N2

{
J(bj1 , . . . , bjk1

, ol1 , . . . , olk2
, d0) + · · ·+ J(ol1 , . . . , olk2

, d0)
}2
.

If we expand the square and average E over all possible sign switches of B-factors, the

cross-product terms will disappear and we will obtain

Q̃ = 1
N2

{
J2(bj1 , . . . , bjk1

, ol1 , . . . , olk2
, d0) + · · ·+ J2(ol1 , . . . , olk2

, d0)
}
.

If we further average Q̃ over all possible choices of B-factors in the orthogonal array, then one

can show that the resulting term will be a linear combination of Ak+1, Ak, . . . , Ak2−1 with

positive coefficients. Then the result of the theorem follows by some tedious algebra.

3.7 Concluding remarks

In this chapter, we propose a mixed parametrization for two-level factorial experiments

where there are two types of factors called B-factors and O-factors. For O-factors the two

levels are symmetrical while for B-factors they are not. We establish a connection of this

mixed parametrization with both the orthogonal and baseline parametrizations. To control

the contamination of higher-order interactions on the estimation of main effects, we propose

two minimum aberration criteria, depending on whether or not the main effects of B- and O-

factors are treated equally. Theoretical constructions and algorithms are provided to obtain

orthogonal arrays that are optimal or nearly optimal under these criteria.

All the designs considered in this chapter are orthogonal arrays, because, as shown in

Corollary 3.2, they are optimal under the main-effects model. On the other hand, under

the baseline parametrization, Mukerjee and Tang (2012) showed that one-factor-at-a-time

designs may be more desirable when the biases of the main effect estimators dominate

their variances. It is interesting to investigate for the mixed parametrization how to obtain

designs suitable for these situations.

Most results of this chapter concern the estimation of main effects. When some two-factor

interactions are also of interest, we may wish to use designs that allow the efficient estimation
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of these effects as well. The construction of such designs under the mixed parametrization

is worthy of future research.
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Chapter 4

A Study of Orthogonal
Array-Based Designs Under A
Broad Class of Space-Filling
Criteria

4.1 Introduction

Space-filling designs spread their points in the design region in some uniform manner. Such

designs are widely accepted for computer experiments, because they not only allow infor-

mation to be collected from different parts of the design region, but also enjoy desirable

robustness properties against model bias. We refer to Santner et al. (2018) and Fang et al.

(2006) for a more comprehensive introduction to computer experiments and benefits of

space-filling designs.

Among various ideas in pursuit of space-filling designs over the past few decades, dis-

tance, orthogonality and discrepancy stand out as three most commonly used criteria. One

type of distance-based criteria focuses on the distances between design points and often looks

for designs with large separation distances. One such criterion is the maximin distance cri-

terion (Johnson et al., 1990), which aims to maximize the minimum pairwise distance. See

Zhou and Xu (2015), Wang et al. (2018) and Li et al. (2021) for some latest developments

on this topic. A space-filling design should also have small correlations among its columns.

This idea leads to the criterion of orthogonality (Owen, 1994) and spawns the class of or-

thogonal designs. We refer to Ye (1998), Steinberg and Lin (2006), Lin et al. (2010), Sun
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and Tang (2017) and references therein for the evolution of this line of space-filling designs.

Besides these two criteria, the discrepancy measures the uniformity of a design by quan-

tifying the difference between the empirical distribution function of its design points and

the ideal uniform distribution function. One of the most popular discrepancies is the cen-

tered L2-discrepancy (Hickernell, 1998). A detailed account on this branch of space-filling

designs is available in Fang et al. (2018). Recently, Sun et al. (2019) proposed the uniform

projection criterion by averaging the centered L2-discrepancies of all two-dimensional pro-

jections. They showed that designs optimizing this criterion tend to scatter points uniformly

in all dimensions and are space-filling under different types of criteria. However, except for

a few theoretical constructions, to find a space-filling design under these numerical crite-

ria is challenging and often requires computer searches, which often deteriorate quickly in

performance for large designs.

Another appealing idea towards space-filling designs is to borrow strengths from or-

thogonal arrays. This class of designs guarantees attractive low-dimensional stratification

properties without any assistance of computers. The earliest work was the introduction of

Latin hypercubes (McKay et al., 1979) which are essentially orthogonal arrays of strength

one. Owen (1992) and Tang (1993) later independently put forward designs based on or-

thogonal arrays of strength two.

Motivated by the concept of digital (w, k,m)-nets in quasi-Monte Carlo methods (Sobol’,

1967; Niederreiter, 1987), He and Tang (2013) introduced strong orthogonal arrays. As

detailed in He and Tang (2013), a (w, k,m)-net in base s is equivalent to a strong orthogonal

array of strength k − w with sk runs for m factors. The introduction of strong orthogonal

arrays is useful for a number of reasons. Strong orthogonal arrays are more general than

(w, k,m)-nets in base s as they do not require run sizes to be powers of s. The new concept is

in the familiar language of orthogonal arrays, thus creating opportunities for new research.

For example, He et al. (2018) proposed strong orthogonal arrays of strength 2+ by focusing

on two-dimensional space-filling properties of strength-three strong orthogonal arrays (He

and Tang, 2014). The mappable nearly orthogonal arrays studied by Mukerjee et al. (2014)

represent another direction to improve stratification properties of ordinary orthogonal array-
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based designs. The precise definitions for these structures will be given in a later section.

For the latest research in this field, we refer to Xiao and Xu (2018), Shi and Tang (2019),

Cheng et al. (2021), Wang et al. (2022a) and Tian and Xu (2022).

Despite many construction results for designs based on orthogonal arrays, it is not

very clear how the low-dimensional stratification properties owned by such designs relate

to other space-filling criteria, and how different types of stratifications contribute to the

overall space-filling properties. Recently, Sun and Tang (2023) provided a partial answer

by connecting strong orthogonal arrays with the uniform projection criterion. They gave

a decomposition of the criterion, based on which some optimality results of certain strong

orthogonal arrays can be established.

In this chapter, we study the space-filling properties of orthogonal array-based designs

in terms of a broad class of space-filling criteria that include the commonly used criteria

of variance of distances, orthogonality and uniform projection as special cases. Under these

criteria, we show that the designs which are based on orthogonal arrays are better on av-

erage than those which are not. To identify those more space-filling designs, we partition

orthogonal array-based designs into classes of designs using a notion of allowable level per-

mutations. The average performance of each class of designs is then shown to depend on two

types of stratification properties. Strong orthogonal arrays of strength 2+ are justified by

achieving one of them. Based on these justification results, we investigate constructions of

two families of space-filling orthogonal array-based designs, including some strong orthogo-

nal arrays of strength 2+ and some mappable nearly orthogonal arrays. The two families of

designs are shown to be complementary of each other and suitable for different situations

depending on the number of factors and the specific criterion used.

The remainder of the chapter is arranged as follows. Section 4.2 introduces necessary

notation and background. Section 4.3 provides justifications for orthogonal array-based de-

signs and strong orthogonal arrays, where guidance for finding more space-filling orthogonal

array-based designs is also given. Section 4.4 uses this guidance to construct and study var-

ious orthogonal array-based designs. All the proofs are included in Section 4.5. The chapter

is concluded by a discussion in Section 4.6.
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4.2 Notation, background and preliminaries

4.2.1 Orthogonal arrays and orthogonal array-based designs

A design of n runs and m factors with the uth factor having su levels is represented by an

n ×m matrix with entries from Zsu = {0, . . . , su − 1} in the uth column. Such a design is

called an orthogonal array of strength t, and denoted by OA(n,m, s1×· · ·×sm, t), if any of its

n×t submatrices contains all possible level combinations equally often. If s1 = · · · = sm = s,

then the orthogonal array is denoted by OA(n,m, s, t). An OA(n,m, s, 1) is also called a

U-type design and denoted by U(n, sm) in this chapter.

Orthogonal arrays can be used to generate space-filling designs (Tang, 1993). Suppose

s = αs′, where α and s′ are positive divisors of s. Given an OA(n,m, s′, 2), say A, an

orthogonal array-based design can then be obtained by the following procedure:

Step 1. Randomly permute the s′ levels in each column of A.

Step 2. Next, for each column, replace the n/s′ entries of level l by a random permuta-

tion of (αl, . . . , αl, αl+1, . . . , αl+1, . . . . . . , αl+α−1, . . . , αl+α−1) for l = 0, . . . , s′−1.

The resulting design, achieving stratification over an s′×s′ grid in any of its two-dimensional

projections, is called an orthogonal array-based design (OABD) and denoted by OABDα(n, sm).

The above procedure is a more general version of constructing orthogonal array-based de-

signs, since the original proposal of Tang (1993) was to construct orthogonal array-based

Latin hypercubes, which correspond to s = n in our procedure.

Example 4.1. We illustrate the two-step procedure with the OA(8, 3, 2, 2) denoted by A

in (4.1). Based on this orthogonal array, we first obtain A′ by permuting the two levels

in each column (Step 1); then expand the four entries of 0 by a random permutation of

(0, 0, 1, 1), and the four entries of 1 by a random permutation of (2, 2, 3, 3) in each column
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independently (Step 2). The resulting design D is an OABD2(8, 43).

A =



1 1 1

0 1 0

1 0 0

0 0 1

1 1 1

0 1 0

1 0 0

0 0 1



Step 1−→ A′ =



0 1 1

1 1 0

0 0 0

1 0 1

0 1 1

1 1 0

0 0 0

1 0 1



Step 2−→ D =



0 3 3

3 2 0

0 1 1

2 0 3

1 2 2

2 3 1

1 1 0

3 0 2



(4.1)

Strong orthogonal arrays, introduced by He and Tang (2013), are more space-filling than

ordinary orthogonal array-based designs. We study the most economical strong orthogonal

arrays, namely those of strength 2+ (He et al., 2018) and call them SOAs for convenience.

An OABDα(n, sm) is an SOA and denoted by SOAα(n, sm), if any pair of columns can be

collapsed into an OA(n, 2, s×s′, 2) as well as an OA(n, 2, s′×s, 2), where collapsing s levels

into s′ levels is done by bx/αc for x = 0, . . . , s − 1 and b·c is the floor function. An SOA

achieves s× s′ and s′ × s stratifications in all two-dimensions.

Another attractive class of orthogonal array-based designs is the mappable nearly or-

thogonal arrays (MNOAs) introduced by Mukerjee et al. (2014). An OABDα(n, sm) is an

MNOA and denoted by MNOAα(n, (sr)p) if its m = pr columns can be partitioned into

p disjoint groups of r columns such that any two columns from different groups form an

OA(n, 2, s, 2).

The following lemma, which can be proved similarly as Proposition 2 of He and Tang

(2013), gives a unified characterization for U-type designs, OABDs, SOAs and MNOAs.

Recall that a U(n, sm) denotes a balanced s-level design of n runs for m factors.

Lemma 4.1. Let s = αs′. Then D is a U(n, sm) if and only if there exist a unique

U(n, (s′)m), say A = (a1, . . . , am), and a unique U(n, αm), say B = (b1, . . . , bm), such

that (au, bu) is an OA(n, 2, s′ × α, 2) for u = 1, . . . ,m and that D = αA+B. Furthermore,

we have that
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(i) D is an OABDα(n, sm) if and only if A is an OA(n,m, s′, 2);

(ii) D is an SOAα(n, sm) if and only if (au, av, bv) is an OA(n, 3, s′ × s′ × α, 3) for all

u 6= v;

(iii) D is an MNOAα(n, (sr)p) if and only if A is an OA(n,m, s′, 2) and (au, bu, av, bv) is

an OA(n, 4, s′ × α × s′ × α, 4) so long as the uth and vth columns are from different

groups of the MNOA.

For any U(n, sm), we use the associated matrices A and B in Lemma 4.1 without spec-

ification hereafter.

4.2.2 Optimality criteria

We first introduce the orthonormal contrasts defined by tensor products. Consider a full

factorial s1× · · ·× sm design. For its uth factor taking levels from Zsu , we define a set of su

complex-valued functions κ(u)
gu : Zsu → C such that κ(u)

0 = 1 and
∑
zu∈Zsu

κ
(u)
gu (zu)κ(u)

hu
(zu) =

suδ(gu, hu) for gu, hu ∈ Zsu , where κ
(u)
hu

(zu) is the complex conjugate of κ(u)
hu

(zu) and δ is

the Kronecker delta function. Let Z = Zs1 × · · · × Zsm . For g = (g1, . . . , gm) ∈ Z and

z = (z1, . . . , zm) ∈ Z, the function κg(z) =
∏m
u=1 κ

(u)
gu (zu) is called a k-factor interaction if

wt(g) = k, where wt(g) is the number of nonzero components in g.

Let D be a design of n runs for m factors with the uth factor taking su levels. We

denote its design points by x1, x2, . . . , xn. Let Xk = (κg(xi))i=1,...,n;wt(g)=k be the matrix of

orthonormal contrast coefficients for its k-factor interactions; we refer to its (i, u)th entry by

x
(k)
iu . Then the combinatorial uniformity of D can be described by its generalized wordlength

pattern (A1(D), A2(D), . . . , Am(D)), where

Ak(D) = 1
n2

∑
u

(
n∑
i=1

x
(k)
iu

)2

. (4.2)

We have that D is an orthogonal array of strength t if and only if Ak(D) = 0 for

1 ≤ k ≤ t. The minimum G2-aberration (Tang and Deng, 1999; Xu and Wu, 2001) proposes

to minimize A1(D), A2(D), A3(D), . . . sequentially. A design D is said to be supersaturated
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if m > (n− 1)/(s− 1) and a popular criterion to select such a design is to use A2(D), see,

for example, Xu and Wu (2005).

To evaluate a space-filling design D for quantitative factors, it is more reasonable to con-

sider criteria such as distance, orthogonality and discrepancy. Hereafter we always assume D

is a U(n, sm). Given a distance function d on Zs = {0, 1, . . . , s−1}, we define the distance be-

tween design points xi = (xi1, . . . , xim) and xj = (xj1, . . . , xjm) to be dij =
∑m
k=1 d(xik, xjk).

The most commonly used are Lp-distances for p = 1 and 2 where d(xik, xjk) = |xik − xjk|p.

Note that our definition for dij does not take the pth root as in the conventional one. The

maximin distance criterion (Johnson et al., 1990) seeks to maximize the minimum distance

of all dijs for 1 ≤ i 6= j ≤ n. For theoretical convenience, we use a surrogate criterion that

aims to minimize the variance of distances dijs, that is, we minimize

φ(D) = 1
n(n− 1)

∑
i 6=j

(
dij − d̄

)2
,

where d̄ is the average of all dijs for i 6= j. Zhou and Xu (2015) showed that d̄ is a constant

for U-type designs. Therefore, as argued in Xiao and Xu (2018) and Wang et al. (2022c),

it is reasonable to expect a design with small φ(D) to be also good under the maximin

distance criterion. Let φ1 and φ2 be the versions of φ when L1- and L2-distances are used,

respectively. Wang et al. (2022c) showed that a design with small φ1(D) or φ2(D) tends to

perform well under the orthogonality criterion and the uniform projection criterion to be

reviewed next.

The orthogonality criterion (Owen, 1994) was proposed to minimize the average squared

correlations among factors. Specifically, if we let ρuv be the sample correlation between the

uth and vth columns of D, then the orthogonality criterion is defined to be

ρ(D) = 1
m(m− 1)

∑
u6=v

ρ2
uv.

Clearly, we have 0 ≤ ρ(D) ≤ 1 and a design with small ρ(D) is desirable.

Another class of criteria, known as discrepancies, measures uniformity by the difference

between the empirical distribution function of the design points and the uniform distribution
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function. Among them a popular criterion is the centered L2-discrepancy (Hickernell, 1998)

given by

CD(D) =
(13

12

)m
− 2
n

n∑
i=1

m∏
k=1

(
1 + 1

2

∣∣∣∣2xik + 1− s
2s

∣∣∣∣− 1
2

∣∣∣∣2xik + 1− s
2s

∣∣∣∣2
)

+ 1
n2

n∑
i=1

n∑
j=1

m∏
k=1

(
1 + 1

2

∣∣∣∣2xik + 1− s
2s

∣∣∣∣+ 1
2

∣∣∣∣2xjk + 1− s
2s

∣∣∣∣− ∣∣∣∣xik − xjk2s

∣∣∣∣) .
Recently, Sun et al. (2019) proposed a uniform projection criterion ψ by considering two-

dimensional projections of D under the centered L2-discrepancy. Let Duv be the n×2 design

consisting of the uth and vth columns of D. Then

ψ(D) = 1
m(m− 1)

∑
u6=v

CD(Duv). (4.3)

Sun et al. (2019) showed that ψ has a close connection with the L1-distance and that designs

minimizing ψ(D) also have good projection properties in all t > 2 dimensions, though the

definition only takes into account two-dimensions.

