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Abstract

Due to growing population, there is a higher demand for public transit. On the other hand,
public transportation systems in many cities are not able to handle all the increasing de-
mand due to their slow development. This and the inconvenient of transit push people to use
personal vehicles. Mobility-on-demand (MoD) systems, such as Uber and Lyft, have become
popular around the globe for their convenience. Despite their convenience, the current use of
MoD has created a negative effect on traffic, such as increasing traffic congestion. One way
to improve transportation efficiency is to promote ridesharing among MoD systems since
it is a promising way to increase the occupancy rate of personal vehicles and reduce traffic
congestion. We study two ridesharing minimization problems: given a set of individuals, (1)
assign the minimum number of individuals as drivers to serve all individuals, and (2) mini-
mize the total travel distance of the assigned drivers to serve all individuals. We show that
even restricted variants of these two problems are NP-hard (and NP-hard to approximate
within a constant factor). We propose exact and approximation algorithms for restricted
variants of these two problems. We also study a ridesharing maximization problem: given
a set of drivers and a set of passengers, maximize the number of passengers assigned to
drivers such that the total profit of drivers reaches a specified target. This problem focuses
on the profitability for adopting ridesharing in practice. We give an exact and two ap-
proximation algorithms for two variants of this problem. Based on a real-world ridesharing
dataset in Chicago City, profit model of Uber and practical scenarios, we create datasets
for an extensive computational study on our model and algorithms. We study another op-
timization problem that focuses on the integration of public transit with ridesharing, which
can increase transit ridership. Specifically, given a set of drivers and a set of transit riders,
we assign riders to drivers such that the number of riders with shorter transit travel time
(with the use of ridesharing) is maximized. We show that this problem is NP-hard, and we
present an exact algorithm approach and several polynomial-time constant approximation
algorithms. Based on real-world ridesharing and transit datasets in Chicago City, we con-
ducted an extensive computational study to showcase the potential of integrating public
transit with ridesharing.

Keywords: Ridesharing; Multimodal transportation; Combinatorial optimization; Approx-
imation algorithms; Algorithmic analysis; Computational study

iii



Acknowledgements

It has been a long journey. I thank everyone who has provided guidance, advice and help
along the way, including those in my personal life.

Firstly, I would like to express my gratitude to my supervisor Prof. Qianping Gu for his
guidance and support. His research knowledge has been invaluable to me in the development
of my research skill. I am grateful that we have worked on and published a number of papers
together. His thoughtful ideas and encouragements have been instrumental in the completion
of my thesis. I am grateful for the opportunity he provided to me to work with Prof.
Guochuan Zhang (from Zhejiang University) who is very professional and knowledgeable. I
would like to thank Prof. Guochuan Zhang for his contribution. I would also like to thank
my graduate committee member Prof. Pavol Hell for his advice and encouragement.

I would also thank the members of my examination committee, Prof. Qianping Gu, Prof.
Pavol Hell, Prof. Andrei Bulatov and Prof. GuoHui Lin (from University of Alberta) for
their time and feedback on my thesis.

I am also grateful to my colleagues and friends who have supported me along the way.
Research discussions with Dr. Songhua Li (from City University of Hong Kong) have been
valuable.

Finally, I want to thank my parents.

iv



Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Research overview and contributions . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Ridesharing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Multimodal transportation problem. . . . . . . . . . . . . . . . . . . 5

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 8
2.1 Basic graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Matching and set packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 General ridesharing problem definition . . . . . . . . . . . . . . . . . . . . . 11

3 Ridesharing Minimization Problems 13
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Static and dynamic ridesharing . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Computational complexity of the ridesharing problem . . . . . . . . 16
3.1.3 Single driver, single passenger arrangements . . . . . . . . . . . . . . 16
3.1.4 Single driver, multiple passengers arrangements . . . . . . . . . . . . 17

3.2 NP-hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 NP-hardness results for C4 and C5 . . . . . . . . . . . . . . . . . . . 22
3.2.2 Inapproximability results for each of Conditions C2-C5 . . . . . . . . 26
3.2.3 Extending previous NP-hardness results. . . . . . . . . . . . . . . . . 33

v



3.3 Polynomial-time solvable problem variants with capacity larger than one . . 37
3.3.1 Transitive serve relation . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Dynamic programming algorithm . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Greedy algorithm for RSOne . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Ridesharing problem without the stop frequency condition . . . . . . . . . . 54
3.4.1 Approximation algorithms based on MCMP . . . . . . . . . . . . . . 54
3.4.2 A novel algorithm for RSOneStop . . . . . . . . . . . . . . . . . . . 59

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Ridesharing with Profit Constraint Problem 73
4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 RPC1 variant - capacity of one . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Exact algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 RPC+ variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 The LS2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Analysis of LS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.1 Simulation and dataset overview . . . . . . . . . . . . . . . . . . . . 94
4.5.2 Profit for feasible matches . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.3 Driver and passenger trips generation . . . . . . . . . . . . . . . . . 98
4.5.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Multimodal Transportation with Ridesharing Problem 108
5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Exact algorithm approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Integer program formulation . . . . . . . . . . . . . . . . . . . . . . 114
5.2.2 Computing feasible matches . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1 NP-hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.2 Proposed approximation algorithms . . . . . . . . . . . . . . . . . . 121
5.3.3 Approximation algorithms for maximum weighted set packing . . . . 124

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.1 Description and characteristics of the datasets . . . . . . . . . . . . 127
5.4.2 Generating instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.3 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vi



6 Conclusion and Future Work 144
6.1 Ridesharing minimization problems . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 Ridesharing maximization problem . . . . . . . . . . . . . . . . . . . . . . . 145
6.3 Multimodal transportation with ridesharing problem . . . . . . . . . . . . . 147

Bibliography 148

vii



List of Tables

Table 2.1 Parameters for a trip i ∈ A; λi, zi, Pi, δi for i in D ∪ DR only. . . . . 11

Table 3.1 Definitions for ancestors and descendants of trips in component T . . . 40
Table 3.2 Common notation and definition for MCMP used in this section. . . . 55
Table 3.3 Basic notation and definition used in this section. . . . . . . . . . . . 60

Table 4.1 The cost (in USD) for each fee component of a trip. . . . . . . . . . . 96
Table 4.2 Percentage of ∪x,yZ(h, x, y) that fall in different ranges of avg(Z(h,x,y))

f ′(Z(h,x,y)) . 97
Table 4.3 Notation used in estimating revenue rev(ηi, Ri) and profit w(ηi, Ri). . 98
Table 4.4 Parameters for drivers and passengers. . . . . . . . . . . . . . . . . . 100
Table 4.5 Performances of algorithms for RPC1 on base case instances. For 1 ≤

a ≤ 3, c′
a = ∑18

h=1
∑4

ht=1 ca (in dollar). . . . . . . . . . . . . . . . . . . 101
Table 4.6 (#) Total number of passengers served and ($) total profit of served

matches in all intervals, and (Θ) average running time per interval for
RPC1 using different cost settings. c′ = ∑18

h=1
∑4

ht=1 c (in dollar). . . 102
Table 4.7 Results relate to profit for S2, S4, and S6. . . . . . . . . . . . . . . . . 103
Table 4.8 Performances of algorithms for RPC+ on base case instances. For 1 ≤

a ≤ 3, c′
a = ∑18

h=1
∑4

ht=1 ca (in dollar). . . . . . . . . . . . . . . . . . . 104
Table 4.9 The average occupancy rate. . . . . . . . . . . . . . . . . . . . . . . . 105
Table 4.10 Total number # of passengers served and total profit $ of served

matches in all intervals. (*) Optimal solutions to RP. (⋄) Optimal so-
lutions to RPC1 (for ExactNF and c2) and RPC+ (for Exact and c1). 106

Table 5.1 Parameters for a trip announcement i. . . . . . . . . . . . . . . . . . . 110
Table 5.2 Basic stats of the PTR dataset. . . . . . . . . . . . . . . . . . . . . . 127
Table 5.3 Basic stats of the TNP dataset. . . . . . . . . . . . . . . . . . . . . . 127
Table 5.4 General information of the base instance. . . . . . . . . . . . . . . . . 133
Table 5.5 Base case solution comparison between all algorithms. Every time unit

is measured in minute. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 5.6 The average occupancy rate and vacancy rate per interval. . . . . . . 136
Table 5.7 The results of ImpGreedy and Greedy using Huge Configs. . . . . . . 139
Table 5.8 Average computational time (in seconds) of an interval during peak

hours for all algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

viii



Table 5.9 Overall solution comparison between different acceptance thresholds
using Large3 Config. Every time unit is measured in minute. . . . . . 141

Table 5.10 Overall solution comparison between different acceptance thresholds
using Huge3 Config. Every time unit is measured in minute. . . . . . 142

ix



List of Figures

Figure 3.1 Ridesharing instance (N, A) satisfying Conditions C1-C3 and C5,
and all trips of A have the same destination. . . . . . . . . . . . . . 23

Figure 3.2 Ridesharing instance (N, A) satisfying Conditions C1 and C3-C5. . 29
Figure 3.3 Ridesharing instance (N, A) satisfying Conditions C1,C2,C4 and C5. 32
Figure 3.4 Ridesharing instance (N, A) satisfying Conditions C3-C5, and all

trips of A have the same origin. . . . . . . . . . . . . . . . . . . . . 34
Figure 3.5 Ridesharing instance (N, A) satisfying Conditions C1, C2, C4 and

C5, and all trips of A have the same origin. . . . . . . . . . . . . . 36
Figure 3.6 A serve relation graph GR(V, E) and its simplified serve relation

graph G⃗(V, E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 3.7 Merge X (ia−1, via−1) (solutions of T (ia−1, via−1)) and X (ia, vi−1) (so-

lutions of T (ia, vi−1)) into X (ia−1vi−1) (solutions of T (ia−1, vi−1)) for
some 1 < a ≤ r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.8 Modify (S∗, σ∗). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.1 A bipartite hypergraph H(V, E, w) representing all feasible matches
of an instance (N, A), where |D(H)| = a and |R(H)| = b. . . . . . . 76

Figure 4.2 The flow network FN(V, E) in the ExactNF algorithm, constructed
from H, where a = |V (H) ∩ D| and b = |V (H) ∩ R|. . . . . . . . . 80

Figure 4.3 Residual network N̂fg−1(π). Path Pg−1 = (s, u1, . . . , ux, t) found in
N̂fg−1(π) by the algorithm is labeled as three subpaths Pg−1(1) (red
lines), Pg−1(2) (orange lines) and Pg−1(3) (pink lines). The path
Pz−1 = (s, v1, . . . , vq, t) exists in N̂fg (π) and is labeled as three sub-
paths Pz−1(1) (blue lines), Pz−1(2) (black dotted lines, these edges
are in N̂fg (π) and not in N̂fg−1(π)) and Pz−1(3) (green lines). . . . 85

Figure 4.4 The 77 community areas are grouped into 25 regions. . . . . . . . . 95
Figure 4.5 Average amount of a tip ϵ(rj , d) and ratio |Z+

d
|

|Zd| for each rounded
distance d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 4.6 The number of drivers and passenger generated for each interval. . 99
Figure 4.7 The mean occupancy rate in each interval for S2 and S6. . . . . . . 103
Figure 4.8 The mean occupancy rate in each interval for RPC+ and c1. . . . . 105

x



Figure 5.1 A bipartite hypergraph H(V, E) representing all feasible matches of
an instance (N, A, T ), where |D(H)| = a and |R(H)| = b. . . . . . . 114

Figure 5.2 The average number of trips per day departed from and arrived at
each area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 5.3 Simplified public transit network of Chicago with 19 urban com-
munity areas and 3 designated locations (minor bus routes are not
shown). Figure on the right has the Chicago City map overlay for
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 5.4 Plots for the number of trips for every hour from data and generated.130
Figure 5.5 Traffic heatmaps for the average number of trips originated from one

area (x-axis) during hour 7:00 (left) and hour 17:00 (right) to every
other destination area (y-axis). . . . . . . . . . . . . . . . . . . . . 132

Figure 5.6 The average occupancy rate and vacancy rate of drivers for each
interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 5.7 Average performance of peak and off-peak hours for different config-
urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 5.8 Average running time of peak and off-peak hours for different con-
figurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 5.9 Performance of ImpGreedy and LPR using Medium4 and Large4
Configs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 5.10 The average occupancy rate and vacancy rate per interval using
Huge3 Config. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xi



Chapter 1

Introduction

As the population grows in urban areas, commuting between and within cities (districts) can
be time-consuming and resource demanding. Due to growing passenger demand, the number
of vehicles on the road for both public and private transportation has increased to handle the
demand. Current public transportation systems in many cities may not be able to handle all
the demand due to their slow development, which can cause greater inconvenience for transit
users, such as longer waiting time, more transfers and/or imbalanced transit ridership.
Personal vehicles and mobility-on-demand (MoD) systems are major transportation modes
for many people.

According to studies in [23, 98, 100], personal vehicles were the main transportation
mode in Canada and the United States in recent years and in more than 200 European
cities between 2001 and 2011. Almost 73% of total work commute is by car as a driver in
Canada in recent years [100]. In Europe 2017 [32], the transport sector accounted for 27%
of total greenhouse gas emissions; and of these 27% gas emissions, 31.55% (8.52% total)
were from passenger cars. In the US, the growth rates of population and transit ridership
are usually align. However, the growth rate of population has been higher than that of
transit ridership since 2016 [12] (9% higher in 2019 and substantial higher in 2020 due to
COVID). The occupancy rate of personal vehicles in the U.S. was 1.6 persons per vehicle
in 2011 [41, 96] and decreased to 1.5 persons per vehicle in 2017 [23], which can be a major
cause for congestion and pollution.

MoD systems, such as Uber, Lyft and DiDi, have become popular around the globe
for their convenience. Drivers and passengers can be matched based on real-time rideshar-
ing requests (arrange a ride for passengers in a personal vehicle). MoD system operators
and drivers participated in such systems are mostly motivated by profit in practice. Solely
focusing on profit and market share from MoD systems and drivers may have increased
congestion and CO2 emissions as MoD systems become increasingly popular in many cities
(due to the increase of low-occupancy vehicles on the road) [31, 52, 108]. This, coupled
with the saturated personal vehicle usage (with low occupancy rate) in Europe and North
America, worsens the traffic congestion and emissions [81].
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On the other hand, there is an urgency to reduce traffic congestion and greenhouse gas
emissions; and from the above, we can see that there is a need to improve transportation
efficiency. This is the main motivation of this dissertation.

1.1 Research overview and contributions

Ridesharing is a promising way to increase the occupancy rate of personal vehicles, im-
prove transportation efficiency, and reduce traffic congestion and emissions [7, 39, 107]. It
is estimated that commuting to work by ridesharing in Dublin, Ireland, can reduce 12,674
tons of CO2 emissions per year [22], and taxi-ridesharing in Beijing can reduce 120 mil-
lion liters of gasoline annually [78]. As mentioned above, majority of work commute is by
car. With the increasing popularity in ridesharing/ridehailing service, there may be poten-
tial to integrate private and public transportation systems, as suggested by some studies
(e.g., [5, 58, 64, 80, 87, 102]). From the research report of [34], it is recommended that public
transit agencies should build on mobility innovations to allow public-private engagement in
ridesharing because the use of shared modes increases the likelihood of using public transit.
A similar finding, reported in [116], indicates that the use of ridesharing may be positively
associated with public transit ridership. We study the ridesharing problem and the prob-
lem of integrating public transit with ridesharing (called the multimodal transportation with
ridesharing problem). There are several optimization goals in these problems. In this thesis,
we focus on the following key optimization problems for improving transportation efficiency:

• Minimize the number of drivers to serve all passengers; minimize the travel distance
of vehicles to serve all passengers.

• Maximize the number of served passengers by a given set of drivers.

Most previous works on solving the ridesharing problem used an Integer Programming
(IP) or a Mixed Integer Programming (MIP) formulation and solved it by exact methods
(for small and/or restricted instances) or heuristics. Only recently, there are studies that
provide large-scale numerical experiments. It is similar for the multimodal transportation
with ridesharing problem; and since it is a more recent problem, there are less results com-
pared to the ridesharing problem. There are still missing approximation algorithms and
NP-hardness complexity analysis for both problems. In addition, large-scale realistic exper-
iments are still lacking. Hence, we propose a number of different fast and efficient algorithms,
including exact and approximation algorithms and heuristics, for different variants of both
problems, along with extensive large-scale numerical experiments. Here, a fast algorithm
means that its actual running time/computational time is competitive among other algo-
rithms for the same problem in our experiments, and an efficient algorithm means that it
is a polynomial-time algorithm in the size of the input. In addition, a rigorous analysis of
NP-hardness complexity is introduced, especially for the ridesharing problem, which is a
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complete different focus compared to most previous works on the ridesharing problem. A
high level description of each of these optimization problems is given below, along with a
brief discussion and our contributions.

1.1.1 Ridesharing problem

In general, a ridesharing problem instance consists of a set of trips (ridesharing offers and
requests) in a road network, where each trip has an individual and some requirements as
input parameters; common requirements of a trip include an origin, a destination, a capacity
(the number of seats in the vehicle for passengers), a detour limit, preferred paths, number of
stops and time constraints [2, 39, 104]. The individual in each trip can be a driver (providing
service) or a passenger (to be served). When an individual can be assigned as either a driver
or a passenger, the individual is called flexible. When an individual is specified as a driver
or a passenger in the input, the individual is called fixed. Most previous studies focus on
the problems that all individuals are fixed [2, 39, 85, 104]. We consider both flexible and
fixed individuals for different ridesharing optimization problems.

Ridesharing minimization problems.

We study the following optimization problems:

Problem 1. Given a set of flexible individuals, assign a subset individuals to be drivers
to serve all individuals (pick-up at their origins and delivered to their destinations)
subject to the requirements such that the number of assigned drivers is minimized.

Problem 2. Given a set of flexible individuals, assign a subset individuals to be drivers to
serve all individuals subject to the requirements such that the total travel distance of
the assigned drivers is minimized.

Our contributions for the ridesharing minimization problems are summarized as follows:

1. We analyze the relations between the time complexity of the ridesharing problem
and its parameters (requirements) using the model recently introduced in [43, 68]. In
particular, we associate each common input parameter with a restriction (labeled as
Conditions C1 to C5 ) as follows:

C1. The individuals of all trips have the same destination or have the same origin.
C2. The individual of each trip can only serve others who are on the individual’s

preferred path (without any detour).
C3. There is only one preferred path from the individual of each trip.
C4. The number of stops each individual is willing to make to pick-up and/or drop-off

passengers is at least the input capacity from the individual of each trip.
C5. The individuals of all trips have the same arrival time and departure time.

3



2. It is shown in [43, 68] that if one of Conditions C2, C3 and a weaker version of C1 (all
trips have the same destination) is not satisfied, both minimization problems Problem
1 and Problem 2 are NP-hard. Based on the new model, we extend the results to if
one of Conditions C1-C5 is not satisfied, both Problem 1 and Problem 2 are NP-hard.
We further show that [47, 48] if one of Conditions C2-C5 is not satisfied, not only
are the minimization problems NP-hard, but they are also NP-hard to approximate
within a constant factor.

3. When all five Conditions are satisfied, we give two efficient exact algorithms for Prob-
lem 1 and Problem 2 [44, 46]. When Conditions C1-C3 and C5 are satisfied (Condition
C4 is not), we give three λ+2

2 -approximations algorithms for Problem 1 [47, 48], where
λ is the maximum input capacity parameter among all trips.

Ridesharing maximization problem.

We study the following optimization problem on fixed individuals:

RPC Problem. Given a set of drivers and a set of passengers, assign passengers to drivers
to maximize the number of passengers served subject to the trip requirements, includ-
ing the total profit of drivers. The maximization problem is called the Ridesharing
with Profit Constraint (RPC) problem.

The RPC problem can be formulated as the maximum set packing problem that is subject to
a weight constraint, which can be seen as a more complex variant of the maximum (weight)
set packing problem. We show that the RPC problem is NP-hard due to the NP-hardness of
the maximum weight set packing problem [40, 62]. Our contributions for the RPC problem
are:

1. We give a polynomial-time exact algorithm framework (including two practical im-
plementations of the algorithm) and a 1

2 -approximation algorithm for a special case
that each vehicle serves at most one passenger.

2. We give a fast 2
3λ -approximation algorithm for the case that each vehicle serves at

most λ ≥ 2 passengers while only positive-profit assignments of passenger to drivers
are allowed.

3. Based on a real-world ridesharing dataset in Chicago City, profit model of Uber and
practical scenarios, we create datasets for an extensive computational study on our
model and algorithms.

Importance of our results.

We have started a line of research that explores the hardness of the general ridesharing
problem. The extend of the complexity analysis has not been done for the ridesharing
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problem. We create a novel algorithmic analysis model for the ridesharing problem. Based
on this model, we obtain complexity analysis results which provide us an insight into how
difficult the ridesharing problem is. This research direction allows us to design exact and
approximation algorithms for variants of the ridesharing problem, which are lacking for
ridesharing and related problems in the literature. From the NP-hardness results and the
exact algorithms, we can clearly draw a boundary between NP-hard and polynomial-time
solvable cases. Our algorithms’ novelty comes from the fact that most of them are discrete
algorithms using graph theory, unlike most algorithms in previous studies in ridesharing and
related optimization problems. Although the use of graph theory for ridesharing problem is
not new, only recently such an approach has attracted attention.

Our solution approach for the RPC problem are developed by adopting the graph match-
ing approach proposed by [95]. Such an approach is practical for a more general setting,
such as the RPC problem and general ridesharing. The RPC problem is more complicated
than the maximum weight set packing (MWSP) problem; and to the best of our knowledge,
the RPC problem has not been studied before. Having said that, one of our approximation
algorithms for RPC is an incremental work of a well known approximation algorithm for
the MWSP problem [24]. Nonetheless, it can be a foundation for future work.

1.1.2 Multimodal transportation problem.

Travel planning that uses different transportation modes, such as bus, biking and private
vehicles, are considered as multimodal transportation or multimodal route planning [14, 58].
Multimodal transportation, specifically integrating public transit system with ridesharing,
is effective to improve the transportation efficiency. We focus on the multimodal trans-
portation with ridesharing (MTR) problem which bridges the public transit and private
transportation systems on fixed individuals. In the MTR problem, a set of drivers (who
can provide ridesharing service) and a set of passengers (public transit users who want
to use both transit and ridesharing) are given, submitted to the integrated transportation
system (ITS). Each driver and each passenger have trip requirements related to locations
and time constraints. The ITS tries to compute an acceptable route for as many passengers
as possible. For a passengers, an acceptable route is a public transit and ridesharing com-
bined route providing a commuting time that is faster than using only public transit, where
the trip requirements of both passenger and driver are satisfied. We consider the following
optimization goal of the MTR problem:

MTR maximization problem. Given a set of drivers and a set of passengers, match
passengers with drivers to maximize the number of passengers, each of them is assigned
an acceptable route.

For the MTR maximization problem, we obtain the following results [42]:
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1. We give an exact algorithm approach (an ILP formulation based on a hypergraph
representation) for integrating public transit and ridesharing.

2. We show that the MTR maximization problem is NP-hard and give an LP-rounding
based (1 − 1

e )-approximation algorithm and a discrete 1
2 -approximation algorithm for

the problem, where e is the Euler’s number.

3. Based on a real-world ridesharing dataset and public transit data in Chicago City, we
create datasets for an extensive computational study to evaluate the effectiveness of
integrating public transit system with ridesharing.

Importance of our results.

To the best of our knowledge, no approximation algorithms have been proposed for any
problem related to the integration of public transit and ridesharing. Approximation algo-
rithms are important because they can guarantee the solution quality, and in this case, a
certain amount of passengers are guaranteed to receive ridesharing service.

There are drawbacks in previous computational studies. In some previous experiments,
the transit data (including the transit network and schedule, usually for a particular trans-
portation mode) comes from a real-world dataset, but the ridesharing dataset is either
small-scale or not real-world data. Some experiments have medium- to large-scale rideshar-
ing dataset, but the road network/transit network/transit schedule datasets are artificial.
Another caveat of some previous experiments is that they pre-compute certain data re-
quired in the experiments. For example, shortest paths (distances) between the drivers and
passengers are pre-computed. This hides the realistic aspect of the application as such infor-
mation is not known beforehand and computational time is substantially reduced. On the
other hand, our experiment uses large-scale real-world ridesharing dataset. All computation
is done in real-time, except computation related to transit schedule since it is known in
advance. Admittedly, we only use a simplified transit network in our simulation, but it is
created from a real-world transit network dataset.

1.2 Thesis outline

The rest of the thesis is organized as follows. In Chapter 2, common definitions and nota-
tions are introduced. A detailed problem definition of ridesharing is given, along with the
theme of our general approach for solving the ridesharing problems. Chapter 3 is dedicated
to the ridesharing problem: Including a review on ridesharing in Section 3.1, algorithmic
analysis model and NP-hardness results in Section 3.2, and algorithm results for Problem
1 and Problem 2 in the remainder of Chapter 3. In Chapter 4, we first introduce the RPC
problem formally. We explain our model for the problem in Section 4.1 and review related
work in Section 4.2. Proposed algorithms for two variants of the RPC problem are presented
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in Section 4.3 and Section 4.4, followed by an extensive computational study in Section 4.5.
In Chapter 5, we first introduce the MTR problem, and then we review related work in
Section 5.1. An exact algorithm approach for the MTR problem is given in Section 5.2. We
then show that the MTR problem is NP-hard and give several polynomial-time approxi-
mation algorithms for the MTR problem in Section 5.3. An extensive computational study
for the MTR problem is presented in Section 5.4. The final chapter concludes the thesis by
providing a summary of the main contributions and possible future work.
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Chapter 2

Preliminaries

First, we introduce some general notations. The sets of real numbers and integers are de-
noted by R and Z, respectively. The sets R≥0 and Z≥0 represent non-negative real numbers
and integers, respectively. For two integers a and b in Z, [a, b] denotes the range of in-
tegers from a to b inclusive (for clarity, we also use [a, . . . , b]). Given two sets A and B,
A × B = {(a, b) | a ∈ A, b ∈ B} denotes the cross product of the two sets A and B. For a
set A, 2A denotes the power set of the set A. Since most of our models for the ridesharing
problem and multimodal transportation with ridesharing problem use graph theory. We
introduce some graph theory notations.

2.1 Basic graph theory

An undirected graph G(V, E) consists of a finite non-empty set V of elements called vertices
(or nodes) and a set E of 2-element subsets of V called edges (or arcs). We usually use G to
denote a graph G(V, E). The sets V (G) and E(G) are called the vertex set and the edge set
of G, respectively. The cardinality of V (G), denoted by |V (G)|, is the number of vertices in
G. The cardinality of E(G), denoted by |E(G)|, is the number of edges in G. We may use
V and E to denote V (G) and E(G), respectively, if graph G is clear from the context. For
a pair of vertices u, v ∈ V (G), the edge e between u and v is represented as e = {u, v}, and
we also call u and v endpoints (end vertices) of edge e. For any pair of vertices u, v ∈ V (G),
if e = {u, v} is an edge in E(G), then u and v are said to be adjacent to each other, and
they are neighbors. The vertices u and v are said to be incident to e and vice versa. Two
edges e, e′ ∈ E(G) are incident if they share a common vertex of V (G). The degree of a
vertex v ∈ V (G), denoted by degG(v), is the number of neighbors of v, namely, the number
of vertices in G adjacent to v. A vertex v is isolated if degG(v) = 0.

A directed graph (digraph for short) is similar to a graph G defined above. Formally, a
digraph G(V, E) is a finite non-empty set V (G) of vertices and a set E(G) of ordered pairs
of members of V (G); E(G) is the set of directed edges of G. For a pair of vertices u, v in a
digraph G, the directed edge e from u to v is represented as e = (u, v). An edge e = (u, v) is
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also called an outgoing-edge (out-edge) of u and an incoming-edge (in-edge) of v. Vertices
u and v are called the tail and head of e, respectively, and they are adjacent to each other.
The outdegree, denoted by outdegG(v), of a vertex v ∈ V (G) is the number of edges in G

leaving v. The indegree, denoted by indegG(v), of a vertex v ∈ V (G) is the number of edges
entering v. We may use deg(v) (instead of degG(v)) if graph G is clear from the context;
and similar for outdegree and indegree. For a vertex v ∈ V (G), v is called a source vertex if
indegG(v) = 0 and outdegG(v) ≥ 1 and a sink vertex if indegG(v) ≥ 1 and outdegG(v) = 0.

A bipartite graph G(U, V, E) is a graph in which the vertices of G are partitioned into
two disjoint sets U and V such that for any edge e of G, one end vertex of e is in U and the
other end vertex of e is in V . A graph G′ is a subgraph of another graph G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G).

A walk W in a graph (digraph) G is a subgraph of G and an alternating sequence between
vertices and edges, that is, W = v1, e1, v2, e2, . . . , eb−1, vb, where b ≥ 1 and ei = {vi, vi+1}
(ei = (vi, vi+1) for digraphs) for 1 ≤ i ≤ b − 1. A path P = v1, e1, v2, . . . , eb−1, vb in a graph
(digraph) G is a walk with distant vertices. For simplicity, we denote a walk/path by using
vertices only. Namely, for a path P = v1, e1, v2, . . . , eb−1, vb, we use P = {v1, v2, . . . , vb} to
represent the path P and P = (v1, . . . , vb) for digraphs. We say that P = {v1, . . . , vb} is a
path between vertices v1 and vb and a path from vertex v1 to vertex vb for digraphs. The
length of a walk W is the number of edges in W , denoted by the cardinality |W | of W ;
and similarly for |P | of a path P . A walk is closed if it starts and ends at the same vertex.
A closed walk is also called a cycle. A simple cycle is a closed walk with distinct vertices
and edges. In this dissertation, we are only concerned with simple cycles, and hence, we
just simply call a simple cycle a cycle. A cycle is even (odd) if it has even (odd) length. A
graph G is connected if there is a path between every pair of vertices in G. A component of
a graph G is a connected subgraph of G. A graph without any cycle is called acyclic and
a directed graph without any cycle is called a directed acyclic graph (DAG). A tree is a
connected acyclic graph G(V, E) where |E(G)| = |V (G)| − 1. An arbitrary acyclic graph is
called a forest, which is a set of vertex-disjoint trees.

A hypergraph can be undirected or directed, but we only consider undirected hyper-
graphs in this dissertation with the following hypergraph definition: A hypergraph H(V, E)
consists of a finite non-empty set V of vertices and a finite family E of non-empty subsets
of V such that each e ∈ E(H) contains at least two vertices. Each e ∈ E(H) is called a
hyperedge, and denoted by v ∈ e is an element v belongs to e. The number of elements in a
hyperedge e is the size of e and is denoted by |e|. Note that our definition of a hypergraph
H allows a hyperedge e ∈ E(H) to be a subset of another hyperedge e′ ∈ E(H). All the
definitions for undirected graphs stated above also applied to undirected hypergraphs.

An edge-weighted (hyper)graph G is a (hyper)graph where each edge of G is associated
with a real number, called weight. The weight of an edge e = {u, v} ∈ E(G) (or directed
edge e = (u, v)) is denoted by w(e) = w(u, v). For a set E′ ⊆ E(G), the weight of E′ is
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denoted by w(E′) = ∑
e∈E′ w(e). We denote an edge-weighted (hyper)graph by G(V, E, w),

where V (G) is the vertex set of G, E(G) is the edge set of G, and w is a real value function
on E(G), namely, w : E → R. A weighted graph usually refers to an edge-weighted graph,
unless otherwise stated. An integer-weighted (hyper)graph G(V, E, w) is a (hyper)graph
with integer edge weight, namely, w : E → N. The weight of a path P = {v1, . . . , vb} or
P = (v1, . . . , vb) is denoted by

w(P ) =
b−1∑
i=1

w(vi, vi+1).

We also use dist(P ) to denote the weight w(P ) of a path P . For a path P in an unweighted
graph G, dist(P ) = w(P ) = |P |. A path P = (u, . . . , v) between two vertices u and v in a
(weighted) graph G is a shortest path if w(P ) is smallest among all paths between u to v

(or from u to v for digraphs); and further, the shortest distance between u and v (or from
u to v for digraphs) is denoted by dist(u, v).

2.2 Matching and set packing

A matching in a (hyper)graph G(V, E) is a set M ⊆ E(G) of vertex-disjoint edges, that
is, every pair of edges in M do not share a common vertex. Let M be a matching in a
(hyper)graph G. An edge that belongs to a matching M is called a matched edge; otherwise,
it is called an unmatched edge with respect to M . A vertex v is called matched if v is incident
to a matched edge. Otherwise, it is an unmatched vertex with respect to M . The size |M |
of a matching M is the number of edges in M .

Definition 2.1. A matching M in a (hyper)graph G is maximal if M ⊈ M ′ for any
matching M ′ ̸= M in G. A matching M in G is maximum if |M | ≥ |M ′| for every matching
M ′ in G. A perfect matching is a matching in which all vertices of G are matched.

Definition 2.2. The weight of a matching M in an edge-weighted (hyper)graph G(V, E, w)
is denoted by w(M) = ∑

e∈M w(e). A maximum weighted matching M in a weighted G is
a matching with weight w(M) ≥ w(M ′) for every matching M ′ in G.

A concept related matching is set packing. Given a universe U and a family S of subsets
of U , a packing is a subfamily C ⊆ S of sets such that all sets in C are pairwise disjoint. The
size |C| of a packing C is the number of sets in C. When every subset of S is given a real
weight, a packing becomes a weighted set packing.

Definition 2.3. A packing C is maximum if |C| ≥ |C′| for every packing C′ in S. A weighted
packing C is maximum if w(C) ≥ w(C′) for every weighted packing C′ in S.
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2.3 General ridesharing problem definition

We give a formal description on the ridesharing problems studied. In the ridesharing prob-
lems, we have a centralized ridesharing system (CRS) responsible for assigning ridesharing
arrangement - match between individual drivers and passengers. The system receives a set
A = D ∪ R ∪ DR of ridesharing trip announcements, where D ∩ R = ∅, D ∩ DR = ∅
and R ∩ DR = ∅. Each trip announcement has an individual and some requirements as
input parameters describing the itinerary of the individual. Each individual of a trip spec-
ifies whether he/she is a driver, passenger, or flexible to perform either role. D is the set
of driver trips, R is the set of passenger trips (both of these trips are also referred to as
fixed trips) and DR is the set of flexible trips. A driver is assumed to operate a vehicle and
provide ridesharing service, whereas a passenger is assumed to receive ridesharing service
only and agree to share a vehicle with others. For brevity, we usually call a driver trip just
a driver and a passenger trip a passenger. Each trip announcement in A is indexed by an
integer label i, so an integer labeled trip i ∈ A may be referred to as a driver, a passenger
or a flexible trip. For clarity, a driver trip i ∈ D is also denoted as ηi and a passenger trip
i ∈ R is also denoted as ri. The individual of each flexible trip i is assigned as a driver or a
passenger in any solution, and when this happens, we just call i a driver ηi or a passenger
ri accordingly.

In addition to a vehicle and individual, each trip i of A has an origin oi, a destination
di, a capacity λi of the vehicle, a limit zi (optional) on the detour distance/time from the
preferred path to provide ridesharing service, a set P of (optional) preferred paths (e.g.,
shortest paths) to reach the destination, a limit δi (optional) on the number of stops a driver
wants to make to pick-up/drop-off passengers, an earliest departure time αi, and a latest
arrival time βi. The parameters (oi, di, λi, zi, Pi, δi, αi, βi) are summarized in Table 2.1. All
parameters related to real world locations are represented in a road network. Specifically,
the road network is modeled as a digraph N(V, E, w) with edge-weight function w : E → R,
where the edge weight represents the distance from one endpoint to the other endpoint (tail
to head).

Notation Definition
oi The origin (start location) of i (a vertex in N)
di The destination of i (a vertex in N)
λi The number of seats (capacity) of i available for passengers
zi The detour limit i willing to make for offering services
Pi The set of preferred paths of i from oi to di in N
δi The maximum number of stops i willing to make to pick-up/drop-off passengers
αi The earliest departure time of i
βi The latest arrival time of i

Table 2.1: Parameters for a trip i ∈ A; λi, zi, Pi, δi for i in D ∪ DR only.
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We define a serve relation between a trip i ∈ (D ∪ DR) and a set J ⊆ (R ∪ DR) of
trips with i /∈ J , which is a central theme for solving the ridesharing problems we consider.
The set σ(i) = {i} ∪ J is a feasible serve relation if the route (a path in road network N)
used by trip i to serve all trips of σ(i) satisfies the requirements/constraints specified by
the parameters of the trips collectively as listed below:

1. Ridesharing route constraint: there is a path P (i, J) = (oi, . . . , di) in N (starts at oi

and ends at di) visiting the origin oj (for pick-up) the destination dj (for drop-off) for
each trip rj ∈ J subject to the origin oj visited before the destination dj .

2. Capacity constraint: the number of trips i can serve, 0 ≤ |J | ≤ λi.

3. Detour constraint: dist(P (i, J)) ≤ zi + dist(P ) for some path P ∈ Pi (if Pi = ∅, P is
a shortest path from oi to di in N computed by the system).

4. Stop frequency constraint: the number of stops i needs to make to pick-up or drop-
off (or both) passengers is at most δi (this can be different from λi if some ori-
gins/destinations of J have the same location).

5. Travel time constraint: each trip j ∈ σ(i) (driver/passenger) departs from oj no earlier
than αj and arrives at dj no later than βj .

We say that driver ηi serves itself and passengers of J for a feasible serve relation σ(i) =
{i} ∪ J in a solution. Note that J can be empty, namely, σ(i) = {i}, and in this case, ηi

serves itself only. There is a re-take passenger model in previous studies: After a driver
ηi serves (picks-up, transports and drops-off) a passenger, ηi’s available vehicle capacity is
increased by one and can be used to serve other passengers; as a result, driver ηi may serve
more than λi passengers. In this thesis, we study the ridesharing problems without the re-
take passenger model, so ηi can serve at most λi passengers. We represent the feasible serve
relation between every pair of trips in A by a digraph GR(V, E), we call serve relation
graph:

• Each trip i is represented by a vertex in V (GR). There is an edge (i, j) in E(GR) if
trip i can serve trip j, that is, if σ(i) = {i, j} is a feasible serve relation.
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Chapter 3

Ridesharing Minimization
Problems

In this chapter, we study two ridesharing minimization problems, formally defined as follows:

Ridesharing Problem One (denoted as RSOne) Given an instance (N, A) of RSOne
where A = DR is the set of ridesharing trip announcements and the parameters of
trips of A are defined on the road network N , minimize the number of individuals in
DR assigned as drivers to serve all trips of A.

Ridesharing Problem Two (denoted as RSTwo) Given an instance (N, A) of RSTwo
where A = DR is the set of ridesharing trip announcements and the parameters of
trips of A are defined on the road network N , minimize the total travel distance of
individuals in DR assigned as drivers to serve all trips of A.

RSOne and RSTwo are special cases of more general minimization problems RSOne*
and RSTwo*. We obtained NP-hardness results for both RSOne and RSTwo, and these
results apply to the more general problems RSOne∗ and RSTwo∗, respectively. RSOne∗ and
RSTwo∗ are defined below:

RSOne∗ Given an instance (N, A) of RSOne where A = D∪R∪DR is the set of ridesharing
trip announcements and the parameters of trips of A are defined on the road network
N , minimize the number of individuals in D ∪DR assigned as drivers to serve all trips
of A, assuming all trips can be served.

RSTwo∗ Given an instance (N, A) of RSTwo where A = D∪R∪DR is the set of ridesharing
trip announcements and the parameters of trips of A are defined on the road network
N , minimize the total travel distance of individuals in D ∪ DR assigned as drivers to
serve all trips of A, assuming all trips can be served.

We denote a partial solution for an instance (N, A) of RSOne or RSTwo by (S, σ), where
S ⊆ DR is the set of trips assigned as drivers and σ is a mapping σ : S → 2DR such that:

1. for each ηi ∈ S, all trips in σ(i) can be served by ηi,
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2. for each pair ηi, ηj ∈ S with ηi ̸= ηj , σ(i) ∩ σ(j) = ∅, and

3. ⋃
ηi∈S σ(i) ⊆ DR.

For a subset S′ ⊆ S, let σ(S′) = ∪ηi∈S′σ(i). For a partial solution (S, σ), if σ(S′) =
DR, (S, σ) is called a solution. Given a (partial) solution (S, σ) of an instance (N, A), for
every driver ηi ∈ S, let dist(i) be the travel distance of i for serving σ(i) and dist(S) =∑

ηi∈S dist(i) be the total travel distance of S. For a (partial) solution (S, σ), we sometimes
use S to denote a (partial) solution when σ is clear from the context or not related to the
discussion.

The ridesharing problems (RSOne and RSTwo) are complex because each trip of A has
many parameters. We want to first investigate the following question:

Is there any variant of the ridesharing problem that can be solved in polynomial time?

The second question we want to investigate is:

Do there exist fast/efficient (practical enough) approximation algorithms for some
variants of the ridesharing problem?

To answer the first question, we analyze the relations between the time complexity of
the ridesharing problems and their parameters; and this is one of our major contributions,
presented in Section 3.2. Before presenting our results, we first discuss some ridesharing
related work that is on the methodology side in general.

3.1 Related work

Most results in the literature consider the ridesharing problem in which the centralized
ridesharing system (CRS) receives a set of driver trips and a set of passenger trips, without
flexible trips (please see reviews [2, 85, 104]). When the set of drivers is given, the ridesharing
problem is very similar to the Dial-a-Ride problem (DARP) [28]. In DARP, the set of drivers
are part of the service (e.g., taxi drivers), so they have less restrictions regarding to the
ridesharing route and travel time constraints. In contrast, a driver in ridesharing can only
provide service to passengers who have similar route and time schedules as the drivers’.
Further, the set of passengers (customers) given in DARP must be served, whereas not all
passengers in the ridesharing problem are required to be served. There are less results for
the ridesharing problem when the CRS receives a set of flexible trips. In real-life or practical
setting, flexible trips mostly imply carpooling.

There are different objectives (or optimization goals). Most objectives in the ridesharing
problem can be classified into two main categories: operational objectives and quality-related
objectives [85]. Operational objectives are usually global optimizing goals that the CRS
should achieve as a whole. For example,
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• Maximize the number of trips served.

• Minimize the number of vehicles (drivers) needed to serve all trips.

• Minimize the total travel time of used vehicles.

• Minimize the total travel distance of used vehicles.

Quality-related objectives focus on the performance from the individual (passenger/driver)
perspective, such as under the first-come first-serve policy. For example:

• Minimize the waiting time of the passengers.

• Minimize the travel time of passengers’ trips.

• Maximize the cost saving of the passengers and drivers (or profit of the drivers).

For further literature reviews on ridesharing, readers are referred to [2, 39, 81, 85, 104, 111].

3.1.1 Static and dynamic ridesharing

Ridesharing is categorized into static and dynamic ridesharing. In static ridesharing, all
ridesharing trip announcements are known in advance prior to the execution of a match-
ing process, and ridesharing arrangements are computed in advance such that once the
ridesharing arrangements are settled, no further change will be made. In dynamic rideshar-
ing, each trip announcement arrives online, and the ridesharing arrangements are made in
real time and should be offered to users quickly. Driver and passenger trip announcements
leave the system when a ride-share arrangement has been planned and accepted, or when
trip announcements do not receive an offer within their time constraints. In general, there
are four ways to handle dynamic ridesharing.

1. A dynamic ridesharing instance can be viewed as a sequence of static ridesharing
instances (computing a solution for each static instance for a fixed time interval). This
is our method of choice, which is common in the literature as mentioned later. Most
algorithms for static ridesharing can be extended to dynamic ridesharing. In this case,
the performances of the algorithms designed for static ridesharing are only guaranteed
for the static instance occurs in each time interval (the overall performances are not
guaranteed). However, it is a good approximation for dynamic ridesharing and can be
re-optimized as discussed in the second way below.

2. To overcome the above challenge, one can use rolling horizon (e.g., [1, 86, 89]). The
current solution is first computed based on known information, but decisions are
not finalized until a predefined deadline is reached. Then, the current solution is
re-computed at regularly-spaced time points if there are new trip announcements
and before the deadline has reached. As a result, each static ridesharing instance
is re-optimized with some degrees of freedom, such as how frequent it should be
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re-optimized. An extension of this approach is that while a driver is delivering the
assigned passengers, such a driver can still accept incoming new passengers as long as
the constraints of the current driver and passengers are not violated.

3. The third approach is to anticipate future trip announcements and compute a solution
based on the know information and estimated trip announcements. The uncertainty of
trip announcements and travel time are dealt with by using stochastic combinatorial
optimization or multi-scenario approach in general [85, 92].

4. The fourth approach is to design online algorithms. Passengers are matched with
drivers when requests enter into the CRS in sequence. The online decisions of such
ridesharing arrangements need to decide between reactiveness and decision quality.
A problem related to ridesharing is the (online) k-taxi/k-server problem [35]. Some-
times it is called trip-vehicle assignment problem for the offline/static version. There
are approximation algorithms (with reasonable competitive ratios) for both problems
(e.g., [26, 75]).

3.1.2 Computational complexity of the ridesharing problem

With re-taking passengers, the ridesharing problem (as well as DARP) is a generalization
of the vehicle routing problem (VRP) [19]. The vehicle routing problem is NP-hard even
for single vehicle routing problem since it is a generalization of the travelling salesman
problem (TSP) [66]. DARP and VRP are route-finding centric (which is to find a route to
visit every location), whereas the ridesharing problem focus on the assignment of passen-
gers to drivers. Exact solutions for the ridesharing problem exist, but only for simplified
ridesharing problems or small instances (e.g., [13, 27]). In our earlier work on the ridesharing
problem [43, 68], we started a line of research that provides insight into the complexity of
the ridesharing problem relating to its parameters. The details are presented in Section 3.2.
In short, most simplified variants of the ridesharing problem remain NP-hard. A notable
exception is when the vehicle capacity is one and without re-taking passengers, as described
in the next section.

3.1.3 Single driver, single passenger arrangements

The simplest form of this type of ridesharing is single driver - single passenger arrangements
with fixed-role trips A = D ∪ R. This means that a driver serves at most one passenger at a
time, that is, λi ≤ 1 for every trip ηi ∈ D. An optimal solution can be found in polynomial
time, using graph matching, for the ridesharing problem with maximizing the number of
passengers served. The feasible serve relation of all trips in A can be represented by a
weighted bipartite graph G(U, V, E, w), where U(G) = D and V (G) = R. There is an edge
e = {i, j} ∈ E(G) if driver ηi can serve passenger rj ; and the weight w(e) ≥ 0 represents the
distance travel for driver ηi to serve rj . Finding a maximum cardinality bipartite matching in
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G solves the ridesharing problem and can be done in polynomial time (e.g., [54]). Further,
we can find a matching that maximizes the number of passengers served with minimum
travel distance of the drivers. Specifically, among all maximum cardinality matchings in G,
find the one with minimum weight. This can be done by finding a minimum cost maximum
flow on G, with a source node connected to each of U(G) and a sink node connected from
each of V (G). Finding a minimum cost maximum flow can be done in polynomial time [3].

If A contains flexible trips (DR ̸= ∅), it becomes slightly harder. Agatz et al. [1] consid-
ered both cases (with and without flexible trips) and solved them by a matching approach.
The graph G(V, E, w) representing the feasible serve relation of all trips become a general
graph instead of a bipartite graph since each trip in DR can be served by or serve others.
A maximum cardinality matching in the general graph G solves the problem of maximiz-
ing the number of passengers served, which can done in polynomial time [83]. Similarly if
A = DR, a maximum cardinality matching in G solves the ridesharing problem RSOne. To
solve the ridesharing problem RSTwo, a weighted graph G′(V, E) constructed based on G is
required. The construction of G′ is detailed in ([68], Section 4.2). The construction always
ensures that G′ emits a perfect matching; and a minimum weight perfect matching solves
RSTwo.

Lloret-Batlle et al. [73] considered the problem of passenger with guaranteed ride-back
ridesharing, namely, a passenger ri is considered in a successful assignment only if morning
and evening rideshare matches of ri are found. The idea is basically mirroring the weighted
bipartite graph G(U, V, E, w) and connecting the two parts by the passenger vertex set
V (G). Then find a (minimum cost) maximum flow on the modified graph.

One advantage of this matching approach is that approximation algorithms for the
ridesharing problem can be directly derived from existing bipartite matching approximation
algorithms. Online algorithms for bipartite graph matching also already exist.

3.1.4 Single driver, multiple passengers arrangements

This is the most commonly studied variant since it is more practical, and our research
also focuses on this variant. A general approach for solving the ridesharing problem in the
literature usually uses an Integer Programming (IP) or a Mixed Integer Programming (MIP)
formulation and solves it by an exact method or heuristics. The biggest obstacle in using
IP/MIP for the ridesharing problem is the large number of constraints/variables required.
Thus, our methods focus more on discrete algorithms.

Flexible trips

Tamannaei and Irandoost [105] considered a variant of the home-to-work carpooling variant;
all trips have the same destination (a work place). Their model simultaneously minimizes
the costs of travel times, the vehicle use, and the vehicle delays (an example of multi-criteria
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objective function). They gave a MIP exact formulation and proposed a refined branch-and-
bound method to solve it. Armant and Brown [9] considered a similar variant, except many
trips share a same origin or destination. They gave a MIP exact formulation and used a
heuristic to solve it.

Kutiel and Rawitz [65] studied a special case of the ridesharing problem, called the max-
imum carpool matching problem (MCMP). An instance of the maximum carpool matching
problem consists of a digraph G⃗(V, E) and a capacity function c : V → Z≥0, where the
vertices of V represent the individuals and there is an edge (u, v) ∈ E if v can serve u (the
edge direction is inverse of the serve relation graph described in Section 2.3). Every v ∈ V

is a flexible-role trip, namely, v can be assigned as a driver or passenger. The goal of the
MCMP is to find a set of drivers S ⊆ V to serve all V such that the number of passengers is
maximized. It was shown that the MCMP is NP-hard [50]. A 1

2 -approximation algorithm is
proposed in [65]. However, such an algorithm cannot apply directly to the ridesharing mini-
mization problem studied in this thesis. We discuss more about this in Section 3.4 in which
we show how to modify the 1

2 -approximation algorithm so that it can apply to ridesharing
problem RSOne.

Fixed trips

Baldacci et al. [13] considered a home-to-work commute variant in which all trips share the
same destination; and the carpool problem considered is similar to DARP studied in [27],
except the drivers are located in different locations initially. Two integer programming for-
mulations (three-index variable and set-partitioning formulations) are given in [13], and a
column generation approach is proposed. Cordeau [27] proposed a three-index MIP formu-
lation for DARP based on a complete digraph Gc(V, E). As an example what three-index
means in the context of ridesharing, we give a brief discussion of the MIP formulation. The
vertex set V (Gc) is partitioned into three subsets P = {1, . . . , n}, D = {n + 1, . . . , 2n} and
{0, 2n+1}, where P and D represent the origins and destinations of the passengers, respec-
tively, and {0, 2n + 1} represent the origin and destination depots (the locations where the
vehicles/drivers should departure and arrive), respectively. Each passenger i is associated
with an origin node i and a destination node n + i. Each edge (i, j) is usually associated
with a cost (travel cost and/or travel time). Let K be the set of vehicles (and drivers).
For each edge (i, j) ∈ E(Gc) and vehicle k ∈ K, the three-index binary variable xk

ij = 1 in
the formulation means vehicle k travels from node i to node j. Thus, the idea is to have
a set of vehicles K ′ ⊆ K to traverse from 0 to 2n + 1 to cover all vertices P ∪ D exactly
once such that the paths of vehicles k and k′ are vertex disjoint in Gc for every pair k and
k′ in K ′. Some optimization goal should be achieved (usually minimize the overall costs
associated with the paths). Of course, the constraints in the MIP formulation also ensure
that the traversal of each path satisfies the time requirements of the passengers. The same
kind of mathematical formulation for DARP can be applied to the ridesharing problem;
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however, as can be seen, the number of variables is large, and the number of constraints
is even larger for the ridesharing problem. Ropke et al. [93] gave a two-index formulation
of the same problem and showed that it has a better performance than the three-index
formulation. Liu et al. [71] proposed a branch-and-cut algorithm to solve another variant
of DARP, which consists of multiple trips and request types and a heterogeneous fleet of
vehicles with configurable capacity and manpower planning.

Herbawi and Weber [53] gave an MIP formulation for a variant of dynamic ridesharing.
Their method divides the day into a set of time periods, which is an example of viewing
the dynamic ridesharing instances as a sequence of static ridesharing instances. Their MIP
formulation actually has a multi-criteria objective function that tries to minimize the to-
tal travel distance and time of the vehicles and the total travel time of passengers’ trips
and maximizes the number of matched passengers. Multiple objectives are simultaneously
achieved by optimizing a linear combination of them. Other examples of multi-criteria ob-
jective function can be found in [13, 15]. Di Febbraro et al. [33] considered a variant of dy-
namic ridesharing that optimizes the desired departure time of the users (a quality-related
objective) while satisfying as many requests as possible. They gave a MIP formulation and
proposed a strategy for re-optimizing the solution of the MIP using rolling horizon: the
arrival of a new use triggers this optimization for handling new trip requests.

Stiglic et al. [101] considered the ridesharing problem where a set of pick-up and a set
of drop-off meeting points are given. Passenger can be picked-up at either their origins or
the pick-up meeting points and can be dropped-off at either their destinations or drop-off
meeting points. A weighted graph is constructed to represent all feasible matches. A feasible
match consists of a driver, a set of passengers and an optional meeting point such that the
set of passengers can be served by the driver using the optional meeting point. An Integer
Linear Programming (ILP) is given in [101], based on the feasible matches, which resembles
a graph matching problem in a hypergraph. This approach is almost identical to approach
in [5] (RTV-graph).

Taxi-sharing also falls under this form of ridesharing and has attracted attention in the
literature. Qian et al. [90] proposed a taxi group ride (TGR) system. Passengers, who have
similar origins, destinations and travel time, are grouped together. If a group of passengers
is assigned a taxi driver for service, all passengers of that group gather at a predefined
location (within walking distance of their origins). Then, they are picked-up by the assigned
driver and dropped-off at a predefined location. The TGR model is somewhat similar to the
meeting points idea suggested by Stiglic et al. [101].

Hosni et al. [55] gave a three-index MIP formulation for the static shared-taxi problem
and briefly compared to [27]. IN [55], Lagrangian relaxation is applied to the MIP formu-
lation to get subproblems, each of which is a single-taxi problem that can be solved more
efficiently coupled with their heuristic to correct each solution to the subproblem. Huang et
al. [59] proposed a branch-and-bound algorithm and an MIP formulation for solving large-
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scale real-time ridesharing. The use case of ridesharing is focused on taxi-sharing in [59],
and the objective is to minimize the travel time of the drivers. They also proposed a kinetic
tree algorithm to build a dynamic scheduling for real-time trip requests. The kinetic tree is
a data structure that maintains all the valid trip schedules with respect to each driver and
can be used to speed-up computation.

Santos and Xavier [97] also suggested dividing the day into time periods, after which
a deterministic (static) instance of the problem can be generated and solved by a greedy
randomized adaptive search procedure (GRASP). The basic idea of their GRASP is that
after a randomized greedy solution has been found, a local search is performed to improve
the solution. Jung et al. [61] applied hybrid-simulated annealing (HSA) to dynamically
assign passenger requests to shared taxis. Their HSA algorithm follows the skeleton of
standard simulated annealing (SA). As a different kind of heuristics, Ma et al. [78] proposed
a taxi-sharing system that uses a mobile-cloud architecture. It is a spatio-temporal indexing
structure that searches and schedules taxis to fulfill real-time rideshare requests (similar to
nearest vehicle dispatch in [61]). The taxi-sharing system first uses a search method, based
on a spatio-temporal index, to find candidate taxis that can serve the requesting passenger.
Then, the taxi with the shortest detour is selected through a scheduling process.

Alonso-Mora et al. [5] proposed an exact algorithm using matching from RV graph,
proposed by Santi et al. [95], to solve a taxi-sharing problem given a set of drivers (taxi
drivers). Each vertex in the RV graph represents a trip request, and there is an edge between
λ ≥ 1 trip requests if all λ trips can be served together. The RV graph becomes a hypergraph
when λ ≥ 3. In [5], the authors expended the idea of RV graph to construct another graph,
called RTV-graph: a taxi vehicle is also represented by a vertex v and the trips can be
served together are represented by a vertex T , and there is an edge (T, v) in the RTV graph
if v can serve all of T . After the RTV-graph is constructed, they gave an ILP based on the
RTV-graph, in which maximum user waiting times and maximum additional delays due to
sharing a ride are considered. This approach is almost identical to the matching approach
in [101].

The RV/RTV-graph is an extension to our feasible serve relation model in the sense that
the RV graph can model multiple trips (passengers) being served by a driver, represented
by using a single edge. We also use this ILP and matching approach for the ridesharing
problem variant studied in Chapter 4, except our graph representation uses less number
of vertices. This matching approach is better than traditional IP/MIP approach due the
number of constraints in the ILP is significantly reduced. Most papers mentioned above
include numerical experiments to evaluate their methods and algorithms. However, most of
them can only handle small instances (less than 250 trips or use small graphs) in reasonable
time (within 15 minutes). The ones that can handle larger instances (close to 1000 trips)
use heuristics, but the performances of such heuristics are much weaker, compared to the
exact methods proposed in their respective papers. In some papers, the data required in
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their experiments are pre-computed, such as shortest paths and their distances. Such pre-
computation hides the realistic aspect of the application. We use a more realistic setup for
our large-scale numerical experiments, presented in Chapter 4.

Multihop ridesharing

There is another variant of ridesharing, called multihop ridesharing. However, it is not very
common in practice. In this variant, drivers usually have limited number of stops for pick-
ups and drop-offs. A passenger can transfer between vehicles during his/her entire trip. In
other words, multiple drivers can be assigned to a passenger ri and each of the drivers serve
a portion of ri’s trip.

3.2 NP-hardness results

Because previous works mostly focused on empirical studies of the ridesharing problem, we
started a line of research that explores the hardness of the ridesharing problem. In particular,
we introduced an algorithmic analysis for understanding the hardness/time complexity of
the ridesharing problem related to its parameters of origin, destination, vehicle capacity,
detour distance limit, and preferred paths [68]. The model was further elaborated in [43].
In this thesis, we extend the analysis model to include parameters of maximum number
of stops, departure time and arrival time [47, 48]. More precisely, the complexity analysis
on the ridesharing problem is based on the following conditions for the parameters (briefly
introduced in Chapter 1):

C1. All trips have the same destination or all trips have the same origin, that is, di = dj

for every pair of trip i, j ∈ A or oi = oj for every pair of trip i, j ∈ A.

C2. The individual of each trip can only serve others who are on the individual’s preferred
path (without any detour), that is, zi = 0 for every i ∈ A.

C3. There is only one preferred path Pi = Pi for each trip, that is |Pi| ≤ 1 for every i ∈ A.
(note: if Pi = ∅, a shortest path from oi to di is computed by the CRS.)

C4. Each individual is willing to make at least δi ≥ λi stops to either pick-up or drop-off
passengers (or both), that is, δi ≥ λi for pick-ups and/or drop-offs for every i ∈ A.

C5. All trips have the same earliest departure time and same latest arrival time, that is,
for every i ∈ A, αi = α and βi = β for some time constants α < β.

Let us denote C1 as location condition, C2 as detour condition, C3 as preferred
path condition, C4 as stop frequency condition, and C5 as travel time condition.
Our main complexity analysis results in this thesis are: Given an instance (N, A) of the
ridesharing problem RSOne or RSTwo, (1) if (N, A) does not satisfy any one of the five
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conditions, both RSOne and RSTwo are NP-hard; and (2) if (N, A) does not satisfy one of
Conditions C2-C5, both RSOne and RSTwo are NP-hard to approximate within a constant
factor. The analysis is based on a reduction from the 3-partition problem. The decision
problem of 3-partition is that given a set A = {a1, a2, ..., a3l} of 3l positive integers, where
l ≥ 2,

∑3l
i=1 ai = lK and K/4 < ai < K/2, whether A can be partitioned into l disjoint

subsets A1, A2, . . . , Al such that each subset has three elements of A and the sum of integers
in each subset is K.

3.2.1 NP-hardness results for C4 and C5

We first present the NP-hardness results for the stop frequency condition, that is, when
C1-C3 and C5 are satisfied but C4 is not. Then, we show the NP-hardness results for the
travel time condition, that is, when C1-C4 are satisfied but C5 is not. For both cases, we
assume all trips have the same destination but not the same origin (since it is symmetric
to prove the case that all trips have the same origin, and we show it is the case for C2
and C3 in Subsection 3.2.3). The NP-hard analysis will provide a base for proving the
inapproximability of problems RSOne and RSTwo. The NP-hardness proof is a reduction
from the 3-partition problem.

NP-hardness result for the stop frequency condition.

Given a 3-partition instance A = {a1, ..., a3l}, construct a ridesharing problem instance
(N, A) as follows (also see Figure 3.1).

• The road network is the weighted graph N(V, E, w) with V (N) = {χ, I, u1, . . . , u3l,
v1, . . . , vl} and E(G) having edges (ui, v1) and (v1, ui) for 1 ≤ i ≤ 3l, edges (vi, vi+1)
and (vi+1, vi) for 1 ≤ i ≤ l − 1, (vl, χ) and (χ, vl). Each edge (u, v) ∈ E(N) has weight
of one, representing the travel distance from u to v. It takes l + 1 units of distance
travelling from ui to χ for 1 ≤ i ≤ 3l.

• A = {1, . . . , 3l + lK} has 3l + lK trips. Let α and β be valid constants representing
time such that α < β.

– Each trip i, 1 ≤ i ≤ 3l, has origin oi = ui, destination di = χ, capacity λi = ai,
detour distance limit zi = 0, stop limit δi = 1, departure time αi = α and arrival
time βi = β, and each trip i has a preferred path (ui, v1, v2, . . . , vl, χ) in N .

– Each trip i, 3l+1 ≤ i ≤ 3l+lK, has origin oi = vj , j = ⌈ i−3l
K ⌉, destination di = χ,

capacity λi = 0, detour distance limit zi = 0, stop limit δi = 0, departure time
αi = α, arrival time βi = β and a unique preferred path (vj , vj+1, vj+2, . . . , vl, χ)
in N (j = ⌈ i−3l

K ⌉).

Lemma 3.1. Any solution for the instance (N, A) has every trip i, 1 ≤ i ≤ 3l, as a driver
and total travel distance at least 3l · (l + 1).
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Figure 3.1: Ridesharing instance (N, A) satisfying Conditions C1-C3 and C5, and all trips
of A have the same destination.

Proof. Trip i, 1 ≤ i ≤ 3l, must be assigned as a driver in any solution since no other trip
j ̸= i can serve i for every trip j ∈ A due to detour zj = 0. Let S be the set of 3l trips
assigned as drivers ηi with 1 ≤ i ≤ 3l. The total travel distance of the drivers in S is 3l·(l+1).
For each trip j with 3l + 1 ≤ j ≤ 3l + lK, the total travel distance of drivers in S and trip j

is 3l · (l + 1) if j is served by a driver in S; otherwise, it is at least 3l · (l + 1) + ⌈(j − 3l)/K⌉
(assuming j is a flexible-role trip and assigned as a driver). Hence, a solution with trips i

with 1 ≤ i ≤ 3l assigned as drivers has total travel distance 3l · (l + 1), and any additional
trip j for 3l + 1 ≤ j ≤ 3l + lK assigned as a driver has total travel distance greater than
3l · (l + 1).

Theorem 3.1. The ridesharing problem RSOne is NP-hard when Conditions C1-C3 and
C5 are satisfied, but the stop frequency condition C4 is not.

Proof. We prove the theorem by showing that an instance A = {a1, . . . , a3l} of the 3-
partition problem has a solution if and only if the ridesharing problem instance (N, A) has
a solution of 3l drivers.

Assume that instance A has a solution A1, . . . , Al where the sum of elements in each
Aj , 1 ≤ j ≤ l, is K. For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ l, assign the three trips whose
λij1 = aj1 , λij2 = aj2 and λij3 = aj3 as drivers to serve the K trips with origins at vertex
vj . Hence, we have a solution of 3l drivers for (N, A).

Assume that (N, A) has a solution of 3l drivers. By Lemma 3.1, every trip i, 1 ≤ i ≤ 3l,
is a driver in the solution. Then, each trip j for 3l + 1 ≤ j ≤ 3l + lK must be assigned
as a passenger in the solution, total of lK passengers. Since ∑

1≤i≤3l ai = lK, each driver
ηi, 1 ≤ i ≤ 3l, serves exactly λi = ai passengers. Since ai < K/2 for every ai ∈ A, at
least three drivers are required to serve the K passengers with origins at each vertex vj ,
1 ≤ j ≤ 3l. Due to δi = 1 for 1 ≤ i ≤ 3l, each driver ηi can only serve passengers with the
same origin. Therefore, the solution of 3l drivers has exactly three drivers j1, j2, j3 to serve
the K passengers with origins at each vertex vj , 1 ≤ j ≤ l, implying aj1 + aj2 + aj3 = K.
Let Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ l, we get a solution for the 3-partition instance.
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The size of (N, A) is polynomial in l. It takes a polynomial time to convert a solution
of (N, A) to a solution of the 3-partition instance and vice versa.

Theorem 3.2. The ridesharing problem RSTwo is NP-hard when Conditions C1-C3 and
C5 are satisfied, but the stop frequency condition C4 is not.

Proof. Let dsum be the sum of travel distances of all trips i with 1 ≤ i ≤ 3l. Then the
total travel distances of drivers in any solution for (N, A) is at least dsum = 3l · (l + 1) by
Lemma 3.1. We show that an instance A = {a1, ..., a3l} of the 3-partition problem has a
solution if and only if instance (N, A) has a solution with travel distance dsum.