In this chapter, we consider a broad class of space-filling criteria χ that includes φ, ρ

and ψ as special cases. This class of criteria is based on two-dimensional projections of D

and can be written as

χ(D) = 1
m(m− 1)

∑
u6=v

q(Duv),

where q takes the form of

q(Duv) = γ0 + γ1
n

n∑
i=1

g(xiu)g(xiv) + γ2
n2

n∑
i=1

n∑
j=1

f(xiu, xju)f(xiv, xjv)

where γ0 and γ1 are arbitrary real constants, and f and g are arbitrary real functions; and

we only require that γ2 > 0. The following lemma shows that φ, ρ and ψ are special cases

of χ.

Lemma 4.2. We have that

(i) χ = φ if f(x, y) = d(x, y), γ2 = mn(m− 1)/(n− 1), γ1 = 0 and γ0 = mn
∑s−1
x=0

∑s−1
y=0

d(x, y)2/(s2(n− 1))− {mn
∑s−1
x=0

∑s−1
y=0 d(x, y)/(ns2 − s2)}2;
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(ii) χ = ρ if f(x, y) = {x− (s− 1)/2}{y− (s− 1)/2}, γ2 = 122/(s2− 1)2 and γ1 = γ0 = 0;

(iii) χ = ψ if f(x, y) = 1 + |x̃|/2 + |ỹ|/2 − |x̃ − ỹ|/2, g(x) = 1 + |x̃|/2 − x̃2/2, γ2 = 1,

γ1 = −2 and γ0 = (13/12)2, where x̃ = (2x+ 1− s)/(2s) and ỹ = (2y + 1− s)/(2s).

We remark that χ includes more space-filling criteria besides the three discussed here.

For example, ψ would still be a member of χs if we replace the centered L2-discrepancy in

(4.3) by other discrepancies such as wrap-around discrepancy (Hickernell, 1998) and mixture

discrepancy (Zhou et al., 2013).

4.3 Justification results

4.3.1 OABDs are better than U-type designs on average

Suppose we would like a design with n runs for m factors each with s = αs′ levels. Then

a U(n, sm), say D, can be easily generated by juxtaposing m random permutations of the

sequence (0, . . . , 0, . . . . . . , s− 1, . . . , s− 1) where each level is replicated λ = n/s times. We

denote by χ̄u the average of χ(D)s over all such U-type designs.

Based on an OA(n,m, s′, 2), an OABDα(n, sm) can be constructed as in Section 4.2.1.

Let χ̄o be the average of χ(D)s over all OABDα(n, sm)s obtained from the given OA(n,m, s′, 2).

Theorem 4.1 shows that χ̄o < χ̄u. This indicates that a random OABDα(n, sm) tends to be

better than a random U(n, sm) under the criterion χ. For ease of expression, we introduce

the notation Sl = {αl, αl + 1, . . . , αl + α− 1} for l = 0, . . . , s′ − 1, thus the set of all levels

Zs = {0, 1, . . . , s− 1} is a union of these s′ disjoint groups.

Theorem 4.1. We have that

χ̄u − χ̄o = γ2
n− 1

(
1− 1

s′

)2 (
Zχ −

(λ− 1)Xχ + (αλ− λ)Yχ
αλ− 1

)2
,

where Xχ =
∑s−1
x=0 f(x, x)/s, Yχ =

∑s′−1
l=0

∑
x,y∈Sl
x 6=y

f(x, y)/(s′α(α−1)) and Zχ =
∑

0≤k 6=l≤s′−1∑
x∈Sk,y∈Sl

f(x, y)/(α2s′(s′ − 1)).

We illustrate the results of Theorem 4.1 by taking χ = φ, the variance of pairwise

distances between the design points. Suppose Lp-distances are used, i.e., f(x, y) = d(x, y) =
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|x − y|p. It is clear that Xφ = 0. Then Yφ and Zφ, respectively, calculate the average

distance of two distinct levels within and between the s′ groups of Zs. Obviously, we have

Xφ < Yφ < Zφ as long as s′ > 1. In addition, when the number of levels s = αs′ is fixed,

we have that the larger s′ is, the larger Zφ and the smaller Yφ would be, leading to a larger

difference between φ̄u and φ̄o according to Theorem 4.1. This difference becomes largest

when s′ = s, in which case OABDα(n, sm)s become OA(n,m, s, 2)s. Therefore, Theorem 4.1

suggests the use of OABDα(n, sm)s with larger s′, which is also intuitive as such designs

achieve stratification on a finer s′ × s′ grid. The discussion is similar if we take χ as other

criteria. Note that the relationship Xχ < Yχ < Zχ may not hold in general, but it can be

verified that either

Xχ < Yχ < Zχ or Xχ > Yχ > Zχ (4.4)

holds for the commonly used space-filling criteria φ, ρ and ψ.

Special cases of Theorem 4.1 are related to results of Xiao and Xu (2018) and Wang

et al. (2021), who studied space-filling criteria such as φ1 and ρ and found that permuting

and expanding the levels of an orthogonal array (i.e. OABDs) is better than doing the same

to a non-orthogonal array.

We conclude this subsection with a corollary on the average A2(D) of U-type designs

and OABDs. A result of Xu (2003) indicates that φ(D) is equivalent to A2(D) for any

U-type design if we take d(x, y) = 1−δ(x, y), where δ is Kronecker’s delta. This connection,

combining with Theorem 4.1, enables us to establish that the average A2(D) of OABDs

cannot be greater than that of U-type designs.

Corollary 4.1. Let Ā2,u and Ā2,o be the average A2(D) over all U(n, sm)s and OABDα(n, sm)s,

respectively. Then we have

Ā2,u − Ā2,o = m(m− 1)s2

2(n− 1)

(
1− 1

s′

)2 ( λ− 1
αλ− 1

)2
.

4.3.2 Good classes of designs within OABDs

To find those OABDs with even better space-filling properties, we introduce the concept of

allowable permutations.
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Definition 4.1. A permutation σ of Zs = {0, 1, . . . , s − 1} is said to be α-allowable if for

two levels x, y ∈ Zs, we have bx/αc = by/αc if and only if bσ(x)/αc = bσ(y)/αc.

An α-allowable permutation preserves the group structure given by Zs = ∪s′−1
l=0 Sl, that

is, two levels belong to the same group if and only if the permuted levels do. For example,

for s = 4 there are eight 2-allowable permutations in total: (0, 1, 2, 3), (1, 0, 2, 3), (0, 1, 3, 2),

(1, 0, 3, 2), (2, 3, 0, 1), (2, 3, 1, 0), (3, 2, 0, 1) and (3, 2, 1, 0), where each vector represents a

permutation σ by (σ(0), σ(1), σ(2), σ(3)).

Proposition 4.1. Let D′ be the design obtained by permuting levels in each column of

D independently with α-allowable permutations. Then D′ is an OABDα(n, sm) if and only

if D is an OABDα(n, sm). Furthermore, D′ is an SOAα(n, sm) if and only if D is an

SOAα(n, sm); D′ is an MNOAα(n, (sr)p) if and only if D is an MNOAα(n, (sr)p).

Proposition 4.1 is quite intuitive and can be verified directly. Essentially, α-allowable

permutations induce a partition of all OABDα(n, sm)s into classes of designs, where two

designs belong to the same class if and only if they can be obtained from each other via

α-allowable permutations. The next result provides a guidance on how to find good classes

of OABDs.

Theorem 4.2. Suppose D is an OABDα(n, sm). Let χ̄(D) be the average of χ(D′)s over

all designs D′ obtained by conducting α-allowable level permutations to columns of D. Then

χ̄(D) = 2γ2(Yχ −Xχ)2

m(m− 1)s2 A2(D) + 2αγ2(Yχ −Xχ)(Zχ − Yχ)
m(m− 1)s2 µ(D) + C, (4.5)

where µ(D) =
∑
u6=v{A2(au, bv)+A3(au, av, bv)} and C = γ0 +γ1(

∑s−1
x=0 g(x)/s)2 +γ2(

∑s−1
x=0∑s−1

y=0 f(x, y)/s2)2 is a constant.

The results of Theorem 4.2 can be interpreted as follows. Recall that for 1 ≤ u 6= v ≤ m,

according to the projection justification of minimum G2-aberration (Tang, 2001; Ai and

Zhang, 2004), the quantity A2(au, bv) + A3(au, av, bv) is proportional to the variance of

frequencies of the s′ × s′ × α level combinations in (au, av, bv), or equivalently, the s′ ×

s level combinations in (au, Dv), where Dv is the vth column of D. Similarly, A2(Duv)
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is proportional to the variance of frequencies of s × s level combinations in Duv. Also

note the coefficients for A2(D) and µ(D) are positive due to (4.4) and γ2 > 0. Therefore,

Theorem 4.2 reveals that up to a constant, the average χ-performance of the class of OADBs

obtained from D by α-allowable permutations is determined by two components, the overall

stratification of D over an s×s grid, represented by the term with A2(D) =
∑
u<v A2(Duv),

and the overall stratification of D over the s× s′ and s′ × s grids, represented by the term

with µ(D) =
∑
u6=v{A2(au, bv) + A3(au, av, bv)}. Clearly, the second term vanishes if and

only if D is an SOAα(n, sm).

Corollary 4.2. Suppose D is an SOAα(n, sm). Then

χ̄(D) = 2γ2(Yχ −Xχ)2

m(m− 1)s2 A2(D) + C. (4.6)

Zhou and Xu (2014) considered all level permutations of a U-type design and found the

average performance in terms of distance and discrepancy is determined by the generalized

wordlength pattern. For comparison, we present the results for the same problem under the

criterion χ.

Lemma 4.3. Suppose D is a U(n, sm). Let ¯̄χ(D) be the average of χ(D′)s over all designs

D′ obtained by conducting all level permutations to columns of D. Then

¯̄χ(D) = 2γ2(Wχ −Xχ)2

m(m− 1)s2 A2(D) + C, (4.7)

where Wχ =
∑

0≤x 6=y≤s−1 f(x, y)/(s(s− 1)).

Note thatWχ = (α−1)Yχ/(s−1)+(s−α)Zχ/(s−1), which is a weighted average of Yχ and

Zχ. Together with (4.4), we deduce that the coefficient of A2(D) in (4.6) must be less than

its counterpart in (4.7). Suppose D1 and D2 are two U(n, sm)s such that A2(D1) = A2(D2),

where D1 is an SOAα(n, sm) but D2 is not. Then we have χ̄(D1) < ¯̄χ(D2) by Corollary 4.2

and Lemma 4.3, suggesting that compared to arbitrarily permuting the non-SOA, where a

total of (s!)m designs are generated, a much smaller class of more space-filling designs, which

contains {(s′)!(α!)s′}m candidates, is obtained by allowably permuting the SOA. Even if D2
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is an OABDα(n, sm), we still have χ̄(D1) < χ̄(D2) by Theorem 4.2. In this sense, the class of

SOAα(n, sm)s is superior in terms of the class of criteria χ compared with ordinary U-type

designs and OABDs. We choose two sets of s, α and s′ to illustrate the above results.

Example 4.2. We consider χ = φ1. The results for χ = ψ are similar since the ratio

(Wχ −Xχ)/(Yχ −Xχ) as well as (Zχ − Yχ)/(Yχ −Xχ) is the same for χ = φ1 and χ = ψ.

(i) Suppose s = 4 and s′ = α = 2. Then for some constant C1,1, we have ¯̄φ1(D) =

25n/(72(n−1))A2(D)+C1,1 if D is a U(n, 4m); φ̄1(D) = n/(8(n−1))A2(D)+n/(4(n−

1))µ(D)+C1,1 if D is an OABD2(n, 4m); and φ̄1(D) = n/(8(n−1))A2(D)+C1,1 if D

is an SOA2(n, 4m). It can be seen the coefficient in (4.6) is only 9/25 of the coefficient

in (4.7) in this case.

(ii) Suppose s = 9 and s′ = α = 3. Then for some constant C2,1, we have ¯̄φ1(D) =

200n/(729(n−1))A2(D)+C2,1 if D is a U(n, 9m); φ̄1(D) = 32n/(729(n−1))A2(D)+

64n/(243(n − 1))µ(D) + C2,1 if D is an OABD3(n, 9m); and φ̄1(D) = 32n/(729(n −

1))A2(D) +C2,1 if D is an SOA3(n, 9m). It can be seen the coefficient in (4.6) is only

4/25 of the coefficient in (4.7) in this case.

Example 4.3. We consider χ = φ2. The results for χ = ρ are similar since the ratio

(Wχ −Xχ)/(Yχ −Xχ) as well as (Zχ − Yχ)/(Yχ −Xχ) is the same for χ = φ2 and χ = ρ.

(i) Suppose s = 4 and s′ = α = 2. Then for some constant C1,2, we have ¯̄φ2(D) =

100n/(72(n − 1))A2(D) + C1,2 if D is a U(n, 4m); φ̄2(D) = n/(8(n − 1))A2(D) +

7n/(8(n−1))µ(D)+C1,2 if D is an OABD2(n, 4m); and φ̄2(D) = n/(8(n−1))A2(D)+

C1,2 if D is an SOA2(n, 4m). It can be seen the coefficient in (4.6) is only 9/100 of

the coefficient in (4.7) in this case.

(ii) Suppose s = 9 and s′ = α = 3. Then for some constant C2,2, we have ¯̄φ2(D) =

50n/(9(n − 1))A2(D) + C2,2 if D is a U(n, 9m); φ̄2(D) = 8n/(81(n − 1))A2(D) +

208n/(81(n − 1))µ(D) + C2,2 if D is an OABD3(n, 9m); and φ̄2(D) = 8n/(81(n −

1))A2(D) +C2,2 if D is an SOA3(n, 9m). It can be seen the coefficient in (4.6) is only

4/225 of the coefficient in (4.7) in this case.
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Besides the SOAs, we point out the MNOAs are also competitive by Theorem 4.2.

Suppose D is an MNOAα(n, (sr)p). Then A2(Duv) = 0 whenever b(u− 1)/rc 6= b(v − 1)/rc

and as a result, the overall A2(D) would tend to be small. This may effectively bring χ̄(D)

down by minimizing its first term, in spite of the positive second term. More examples will

be given in Section 4.4.2.

We conclude this section by presenting a useful and also insightful result which has been

implicitly used in the proof of Theorem 4.2.

Proposition 4.2. Suppose D is a U(n, sm). Then we have

A2(D) = A2(A) + µ(D) + ν(D), (4.8)

where ν(D) = A2(B) +
∑
u6=v {A3(au, bu, bv) +A4(au, bu, av, bv)/2}.

Proposition 4.2 enables us to calculate A2(D) from columns of A and B directly. The

terms in (4.8) all have interpretations. Specifically, A2(A) measures the difference of D from

an OABDα(n, sm); A2(A) + µ(D) measures the difference of D from an SOAα(n, sm); and

A2(D) = A2(A) + µ(D) + ν(D) measures the difference of D from an OA(n,m, s, 2).

Remark 4.1. Based on Proposition 4.2, we can rewrite (4.5) in Theorem 4.2 as

χ̄(D) = 2γ2(Yχ −Xχ)2 + 2αγ2(Yχ −Xχ)(Zχ − Yχ)
m(m− 1)s2 µ(D) + 2γ2(Yχ −Xχ)2

m(m− 1)s2 ν(D) + C,

where the first and second terms can be seen as measures of the difference and “residual

difference” of D from SOAα(n, sm) and OA(n,m, s, 2) under χ, respectively. This decom-

position has a similar flavor to Theorem 2 of Sun and Tang (2023).

4.4 Construction results

In this section, we provide construction methods for two families of OABDs, both of which

have good performance under χ̄(D).
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4.4.1 SOAs with small A2(D)

As discussed in Section 4.3.2, an SOAα(n, sm), say D, tends to be more space-filling in

terms of χ(D) when compared to a non-SOA with the same A2(D). By Corollary 4.2, D

would be most preferable if A2(D) is small. The construction of such a design is the focus of

this subsection. Define the index λ′ of D to be λ′ = n/(ss′) = nα/s2. We have the following

result for λ′ = 1.

Theorem 4.3. An SOAα(n, sm) with λ′ = 1 has minimum A2(D) among all U(n, sm)s,

and thus minimizes χ̄(D) among all OABDα(n, sm)s.

Sun and Tang (2023) also showed that SOAα(n, sm)s with λ′ = 1 are optimal or nearly

optimal in terms of ψ(D). Theorem 4.3 indicates that such SOAs are optimal under χ̄(D)

and thus confirms their results from another perspective.

Now let’s focus on the scenario λ′ > 1 and α = s′. As in He et al. (2018), we construct an

SOAs′(n, sm) by selecting columns of A and B from a saturated regular design S of s′ levels

obtained by the Rao-Hamming construction. Here s′ is a prime power and n = (s′)k for a

positive integer k. The (n− 1)/(s′− 1) columns of S form a projective geometry. Given two

distinct columns a, b ∈ S, we denote their (s−1) interaction columns a+ b, . . . , a+ (s′−1)b

by ab, . . . , abs′−1 for ease of expression. Let E = (e1, . . . , em′) be the complement of A in

S, where m′ = (n − 1)/(s′ − 1) −m. A lower bound for A2(D) can be derived under this

setting.

Theorem 4.4. Suppose D is an SOAs′(n, sm) with columns of A and B selected from a

regular design. Then A2(D) ≥ B(m,n, s′) where

B(m,n, s′) = ξ(s′ − 1)(2s′m−m′ −m′ξ)/2

with ξ = bs′m/m′c. The lower bound is achieved if and only if the frequencies of e1, . . . , em′

in (b1, a1b1, . . . , a1b
s′−1
1 , . . . . . . , bm, ambm, . . . , amb

s′−1
m ) differ by at most 1.

He et al. (2018) constructed some SOA2(16, 410)s, SOA2(32, 422)s and an SOA3(81, 925).

We conduct a computer search for SOAs with small A2(D)s by selecting columns of A from
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Table 4.1: Some four-level SOAs obtained by computer search and the recursive construc-
tion.
n×m A2(D) LB 4n× (4m+ 1) A2(D̃) LB 16n× (16m+ 5) A2( ˜̃D) LB
16× 6 3† 3 64× 25 12† 12 256× 101 48† 48
16× 7 6† 6 64× 29 24† 24 256× 117 96† 96
16× 8 12 11 64× 33 48 42 256× 133 192 166
16× 9 18† 18 64× 37 72 70 256× 149 288 278
16× 10 30† 30 64× 41 120 114 256× 165 480 450

32× 11 3 2 128× 45 12 8 512× 181 48 32
32× 12 5† 5 128× 49 20† 20 512× 197 80† 80
32× 13 8† 8 128× 53 32† 32 512× 213 128† 128
32× 14 11† 11 128× 57 44† 44 512× 229 176† 176
32× 15 14† 14 128× 61 56† 56 512× 245 224† 224
32× 16 19† 19 128× 65 76 74 512× 261 304 294
32× 17 26† 26 128× 69 104 102 512× 277 416 406
32× 18 33† 33 128× 73 132 130 512× 293 528 518
32× 19 43 42 128× 77 172 162 512× 309 688 642
32× 20 54† 54 128× 81 216 210 512× 325 864 834
32× 21 72 68 128× 85 288 260 512× 341 1152 1028
32× 22 98 86 128× 89 392 332 512× 357 1568 1316

those that constructed these designs and then selecting columns of B from E such that D

is an SOA. The designs found are presented in the left blocks of Tables 4.1 and 4.2, where

for each case the corresponding lower bound in Theorem 4.4 is given under the column LB.

An A2 value that attains the lower bound is highlighted by a dagger. As can be seen, the

lower bound is attained for m = 6, 7, 9, 10 when n = 16, for m = 12, 13, 14, 15, 16, 17, 18, 20

when n = 32, and for m = 11, 12, 13, 14, 18, 19, 21 when n = 81.

Based on these designs, we propose two recursive constructions to obtain larger designs

that attain or approach the lower bound. When s′ = 2, we follow the convention to denote

the two levels by {−1, 1}. Thus A, B and D are related through D = A+B/2+3/2 instead

of D = 2A+B. Given an SOA2(n, 4m), say D, a larger design of 4n runs for 4m+ 1 factors,

say D̃, can be obtained by taking

Ã = (A,xA,yA,xyA,xy), B̃ = (B,xyB,xB,yB,x), (4.9)

69



Table 4.2: Some nine-level SOAs obtained by computer search and the recursive construc-
tion.
n×m A2(D) LB 9n× (9m+ 1) A2(D̃) LB 81n× (81m+ 10) A2( ˜̃D) LB
81× 11 8† 8 729× 100 72† 72 6561× 901 648† 648
81× 12 16† 16 729× 109 144† 144 6561× 982 1296† 1296
81× 13 24† 24 729× 118 216† 216 6561× 1063 1944† 1944
81× 14 32† 32 729× 127 288† 288 6561× 1144 2592† 2592
81× 15 42 40 729× 136 378 360 6561× 1225 3402 3240
81× 16 54 48 729× 145 486 432 6561× 1306 4374 3888
81× 17 68 66 729× 154 612 588 6561× 1387 5508 5286
81× 18 84† 84 729× 163 756 750 6561× 1468 6804 6744
81× 19 102† 102 729× 172 918 912 6561× 1549 8262 8202
81× 20 126 120 729× 181 1134 1074 6561× 1630 10206 9660
81× 21 150† 150 729× 190 1350 1332 6561× 1711 12150 11970
81× 22 190 180 729× 199 1710 1602 6561× 1792 15390 14400
81× 23 234 212 729× 208 2106 1872 6561× 1873 18954 16830
81× 24 284 256 729× 217 2556 2268 6561× 1954 23004 20376
81× 25 330 300 729× 226 2970 2664 6561× 2035 26730 23940

and D̃ = Ã + B̃/2 + 3/2, where x and y are new independent columns. It can be verified

that D̃ is an SOA2(4n, 44m+1), and calculated by Proposition 4.2 that A2(D̃) = 4A2(D).

We note that there are other choices for Ã and B̃; for example, we may replace B̃ in (4.9) by

B̃ = (B,yB,xyB,xB,y) to obtain an SOA2(4n, 44m+1), which also has A2(D̃) = 4A2(D).

SupposeD is an SOAs′(n, sm). Define theA2-efficiency ofD as ϕ(D) = B(m,n, s′)/A2(D).

Then we have ϕ(D̃) = h(m,n)ϕ(D), where

h(m,n) = B(4m+ 1, 4n, 2)
4B(m,n, 2) (4.10)

is a measure of the efficiency of the recursive construction in (4.9). It can be checked

that h(m,n) ≥ 95% for all 24 ≤ n ≤ 216 and any m such that an SOA2(n, 4m) can

be constructed by Cheng et al. (2021). In particular, we have that h(m,n) = 100% if

(n − 1)/3 < m ≤ (n − 1)/2. Therefore, D̃ has small A2(D̃) as long as D has small A2(D).

Applying the construction successively to the designs in the left block of Table 4.1, we

obtain the SOAs displayed in the middle and right blocks of the table.

70



Next consider s′ = 3 and s = 9. Suppose A and B are selected from a three-level regular

design such that D = 3A+B is an SOA3(n, 9m). Let

Ã = (A,xA,yA,x2A,xyA,x2yA,y2A,xy2A,x2y2A,x), (4.11)

B̃ = (B,yB,x2B,y2B,xy2B,xyB,xB,x2y2B,x2yB,y), (4.12)

where x and y are new independent columns. Then it can be verified directly that D̃ =

3Ã+ B̃ is an SOA3(9n, 99m+1) with A2(D̃) = 9A2(D). Similar to in the four-level case, the

choices of Ã and B̃ are not unique. We have that ϕ(D̃) = h′(m,n)ϕ(D), where

h′(m,n) = B(9m+ 1, 9n, 3)
9B(m,n, 3) (4.13)

measures the efficiency of the recursive construction. It can be checked that h′(m,n) ≥ 98%

for all 34 ≤ n ≤ 310 and any m such that an SOA3(n, 9m) can be constructed by He et al.

(2018). Particularly, we have h′(m,n) = 100% if (n− 1)/8 < m ≤ (n− 1)/5. Applying this

construction to the designs of 81 runs in Table 4.2, we obtain the SOAs of 729 and 6561

runs in the table. The two construction methods are summarized in Theorem 4.5.

Theorem 4.5. Let k ≥ 3 be a positive integer.

(i) Given an SOA2(2k, 4m), say D1, an SOA2(2k+2, 44m+1), say D̃1, can be constructed

such that A2(D̃1) = 4A2(D1). The efficiency of this construction, as given in (4.10),

has that h(m,n) = 100% for (n − 1)/3 < m ≤ (n − 1)/2 and h(m,n) ≥ 95% for all

24 ≤ n ≤ 216 and any m such that an SOA2(n, 4m) can be constructed by Cheng et al.

(2021).

(ii) Given an SOA3(3k, 9m), say D2, an SOA3(3k+2, 99m+1), say D̃2, can be constructed

such that A2(D̃2) = 9A2(D2). The efficiency of this construction, as given in (4.13),

has that h′(m,n) = 100% for (n− 1)/8 < m ≤ (n− 1)/5 and h′(m,n) ≥ 98% for all

34 ≤ n ≤ 310 and any m such that an SOA3(n, 9m) can be constructed by He et al.

(2018).

We conclude this subsection with an example.
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Example 4.4. Table 4.2 has an SOA3(6561, 92035) with A2( ˜̃D) = 26, 730 and ϕ( ˜̃D) =

89.6%, obtained from the recursive construction. This SOA does not fare very well in terms

of the A2 value when compared with a random U(6561, 92035), which has a mean A2 value of

20, 191. On the other hand, by dropping columns from each group of an MNOA3(6561, (94)820)

as evenly as possible, we can obtain an OABD3(6561, 92035) with an A2 value of 12, 880.

This motivates us to study MNOAs and related designs in the next subsection.

4.4.2 A class of MNOAs and its variants

We now turn our attention to another family of OABDs with small A2(D). Such designs,

which are inspired by a class of MNOAs, also have small χ̄(D) as they minimize the first

term of (4.5) in Theorem 4.2. The following lower bound on A2(D) of U-type designs, given

by Xu and Wu (2005), is useful for design evaluations.

Lemma 4.4. Suppose D is a U(n, sm). Then

A2(D) ≥ m(s− 1)(ms−m− n+ 1)/(2(n− 1)) + (n− 1)s2η(1− η)/(2n),

where η = m(n− s)/((n− 1)s)− bm(n− s)/((n− 1)s)c. The lower bound is attained if and

only if the numbers of coincidences between rows of D differ by at most 1.

We first investigate a class of MNOAs from Mukerjee et al. (2014). The construction is

briefly described as follows. Suppose s′ is a prime power. For k ≥ 2, let Q be an OA((s′)2, s′+

1, s′, 2) and P be an OA(n,m1, s, 2), where s = (s′)2, n = sk and m1 = (n − 1)/(s − 1).

Obtain a U(s, sm1), say R, by replacing the s′ entries of l in turn by {ls′, . . . , ls′ + s′ − 1}

for l = 0, . . . , s′ − 1 in each column of Q. We then construct a design, which we denote

by Dn,(s′+1)m1 , by replacing level i of P by the (i + 1)th row of R for i = 0, . . . , s − 1.

According to Mukerjee et al. (2014), Dn,(s′+1)m1 is an MNOAs′(n, (ss
′+1)m1). Examples of

this class of designs include MNOA2(16, (43)5), MNOA2(64, (43)21), MNOA2(256, (43)85),

MNOA3(81, (94)10) and MNOA3(729, (94)91).

Now let’s label the columns of Dn,(s′+1)m1 by 1, 2, . . . , (s′+1)m1 and then rearrange the

columns in the order of 1, s′+2, . . . , (s′+1)m1−s′; 2, s′+3, . . . , (s′+1)m1−s′+1; . . . . . . ; s′+

1, 2s′ + 2, . . . , (s′ + 1)m1. Since any two columns from different groups of the MNOA form
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an OA(n, 2, s, 2), it can be seen the rearranged design is a juxtaposition of s′ + 1 saturated

orthogonal arrays. As in the construction of supersaturated designs (Xu and Wu, 2005), we

can obtain a design for m ≤ (s′ + 1)m1 factors by taking the first m rearranged columns

and denote it by Dn,m. This procedure is equivalent to dropping columns from each group

of the MNOA as evenly as possible. Thus Dn,ms are still MNOAs but may have unequal

group sizes. A2(Dn,m) can be calculated as given in the following result.

Theorem 4.6. Suppose s′ is a prime or prime power and k is a positive integer. Let

s = (s′)2 and n = sk. Then Dn,m is an OABDs′(n, sm) with

A2(Dn,m) = ζ(s′ − 1)(2s′m+ 2m−m2 −m2ζ)/2

where m2 = (n − 1)/(s′ − 1) and ζ = b(s′ + 1)m/m2c. In particular, A2(Dn,m) attains

the lower bound in Lemma 4.4 if m = m1l or m1l ± 1 for some integer l, where m1 =

(n− 1)/(s− 1).

The MNOAs Dn,ms in Theorem 4.6 are attractive for small A2(D), and have nice per-

formance under χ̄(D) as we will see in Section 4.4.3. Motivated by this desirable property,

we construct some OABDs′(n, sm)s also targeted at small A2(D) by selecting columns of

A and B from S, a saturated regular design OA(n,m2, s
′, 2) where m2 = (n − 1)/(s′ − 1).

Then we have the following lower bound parallel to Theorem 4.4.

Theorem 4.7. Suppose D is an OABDs′(n, sm) with columns of A and B selected from a

regular design. Then A2(D) ≥ B∗(m,n, s′) where

B∗(m,n, s′) = ζ(s′ − 1)(2s′m+ 2m−m2 −m2ζ)/2

with m2 = (n−1)/(s′−1) and ζ = b(s′+1)m/m2c. The equality holds if and only if the fre-

quencies of the columns of S in (a1, b1, a1b1, . . . , a1b
s′−1
1 , . . . . . . , am, bm, ambm, . . . , amb

s′−1
m )

differ by at most 1.

The Dn,ms in Theorem 4.6 attain the lower bound in Theorem 4.7, though they are

constructed in a different way. Now we construct a class of OABD2(n, 4m)s for n = 22k+1
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(k ≥ 1), a situation not covered by Theorem 4.6. Denote the final design with n runs and

m factors by Dn,m. For ease of expression, we represent the ith column of Dn,m by the pair

(ai, bi). In the following, 1, 2, 3, x and y are independent columns. For n = 8, define

G
(1)
8 = (23,123), G

(2)
8 = ((13,1), (3,12)),

G
(3)
8 = (12,23), G

(4)
8 = ((123,13), (2,3)), G

(5)
8 = (1,2)

and let D8,7 = (G(1)
8 , G

(2)
8 , G

(3)
8 , G

(4)
8 , G

(5)
8 ). Then for n ≥ 8, recursively define G(i)

4ns based

on G(i)
n s by

G
(1)
4n = (G(1)

n , (xy,x), (xy,x)Dn,n−1), G
(2)
4n = G(2)

n , G
(4)
4n = G(4)

n ,

G
(3)
4n = (G(3)

n , (y,xy), (y,xy)Dn,n−1), G
(5)
4n = (G(5)

n , (x,y), (x,y)Dn,n−1).

Let D4n,4n−1 = (G(1)
4n , G

(2)
4n , G

(3)
4n , G

(4)
4n , G

(5)
4n ). For any n = 22k+1, the design Dn,m with m <

n− 1 is obtained by successively removing columns of Dn,n−1 from G
(5)
n to G(1)

n .

Theorem 4.8. For n = 22k+1 (k ≥ 1), design Dn,m constructed above is an OABD2(n, 4m)

with

A2(Dn,m) =



1, if m = (n− 2)/3,

3m− n+ 2, if (n+ 1)/3 ≤ m ≤ (2n− 4)/3,

n+ 2, if m = (2n− 1)/3,

6m− 3n+ 3, if (2n+ 2)/3 ≤ m ≤ n− 1.

In particular, A2(Dn,m) attains the lower bound in Lemma 4.4 for m = (n−2)/3, (2n−4)/3,

(2n− 1)/3 and n− 1.

Given an OABDs′(n, sm), sayD, we define itsA2-efficiency as ϕ∗(D) = B∗(m,n, s′)/A2(D).

Then a simple calculation shows that ϕ∗(Dn,m) = 1− 1/(3m− n+ 2) for (n+ 1)/3 ≤ m <

(2n − 4)/3 and ϕ∗(Dn,m) = 1 for (2n + 2)/3 ≤ m ≤ n − 1. Therefore, the Dn,ms in Theo-

rem 4.8 are quite efficient in terms of A2(D), especially for large m. Also note that when

m = (n − 2)/3, Dn,m is actually an SOA2(n, 4m). Thus the following result is immediate

from Theorems 4.2 and 4.8.
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Corollary 4.3. Suppose n = 22k+1 for k ≥ 1 and m = (n − 2)/3. Then Dn,m is an

SOA2(n, 4m), and thus minimizes χ̄(D) among all OABD2(n, 4m)s.