Assume that the 3-partition instance has a solution. Then there is a solution of 3l drivers
for (N, A) as shown in the proof of Theorem 3.1. The total travel distance of the 3l drivers
in this solution is dsum.

Assume that (N, A) has a solution with total travel distance dsum. Trips i with 1 ≤ i ≤ 3l

must be drivers by Lemma 3.1. From this, there is a solution for the 3-partition instance as
shown in the proof of Theorem 3.1.

NP-hardness result for the travel time condition.

Assume that Conditions C1-C4 are satisfied but C5 is not, that is, trips can have arbi-
trary departure time and arrival time. The NP-hardness proof is also a reduction from
the 3-partition problem, which is similar to Theorem 3.1. Given a 3-partition minimization
problem instance, construct a ridesharing instance (N, A) with N shown in Figure 3.1. The
only differences are the values of αi, βi and δi.

• A = {1, . . . , 3l + lK} has 3l + lK trips. Let α be a valid constant representing a
particular time of the day. Let ϵ be the time unit required for travelling from one
endpoint to another endpoint of any edge in E(N).

• For trips i, 1 ≤ i ≤ 3l, origin oi = ui, destination di = χ, capacity λi = ai, detour
distance limit zi = 0, stop limit δi = λi, departure time αi = α, arrival time βi =
α + 2lϵ. Each trip i has a preferred path (ui, v1, v2, . . . , vl, χ) in N .

• For trips i, 3l+1 ≤ i ≤ 3l+ lK, origin oi = vj , j = ⌈ i−3l
K ⌉, destination di = χ, capacity

λi = 0, detour distance limit zi = 0, stop limit δi = λi. Each trip i has a unique
preferred path (vj , vj+1, vj+2, . . . , vl, χ} in N , αi = α + lϵ and βi = α + (2l − j + 1) · ϵ,
where j = ⌈ i−3l

K ⌉.

Note that every trip i ∈ A has the same travel distance from oi to di as the previous
construction in Subsection 3.2.1. Since they have the same graph N , Lemma 3.1 also holds
for this ridesharing instance (N, A).

Lemma 3.2. In any solution (σ, S) for the instance (N, A), all passengers of σ(ηi) \ {ηi}
served by driver ηi ∈ S must have the same origin vj, for some j ∈ [1, . . . , 3l].
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Proof. By Lemma 3.1, every trip i, 1 ≤ i ≤ 3l, is assigned as a driver in any solution. Thus,
only trips with origin vj , 1 ≤ j ≤ l, can be assigned as passengers. Let j be a trip with
origin vj assigned as a passenger served by a driver ηi ∈ S. The travel time from vj to χ is
ϵ ·(l−j +1). Since βj = α+(2l−j +1) ·ϵ, trip j must be picked-up no later than time α+ lϵ.
Otherwise, j cannot arrive at dj = χ by time βj . From this and the fact that αj = α + lϵ,
trip j must be picked-up at time α+ lϵ exactly. The travel time from oi to oj = vj is jϵ ≤ lϵ.
Driver ηi can arrive at χ (after delivering rj) no later than time α + 2lϵ = βi if ηi leaves oi

at α = αi.
Let j1 and j2 be two trips with oj1 = vj1 , oj2 = vj2 and j1 < j2. Then any driver ηi with

1 ≤ i ≤ 3l can serve only one of j1 and j2 due to the following reasons. Suppose ηi picks-up
j1 first. As explained above, j1 must be picked-up at time α + lϵ exactly. By the time ηi

reaches vj2 after picking-up j1, it will pass time α + lϵ. From this and the above, ηi can no
longer serve j2. Otherwise, j2 will not arrive dh2 on time. Suppose ηi picks-up j2 first. When
ηi reaches vj1 by going back, it will also pass time α + lϵ. Hence, ηi cannot serve j1 in this
case. Therefore, if ηi decides to serve a trip with origin vj , the only other trips ηi can serve
must also have origin vj , j ∈ [1, . . . , 3l].

Corollary 3.1. For any trip i ∈ A, 1 ≤ i ≤ 3l, i will only make at most one stop, effectively
making δi ≤ 1.

Proof. By Lemma 3.1, every trip i, 1 ≤ i ≤ 3l, is assigned as a driver in any solution for
(N, A). If ηi does not serve any other passenger, ηi does not make any stop. If ηi serves at
least one passenger, ηi makes exactly one stop by Lemma 3.2.

Theorem 3.3. The ridesharing problem RSOne is NP-hard when Conditions C1-C4 are
satisfied, but the travel time condition C5 is not.

Proof. We prove the theorem by showing that an instance A = {a1, ..., a3l} of the 3-partition
problem has a solution if and only if the ridesharing problem instance (N, A) has a solution
of 3l drivers.

Assume that instance A has a solution A1, . . . , Al where the sum of elements in each
Aj , 1 ≤ j ≤ l, is K. For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ l, assign the three trips whose
λij1 = aj1 , λij2 = aj2 and λij3 = aj3 as drivers to serve the K trips with origins at vertex
vj . Hence, we have a solution of 3l drivers for (N, A).

Assume that (N, A) has a solution of 3l drivers. By Lemma 3.1, every trip i, 1 ≤ i ≤ 3l,
is assigned as a driver in any solution for (N, A). Similarly, each driver ηi serves exactly
λi = ai passengers, and at least three drivers are required to serve the K passengers with
origins at each vertex vj , 1 ≤ j ≤ l. By Corollary 3.1, each driver ηi, 1 ≤ i ≤ 3l, makes
at most one stop. Then as shown in the proof of Theorem 3.1, we get a solution for the
3-partition problem instance.

With a similar argument to that of Theorem 3.2, we have the following lemma.
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Theorem 3.4. The ridesharing problem RSTwo is NP-hard when Conditions C1-C4 are
satisfied, but the travel time Condition C5 is not.

3.2.2 Inapproximability results for each of Conditions C2-C5

Based on the NP-hardness results in the above, Subsection 3.2.1, we extent our reduction
to further show that it is NP-hard to approximate both ridesharing problems RSOne and
RSTwo within a constant factor if C4 or C5 is not satisfied. We then use a similar analysis
approach to show that it is NP-hard to approximate both ridesharing problems RSOne and
RSTwo within a constant factor if the detour condition C2 or the preferred path condition
C3 is not satisfied. It has been shown that in [43, 68] when either C2 or C3 is not satisfied,
both RSOne and RSTwo are NP-hard.

Inapproximability for the stop frequency condition C4.

Let (N, A) be the ridesharing problem instance constructed based on a given 3-partition
instance A as described above for Theorem 3.1 in Subsection 3.2.1 (Figure 3.1). We apply
the following modification to (N, A) to get a new ridesharing instance (N, A′):

• Modification: For every trip i, 1 ≤ i ≤ 3l, we multiply λi with lK, that is, λi = ai·lK,
where l and K are given in instance A. Instead of K trips, there are now lK2 trips
with origins at vertex vj for 1 ≤ j ≤ l, and all such trips have the same destination,
capacity, detour, stop limit, earlier departure time, latest arrival time, and preferred
path as before.

The size of (N, A′) is polynomial in l and K. Note that Theorem 3.1 and Theorem 3.2 hold
for (N, A′) and ∑3l

i=1 λi = lK
∑3l

i=1 ai = (lK)2.

Lemma 3.3. Let (N, A′) be a ridesharing problem instance constructed above from a 3-
partition problem instance A = {a1, . . . , a3l}. The 3-partition problem instance A has a
solution if and only if the ridesharing problem instance (N, A′) has a solution (σ, S) such
that 3l ≤ |S| < 3l + lK, where S is the set of drivers.

Proof. Assume that instance A has a solution A1, . . . , Al where the sum of elements in each
Aj , 1 ≤ j ≤ l, is K. For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ l, assign the three trips whose
λij1 = aj1 · lK, λij2 = aj2 · lK and λij3 = aj3 · lK as drivers to serve the lK2 trips with
origins at vertex vj . Hence, we have a solution of 3l drivers for (N, A′).

Assume that (N, A′) has a solution with 3l ≤ |S| < 3l + lK drivers. Let A′(1, 3l) be the
set of trips in A′ with labels from 1 to 3l. By Lemma 3.1, every trip i ∈ A′(1, 3l) is a driver
in S. Since ai < K/2 for every ai ∈ A, λi < lK · K/2 for every trip i ∈ A′(1, 3l). From
this, it requires at least three drivers in A′(1, 3l) to serve the lK2 trips with origins at each
vertex vj , 1 ≤ j ≤ l. For every trip i ∈ A′(1, 3l), driver ηi can only serve passengers with
the same origin due to δi = 1. There are two cases: (1) |S| = 3l and (2) 3l < |S| < 3l + lK.
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(1) It follows from the proof of Theorem 3.1 that every three drivers j1, j2, j3 of the 3l

drivers serve exactly lK2 passengers with origins at vertex vj ,1 ≤ j ≤ l. Then similarly, let
Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ l, we get a solution for the 3-partition problem instance.

(2) For every vertex vj in N , let Xj be the set of trips with origin at vj not served by
drivers in A′(1, 3l). Since |S| < 3l+lK and all of A′(1, 3l) are drivers in S, at most lK−1 trips
in A′ \ A′(1, 3l) can be assigned as drivers in S. Thus, 0 ≤ |Xj | < lK for any vj . For every
trip i ∈ A′(1, 3l), λi = ai ·lK is a multiple of lK. Hence, the sum of capacity for any subset of
trips in A′(1, 3l) is also a multiple of lK, and further, λi +λii

′ = (ai +ai′) · lK < lK ·(K −1)
for every i, i′ ∈ A′(1, 3l) because ai < K/2 and ai′ < K/2. From these, |Xj | < lK and each
trip in Xj can serve only itself, there are 3 drivers {j1, j2, j3} ⊆ A′(1, 3l) to serve all lK2

trips with origin at vj . Note that λij1 + λij2 + λij3 ≥ lK2 as each λi is a multiple of lK

and |Xj | < lK. Since λij1 + λij2 + λij3 ≥ lK2 for every 1 ≤ j ≤ l and ∑
1≤i≤3l λi = (lK)2,

λij1 + λij2 + λij3 = lK2 for every j. Thus, we get a solution with Aj = {aj1 , aj2 , aj3},
1 ≤ j ≤ l, for the 3-partition problem.

It takes a polynomial time to convert a solution of (N, A′) to a solution of the 3-partition
instance and vice versa.

Theorem 3.5. Let (N, A′) be the ridesharing instance stated above based on a 3-partition
instance. Approximating the minimum number of drivers for (N, A′) within a constant factor
is NP-hard. This implies the ridesharing problem RSOne cannot be approximated within a
constant factor (unless P = NP ) when Conditions C1-C3 and C5 are satisfied, but the stop
frequency condition C4 is not.

Proof. Assume that there is a polynomial-time c-approximation algorithm C for instance
(N, A′) for any constant c > 1. This means that C will output a solution (σC , SC) for
(N, A′) such that OPT(A′) ≤ |SC | ≤ c · OPT(A′), where OPT(A′) is the minimum number
of drivers for (N, A′). When the 3-partition instance is a “No” instance, the optimal value
for (N, A′) is OPT(R′) ≥ 3l + lK by Lemma 3.3. Hence, algorithm C must output a value
|SC | ≥ 3l + lK. When the 3-partition instance is a “Yes” instance, the optimal value for
(N, A′) is OPT(A′) = 3l. For any constant c > 1, taking K such that c < K/3 + 1. The
output |SC | from algorithm C on (N, A′) is 3l ≤ |SC | ≤ 3lc < 3l + lK for a 3-partition
“Yes” instance. Therefore, by running the c-approximation algorithm C on any ridesharing
instance (N, A′) and checking the output value |SC | of C, we can answer the 3-partition
problem in polynomial time, which contradicts that the 3-partition problem is NP-hard
unless P = NP .

Theorem 3.6. The ridesharing problem RSTwo cannot be approximated within a constant
factor (unless P = NP ) when Conditions C1-C3 and C5 are satisfied, but the stop frequency
condition C4 is not.
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Proof. Let (N, A′) be the ridesharing problem instance stated above (same as in Theo-
rem 3.5), based on a given 3-partition instance A = {a1, ..., a3l}. Let dsum(S) be the sum
of travel distances for a set S of drivers. Let A′(1, 3l) be the set of trips in A′ with labels
from 1 to 3l. By Lemma 3.1, all of A′(1, 3l) must be drivers in any solution for (N, A′)
and dsum(A′(1, 3l)) = 3l · (l + 1). Assume that there is a polynomial-time c-approximation
algorithm C for the ridesharing problem (N, A′) for any constant c > 1. This means that C

will output a solution (σC , SC) for (N, A′) such that OPT(A′) ≤ dsum(SC) ≤ c · OPT(A′),
where OPT(A′) is the minimum total travel distance of drivers for (N, A′). By Lemma 3.3,
when the 3-partition instance is a “No” instance, the number of drivers in any solution for
(N, A′) is at least 3l + lK. Further, lK drivers of the 3l + lK drivers must have origins at
some vertices vj , 1 ≤ j ≤ l, so dsun(SC) ≥ 3l · (l + 1) + lK. When the 3-partition instance is
a “Yes” instance, the optimal value for (N, A′) is OPT(A′) = 3l · (l + 1). For any constant
c > 1, taking K and l such that c < K

3(l+1) + 1. The output d(SC) from algorithm C on
(N, A′) is 3l · (l + 1) ≤ dsum(SC) ≤ 3l · (l + 1) · c < 3l · (l + 1) + lK for a 3-partition
“Yes” instance. Therefore, by running the c-approximation algorithm C on any ridesharing
instance (N, A′) and checking the output value d(SC) of C, we can answer the 3-partition
problem in polynomial time, which contradicts that the 3-partition problem is NP-hard
unless P = NP .

Inapproximability for the travel time condition C5.

It is NP-hard to approximate both ridesharing problems RSOne and RSTwo within a con-
stant factor when Conditions C1-C4 are satisfied, but the travel time condition C5 is not.
The proofs are identical to the inapproximability proof of Theorem 3.5 and Theorem 3.6
for each problem, respectively.

Let (N, A) be the ridesharing problem instance constructed based on a given 3-partition
instance as described in the Subsection 3.2.1 (NP-hardness result for the travel time con-
dition). Then apply the Modification, described in the above Subsection 3.2.2 (Inapprox-
imability for the stop frequency condition), to (N, A) to get a ridesharing instance (N, A′).
Then Corollary 3.1 and Lemma 3.3 can be applied to (N, A′). From this, the analyses of
Theorem 3.5 and Theorem 3.6 can be applied to (N, A′), and we have the following theo-
rems.

Theorem 3.7. The ridesharing problem RSOne cannot be approximated within a constant
factor (unless P = NP ) when Conditions C1-C4 are satisfied, but the travel time condition
C5 is not.

Theorem 3.8. The ridesharing problem RSTwo cannot be approximated within a constant
factor (unless P = NP ) when Conditions C1-C4 are satisfied, but the travel time condition
C5 is not.
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Note that the above results also apply to the more general problems RSOne∗ and
RSTwo∗.

Inapproximability for the detour condition C2.

The proof uses a similar method as described in Subsection 3.2.2 (Inapproximability for the
stop frequency condition C4). Similarly, the inapproximate results also apply to RSOne∗

and RSTwo∗. Given a 3-partition instance A = {a1, . . . , a3l}, the ridesharing instance (N, A)
is constructed as follows (see Figure 3.2):

• The road network is the weighted graph N(V, E, w) with V (N) = {χ, I, v1, . . . , v3l,
u1, . . . , ul} and E(N) having edges (χ, I) and (I, χ) with w(χ, I) = w(I, χ) = lK,
edges (vi, I) and (vi, I) with w(vi, I) = w(vi, I) = ai for 1 ≤ i ≤ 3l, and edges (ui, I)
and (ui, I) with w(ui, I) = w(ui, I) = lK for 1 ≤ i ≤ l.

• A = {1, 2, . . . , l+3l2K} has l+3l2K trips. Let α and β be valid constants representing
time such that α < β.

– Each trip i, 1 ≤ i ≤ l, has origin oi = ui, destination di = χ, capacity λi = 3lK,
detour distance limit zi = 2K, a unique preferred path Pi = (ui, I, χ) in N , stop
limit δi = λi, departure time αi = α and arrival time βi = β, and each trip i has
a preferred path (ui, I, χ) in N .

– Each trip i, l+1 ≤ i ≤ l+3l2K, has origin oi = vj , j = ⌈ i−l
lK ⌉, destination di = χ,

capacity λi = 0, detour distance limit zi = 0, stop limit δi = λi, departure time
αi = α, arrival time βi = β and a unique preferred path Pi = (vj , I, χ) in N

(j = ⌈ i−l
lK ⌉).

Figure 3.2: Ridesharing instance (N, A) satisfying Conditions C1 and C3-C5.
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Lemma 3.4. Any solution for the instance (N, A) has every trip i with 1 ≤ i ≤ l as a
driver and total travel distance at least 2lK · (l + 1).

Proof. For any trip i with origin at vj , 1 ≤ j ≤ 3l, regardless if trip i is a passenger trip
or a flexible-role trip, i cannot serve any other trip since it would require detour distance
larger than one, which is greater than zi. For any trip i, 1 ≤ i ≤ l, regardless if trip i is a
driver trip or a flexible-role trip, i cannot serve any trip j ̸= i for 1 ≤ j ≤ l since it would
require detour distance at least 2lK > zi = 2K as l ≥ 2.

Let S be the set of l trips assigned as drivers ηi with 1 ≤ i ≤ l. The total travel
distance of the drivers in S is 2l2K. For each trip j with 3l + 1 ≤ j ≤ l + 3l2K, the total
travel distance of drivers in S and trip j is 2l2K + 2aj if j is served by a driver in S;
otherwise, it is at least 2lK + aj + lK (assuming j is a flexible-role trip and assigned as a
driver). Since aj < lK, the minimum total travel distance of any solution is to have every
j, 3l + 1 ≤ j ≤ l + 3l2K, assigned as a passenger and served by S. The total travel distance
of S is 2l2K + ∑

1≤j≤3l 2aj = 2l2K + 2lK = 2lK · (l + 1).

Lemma 3.5. Let (N, A) be a ridesharing problem instance constructed above from a 3-
partition problem instance A = {a1, . . . , a3l}. The 3-partition problem instance A has a
solution if and only if the ridesharing problem instance (N, A) has a solution (σ, S) such
that l ≤ |S| < l + lK, where S is the set of drivers.

Proof. Assume that instance A has a solution A1, . . . , Al where the sum of elements in each
Aj , 1 ≤ j ≤ l, is K. For each Ai = {ai1 , ai2 , ai3}, 1 ≤ i ≤ l, we say trips with origins
at vertex vj (1 ≤ j ≤ 3l) correspond to Ai if the edge {vj , I} has weight ai1 , ai2 , or ai3 .
By the definition of 3-partition instance, one can uniquely identify the corresponding trips
of Ai. Then for each Ai, there are exactly 3lK corresponding trips with origins at three
different vertices vj . Recall that every trip i with origin at ui has detour distance limit
zi = 2K and capacity λi = 3lK. We assign a trip i with origin at ui as a driver to serve the
corresponding trips of Ai for 1 ≤ i ≤ l. It requires exactly 2K detour distance for i to serve
the 3lK corresponding trips of Ai. Hence, we have a solution of l drivers for (N, A).

Assume that (N, A) has a solution with l ≤ |S| < l + lK drivers. Let A(1, l) be the set
of trips in A with labels from 1 to l. By Lemma 3.4, every trip i ∈ A(1, l) is a driver in S

(trips with origin at ui are assigned as drivers). For every vertex vj , let Xj be the set of
trips with origin at vj not served by drivers in A(1, l). Since |S| < 3l+ lK and all of A(1, 3l)
are drivers in S, at most lK − 1 trips in Xj ⊂ (A′ \ A(1, 3l)) can be assigned as drivers in
S. Thus, 0 ≤ |Xj | < lK for any vj . From this and there are lK trips with origin at each
vertex vj , every driver in A(1, l) must detour to some vertex vj (1 ≤ j ≤ 3l) to pick-up
some passengers. In other words, every vertex vj for 1 ≤ j ≤ 3l must have been visited by
at least one driver in A(1, l). Assume for contradiction that some driver ηi ∈ A(1, l) has
detoured from preferred path Pi less than 2K (i detours to at least one vertex and at most
three vertices because K/4 < aj < K/2 for 1 ≤ j ≤ 3l). Then from the fact that the sum of
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elements in A is ∑
1≤j≤3l aj = lK, some driver i′ ∈ S must has detoured from preferred path

Pi′ greater than 2K so that all vertices can be visited. This is a contradiction to zi′ = 2K.
Hence, every driver in A(1, l) has detoured exactly 2K. For each driver i, 1 ≤ i ≤ l, let Ai

be the subset of the three integers of A corresponding to the detour distance travelled by i

(one way). Then A1, . . . , Al is a solution for the 3-partition problem instance.
It takes a polynomial time to convert a solution of (N, A) to a solution of the 3-partition

instance and vice versa.

With Lemma 3.5, the analyses of Theorem 3.5 and Theorem 3.6 can be applied to
(N, A), and we have the following theorems.

Theorem 3.9. The ridesharing problem RSOne cannot be approximated within a constant
factor (unless P = NP ) when Conditions C1 and C3-C5 are satisfied, but the detour con-
dition C2 is not.

Theorem 3.10. The ridesharing problem RSTwo cannot be approximated within a con-
stant factor (unless P = NP ) when Conditions C1 and C3-C5 are satisfied, but the detour
condition C2 is not.

Inapproximability for the preferred path condition C3.

The NP-hardness proof for this case is also a reduction from the 3-partition problem. Given
a 3-partition instance A = {a1, . . . , a3l}, the ridesharing instance (N, A) is constructed as
follows (see Figure 3.3):

• The road network graph N(V, E, w) is the same as the graph N for Lemma 3.9 in
Subsection 3.2.3.

• A = {1, 2, . . . , 3l + (lK)2} has 3l + (lK)2 trips. Let α and β be valid constants repre-
senting time such that α < β.

– Each trip i, 1 ≤ i ≤ 3l, has origin oi = ui, destination di = χ, capacity λi = ai·lK,
detour distance limit zi = 0, stop limit δi = λi, departure time αi = α and arrival
time βi = β; and each trip i has l preferred paths (ui, I, vj , χ) in N for 1 ≤ j ≤ l.
Each trip i is either a flexible-role or driver-role trip.

– Each trip i, 3l + 1 ≤ i ≤ 3l + (lK)2 has origin oi = vj , j = ⌈(i − 3l)/lK2⌉,
destination di = χ, capacity λi = 0, detour distance limit zi = 0, a unique
preferred path (vj , χ) in N , stop limit δi = λi, departure time αi = α and arrival
time βi = β. Each trip i is either a flexible-role or passenger-role trip.

Lemma 3.6. Any solution for the instance (N, A) has every trip i, 1 ≤ i ≤ 3l, as a driver
and total travel distance at least 9l.
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Figure 3.3: Ridesharing instance (N, A) satisfying Conditions C1,C2,C4 and C5.

Proof. Trip i, 1 ≤ i ≤ 3l, must be assigned as a driver in any solution since no other trip
j ̸= i can serve i for every trip j ∈ A due to detour zj = 0. Let S be the set of 3l trips
assigned as drivers ηi with 1 ≤ i ≤ 3l. The total travel distance of the drivers in S is 9l. For
each trip j with 3l+1 ≤ j ≤ 3l+(lK)2, the total travel distance of drivers in S and trip j is
9l if j is served by a driver in S; otherwise, it is at least 9l + 1 (assuming j is a flexible-role
trip and assigned as a driver). Hence, a solution with trips i with 1 ≤ i ≤ 3l assigned as
drivers has total travel distance 9l, and any additional trip j for 3l + 1 ≤ j ≤ 3l + (lK)2

assigned as a driver has total travel distance greater than 9l.

With Lemma 3.6 and similar analyses of Theorem 3.21 and Lemma 3.3, we have the
following lemma.

Lemma 3.7. Let (N, A) be a ridesharing problem instance constructed above from a 3-
partition problem instance A = {a1, . . . , a3l}. The 3-partition problem instance A has a
solution if and only if the ridesharing problem instance (N, A) has a solution (σ, S) such
that 3l ≤ |S| < 3l + lK, where S is the set of drivers.

From Lemma 3.7, the analyses of Theorem 3.5 and Theorem 3.6 can be applied to
(N, A), and we have the following two theorems.

Theorem 3.11. The ridesharing problem RSOne cannot be approximated within a constant
factor (unless P = NP ) when Conditions C1,C2,C4 and C5 are satisfied, but the preferred
path condition C3 is not.

Theorem 3.12. The ridesharing problem RSTwo cannot be approximated within a constant
factor (unless P = NP ) when Conditions C1,C2,C4 and C5 are satisfied, but the preferred
path condition C3 is not.
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3.2.3 Extending previous NP-hardness results.

First, the NP-hardness results from [43, 68] are re-stated in the following six theorems.

Theorem 3.13. The ridesharing problem RSOne (minimizing the number of drivers) is
NP-hard when Condition C2-C5 are satisfied but the location condition C1 is not.

Theorem 3.14. The ridesharing problem RSTwo (minimizing the total travel distance of
drivers) is NP-hard when C2-C5 are satisfied but the location condition C1 is not.

Theorem 3.15. The ridesharing problem RSOne (minimizing the number of drivers) is
NP-hard when all trips have the same destination and Conditions C3-C5 are satisfied but
the detour condition C2 is not.

Theorem 3.16. The ridesharing problem RSTwo (minimizing the total travel distance of
drivers) is NP-hard when all trips have the same destination and Conditions C3-C5 are
satisfied but the detour condition C2 is not.

Theorem 3.17. The ridesharing problem RSOne (minimizing the number of drivers) is
NP-hard when all trips have the same destination and Conditions C2,C4,C5 are satisfied
but the preferred path condition C3 is not.

Theorem 3.18. The ridesharing problem RSTwo (minimizing the total travel distance of
drivers) is NP-hard when all trips have the same destination and Conditions C2,C4,C5 are
satisfied but the preferred path condition C3 is not.

We show that each of Theorem 3.15, Theorem 3.16, Theorem 3.17 and Theorem 3.18
also applies to all trips have the same origin (instead of all trips have the same destination).
The proofs are similar to the ones in [43, 68], but for completeness we show them in detailed
proofs. In addition, all six theorems above also apply to RSOne∗ and RSTwo∗, the more
general version (namely, A = D ∪ R ∪ DR). The analysis is also based on a reduction from
the 3-partition problem.

NP-hardness result for the detour condition.

First, we extend Theorem 3.15 and Theorem 3.16. Given a 3-partition problem instance
A = {a1, a2, ..., a3l}, we construct a ridesharing instance (N, A) as follows (an example is
given in Figure 3.4):

• The road network is the weighted graph N(V, E, w) with V (N) = {χ, I, v1, . . . , v4l}
and E(N) having edges (χ, I) and (I, χ) with w(χ, I) = w(I, χ) = lK, edges (vi, I)
and (vi, I) with w(vi, I) = w(vi, I) = ai for 1 ≤ i ≤ 3l, and edges (vi, I) and (vi, I)
with w(vi, I) = w(vi, I) = lK for 3l + 1 ≤ i ≤ 4l.

• A = {1, 2, . . . , 4l} has 4l trips.
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– Each trip i, 1 ≤ i ≤ 4l, has origin oi = χ (a vertex in N), destination di = vi

(a vertex in N), a unique preferred path Pi = (χ, I, vi) in N , stop limit δi = λi,
departure time αi = α and arrival time βi = β for some time constants α < β.

– Each trip i, 1 ≤ i ≤ 3l, has capacity λi = 1, detour distance limit 0 < zi ≤ 1.
– Each trip i, 3l + 1 ≤ i ≤ 4l, has capacity λi = 3, detour distance limit di = 2K.

Figure 3.4: Ridesharing instance (N, A) satisfying Conditions C3-C5, and all trips of A have
the same origin.

The analysis of Lemma 3.4 also holds for this ridesharing instance (N, A) (just different
indexing) since they have the same graph N , which is re-stated as the following lemma.

Lemma 3.8. Any solution for the instance (N, A) has every trip i, 3l+1 ≤ i ≤ 4l, assigned
as a driver and total travel distance at least 2lK · (l + 1).

Theorem 3.19. The ridesharing problem RSOne is NP-hard when Conditions C1 and
C3-C5 are satisfied, but the detour condition C2 is not.

Proof. By Theorem 3.15, the theorem holds for all trips have the same destination. We show
it also holds for all trips have the same origin by proving that an instance A = {a1, . . . , a3l}
of the 3-partition problem has a solution if and only if the above constructed ridesharing
problem instance (N, A) has a solution of l drivers.

Assume that the 3-partition instance has a solution A1, . . . , Al where the sum of elements
in each Aj , 1 ≤ j ≤ l, is K. For each Ai = {ai1 , ai2 , ai3}, 1 ≤ i ≤ l, we say trips with origins
at vertex vj (1 ≤ j ≤ 3l) correspond to Ai if the edge (vj , I) has weight ai1 , ai2 , or ai3 . We
assign each trip i with 3l +1 ≤ i ≤ 4l to serve one set Aj for j = i−3l. Since λi = δi = 3 for
3l+1 ≤ i ≤ 4l and the sum of Aj is K, driver ηi can serve the three passengers corresponding
to Aj with total detour distance 2K. Hence, we have a solution of l drivers for (N, A).

Assume that (N, A) has a solution of l drivers. By Lemma 3.8, every trip i with 3l +1 ≤
i ≤ 4l must be a driver ηi in the solution. Then, each trip j for 1 ≤ j ≤ 3l must be a served
passenger rj in the solution. From λi = 3 for 3l + 1 ≤ i ≤ 4l, each driver ηi can serve at
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most 3 passengers. From this and there are 3l passengers, each driver ηi must serve exactly
3 passengers in the solution. By the construction of N , every driver ηi must detour from the
preferred path Pi to serve the passengers assigned to ηi. Assume, for contrary, that some
driver ηi uses a route with a detour smaller than 2K to serve the passengers assigned to ηi.
Then from the fact that the sum of elements in A is lK, some driver i′ must have a detour
greater than 2K, a contradiction to zi′ = 2K. Hence, the actual detour from the preferred
path Pi for each driver ηi is exactly 2K. For each driver ηi with 3l + 1 ≤ i ≤ 4l, let Aj ,
j = i − 3l, be the subset of the three integers of A corresponding to the passengers served
by ηi. Then A1, . . . Al is a solution for the 3-partition problem instance.

The size of (N, A) is linear in l. It takes a linear time to convert a solution of (N, A) to
a solution of the 3-partition instance and vice versa.

Theorem 3.20. The ridesharing problem RSTwo is NP-hard when Conditions C1 and
C3-C5 are satisfied, but the detour condition C2 is not.

Proof. By Theorem 3.16, the theorem holds for all trips have the same destination. We show
the other half by proving that an instance A = {a1, . . . , a3l} of the 3-partition problem has
a solution if and only if the above constructed ridesharing problem instance (N, A) has a
solution with 2lK(l + 1) total travel distance.

Assume that the 3-partition instance has a solution. Then there is a solution of l drivers
for (N, A) as shown in the proof of Theorem 3.19. The total travel distance of this solution
is 2lK(l + 1) as shown in the proof of Lemma 3.8.

Assume that (N, A) has a solution with total travel distance 2lK · (l + 1). As shown
in the proof of Lemma 3.8, trips i with 3l + 1 ≤ i ≤ 4l are the assigned drivers in the
solution. From this, there is a solution for the 3-partition instance as shown in the proof of
Theorem 3.19.

NP-hardness result for the preferred path condition.

Next, we extend Theorem 3.17 and Theorem 3.18. Given a 3-partition problem instance
A = {a1, a2, ..., a3l}, we construct a ridesharing instance (N, A) as follows (an example is
given in Figure 3.5):

• The road network is the weighted graph N(V, E, w) with V (N) = {χ, I, u1, . . . , u3l,
v1, . . . , vl} and E(N) having edges (χ, vi), (vi, χ), (vi, I) and (vi, I) for 1 ≤ i ≤ l, and
edges (ui, I) and (ui, I) for 1 ≤ i ≤ 3l. Each edge of E(N) has weight of one.

• A = {1, 2, . . . , 3l + lK} has 3l + lK trips. Let α and β be valid constants representing
time such that α < β.

– Each trip i, 1 ≤ i ≤ 3l, has origin oi = χ (a vertex in N), destination di = ui (a
vertex in N), capacity λi = ai, detour distance limit zi = 0, stop limit δi = λi,
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departure time αi = α and arrival time βi = β; and each trip i has l preferred
paths (χ, vj , I, ui) in N for 1 ≤ j ≤ l.

– Each trip i, 3l+1 ≤ i ≤ 3l+lK has origin oi = χ, destination di = vj , j = ⌈ i−3l
K ⌉,

capacity λi = 0, detour distance limit zi = 0, a unique preferred path (χ, vj) in
N , stop limit δi = λi, departure time αi = α and arrival time βi = β.

Figure 3.5: Ridesharing instance (N, A) satisfying Conditions C1, C2, C4 and C5, and all
trips of A have the same origin.

The analysis of Lemma 3.6 also holds for this ridesharing instance (N, A) (just different
indexing) since they have the same graph N , which is re-stated as the following lemma.

Lemma 3.9. Any solution for the instance (N, A) has every trip i, 1 ≤ i ≤ 3l, as a driver
and total travel distance at least 9l.

Theorem 3.21. The ridesharing problem RSOne is NP-hard when Conditions C1, C2, C4
and C5 are satisfied, but the preferred path condition C3 is not.

Proof. By Theorem 3.17, the theorem holds for all trips have the same destination. We show
it also holds for all trips have the same origin by proving that an instance A = {a1, . . . , a3l}
of the 3-partition problem has a solution if and only if the above constructed ridesharing
problem instance (N, A) has a solution of 3l drivers.

Assume that the 3-partition instance has a solution A1, . . . , Al where the sum of elements
in each Aj , 1 ≤ j ≤ l, is K. For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ l, we assign the three trips
whose λij1 = aj1 , λij2 = aj2 and λij3 = aj3 as drivers to serve the K trips with destinations
at vertex vj . Hence, we have a solution of 3l drivers for (N, A).

Assume that (N, A) has a solution of 3l drivers. By Lemma 3.9, every trip i, 1 ≤ i ≤ 3l,
is assigned as a driver in the solution. Then, each trip j for 3l + 1 ≤ j ≤ 3l + lK must
be assigned as a passenger in the solution, total of lK passengers. Since ∑

1≤i≤3l ai = lK,
each driver i, 1 ≤ i ≤ 3l, serves exactly λi = ai passengers. Since ai < K/2 for every
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ai ∈ A, at least three drivers are required to serve the K passengers with destinations at
each vertexvj , 1 ≤ j ≤ 3l. Therefore, the solution of 3l drivers has exactly three drivers
j1, j2, j3 to serve the K passengers with destinations at each vertex vj , 1 ≤ j ≤ l, implying
aj1 + aj2 + aj3 = K. Let Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ l, we get a solution for the 3-partition
problem instance.

The size of (N, A) is polynomial in l. It takes a polynomial time to convert a solution
of (N, A) to a solution of the 3-partition instance and vice versa.

Theorem 3.22. The ridesharing problem RSTwo is NP-hard when Conditions C1, C2, C4
and C5 are satisfied, but the preferred path condition C3 is not.

Proof. By Theorem 3.18, the theorem holds for all trips have the same destination. We show
the other half by proving that an instance A = {a1, . . . , a3l} of the 3-partition problem has
a solution if and only if the above constructed ridesharing problem instance (N, A) has a
solution with 9l total travel distance.

Assume that the 3-partition instance has a solution. Then there is a solution of 3l drivers
for (N, A) as shown in the proof of Theorem 3.21. The total travel distance of this solution
is 9l by Lemma 3.9.

Assume that (N, A) has a solution with total travel distance 9l. As shown in the proof
of Lemma 3.9, trips i with 1 ≤ i ≤ 3l must be assigned as drivers. From this, there is a
solution for the 3-partition instance as shown in the proof of Theorem 3.21.

NP-hardness result for the location condition.

The proofs of Theorem 3.13 and Theorem 3.14 presented in [43, 68] are based on a reduction
from the Interval Scheduling with Machine Availability Problem (ISMAP) [63]. Similar to
the above construction of ridesharing instances, for the instance (N, A) constructed from
ISMAP, the trips of A that are corresponding to machines can be from either D or DR,
and the trips of A that are corresponding to jobs can be from either R or DR. Thus,
Theorem 3.13 and Theorem 3.14 can be applied to RSOne∗ and RSTwo∗.

3.3 Polynomial-time solvable problem variants with capacity
larger than one

As shown in Section 3.2, if one of Conditions C1-C5 is not satisfied, both ridesharing prob-
lems RSOne and RSTwo are NP-hard. In [43, 68], a polynomial-time exact algorithm is
proposed for RSOne when Conditions C1-C5 are satisfied and the preferred paths of all
trips in A = DR lie on a single path of the road network N (i.e., the graph induced by the
preferred paths of all trips is a path in N). We gave a refined proof for that polynomial-time
exact algorithm in [45]. In this section, we present two polynomial-time algorithms for a
more general case of RSOne and RSTwo than the one in [43, 68].
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(1) Given an instance of RSOne and an instance of RSTwo such that both instances satisfy
all of the Conditions C1-C5 and transitive serve relation, we give a polynomial-time
dynamic algorithm that can solve each instance.

(2) Given an instance of RSOne satisfying all of the Conditions C1-C5 and transitive serve
relation, we give a polynomial-time greedy algorithm with a running time better than
the dynamic algorithm in (1) for the instance.

In this section, we assume a ridesharing instance (N, A) always satisfy all of Conditions
C1-C5, unless stated otherwise. We introduce transitive serve relation and show how to
compute the serve relation graph in the next subsection.

3.3.1 Transitive serve relation

Recall that the feasible serve relation is defined between a trip i and a set J of trips. The
serve relation graph GR(V, E) represents the feasible serve relations between every pair of
trips in A:

• Each trip i is represented by a vertex in V (GR). There is an edge (i, j) in E(GR) if
trip i can serve trip j.

A serve relation is transitive if trip i can serve trip j and j can serve trip k imply i can
serve k for any triple of trips i, j, k in A. For a general instance (N, A), the serve relation
may not be transitive. However, transitive serve relation typically occurs when the road
network N has a unique shortest path between any pair of vertices and each trip uses the
shortest path from the origin to destination as the preferred path, or the preferred paths are
computed by the centralized ridesharing system (CRS). Since the preferred path condition
is satisfied for A, trip i can serve trip j implies that Pj is a subpath of Pi, so the serve
relation is transitive (assuming unique shortest path in N). Note that the NP-hardness
results presented in Section 3.2 remain true for problem instances satisfying the transitive
serve relation.

Serve relation graph.

To deal with any trip i ∈ A that has zero vehicle capacity (λi = 0), we introduce a pseudo
serve relation in an instance (N, A): trip i can pseudo serve trip j if

• λi > 0 and i can serve j or

• λi = 0, oi = oj and di = dj or

• λi = 0 and Pj is a subpath of Pi.

The pseudo serve relation becomes the serve relation when λi > 0 for every i ∈ A. The
pseudo serve relation can be expressed by a digraph GR(V, E) such that the digraph has A

38



as the vertex set and there is an edge (i, j) in E(GR) if trip i can pseudo serve trip j. For
two trips i and j with oi = oj and di = dj , trip i can pseudo serve trip j and vice versa, that
is, both edges (i, j) and (j, i) are in the digraph initially. As shown later, we can restrict
that only one of i and j can pseudo serve the other to simplify our discussion (make the
digraph acyclic): if λi ≥ λj then we remove edge (j, i); otherwise, we remove (i, j) from the
digraph.

An edge (i, j) in GR(V, E) is called a short cut if after removing (i, j) from GR(V, E),
there is still a path from i to j in GR(V, E). We remove all short cuts from GR(V, E) to get a
digraph G⃗(V, E) (called simplified serve relation graph) to express the pseudo serve relation
in A, namely it remains that trip i can pseudo serve trip j if there is a path from i to j

in G⃗. A trip i corresponds to the vertex i in G⃗ is called a source (resp. sink) if there is no
edge (j, i) (resp. (i, j)) in G⃗. A connected component of G⃗ is called a tree if the underlying
graph of G⃗ is a tree. When Conditions C2 and C3 are satisfied, we assume that if trip i

can pseudo serve trip j then Pj is a subpath of Pi. This makes the pseudo serve relation
transitive. When all of Conditions C1-C5 are satisfied, every connected component of G⃗ is
a tree, and we call the component an inverse tree as it has one unique sink and at least one
source (we show this is indeed the case in Lemma 3.11). In Figure 3.6 is an example of a
serve relation graph GR(V, E) and its simplified serve relation graph G⃗(V, E) based on two
symmetric instances (N, A).

(a) Two instances (N, A) satisfying Condi-
tions C1-C5 with a common destination χ
and a common origin χ shown at the top
and bottom, respectively.

(b) The serve relation graph
GR(V, E) of both instances
(N, A) shown in (a) are the
same.

(c) The simplified serve
relation graph G⃗(V, E) of
GR(V, E).

Figure 3.6: A serve relation graph GR(V, E) and its simplified serve relation graph G⃗(V, E).

For any two trips i and j that can pseudo serve each other, it creates a cycle (i, j) and
(j, i) in the serve relation graph GR(V, E). Based on Lemma 3.10, we break this cycle by
removing one of the edges (i, j) and (j, i) to simplify the graph.

39



Lemma 3.10. Let (N, A) be an instance of either problem RSOne or RSTwo. Let i and
j be two trips in A such that oi = oj, di = dj and λi ≥ λj. Then an optimal solution
for (N, A) obtained on the GR(V, E) with edge (j, i) removed is an optimal solution on the
GR(V, E) containing both (i, j) and (j, i).

Proof. Note that the serve relation graph GR(V, E) of instance (N, A) must contain both
edges (i, j) and (j, i). Let G′

R(V, E) be the serve relation graph of GR(V, E) with edge
(j, i) removed. Let (S, σ) be an optimal solution computed based on GR(V, E) and (S′, σ′)
be an optimal solution computed based on G′

R(V, E) for the instance (N, A), which is
either problem RSOne or RSTwo. We first show that dist(S′) ≤ dist(S), that is, S′ is
also an optimal solution based on GR when (N, A) is an instance of RSTwo. Assume for
contradiction that dist(S′) > dist(S′). If i /∈ σ(j) where j ∈ S, then (S, σ) is also an optimal
solution based on G′

R, contradicting that S′ is an optimal solution based on G′
R. Suppose

that i ∈ σ(j). Let (S1, σ1) be defined as: S1 = (S \{j})∪{i}, σ1(i) = σ(j) (this can be done
because λi ≥ λj and each trip served by j can be served by i), and for every ηy ∈ S \ {i},
σ1(y) = σ(y). Then (S1, σ1) is a solution based on G′

R with dist(S1) = dist(S) < dist(S′),
contradicting that S′ is an optimal solution based on G′

R. The above also holds for |S′| ≤ |S|
following an identical analysis.

Let T be a component of G⃗ for a ridesharing instance (N, A). For trips i and j in T , the
notations and definitions in Table 3.1 will be used for the rest of this section. Notice that
all trips of Di are in the path from i to the sink of T . As shown in Figure 3.6, whether all
trips have the same destination or all trips have the same origin, the serve relation graph
has the same structure. Thus, we restrict our discussions for the case that all of trips have
the same destination. For the case that all trips have the same origin, the preprocessing and
algorithms are similar.

Notation Definition
i is a parent of j If edge (i, j) is in T
i is an ancestor of j If there is a path from i to j in T
i is a child of j If edge (j, i) is in T (each trip has at most one child)
i is a descendant of j If there is a path from j to i in T
Ai The set of ancestors of i and i (i ∈ Ai)
Di The set of descendants of i and i (i ∈ Di)

Table 3.1: Definitions for ancestors and descendants of trips in component T .

Given a ridesharing instance (N, A), for any two connected components T1 and T2 in
the pseudo serve relation digraph G⃗, any trip in T1 cannot pseudo serve any trip in T2 and
vice versa. Let (S1, σ1) and (S2, σ2) be optimal solutions for trips in T1 and trips in T2,
respectively, for either RSOne or RSTwo. Let S = S1 ∪ S2 and σ(i) = σ1(i) for ηi ∈ S1

and σ(i) = σ2(i) for ηi ∈ S2. Then (S, σ) is an optimal solution for trips in V (T1) ∪ B(T2)
for each of RSOne or RSTwo. Hence, we assume that G⃗ has one connected component T
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(V (T ) = A and G⃗ = T ) because if G⃗ has more than one connected component, we can solve
the ridesharing problems for each component independently.

3.3.2 Preprocessing

We describe how to actually construct the simplified serve relation graph G⃗ from an instance
(N, A). The construction of G⃗ is given in Algorithm 1 (Serve Relation Graph).

Algorithm 1 Serve Relation Graph
1: Input: A ridesharing instance (N, A) satisfying Conditions C1-C3.
2: Output: A digraph G⃗(V, E) for the pseudo serve relation for all trips in A.
3: V (G⃗) = A = {1, . . . , l};
4: Partition A into r ≤ l groups G1, . . . , Gr s.t. trips i, j are in a same group if oi = oj ;
5: For each group Gi, let i1 be the trip in Gi with the largest capacity;
6: Let A′ = {i1 ∈ Gi | 1 ≤ i ≤ r};
7: Compute the subgraph NA′ of N induced by the vertex set ∪i∈A′Pi;
8: Let ST1 and ST2 be stacks, and χ (a vertex in N) be the common destination of trips in A;
9: Perform a depth first search (DFS) on NA′ starting from χ using ST1;

10: When a vertex u in NA′ is pushed into ST1 in DFS:
11: if u is the origin oi of some trip i ∈ A′ then
12: if ST2 has the top element oj then create edge (i, j) in E(G⃗);
13: push oi into ST2;
14: end if
15: When a vertex u is removed from ST1 in DFS:
16: if u is the origin oi of some trip i ∈ A′ then remove oi from ST2;
17: For each group Gi with |Gi| > 1, let i1, . . . , ib be the trips in Gi with λi1 ≥ . . . ≥ λib

:
18: replace trip i1 in G⃗ by the chain (i1, i2) . . . (ib−1, ib);
19: replace edge (i1, v) by (ib, v) if (i1, v) ∈ E(G⃗);
20: any (u, i1) ∈ E(G⃗) remains unchanged;

Lemma 3.11. Given a ridesharing instance (N, A) of size M , it takes O(M) time to
construct G⃗. For any pair of trips i, j ∈ A, if i can pseudo serve j then there is path from
i to j in G⃗. Any connected component of G⃗ is an inverse tree.

Proof. It takes O(M) time to partition trips into groups. It is easy to see that each edge of
the induced subgraph NA′ is traversed O(1) times. The replacement of i1 in G⃗ takes O(M)
time for all groups. Therefore, the total time for constructing G⃗ is O(M).

For trips i, j ∈ A, if i can serve j then path Pj is a subpath of Pi, implying the origin
oj is in path Pi. Algorithm 1 creates a path from i to j in G⃗. Let i, j, k ∈ A such that i can
server j and k. Then both Pj and Pk are subpaths of Pi. Since di = dj = dk = χ, either Pk

is a subpath of Pj or Pj is a subpath of Pk. Hence, j is either an ancestor or a descendant
of k in G⃗, implying every connected component of G⃗ is an inverse tree.

From Lemma 3.10 and Lemma 3.11, we only need to work on G⃗ for computing solutions
to the ridesharing problems RSOne and RSTwo.
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Labelling trips in the simplified serve relation graph.

Given an instance (N, A) of the ridesharing problem, where A = {1, . . . , l}, and the digraph
G⃗ for the pseudo serve relation in A, let T be the connected component (an inverse tree)
of G⃗. We rearrange the labels of the trips in T by Algorithm 2 (Label Inverse Tree). In the
rest of this section, each trip in T is expressed by the label assigned in Algorithm 2. Based
on this labelling, trip l is a source in T , trip 1 is the sink in T , and if trip i can pseudo serve
trip j then i > j for every i ̸= j.

Algorithm 2 Label Inverse Tree
1: Input: An inverse tree T of G⃗ with l trips.
2: Output: A distinct integer label i, 1 ≤ i ≤ l, for each trip in T .
3: Let ST be a stack and push the sink of T into ST;
4: Set i = l and mark every edge in T un-visited;
5: while ST ̸= ∅ do
6: let u be the trip at the top of ST;
7: if there is an un-visited edge (v, u) in T then
8: push v into ST and mark (v, u) visited;
9: else

10: remove u from ST; assign u integer label i; i = i − 1;
11: end if
12: end while

The following notations will be used for the remainder of this section.

• For A = {1, . . . , l} and 1 ≤ i ≤ j ≤ l, T (i, j) = {i, i + 1, . . . , j}.

• For a set S of drivers, S(i, j) = S ∩ T (i, j).

• For a trip i ∈ A, vi is the ancestor of i in T with the largest label.

Notice that Ai = T (i, vi) and vi is a source in T . T (i, vi) is called a branch of T . A trip
i is called a merge point if i has at least two parents in T . A branch is simple if it does
not have any merge point. A branch T (i, vi) is maximal if the child of i is a merge point or
i = 1 is the sink. For a (partial) solution (S, σ) of (N, A) and 1 ≤ i ≤ j ≤ l, S is called a
solution of T (i, j) if T (i, j) ⊆ σ(S).

3.3.3 Dynamic programming algorithm

We give a dynamic programming algorithm for both RSOne and RSTwo using the simplified
serve relation graph T . We first find solutions for simple branches of T , and expand these
solutions to solutions of branches consisting of simple branches, and expand solutions of
branches to solutions of larger branches. We process trips in the decreasing order of their
labels. This processing order guarantees that at most l expansions is enough. To make the
number of solutions in each expansion small, we introduce a dominating relation between
the solutions and only keep the non-dominated solutions for each expansion.
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For a solution (S, σ) of T (i, j), let dist(S) = ∑
ηi∈S dist(Pi) be the cost of S, where Pi is

the preferred path of trip i. For two solutions (S, σ) and (S′, σ′) of T (i, j), S dominates S′ if
|σ(S)| ≥ |σ(S′)| and dist(S) ≤ dist(S′). Two solutions are non-dominating if none of them
dominates the other. A set X of solutions is non-dominating if every pair of solutions in X
is non-dominating. For T (i, j), 1 ≤ i ≤ j ≤ l, X (i, j) denotes a set of (partial) solutions
{(S1, σ1), . . . , (Sb, σb)}, each is a solution of T (i, j) computed by the algorithm (at the end
of iterationi).

Algorithm description.

There are three major functions in our algorithm:

• (Compute solutions) Process each trip i from l to 1. If i is a source vertex, a set
X (i, i) consisting of one solution S = {ηi} is computed. When a non-source trip i is
processed, a set X (i + 1, vi+1) of solutions for T (i + 1, vi+1) has been computed. For
each S ∈ X (i + 1, vi+1), we compute a solution (S′, σ′) with S′ = S ∪ {ηi} to find a
set X (i, vi) of solutions for T (i, vi). Our algorithm makes σ′(i) to serve as many trips
in Di that are not in σ(S) and are closest to i as possible. More formally, we define
N(i, c, S) to be the set of c trips in Di such that N(i, c, S) ⊆ (Di \ σ(S)) and for any
trip u in N(i, c, S) and any trip v in Di \ (σ(S) ∪ N(i, c, S)), dist(i, u) < dist(i, v). Let
c = min{λi + 1, |Di \ σ(S)|}. In our algorithm, σ′(i) = N(i, c, S).

• (Merge solutions) Just before a merge point i − 1 is processed by the algorithm, a
set X (i, vi) of solutions for each maximal simple branch T (i, vi) are found, and we
want to merge all these solutions. For a merge point i − 1, let i1, . . . , ir be the parents
of i − 1 such that ia < ib if a < b (see Figure 3.7a). Notice that vir = vi−1 and
i1 = i. After trip i is processed, all of X (ia, via), 1 ≤ a ≤ r, have been computed. For
a = r, r − 1, . . . , 2, we merge X (ia−1, via−1) and X (ia, vi−1) into a set X (ia−1, vi−1)
of solutions for T (ia−1, vi−1). The merge is realized by including S′′ = S ∪ S′ in
X (ia−1, vi−1) for every S ∈ X (ia−1, via−1) and every S′ ∈ X (ia, vi−1) for 1 < a ≤ r

(see Figure 3.7b). By processing trips and merging solutions, we find a set X (i, vi) of
solutions for each maximal branch T (i, vi) and finally a set X (1, l) of solutions for A.

• (Remove dominated solutions) When we compute a set of solutions, we remove each
solution in the set that is dominated by another one in the same set, according to the
dominating relation definition.

The pseudo code of our algorithm is given in Algorithm 3 (Find Minimum Cost Solution).
To find an exact solution for an instance (N, A) of RSTwo, execute Algorithm 3 with the
dominating relation definition stated above. To find an exact solution for an instance (N, A)
of RSOne, execute Algorithm 3 with the dominating relation definition changed as: For two
solutions (S, σ) and (S′, σ′) of T (i, j), S dominates S′ if |σ(S)| ≥ |σ(S′)|. Below is a simple
example showing how Algorithm 3 works.
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(a) Before merging X (ia−1, via−1 ) and X (ia, vi−1) (b) After merging X (ia−1, via−1 ) and X (ia, vi−1)

Figure 3.7: Merge X (ia−1, via−1) (solutions of T (ia−1, via−1)) and X (ia, vi−1) (solutions of T (ia, vi−1))
into X (ia−1vi−1) (solutions of T (ia−1, vi−1)) for some 1 < a ≤ r.

• Let A = {i | 1 ≤ i ≤ 7} be the set of trips in Figure 3.6a (top instance (N, A)).
Assume that the capacity λi and travel distance dist(Pi) are as follows:

Trip 1 Trip 2 Trip 3 Trip 4 Trip 5 Trip 6 Trip 7
λi 1 0 1 1 0 1 1
dist(Pi) 2 4 4.5 5 2.5 4 5

Assume w.l.o.g. that the algorithm processes branch T (5, 7) first and branch T (2, 4)
next for the simplified serve relation graph G⃗(V, E) in Figure 3.6c

• For i = 7 (source), X (7, 7) has one solution (S = {7}, σ(7) = {7, 6})} denoted by
({7}; {7, 6}).

• For i = 6 (non-source), X (6, v6) = X (6, 7), solution ({7}; {7, 6}) of X (7, v7) = X (7, 7)
is included in X (6, 7). Then solution ({7, 6}; {7, 1}, {6, 5}) is included in X (6, 7). Since
the two solutions of X (6, 7) are non-dominating, they are kept in X (6, 7).

• For i = 5 (non-source), X (5, v5) = X (5, 7). Solutions of X (6, 7) are included in
X (5, 7). Then solutions ({7, 5}; {7, 6}, {5}) and ({7, 6, 5}; {7, 1}, {6}, {5}) are included
in X (5, 7). Next, solutions ({7}; {7, 6}) (not a solution of T (5, 7)) and ({7, 6, 5};
{7, 1}, {6}, {5}) (dominated by the solution ({7, 6}; {7, 1}, {6, 5})) are removed from
X (5, 7). So X (5, 7) has two solutions ({7, 5}; {7, 6}, {5}) and ({7, 6}; {7, 1}, {6, 5}).

• By processing branch T (2, 4), the algorithm computes X (2, 4) which has two solutions
({4, 2}; {4, 3}, {2}) and ({4, 3}; {4, 1}, {3, 2}).
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• The solutions of X (2, 4) and solutions of X (5, 7) are merged to get solutions of X (2, 7).
During the merge, four driver sets {4, 2} ∪ {7, 5}, {4, 2} ∪ {7, 6}, {4, 3} ∪ {7, 5} and
{4, 3} ∪ {7, 6} are computed. Solutions with driver sets {4, 2, 7, 6} and {4, 3, 7, 6} are
dominated and removed; and X (2, 7) has two solutions ({4, 2, 7, 5}; {4, 3}, {2}, {7, 6},
{5}) and ({4, 3, 7, 5}; {4, 1}, {3, 2}, {7, 6}, {5}).

• Finally, for i = 1, X (1, 7) has one solution ({4, 3, 7, 5}; {4, 1}, {3, 2}, {7, 6}, {5}) which
is an optimal solution for (N, A).

Algorithm 3 Find Minimum Cost Solution
1: Input: An inverse tree T of G⃗ with l trips.
2: Output: A solution (S, σ) for an instance (N, A) of either RSOne or RSTwo.
3: for i = l to 1 do // process every trip of T , l is a source
4: if i is a source of T then // process a source trip
5: S = {ηi}; c = min{λi + 1, |Di \ σ(S)|}; σ(i) = N(i, c, S); X (i, i) = {(S, σ)};
6: else // process a non-source trip
7: if i is a merge point then v = vi; else v = vi + 1;
8: X (i, vi) = X (i + 1, vi+1);
9: for every (S, σ) ∈ X (i + 1, vi+1) do

10: S′ = S ∪ {ηi}; σ′(S′) =Serve(i, S, σ); X (i, vi) = X (i, vi) ∪ {(S′, σ′)};
11: end for // end of computing X (i, vi)
12: for every solution S in X (i, vi) do // make X (i, vi) non-dominating
13: if S is not a solution of T (i, vi) then remove S from X (i, vi);
14: if S is dominated by some S′ in X (i, vi) then remove S from X (i, vi);
15: end for
16: if i − 1 is a merge point then // merge solutions (before i − 1 is processed)
17: let i1, . . . , ir be the parents of i − 1 with ia < ib for a < b;
18: for a = r to 2 do X (ia−1, vi−1) =Merge(X (ia−1, via−1), X (ia, vi−1));
19: end if
20: end if
21: end for
22: Procedure Serve(i, S, σ)
23: σ′(j) = σ(j) for every ηj ∈ S;
24: if i /∈ σ(S) then
25: c = min{λi + 1, |Di \ σ(S)|}; σ′(i) = N(i, c, S);
26: else
27: c = min{λi, |Di \ σ(S)|}; σ′(i) = N(i, c, S) ∪ {i};
28: let ηk ∈ S s.t. i ∈ σ(k); σ′(k) = σ′(k) \ {i}; σ′(k) = σ′(k) ∪ N(k, 1, S′);
29: end if
30: Procedure Merge(X (ia−1, via−1), X (ia, vi−1))
31: Include S′′ = S ∪ S′ in X (ia−1, vi−1) for S ∈ X (ia−1, via−1) and S′ ∈ X (ia, vi−1);
32: dist(S′′) = dist(S) + dist(S′);
33: Set |σ′′(S′′)| to min{|T (ia−1, vi−1)| + |Di−1|, |σ(S)| + |σ(S′)|};
34: Remove S′′ from X (ia−1, vi−1) if S′′ is dominated;
35: for every S′′ ∈ X (ia−1, vi−1) do
36: σ′′(j) = σ′(j) for ηj ∈ S′; σ′′(j) = σ(j) \ σ′(S′) for ηj ∈ S;
37: for every ηj ∈ S do cj = |σ(j) ∩ σ′(S′)| and σ′′(j) = σ′′(j) ∪ N(j, cj , S′′);
38: end for
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Analysis of algorithm.

Next, we show the correctness of Algorithm 3 (Find Minimum Cost Solution) and its running
time.

Lemma 3.12. Let T (i, vi) be any maximal simple branch in T . For any solution S∗ of
T (1, l), there is a solution S in X (i, vi) such that S dominates S∗(i, vi).

Proof. We prove the lemma by induction for i ≤ a ≤ vi. Since vi is a source in T , vi can be
served only by itself, so any solution S∗ of T (1, l) contains vi, implying S∗(vi, vi) = {vi}.
From this and S = {vi} ∈ X (vi, vi), the lemma holds for a = vi. Assume that the lemma is
true for i < a ≤ vi and we prove it for a−1. By the induction hypothesis, there is a solution
S in X (a, vi) such that S dominates S∗(a, vi). Let S′ = S ∪ {a − 1} be the solution obtained
by Algorithm 3. If a − 1 ∈ S∗(a − 1, vi) then from the fact that S dominates S∗(a, vi),

|σ(S′)| = min{|Dvi |, |σ(S)| + λa−1 + 1}

≥ min{|Dvi |, |σ∗(S∗(a, vi))| + λa−1 + 1} ≥ |σ∗(S∗(a − 1, vi))|

and

dist(S′) = dist(S) + dist(a − 1)

≤ dist(S∗(a, vi)) + dist(a − 1) = dist(S∗(a − 1, vi)).

Therefore, S′ dominates S∗(a − 1, vi).
Assume that a − 1 ̸∈ S∗(a − 1, vi). Because S∗ is a solution of T (1, l), a − 1 is served by

some trip in S∗. Further, a − 1 can be served only by trips in T (a − 1, va−1) and va−1 = vi.
Therefore, S∗(a, vi) is a solution of T (a − 1, vi). Since S dominates S∗(a, vi), S is a solution
of T (a − 1, vi). If S is in X (a − 1, vi) then the lemma is true. Otherwise, S is removed from
X (a − 1, vi) because S is dominated by a solution S′ ∈ X (a − 1, vi). This implies that S′

dominates S∗(a − 1, vi) and the lemma is proved.

Lemma 3.13. Let i − 1 be a merge point in T such that there is no merge point in Ai−1 \
{i − 1}. For any solution S∗ of T (1, l), there is a solution S in X (i − 1, vi−1) computed by
Algorithm 3 such that S dominates S∗(i − 1, vi−1).

Proof. Let i1, . . . , ir be the parents of i − 1 such that ia < ib if a < b. Then via is the unique
source ancestor of ia for each 1 ≤ a ≤ r, vir = vi−1 and i1 = i. We prove the following
statement by induction: for every a with 1 ≤ a ≤ r, there is a solution S ∈ X (ia, vi−1) such
that S dominates S∗(ia, vi−1). For a = r, from Lemma 3.12, the statement holds. Assume
that the statement is true for 1 < a ≤ r and we prove it for a − 1. From Lemma 3.12, there
is a solution S in X (ia−1, via−1) such that S dominates S∗(ia−1, via−1). From the induction
hypothesis, there is a solution S′ ∈ X (ia, vi−1) such that S′ dominates S∗(ia, vi−1). Let
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S′′ = S ∪ S′ as computed in Algorithm 3. Let c = |T (ia−1, vi−1)| + |Di−1|. Then

|σ′′(S′′)| = min{c, |σ(S)| + |σ(S′)|}

≥ min{c, |σ∗(S(ia−1, via−1))| + |σ∗(S∗(ia, vi−1))|}

= |σ∗(S∗(ia−1, vi−1))|

and

dist(S′′) = dist(S) + dist(S′)

≤ dist(S∗(ia−1, via−1)) + dist(S∗(ia, vi−1))

= dist(S∗(ia−1, vi−1)).

That is, S′′ dominates S∗(ia−1, vi−1). Therefore, there is a solution S in X (i, vi−1) such that
S dominates S∗(i, vi−1). By a similar argument for proving Lemma 3.12, there is a solution
S in X (i − 1, vi−1) such that S dominates S∗(i − 1, vi−1).

Lemma 3.14. For any solution (S∗, σ∗) of T (1, l), there is a solution (S, σ) ∈ X (1, l)
computed by Algorithm 3 such that S dominates S∗.

Proof. If there is no merge point in T , then by Lemma 3.12, the lemma holds. If there is
one merge point i − 1 in T , then by Lemma 3.13, there is a solution S ∈ X (i − 1, vi−1) such
that S dominates S∗(i − 1, vi−1). Since i − 1 is the only merge point of T , vi−1 = l, and
Di−1 is the path consisting of all trips from i − 1 to 1. By a similar argument for proving
Lemma 3.12, there is a solution S in X (1, l) such that S dominates S∗.

Assume that u1, . . . , us, 1 < s, are the merge points in T such that ua < ub if a < b. For
each ua, 1 ≤ a ≤ s, if the child of ua is a merge point then let wa = ua, otherwise let wa be
the trip in Dua such that T (wa, vwa) is a maximal branch and there is no merge point other
than ua in the path from ua to wa in T . We prove the following statement by induction: for
1 ≤ a ≤ s, there is a solution S in X (wa, vwa) such that S dominates S∗(wa, vwa).

For a = s, Aua \ {ua} does not contain any merge point. By Lemma 3.13, there is a
solution S ∈ X (ua, vua) such that S dominates S∗(ua, vua). Then by a similar argument for
proving Lemma 3.12, there is a solution S in X (wa, vwa) such that S dominates S∗(wa, vwa),
implying the induction base. Assume that the statement holds for 1 < a ≤ s and we prove it
for a−1. If Aua−1 \{ua−1} does not have any merge point then by Lemma 3.13 and a similar
argument for proving Lemma 3.12, the statement holds for a−1. Assume that Aua−1 \{ua−1}
has some merge points. Notice that for every merge point uj ∈ Aua−1 \ {ua−1}, a ≤ j. Let
i1, . . . , ir be the parents of ua−1. By the induction hypothesis and a similar argument for
proving Lemma 3.12, for every 1 ≤ b ≤ r, there is a solution S in X (ib, vib

) such that S

dominates S∗(ib, vib
). By a similar argument for proving Lemma 3.13, there is a solution

S in X (ua−1, vua−1) such that S dominates S∗(ua−1, vua−1). Then by a similar argument
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for proving Lemma 3.12, there is a solution S in X (wa−1, vwa−1) such that S dominates
S∗(wa−1, vwa−1). Therefore, the statement holds, implying the lemma.

Theorem 3.23. There is a dynamic programming algorithm that, given an instance (N, A)
of RSTwo satisfying Conditions C1-C5 and the transitive serve relation, computes a solution
(S, σ) for (N, A) in O(M + l3) time, where M is the size of the ridesharing instance which
contains road network N and l trips.

Proof. Let S∗ be a solution for T (1, l) with the minimum dist(S∗). By Lemma 3.14, Algo-
rithm 3 finds a solution S with dist(S) ≤ dist(S∗) in X (1, l). From Lemma 3.10, Algorithm 3
computes a solution (S, σ) for (N, A) with dist(S) minimized.