Next we construct some OABD3(n, 9m)s with n = 32k+1 for some positive integer k. A

computer search is used to address the case n = 27. Denote the independent columns of S,

an OA(27, 13, 3, 2) by 1, 2 and 3. Let

A27,13 = (1,2,12,122,3,13,23,123,1223,132,232,1232,12232),

B27,13 = (12,132,12232,1232,13,123,1,3,23,232,2,1223,122),

and D27,13 = 3A27,13 + B27,13. The designs D27,ms for 2 ≤ m < 13 can be obtained by

dropping the columns of D27,13 from left to right. One can check directly that D27,ms for

2 ≤ m ≤ 13 are all OABD3(27, 9m)s reaching the lower bound in Lemma 4.4.

For n = 32k+1 runs with k ≥ 2, we can apply the technique in Section 4.4.1 again by

replacing A in (4.11) byAn,(n−1)/2, andB in (4.12) byBn,(n−1)/2, and definingA9n,(9n−1)/2 =

(Ã,y,xy,x2y) and B9n,(9n−1)/2 = (B̃,x2,xy2,xy). Then D9n,(9n−1)/2 = 3A9n,(9n−1)/2 +

B9n,(9n−1)/2 can be verified to be an OABD3(9n, 9(9n−1)/2) that attains the lower bound in

Lemma 4.4.

4.4.3 A comparison of the two families of OABDs

In this subsection, we compare two families of space-filling OABDs presented in Sections

4.4.1 and 4.4.2, where the first minimizes µ(D) and A2(D) sequentially while the second

minimizes A2(D) directly.

For the first family of OABDs, the designs to be compared include SOA2(8, 4m)s and

SOA3(27, 9m)s justified by Theorem 4.3, the SOA2(16, 4m)s, SOA2(32, 4m)s and SOA3(81, 9m)s

found by a computer search in Section 4.4.1 and the SOA2(64, 4m)s obtained by a combi-

nation of a computer search and the recursive construction in Theorem 4.5. When SOAs

are not available, Shi and Tang (2019) obtained some four-level designs that maximize the

proportion of ordered column pairs stratified over the 4× 2 grid. This is equivalent to min-

imizing µ(D) as implied in the proof of Theorem 4.4. For the nine-level case where such

results are not available, we still use a computer search to obtain designs with small µ(D).
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We then search for those with small A2(D) among these designs with minimum or small

µ(D). These near SOAs are also included for comparison. The detailed constructions of

all the SOAs and near SOAs mentioned above are available upon request. For the second

family of OABDs, we investigate the performance of the D16,ms, D64,ms and D81,ms from

Theorem 4.6, the D8,ms and D32,ms given by Theorem 4.8, and the D27,ms constructed at

the end of Section 4.4.2.

We compare all these designs in terms of A2(D), µ(D), φ̄1(D) and φ̄2(D). Here we choose

φ1 and φ2 as our space-filling criteria χ for the same reason as mentioned in Examples 4.2

and 4.3. In other words, the results for χ = ψ and χ = ρ are similar to those for χ = φ1 and

χ = φ2, respectively. The comparison results are displayed in Tables 4.3, 4.4 and 4.5. The

lower bounds in Lemma 4.4 are given under the columns labeled A∗2; we mark an A2 value

by a dagger if it attains this bound. Presented in the last two columns are the values of

φ̄1,o and φ̄2,o in Theorem 4.1. They represent the average performance of a random OABD,

that is, a design obtained by randomly permuting and expanding the levels of an orthogonal

array.

A simple calculation shows that the lower bound B(m,n, s′) in Theorem 4.4 is less than

or equal to A2(Dn,m)s when m is roughly less than n/2 and n/5 for 4-level and 9-level

designs, respectively. This implies that in these cases we may find SOAs with the same or

smaller A2(D)s compared to Dn,ms. This is confirmed for n = 8 and m ≤ 3, n = 16 and

m ≤ 7, n = 32 and m ≤ 15, n = 27 and m ≤ 6 in the tables. There are only two such

designs found for n = 64, namely the SOA2(64, 425) and SOA2(64, 429) obtained by the

recursive construction, and four such designs found for n = 81, namely those with m ≤ 14.

This is probably because there are too many potential SOAs for the computer to handle.

Also note that in addition to the designs mentioned in Theorem 4.3 and Corollary 4.3,

the SOA2(16, 46), SOA2(16, 47), SOA2(32, 411), SOA3(81, 911), SOA3(81, 912), SOA3(81, 913)

and SOA3(81, 914) all reach the lower bound in Lemma 4.4 and thus are optimal under χ̄(D).

When m is larger, the (near) SOAs have greater A2(D)s than those of Dn,ms. Neverthe-

less, the (near) SOAs have smaller µ(D) and because of this, they still outperform Dn,ms

under φ̄1(D) for all 8-run and 27-run cases, and for n = 16 and m ≤ 12, n = 32 and m ≤ 21,
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Table 4.3: A comparison of SOAs and near SOAs with Dn,ms for n = 8, 16, 32.

n×m SOAs and near SOAs Dn,ms A∗2 φ̄1,o φ̄2,oA2(D) µ(D) φ̄1(D) φ̄2(D) A2(D) µ(D) φ̄1(D) φ̄2(D)
8× 2 1† 0 1.27 14.92 1† 0 1.27 14.92 1 1.49 15.62
8× 3 3† 0 1.35 19.53 3† 1 1.63 20.53 3 2.01 21.63
8× 4 6† 1 1.35 23.24 6† 4 2.20 26.24 6 2.39 26.44
8× 5 10† 4 1.55 27.06 10† 7 2.41 30.06 10 2.63 30.05
8× 6 21 6 1.96 28.84 15† 10 2.24 31.98 15 2.72 32.46
8× 7 21† 14 2.00 33.00 21† 14 2.00 33.00 21 2.67 33.67

16× 6 3† 0 2.40 37.20 3† 2 2.93 39.07 3 4.24 41.90
16× 7 6† 0 2.36 40.62 6† 4 3.42 44.36 6 4.70 46.97
16× 8 12 0 2.49 43.56 9† 6 3.69 48.76 9 5.08 51.48
16× 9 18 0 2.40 45.60 12† 8 3.73 52.27 12 5.39 55.44
16× 10 30 0 2.89 47.56 15† 10 3.56 54.89 15 5.62 58.86
16× 11 33 5 3.29 52.09 21† 14 4.09 58.89 21 5.79 61.73
16× 12 40 9 3.73 55.33 27† 18 4.40 62.00 27 5.88 64.05
16× 13 54 12 4.62 57.69 33† 22 4.49 64.22 33 5.90 65.82
16× 14 105 14 9.96 63.16 39† 26 4.36 65.56 39 5.84 67.04
16× 15 45† 30 4.00 66.00 45† 30 4.00 66.00 45 5.71 67.71

32× 10 1† 0 4.60 64.48 1† 0 4.60 64.48 1 7.55 71.29
32× 11 3† 0 4.74 68.88 3† 1 4.99 69.79 3 8.10 76.98
32× 12 5 0 4.77 72.87 6 4 5.93 76.61 4.5 8.62 82.41
32× 13 8 0 4.82 76.57 9 6 6.50 82.12 5.5 9.11 87.57
32× 14 11 0 4.77 79.85 12 8 6.96 87.21 8.5 9.56 92.47
32× 15 14 0 4.62 82.72 15 10 7.33 91.88 12 9.98 97.11
32× 16 19 0 4.62 85.43 18 12 7.58 96.14 15 10.35 101.49
32× 17 26 0 4.77 87.98 21 14 7.74 99.98 17.5 10.70 105.61
32× 18 33 0 4.82 90.12 24 16 7.79 103.41 20.5 11.00 109.46
32× 19 43 0 5.15 92.22 27 18 7.73 106.42 25.5 11.27 113.06
32× 20 54 0 5.51 94.04 30† 20 7.58 109.01 30 11.51 116.39
32× 21 72 0 6.67 96.35 34† 23 7.70 112.22 34 11.71 119.46
32× 22 98 0 8.75 99.27 39 26 7.85 115.14 37.5 11.87 122.26
32× 23 104 3 8.93 101.91 45 30 8.28 118.68 43.5 12.00 124.81
32× 24 111 6 9.13 104.25 51 34 8.61 121.80 49.5 12.09 127.09
32× 25 124 10 10.26 107.86 57 38 8.84 124.51 55 12.15 129.11
32× 26 128 16 10.63 111.70 63 42 8.96 126.80 60 12.17 130.87
32× 27 142 21 11.94 115.51 69 46 8.97 128.67 66 12.15 132.37
32× 28 171 25 14.82 119.93 75 50 8.89 130.13 73.5 12.10 133.60
32× 29 238 28 22.24 127.94 81 54 8.70 131.17 80.5 12.01 134.57
32× 30 465 30 49.95 155.28 87† 58 8.40 131.79 87 11.89 135.28
32× 31 93† 62 8.00 132.00 93† 62 8.00 132.00 93 11.73 135.73
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Table 4.4: A comparison of SOAs and near SOAs with Dn,ms for n = 64.
n×m SOAs and near SOAs Dn,ms A∗2 φ̄1,o φ̄2,oA2(D) µ(D) φ̄1(D) φ̄2(D) A2(D) µ(D) φ̄1(D) φ̄2(D)
64× 22 7 0 9.65 136.49 3† 2 9.65 137.76 3 16.30 152.60
64× 23 9 0 9.72 140.59 6 4 10.35 143.77 5.25 16.83 158.07
64× 24 11 0 9.74 144.49 9 6 11.01 149.57 6.75 17.35 163.41
64× 25 12 0 9.59 148.06 12 8 11.62 155.17 7.5 17.85 168.62
64× 26 17 0 9.89 151.94 15 10 12.17 160.57 10.5 18.34 173.70
64× 27 20 0 9.89 155.36 18 12 12.68 165.77 13.5 18.80 178.65
64× 28 22 0 9.71 158.45 21 14 13.14 170.77 15.75 19.25 183.48
64× 29 24 0 9.48 161.34 24 16 13.54 175.56 17.25 19.68 188.17
64× 30 31 0 9.83 164.66 27 18 13.90 180.15 20.25 20.09 192.74
64× 31 35 0 9.76 167.40 30 20 14.20 184.55 24 20.49 197.18
64× 32 40 0 9.76 170.07 33 22 14.45 188.74 27 20.86 201.50
64× 33 44 0 9.58 172.41 36 24 14.66 192.73 29.25 21.22 205.68
64× 34 53 0 9.99 175.18 39 26 14.81 196.51 32.25 21.57 209.74
64× 35 59 0 9.96 177.37 42 28 14.91 200.10 36.75 21.89 213.67
64× 36 65 0 9.89 179.36 45 30 14.97 203.48 40.5 22.19 217.47
64× 37 72 0 9.89 181.27 48 32 14.97 206.67 43.5 22.48 221.14
64× 38 82 0 10.22 183.36 51 34 14.92 209.65 46.5 22.75 224.69
64× 39 93 0 10.63 185.38 54 36 14.82 212.43 51.75 23.01 228.11
64× 40 103 0 10.86 187.07 57 38 14.67 215.00 56.25 23.24 231.40
64× 41 117 0 11.55 189.06 60† 40 14.47 217.38 60 23.46 234.56
64× 42 131 0 12.19 190.86 63† 42 14.22 219.56 63 23.66 237.59
64× 43 146 0 12.91 192.58 69 46 14.81 223.69 69 23.84 240.50
64× 44 163 0 13.83 194.35 75 50 15.35 227.62 74.25 24.00 243.28
64× 45 182 0 14.95 196.17 81 54 15.84 231.35 78.75 24.15 245.93
64× 46 207 0 16.78 198.56 87 58 16.27 234.87 82.5 24.28 248.45
64× 47 233 0 18.69 200.87 93 62 16.66 238.20 88.5 24.39 250.84
64× 48 263 0 21.06 203.48 99 66 17.00 241.32 94.5 24.48 253.11
64× 49 294 0 23.51 206.02 105 70 17.28 244.25 99.75 24.56 255.25
64× 50 336 0 27.30 209.76 111 74 17.52 246.97 104.25 24.61 257.26
64× 51 382 1 31.80 214.69 117 78 17.71 249.49 110.25 24.65 259.14
64× 52 394 6 32.95 218.66 123 82 17.84 251.81 117 24.67 260.89
64× 53 392 14 33.04 223.32 129 86 17.92 253.92 123 24.68 262.52
64× 54 399 21 33.96 228.03 135 90 17.96 255.84 128.25 24.66 264.02
64× 55 418 27 36.10 233.17 141 94 17.94 257.55 134.25 24.63 265.39
64× 56 423 35 36.92 238.11 147 98 17.88 259.06 141.75 24.58 266.63
64× 57 444 42 39.47 243.99 153 102 17.76 260.37 148.5 24.52 267.74
64× 58 484 48 44.13 251.19 159 106 17.59 261.48 154.5 24.43 268.73
64× 59 558 53 52.80 261.63 165 110 17.37 262.39 160.5 24.33 269.59
64× 60 696 57 69.30 279.09 171 114 17.11 263.09 168.75 24.21 270.32
64× 61 994 60 105.80 315.79 177 118 16.79 263.60 176.25 24.07 270.92
64× 62 1953 62 225.94 435.33 183† 122 16.42 263.90 183 23.92 271.40
64× 63 189† 126 16.00 264.00 189† 126 16.00 264.00 189 23.74 271.74
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Table 4.5: A comparison of SOAs and near SOAs with Dn,ms for n = 27, 81.
n×m SOAs and near SOAs Dn,ms A∗2 φ̄1,o φ̄2,o/102

A2(D) µ(D) φ̄1(D) φ̄2(D)/102 A2(D) µ(D) φ̄1(D) φ̄2(D)/102

27× 2 2† 0 8.15 4.83 2† 0 8.15 4.83 2 8.44 4.86
27× 3 6† 0 11.31 7.04 6† 2 11.85 7.09 6 12.18 7.12
27× 4 12† 0 13.85 9.10 12† 4 14.95 9.21 12 15.60 9.27
27× 5 20† 0 15.79 11.03 20† 10 18.53 11.30 20 18.70 11.30
27× 6 30† 0 17.12 12.82 30† 14 20.95 13.19 30 21.48 13.22
27× 7 42† 6 19.48 14.62 42† 22 23.86 15.05 42 23.94 15.03
27× 8 68 12 21.78 16.30 56† 26 25.06 16.66 56 26.08 16.73
27× 9 90 18 23.19 17.83 72† 36 27.29 18.29 72 27.91 18.31
27× 10 108 28 24.81 19.33 90† 46 28.91 19.79 90 29.41 19.78
27× 11 134 40 26.64 20.74 110† 56 29.93 21.14 110 30.59 21.14
27× 12 204 48 28.69 21.95 132† 66 30.33 22.35 132 31.46 22.38
27× 13 156† 78 30.67 23.48 156† 78 30.67 23.48 156 32.00 23.51

81× 11 8† 0 37.63 24.71 8† 4 38.70 24.81 8 43.64 25.18
81× 12 16† 0 40.04 26.69 16† 8 42.18 26.90 16 46.97 27.25
81× 13 24† 0 42.23 28.63 24† 12 45.43 28.94 24 50.19 29.29
81× 14 32† 0 44.20 30.52 32† 16 48.47 30.94 32 53.31 31.29
81× 15 42 0 46.03 32.37 40† 20 51.28 32.89 40 56.32 33.25
81× 16 54 0 47.73 34.18 48† 24 53.87 34.80 48 59.22 35.18
81× 17 68 0 49.30 35.95 56† 28 56.23 36.66 56 62.01 37.07
81× 18 84 0 50.73 37.67 64† 32 58.38 38.48 64 64.70 38.92
81× 19 102 0 52.03 39.35 72† 36 60.30 40.25 72 67.29 40.74
81× 20 126 0 53.38 40.99 80† 40 62.00 41.98 80 69.76 42.52
81× 21 150 0 54.50 42.58 96† 48 64.90 43.77 96 72.13 44.27
81× 22 190 0 56.11 44.15 112† 56 67.58 45.52 112 74.40 45.98
81× 23 234 0 57.68 45.67 128† 64 70.03 47.23 128 76.55 47.65
81× 24 284 0 59.29 47.16 144† 72 72.27 48.89 144 78.60 49.29
81× 25 330 0 60.50 48.59 160† 80 74.28 50.50 160 80.55 50.89
81× 26 328 10 62.02 50.20 176† 88 76.07 52.07 176 82.38 52.45
81× 27 350 18 63.86 51.73 192† 96 77.63 53.60 192 84.12 53.98
81× 28 382 26 65.91 53.22 208† 104 78.98 55.08 208 85.74 55.47
81× 29 430 34 68.46 54.69 224† 112 80.10 56.51 224 87.26 56.93
81× 30 464 44 70.69 56.15 240† 120 81.00 57.90 240 88.67 58.35
81× 31 508 52 72.61 57.52 264† 132 83.10 59.36 264 89.97 59.73
81× 32 566 58 74.40 58.81 288† 144 84.98 60.77 288 91.17 61.08
81× 33 650 64 77.12 60.08 312† 156 86.63 62.13 312 92.26 62.39
81× 34 656 84 79.89 61.59 336† 168 88.07 63.46 336 93.25 63.66
81× 35 696 100 82.88 62.99 360† 180 89.28 64.73 360 94.13 64.90
81× 36 704 120 85.29 64.41 384† 192 90.27 65.96 384 94.90 66.11
81× 37 782 136 89.52 65.76 408† 204 91.03 67.15 408 95.57 67.27
81× 38 986 148 98.07 67.08 432† 216 91.58 68.29 432 96.12 68.40
81× 39 1716 156 128.70 68.78 456† 228 91.90 69.39 456 96.58 69.49
81× 40 480† 240 92.00 70.44 480† 240 92.00 70.44 480 96.92 70.55
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Figure 4.1: Comparing 64-run (near) SOAs with D64,ms under (a) µ(D), (b) A2(D), (c)
φ̄1(D) and (d) φ̄2(D).
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n = 64 and m ≤ 45, and n = 81 and m ≤ 37. Under φ̄2(D) SOAs and near SOAs are better

for all 8-run, 16-run, 27-run and 81-run cases, and for n = 32 and m ≤ 29, and n = 64 and

m ≤ 59. The criterion φ̄2 (and ρ̄) favors SOA and near SOAs because it places more weight

on µ(D) than φ̄1 (and ψ̄) does in (4.5).