Algorithm 3 computes X (i, vi) for every trip i. Since X (i + 1, vi+1) is non-dominating,
the solutions of X (i + 1, vi+1) can be listed as S1, S2, . . . such that |σ(Sa)| < |σ(Sb)| and
dist(Sa) > dist(Sb) for a < b. Hence, there are O(l) solutions in X (i + 1, vi+1) because
|σ(Sa)| ≤ l for every Sa in X (i + 1, vi+1). For every Sa ∈ X (i + 1, vi+1), the solution
S′

a ∈ X (i, vi) can be computed in O(l) time, so it takes O(l2) time to compute all solutions
in X (i, vi). It takes O(l) time to make X (i, vi) non-dominating. Therefore, it takes O(l3)
time to process all of the l trips.

In Algorithm 3, Procedure Merge is called O(l) times. We play a small trick to reduce the
running time of the procedure: we compute |σ′′(S′′)| before σ′′(j) is actually decided for each
j ∈ S′′. This allows us to get a non-dominating set of solutions. Then we decide σ′′(j) only
for non-dominating solutions (O(l) many) instead of all S′′ = S ∪ S′ (O(l2) many). In each
call, it takes O(l) time to compute |T (ia−1, vi−1)|+|Di−1|, and there are O(l2) solutions S∪S′

for S ∈ X (ia−1, via−1) and S′ ∈ X (ia, vi−1) because each of X (ia−1, via−1) and X (ia, vi−1)
is non-dominating, and thus has O(l) solutions. It takes O(1) time to compute dist(S′′)
and |σ′′(S′′)|. Therefore, it takes O(l2) time to compute O(l2) solutions for X (ia−1, vi−1)
and O(l2) time to make X (ia−1, vi−1) non-dominating. Then there are O(l) non-dominating
solutions in X (ia−1, vi−1). For each S′′ ∈ X (ia−1, vi−1), it takes O(l) time to compute σ′′(j)
for every j ∈ S′′. Therefore, each execution of Procedure Merge takes O(l2) time and total
time for merge operations is O(l3) time. So the total time of Algorithm 1 is O(l3).

It takes O(M) time to compute G⃗ (Lemma 3.11). The preprocessing for rearranging
labels of trips takes O(l) time. Therefore, the theorem holds.

If we set dist(Pi) = 1 for every i ∈ A (effective changing the definition of dominating
relation to: S dominates S′ if |σ(S)| ≥ |σ(S′)|), then by Theorem 3.23, the following result
holds.

Theorem 3.24. There is a dynamic programming algorithm that, given an instance (N, A)
of RSOne satisfying Conditions C1-C5 and the transitive serve relation, computes a solution
(S, σ) for (N, A) in O(M + l3) time, where M is the size of the ridesharing instance which
contains road network N and l trips.
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3.3.4 Greedy algorithm for RSOne

In this section, we give a greedy algorithm for the ridesharing problem RSOne. A straight-
forward implementation of this algorithm runs in O(M + l2) time. With a more efficient
implementation, the running time of the algorithm can be improved to O(M + l log l), which
is much more efficient than Algorithm 3 with a running time O(M + l3).

Algorithm description.

Since the vertex set V (T ) is the trips of A, we also call a vertex in T a trip. Our algorithm
processes every trip in T starting from a source trip in T with the largest label. When a
source trip y in T is processed, y is included in a partial solution (S, σ). That is, ηy is assigned
as a driver and serves as many trips in Dy that are not served by S and are closest to ηy as
possible, which is the set N(y, c, S) of c such trips as defined in Subsection 3.3.3. In general,
when any trip u is assigned as a driver, σ(u) = N(u, c, S), where c = min{λu+1, |Du\σ(S)|}.
A trip x is marked if x is assigned as a driver or a passenger by the algorithm. Each trip x

which is not a source of T is processed only if all ancestors of x have been marked by the
algorithm and |σ(v)| = λv + 1 for every v ∈ S ∩ Ax. When a trip x is processed, a trip u

with the largest capacity λu is selected from Ax \ S and assigned as a driver in S.
At any execution point of the algorithm, whenever a trip has been assigned as a driver,

it remains as a driver throughout the algorithm. On the other hand, a trip that has been
assigned as a passenger can be changed to a driver when a new trip is processed. The pseudo
code of the algorithm is given in Algorithm 4 (Greedy Assignment).

Algorithm 4 Greedy Assignment
1: Input: An inverse tree T of G⃗ with l trips.
2: Output: A solution (S, σ) for an instance (N, A) of RSOne.
3: S = ∅; let v1, . . . , vr be the sources in T s.t. vi < vj for i < j;
4: for i = r to 1 do
5: x = vi; // initialization
6: while (x = vi) ∨ (all trips in Ax \ {x} are marked) do // process x
7: let u be a trip in Ax \ S with the largest λu;
8: if u ̸= x then // u has been assigned as a passenger
9: let ηk ∈ S s.t. u ∈ σ(k);

10: σ(k) = (σ(k) \ {u}) ∪ {x}; mark x;
11: end if
12: c = min{λu + 1, |Du \ σ(S)|}; S = S ∪ {ηu};
13: σ(u) = N(u, c, S); mark all trips in σ(u);
14: if all trips in Du are marked then
15: break the while loop;
16: else
17: let x be the unmarked trip in Du with the minimum dist(u, x) in T ;
18: end if
19: end while
20: end for
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Analysis of algorithm

Given a component T (inverse tree) of G⃗ with l trips and a partial solution (S, σ) for T (1, l),
we will use the following notations in the proof:

• P (S) = σ(S) \ S is the set of passengers served by S;

• for A ⊆ T (1, l), S(A) = S ∩ A is the set of drivers that are also trips of A; and

• for a trip i in T (i, l), free(i) = λi − |σ(i)| + 1 is the number of additional trips i can serve.

For clarity, when a solution is denoted by (S′, σ′) or (S∗, σ∗), free(i) is denoted as free′(i)
or free∗(i) with respect to (S′, σ′) or (S∗, σ∗).

Lemma 3.15. Given a simplified serve relation graph T of G⃗, Algorithm 4 finds a solution
(S, σ) for T (1, l) with the minimum |S|.

Proof. Assume that the drivers in S are indexed such that ui ∈ S is the ith driver included
in S by Algorithm 4. Let (S∗, σ∗) be an optimal solution for T (1, l). Let uj be the driver in
S \ S∗ with the smallest index and xj be the trip processed by the algorithm for including
uj in S, implying uj ∈ Axj . Let (SF , σF ) be the partial solution at the end of the iteration
including uj−1 in SF by the algorithm (note that SF = {u1, . . . , uj−1}). From the algorithm,
xj is either a source or a descendant of uj−1. If xj is a source, then uj = xj must be included
in both S and S∗, a contradiction. Thus, xj is a descendant of uj−1 (see Figure 3.8). Then,
Axj \ {xj} = σF (SF (Axj )) because all trips in Axj \ {xj} are marked. Further from the
algorithm, ∑

ui∈SF (Axj )(λui + 1) = |Axj \ {xj}|. Notice that SF ⊆ S∗. We use S∗
F for SF

when we refer the drivers of SF as the drivers in S∗, i.e. S∗
F = S∗ ∩ SF = {u1, . . . , uj−1}.

Figure 3.8: Modify (S∗, σ∗).
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We modify (S∗, σ∗) to construct another optimal solution (S′, σ′) s.t. {u1, . . . , uj} ⊆ S′.
Let S∗

L = S∗(Axj ) \ S∗
F (Axj ). We replace a driver v ∈ S∗

L by uj to construct (S′, σ′). Let v

be a driver in S∗
L. Then the following property holds.

(A) Since λuj = maxu∈Axj \SF
λu and v ∈ S∗(Axj ), λv ≤ λuj .

The construction is divided into two cases.
Case 1: S∗

L does not have any driver in Axj \ {xj}. Then, all trips of Axj \ {xj} are
served by S∗

F (Axj ). From S∗
F = SF and Algorithm 4,

∑
ui∈S∗

F (Axj )
(λui + 1) =

∑
ui∈SF (Axj )

(λui + 1) = |Axj \ {xj}|.

Therefore, xj is not served by any driver in S∗(Axj \ {xj}), implying xj ∈ S∗. Thus,
S∗

L = {xj}. If uj = xj then uj is in both S and S∗, a contradiction. Thus, uj ̸= xj ,
uj ∈ Axj \ {xj}, and there are drivers y ∈ SF (Axj ) and y∗ ∈ S∗

F (Axj ) such that uj ∈ σF (y)
and uj ∈ σ∗(y∗). Let S′ = (S∗\{xj})∪{uj} (replace xj by uj), σ′(y∗) = (σ∗(y∗)\{uj})∪{xj},
σ′(uj) = {uj} ∪ (σ∗(xj) \ {xj}) (this can be done due to Property (A)), and for each
v ∈ S′ \ {uj , y∗}, σ′(v) = σ∗(v). Then, (S′, σ′) is a solution for T (1, l) with |S′| = |S∗| and
{u1, . . . , uj−1, uj} ⊆ S′.

Case 2: S∗
L has a driver vj in Axj \ {xj} (see Figure 3.8). The construction has two

rounds. In round 1, we modify σ∗ so that S∗
L only serves the passengers in Dxj and S∗

F (Axj )
serves all passengers in Axj \ (S∗

L ∪ {xj}). In round 2, we replace some driver vj ∈ S∗
L by uj

to get (S′, σ′).
In round 1, let P ∗ = P (S∗

F (Axj )) \ P (SF (Axj )) be the set of trips which are passen-
gers of S∗

F (Axj ) but not passengers of SF (Axj ) (see Figure 3.8). Then P ∗ ⊆ Dxj because
P (SF (Axj )) = Axj \ ({xj} ∪ S∗

F (Axj )). Let P = P (SF (Axj )) ∩ P (S∗
L) be the set of trips

which are passengers of both SF (Axj ) and S∗
L (see Figure 3.8). We modify σ∗ so that all

passengers of P are served by S∗
F (Axj ) and a subset of passengers of P ∗ are served by S∗

L.
Notice that S∗

L ⊆ Axj , P ⊆ Axj \ {xj} and |P ∗| ≤ |P | + |S∗
L|. The modification of σ∗ goes

as follows. Let Q be a subset of P ∗ such that |Q| = min{|P |, |P ∗|}. For every v ∈ S∗
L,

σ∗(v) = σ∗(v) \ P and then assign at most free∗(v) passengers of Q to σ∗(v) (remove all
passengers of P from σ∗(S∗

L) and make all passengers of Q to be served by S∗
L; S∗

L only
serves passengers in Dxj ). For every v ∈ S∗

F (Axj ), σ∗(v) = σF (v) \ S∗
L and then assign at

most free∗(v) passengers of P ∗ \Q to σ∗(v) (remove passengers of Q from σ∗
F (Axj ) and make

all passengers of P ∪ P ∗ \ Q to be served by S∗
F (Axj ); all passengers in Axj \ (S∗

L ∪ {xj})
are served by S∗

F ). The modification can be done regardless of |P | > |P ∗| or |P | < |P ∗|
because S∗

F (Axj ) = SF (Axj ) can serve all trips of Axj \{xj}. As a result, S∗ does not change,
S∗

F (Axj ) serves all trips in Axj \ (S∗
L ∪ {xj}) and at most |S∗

L| trips in Dxj , and every trip
in P (S∗

L) is in Dxj .
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In round 2, we replace some driver vj ∈ S∗
L \ {xj} by uj to construct (S′, σ′). The

following property is true for every vj ∈ S∗
L \ {xj}:

(B) There is a y ∈ SF (Axj ) such that vj ∈ σF (y) because Axj \ {xj} = σ(SF (Axj )),
vj ∈ Axj \ {xj} and vj ̸∈ SF (Axj ). Notice that y is also in S∗

F (Axj ) and in round
1 for modifying σ∗, σ∗(y) = σF (y) \ S∗

L and at most free∗(y) passengers of P ∗ \ Q

(P ∗ ⊆ Dxj ) are assigned to σ∗(y). Since vj ∈ S∗
L, either (B1) free∗(y) ≥ 1 or (B2)

there is a w ∈ Dxj such that w ∈ σ∗(y).

Let S′ = (S∗ \ {vj}) ∪ {uj} (replace vj by uj) and let σ′(v) = σ∗(v) \ {uj} for v ∈ S′ \ {uj}.
Since σ∗(vj) only serves trips in Dxj and λvj ≤ λuj (Property (A)), σ′(uj) can serve all
passengers of σ∗(vj). Let σ′(uj) = {uj} ∪ (σ∗(vj) \ {vj}). Then vj is the only trip not served
by S′ right now. If Property (B1) holds, then let σ′(y) = σ∗(y)∪{vj}. If Property (B2) holds,
let σ′(y) = (σ∗(y)\{w})∪{vj}. Then w is the only trip not served by S′. Since uj ̸∈ S∗, there
is a v ∈ S∗(Axj ) such that uj ∈ σ∗(v). If v ∈ S∗

F (Axj ) then let σ′(v) = (σ∗(v) \ {uj}) ∪ {w}.
Otherwise, v ∈ S∗

L. We select this v as vj . Then |σ′(uj)| = |σ∗(vj)| − 1. From this and
Property (A),

free′(uj) = λuj − |σ′(uj)| + 1 = λuj − (|σ∗(vj)| − 1) + 1 ≥ λuj − λvj + 1 ≥ 1.

Let σ′(uj) = σ′(uj) ∪ {w}. As a result, we obtain a solution (S′, σ′) with |S′| = |S∗| and
{u1, . . . , uj−1, uj} ⊆ S′.

By the modification of (S∗, σ∗), we get an optimal solution (S′, σ′) with {u1, . . . , uj} ⊆
S′. Then the size of SF is increased by at least one, and by repeating the above argument
for each uj one by one, we can get an optimal solution (S′, σ′) with S′ = S.

Theorem 3.25. There is an algorithm that, given a ridesharing instance (N, A) of RSOne
satisfying Conditions C1-C5 and the transitive serve relation, computes a solution (S, σ)
for (N, A) in O(M + l log l) time, where M is the size of the ridesharing instance which
contains road network N and l trips.

Proof. By Lemma 3.15, Algorithm 4 computes a solution (S, σ) of T with minimum |S|,
where T of G⃗ is constructed based on (N, A). By Lemma 3.10, (S, σ) is an optimal solution
for (N, A).

By a straightforward approach, it takes O(l) time to check if all vertices in Ax \ {x} are
marked for a non-source trip x in each iteration and O(l2) time in all iterations of the while
loop. The time for the check can be improved to O(1) for one iteration by the following
observation: when a non-source trip x is selected after a source vi (as defined in Algorithm 4)
has been processed and vi−1 has not, if x > vi−1 then all vertices in Ax \ {x} are marked.
Therefore, the time for checking the conditions in all iterations of the while loop is O(l).

By a straightforward approach, it takes O(l) time to find a trip u ∈ Ax \ S with the
largest λu in each iteration (Line 7) and O(l2) time in all iterations of the while loop. A more
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efficient way to find the trip u is to use a max-heap, based on the capacity of passengers in
Ax \ S. When a new source vi is processed, create a max-heap Hi associated with vi. Before
any new source is processed, add any newly assigned passengers to Hi. When a passenger
in Hi becomes a driver, it is removed from Hi. When a non-origin x is processed, we check
if x is a merge point in T (defined in the end of Subsection 3.3.2) or a descendant of a
merge point. If it is the case, merge all the heaps associated with sources that are ancestors
of x into one heap. To keep track of the created heaps, we push each heap’s associated
source in a stack ST1 in the order the heaps are created. We check the two top elements
of ST1: if they are ancestors of x, merge their associated heaps into one heap H. After the
merge, both sources are associated to H. Then, remove the top element of ST1. Repeatedly
checking the top two elements in ST1 until the second top element is not an ancestor of x.
The heap associated with the source in the top element of ST1 is used to find the trip u

with largest λu. The heap can be implemented using binomial heap [29]. Each of find-max,
delete-max, insert and merge operations can be done in O(log |H|), where |H| < l is the
size of a heap H. Hence, using max-heaps, it takes O(M + l × log l) time to find u with the
largest λu in all iterations of the while loop.

By a straightforward approach, it takes O(l) time to compute c = min{λu+1, |Du\σ(S)|}
and σ(u) = N(u, c, S) (Lines 12-13) in each iteration and O(l2) time in all iterations of the
while loop. A more efficient approach to compute the above is as follows: For a trip u (as
found at Line 7), let yu be the unmarked trip in Du closest to u. We try to check only
unmarked trips of Du one by one starting from yu. Once an unmarked trip is checked, the
trip is changed to marked and included in σ(u). After u is processed, if Du has an unmarked
trip then yu is updated and pushed into a stack ST2 to assist computing yu′ for a trip u′

selected for processing later. Let u be a trip in Ax \ S with the largest λu in the algorithm.
There are two cases:

1. u is a source. If the child of u is unmarked then take this child as yu and perform
Operation specified below (next paragraph). Assume that the child of u is marked. If
ST2 is empty then include u in σ(u) and the algorithm continues. Otherwise, remove
the top element y of ST2, yu = y and perform Operation.

2. u is not a source (u = x or u ̸= x). If the child of x is unmarked then take this child as
yu and perform Operation. Assume that the child of x is marked. If ST2 is empty then
include u in σ(u) and the algorithm continues. Otherwise, remove the top element y

of ST2, yu = y and perform Operation.

• Operation: Let u be a trip in Ax \ S with the largest λu in the algorithm and yu be
the unmarked trip in Du closest to u. We check the trips of Du one by one from yu.
Let y be a trip checked. If y is not marked then mark y and include y in σ(u). If y is
the top element of stack ST2 then remove y from ST2. The check stops if (a) y is the
sink of T , (b) |σ(u)| = λu + 1 or (c) y is marked.
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– Case (a). The algorithm continues (select the next u for processing).
– Case (b). If there is an unmarked trip in Du then update yu to the unmarked

trip in Du closest to u. If yu is not the top element of ST2 then we push yu into
stack ST2. The algorithm continues.

– Case (c). If stack ST2 is empty then the algorithm continues. Otherwise, let y

be the top element of ST2. We remove y from ST2, update yu = y and goto
Operation.

In the above processing, each unmarked trip is checked once and each marked trip is checked
at most twice. Therefore, the total time for computing c = min{λu + 1, |Du \ σ(S)|} and
σ(u) = N(u, c, S) of all trips is O(l).

It takes O(1) time for operations other than the above in each iteration and O(l) time in
all iterations of the while loop. Therefore, by straightforward implementations, the running
time of Algorithm 2 is O(l2), and by more efficient implementations, the running time is
improved to O(l log l). It takes O(M) time to compute G⃗. Thus, the theorem holds.

3.4 Ridesharing problem without the stop frequency condi-
tion

In this section, we first present two approximation algorithms for the ridesharing problem
RSOne satisfying Conditions C1-C3 and C5; and such a variant is denoted as RSOneStop.
These two approximation algorithms are modified from algorithms proposed by Kutiel and
Rawitz [65] for the maximum carpool matching problem (MCMP). Then, we present our
novel algorithm for the ridesharing problem RSOneStop, which is more efficient compared to
the first two approximation algorithms. We assume all trips have the same destination of C1,
but the algorithms can also apply to all trips have the same origin with small modifications.
Let λ = maxi∈A λi be the largest capacity of all trips in A. All three algorithms have the
same λ+2

2 -approximation ratio.

3.4.1 Approximation algorithms based on MCMP

Recall that an instance of the maximum carpool matching problem (MCMP) consists of a
digraph G⃗(V, E), a capacity function c : V → N, and a weight function w : E → R+, where
the vertices of V represent the individuals and an edge (u, v) ∈ E(G⃗) implies v can serve u.
We are only interested in the unweighted case, that is, w(u, v) = 1 for every (u, v) ∈ E(G⃗).
Every v ∈ V (G⃗) can be assigned as a driver or passenger. The goal of MCMP is to find a
set of drivers S ⊆ V to serve all V such that the number of passengers is maximized.

A subset M ⊆ E(G⃗) of edges is a feasible solution to MCMP if the graph induced by
M is a set S of vertex-disjoint stars in G⃗. Let Sv be a star in S rooted at center vertex v,
and leaves of Sv is denoted by Pv = V (Sv) \ {v}. For each star Sv ∈ S, outdeg(v) = 0, and
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indeg(u) = 0 and outdeg(u) = 1 (directs to v) for every u ∈ Pv. The center vertex of each
star Sv is assigned as a driver and the leaves are assigned as passengers. This is equivalent
to the notation σ(v) = {v} ∪ Pv = V (Sv). The set of edges in S is called a carpool matching
CM (CM is referred to as a matching for short). An edge in CM is called a matched edge.
Notice that |CM | equals to the number of passengers, and we want to maximize |CM |.
Here, the term matching is different from the matching definition stated in Section 2.2.

For a carpool matching CM and a subset V ′ ⊆ V of vertices, let CM(V ′) be the set
of edges in CM incident to V ′. The in-neighbors of a vertex v is defined as N in(v) =
{u | (u, v) ∈ E(G⃗)}, and the set of edges entering v (v is the head) is defined as in-edges
Ein(v) = {(u, v) | (u, v) ∈ E(G⃗)}. Table 3.2 lists the basic notation and definition for this
section.

Notation Definition
S A set of vertex-disjoint stars in G⃗(V, E) (solution to MCMP)
Sv A subgraph of G⃗ that is a star rooted at vertex v
Pv Pv = V (Sv) \ {v}, the set of leaves of star Sv

c(v) Capacity of vertex v (equivalent to λv in Table 2.1)
CM The set of edges in S, namely E(S)
CM(V ′) The set of edges in CM incident to a set V ′ of vertices
N in(v) The set of in-neighbors of v, N in(v) = {u | (u, v) ∈ E(G⃗)}
Ein(v) The set of edges entering v, in-edges Ein(v) = {(u, v) | (u, v) ∈ E(G⃗)}
δPv The number of stops required for v to pick-up all of Pv

Table 3.2: Common notation and definition for MCMP used in this section.

There is a major difference between MCMP and RSOne in general. In MCMP, it is
assumed that when an individual v is assigned as a driver, v can serve any combination
of upto c(v) passengers whose corresponding vertices are incident to v. However, this is
not true for the ridesharing problem in general. For example, suppose there are three trips
v1, v2, v3 such that (v2, v1) and (v3, v1) are in E(G⃗) and c(v1) = 2 (λv1 = 2), namely, v1 can
serve v2 and v3. A solution S to MCMP would assign v1 as a driver to serve both v2 and
v3. However, this solution may not be a valid solution to RSOne for the following reasons:

1. The detour zv1 of v1 is not large enough to serve both v2 and v3. Unless we can assume
zv1 is unlimited or ov2 , ov3 , dv2 and dv3 are on a preferred path Pv1 of v1. The latter
requires the detour condition C2 to be satisfied.

2. Even if C2 is satisfied, v1 could have two preferred paths, one that passes through ov2

and dv2 and the other passes through ov3 and dv3 . Unless there is only one preferred
path (satisfying C3), S still cannot apply to RSOne.

3. Even if C2 and C3 are satisfied, the time constraints may be violated when both v2

and v3 are assigned to v1, so we need to have C5 be satisfied as well.
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Two approximation algorithms (EdgeSwap and StarImprove) are presented in [65]; both
can achieve 1

2 -approximation ratio for MCMP, that is, the number of passengers found by
the algorithms is at least half of that for the optimal solution. The EdgeSwap algorithm
actually can be applied to RSOne satisfying Conditions C2-C3 and C5, but the algorithm
is very inefficient as described in the next paragraph. Although we only show that the
StarImprove algorithm can be applied to RSOneStop, we believe that:

Conjecture 3.1. StarImprove can be applied to RSOne satisfying Conditions C2-C3 and
C5 with approximation ratio λ+2

2 .

EdgeSwap. The EdgeSwap algorithm requires the input instance to have a bounded
degree graph (or the largest capacity λ is bounded by a constant) to have a polynomial
running time. The idea of EdgeSwap is to:

• swap a subset CM ′ ⊆ CM of i edges with a subset E′ ⊆ (E \ CM) of i + 1 edges such
that CM = (CM \ CM ′) ∪ E′ is feasible for 1 ≤ i ≤ k, and k is a constant integer.

The running time of EdgeSwap is in the order of O(|E|2k+1). A small modification of
EdgeSwap is required so that it can apply to RSOneStop. Let S be the set of stars induced
by CM . For each star Sv ∈ S, let σ(v) = V (Sv). During the feasibility check of CM , make
sure that σ(v) does not require more than δv to pick-up and more than δv to drop-off all of
Pv. Then, EdgeSwap can be applied to RSOneStop to achieve λ+2

2 -approximation ratio in
O(l2λ) time, which may not be practical even if λ is a small constant.

StarImprove. Let (G⃗(V, E), c, w) be an instance of MCMP. Let S be the current set
of stars found by StarImprove and CM be the set of matched edges. The idea of the
StarImprove algorithm is to iteratively check in a for-loop for every vertex v ∈ V (G⃗):

• check if there exists a star Sv with E(Sv) ∩ CM = ∅ such that the resulting set of
stars CM = (CM \ CM(V (Sv))) ∪ Sv gives a larger cardinality matching.

Such a star Sv is called an improvement and |Pv| ≤ c(v). The algorithms stops when no
improvement can be found.

Given an instance (N, A) of RSOneStop, the StarImprove algorithm cannot apply to
(N, A) directly. For example, suppose v can serve u1 and u2 with λv = 2 and δv = 1. The
StarImprove assigns v as a driver to serve both u1 and u2. However, if u1 and u2 have
different origins (ov ̸= ou1 ̸= ou2), this assignment is not valid for (N, A). Hence, we need
to modify StarImprove for computing a star.

For a vertex v and matching CM , let N in-CM (v) = {u | (u, v) ∈ Ein(v) and u is not
incident to any edge of CM}. For a star Sv, let δPv be the number of stops required for v to
pick-up Pv. Suppose the in-neighbors N in-CM (v) are partitioned into g1(v), . . . , gm(v) groups
such that trips with same origins are grouped together. When stop frequency constraint is

56



not satisfied, finding a star Sv with maximum |Pv| is similar to solving a fractional knapsack
instance using a greedy approach as shown in Algorithm 5 (Compute Star). The idea is, in
each iteration, to select the largest group of in-neighbors N in-CM (v) until the capacity c(v)
is reached.

Algorithm 5 Compute Star
1: The in-neighbors N in-CM (v) are already partitioned into g1(v), . . . , gm(v).
2: Pv = ∅; c = c(v); δPv = 0;
3: if ∃ a group gj(v) s.t. ou = ov for any u ∈ gj(v) then
4: // there is at most one such group gj(v)
5: Let g′

j(v) ⊆ gj(v) be a maximum subset of gj(v) such that |g′
j(v)| ≤ c.

6: Pv = Pv ∪ g′
j(v); c = c − |g′

j(v)|;
7: end if
8: while c > 0 and δPv < δv do
9: Select gi(v) = argmax1≤i≤m|gi(v) \ Pv|;

10: if |gi(v) \ Pv| = 0 then break the while loop;
11: Let g′

i(v) ⊆ gi(v) be a maximum subset of gi(v) such that |g′
i(v)| ≤ c.

12: Pv = Pv ∪ g′
i(v); c = c − |g′

i(v)|; δPv = δPv + 1;
13: end while
14: return the star Sv induced by {v} ∪ Pv;

Lemma 3.16. Let v be the trip being processed and Sv be the star found by Algorithm 5
with respect to matching CM . Then |Pv| ≥ |P ′

v| for any star S′
v such that E(S′

v) ∩ CM = ∅.

Proof. Assume for contradiction that |P ′
v| > |Pv| for some star S′

v s.t. E(S′
v) ∩ CM = ∅.

Since |P ′
v| > |Pv|, c(v) > |Pv|. For any trip u ∈ N in-CM (v), let giu(v) be the group s.t.

u ∈ giu(v). Let u′ ∈ P ′
v \ Pv. Note that ou′ ̸= ov; otherwise, u′ would have been included in

Pv by the greedy algorithm, and hence, δv > 0. From c(v) > |Pv| and δv > 0, the greedy
algorithm must have executed the while-loop and checked all the groups in decreasing order
of their size |gi(v) \ Pv|, and δPv = δv at the end of the while-loop. Because c(v) > |Pv|,
|Pv ∩ giw(v)| = |giw(v)| ≥ |P ′

v ∩ giw(v)| for any w ∈ P ′
v ∩ Pv. Since groups are checked in

decreasing order of their size, |Pv ∩ gi(v)| ≥ |P ′
v ∩ giu(v)| for every group gi(v) and every

u ∈ P ′
v \ Pv. Recall that δPv = δv. Hence, |Pv| ≥ |P ′

v|, which is a contradiction.

Definition 3.1. A star Sv rooted at v is an improvement with respect to matching CM if
|Pv| ≤ c(v), δPv ≤ δv and |E(Sv)| −

∑
(u,v)∈E(Sv) |CM(u)| > |CM(v)|.

Definition 3.1 is equivalent to the original definition in [65], except the former is for the
unweighted case and stop constraint. When an improvement star Sv is found, the current
matching CM is increased by exactly |E(Sv)| −

∑
(u,v)∈E(Sv) |CM(u)| edges (an augmenta-

tion CM = (CM \ ∪(u,v)∈E(Sv)CM(u)) ∪ E(Sv) is performed). For a vertex v and a subset
S ⊆ Ein(v), let N in

S (v) = {u | (u, v) ∈ S}.

Lemma 3.17. Let CM be the current matching and v be a vertex with no improvement with
respect to CM . Let Sv be a star with E(Sv) ⊆ Ein(v) such that |E(Sv)| ≤ c(v) and δPv ≤ δv.
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Then, |E(Sv)| ≤ |CM(v)| + |CM(N in
Sv

(v))|. Further, if any star Sv found by Algorithm 5
with respect to CM is not an improvement, then no other S′

v is an improvement.

Proof. When no improvement exists for a vertex v, we get |E(Sv)| − |CM(N in
Sv

(v))| =
|E(Sv)| −

∑
(u,v)∈E(Sv) |CM(u)| ≤ |CM(v)| by Definition 3.1.

To maximize |E(Sv)|, we need to maximize |E(Sv)| −
∑

(u,v)∈E(Sv) |CM(u)|, which can
be done by selecting only in-neighbors of v that are not incident to any matched edges.
This is because for any (u, v) ∈ E(Sv) s.t. u is incident to a matched edge, |CM(u)| ≥ 1.
In other words, including such a vertex u cannot increase |E(Sv)| −

∑
(u,v)∈E(Sv) |CM(u)|.

Algorithm 5 considers only in-neighbors N in-M (v) = {i | i ∈ N in \ V (M)}. By Lemma 3.16,
|Pv| is maximized among all stars rooted at v w.r.t. CM . Hence, the lemma holds.

Lemma 3.17 is equivalent to Lemma 5 of [65], except the former is for the unweighted
case and stop constraint. By Lemma 3.17 and the same argument of Lemma 6 in [65], we
have the following lemma.

Lemma 3.18. The modified StarImprove algorithm computes a solution for an instance
(N, A) of RSOneStop with at least (l − |S∗|)/2 trips assigned as passengers, where (S∗, σ∗)
is an optimal solution for (N, A).

Theorem 3.26. Let (N, A) be a ridesharing instance of RSOneStop. Let (S∗, σ∗) be an
optimal solution for (N, A), l = |A| and λ = maxi∈A λi. Then,

• The EdgeSwap algorithm computes a solution (S, σ) for (N, A) such that |S∗| ≤ |S| ≤
λ+2

2 |S∗| with running time O(M + l2λ).

• The modified StarImprove algorithm computes a solution (S, σ) for (N, A) such that
|S∗| ≤ |S| ≤ λ+2

2 |S∗| with running time O(M + λ · l3), where M is the size of the
ridesharing instance which contains road network N and l trips.

Proof. First, we need to construct a digraph G⃗ to represent the serve relation of the trips
in A using Algorithm 1, which takes O(M) time. Then reverse the direction of all arcs in
G⃗, and this gives an instance can be solved by the EdgeSwap and modified StarImprove
algorithms. Then, the first bullet point of the lemma is due to the EdgeSwap paragraph
stated previously. The rest of the proof is for the second bullet point.

By Lemma 3.18, the modified StarImprove algorithm finds a solution for (N, A) with
at least (l − |S∗|)/2 passengers, and hence, at most |S| ≤ l − (l − |S∗|)/2 = (l + |S∗|)/2
trips are assigned as drivers. Since there are l − |S∗| passengers in the optimal solution,
|S∗| ≥ (l − |S∗|)/λ, implying l ≤ (λ + 1)|S∗|. Therefore,

|S| ≤ (l + |S∗|)/2 ≤ ((λ + 1)|S∗| + |S∗|)/2 = (λ + 2)|S∗|/2.

The original StarImprove algorithm has a for-loop to check each vertex v to see if an
improvement can be found, that is, it takes O(l) time to check all in-neighbors of v to see if a
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star Sv that can increase |CM | exists, where CM is the current matching. In total, the for-
loop takes O(l2) time since there are O(l) vertices to check. As for the modified StarImprove,
it takes O(λ · l) time to computing Sv if it exists (the running time of Algorithm 5). Hence,
the for-loop becomes O(λ · l2) for the modified StarImprove. After an improvement is made
each time, StarImprove scans every vertex again to check for another improvement until no
improvement can be found, and this takes O(l) time due to at most O(l) improvements can
be made for the unweighted case. Thus, in total, the modified StarImprove has a running
time of O(M + λ · l3).

3.4.2 A novel algorithm for RSOneStop

In this section, we present our approximation algorithm for RSOneStop; our algorithm
has a better running time than the approximation algorithms based on MCMP in the
previous section. For our proposed algorithm, we assume the serve relation is transitive,
that is, trip i can serve trip j and j can serve trip k imply i can serve k. As mentioned in
Subsection 3.3.1, transitive serve relation typically occurs when each trip uses the shortest
path from the origin to destination, computed by the centralized ridesharing system (CRS),
as the preferred path. This is usually the case in practice. Since the preferred path condition
C3 is satisfied for A, trip i can serve trip j implies that Pj is a subpath of Pi, so the serve
relation is transitive (assuming unique shortest path in N).

Preprocessing.

Given an instance (N, A) of RSOneStop, we first construct a simplified serve relation meta
graph Γ(V, E) to express the serve relation, where V (Γ) represents the origins of all trips in
(N, A). Each node µ of V (Γ) contains all trips with the same origin. There is an edge (µ, ν)
in E(Γ) if a trip in µ can serve a trip in ν. Since C1-C3 and C5 are satisfied, if one trip in µ

can serve a trip in ν, any trip in µ can serve any trip in ν. We say node µ can serve node ν.
An edge (µ, ν) in Γ is called a short cut if after removing (µ, ν) from Γ, there is a path from
µ to ν in Γ. We simplify Γ by removing all short cuts from Γ. The construction of Γ(V, E)
can be done using an algorithm similar to Algorithm 1. The only major differences are to
create a node µi for each group Gi (on Line 4 of Algorithm 1) and do not create a chain
(Line 17 - Line 20) since a node µi contains all trips of Gi.

Similarly, as stated in Subsection 3.3.2, we assume w.l.o.g. that G⃗(V, E) contains a
single connected component T , which is an inverse tree. We label the nodes of V (G⃗) as
V (G⃗) = {µp, µp−1, ..., µ1}, where p = |V (G⃗)|, in such a way that for every edge (µb, µa) of Γ,
b > a, and we say µb has a larger label than µa. Again, the labeling can done by Algorithm 2
that starts at integer label p instead of l. Hence, the running time for constructing and
labelling Γ is O(M), where M is the size of the ridesharing instance which contains road
network N and l trips.
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Each node in Γ without an incoming edge is called a source, and µ1 is the unique sink.
For a node µ in V (Γ), the set of trips contained in mode µ is denoted by A(µ). For a set U

of nodes in V (Γ), A(U) = ⋃
µ∈U A(µ). Similarly, given a set S of drivers, we denote the set

of drivers in the nodes of U by S(U) and the set of drivers in a node µ by S(µ). For a trip
i ∈ A, the node that contains i is denoted by node(i), that is, if i ∈ A(µ) then node(i) = µ.
Table 3.3 contains the basic notation and definition for this section.

Notation Definition
Γ(V, E) and p A digraph expressing the serve relation and p = |V (Γ)|
µ is an ancestor of ν If ∃ a nonempty path from µ to ν in Γ (ν is a descendant of µ)
Aµ and A∗

µ Set of ancestors of µ and A∗
µ = Aµ ∪ {µ}, respectively

Dµ and D∗
µ Set of descendants of µ and D∗

µ = Dµ ∪ {µ}, respectively
A(µ) and A(U) Set of trips in a node µ and in a set U of nodes, respectively
S(µ) and S(U) Set of drivers in a node µ and in nodes U , respectively
node(i) The node that contains trip i (if i ∈ A(µ) then node(i) = µ)
free(i) The remaining seats (capacity) of i w.r.t. solution (S, σ)
stop(i) The number of stops i has to made to pick-up all trips assigned to i

Table 3.3: Basic notation and definition used in this section.

Algorithm Description.

We divide all trips of A into two sets W and X as follows:

W = {i ∈ A | λi = 0} ∪ {i ∈ A(µ) | δi = 0 and |A(µ) = 1| for every node µ ∈ V (Γ)} and

X = A \ W.

For a node µ in Γ, let X(µ) = X ∩ A(µ) and W (µ) = W ∩ A(µ). Our algorithm tries
to minimize the number of drivers that only serve itself. There are three phases in the
algorithm. In Phase-I, it serves all trips of W and tries to minimize the number of trips
in W that are assigned as drivers since each trip of W can serve only itself. Let Z be the
set of unserved trips after Phase-I such that for every i ∈ Z, δi = 0. In Phase-II, it serves
all trips of Z and tries to minimize the number of trips in Z to be assigned as drivers,
each only serves itself. In Phase III, it serves all remaining trips. Let (S, σ) be the current
partial solution and ηi ∈ S. Denoted by free(i) = λi − |σ(i)| + 1 is the remaining seats
(capacity) of i w.r.t. solution (S, σ). Denoted by stop(i) is the number of stops i has to
made in order to pick-up all trips in σ(i) w.r.t. (S, σ). For the initial solution (S, σ) = (∅, ∅),
free(i) = λi and stop(i) = 0 for all i ∈ A. For a driver i and node µ, we define A(i, µ, S)
as the set of min{free(i), |A(µ) \ σ(S)|} trips in A(µ) \ σ(S) and W (i, µ, S) as the set of
min{free(i), |W (µ) \ σ(S)|} trips in W (µ) \ σ(S), and similarly for Z(i, µ, S). The three
phases of the approximation algorithm are described in following, and the pseudo code is
given in Algorithm 6 (Approximating RSOneStop).
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(Phase-I) In this phase, the algorithm assigns a set of drivers to serve all trips of W , and it
ends once all trips of W are served. Let Γ(W ) = {µ ∈ V (Γ) | W (µ)\σ(S) ̸= ∅}, and in each
iteration, a node of Γ(W ) is processed. In each iteration, the node µ = argmaxµ∈Γ(W )|W (µ)\
σ(S)| is selected and a subset of trips in W (µ) \ σ(S) is served by a driver as follows:

• Let X̂1 = {i ∈ S(Aµ) | free(i) > 0 ∧ stop(i) < δi} and X̄ = {i ∈ X ∩ A(A∗
µ) \ σ(S) |

stop(i) < δi ∨ i ∈ A(µ)}. The algorithm finds and assigns a trip x as a driver to serve
W (x, µ, S) such that x = argminx∈X̂1∪X̄ : λx≥|W (µ)\σ(S)|δx − stop(x).

– If such a trip x does not exist, it means that λx < |W (µ) \ σ(S)| for every
x ∈ X̂1 ∪ X̄ assuming X̂1 ∪ X̄ ̸= ∅. Then, x = argmaxx∈X̂1∪X̄ free(x) is assigned
as a driver to serve W (x, µ, S). If there is more than one x with same free(x),
the trip with smallest δx − stop(x) is selected.

• When X̂1 ∪ X̄ = ∅, assign every w ∈ W (µ) \ σ(S) as a driver to serve itself.

(Phase-II) In the second phase, all trips of Z = {i ∈ A \ σ(S) | δi = 0} will be served.
Let Γ(Z) = {µ ∈ V (Γ) | Z(µ) = (Z ∩ A(µ)) ̸= ∅}. Each node µ of Γ(Z) is processed in the
decreasing order of their node labels.

• If |Z(µ)| ≥ 2, trip x = argmaxx∈Z(µ)λx is assigned as a driver and serves a subset of
trips in Z(x, µ, S) with smallest capacity among trips in Z(µ) \ σ(S).

• This repeats until |Z(µ)| ≤ 1. Then next node in Γ(Z) is processed.

After all nodes of Γ(Z) are processed, each node µ of Γ(Z) such that |Z(µ)| > 0 is processed
again; note that every µ contains exactly one z ∈ Z(µ) now, that is, |Z(µ)| = 1.

• A driver x ∈ X̂2 = {i ∈ S(A∗
µ) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ A(µ))} with largest

free(x) is selected to serve z = Z(µ) if X̂2 ̸= ∅.

• If X̂2 = ∅, a trip x ∈ X̄ = {i ∈ X ∩ A(A∗
µ) \ σ(S) | stop(i) < δi ∨ i ∈ A(µ)} with

largest δx is selected to serve z = Z(µ).

(Phase-III) To serve all remaining trips, the algorithm processes each node of Γ in de-
creasing order of node labels from µp to µ1. Let µj be the node being processed by the
algorithm. Suppose there are trips in A(µj) that have not be served, that is, A(µj) ⊈ σ(S).

• A driver x ∈ X̂2 = {i ∈ S(A∗
µj

) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ A(µj))} with largest
free(x) is selected if X̂2 ̸= ∅.

• If X̂2 = ∅, a trip x = argmaxx∈X(µj)\σ(S)λx is assigned as a driver. If the largest λx is
not unique, the trip with the smallest δx is selected.

• In either case, x is assigned to serve A(x, µj , S). This repeats until all of A(µj) are
served. Then, next node µj−1 is processed.
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Algorithm 6 Approximating RSOneStop
1: Input: The simplified serve relation meta graph Γ for an instance (N, A) of RSOneStop.
2: Output: A solution (S, σ) for the instance (N, A) with λ+2

2 -approximation ratio.
3: (S, σ) = (∅, ∅); let Γ(W ) = {µ ∈ V (Γ) | W (µ) \ σ(S) ̸= ∅}.
4: while Γ(W ) ̸= ∅ do // Beginning of Phase-I
5: Compute µ = argmaxµ∈Γ(W )|W (µ) \ σ(S)|. Let X̂1 = {i ∈ S(Aµ) | free(i) > 0 ∧ stop(i) < δi}
6: and X̄ = {i ∈ X ∩ A(A∗

µ) \ σ(S) | stop(i) < δi ∨ i ∈ A(µ)}.
7: if X̂1 ∪ X̄ ̸= ∅ then
8: Compute x = argminx∈X̂1∪X̄ : λx≥|W (µ)\σ(S)|δx − stop(x).
9: if x = ∅ then x = argmaxx∈X̂1∪X̄ free(x) with the smallest δx − stop(x).

10: if x /∈ S then S = S ∪ {ηx}; σ(x) = {x};
11: σ(x) = σ(x) ∪ W (x, µ, S); update free(x) and stop(x);
12: else
13: for each w ∈ W (µ) \ σ(S), S = S ∪ {ηw}, σ(w) = {w}; update free(w);
14: end if
15: end while // End of Phase-I. Below is Phase-II
16: Let Z = {i ∈ A \ σ(S) | δi = 0} and Γ(Z) be the set of nodes containing Z.
17: for each node µ ∈ Γ(Z) in decreasing order of the node labels do
18: while |Z(µ)| ≥ 2 do
19: Compute x = argmaxx∈Z(µ)λx. S = S ∪ {ηx}; σ(x) = {x};
20: σ(x) = σ(x) ∪ Z(x, µ, S) where Z(x, µ, S) consists of trips with smallest capacity in
21: Z(µ) \ σ(S); update free(x) and stop(x); update Z.
22: end while
23: end for
24: for each node µ ∈ Γ(Z) in decreasing order of node labels do // implying |Z(µ)| = 1
25: Let X̂2 = {i ∈ S(A∗

µ) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ A(µ))}.
26: if X̂2 ̸= ∅ then
27: Compute x = argmaxx∈X̂2

free(x).
28: else
29: Let X̄ = {i ∈ X ∩ A(A∗

µ) \ σ(S) | stop(i) < δi ∨ i ∈ A(µ)}. Compute x = argmaxx∈X̄δx.
30: end if
31: if x /∈ S then S = S ∪ {ηx}; σ(x) = {x};
32: σ(x) = σ(x) ∪ Z(x, µ, S); update free(x) and stop(x);
33: end for // End of Phase-II. Below is Phase-III
34: for each node µ from µp to µ1 do
35: while A(µ) ⊈ σ(S) do
36: Let X̂2 = {i ∈ S(A∗

µ) | free(i) > 0 ∧ (stop(i) < δi ∨ i ∈ A(µ))}.
37: if X̂2 ̸= ∅ then Compute x = argmaxx∈X̂2

free(x).
38: else Compute x = argmaxx∈X(µ)\σ(S)λx (with smallest δx as a tiebreaker)
39: if x /∈ S then S = S ∪ {ηx}; σ(x) = {x};
40: σ(x) = σ(x) ∪ A(x, µ, S); update free(x) and stop(x);
41: end while
42: end for

Analysis of the approximation algorithm

A driver in a solution is called a solo driver if it serves only itself. Algorithm 6 tries to
minimize the number of solo drivers. Recall that W is the set of trips, each of which can
serve only itself. The algorithm, in Phase-I, computes a partial solution to serve all trips of
W and tries to assign as few trips of W to be drivers as possible. In Phase-II, the set Z of
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unserved trips after Phase-I (every i ∈ Z has δi = 0) is served. The rationale to serve such
set of trips is that many trips of Z can become solo drivers if all trips of A(node(i)) \ {i}
for i ∈ Z are served before i is processed or considered. This can cause Z to have the same
characteristic as W , so we treat Z separately. Let K be the number of solo drivers in a
solution computed by Algorithm 6 and K∗ be the number of solo drivers in any optimal
solution. Then there are at most (|A| − K)/2 + K drivers in the solution computed by
Algorithm 6 and at least (|A|−K∗)/(K +1)+K∗ drivers in the optimal solution. A central
line of the analysis is to show that K is close to K∗ which guarantees the approximation
ratio of Algorithm 6.

We now introduce some notation used in our analysis. Denoted by (S, σ) is the complete
solution computed by Algorithm 6. Denoted by (SI, σI) is the partial solution computed at
the end of Phase-I, so all trips of W are served by drivers in SI. For every driver i ∈ SI,
(σI(i)\{i})∩ (A\W ) = ∅. Let SI(X) = SI ∩X and SI(W ) = SI ∩W = SI \SI(X). Note that
each driver i ∈ SI(X) must serve at least one trip from W and σI(SI(X)) \ SI(X) ⊆ W if
SI(X) ̸= ∅. Let W = {W1, . . . , We} such that each Wj (1 ≤ j ≤ e) is the set of trips served
by a driver (or drivers when X̂1 ∪ X̄ = ∅) in SI for iteration j, where e is the last iteration
of Phase-I. For each Wj , Wj is a subset of W (µaj ) for some node µaj (indexed at aj), and
let (Sj , σj) be the partial solution just after serving Wj , 1 ≤ j ≤ e. For a driver i ∈ Sj ,
freej(i) = λi − |σj(i)| + 1 is the remaining available seats (capacity) of i w.r.t. (Sj , σj), and
stopj(i) is the number of stops i has to made in order to pick-up all trips in σj(i) w.r.t.
(Sj , σj).

Property 3.1. For every trip i that is assigned as a driver, i remains a driver until the
algorithm terminates and free(i) is non-increasing throughout the algorithm.

Recall that each set Wj of trips either are served by one driver or Wj ⊆ SI(W ) are
drivers themselves. For clarity, we denote each set Wj ⊆ SI(W ) by W̃j . When trips of W̃j

are assigned as drivers to serve themselves, all other trips W (µaj ) \ W̃j must have been
served by drivers in Sj−1 such that no driver in Sj−1 or trip in X \ σj−1(Sj−1) can serve
W̃j . In other words, W̃j = W (µaj ) \ σj−1(Sj−1) and X̄1 ∪ X̂ = ∅ w.r.t. (Sj−1, σj−1), so the
algorithm has the following property.

Property 3.2. For every pair W̃i and W̃j (i ̸= j), µai ̸= µaj .

Suppose (S∗, σ∗) is an optimal solution for (N, A) with |S∗| minimized. We first show,
in Lemma 3.19, that the number of trips in SI(W ) served by S∗ is at most that of the
passengers served by σI(SI(X)) (SI(X) not included). The proof idea is as follows. Let
U ⊆ S∗ be the set of drivers such that for every u ∈ U , σ∗(u) ∩ SI(W ) ̸= ∅ and U ∩ W = ∅.
We prove that U are also drivers in SI (specifically, U ⊆ SI(X)) and σI(u) serves at least
|σ∗(u) ∩ SI(W )| passengers for each u ∈ U .
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Lemma 3.19. Let (S∗, σ∗) be an optimal solution for (N, A) and S∗(W ) = W ∩ S∗. Let
U ⊆ S∗ be the set of drivers that serve all trips of W \ S∗(W ). Then |σI(SI(X)) \ SI(X)| ≥
|σ∗(U) ∩ SI(W )|.

Proof. Let Uj be the set of drivers in S∗ that serve (W1 ∪ . . . ∪ Wj) \ S∗(W ) for 1 ≤ j ≤ e.
Note that W = W1 ∪ . . . ∪ We and Ue = U . Let W̃a1 , . . . , W̃ad

be the sets computed by the
algorithm s.t. W̃ab

⊆ SI(W ), 1 ≤ b ≤ d, and for 1 ≤ b < c ≤ d, W̃ab
is computed before

W̃ac . For each W̃ab
, the drivers of Uab

that serve W̃ab
\ S∗(W ) can be partitioned into two

sets: (1) U ′
ab

= {u ∈ Uab
| σ∗(u) ∩ W̃ab

̸= ∅ and u ∈ A(µab
)} and (2) U ′′

ab
= {u ∈ Uab

|
σ∗(u) ∩ W̃ab

̸= ∅ and u ∈ A(Aµab
)}. We consider them separately.

(1) Due to W (µab
) ̸= ∅ (µab

∈ Γ(W )), the algorithm must have already assigned every
u ∈ U ′

ab
as a driver in Sab−1(X) when node µab

is selected to be processed since such a trip
u must be included in X̄ w.r.t. the partial solution just before µab

is processed. Further,
it must be that freeab−1(u) = 0. Otherwise, σab−1(u) would have served trips from W̃ab

, a
contradiction to the algorithm. From freeab−1(u) = 0, |σab

(u) ∩ W | ≥ |σ∗(u) ∩ W | for every
u ∈ U ′

ab
, that is, |

⋃
u∈U ′

ab
σab

(u) ∩ W | ≥ |
⋃

u∈U ′
ab

σ∗(u) ∩ W |.
(2) Every u ∈ U ′′

ab
must also be a driver in Sab−1(X) with freeab

(u) < λu. Otherwise, u

would have been assigned (from unassigned) as a driver in Sab
to serve trips from W̃ab

. We
further divide U ′′

ab
into two subsets: U ′′

ab
(0) = {u ∈ U ′′

ab
| freeab

(u) = 0} and U ′′
ab

(1) = {u ∈
U ′′

ab
| freeab

(u) ≥ 1}. We consider U ′′
ab

(0) in case (2.1) and U ′′
ab

(1) in case (2.2).
(2.1) For every u ∈ U ′′

ab
(0), |σab

(u) ∩ W | ≥ |σ∗(u) ∩ W | since freeab
(u) = 0. This implies

that |
⋃

u∈U ′′
ab

(0) σab
(u) ∩ W | ≥ |

⋃
u∈U ′′

ab
(0) σ∗(u) ∩ W |. (2.2) Consider any driver u ∈ U ′′

ab
(1).

Let Wj be a non-empty set of passengers served by σab
(u) where j < ab. In other words, Wj

is computed before W̃ab
. Recall that Wj ⊆ W (µaj ), Wj are the only passengers in W (µaj )

served by u, and (Sj−1, σj−1) is the partial solution just before trips of Wj are served. From
freej−1(u) > freeab

(u) > 0, Wj = W (µaj ) \ σj−1(Sj−1) must be served by σj(u), implying
|Wj | < freej−1(u). Since Wj is computed before W̃ab

, |W̃ab
| ≤ |W (µab

) \ σj−1(Sj−1)| ≤
|W (µaj ) \ σj−1(Sj−1)| < freej−1(u), meaning |Wj | ≥ |W̃ab

| for every set Wj of passengers
served by σab

(u). From the proofs of Cases (1) and (2), we have the following property.

Property 3.3. Every u ∈ U ′
ab

∪ U ′′
ab

is also a driver in SI(X), that is, U ⊆ SI(X).

Consider any pair ub ∈ U ′′
ab

(1) and uc ∈ U ′′
ac

(1) with ub ̸= uc for any 1 ≤ b < c ≤ d.
Since ub ̸= uc, the analysis of Case (2.2) can be applied to ub and uc independently, that is,
|Wjb

| ≥ |W̃ab
| for every set Wjb

of passengers served by σjb
(ub), and |Wjc | ≥ |W̃ac | for every

set Wjc served by σjc(uc). Now, consider the case ub = uc. Assume that U ′′
ab

(1) ∩ U ′′
ac

(1) ̸=
∅ for some 1 ≤ b < c ≤ d. Consider any driver u ∈ U ′′

ab
(1) ∩ U ′′

ac
(1). By definition, u

serves trips from both W̃ab
and W̃ac . Since freeac(u) > 0, stopac

(u) = δu. It must be that
freeab

(u) ≥ freeac(u) > 0 and stopab
(u) = δu (otherwise, σab

(u) would have served trips
from W̃ab

). From this and µab
̸= µac (by Property 3.2), δu ≥ 2 and σac(u) serves at least

two sets Wjb
and Wjc of passengers before W̃ab

is computed. By the conclusion of previous
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paragraph (Case 2.2), |Wjb
| ≥ |W̃ab

| and |Wjc | ≥ |W̃ac |. This can be generalized to all
sets W̃a1 , . . . , W̃ad

⊆ SI(W ) s.t. trips of W̃ab
\ S∗(W ) are served by Uab

for 1 ≤ b ≤ d.
We get |

⋃
u∈U ′

ab
∪U ′′

ab
,1≤b≤d σab

(u) ∩ W | ≥ |
⋃

u∈U ′
ab

∪U ′′
ab

,1≤b≤d σ∗(u) ∩ W̃ab
|. By definition,⋃

u∈U ′
ab

∪U ′′
ab

,1≤b≤d σab
(u)∩W = σI(U)\U and ⋃

u∈U ′
ab

∪U ′′
ab

,1≤b≤d σ∗(u)∩W̃ab
= σ∗(U)∩SI(W ).

Since U ⊆ SI(X) (Property 3.3), |σI(SI(X)) \ SI(X)| ≥ |σI(U) \ U | ≥ |σ∗(U) ∩ SI(W )|.

Lemma 3.20. Let (S∗, σ∗) be any optimal solution for (N, A). Let FI ⊆ S∗ be the set of
drivers such that σI(SI) ⊆ σ∗(FI). Then, |FI| ≥ 2|SI∪FI|

λ+2 .

Proof. Three sets U, B1, B2 of drivers in S∗ are considered, each of which serves a portion
of trips of σI(SI) w.r.t. (S∗, σ∗), and altogether σ∗(U ∪ B1 ∪ B2) ∪ S∗(W ) ⊇ σI(SI), where
S∗(W ) = S∗ ∩ W . Let U ⊆ S∗ be the set of drivers s.t. (SI(W ) \ S∗(W )) ⊆ σ∗(U).
By Property 3.3 and Lemma 3.19, all of U must be drivers in SI(X) and |σI(U) \ U | ≥
|σ∗(U) ∩ SI(W )|. In this proof, the drivers in SI are partitioned into three sets: SI(W ), U ,
and SX = SI \ (SI(W ) ∪ U).

It requires another set B1 ⊆ S∗ of drivers to serve all trips of (σI(U) \ U) ⊆ W for
(S∗, σ∗) because σI(U) ∩ SI(W ) = ∅ and |σI(U) \ U | ≥ |σ∗(U) ∩ SI(W )|. From |σI(U) \ U | ≥
|σ∗(U) ∩ SI(W )|, σI(U) ∩ SI(W ) = ∅ and that σ∗(U) ∩ SI(W ) = SI(W ) \ S∗(W ), we have
|(SI(W )\S∗(W ))∪(σI(U)\U)| ≥ 2|SI(W )\S∗(W )|. Therefore, |U∪B1| ≥ 2|SI(W )\S∗(W )|/λ

is the minimum number of drivers required in S∗ to serve all of (SI(W )\S∗(W ))∪(σI(U)\U).
In the worst case, the algorithm can assign each trip v ∈ B1 to be a driver in S \ SI s.t. v

serves only itself.
Consider the remaining set of drivers SX = SI \ (SI(W ) ∪ U). For each driver x ∈ SX ,

σI(x) must serve at least one trip from W , meaning |σI(x)| ≥ 2 and |σI(SX)| ≥ 2|SX |. Let
B2 ⊆ S∗ s.t. σI(SX) ⊆ σ∗(B2). We now consider the size of B2. Note that B2 ∩ SX may
or may not be empty. In the worst case, each trip v ∈ B2 \ SX can be assigned as a driver
in S \ SI s.t. v serves itself only. Hence, the ratio between the number of drivers in S that
serve σI(SX) ∪ B2 and B2 is (|SX | + |B2 \ SX |)/|B2|. This function is monotone increasing
in |B2 \SX |. Thus, B2 ∩SX = ∅ gives the worst case. From this and |σ∗(v)∩σI(SX)| ≤ λ for
each driver in v ∈ B2, |B2| ≥ 2|SX |/λ. Since σI(SX) ∩ σI(U) = ∅ and σI(SX) ∩ σI(W ) = ∅,

|(SI(W ) \ S∗(W )) ∪ (σI(U) \ U) ∪ σI(SX)| ≥ 2|SI(W ) \ S∗(W )| + 2|SX |.

Thus, |U ∪ B1 ∪ B2| ≥ 2(|SI(W ) \ S∗(W )| + |SX |)/λ.
Let FI = U ∪ B1 ∪ B2 ∪ S∗(W ), which is the set of drivers in S∗ required to serve all of

σI(SI) for (S∗, σ∗). Then |FI| = |U ∪ B1 ∪ B2| + |S∗(W )| ≥ 2(|SI(W ) \ S∗(W )| + |SX |)/λ +
|S∗(W )|. Recall that SI = SI(W ) ∪ U ∪ SX . The ratio between the number of drivers in S

to serve σI(SI) ∪ B1 ∪ B2 and FI is

|SI ∪ B1 ∪ B2|
|FI|

≤ |SI ∪ FI|
|FI|

≤ |SI(W ) \ S∗(W )| + |SX | + |U ∪ B1 ∪ B2 ∪ S∗(W )|
|U ∪ B1 ∪ B2 ∪ S∗(W )| (3.1)
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≤ |SI(W ) \ S∗(W )| + |SX |
2(|SI(W ) \ S∗(W )| + |SX |)/λ + |S∗(W )| + 1

≤ |SI(W ) \ S∗(W )| + |SX |
2(|SI(W ) \ S∗(W )| + |SX |)/λ

+ 1

= λ

2 + 1 = λ + 2
2 .

Hence, it requires at least |FI| ≥ 2|SI∪FI|/(λ+2) drivers in S∗ to serve all trips of σI(SI).

Notice that Equation (3.1) holds when each driver in u ∈ FI serves at most λ trips of
σI(SI), that is, |σ∗(u)| ≤ λ+1. Next, we consider the minimum number of drivers in S∗ that
is required to serve all trips of σII(SII) for (S∗, σ∗), where (SII, σII) is the partial solution
computed at the end of Phase-II. Recall that Z = {i ∈ A \ σI(SI) | δi = 0} and all of Z are
served in σII(SII).

Lemma 3.21. Let (S∗, σ∗) be any optimal solution for (N, A). Let FII ⊆ S∗ be the set of
drivers such that σI(SI) ⊆ σ∗(FII). Then, |FII| ≥ 2|SII∪FII|

λ+2 .

Proof. We consider FII = FI∪C ′∪V ′∪C ′′, each of C ′, V ′ and C ′′ is a set of drivers in S∗ that
serves a portion of trips of σII(SII \ SI) w.r.t. (S∗, σ∗). Let S′ = {x ∈ SII \ SI | |σII(x)| = 1}
be the set of solo drivers in SII \ SI. Since S′ ⊆ X, λx > 0 for every x ∈ S′. Each x ∈ S′

belongs to a distinct node of Γ since otherwise, one of them can serve the other. This
implies that S′ ⊆ Z. Let C ′ = C ′

0 ∪ C ′
1 be the set of drivers in S∗ s.t. S′ ⊆ σ∗(C ′), where

C ′
0 = {v ∈ S∗ | σ∗(v) ∩ S′ ̸= ∅ and δv = 0} and C ′

1 = {v ∈ S∗ | σ∗(v) ∩ S′ ̸= ∅ and δv ≥ 1}.
By definition and S′ ⊆ Z, C ′ ⊆ X and C ′

1 ∩ Z = ∅. Let S′ = S′
0 ∪ S′

1, where S′
0 is served

by C ′
0 and S′

1 is served by C ′
1. Then |C ′

0| = |S′
0| because each x ∈ S′

0 belongs to a distinct
node and δv = 0 for all v ∈ C ′

0.
Consider any driver z ∈ S′

1. Let (Sz, σz) be the partial solution just before z is assigned as
a driver by the algorithm. All trips in C ′

1 ∩A(A∗
node(z)) must have been assigned as drivers in

Sz. Otherwise, any v ∈ C ′
1 ∩A(A∗

node(z)) would have been assigned as a driver in SII to serve
z when node(z) is processed. Hence, C ′

1 ⊆ SII, and for every driver v ∈ C ′
1 ∩ A(A∗

node(z)),
freez(v) = 0 or freez(v) > 0 with stopz(v) = δv. From these and each z ∈ S′

1 belongs to
a distinct node, |

⋃
v∈C′

1
σz(v) \ {v}| ≥ |

⋃
v∈C′

1
σ∗(v) ∩ S′

1| = |S′
1|, and |C ′

1| ≥ |S′
1|/λ to

serve all of S′
1 ⊆ Z since S′

1 ∩ C ′
1 = ∅. Recall that for every driver v ∈ C ′

1, each passenger
served by σII(v) is either in W or Z. For any v ∈ C ′

1 s.t. σII(v) ∩ W ̸= ∅, v ∈ SI and v is
included in the calculation of Equation (3.1). For any such v (regardless if σII(v) ∩ Z ̸= ∅),
the ratio |SII \ SI|/|FII| decreases because v ∈ SI and v ∈ FII. To get the approximation
ratio for the worst case, we assume that all C ′

1 ⊆ (SII \ SI), that is, σII(v) ∩ W = ∅ and
σII(v)∩Z ̸= ∅ for all v ∈ C ′

1. Let V ′ ⊆ S∗ s.t. (⋃v∈C′
1

σII(v)∩Z) ⊆ σ∗(V ′). By the algorithm
(Phase-II part 2 specifically), each passenger z ∈ σII(v) ∩ Z belongs to a distinct node,
implying |

⋃
v∈C′

1
σII(v) ∩ Z| ≥ |S′

1|. From these, each driver in V ′ ⊆ S∗ can serve at most
λ trips of ⋃

v∈C′
1

σII(v) ∩ Z, and hence, |V ′| ≥ |S′
1|/λ. Since S′

1 ∩ (⋃v∈C′
1

σII(v) ∩ Z) = ∅,
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|V ′ ∪C ′
1| ≥ 2|S′

1|/λ. In the worst case, the algorithm can assign all of C ′ and V ′ to be drivers
in S. From |S′

0| = |C ′
0|, the ratio between |S′ ∪ C ′ ∪ V ′| and |C ′ ∪ V ′| is

|S′ ∪ C ′ ∪ V ′|
|C ′ ∪ V ′|

≤ |S′| + |C ′ ∪ V ′|
|C ′ ∪ V ′|

= |S′
0| + |S′

1|
|C ′

0| + |C ′
1 ∪ V ′|

+ 1 = |C ′
0| + |S′

1|
|C ′

0| + |C ′
1 ∪ V ′|

+ 1.