When m is even larger, we can see that the A2(D)s of SOAs and near SOAs grow so

rapidly that the Dn,ms may take the lead. This observation becomes more apparent for φ̄1

(and ψ̄) as more weight is placed on A2(D) in (4.5). Indeed, a calculation for the four-level

case shows that even if the lower bounds in Theorem 4.4 could be achieved by certain SOAs,

the Dn,ms would have smaller φ̄1(D) (and ψ̄(D)) when m ≥ 46 for n = 64, m ≥ 93 for
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n = 128, m ≥ 186 for n = 256, and m ≥ 372 for n = 512; that is, when m is approximately

greater than 0.725 times n− 1.

To illustrate the discussion above, we provide a visualization of the comparisons of 64-

run designs in Figure 4.1. It can be clearly seen in panels (c) and (d) of Figure 4.1 that

under the criteria φ̄1 and φ̄2, designs D64,ms are always better than the random OABDs,

while SOAs and near SOAs are the best for small m values and gradually deteriorate as

m increases. The behaviors of SOAs and near SOAs are not very surprising as they first

minimize the µ value as shown in panel (a) of Figure 4.1, resulting in a rapid increase of

the A2 value as m increases as shown in panel (b) of Figure 4.1.

According to these observations, we conclude that both families of designs are fruitful

and have their own specialties. The SOAs and near SOAs optimize s×s′ and s′×s stratifica-

tions in all two-dimensions, while Dn,ms enjoy higher proportions of column pairs stratified

over the s× s grid and smaller overall A2(D). Under the class of criteria χ, the SOAs and

near SOAs are appealing when the number of factors is not too large and are more welcome

under L2-distance and the orthogonality criterion than under L1-distance and the uniform

projection criterion, whereas Dn,ms are more competitive for the opposite situations.

4.5 Proofs

Proof of Lemma 4.2. To prove part (i), first note that

φ(D) = 1
n(n− 1)

∑
i 6=j

d2
ij − d̄2

= 1
n(n− 1)

n∑
i=1

n∑
j=1

(
m∑
k=1

d(xik, xjk)
)2

− d̄2

= 1
n(n− 1)

n∑
i=1

n∑
j=1

∑
u6=v

d(xiu, xju)d(xiv, xjv) +
m∑
u=1

d(xiu, xju)2

− d̄2

=
∑
u6=v

1
n(n− 1)

n∑
i=1

n∑
j=1

d(xiu, xju)d(xiv, xjv) + m

n(n− 1)

n∑
i=1

n∑
j=1

d(xi1, xj1)2 − d̄2.

Then the result follows by noting that for any U-type designs, we have
∑
i,j d(xi1, xj1)2 =

n2∑s−1
x=0

∑s−1
y=0 d(x, y)2/s2 and d̄ = mn

∑s−1
x=0

∑s−1
y=0 d(x, y)/(ns2 − s2).
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For part (ii), we first standardize each column of D = (xiu) through the linear transfor-

mation x̃iu =
√

12/(ns2 − n)(xiu − (s− 1)/2). Then we have

ρ(D) = 1
m(m− 1)

∑
u6=v

ρ2
uv = 1

m(m− 1)
∑
u6=v

(
n∑
i=1

x̃iux̃iv

)2

= 1
m(m− 1)

∑
u6=v

n∑
i=1

n∑
j=1

x̃iux̃ju · x̃ivx̃jv.

The result in (ii) then follows by some tedious algebra. Part (iii) is straightfoward and is

thus omitted.

Next, we first prove Proposition 4.2 to make the logic coherent.

Proof of Proposition 4.2. For k = 1, . . . ,m, let Ak = (a(k)
iu )n×(s′−1) and Bk = (b(k)

iu )n×(α−1)

be matrices of orthonormal main-effect coefficients for the kth factor of A and B, respec-

tively. Let Ck = (c(k)
iu )n×(s′−1)(α−1) consist of all Hadamard products between the columns

of Ak and Bk. Then it is easy to verify that (Ak,Bk,Ck) is a matrix of orthonormal main-

effect coefficients for the kth factor of D. Now let A = (A1, . . . ,Am), B = (B1, . . . ,Bm)

and C = (C1, . . . ,Cm). Then (A,B,C) is a matrix of orthonormal main-effect coefficients

for D. The expression in Proposition 4.2 follows by applying the definition (4.2) of A2(D)

to this set of contrasts directly.

To prove Theorems 4.1 and 4.2, we present two lemmas, the first of which is from Xu

(2003).

Lemma 4.5. Suppose D is a U(n, sm). Let δij be the number of coincidences between the ith

and jth runs of D. Then
∑
i,j δij = n2m/s and

∑
i,j δ

2
ij = {2n2A2(D)+n2m(m+s−1)}/s2.

Lemma 4.6. Suppose D is an OABDα(n, sm). Denote by δij(A) and δij(D) the numbers of

coincidences between the ith and jth run of A and D, respectively, and let c be any constant.

Then

n∑
i=1

n∑
j=1
{δij(A) + cδij(D)}2 = 2c2n2

s2 A2(D) + 2cαn2

s2

∑
u6=v
{A2(au, bv) +A3(au, av, bv)}

+ mn2

s2

{
(m+ s′ − 1)(c+ α)2 + s′(α− 1)c2

}
.
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Proof. We use the same notation as in the proof of Proposition 4.2. Note that if the kth

factor of A takes the same level on the ith and jth run, then
∑s′−1
v=1 a

(k)
iv a

(k)
jv = s′ − 1;

otherwise it is equal to −1. Therefore, δij(A) = (
∑m
k=1

∑s′−1
v=1 a

(k)
iv a

(k)
jv +m)/s′. Similarly, one

can show δij(D) = {
∑m
k=1(

∑s′−1
v=1 a

(k)
iv a

(k)
jv +

∑α−1
v=1 b

(k)
iv b

(k)
jv +

∑(α−1)(s′−1)
v=1 c

(k)
iv c

(k)
jv ) +m}/s.

Let J be an n×n matrix of all ones. Then
∑
i,j{δij(A) + cδij(D)}2 = tr({(c+α)AAt +

cBBt + cCCt + (c + α)mJ}2)/s2 = (c + α)2m2n2/s2 + (c + α)2tr(AtAAtA)/s2 + 2c(c +

α)tr(BtAAtB+CtAAtC)/s2 +c2tr(BtBBtB+CtCCtC+2CtBBtC)/s2 = mn2/s2{(m+

s′−1)(c+α)2+s′(α−1)c2}+2α2n2/s2A2(A)+2cαn2/s2∑
u6=v{A2(au, bv)+A3(au, av, bv)}+

2c2n2/s2A2(D). IfA is an OA(n,m, s′, 2), then we have
∑
i,j{δij(A)+cδij(D)}2 = mn2/s2{(m+

s′−1)(c+α)2 +s′(α−1)c2}+2cαn2/s2∑
u6=v{A2(au, bv)+A3(au, av, bv)}+2c2n2/s2A2(D).

Proof of Theorem 4.1. Let DU be the set of all U(n, sm)s and |DU | be its cardinality. Then

we have

χ̄u = 1
|DU |

∑
D∈DU

1
m(m− 1)

∑
u6=v

q(Duv) = 1
m(m− 1)

∑
u6=v

1
|DU |

∑
D∈DU

q(Duv).

Write

q(Duv) = γ0+γ1
n

n∑
i=1

g(xiu)g(xiv)+
γ2
n

n∑
i=1

f(xiu, xiu)f(xiv, xiv)+
γ2
n2

∑
i 6=j

f(xiu, xju)f(xiv, xjv).

Then it can be verified by distributive law that for any u 6= v,
∑
D∈DU

g(xiu)g(xiv)/|DU | =

U2
χ,
∑
D∈DU

f(xiu, xiu)f(xiv, xiv)/|DU | = X2
χ and

∑
D∈DU

f(xiu, xju)f(xiv, xjv)/|DU | = M2
0 ,

where M0 = λ2∑
0≤k 6=l≤s−1 f(k, l)/(n(n − 1)) + λ(λ − 1)

∑s−1
k=0 f(k, k)/(n(n − 1)) = {(λ −

1)Xχ + λ(α− 1)Yχ + (n− αλ)Zχ}/(n− 1) and Uχ =
∑s−1
k=0 g(k)/s. The definitions for Xχ,

Yχ and Zχ are given in the theorem. Therefore, we have

χ̄u = γ0 + γ1U
2
χ + γ2

n
X2
χ + γ2

(
1− 1

n

)
M2

0 . (4.14)

On the other hand, let DO be the set of all OABDα(n, sm)s generated from the given A and

|DO| be its cardinality. Let Auv be the matrix consisting of the uth and vth column of A.
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Then similarly we have

χ̄o = 1
m(m− 1)

∑
u6=v

1
|DO|

∑
D∈DO

q(Duv) (4.15)

with

1
|DO|

∑
D∈DO

q(Duv) = γ0 + γ1U
2
χ + γ2

n
X2
χ + γ2

n2

∑
i 6=j

M
δij(Auv)
1 M

2−δij(Auv)
2 , (4.16)

where M1 = {(λ− 1)Xχ + (αλ− λ)Yχ}/(αλ− 1), M2 = Zχ and δij(Auv) is the number of

coincidences between the ith and jth row of Auv. Note that δij(Auv) can only take values

of 0, 1 and 2. It can be checked that

M
δij(Auv)
1 M

2−δij(Auv)
2 = M2

2 − (M1 −M2)(M1 − 3M2)δij(Auv)/2 + (M1 −M2)2δ2
ij(Auv)/2.

(4.17)

The result follows by combining equations (4.14), (4.15), (4.16), (4.17), Lemma 4.5 and

some tedious algebra.

Proof of Corollary 4.1. The result follows directly by Theorem 4.1 and Lemma 4.5.

Proof of Theorem 4.2. Let D be the set of all D′s obtained by applying allowable permu-

tations to D and |D| be its cardinality. Then we have

χ̄(D) = 1
D
∑
D′∈D

χ(D′) = 1
m(m− 1)

∑
u6=v

q̄(Duv), (4.18)

where q̄(Duv) is the average of q(D′uv)s for all D′uvs obtained by applying allowable permu-

tations to Duv. Let Duv be the set of all such D′uvs and |Duv| be its cardinality. Also denote

the ith row of D′uv by (x′iu, x′iv). Then we have

q̄(Duv) = 1
|Duv|

∑
D′uv∈Duv

γ0 + γ1
n

n∑
i=1

g(x′iu)g(x′iv) + γ2
n2

n∑
i=1

n∑
j=1

f(x′iu, x′ju)f(x′iv, x′jv)


= γ0 + γ1U

2
χ + γ2

n2

n∑
i=1

n∑
j=1

X
δij(Duv)
χ Y

δij(Auv)−δij(Duv)
χ Z

2−δij(Auv)
χ , (4.19)
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where δij(Auv) and δij(Duv) are the number of coincidences between the ith and jth runs

of Auv and Duv respectively. Since (δij(Duv), δij(Auv)) can only take values of (2, 2), (1, 2),

(1, 1), (0, 2), (0, 1) and (0, 0), it can be verified that Xδij(Duv)
χ Y

δij(Auv)−δij(Duv)
χ Z

2−δij(Auv)
χ =

Z2
χ + {2Zχ(Xχ − Yχ)− (X2

χ − Y 2
χ )/2}δij(Duv) + (2YχZχ − 3Z2

χ/2− Y 2
χ /2)δij(Auv) + {(Zχ −

Yχ)2/2}{δij(Auv) + (Yχ −Xχ)/(Zχ − Yχ)δij(Duv)}2. Then the result follows by combining

this with Lemmas 4.5, 4.6, equations (4.18) and (4.19), and some tedious algebra.

Proof of Lemma 4.3. The proof can be done similarly as in that of Theorem 4.2. Let D and

Duv be the sets of all D′s and D′uvs obtained by applying all possible level permutations

to columns of D and Duv, respectively. Denote the ith row of D′uv by (x′iu, x′iv). Then the

equation (4.18) still holds and equation (4.19) becomes

q̄(Duv) = γ0 + γ1U
2
χ + γ2

n2

n∑
i=1

n∑
j=1

X
δij(Duv)
χ W

2−δij(Duv)
χ .

Since δij(Duv) can only take values of 0, 1 and 2, we have, as in (4.17),Xδij(Duv)
χ W

2−δij(Duv)
χ =

W 2
χ + (Wχ−Xχ)(X − 3Wχ)δij(Duv)/2 + (Wχ−Xχ)2{δij(Duv)}2/2. Then the result follows

similarly as in the proof of Theorem 4.2.

Proof of Theorem 4.3. For a U(n, sm), Tang (2001) and Ai and Zhang (2004) showed that

minimizing A2(D) is equivalent to minimizing the average variance of frequencies of s2

level combinations over all the two-dimensional projections of D. Now suppose D is an

SOAα(n, sm) with λ′ = 1. For any two-dimensional projection of D, n = ss′ of the s2 level

combinations occurs. Therefore A2(D) is minimized among all U(n, sm)s, leading to the

conclusion in Theorem 4.3.

Proof of Theorem 4.4. For ease of expression, we consider s′ = 2. The proof for the case

s′ > 2 is similar. By Proposition 4.2, we have A2(D) =
∑
u<v A2(Duv) where A2(Duv) =

A2(bu, bv) + A2(aubu, bv) + A2(bu, avbv) + A2(aubu, avbv). Hence there are only two possi-

ble cases for A2(Duv): (i) A2(Duv) = 0 if (bu, aubu) and (bv, avbv) are totally distinct, or

(ii) A2(Duv) = 1 if (bu, aubu) and (bv, avbv) share a common column. Note that entries of

(b1, a1b1, . . . , bm, ambm) must be from e1, . . . , en−1−m since D is an SOA. Let f1, . . . , fn−1−m
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be the frequencies of e1, . . . , en−1−m in (b1, a1b1, . . . , bm, ambm). Therefore,A2(D) =
∑n−1−m
k=1

fk(fk−1)/2. Minimizing A2(D) under the constraint
∑n−1−m
k=1 fk = 2m leads to the inequal-

ity in Theorem 4.4 for s′ = 2.

Proof of Theorem 4.6. The fact that A2(Dn,m) reaches the bound of Lemma 4.4 if m = m1l

or m1l±1 for some integer l is immediate since the condition of equality is achieved (Xu and

Wu, 2005). Therefore, A2(Dn,(s′+1)m1) = m2s
′(s−1)/2. On the other hand, sinceDn,(s′+1)m1

is an MNOAs′(n, (ss
′+1)m1), we have A2(Duv) = 0 if b(u − 1)/m1c 6= b(v − 1)/m1c. Note

that A2(Duv) ≤ s − 1 if for all u ≤ v. Therefore, A2(Dn,(s′+1)m1) =
∑
u<v A2(Duv) ≤

m2s
′(s − 1)/2. Since A2(Dn,(s′+1)m1) = m2s

′(s − 1)/2, we conclude A2(Duv) = s − 1 if

b(u− 1)/m1c = b(v − 1)/m1c. Then the expression of A2(Dn,m) is straightforward.

Proof of Theorem 4.7. The proof is similar to that of Theorem 4.4, with a slight difference

being that, for example when s′ = 2, we have A2(D) =
∑
u<v{A2(au, bv) + A2(av, bu) +

A2(bu, bv) + A2(au, avbv) + A2(aubu, av) + A2(aubu, bv) + A2(bu, avbv) + A2(aubu, avbv)} =∑n−1
k=1 f

′
k(f ′k−1)/2, where f ′1, . . . , f ′n−1 are the frequencies of columns of S in (a1, b1, a1b1, . . . ,

am, bm, ambm).

Proof of Theorem 4.8. That Dn,n−1 reaches the lower bound in Theorem 4.7 can be proved

using induction by combining two facts, both of which can be easily verified. First, D8,7

reaches the lower bound. Second, if Dn,n−1 reaches the lower bound, then D4n,4n−1 also

does. The A2(Dn,m)s for m ≤ n − 1 can be calculated by observation. For example, when

(2n+2)/3 < m ≤ n−1, we have A2(Dn,m−1) = A2(Dn,m)−6 and so on. A direct verification

shows that A2(Dn,m) attains the lower bound in Lemma 4.4 if m = (n− 2)/3, (2n− 4)/3,

(2n− 1)/3 or n− 1.

4.6 Concluding remarks

In this chapter, we investigate orthogonal array-based designs under a broad class of space-

filling criteria which includes the variance of Lp-distances, column orthogonality and uniform

projection criterion. Under these criteria, we justify the use of OABDs by showing (Theorem

4.1) that they tend to be more space-filling than random U-type designs. Next, we show
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(Theorem 4.2) that the average performance of the class of OABDα(n, sm)s obtained by

allowable level permutations is determined by two components, i.e., the stratification over

an s × s grid represented by A2(D) and the stratification over an s × s′ as well as an

s′ × s grid represented by µ(D). An SOA achieves the stratification of the second kind and

thus tends to be more space-filling than a non-SOA with the same A2(D). Based on these

results, we study two families of OABDs, where the first seeks to minimize A2(D) among

SOAs while the second focuses on minimizing A2(D) directly. The two families of designs

are both attractive and have complementary performance under the class of criteria.

Several directions are worthy of future research. As pointed out in Section 4.3.2, a total

of {(s′)!(α!)s′}m designs can be generated from a specific OABDα(n, sm) by α-allowable

permutations. Notwithstanding being much fewer than the designs generated by all level

permutations (Zhou and Xu, 2014) or the OABDs from permuting and expanding a specific

OA(n,m, s′, 2) (Xiao and Xu, 2018), the class of designs soon becomes exceedingly large for

moderate m. For example, there are over 1 billion candidate designs by allowably permuting

a 4-level design with 10 factors. Therefore, it is of great practical value to give a theoretical

or algorithmic construction for how to select α-allowable permutations to obtain more space-

filling designs.

This chapter focuses on two-dimensional properties so all the designs considered are

based on orthogonal arrays of strength 2. The results of Zhou and Xu (2014) imply that

higher-dimensional projections also affect space-filling measures such as the centered L2-

discrepancy and the minimum distance of the design. Therefore, it is of great interest

to examine the performance of strong orthogonal arrays of strength 3, which achieve a

stratification over the s′× s′× s′ grids in addition to the s× s′ and s′× s grids, and analyze

what roles these stratification properties play in the overall space-filling properties of the

resulting design.

The issue as to which specific criterion shall be used in practice is an important one.

The orthogonality criterion ρ may be suitable if a polynomial model is deemed appropriate.

When Gaussian processes are employed (Johnson et al., 1990), the criterion φ2 is linked

to squared exponential functions while φ1 appears more relevant to an Ornstein-Uhlenbeck
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process. The design community welcomes any systematic and comprehensive investigation

on this matter.
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Chapter 5

Using Nonregular Designs to
Generate Space-Filling Designs

5.1 Introduction

In designing computer experiments, it is desirable to have design points scattered in the

design region in some uniform fashion. Such designs are broadly referred to as space-filling

designs (Santner et al., 2018; Fang et al., 2006). Use of space-filling designs in computer

experiments is intuitively appealing as one would like to have every portion of a design

region represented, and can also be theoretically justified in terms of their performances

in the mean squared prediction error (Vazquez and Bect, 2011). Space-filling designs can

be constructed by optimizing a uniformity criterion such as that of distance or discrepancy

(Johnson et al., 1990; Fang et al., 2000). Orthogonality also plays a role in constructing

space-filling designs (Ye, 1998; Bingham et al., 2009; Georgiou et al., 2014).

We consider space-filling designs based on orthogonal arrays. Designs of this type are

attractive because they enjoy some guaranteed low-dimensional projection properties. This

line of research started with the introduction of Latin hypercubes by McKay et al. (1979),

and went further with OA-based designs (Owen, 1992; Tang, 1993). Recently, He and Tang

(2013) introduced a class of new designs, namely strong orthogonal arrays. These arrays,

being more space-filling than comparable orthogonal arrays, have found applications in

optimizing the braking performances for freight trains (Nikiforova et al., 2021).

Most economical strong orthogonal arrays (SOAs) are those of strength 2+ that focus

on two-dimensional projection properties. Construction of SOAs of strength 2+ has been
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largely based on regular designs (He et al., 2018; Shi and Tang, 2019). This method puts

a severe restriction on the run sizes of the resulting designs as they must be prime powers.

Cheng et al. (2021) considered the use of two-level nonregular designs but their results are

limited to designs of run sizes that are multiples of 16.

In this chapter, we develop a general method of constructing space-filling designs using

nonregular designs. Designs so constructed have very flexible run sizes compared to those

constructed from regular designs. One challenging complication with using nongular designs

is that it is often impossible to obtain SOAs of strength 2+. We meet this challenge by

proposing two criteria for design evaluation under the new situation. Apart from some

theoretical results, computer searches are conducted to find space-filling designs using two-

level nonregular designs of up to 40 runs and three-level nonregular designs of 27 and 54

runs. One of the interesting findings is a strength 2+ SOA of 54 runs for 12 factors.

Section 5.2 of the chapter introduces notation and necessary background. Section 5.3

develops our method of constructing space-filling designs using two-level nonregular designs

and presents corresponding theoretical and computational results. In Section 5.4, we show

how the ideas of Section 5.3 can be generalized and used to construct some space-filling

designs from three-level nonregular designs. The chapter is then concluded by a discussion

in Section 5.5.

5.2 Notation and background

An n×m matrix with entries from {0, 1, . . . , sj−1} in the jth column is called an orthogonal

array of n runs, m factors and strength t, and denoted by OA(n,m, s1 × · · · × sm, t), if any

of its n × t submatrix contains all possible t-tuples as its rows the same number of times.

Two orthogonal arrays are said to be isomorphic if one can be obtained from the other by

permuting the columns, the rows, the levels of each factor, or a combination of the above.

If s1 = · · · = sm = s, the orthogonal array is said to be symmetric and is denoted by

OA(n,m, s, t). For convenience, when s = 2, the two levels are denoted by {−1,+1} instead

of {0, 1}. For an OA(n,m, s, 2) to exist, we must have m ≤ (n − 1)/(s − 1); and when the

equality holds, the array is said to be saturated. If an orthogonal array can be generated
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by adding interaction columns to the columns of a full factorial design, then it is called a

regular design; otherwise it is called a nonregular design.

Saturated two-level orthogonal arrays of strength 2 are equivalent to Hadamard matri-

ces. An n × n matrix H with entries from {−1,+1} is called a Hadamard matrix of order

n if HHT = nIn, where In is the identity matrix of order n. A Hadamard matrix is said

to be normalized if its first column consists of all ones. Two Hadamard matrices are said

to be isomorphic if one can be obtained from the other by a sequence of operations involv-

ing permuting the rows or columns and negating a row or a column. Given a normalized

Hadamard matrix H, an OA(n, n − 1, 2, 2) can be obtained from H by deleting the first

column.

A two-level orthogonal array can be studied using its J-characteristics (Tang, 2001).

Let ai = (a1i, . . . , ani)T (1 ≤ i ≤ k) be k columns with entries from ±1. Then the J-

characteristic of a1, . . . , ak is defined to be J(a1, . . . , ak) =
∑n
j=1 aj1 · · · ajk. An orthogonal

array D = (d1, . . . , dm) is of strength t if and only if J(di1 , . . . , dik) = 0 for all 1 ≤ i1 ≤ · · · ≤

ik ≤ m and k ≤ t. For more information on orthogonal arrays and Hadamard matrices, we

refer to Hedayat et al. (1999) and Cheng (2014).

Strong orthogonal arrays (SOAs) were introduced by He and Tang (2013). An n ×

m matrix with entries from {0, 1, . . . , st − 1} is called an SOA of n runs, m factors, st

levels and strength t, and denoted by SOA(n,m, st, t), if any of its n × g (1 ≤ g ≤ t)

submatrix can be collapsed into an OA(n, g, su1 × · · · × sug , g) for any positive integers

u1, . . . , ug satisfying u1 + · · · + ug = t, where collapsing st levels into suj levels is done by

ba/st−ujc for a = 0, 1, . . . st − 1. Among SOAs of varying strengths, those of strength 3

are particularly interesting because, in addition to the s × s × s stratification property in

three dimensions enjoyed by orthogonal arrays of strength 3, SOAs of strength 3 possess the

s2×s and s×s2 stratification properties in two-dimensions at almost no extra cost (He and

Tang, 2014). More specifically, if an OA(n,m, s, 3) is available, then one can construct an

SOA(n,m′, s3, 3) for m′ = m or m′ = m−1 depending on whether or not the OA(n,m, s, 3)

is semi-embeddable.

91



Most economical are SOAs of strength 2+ (He et al., 2018), as they can accommodate

many more factors than SOAs of strength 3 for given run size. An SOA(n,m, s2, 2) is said

to be of strength 2+, and denoted by SOA(n,m, s2, 2+), if they have the the s2 × s and

s× s2 stratification properties in two-dimensions. The following is a useful characterization

for SOAs of strength 2+ (He et al., 2018).

Lemma 5.1. An SOA(n,m, s2, 2+), say D, exists if and only if there exist n ×m arrays

A = (a1, . . . , am) and B = (b1, . . . , bm), both of s levels, such that A is an OA(n,m, s, 2)

and (ai, bi, aj) is an OA(n, 3, s, 3) for all 1 ≤ i 6= j ≤ m. The three arrays A,B and D are

related through

D =

 sA+B, if s ≥ 3,

A+B/2 + 3/2, if s = 2.
(5.1)

The slightly different expression for s = 2 in Lemma 5.1 is because we use ±1 to denote

the two levels for arrays with s = 2 levels.

For latest developments on SOAs and related designs, we refer to Wang et al. (2022a)

and Tian and Xu (2022).

5.3 Results from using two-level nonregular designs

5.3.1 Non-empty-cell designs and measures of 4× 2 uniformity

He et al. (2018) considered the construction of SOAs of strength 2+ using two-level regular

designs. If we use S to denote a saturated regular design of n runs for n − 1 factors, then

their approach is to use array A with its columns selected from S and array B with its

columns selected from S \A to obtain design D = A+B/2+3/2. They showed that D is an

SOA of strength 2+ if and only if S \A is second order saturated (SOS). According to Block

and Mee (2003), a design is SOS if it allows estimation of a saturated model consisting of

all main effects plus a set of two-factor interactions.

We follow the same spirit for the case of nonregular designs. We now let S be a saturated

two-level design of n runs for n − 1 factors, which does not have to be regular. Our goal

is then to find array A with its columns selected from S and array B with its columns

selected from S \A so that the resulting design D = A+B/2 + 3/2 is most space-filling in
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two-dimensions. We would like D to be an SOA of strength 2+ but this is often impossible.

For example, when n is a multiple of 4 but not of 8, it is impossible to obtain an SOA of

strength 2+ as such an array must have a run size that is a multiple of 8.

For convenience, we consider ordered two-dimensional projection designs of D = (d1, . . .,

dm), which are given by Dij = (di, dj) for all i 6= j. Then design D is an SOA of strength

2+ if every Dij can be collapsed into an OA(n, 2, 4×2, 2), thus achieving a stratification on

a 4× 2 grid. When it is not possible for Dij to have this property, a minimum requirement

for Dij to be space-filling is that it has at least one point in each of the 8 cells given by the

4× 2 grid. This idea leads to the type of designs we call non-empty-cell designs.

Definition 5.1. Design D is said to be a non-empty-cell design if Dij = (di, dj) contains

all possible 4 × 2 level combinations after collapsing the 4 levels of dj into 2 levels for all

i 6= j.

As indicated in Lemma 5.1, the property of Dij on the 4 × 2 grid is completely de-

termined by (ai, bi, aj). Clearly, a non-empty-cell design requires that (ai, bi, aj) contains

all possible level combinations. From a result of Cheng (1995), we know (ai, bi, aj) con-

tains [n − |J(ai, bi, aj)|]/8 copies of a complete 23 factorial plus |J(ai, bi, aj)|/4 copies of a

half-replicate of 23 factorial. The following result is immediate.

Proposition 5.1. D is a non-empty-cell design if and only if |J(ai, bi, aj)| < n for all i6=j.

Based on Proposition 5.1 and the results of Cheng (1995) and Bulutoglu and Cheng

(2003), we obtain the following sufficient conditions for non-empty-cell designs.

Corollary 5.1. Design D is a non-empty-cell design if (i) n is not a multiple of 8, or (ii)

S is a Paley design of n ≥ 12 runs, the one obtained from the Hadamard matrix by Paley’s

first construction.

We note that Paley designs of n ≤ 8 runs are regular and cannot be used to construct

non-empty-cell designs.

Example 5.1. A non-empty-cell design D of 12 runs for 10 factors can be constructed by

taking the first 10 columns of the 12-run Paley design as A and 10 copies of the 11th column
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Figure 5.1: The points of (d1, d2) and (d2, d1) over a 4× 2 grid.
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as B. To illustrate the non-empty-cell idea, we expand design D into a Latin hypercube as

follows: for each column, replace the 3 entries of x by a random permutation of 3x + 0.5,

3x+ 1.5 and 3x+ 2.5 for x = 0, 1, 2, 3. Figure 5.1 displays (d1, d2) and (d2, d1) seen from a

4× 2 grid; as clearly shown, each of the eight cells of the grid contains at least one point.

In the regular case, we know that D is an SOA of strength 2+ if and only if S \ A is

an SOS design (He et al., 2018). This equivalence relationship, however, does not hold in

general when S is nonregular. But we can show that a nonregular SOS design does imply

the existence of a non-empty-cell design.

Corollary 5.2. A non-empty-cell design D can be constructed if S \A is an SOS design.

Proof. Since S \ A is SOS, for any 1 ≤ i ≤ m, there exist e(i)
1 , e

(i)
2 ∈ S \ A such that

|J(ai, e(i)
1 , e

(i)
2 )| > 0. Take bi = e

(i)
1 . For this choice of B = (b1, . . . , bm), we will show that

|J(ai, bi, aj)| < n for all j 6= i. Suppose this is not the case. Then there exist i 6= j such

that |J(ai, bi, aj)| = n, meaning that aj = ±aibi, where aibi denotes the Hadamard product

of ai and bi. Then aj and e
(i)
2 cannot be orthogonal since |J(aj , e(i)

2 )| = |J(ai, bi, e(i)
2 )| =

|J(ai, e(i)
1 , e

(i)
2 )| > 0, which leads to a contradiction.

Corollaries 5.1 and 5.2 give sufficient conditions for non-empty-cell designs. Identifying

non-empty-cell designs is just a first step in making design D space-filling on the 4×2 grid.

We now introduce two criteria to measure the 4× 2 uniformity of D.
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After projecting Dij onto the 4 × 2 grid, the argument following Definition 5.1 implies

that among the eight cells, four of them contain [n− |J(ai, bi, aj)|]/8 points and the other

four contain [n + |J(ai, bi, aj)|]/8 points. A simple calculation shows that the variance of

the numbers of points in eight cells is Vij = [J(ai, bi, aj)]2/64. Therefore, different values of

|J(ai, bi, aj)| correspond to different 4 × 2 patterns and a small |J(ai, bi, aj)| is preferred.

Note that, as a by-product of Cheng’s (1995) result, |J(ai, bi, aj)| can only take values of

n − 8k for 0 ≤ k ≤ bn/8c. Let fk be the proportion of the ordered pairs (i, j)’s such that

|J(ai, bi, aj)| = n − 8k for 0 ≤ k ≤ bn/8c. We define the 4 × 2 projection frequency vector

of D to be

F (D) = (f0, f1, . . . , fbn/8c).

The vector F (D) summarizes the information on the 4 × 2 projection properties of the

design D. In particular, if f0 = 0, then D is a non-empty-cell design; if n is a multiple of 8

and fn/8 = 1, then D is an SOA of strength 2+.