Since |S′
1| ≥ |C ′

1|, (|C ′
0| + |S′

1|)/(|C ′
0| + |C ′

1 ∪ V ′|) is monotone decreasing in |C ′
0|. Therefore,

|S′ ∪ C ′ ∪ V ′|
|C ′ ∪ V ′|

≤ |C ′
0| + |S′

1|
|C ′

0| + |C ′
1 ∪ V ′|

+ 1 ≤ |S′
1|

|C ′
1 ∪ V ′|

+ 1 ≤ |S′
1|

2|S′
1|/λ

+ 1 = λ + 2
2 . (3.2)

Consider the remaining drivers in S′′ = SII \ (SI ∪ S′ ∪ C ′). Since each driver x ∈ S′′

serves at least one passenger, |σII(S′′)| ≥ 2|S′′|. Let C ′′ = C ′′
0 ∪ C ′′

1 be the set of drivers
in S∗ s.t. σII(S′′) ⊆ σ∗(C ′′), where C ′′

0 = {v ∈ S∗ | σ∗(v) ∩ σII(S′′) ̸= ∅ and v ∈ Z} and
C ′′

1 = {v ∈ S∗ | σII(S′′) ̸= ∅ and v ∈ X \ Z}. Note that C ′′
0 ⊆ σII(SII) by definition. From

the algorithm (Phase-II), σII(S′′) ⊆ Z and σII(S′′)∩σII(S′) = ∅. In the worst case, each trip
v ∈ C ′′ can be assigned as a driver in S s.t. v serves itself only. From this, C ′′

0 ⊆ σII(SII)
and that every v ∈ C ′′ can serve at most λ trips of σII(S′′), the ratio between the number
of drivers in S that serve σII(S′′) ∪ C ′′ and C ′′ is

|S′′ ∪ C ′′|
|C ′′|

≤ |S′′| + |C ′′|
|C ′′|

≤ |S′′|
2|S′′|/λ

+ 1 ≤ λ

2 + 1 = λ + 2
2 . (3.3)

Next, we combine Equations (3.2) and (3.3) with Equation (3.1). Let FII = FI ∪C ′ ∪V ′ ∪
C ′′, which is the set of drivers in S∗ required s.t. σII(SII) in σ∗(FII). Note that FI ⊆ S∗ is
the minimum set of drivers that serve all of σI(SI) ⊆ W and (C ′ ∪ V ′) ⊆ S∗ is the minimum
set of drivers that serve all of S′ ∪ (⋃v∈S′ σII(v) ∩ Z), and C ′′ ⊆ S∗ is the minimum set of
drivers that serve all of σII(S′′) ⊆ Z s.t. σII(S′′) ∩ σII(S′) = ∅. The minimum number of
drivers in each set of FI, C ′ ∪ V ′ and C ′′ is calculated based on each driver u ∈ FII serving
λ trips of σII(SII), as stated in Equations (3.1), (3.2) and (3.3). Hence,

|FII| ≥ 2|SI ∪ FI|/(λ + 2) + 2|S′ ∪ C ′ ∪ V ′|/(λ + 2) + 2|S′′ ∪ C ′′|/(λ + 2)

= 2(|SI ∪ FI| + |S′ ∪ C ′ ∪ V ′| + |S′′ ∪ C ′′|)/(λ + 2).

The ratio between SII ∪ FII and FII is at most

|SII ∪ FII|
|FII|

≤ |SI ∪ S′ ∪ S′′ ∪ FI ∪ C ′ ∪ V ′ ∪ C ′′|
|FI ∪ C ′ ∪ V ′ ∪ C ′′|

(3.4)

≤ |SI ∪ FI| + |S′ ∪ C ′ ∪ V ′| + |S′′ ∪ C ′′|
2(|SI ∪ FI| + |S′ ∪ C ′ ∪ V ′| + |S′′ ∪ C ′′|)/(λ + 2)

= λ + 2
2 .
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Therefore, it requires at least |FII| ≥ 2|SII ∪ FII|/(λ + 2) ≥ 2|SII|/(λ + 2) drivers in S∗ to
serve all of σII(SII).

Again, Equation (3.4) holds if each driver u ∈ FII serves at most λ trips of σII(SII),
that is, |σ∗(u)| ≤ λ + 1. Recall that B1 and B2 are subsets of FI defined in the proof of
Lemma 3.20, and C ′, V ′ and C ′′ are subsets of FII defined in the proof of Lemma 3.21. Each
trip v in B1 ∪B2 ∪C ′ ∪V ′ ∪C ′′ can be a driver in S that serves itself only. This can happen if
before v ∈ B1 ∪ B2 ∪ C ′ ∪ V ′ ∪ C ′′ is processed by the algorithm, A(D∗

node(v)) \ {v} ⊆ σv(Sv)
for δv > 0 or A(node(v))\{v} ⊆ σv(Sv) for δv = 0, where (Sv, σv) is the partial solution just
before v is processed. In other words, all trips that can be served by v are already served
w.r.t. (Sv, σv).

Remark 3.1. Let B1 and B2 be the set of trips defined in the proof of Lemma 3.20. Let
S′ and S′′ be the sets of drivers defined in the proof of Lemma 3.21. Trips of B1 ∪ B2 can
be assigned as drivers in Phase-II or Phase-III. Suppose v ∈ B1 ∪ B2 is assigned as a driver
in Phase-II. If σ(v) serves only itself, v is included in S′. If σ(v) serves more than one trip,
v is included in S′′. For either case, Equation (3.4) holds.

From Remark 3.1, let B′
1 ∪ B′

2 ⊆ B1 ∪ B2 be the trips assigned as drivers in Phase-III.
Let S̄ = S \ (SII ∪ B′

1 ∪ B′
2 ∪ C ′ ∪ V ′ ∪ C ′′) be the set of drivers found during Phase-III of

the algorithm.

Lemma 3.22. For (S∗, σ∗), it requires at least 2|S|
λ+2 drivers in S∗ to serve all of σ(S).

Proof. Any trip x in A \ σII(SII) has λx > 0 and δx > 0 since all of W and Z are served in
σII(SII). Consider the moment a trip x ∈ S̄ is assigned as a driver. Let (Sx, σx) be the partial
solution just before x is processed by the algorithm. Since λx > 0 and δx > 0, x will serve
at least one passenger (|σ(x)| ≥ 2) if there exists an un-assigned trip in A(D∗

node(x)) \ {x},
that is, A(D∗

node(x)) \ {x} ⊈ σx(Sx). Let X(1) = {x ∈ S̄ | |σ(x)| = 1}. For every pair
x, x′ ∈ X(1), x /∈ A(D∗

node(x′)) ∪ A(A∗
node(x′)). Otherwise, one of them can serve the other.

For every x ∈ X(1), any driver x′ ∈ S̄(A∗
node(x)) \ {x} must serve at least two trips, where

S̄(A∗
node(x)) = S̄ ∩A(A∗

node(x)). For any x ∈ X(1), let Yx be the set of drivers in S∗ that serve
all of ⋃

x′∈S̄(A∗
node(x)) σ(x′) in (S∗, σ∗). For a driver y ∈ Yx, σ∗(y) \ {y} can contain at most

λ trips of ⋃
x′∈S̄(A∗

node(x)) σ(x′). If y ∈
⋃

x′∈S̄(A∗
node(x)) σ(x′), y can serve at most λ + 1 trips of⋃

x′∈S̄(A∗
node(x)) σ(x′). Hence, |Yx| ≥ (2|S̄(Anode(x))| + 1)/(λ + 1). For any pair x, x′ ∈ X(1)

with x ̸= x′, since drivers in Yx cannot serve any trip of ⋃
x′′∈S̄(A∗

node(x′)) σ(x′′), it must
be that Yx ∩ Yx′ = ∅. Let Y = ⋃

x∈X(1) Yx, S̄X(1) = ⋃
x∈X(1) S̄(A∗

node(x)) and σ(S̄X(1)) =
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⋃
x∈S̄X(1)

σ(x). Note that |Y | ≥ |X(1)|. Then,

|Y | =
∑

x∈X(1)
|Yx| ≥

∑
x∈X(1)

(2|S̄(Anode(x))| + 1)/(λ + 1)

= (
∑

x∈X(1)
2|S̄(Anode(x))| + |X(1)|)/(λ + 1).

The above can be rewritten as

(λ + 1) · |Y | − |X(1)|
2 ≥

∑
x∈X(1)

|S̄(Anode(x))| =
∑

x∈X(1)
|S̄(A∗

node(x))| − X(1),

and hence, ∑
x∈X(1)

|S̄(A∗
node(x))| ≤ (λ + 1) · |Y | + |X(1)|

2 .

Consider the remaining drivers in S̄
X(1) = S̄ \ S̄X(1). Each driver x ∈ S̄

X(1) serves at
least two trips, implying |σ(S̄

X(1))| ≥ 2|S̄
X(1)|. Let Y ′ be the set of drivers in S∗ that serve

all of ⋃
x∈S̄

X(1)
σ(x) in (S∗, σ∗). Any driver x ∈ S̄

X(1) is not in σ(S̄X(1)) by the definition of
S̄

X(1), and x is not in A(D∗
node(x′)) for any x′ ∈ X(1) since otherwise, x′ would have served

x. From these, for every y′ ∈ Y ′, y′ /∈ A(D∗
node(x)) ∪ A(A∗

node(x)) for all x ∈ S̄X(1), which
implies that |Y ∪ Y ′| = |Y | + |Y ′|. Similar to Y , each driver in Y ′ can serve at most λ + 1
trips of ⋃

x∈S̄
X(1)

σ(x). Hence, |Y ′| ≥ 2|S̄
X(1)|/(λ + 1), implying ((λ + 1) · |Y ′|)/2 ≥ |S̄

X(1)|.
Each y ∈ Y ∪ Y ′ must be in either σ(S \ SII) or σ(SII) since all trips must be served at the
end by the algorithm. In other words, if y ∈ S \ S̄, y has been considered in Equation (3.4).
This means that we only need to consider S̄, and the ratio between |S̄| and |Y ∪ Y ′| is

|S̄|
|Y ∪ Y ′|

=
|S̄X(1)| + |S̄

X(1)|
|Y | + |Y ′|

≤ ((λ + 1) · |Y | + |X(1)|)/2 + ((λ + 1) · |Y ′|)/2
|Y | + |Y ′|

(3.5)

= (λ + 1) · (|Y | + |Y ′|) + |X(1)|
2(|Y | + |Y ′|)

= λ + 1
2 + |X(1)|

2(|Y | + |Y ′|)

≤ λ + 1
2 + 1

2 = λ + 2
2 .

Finally, we calculate the ratio between S and S∗, where FII ∪ Y ∪ Y ′ ⊆ S∗. Recall that
S = S̄ ∪ SII ∪ FII and all trips served by each driver x ∈ S̄ are in X. From this and the
same reason stated in the proof of Lemma 3.22 for Equation (3.4), the minimum number
of drivers in each set of FII, Y and Y ′ is calculated based on using all capacity λ of every
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driver u ∈ FII ∪ Y ∪ Y ′. Hence, with Equations (3.4) and (3.5),

|FII ∪ Y ∪ Y ′| ≥ 2|SII ∪ FII|/(λ + 2) + 2|S̄|/(λ + 2)

= 2(|SII ∪ FII| + |S̄|)/(λ + 2)

The ratio between S and S∗ is

|S|
|S∗|

≤ |S|
|FII ∪ Y ∪ Y ′|

≤ |S̄| + |SII ∪ FII|
|FII ∪ Y ∪ Y ′|

(3.6)

≤ |S̄| + |SII ∪ FII|
2(|SII ∪ FII| + |S̄|)/(λ + 2)

= λ + 2
2

Therefore, it requires at least 2|S|
λ+2 drivers in S∗ to serve all of σ(S).

Next, we show that Algorithm 6 always computes a valid solution to any instance of
RSOneStop. Let (S′, σ′) be the partial solution computed by Algorithm 6 for a given time
point, i.e., current partial solution.

Lemma 3.23. Let (S, σ) be a complete solution found by Algorithm 6. Then for each pair
i, j ∈ S, σ(i) ∩ σ(j) = ∅ and σ(S) = A, implying (S, σ) is indeed a valid solution for an
instance (N, A).

Proof. Phase-I of the algorithm ends until all trips of W are served, that is, Γ(W ) = ∅ at
the end of Phase-I. During each iteration of Phase-I, a node µ ∈ Γ(W ) containing trips
of W is chosen w.r.t. current solution (S′, σ′). A trip x is selected from X̂1 ∪ X̄, where
X̂1 = {i ∈ S′(Aµ) | free′(i) > 0 and stop′(i) < δi} and X̄ = {i ∈ X ∩ A(A∗

µ) \ σ′(S′) |
stop′(i) < δi or i ∈ A(µ)}. By the definition of X̂1 and X̄, x is either a driver or an un-
assigned trip that can still serve other trips in A(D∗

µ). From this, x is a valid assignment
for serving W (x, µ, S′). If X̂1 ∪ X̄ = ∅, each trip of W (µ) \ σ′(S′) is assigned as a driver to
serve itself.

Phase-II of the algorithm ends until all trips of Z are served, where Z = {i ∈ A\σ′(S′) |
δi = 0}. Since all of W are served before Phase-II starts, λi ≥ 1 for every i ∈ A \ σ′(S′),
that is, Z ⊆ X. From this, every x ∈ Z \ σ′(S′) that is assigned as a driver to serve other
trips in Z(x, node(x), S′) is valid, as described in the first part (first for-loop) of Phase-II.
The second part of Phase-II is similar to Phase-I. A node µ ∈ Γ(Z) is chosen, where Γ(Z)
is the set of nodes containing the rest of Z w.r.t. (S′, σ′). Either a driver x ∈ X̂2 or an
unassigned trip x ∈ X̄ is selected to serve Z(x, µ, S′), where X̂2 = {i ∈ S(A∗

µ) | free(i) >

0 and (stop(i) < δi or i ∈ A(µ))} and X̄ is the same as defined above. The assignment of x

is valid as mentioned above.
In Phase-III of the algorithm, the rest of X \Z are served. The algorithm processes each

node from µp to µ1. All trips in A(µj) must be served before µj−1 is processed. In each
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iteration, either a driver x ∈ X̂2 (as defined above) or an unassigned trip x ∈ X(µ) \ σ′(S′)
is selected to serve A(x, µ, S′). The assignment of x is valid as mentioned above. Therefore,
Algorithm 6 produces a valid solution.

Theorem 3.27. Let (N, A) be an instance of RSOneStop satisfying the transitive serve re-
lation, (S∗, σ∗) be an optimal solution for (N, A) and λ = maxi∈A λi. Algorithm 6 computes
a solution (S, σ) for (N, A) such that |S∗| ≤ |S| ≤ λ+2

2 |S∗| with running time O(M + l2),
where M is the size of the ridesharing instance which contains a road network and l trips.

Proof. By Lemma 3.22, Lemma 3.23 and Lemma 3.10, Algorithm 6 computes a solution
(S, σ) for (N, A) with λ+2

2 -approximation ratio. It takes O(M) time to construct the simpli-
fied serve relation meta graph Γ(V, E). The labeling of nodes in Γ takes O(l) time. Sorting
the trips in a node µ according to their capacity takes O(λ · |A(µ)|) time for each node µ,
so in total O(λ · l) to sort all trips in A. The total time for the preprocessing is O(M +λ · l);
we assume λ < l. For Phase-I, there are at most O(l) iterations (in the while-loop). In each
iteration, it takes O(l) time to pick the required node µ from Γ(W ) and O(l) time to select
a trip x from X̂1 ∪X̄. To serve all of W (x, µ, S′) or W (µ), |W (µ)| ≤ O(l) is required. Hence,
Phase-I runs in time O(l2). For Phase-II, we can first scan the tree Γ following the node
labels in decreasing order, which takes O(l) time. Whenever a node µ with |Z(µ)| ≥ 2 is en-
countered, a trip x ∈ Z(µ) \ σ′(S′) is selected to serve Z(x, µ, S′) repeated until |Z(µ)| ≤ 1.
This takes O(l) time since the trips in A(µ) are sorted according to their capacity. Hence,
it takes O(l2) time for the first for-loop in Phase-II. The second for-loop in Phase-II is
similar to Phase-I, which requires O(l) time for each iteration. Thus, it requires O(l2) time
for Phase-II. For Phase-III, in each iteration when processing a node µ, it takes O(l) time
to select a trip x from X̂2 or X(µ) \ σ′(S′). Then in total, it requires O(l + λ) time to
serve A(x, µ, S′). Collectively, Phase-III may require O(l) iterations to process trips of all
nodes in V (Γ). Thus, it requires O(l2) time for Phase-III. Therefore, the running time of
Algorithm 6 is O(M + l2).

3.5 Summary

In this chapter, we show that restricted variants of the ridesharing problem are NP-hard.
Specifically, if any one of Conditions C1-C5 is not satisfied, both RSOne (RSOne∗) and
RSTwo (RSTwo∗) are NP-hard, even if all four other conditions are satisfied. Further,
when one of Conditions C2-C5 is not satisfied, both RSOne and RSTwo are NP-hard to
approximate within a constant factor. Then, we give two polynomial-time exact algorithms
for RSOne and RSTwo when all of C1-C5 are satisfied: One is a dynamic programming
algorithm that can solve RSOne and RSTwo, and the other algorithm is more efficient
than the dynamic programming algorithm that can solve only RSOne. Both of these two
algorithms utilize the serve relation graph, introduced in Section 2.3. An description of
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how to implement the serve relation graph in linear time (in the input size) is given in
Subsection 3.3.2. Three polynomial-time approximation algorithms are presented for the
ridesharing problem RSOneStop (an instance of RSOne that satisfies Conditions C1-C3
and C5). Two of these three approximation algorithms are modified from the approximation
algorithms for the MCMP [65]. The third approximation algorithm is our novel algorithm
that is much more efficient than the two aforementioned approximation algorithms. The
speed-up is realized by further utilizing the serve relation graph.
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Chapter 4

Ridesharing with Profit Constraint
Problem

In this chapter, we give exact and approximation algorithms for the RPC problem on
fixed trips. Ridesharing is a promising way to improve transportation efficiency, but the
current use of mobility-on-demand (MoD) has actually created a negative effect on the
traffic, such as worsen congestion. One of the reasons is that actual ridesharing still has
not been adopted in practice despite its potential. An important factor within a ridesharing
system is the profit/pricing scheme. Since MoD platform operators and drivers are driven
by profit, the intention is to have more rides fulfilled. This results in most ridesharing rides
contain only one passenger. Demand-and-pricing of a ridesharing system is important for its
adaptability of actual ridesharing in practice [111]. The ridesharing optimization problems
we study in this thesis provide a new framework to consider maximizing both the number
of passengers served and drivers’ profit target. This may balance both sides: profit and
transportation efficiency. In particular, the main optimization goal aims at improving the
number of passengers served and occupancy rate of vehicles while meeting an overall drivers’
profit target.

The studying of this problem is motivated by the fact that profits-as-incentives may
promote ridesharing in practice for both MoD operators and drivers. The potential of
ridesharing has been recognized in the academia, but the potential of ridesharing in profit-
maximizing platforms/MoDs is not well understood. We propose exact and approximation
algorithms for the optimization problems studied. We now formally introduce the problem
Ridesharing with Profit (RP).

In the centralized ridesharing system (CRS), we are given two sets of trips: a set D =
{η1, . . . , ηk} of k drivers (each operates a vehicle), and a set R = {r1, . . . , rl} of l trip
requests from passengers. Each driver ηi ∈ D and each passenger ri ∈ R have the same
parameters related to a road network N as stated in Section 2.3, Table 2.1. In addition
to those parameters, a maximum trip time (duration) γi is given by each driver ηi ∈ D

and each passenger ri ∈ R. A maximum trip time γi means that total duration from oi to

73



di using any route should not exceed γi. In this chapter, we denote a serve relation σ(i)
more explicitly by (ηi, Ri) (σ(i) = {ηi} ∪ Ri) between a driver ηi and a group of passengers
Ri ⊆ R; and call (ηi, Ri) a match. A match (ηi, Ri) is feasible if there exists a feasible path
FP(ηi, Ri) in N by which all passengers are delivered satisfying all constraints of a feasible
serve relation stated in Section 2.3; in other words, the feasible path FP(ηi, Ri) is path
P (i, J) stated in the ridesharing route constraint. In addition, the travel time constraint is
extended to include the maximum trip time, specifically:

• Travel time constraint: each trip j ∈ {ηi} ∪ Ri departs from oj no earlier than αj ,
arrives at dj no later than βj , and the total travel duration of j is at most γj .

An assignment Π is a set of feasible matches such that for every two matches (ηi, Ri) and
(ηj , Rj) in Π, ηi ̸= ηj and Ri ∩ Rj = ∅. Each feasible match (ηi, Ri) is associated with
a revenue rev(ηi, Ri) computed by the CRS; most or all of rev(ηi, Ri) are given to the
driver ηi for serving all of Ri. The revenue rev(ηi, Ri) is assumed to be computed based on
FP(ηi, Ri) and should be at most what the passengers of Ri pay to the CRS. Each match
(ηi, Ri) is associated with a travel cost tc(ηi, Ri) for ηi to traverse FP(ηi, Ri). The profit of a
feasible match (ηi, Ri) is w(ηi, Ri) = rev(ηi, Ri) − tc(ηi, Ri), which can be negative, and we
assume it is expressed in integers (e.g., cents, smallest payable amount). For an assignment
Π, let w(Π) = ∑

(ηi,Ri)∈Π w(ηi, Ri) be the profit of Π and R(Π) = ∪(ηi,Ri)∈ΠRi be the set of
passengers in Π.

The RP problem is to find an assignment Π such that w(Π) is maximized. In this
thesis, we focus on a more complex optimization problem, called the Ridesharing with Profit
Constraint (RPC) problem. In application, the CRS may want to serve as many passengers
as possible while maintaining a profit target c. With this in mind, we introduce the RPC
problem: which is to find an assignment Π such that |R(Π)| is maximized and w(Π) ≥ c for
some integer c.

4.1 Model

Our approach uses a model similar to the one proposed in [6, 95], which is similar to [36,
42, 99, 102]. All feasible matches between all drivers and passengers are computed first;
and then based on some optimization goal/objective, an assignment consisting of a set of
disjoint feasible matches is computed. Our model for the RPC problem allows a flexible
pricing for the MoD system operators; and different pricing schemes (e.g., [67, 72, 113])
can be incorporated into our model. Further, Our approach allows for a more general set of
drivers, including personal/ad-hoc drivers and designated drivers (e.g., taxi drivers).

The revenue rev(ηi, Ri) given by the CRS to driver ηi is heavily impacted by FP(ηi, Ri).
We assume that every driver uses the feasible path computed by the CRS. Specifically,
for an assignment Π = {(ηi, Ri) | ηi ∈ D, Ri ⊆ R}, each driver ηi in the assignment
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follows a shortest feasible path SFP(ηi, Ri) to serve passengers in Ri. Here, shortest means
either shortest distance or shortest time; and it is predefined by the CRS. For example,
let Ri = {ra, rq} be the set of passengers in match (ηi, Ri). There are six different visiting
orders of Ri in which the passengers of Ri can be picked-up and dropped-off by ηi, which
correspond to six paths in road network N (each starts at oi and ends at di). Below are the
six visiting orders of Ri for driver ηi:

{(oi, oa, oq, da, dq, di), (oi, oa, da, oq, dq, di), (oi, oa, oq, dq, da, di),

(oi, oq, oa, da, dq, di), (oi, oq, dq, oa, da, di), (oi, oq, oa, dq, da, di)}.

Path SFP(ηi, Ri) is the path in N corresponds to one of the six visiting orders that is
feasible and has either the shortest distance or shortest time. Then, the RP problem can
be formulated as follows.

max
Π

∑
(ηi,Ri)∈Π

w(ηi, Ri) (i)

subject to ηi ̸= ηj ∧ Ri ∩ Rj = ∅, ∀(ηi, Ri) ̸= (ηj , Rj) ∈ Π (ii)

The objective function (i) is to maximize the overall profit obtained from served trips.
Constraint (ii) ensures that each passenger request is assigned to only one driver and each
driver serves at most one feasible match (a unique group of passengers). Note that not all
requests of R are required to be served in an assignment Π. Again, our main focus is the
RPC problem, and it can be formulated as follows.

max
Π

∑
(ηi,Ri)∈Π

|Ri| (iii)

subject to ηi ̸= ηj ∧ Ri ∩ Rj = ∅, ∀(ηi, Ri) ̸= (ηj , Rj) ∈ Π (iv)∑
(ηi,Ri)∈Π

w(ηi, Ri) ≥ c (v)

The objective function (iii) is to maximize the total number of passengers served. Con-
straint (iv) is the same as constraint (ii). Constraint (v) ensures the system profit meets a
given target. An assignment Π containing any feasible match (ηi, Ri) with negative profit
(w(ηi, Ri) < 0) means that the driver ηi loses money.

As can be seen in the formulation (i)-(ii) (and formulation (iii)-(v)), we only need a few
sets of constraints. The more traditional formulations for the ridesharing problems, VRP
and DARP usually require more than 10 sets of constraints. For example, the mathematical
formulation in [97] has 13 sets of constraints, not including the range constraints on the
variables. A simpler formulation is very useful in computational studies for the problem.

We construct an integer-weighted hypergraph H(V, E, w) to represent the formulation
(iii)-(v) as follows. Initially, V (H) = D ∪ R. For each ηi ∈ D and for every subset Ri of
R with 1 ≤ |Ri| ≤ λi, create a hyperedge e = {ηi} ∪ Ri in E(H) if (ηi, Ri) is a feasible

75



Figure 4.1: A bipartite hypergraph H(V, E, w) representing all feasible matches of an in-
stance (N, A), where |D(H)| = a and |R(H)| = b.

match. Each edge e = {ηi} ∪ Ri ∈ E(H) has weight w(e) = w(ηi, Ri), the profit of ηi.
Remove all isolated vertices from H. An example of H(V, E, w) is shown in Figure 4.1.
Let H− be the subgraph of H such that H− contains all edges of H with negative weight
and H+ = H \ H−. There are at most ∑

1≤a≤λi

( l
a

)
edges incident to each ηi in H. Let

λ = maxηi∈D λi. If λ is a small constant, the size of H is polynomially bounded.
We use the concept of matching/set packing in our approach, where the definitions of

matching have been stated in Section 2.2. In particular, the RPC problem is to find a
matching M in H(V, E, w) such that ∑

{ηi}∪Ri∈M |Ri| is maximized and w(M) > c. Let
M1 and M2 be two matchings in an edge-weighted (hyper)graph G(V, E). Denoted by
F (V, E) = M1∆M2 is the resulting graph of the symmetric difference of M1 and M2. Let
F be the set of connected components in F . It is well known that when G is a graph, each
component of F is either a path or an even cycle where the edges are alternating between M1

and M2. For any subset F1 ⊆ F , let E(F1) = ∪C∈F1E(C) and w(F1) = ∑
C∈F1 w(E(C)).

Let c∗ be the weight of a maximum weight matching in the above constructed hyper-
graph H. It is easy to see that finding a maximum weight matching M∗ in H+ solves the
formulation (i)-(ii) and vice versa. Since formulation (i)-(ii) is a weighted (λ+1)-set packing
formulation, finding M∗ and c∗ (RP problem) is NP-hard in general for λ ≥ 2 [40, 62].

Theorem 4.1. The RPC problem is NP-hard for an arbitrary target c and λ ≥ 2.

Proof. Given the formulation (i)-(ii) for an instance of the RP problem, construct an in-
stance of the RPC problem containing the same set of feasible matches ∪ηi∈D,Ri⊆R(ηi, Ri).
For a driver ηi ∈ D, let ω∗

i be the profit of the match containing ηi with the largest profit.
Set the profit target c = ∑

ηi∈D ω∗
i for the constructed RPC problem instance. Note that a

driver ηi cannot appear in more than one match in any solution of the RP and RPC prob-
lems. Hence, the RPC problem has a feasible solution if and only if the objective function
value of formulation (i)-(ii) is equal to c. Since solving the formulation (i)-(ii) is NP-hard
for λ ≥ 2, the RPC problem is NP-hard for λ ≥ 2.

Further, Hazan et al. [51] showed that the (λ + 1)-set packing problem cannot be ap-
proximated to within Ω( ln(λ+1)

λ+1 ) in general for λ ≥ 2. There exists a polynomial-time 2
λ+2 -
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approximation algorithm for approximating the maximum profit of Π [16]. However, similar
algorithms [16, 24] cannot be directly applied to the RPC problem since these algorithms
only approximate the maximum profit w(Π) and do not consider the size of each subset
(match) in Π and the different elements in the subset/match. Algorithms for the maximum
set packing problem (e.g., [38, 103]) cannot apply to the RPC problem either since such
algorithms do not consider general integer weight.

Due to the NP-hardness of the RPC problem (Theorem 4.1) and the inapproximability
of the weighted set packing problem, we study two variants of the RPC problem: RPC1 and
RPC+. The RPC1 problem variant assumes that for a given instance of the RPC problem,
λi = 1 for every driver ηi ∈ D (λ = 1). To solve the RPC1 variant, we use an approach
in solving the maximum matching problem on bipartite graphs. For the RPC+ problem
variant, we include one more constraint (called the non-negative profit constraint) to the
formulation (iii)-(v) of the RPC problem:

w(ηi, Ri) ≥ 0, ∀(ηi, Ri) ∈ Π. (vi)

To solve the RPC+ variant, we use a local search approach similar to the ones in [16, 24].

4.2 Related work

As seen in Section 4.1, the RP problem can be formulated as a maximum weight set packing
problem, but the RPC problem cannot. To the best of our knowledge, the RPC optimization
problem has not been studied before, whether in the form of set packing problem or matching
in hypergraphs. Having said that, there are studies on ridesharing with profit. Hsieh [56]
proposed a model to match drivers and passengers such that the ratio between the cost
savings and the original costs is maximized. A non-linear integer programming is given
and only (meta)heuristics are discussed. An interesting study [112] suggests that the pickup
locations (origins) of passengers that are matched to a driver should not be too far away from
the driver. The authors of [112] further suggested that when the destination of a passenger
is in a high demand zone (or zone with low driver supply) should have a higher priority
to be matched. Such an approach may balance the supply and demand in a non-balanced
zone, increasing the overall matching rate.

A class of the vehicle routing problem (VRP) focuses on profit, called Vehicle Routing
Problems with Profits (VRPPs). The variant of VRPPs that is related to RPC is called the
Team Orienteering Problem (TOP) [8, 49]. The TOP can be summarized as follows (using
ridesharing terms). A set of nodes is given, each represents a customer/passenger and has
a score/profit. A set K of vehicles is given. When a node is visited by a vehicle, the profit
is collected, and each node can be visited at most once. The goal of TOP is to find at most
|K| vehicle routes that maximize the total collected profit, while satisfying a maximum
duration constraint for each route [8]. One major difference between RPC and TOP is that

77



the profit of a passenger is not fixed for RPC but fixed for TOP. For RPC, the profit of
driver ηi for serving a group Ri of passengers is path FP(ηi, Ri) dependent, which can be
different for different drivers. Another major difference is that the vehicles in TOP do not
have a capacity constraint. In the literature of TOP, many studies focus on exact algorithms
(IP-solver dependent), which can only solve small instances (less than 100 nodes when time
windows and travel time are considered) in a reasonable time [49]. Many heuristics are
also proposed for TOP. Most experiments for these heuristics are also for small common
benchmark instances. Some heuristics are tested on medium sized instances (less than 500
nodes); and majority of them can finish in a reasonable time. The instances used in TOP
usually have a small number of vehicles (less than 5), which is not a representative of the
ridesharing problem. In our experiment for RPC (Section 4.5), we have over 500 drivers and
2000 passengers.

In many previous studies, ridesharing with profit is studied as taxi ridesharing [61, 78,
90, 97]. In [61], two optimization objectives are considered, and one of them is to maximize
system profit from selectively accepting passengers. The optimization problem is solved by
using hybrid-simulated annealing, as mentioned in Section 3.1. The system model proposed
in [78] handles dynamic ridesharing requests by incorporating monetary constraints in their
proposed taxi-dispatch system. The monetary constraints ensure that drivers make more
money and passengers pay less, compared to as if they are in non-shared taxi rides. Their
taxi-dispatch system focuses on fulfilling the ride requests quickly (satisfying all constraints),
and no global optimization goal is considered. The ridesharing problem studied in [90] is
the TGR system model mentioned in Section 3.1. Passengers are grouped together if their
itineraries are similar and the grouping can reduce the travel distance and not increasing
fare paid for each passenger. The optimization goal is to maximize the total travel distance
saved of all passengers. An exact and two heuristics (one is greedy) are proposed in [90].
The DARP/ridesharing problem studied by Santos and Xavier [97] also allows taxi drivers
and personal drivers. Their optimization goal is to maximize the number of served passen-
gers and minimize the total cost at the same time (a multi-criteria objective function). A
mathematical model is presented and solved by a heuristic, as mentioned in Section 3.1.

In general, a passenger ri in a shared-ride does not want to share the ride with another
passenger rj if ri needs to pay more or have a much longer ride by doing so. This can lead to
some limitations for ridesharing by taxi, compared to ridesharing by personal vehicles. (1) A
taxi driver expects to earn more than a personal vehicle driver for serving a passenger, which
is highly affected by total travel distance and duration. As a result, it would be expected
from the taxi passengers that they would have a shorter travel distance/time, compared to
rides shared by personal vehicles. This can result in less shared rides as a whole. (2) When
a passenger requests for a taxi, the wait time expected by the passenger is usually lower,
compared to that for a personal vehicle. The taxi ridesharing model needs to have a tighter
maximum passenger wait time, which can lead to a lower successful match rate.
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There are also studies that focus on the design and effectiveness of pricing schemes re-
lated to monetary profit and cost for drivers and passengers, such as the studies in [10, 17,
67, 72, 88, 113, 114]. These studies propose different pricing scheme that should charge the
passengers under different scenarios. The main purpose of these studies focus on how to
improve passenger ridership based on pricing (or verify that demand can be met under the
available supply); and some studies discuss how to improve profit for ridesharing platforms
or drivers without damaging the demand. Dynamic pricing (also called surge pricing) is
considered in many studies. Dynamic pricing means that the prices for rides change based
on real-time demand and supply conditions, which can be affected by both time and loca-
tion. There is a line of recent research that focuses on platform (MoD) equilibrium analysis
based on pricing factors (e.g., [17, 21, 57, 67, 114, 115]). There are two types of equilibrium:
market equilibrium and network equilibrium. Market equilibrium concerns about the bal-
ance of supply and demand. Network equilibrium concerns about the matchability of drivers
and passengers, that is, at the equilibrium state, no one can further reduce their effective
travelling cost by changing decisions, such as using a different route. Most studies focus on
market equilibrium, namely, proposing an optimal pricing strategy to achieve the balance
of supply and demand. Dynamic pricing is a common tool to achieve market equilibrium.
Instead of choosing a theoretical pricing scheme from one of the studies in the literature, we
closely estimated the pricing scheme used by a current large ridesharing operator in practice,
Uber. Then, we use this estimated pricing scheme for our experiments in Section 4.5.