To eliminate the worst 4 × 2 projections of design D, we sequentially minimize f0, f1,

. . . , fbn/8c−1 and this is our first criterion. This criterion can be regarded as a natural refine-

ment for seeking non-empty-cell designs. Though intuitively attractive, the first criterion

is stringent and theoretically burdensome. Our second criterion aims at minimizing the

average of Vij ’s over all possible (i, j)’s, that is, we seek to minimize the average variance

V (D) = 1
m(m− 1)

∑
1≤i 6=j≤m

Vij = 1
64m(m− 1)

∑
1≤i 6=j≤m

[J(ai, bi, aj)]2. (5.2)

In terms of F (D), we have V (D) =
∑bn/8c
k=0

(
n
8 − k

)2
fk, which is a weighted average of fk’s.

Thus the second criterion can be seen as a relaxed version of the first one. We should remark

that designs minimizing V (D) do not have to be non-empty-cell designs. In the following, we

will call the two criteria Criterion 1 and Criterion 2, respectively, and focus on theoretical

and computational methods to optimize them.

Finally, we note that our definitions of the two criteria are similar to those of minimum

G- and G2-aberration for fractional factorial designs proposed by Deng and Tang (1999)

and Tang and Deng (1999).
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5.3.2 Some theoretical results on V (D)

In this subsection, we present some theoretical results on V (D) which, as we will see, are

useful in finding optimal designs under both criteria. We start with a simple lemma.

Lemma 5.2. Let S \A = E = {e1, . . . , en−m−1}.

(i) When m = n− 2, n− 3, we have V (D) = n2/[64(n− 3)] for any choice of A and B.

(ii) For e ∈ E, define Pi(e) =
∑m
j=1[J(ai, e, aj)]2. Then for given A, array B minimizes

V (D) if and only if Pi(bi) = mine∈E Pi(e).

The proof of Lemma 5.2 is straightforward. Despite being mathematically simple, Lemma

5.2 provides some interesting insights. For example, an SOA of strength 2+ can be char-

acterized as Pi(bi) = 0 for every i = 1, . . . ,m. That Pi(bi) = 0 is equivalent to that aibi is

orthogonal to all aj ; the latter is precisely the condition for constructing SOAs of strength

2+ in Theorem 5 of Cheng et al. (2021). More importantly, Lemma 5.2 allows us to establish

the next result.

Theorem 5.1. If D is an SOA of strength 2+, then S \A must be an SOS design.

Proof. Since D is an SOA of strength 2+, we have that for every ai, there exists bi

from S \ A such that aibi is orthogonal to all aj . Since aibi is also orthogonal to 1n, it

must be a linear combination of e1, . . . , en−m−1, which implies that ai is a linear com-

bination of bie1, . . . , bien−m−1. Noting that bi is from E, we see that every ai is a lin-

ear combination of some ej1ej2 with j1 6= j2. This means that the linear space spanned

by a1, . . . , am, e1, . . . , en−m−1, which has rank n − 1, is a linear subspace of the linear

space spanned by e1, . . . , en−m−1 and all ej1ej2 with j1 6= j2. Therefore the set of vec-

tors e1, . . . , en−m−1 and all ej1ej2 with j1 6= j2 has rank n − 1, showing that E = S \ A is

SOS.

Consider the following three statements: (a) D is an SOA of strength 2+; (b) S \ A is

SOS; and (c) D is a non-empty-cell design. In the regular case, the three statements are

all equivalent. For the nonregular case, we have that (a) implies (b) by Theorem 5.1 and

that (b) implies (c) by Corollary 5.2. When n is not a multiple of 8, we can easily find an
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example for which (c) is true but (b) is not and an example for which (b) is true but (a) is

not. This completely settles the relationship between D being an SOA of strength 2+ and

S \A being SOS in the nonregular case.

Example 5.2. The statement (b) does not imply (a) even if n is a multiple of 8. Con-

sider the OA(24, 23, 2, 2) obtained from the Hadamard matrix labelled had.24.34 at Dr. Neil

Sloane’s website http://neilsloane.com/hadamard/ and denote its columns by 1, . . . , 23.

It can checked that the design E = (11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22) is SOS. We take

A = S\E = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 23), and accordingly, choose B = (13, 18, 17, 21, 22, 22, 14,

20, 14, 18, 11, 11) to minimize V (D) by Lemma 5.2. Then we have P4(b4) = 64 and Pi(bi) = 0

for i 6= 4. Thus D is not an SOA of strength 2+. On the other hand, the fact that E is SOS

guarantees that D must be a non-empty-cell design.

Part (i) of Lemma 5.2 says that V (D) is constant when E has one or two columns.

When E contains more than two columns, we derive the following lower bounds for V (D)

and also the conditions when they can be attained.

Theorem 5.2. Let J0 = n − 8bn/8c. For 1 < m <
(n−1−m

2
)
, we have V (D) ≥ J2

0/64 ,

where the equality holds if and only if |J(ai, bi, aj)| = J0 for 1 ≤ i 6= j ≤ m. For
(n−1−m

2
)
≤

m ≤ n− 2, we have

V (D) ≥ 1
64m(m− 1)

{
mn2 −

(
n− 1−m

2

)
n2 +R(m,n)

}
, (5.3)

where R(m,n) = J2
0 · [

(n−1−m
2

)
(n− 3)−m(n− 2−m)] and the equality holds if and only if

|J(ej , ek, el)| = J0 for 1 ≤ j 6= k 6= l 6= j ≤ n − 1 −m and that for 1 ≤ i ≤ m, there exists

e(i) ∈ E such that |J(ai, ej , ek)| = J0 for any e(i) 6= ej 6= ek 6= e(i).

Proof. The first inequality is obvious. For the second inequality, we give a proof for the case

that n is a multiple of 8. Then J0 = 0 and the result follows by noting that

V (D) = 1
64m(m− 1)

m∑
i=1

n2 −max
e∈E

n−1−m∑
j=1

[J(ai, ej , e)]2
 ,
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and that
∑m
i=1 maxe∈E

∑n−1−m
j=1 [J(ai, ej , e)]2 ≤

∑m
i=1

∑n−1−m
j<k [J(ai, ej , ek)]2 =

∑n−1−m
j<k {n2−

∑n−1−m
l=1 [J(ej , ek, el)]2} ≤

(n−1−m
2

)
n2, where the first equality holds if and only if for

1 ≤ i ≤ m there exists e(i) ∈ E such that J(ai, ej , ek) = 0 for any e(i) 6= ej 6= ek 6= e(i)

and the last equality holds if and only if E has strength three, i.e., J(ej , ek, el) = 0 for

1 ≤ j 6= k 6= l 6= j ≤ n − 1 − m. The proof for the case that n is not a multiple of 8 is

similar, with the only difference being that the J-characteristic of any three columns is at

least 4.

Next, we present two construction methods to attain lower bounds in Theorem 5.2.

Before we proceed, we note the following useful fact.

Remark 5.1. Suppose that design D with m columns attains the bound of Theorem 5.2.

Then we can construct a design D′ with m′ columns where m < m′ ≤ n−2 that also attains

the bound, which can be done by moving some columns from E to A as additional ai’s and

taking any columns from the rest columns of E as corresponding bi’s.

Construction 1: Suppose that D = A+B/2+3/2 of n runs for m factors attains the lower

bound in Theorem 5.2. We construct design D̃ = Ã+ B̃/2 + 3/2, with Ã and B̃ defined as

Ã = (a+
1 , . . . , a

+
m, a

−
1 , . . . , a

−
m, e

−
1 , . . . , e

−
n−1−m), B̃ = (b+

1 , . . . , b
+
m, b

+
1 , . . . , b

+
m, 1−n , . . . , 1−n )

where, for any column c, we use c+ and c− to denote [1 1]T ⊗c and [1 −1]T ⊗c, respectively.

Then we can verify that design D̃, which has 2n runs and n + m − 1 factors, also attains

the lower bound in Theorem 5.2 provided that (i) n is a multiple of 8 or that (ii) n is not

a multiple of 8 but m = n− 3.

Example 5.3. Let S = (s1, . . . , s11) be the 12-run Paley design. Take A = (s1 . . . , s9)

and B as 9 copies of s10. Then D = A + B/2 + 3/2 attains the lower bound by Lemma

5.2 and Theorem 5.2. Apply Construction 1 by letting Ã = (s+
1 , . . . , s

+
9 , s

−
1 , . . . , s

−
9 , s

−
10, s

−
11)

and B̃ = (s+
10, . . . , s

+
10, s

+
10, . . . , s

+
10, 1

−
12, 1

−
12). Then the 24 × 20 design D̃ = Ã + B̃/2 + 3/2

also attains the bound; note that columns of Ã and B̃ are taken from the saturated design
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consisting of 1−12, s
+
i and s−i for i = 1, . . . , 11. Applying Construction 1 successively, we

obtain 48× 43, 96× 90 designs and so on, all of which attain the bound in Theorem 5.2.

It can easily be checked that when regular S is used, the second equality conditions in

Theorem 5.2 hold if and only if E has resolution V, a situation covered by Theorem 3 of Shi

and Tang (2019). Inspired by this connection, we put forward the following construction.

Construction 2: Suppose that E is an OA(n, n− 1−m, 2, 4) such that all its main effects

and two-factor interactions can be embedded into a saturated orthogonal array S. Let

A = S \ E = (a1, . . . , am). For 1 ≤ i ≤ m, choose bi = e
(i)
1 if ai can be written as e(i)

1 e
(i)
2

for some e(i)
1 , e

(i)
2 ∈ E, otherwise choose bi = e1. Then D = A+B/2 + 3/2 attains the lower

bound in Theorem 5.2.

Finding a required E in Construction 2 is not an easy task in general. Nonetheless,

an interesting example can be given. Let E = (e1, . . . , e15) be an OA(128, 15, 2, 4) which

can be obtained, for example, from the shortened Nordstrom-Robinson code (Xu, 2005).

By a result of Verheiden (1978), the 120 columns in the form of ei (1 ≤ i ≤ 15) and ejek

(1 ≤ j 6= k ≤ 15) can be embedded into an OA(128, 127, 2, 2). Applying Construction 2, we

obtain a design D of 128 runs for m = 112 factors that attains the lower bound in Theorem

5.2. By Remark 5.1, designs of 128 runs for m′ factors where 113 ≤ m′ ≤ 126 can all be

constructed to attain the lower bound. The approach of Shi and Tang (2019) for regular

designs effectively maximizes fn/8 in our notation. One can check that for 112 ≤ m′ ≤ 115,

the designs constructed here are better than those from regular designs in terms of V (D).

Constructions 1 and 2 do not apply when n is a multiple of 4 but not a multiple of 8,

except for m = n − 3 in Construction 1. We conclude this subsection with a remark that

provides a result for this case.

Remark 5.2. When n is a multiple of 4 such that n/2−1 = 4k+1 is a prime power where

k is an integer, Shi and Tang (2023) constructed an OA(n/2, n/4, 2, 2) with generalized

resolution 4−4/n. Let the columns of this OA(n/2, n/4, 2, 2) be denoted by s1, . . . , sn/4, and

take A = (s1, . . . , sn/4−1) and B = (sn/4, . . . , sn/4). Then D = A+B/2 + 3/2, a design of n

runs for m = n/2−1 factors, has V (D) = 1/4 and thus attains the lower bound in Theorem
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5.2. We will see in the next subsection that for n = 20, 28 and 36, designs with more factors

can be found to still have V (D) = 1/4.

5.3.3 Some computational results

In this subsection, we conduct computer searches to find the best designs D under each of

the two criteria for n = 16, 20, 24, 28, 32, 36 and 40. For n = 16, 20 and 24, there are

exactly 5, 3 and 130 non-isomorphic saturated orthogonal arrays. We take all of them as

S and for each S consider all possible
(n−1
m

)
choices of A. For n = 28, 32, 36 and 40, we

obtain 487, 22, 235 and 98 non-isomorphic saturated orthogonal arrays, respectively. These

orthogonal arrays are derived from non-isomorphic Hadamard matrices we can find from

the web. Taking each array as S, we then either consider all choices of A from S if
(n−1
m

)
does not exceed 200,000 or consider 200,000 A’s selected randomly from S otherwise. After

A is chosen and fixed, the columns of B are selected from S \A to optimize Criterion 1 or

Criterion 2.

Ingram and Tang (2005) proposed using minimum Ge-aberration with sufficiently large e

as a computationally efficient surrogate for minimum G-aberration. A similar approach can

be applied in our computer search under Criterion 1. Our surrogate criterion is to minimize∑
1≤i 6=j≤m |J(ai, bi, aj)/n|p. It can be shown that if p > log(m2 −m)/[log(n)− log(n− 8)],

then the surrogate criterion is equivalent to Criterion 1. We take p = blog(m2−m)/[log(n)−

log(n− 8)]c+ 1 in our search.

The search results are displayed in Tables 5.1 and 5.2. For given n and m ≤ n − 2, we

present F (D) and V (D) of the best design found under each of the two criteria. Only one

entry of F (D) and V (D) combination is given if the same design can be found to optimize

both criteria. We mark an F (D) entry or a V (D) entry with an asterisk if it is optimal,

which is judged to be so either because the search is complete or by the lower bounds

of V (D) in Theorem 5.2. More details about the underlying designs, including the design

matrices, are available online at https://github.com/gz-chen/Nonregular-SOA. All the

designs in Tables 5.1 and 5.2 are non-empty-cell designs since they all have f0 = 0

Example 5.4. The 16 × 14 design can be constructed from the OA(16, 15, 2, 2) from the

Hadamard matrix labelled had.16.4 at Dr. Sloan’s website by taking the first 14 columns as
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Table 5.1: Designs of 16, 20, 24, 28 and 32 runs by computer search under Criteria 1 and 2
n×m Criterion 1: F (D) and 64V (D) Criterion 2: F (D) and 64V (D)
16× 14 (0, 0.308, 0.692)∗; 19.69∗
16× 13 (0, 0.308, 0.692)∗; 19.69∗
16× 12 (0, 0.273, 0.727)∗; 17.45∗
16× 11 (0, 0.182, 0.818)∗; 11.64∗
16× 10 (0, 0, 1)∗; 0∗

20× 18 (0, 0.059, 0.941)∗; 23.53∗
20× 17 (0, 0.059, 0.941)∗; 23.53∗
20× 16 (0, 0.054, 0.946)∗; 22.93∗
20× 15 (0, 0.043, 0.957)∗; 21.49∗
20× 14 (0, 0.022, 0.978)∗; 18.81∗
20× 13 (0, 0, 1)∗; 16∗

24× 22 (0, 0, 0.429, 0.571)∗; 27.43∗
24× 21 (0, 0, 0.429, 0.571)∗; 27.43∗
24× 20 (0, 0, 0.403, 0.597)∗; 25.77∗
24× 19 (0, 0, 0.351, 0.649)∗; 22.46∗
24× 18 (0, 0, 0.281, 0.719)∗; 17.99∗
24× 17 (0, 0, 0.206, 0.794)∗; 13.18 (0, 0.007, 0.162, 0.831); 12.24∗
24× 16 (0, 0, 0.112, 0.888)∗; 7.20∗
24× 15 (0, 0, 0.076, 0.924)∗; 4.88∗
24× 14 (0, 0, 0.049, 0.951)∗; 3.16∗
24× 13 (0, 0, 0.026, 0.974)∗; 1.64∗
24× 12 (0, 0, 0.008, 0.992)∗; 0.48∗
24× 11 (0, 0, 0, 1)∗; 0∗

28× 26 (0, 0, 0.120, 0.880)∗; 31.36∗
28× 25 (0, 0, 0.120, 0.880)∗; 31.36∗
28× 24 (0, 0, 0.114, 0.886)∗; 30.61∗
28× 23 (0, 0, 0.101, 0.899)∗; 28.90∗
28× 22 (0, 0, 0.078, 0.922)∗; 25.97∗
28× 21 (0, 0, 0.452, 0.955); 23.01
28× 20 (0, 0, 0.032, 0.968); 20.04
28× 19 (0, 0, 0.018, 0.982); 18.25
28× 18 (0, 0, 0.010, 0.990); 17.25
28× 17 (0, 0, 0, 1)∗; 16∗

32× 30 (0, 0, 0, 0.552, 0.448)∗; 35.31∗
32× 29 (0, 0, 0, 0.552, 0.448)∗; 35.31∗
32× 28 (0, 0, 0, 0.533, 0.467); 34.12 (0, 0, 0.007, 0.503, 0.491); 33.86∗
32× 27 (0, 0, 0, 0.509, 0.491); 32.55 (0, 0, 0.120, 0, 0.880); 30.63∗
32× 26 (0, 0, 0, 0.468, 0.532); 29.93 (0, 0, 0.098, 0, 0.902); 25.21∗
32× 25 (0, 0, 0, 0.417, 0.583); 26.67 (0, 0, 0.067, 0, 0.933); 17.07∗
32× 24 (0, 0, 0, 0.271, 0.728); 17.39 (0, 0, 0.043, 0, 0.957); 11.13
32× 23 (0, 0, 0, 0.190, 0.810); 12.14 (0, 0, 0.024, 0, 0.976); 6.07
32× 22 (0, 0, 0, 0, 1)∗; 0∗
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A and 14 copies of the last column as B. After projecting all its two-dimensions onto the

4× 2 grid, 30.8% of them have the property that four cells contain one point and the other

four contain three points; 69.2% of them achieve stratification on the 4×2 grid, ie, all eight

cells contain exactly two points.

Table 5.2: Designs of 36 and 40 runs by computer search under Criteria 1 and 2
n×m Criterion 1: F (D) and 64V (D) Criterion 2: F (D) and 64V (D)
36× 34 (0, 0, 0, 0.182, 0.818)∗; 39.27∗
36× 33 (0, 0, 0, 0.182, 0.818)∗; 39.27∗
36× 32 (0, 0, 0, 0.175, 0.825)∗; 38.45∗
36× 31 (0, 0, 0, 0.161, 0.839)∗; 36.65∗
36× 30 (0, 0, 0, 0.138, 0.862)∗; 33.66∗
36× 29 (0, 0, 0, 0.108, 0.892); 29.87
36× 28 (0, 0, 0, 0.086, 0.914); 27.01
36× 27 (0, 0, 0, 0.057, 0.943); 23.29
36× 26 (0, 0, 0, 0.031, 0.969); 19.94
36× 25 (0, 0, 0, 0.007, 0.993); 16.85
36× 24 (0, 0, 0, 0, 1)∗; 16∗

40× 38 (0, 0, 0, 0.034, 0.539, 0.427); 43.24∗
40× 37 (0, 0, 0, 0.024, 0.560, 0.396); 43.24∗
40× 36 (0, 0, 0, 0.021, 0.582, 0.398); 42.51 (0, 0, 0.006, 0.038, 0.455, 0.503); 41.90∗
40× 35 (0, 0, 0, 0.018, 0.571, 0.411); 41.09 (0, 0, 0.008, 0.035, 0.403, 0.555); 39.15
40× 34 (0, 0, 0, 0.013, 0.569, 0.418); 39.81 (0, 0, 0.004, 0.075, 0.217, 0.704); 35.59
40× 33 (0, 0, 0, 0.010, 0.561, 0.430); 38.30 (0, 0, 0.006, 0.057, 0.203, 0.735); 30.79
40× 32 (0, 0, 0, 0.006, 0.566, 0.428); 37.75 (0, 0, 0.009, 0.039, 0.183, 0.768); 27.03
40× 31 (0, 0, 0, 0.002, 0.576, 0.421); 37.44 (0, 0, 0.008, 0.016, 0.234, 0.742); 23.47
40× 30 (0, 0, 0, 0.001, 0.503, 0.497); 32.44 (0, 0, 0.005, 0.032, 0.153, 0.810); 20.67
40× 29 (0, 0, 0, 0, 0.414, 0.586); 26.48 (0, 0, 0, 0.026, 0.167, 0.807); 17.33
40× 28 (0, 0, 0, 0, 0.278, 0.722); 17.78 (0, 0, 0, 0.022, 0.149, 0.828); 15.32
40× 27 (0, 0, 0, 0, 0.237, 0.762); 15.23 (0, 0, 0, 0.014, 0.138, 0.848); 12.49
40× 26 (0, 0, 0, 0, 0.205, 0.795); 13.10 (0, 0, 0, 0.009, 0.135, 0.855); 11.03
40× 25 (0, 0, 0, 0, 0.167, 0.833); 10.67 (0, 0, 0, 0.005, 0.120, 0.875); 8.96
40× 24 (0, 0, 0, 0, 0.114, 0.886); 7.30 (0, 0, 0, 0.002, 0.089, 0.909); 6.14
40× 23 (0, 0, 0, 0, 0.091, 0.909); 5.82
40× 22 (0, 0, 0, 0, 0.054, 0.946); 3.46
40× 21 (0, 0, 0, 0, 0.048, 0.952); 3.05
40× 20 (0, 0, 0, 0, 0.024, 0.976); 1.52
40× 19 (0, 0, 0, 0, 0, 1)∗; 0∗

From Cheng et al. (2021), we know that when n is a multiple of 16, SOAs of strength

2+ can be constructed in both regular and nonregular cases for m values much larger than

n/2. For examples, SOAs of strength 2+ can be constructed for n = 32 and m = 22 and for
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n = 48 and m = 34. One surprise in Tables 5.1 and 5.2 is that no SOA of strength 2+ is

found for n = 24 and 40 with m ≥ n/2. This seems to suggest that SOAs of strength 2+ do

not exist for m ≥ n/2 when n is a multiple of 8 but not a multiple of 16. At the moment, we

are unable to prove or disprove this statement and thus leave it as a conjecture for future

research.

Another interesting finding in Tables 5.1 and 5.2 is the existence of a 20× 13 design, a

28×17 design and a 36×24 design, all with V (D) = 1/4 which corresponds to |J(ai, bi, aj)| =

4. When n is a multiple of 4 but not a multiple of 8, the best scenario is that |J(ai, bi, aj)| = 4

for all i 6= j. A design with this property has its points most uniformly distributed in the 8

cells given by the 4×2 grid when projected onto any two-dimension. As discussed in Remark

5.2, whenever n is a multiple of 4 such that n/2 − 1 = 4k + 1 is a prime power where k is

an integer, a design D can be constructed for m = n/2 − 1 factors with the property that

|J(ai, bi, aj)| = 4 for all i 6= j. This design D has an extra property that |J(ai, aj , ak)| = 4

for all i < j < k and therefore its points are most uniformly distributed in the 8 cells given

by the 2× 2× 2 grid when projected onto any three-dimension.

5.4 Results from using three-level nonregular designs

In this section, we consider using three-level nonregular designs to construct space-filling

designs, which provides an opportunity for the resulting designs to achieve uniformity on a

finer 9 × 3 grid than the 4 × 2 grid. The ideas in Section 5.3 are generalized to deal with

the new situation. We present computer search results for designs of 27 and 54 runs.

5.4.1 Designs of 27 runs

Our approach is similar to Section 5.3. We construct design D by D = 3A + B, where A

selects its columns from S, an OA(27, 13, 3, 2), and B selects its columns from S \ A. In

all, there are 68 non-isomorphic OA(27, 13, 3, 2)s (Schoen et al., 2010), and we use all of

them as our S. By examining all projection designs Dij = (di, dj) on the 9 × 3 grid, we

find 9 possible patterns, which are labelled as patterns (a)–(i) in Table 5.3. The 9× 3 grid

gives 27 cells. For each pattern, Table 5.3 gives the numbers of cells that have 0, 1, 2 and

3 points. For example, in pattern (a) 18 cells have 0 points and 9 cells have 3 points. For
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another example, in pattern (i), all 27 cells contain exactly one point. The last row of the

table gives the variance of the numbers of points over the 9× 3 grid. The nine patterns are

ordered from left to right such that both the number of empty cells and the variance are

non-increasing. In this order, each pattern is more desirable than the preceding one.

Table 5.3: The nine patterns of projection designs Dij ’s when viewed on the 9× 3 grid from
considering all 68 non-isomorphic OA(27, 13, 3, 2)s.

Pattern (a) (b) (c) (d) (e) (f) (g) (h) (i)
0 points 18 12 9 9 8 7 6 4 0
1 points 0 6 10 9 12 13 15 19 27
2 points 0 6 7 9 6 7 6 4 0
3 points 9 3 1 0 1 0 0 0 0
Variance 2.00 1.11 0.74 0.67 0.67 0.52 0.44 0.30 0.00

Following the same idea as in the 4 × 2 case, we define the 9 × 3 projection frequency

vector to be F (D) = (f0, . . . , f8), where f0, . . . , f8 are the proportions of pattern (a),...,

pattern (i), respectively, out of m(m− 1) ordered two-dimensionl projection designs Dij ’s,

and further define V (D) to be the average of the variances of Dij ’s for all i 6= j. Similarly,

Criterion 1 sequentially minimizes the entries of F (D) and Criterion 2 minimizes V (D).

We conduct a complete search over the 68 non-isomorphic orthogonal arrays under each

criterion, and report our results in Table 5.4. In addition to F (D) and V (D), Table 5.4 also

includes in the last column another measure ρ(D) of design quality in terms of the number

of empty cells. Let nij be the number of empty cells when design Dij is viewed on the 9× 3

grid. Then ρ(D) is defined as

ρ(D) =
∑
i 6=j nij

27m(m− 1) ,

which is the proportion of the total number of empty cells over the total number of cells

when all projection designs Dij ’s are considered on the 9× 3 grid.

Since n = 27, a non-empty-cell design must be an SOA(27,m, 9, 2+). According to our

computer search, an SOA(27,m, 9, 2+) can be found form = 6, which confirms a theoretical

result in (He et al., 2018). Designs optimizing Criterion 2 are often not unique and we select

the one to include in Table 5.4 that has the smallest ρ(D) among these designs. Interested

readers can find the design matrices and other details of the underlying designs in Table

5.4 at https://github.com/gz-chen/Nonregular-SOA.
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Table 5.4: Designs of 27 runs from a complete search under Criteria 1 and 2.
m Criterion F (D) V (D) ρ(D)
12 1 (0, 0, 0, 0, 0.182, 0, 0.545, 0, 0.273) 0.36 17.51%
12 2 (0.182, 0, 0, 0, 0, 0, 0, 0, 0.818) 0.36 12.12%
11 1 (0, 0, 0, 0, 0.182, 0, 0.545, 0, 0.273) 0.36 17.51%
11 2 (0.182, 0, 0, 0, 0, 0, 0, 0, 0.818) 0.36 12.12%
10 1 (0, 0, 0, 0, 0.089, 0.244, 0.378, 0.156, 0.133) 0.40 19.67%
10 2 (0.156, 0, 0, 0, 0, 0, 0, 0, 0.844) 0.31 10.37%
9 1 (0, 0, 0, 0, 0, 0, 0.667, 0, 0.333) 0.30 14.81%
9 2 (0.125, 0, 0, 0, 0, 0, 0, 0, 0.875) 0.25 8.33%
8 1 (0, 0, 0, 0, 0, 0, 0.643, 0, 0.357) 0.29 14.29%
8 2 (0.107, 0, 0, 0, 0, 0, 0, 0, 0.893) 0.21 7.14%
7 1 (0, 0, 0, 0, 0, 0, 0.429, 0.190, 0.381) 0.25 12.34%
7 2 (0.071, 0, 0, 0, 0, 0, 0, 0, 0.929) 0.14 4.76%
6 1,2 (0, 0, 0, 0, 0, 0, 0, 0, 1) 0 0.00%

5.4.2 Designs of 54 runs

It is known that an OA(54, 25, 3, 2) can be constructed by the Addelman-Kempthorne’s

method (Hedayat et al., 1999). To the best of our knowledge, OA(54, 25, 3, 2)s have not been

enumerated. We would like to consider more OA(54, 25, 3, 2)s but the one by Addelman-

Kempthorne construction is the only one we can find. We therefore use this OA(54, 25, 3, 2)

as our S, and construct design D = 3A+B by selecting the columns of A from S and the

columns of B from S \A. Examining the projection designs Dij ’s on the 9× 3 grid, we find

five possible patterns, which are given as pattern (a) to (e) in Table 5.5. The five patterns

are ordered so that both the variance and the number of empty cells are non-increasing.

Therefore, any pattern is more desirable than the preceding one. We then define F (D) and

V (D) and their associated Criteria 1 and 2 in the same way as in Subsection 4.1.

Table 5.5: The five patterns of projection designs Dij ’s when viewed on the 9× 3 grid from
considering the OA(54, 25, 3, 2) by Addelman-Kempthorne construction.

Pattern (a) (b) (c) (d) (e)
0 points 18 12 9 0 0
1 points 0 0 0 18 0
2 points 0 0 0 0 27
3 points 0 12 18 0 0
4 points 0 0 0 9 0
5 points 0 0 0 0 0
6 points 9 3 0 0 0
Variance 8.00 4.00 2.00 2.00 0.00
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Table 5.6: Designs of 54 runs by computer search under Criteria 1 and 2.
m Criterion F (D) V (D) ρ(D)
24 1,2 (0.011, 0.011, 0.130, 0.130, 0.717) 0.65 5.56%
23 1 (0, 0.030, 0.170, 0.095, 0.706) 0.65 6.98%
23 2 (0.012, 0, 0.134, 0.119, 0.735) 0.60 5.27%
22 1 (0, 0, 0.117, 0.214, 0.669) 0.66 3.90%
22 2 (0.013, 0.006, 0.175, 0.019, 0.786) 0.52 7.00%
21 1 (0, 0, 0.095, 0.229, 0.676) 0.65 3.17%
21 2 (0.005, 0, 0.152, 0.057, 0.786) 0.46 5.40%
20 1 (0, 0, 0.079, 0.261, 0.661) 0.68 2.63%
20 2 (0.005, 0, 0.179, 0, 0.816) 0.40 6.32%
19 1 (0, 0, 0.050, 0.289, 0.661) 0.68 1.66%
19 2 (0, 0, 0.187, 0, 0.813) 0.37 6.24%
18 1 (0, 0, 0.039, 0.265, 0.696) 0.61 1.31%
18 2 (0, 0, 0.137, 0.039, 0.823) 0.35 4.58%
17 1 (0, 0, 0.015, 0.353, 0.632) 0.74 0.49%
17 2 (0.004, 0, 0.125, 0.022, 0.849) 0.32 4.41%
16 1 (0, 0, 0.013, 0.188, 0.800) 0.40 0.42%
16 2 (0, 0, 0.117, 0.017, 0.867) 0.27 3.89%
15 1 (0, 0, 0, 0.171, 0.829) 0.34 0.00%
15 2 (0, 0, 0.067, 0.043, 0.890) 0.22 2.22%
14 1 (0, 0, 0, 0.132, 0.868) 0.26 0.00%
14 2 (0, 0, 0.044, 0.033, 0.923) 0.15 1.47%
13 1 (0, 0, 0, 0.090, 0.910) 0.18 0.00%
13 2 (0, 0, 0.019, 0, 0.981) 0.04 0.64%
12 1,2 (0, 0, 0, 0, 1) 0 0.00%

For m ≥ 17, our search is complete in that all possible
(25
m

)
choices for A are con-

sidered. For 12 ≤ m ≤ 16, we randomly select 200,000 A’s in order to save time. Once

A is chosen, the columns of B are selected from S \ A to optimize either criteria. The

search results are presented in Table 5.6. Again, the designs optimizing Criterion 2 are

not unique and those presented in Table 5.6 also minimize ρ(D) among those designs

that minimize V (D). We see from Table 5.6 that non-empty-cell designs becomes avail-

able for m ≤ 15. More details about the designs listed in Table 5.6 can be found on-line at

https://github.com/gz-chen/Nonregular-SOA.

Most interesting among our findings in Table 5.6 is the existence of an SOA(54, 12, 9, 2+).

For n = 54, an SOA of strength 3 is available only for 5 factors and for n = 81, an SOA

of strength 3 is available for 10 factors (He and Tang, 2014). The two SOAs of strength 3

achieve stratifications on the 9×3 grid in two-dimensions and stratifications on the 3×3×3
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grid in three-dimensions. By sacrificing the three-dimensional projection property, we obtain

a design of 54 runs that can accommodate 12 factors. We document this design in a lemma.

Lemma 5.3. There exists an SOA(54, 12, 9, 2+).

5.5 Concluding remarks

This chapter investigates the construction of space-filling designs using two- and three-level

nonregular designs. We put forward a class of designs called non-empty-cell designs and

two criteria to optimize the s2×s uniformity. Various theoretical and computational results

are presented. Designs studied in this chapter are more general than those obtained from

regular designs in that they have more flexible run sizes and often possess better space-filling

properties in terms of the two criteria.

Designs constructed in this chapter have 4 or 9 levels. If more levels are preferred, we

can use them to construct Latin hypercube designs by level expansion in the same way as

constructing OA-based Latin hypercubes in Tang (1993). The resulting designs inherit the

projection properties of the base designs.

Throughout the chapter, the columns of A and B are selected from a saturated or

nearly saturated orthogonal array S. This need not be so. The general problem of interest

would be to consider as A all possible orthogonal arrays of strength two and as B all

possible orthogonal arrays of strength one. Although it may be computationally unwieldy,

the general setting could offer some theoretical insights. For example, our current approach

in Section 5.3 does not allow us to construct a design of 16 runs for 15 factors. However,

a computer search without restricting to a saturated orthogonal array shows that there do

exist many SOA(16, 15, 4, 2)s with non-empty 4× 2 cells.

Computations in the chapter are currently carried out either by complete search or by

a large number of random tries. It will be worthwhile to look into an algorithmic search,

especially if one wishes to expand our design tables to include larger run sizes. Familiar

algorithms, such as simulated annealing, coordinate exchange or particle swarms, are all

potentially useful. We leave this to future exploration.
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