4.3 RPC1 variant - capacity of one

In this section, we consider a simplified variant, denoted as RPC1, where λ = 1. In this
case, the weighted hypergraph H(V, E, w), constructed in Section 4.1, becomes a weighted
bipartite graph. A solution to the RPC problem for λ = 1 (with c ≤ c∗) is a matching M

in H with w(M) ≥ c and |M | maximized. We first give a polynomial-time exact algorithm
(referred to as ExactNF) framework that uses network flow to find an optimal solution.
Then, we describe two implementations of ExactNF that are suitable for practice. Finally,
we give a simple 1

2 -approximation algorithm (referred to as Greedy).

4.3.1 Exact algorithm

The framework description of ExactNF is given below.

1. Construct a flow network FN(V, E) from H, where V (FN) = {s, t} ∪ V (H), s is the
source, and t is the sink. For each ηi ∈ V (H), create an edge (s, ηi) in E(FN) with
cost 0 and capacity 1. For each {ηi, rj} ∈ E(H), create an edge (ηi, rj) in E(FN) with
cost −w(ηi, rj) and capacity 1. For each rj ∈ V (H), create an edge (rj , t) in E(FN)
with cost 0 and capacity 1. Note that the maximum amount of flow that can be sent
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from s to t in FN is at most nmin = min{|V (H) ∩ D|, |V (H) ∩ R|}. An example of
the flow network FN(V, E) is given in Figure 4.2.

2. For 1 ≤ y ≤ nmin, find a minimum cost flow fy of value y (sent from s to t) or conclude
that there is no flow of value y in FN .

3. For an edge e ∈ E(FN), let fy(e) be the flow value passing through e in fy. Let
c(fy) = ∑

e∈E(F N)|fy(e)>0 w(e) be the cost of flow fy. If there is a flow fy computed
in Step 2 with c(fy) ≤ −c, then y = argmaxy − c(fy) ≥ c, and output the edges
∪e∈E(F N)|fy(e)>0∧e∈E(H) with positive flow value in fy as solution M ; otherwise, con-
clude there is no matching in H with profit at least c.

Figure 4.2: The flow network FN(V, E) in the ExactNF algorithm, constructed from H, where
a = |V (H) ∩ D| and b = |V (H) ∩ R|.

Theorem 4.2. Algorithm ExactNF finds a matching M with w(M) ≥ c and |M | maximized
or concludes that there is no matching M with w(M) ≥ c in H in polynomial time.

Proof. The edges ∪e∈E(F N)|fy(e)>0∧e∈E(H) of a flow fy form a matching M in H of cardinality
y. Since the cost c(fy) is minimum among all flows of value y and the profit w(M) is the
negation of c(fy), w(M) is maximum of all matchings in H of cardinality y. If there is a
matching M in H with w(M) ≥ c, then 1 ≤ |M | ≤ nmin (since λ = 1) and Algorithm
ExactNF finds the matching M of the largest cardinality with w(M) ≥ c. An upper bound
on the running time of ExactNF is O(nmin · t(FN)), where t(FN) is the time to compute
a min-cost flow fy and is polynomial in the size of FN [3].

Next, we describe two practical implementations of ExactNF (referred to as Algorithm
ExactNF1 and Algorithm ExactNF2). The real computational time of t(FN) depends
on the algorithm used to compute fy. Each of the implementations has its own approach to
compute fy. Algorithm ExactNF1 uses a Linear Programming approach and is described
in the following.
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1. Let N ′ be the network FN(V, E) constructed above without the edge costs. Construct
a maximum flow LP formulation for N ′ and solve the LP. Let y∗ be the maximum
flow value (optimal solution of the LP).

2. For y = y∗ to 1, find a minimum cost flow of value y in FN (sent from s to t) by
solving another LP formulation for a min-cost flow in FN . If c(fy) ≤ −c, stop and
output ∪e∈E(F N)|fy(e)>0∧{u,v}∈E(H). Otherwise, continue until c(fy) ≤ −c or conclude
there is no such flow in FN , implying H does not have a feasible solution.

In the worst case, such a simple implementation may need to solve the min-cost flow at
most nmin times. However, most (majority) of the edges in H have positive weight (negative
weight in FN) in practical scenarios, the minimum cost flow fy that satisfies c(fy) ≤ −c

usually is or nearly is a maximum flow, that is, y = y∗ or y is close to y∗. Further, if c is
smaller than the largest profit obtainable for a noticeable amount (say 20%), y is very close
to y∗. These suggest that the number of min-cost flows to be computed is a small constant in
practice. We implemented this approach using CPLEX, and it is fast in most cases as shown
in the experiment Subsection 4.5.4. From Theorem 4.2, we have the following corollary.

Corollary 4.1. Algorithm ExactNF1 finds a matching M with w(M) ≥ c and |M | maxi-
mized or concludes that there is no matching M with w(M) ≥ c in H in O(nmin · t(FN))
time, where t(FN) is the time to find a min-cost flow fy by an LP solver.

The second approach for computing fy is by graph algorithms described in [3]: Let fy

be the min-cost flow of flow value y in FN and Nfy be the residual network of FN w.r.t.
fy, where Nf0 = FN . We compute fy in Nfy−1 w.r.t. fy−1 for y = 1, 2, . . . , nmin. As shown
in [3], the min-cost flow fy can be computed by the successive shortest path algorithm. The
detailed implementation of Algorithm ExactNF2 is described below.

1. If FN(V, E) has negative weighted edges, first change the negative edge weights into
non-negative weights as in Johnson’s shortest path algorithm [29, 60]: Use Bellman-
Ford algorithm to compute the shortest distance dist(s, u) for every u ∈ V (FN).
Assign h(u) = dist(s, u) and compute a new cost ŵ(u, v) = w(u, v) + h(u) − h(v) for
every (u, v) ∈ E(FN), then ŵ(u, v) ≥ 0. Label the network with the new weights as
N̂(V, E) (a min-cost flow fy of value y in N̂ is a min-cost flow of value y in FN).

2. The rest is similar to the successive shortest path algorithm, except the stopping con-
ditions are different. For completeness and implementation detail, we give the details
of the successive shortest path algorithm, including how our stopping conditions are
applied. Further, definitions used in the correctness proof of Algorithm ExactNF2 are
also introduced.

First, initialize the node potential π(u) = 0 for each u ∈ V (N̂) and reduced cost
wπ(u, v) = ŵ(u, v) − π(u) + π(v) (which is ŵ(u, v) initially) for each (u, v) ∈ E(N̂).
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Let f0 be an empty initial flow on N̂ . Let N̂fy−1(π) be the residual network w.r.t. flow
fy−1 and reduced costs wπ, where N̂f0(π) = N̂ .

For y = 1, . . . , nmin, find a minimum cost flow fy of value y from fy−1 as follows.
Compute single-source shortest paths from s, SSSP (s), to every other vertex in u ∈
V (N̂fy−1(π)) to get disty−1(s, u). Update node potential π(u) = π(u) − disty−1(s, u)
for every u ∈ V (N̂). Update reduced cost for every edge of N̂fy−1(π): wπ(u, v) =
ŵ(u, v)−π(u)+π(v) if (u, v) ∈ E(N̂)∩E(N̂fy−1(π)); otherwise, wπ(u, v) is unchanged.
Let Py−1 be the shortest s−t path found by SSSP (s). Then, augment flow along Py−1

to get a flow fy, and construct the residual network N̂fy (π) w.r.t. fy and wπ. Note
that each edge (u, v) in Py−1 is in N̂fy−1(π) \ N̂fy (π); and its reduced cost wπ(u, v) is
updated prior to augmenting flow along Py−1. After the augmentation, each such edge
(u, v) in Py−1 has reduced cost wπ(v, u) = −wπ(u, v) in N̂fy (π). Due to the properties
of the successive shortest path algorithm, wπ(u, v) ≥ 0 for every (u, v) ∈ E(N̂fy (π))
(reduced cost optimality conditions [3]).

3. Let fy be the flow found by Step 2 in each iteration. For an edge (u, v) ∈ E(N̂), let
fy(u, v) be the flow value passing through (u, v) w.r.t. fy. Let c(fy) be the cost of flow
fy in FN , namely,

c(fy) =
∑

(u,v)∈E(N̂)|fy(u,v)>0

ŵ(u, v) + h(v) − h(u) =
∑

(u,v)∈E(F N)|fy(u,v)>0
w(u, v).

Stop Step 2 if:

• either the value y ≤ nmin of flow fy cannot be increased (an s− t path cannot be
found in N̂fy (π)), or c(fy+1) > c(fy) such that c(fy+1) > −c. For either case, if
c(fy) ≤ −c then output ∪e∈E(N̂)|fy(e)>0∧e∈E(H) as a solution. Otherwise, conclude
there is no matching in H with profit at least c.

Johnson’s shortest path algorithm has the following properties that also apply to ExactNF2.

Property 4.1. [29, 60].

a) For every edge (u, v) ∈ E(N̂), ŵ(u, v) ≥ 0.

b) A flow fy of flow value y is a min-cost flow in FN if and only if fy is a min-cost flow
of flow value y in N̂ .

Proof. Since there is no cycle in FN(V, E), there is no negative cycle in FN(V, E). There
are only out-going edges from source s with zero weight. It follows from the analysis in [29]
that part (a) holds; and all edges of E(FN) can be changed to non-negative weighted edges
E(N̂) by using the Bellman-Ford algorithm.
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Part (b), which is an extension of a property in [29] on the length of a path in FN and
N̂ . Let Q′ = (s = v0, v1, . . . , vz−1, vz = t) be an s−t path in N̂ . As shown in [29], the weight
of Q′ in N̂ is

ŵ(Q′) =
∑

1≤j≤z

ŵ(vj−1, vj) =
∑

1≤j≤z

w(vj−1, vj) + h(vj−1) − h(vj) (4.1)

= h(s) − h(t) +
∑

1≤j≤z

w(vj−1, vj)

= h(s) − h(t) + w(Q′),

where w(Q′) is the weight of Q′ in FN . For any flow fy in FN or N̂ , the edges with positive
flow of fy form a set Q = {Q1, . . . , Qy} of edge-disjoint s − t paths since each edge in FN

and N̂ has unit capacity. From Eq (4.1), the weight of Q in N̂ is

ŵ(Q) =
∑

1≤i≤y

ŵ(Qi) = y(h(s) − h(t)) +
∑

1≤i≤y

w(Qi). (4.2)

Since h(s) and h(t) are independent of any s− t path, if fy is a min-cost flow (∑
1≤i≤y w(Q)

is minimum) in FN , then fy is a min-cost flow in N̂ and vice versa.

The successive shortest path algorithm has the following properties that also apply to
ExactNF2 since the initial network N̂ has non-negative edge weights and SSSP (s) on N̂

can be computed correctly by Property 4.1.

Property 4.2. [3]

a) (Reduced cost optimality conditions) For y ≥ 0 and N̂fy (π), a feasible flow fy is an
optimal solution to the min-cost flow problem if and only if some set of node potentials
π satisfy that wπ(u, v) ≥ 0 for every edge (u, v) ∈ N̂fy (π).

b) Sending flow along an s − t shortest path py in N̂fy (π) w.r.t. reduced costs wπ still
maintains the reduced cost optimality conditions in each iteration.

Next, we give a general definition of the weight of a path in N̂fi
(π) for FN and N̂ .

Let N̂fi
(π) be a residual network w.r.t. flow fi (0 ≤ i ≤ nmin) and reduced cost wπ, where

N̂f0(π) = N̂ . For any path P in N̂fi
(π), define the weight of P in FN as

w(P ) =
∑

(u,v)∈P ∩E(F N)
w(u, v) −

∑
(u,v)∈P \E(F N)

w(v, u)

and the weight of P in N̂ as

ŵ(P ) =
∑

(u,v)∈P ∩E(N̂)

ŵ(u, v) −
∑

(u,v)∈P \E(N̂)

ŵ(v, u).
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Note that if P \ E(FN) = ∅, the weight w(P ) is the regular definition of w(P ) (same for
ŵ(P ) as E(FN) = E(N̂)).

Corollary 4.2. Let P be an s − t path in the residual network N̂fi
(π) w.r.t. flow fi and

reduced cost wπ. The weight of P in N̂ is ŵ(P ) = h(s) − h(t) + w(P ).

Proof. If P \ E(FN) = ∅, then from Eq (4.1), corollary holds. Suppose P \ E(FN) ̸= ∅.
Then, the weight of P in N̂ is

ŵ(P ) =
∑

(u,v)∈P ∩E(N̂)

ŵ(u, v) −
∑

(u,v)∈P \E(N̂)

ŵ(v, u)

= [
∑

(u,v)∈P ∩E(F N)

w(u, v) + h(u) − h(v)] − [
∑

(u,v)∈P \E(F N)

w(v, u) + h(v) − h(u)]

= [
∑

(u,v)∈P ∩E(F N)

w(u, v) + h(u) − h(v)] + [
∑

(u,v)∈P \E(F N)

h(u) − h(v)] −
∑

(u,v)∈P \E(F N)

w(v, u)

= h(s) − h(t) +
∑

(u,v)∈P ∩E(F N)

w(u, v) −
∑

(u,v)∈P \E(F N)

w(v, u)

= h(s) − h(t) + w(P ).

Hence, we have the corollary.

Lemma 4.1. Let fy and fy+1 be two flows found in Step 2 of ExactNF2. If c(fy) < c(fy+1),
then c(fy+1) ≤ c(fz) for every flow fz found after fy+1, z > y + 1.

Proof. Assume for contradiction that there is a flow fz found after fy+1 such that c(fz) <

c(fy+1) for the smallest z > y + 1. Let Py be the path found in N̂fy (π) to get fy+1 from
fy (by augmenting flow along Py), and similarly, let Pz−1 = (s, v1, v2, . . . , vq, t) be the path
found in N̂fz−1(π). Then, c(fy+1) − c(fy) = w(Py) > 0 and c(fz) − c(fz−1) = w(Pz−1) < 0.
By Corollary 4.2, ŵ(Pz−1) < ŵ(Py). If Pz−1 exists in N̂fy (π), by Property 4.2, the al-
gorithm would have augmented flow along Pz−1 instead of Py since it gives a flow f ′

y+1
of value y + 1 in N̂ with a cost lower than that of fy+1. Suppose Pz−1 does not ex-
ist in N̂fy (π). Let g ≥ y + 1 be the smallest iteration such that Pz−1 exists in N̂fg (π)
(g ≤ z − 1). Let Pg−1 = (s, u1, u2, . . . , ux, t) be the path found in N̂fg−1(π). Some edges of
Pz−1 must have inverse directions in Pg−1. Consider any maximal subpath (vi, vi+1, . . . , vj)
of Pz−1 such that the reverse path (vj , . . . , vi+1, vi) is in Pg−1. Label Pz−1 as three sub-
paths: Pz−1(1) = (s, v1, . . . , vi), Pz−1(2) = (vi, . . . , vj) and Pz−1(3) = (vj , . . . , vq, t). Label
Pg−1 as three subpaths: Pg−1(1) = (s, u1, . . . , ua, vj), Pg−1(2) = (vj , . . . , vi) and Pg−1(3) =
(vi, ub, . . . , ux, t). Then, P ′

g−1 = Pz−1(1) ∪ Pg−1(3) and P ′′
g−1 = Pg−1(1) ∪ Pz−1(3) are two

s− t paths in N̂fg−1(π) (see Figure 4.3 for an example). Recall that z > y +1 is the smallest
such that c(fz) < c(fy+1), which means w(Pg−1) ≥ 0 and w(Pz−1) < 0. Next, we show
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Figure 4.3: Residual network N̂fg−1(π). Path Pg−1 = (s, u1, . . . , ux, t) found in N̂fg−1(π) by the
algorithm is labeled as three subpaths Pg−1(1) (red lines), Pg−1(2) (orange lines) and Pg−1(3) (pink
lines). The path Pz−1 = (s, v1, . . . , vq, t) exists in N̂fg (π) and is labeled as three subpaths Pz−1(1)
(blue lines), Pz−1(2) (black dotted lines, these edges are in N̂fg (π) and not in N̂fg−1(π)) and Pz−1(3)
(green lines).

w(P ′
g−1) < w(Pg−1) or w(P ′′

g−1) < w(Pg−1). If w(Pz−1(3)) < w(Pg−1(2)) + w(Pg−1(3)), then

w(P ′′
g−1) = w(Pg−1(1) + w(Pz−1(3))

< w(Pg−1(1)) + w(Pg−1(2)) + w(Pg−1(3)) = w(Pg−1).

Suppose w(Pz−1(3)) ≥ w(Pg−1(2)) + w(Pg−1(3)). Note that Pz−1(2) is the reversed path
of Pg−1(2), and w(Pz−1(2)) = −w(Pg−1(2)) since for each (u, v) in Pz−1(2), w(u, v) =
−w(v, u), where (v, u) is in Pg−1(2). Because w(Pz−1) < 0, w(Pz−1(1)) + w(Pz−1(3)) <

−w(Pz−1(2)), so
w(Pg−1(2)) > w(Pz−1(1)) + w(Pz−1(3)).

From this,

w(Pz−1(3)) ≥ w(Pg−1(2)) + w(Pg−1(3))

> w(Pz−1(1)) + w(Pz−1(3)) + w(Pg−1(3)),

implying w(P ′
g−1) = w(Pz−1(1)) + w(Pg−1(3)) < 0. Thus, w(P ′

g−1) < w(Pg−1). From the
above and Corollary 4.2, at least one of ŵ(P ′

g−1) < ŵ(Pg−1) and ŵ(P ′′
g−1) < ŵ(Pg−1) is

true. This implies that we can obtain a min-cost flow f ′
g of value g in N̂ by augmenting flow

along P ′
g−1 (or P ′′

g−1) instead of Pg−1 such that f ′
g has a cost lower than that of fg. This is

a contradiction to Property 4.2 that fg is a min-cost flow of value g. Therefore, a flow fz

with c(fz) < c(fy+1) cannot exist for z > y + 1.

Theorem 4.3. Algorithm ExactNF2 finds a matching M with w(M) ≥ c and |M | max-
imized or concludes that there is no matching M with w(M) ≥ c in H in time O(nm +

85



nmin · t(FN)), where t(FN) is the time for computing SSSP (s) in a residual network of
N̂ , n = |V (FN)| and m = |E(FN)|.

Proof. From Property 4.2, the flow fy found by Step 3 at each iteration is a minimum cost
flow of value y in N̂ ; and by Property 4.1 (b), fy is a min-cost flow of value y in FN . If
Algorithm ExactNF2 terminates due to fy is maximum, then by Theorem 4.2, either fy is
an optimal solution, or there is no solution for H.

Suppose Algorithm ExactNF2 terminates due to c(fy+1) > c(fy) and c(fy+1) > −c. By
Lemma 4.1, any flow fz found after fy+1 has c(fz) ≥ c(fy+1) > −c. If c(fy) ≤ −c, then fy

implies an an optimal solution; otherwise, there is no solution for H.
Johnson’s shortest path algorithm runs in O(nm), due to the Bellman-Ford algorithm

having a running time of O(nm). There are at most nmin iterations after re-weighting the
edges using Johnson’s algorithm. There are at most nmin iterations. In each iteration, it
takes t(FN) ≥ O(m + n log n) time to compute SSSP (s) and O(m + n) time to update
node potentials, reduced costs and residual network. Therefore, Algorithm ExactNF2 runs
in time O(nm + nmin · t(FN)).

In the worst case, ExactNF2 has nmin iterations (after re-weighting the edges). The
stopping condition (c(fy+1) > c(fy) and c(fy+1) > −c) can reduce the number of iterations
in practice. Dijkstra’s algorithm can be used to compute SSSP (s) in each iteration since
the edge cost in N̂fy (π) is non-negative. As described in [3], one can compute an s − t

path instead of computing SSSP (s) to improve the computational time. After an s − t

path is found using Dijkstra’s algorithm (with early termination), the update to each node
potential π(u) is based on whether vertex π(u) has been permanently (u is visited and
explored) or temporarily labeled by Dijkstra’s algorithm. We implement this version in our
experiment. Note, however, that Algorithm ExactNF2 still runs in time O(nm+nmin·t(FN))
asymptotically. Due to the structure of the graph FN , the length of any s − t path in FN

is exactly 3. We can terminate the Bellman-Ford algorithm after 3 iterations (instead of
n − 1 iterations), resulting in time O(m) for Johnson’s shortest path algorithm. From this
and Theorem 4.3, we have the following corollary.

Corollary 4.3. The running time of Algorithm ExactNF2 can be reduced to O(m + nmin ·
t(FN)).

4.3.2 Approximation algorithm

Next, we present a simple 1
2 -approximation algorithm (referred to as Greedy) for an arbi-

trary profit target c. This algorithm is useful, in terms of actual computational time, only
if the instance H contains many negative edges.

1. Compute a maximum weight matching M ′ in H.
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2. Let M = M ′. For each iteration, select an edge e′′ in H− = H \ H+ such that

e′′ = argmaxe∈E(H−)\M | e∩e′=∅ ∀e′∈M w(e).

If w(M) + w(e′′) ≥ c, then add e′′ to M . Repeat this until such an edge e′′ does not
exist (every edge of H intersects with an edge of M) or w(M) + w(e′′) < c.

Algorithm Greedy has a running time of O(t(H) + m log m), where t(H) is the time to find
a maximum weight matching in H and m = |E(H)|. Next, we show Algorithm Greedy has
a 1

2 -approximation ratio. Let M ′ be the initial maximum weight matching computed in the
first step of Greedy. Note that M ′ ⊆ E(H+). Let M∗ be a matching in H with w(M∗) ≥ c

and |M∗| maximized.

Property 4.3. Every edge e ∈ E(H+) \ M ′ is incident to at least one edge of M ′, implying
any edge e of H not incident to M ′ must have weight w(e) < 0.

Let M1 = M \ M ′ be the set of edges added to M ′ during the second step of Greedy.
Let M∗

1 = {e ∈ M∗ | e is not incident to any edge of M ′}. From Property 4.3, every e ∈
M1 ∪ M∗

1 has weight w(e) < 0, namely, (M1 ∪ M∗
1 ) ⊆ E(H−). From Property 4.3 and

each edge of M ′ is incident to at most two edges of M∗ \ M∗
1 , |M ′| ≥ |M∗ \ M∗

1 |/2 since
M ′ is a maximal matching in H+. Since w(M ′) is maximum among all matchings in H,
w(M ′) ≥ w(M∗ \ M∗

1 ).

Theorem 4.4. Let M be the matching found by the Greedy algorithm and M∗ be a match-
ing in H with w(M∗) ≥ c and |M∗| maximized. Then, |M |

|M∗| ≥ 1
2 , implying Greedy is 1

2 -
approximate to RPC1.

Proof. First, divide F (V, E) = M1∆M∗
1 into two collections of components: F∗

1 = {C ∈ F |
E(C) ⊆ M∗

1 } and F0 = F \ F∗. Notice that |E(F∗
1 )| = |F∗

1 | and (E(F ) ∩ M1) ⊆ E(F0).
We prove that E(F ) ∩ M1 can be divided into two subsets E0 and E1 such that |E0| ≥
|E(F0) ∩ M∗

1 |/2 and |E1| ≥ |E(F∗
1 )|. Initially, E0 = ∅ and E1 = ∅. For each component

C ∈ F0, let e1, e2, . . . , eb be the set of edges in E(C)∩M1 selected by Greedy, where ei is the
ith edge added to E(C)∩M1 and b = |E(C)∩M1|. We divide M1 ∩E(F0) into E0 and E1 as
follows: for each C ∈ F0 and i = 1, . . . , b, if there is an edge in E(C) incident to ei then add
ei to E0 and remove every edge in E(C) incident to ei from E(C) (each removed edge is in
E(C) ∩ M∗

1 ); otherwise, add ei to E1. Since each edge ei ∈ E0 is incident to at most two
edges of M∗

1 , |E0| ≥ |E(F0) ∩ M∗
1 |/2. By the Greedy algorithm, w(E0) ≥ w(E(F0) ∩ M∗

1 ).
From this and w(M ′) ≥ w(M∗ \M∗

1 ), if there is any edge e∗ in E(F∗
1 ) then there is a distinct

edge e in E1 with w(e) ≥ w(e∗), implying |E1| ≥ |E(F∗
1 )|. Therefore,

|M1|
|M∗

1 |
= |E0| + |E1| + |M1 ∩ M∗|

|E(F0) ∩ M∗
1 | + |E(F∗

1 )| + |M1 ∩ M∗|
≥ |E(F0) ∩ M∗

1 |/2 + |E(F∗
1 )| + |M1 ∩ M∗|

|E(F0) ∩ M∗
1 | + |E(F∗

1 )| + |M1 ∩ M∗|
≥ 1

2 .

From this and |M ′| ≥ |M∗ \ M∗
1 |/2,
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|M |
|M∗|

= |M ′| + |M1|
|M∗ \ M∗

1 | + |M∗
1 |

≥ |M∗ \ M∗
1 |/2 + |M∗

1 |/2
|M∗ \ M∗

1 | + |M∗
1 |

≥ 1
2 .

4.4 RPC+ variant

Due to the non-negative profit constraint (vi), only edges in H+ can be selected to solve the
RPC+ problem (formulation (iii)-(vi)) Inherently, the profit target must be non-negative
for the RPC+ problem. In this case, a matching M with w(M) ≥ c and |M | maximized
may not be an optimal solution to the RPC+ problem if λ ≥ 2. For instance, a matching
M1 = {e1, e2, e3} with three edges may contain only three passenger vertices of V (H) ∩ R,
whereas a matching M2 = {e4} with one edge can contain four passenger vertices (assuming
λ ≥ 4). We need to find a matching M in H such that the number of passenger vertices
V (H) ∩ R contained in M is maximized and w(M) ≥ c.

4.4.1 The LS2 Algorithm

We propose a local search algorithm for λ ≥ 2, called LS2. For an edge e = {ηi}∪Ri ∈ E(H),
let D(e) = {ηi} (the driver of edge e) and R(e) = Ri (the passengers of e). For a subset
E′ ⊆ E(H), let D(E′) = ∪e∈E′D(e) and R(E′) = ∪e∈E′R(e). For an edge e ∈ E(H), let N(e)
be the set of edges incident to e, called the neighborhood of e, and N+(e) = N(e) ∩ E(H+).
By constraint (vi), we only need to consider the subgraph H+. As mentioned in Section 4.1,
it is NP-hard to find a maximum weight matching in hypergraph H and the largest weight
c∗. We use a heuristic to compute a weight c̃ to approximate c∗ and set c ≤ c̃ as a profit
target. There are two steps in Algorithm LS2. In the first step, LS2 uses the simple greedy
in [16, 24] to find an initial weighted set packing (hypergraph matching) to get c̃. In the
second step of LS2, a local search is used to improve the solution computed in the first step.
The first step produces a solution with a 1

2λ -approximation ratio, and the second step gives
a solution with a 2

3λ -approximation ratio when a specific condition on the profit target is
met. Algorithm LS2 is given in the following, starting with M ′ = ∅.

1. In each iteration, select an edge e′′ ∈ E(H+) that does not intersect with any edge of
M ′ and has maximum weight. That is, find an edge e′′ in E(H+) such that

e′′ = argmaxe∈E(H+)\M ′ | e∩e′=∅ ∀e′∈M ′w(e),

and add e′′ to M ′. Repeat this until every edge of E(H+) \ M ′ intersects with M ′.
Determine c by setting c ≤ c̃ = w(M ′).

2. Let M = M ′ be the matching obtained after Step 1. Let A = {e ∈ M | |R(e)| = 1}
and assume A = {a1, . . . , aq} with w(ai) ≤ w(aj) for 1 ≤ i < j ≤ q. An improvement
δe of an edge e ∈ M is a subset of edges in N+(e) such that
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• |δe| ≤ 2, all edges of (M ∪ δe) \ {e} are pairwise vertex-disjoint, |R(δe)| > |R(e)|
and w(M) + w(δe) − w(e) ≥ c.

An improvement δe is maximum if |R(δe)\R(M)| is maximum among all improvements
of e.

(a) If λ = 2, execute the following for-loop for each ai ∈ A.

• For i = 1 to q do, if there is an improvement δai of ai such that |R(δai)| = 4,
then perform an augmentation as M = (M ∪ δai) \ {ai}.

(b) Else if λ ≥ 3, execute the following for-loop for each ai ∈ A.

• For i = 1 to q do, if there is an improvement of ai, then find a maximum
improvement δai and perform an augmentation as M = (M ∪ δai) \ {ai}.

Output M .

4.4.2 Analysis of LS2

Let M ′ be the solution (a matching) found after Step 1 of the LS2 algorithm. Let 0 ≤ c ≤
w(M ′) and M∗ be a matching in H+ such that |R(M∗)| is maximized and w(M∗) ≥ c,
representing an optimal solution to the RPC+ problem. We first show that M ′ is already
1

2λ -approximate for any λ ≥ 1.

Property 4.4. Every edge e ∈ E(H+) \ M ′ is incident to at least one edge of M ′.

For a matching M ′′ found during the execution of algorithm LS2 and an edge e ∈ M ′′,
let M∗(e) = {e∗ ∈ M∗ | e∗ is incident to e}. For two incident edges e ∈ M ′ and e∗ ∈ M∗,
we say they are incident/intersected by trip if R(e) ∩ R(e∗) ̸= ∅, by driver if D(e) = D(e∗),
or by both if R(e) ∩ R(e∗) ̸= ∅ and D(e) = D(e∗).

Theorem 4.5. Let M ′ be the matching found by Step 1 of the LS2 algorithm, 0 ≤ c ≤ w(M ′)
and M∗ be a matching in H+ such that |R(M∗)| is maximized and w(M∗) ≥ c. Then,
|R(M ′)|
|R(M∗)| ≥ 1

2λ for λ ≥ 1.

Proof. For every e ∈ M ′, e is incident to at most one edge of M∗ by driver and |R(e)| edges
of M∗ by trip. From this,

|R(e)|
|R(M∗(e))| ≥ |R(e)|

(|R(e)| + 1)λ ≥ 1
2λ

.

From Property 4.4, every edge e∗ ∈ M∗ must be incident to some edge e ∈ M ′ (or e∗ ∈ M ′).
Therefore, |R(M ′)|

|R(M∗)| ≥ 1
2λ .

As can be seen in the analysis of Theorem 4.5, the approximation ratio is dominated by
|R(e)|

|R(M∗(e))| ≥ |R(e)|
(|R(e)|+1)λ for every e ∈ M ′. We can generalize it as the following corollary.
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Corollary 4.4. If |R(e)| ≥ b for every edge e ∈ M and a constant b ≥ 1, then |R(M)|
|R(M∗)| ≥

b
(b+1)λ .

If the number of edges in M ′ containing only one passenger is small, then a better
approximation ratio can be obtained, which is the main purpose of Step 2 of LS2. Recall
that A = {e ∈ M ′ | |R(e)| = 1}. When an edge e of A is replaced by an improvement
δe, |R(δe)| − |R(e)| ≥ 1, increasing |R(M ′)| by at least one. However, an improvement δe

can decrease the total weight w(M ′). If the profit target c is smaller than w(M ′) by some
fraction of w(A) (as stated in Assumption 4.1), then we can get a 2

3λ -approximation, and
we prove this in the remainder of this section.

Assumption 4.1. The profit target c is within 0 ≤ c ≤ w(M ′ \ A) + 2w(A)/(λ + 1).

Let F (V, E) = M ′∆M∗ be the resulting graph of the symmetric difference of M ′ and M∗

for the rest of the analysis. Let F be the set of connected components in F (V, E). Let C(3) =
{C ∈ F | |E(C)| = 3 and |R(M ′ ∩ E(C))| = 1 and |R(e∗)| > 1 for each e∗ ∈ M∗ ∩ E(C)}.
Let Q = ∪C∈C(3)M

′ ∩ E(C) and Q∗ = ∪C∈C(3)M
∗ ∩ E(C). By the definition of C(3), every

C ∈ C(3) contains exactly one edge of M ′ (due to |R(M ′ ∩E(C))| = 1) and two edges e∗
1 and

e∗
2 of M∗. Then, there exists an improvement δe with δe = {e∗

1}, δe = {e∗
2}, or δe = {e∗

1, e∗
2}

for every e ∈ Q. Such an improvement δe is independent of each C ∈ C(3). For an edge
e ∈ Q and an improvement δe with |δe| = 2 w.r.t. M ′, |R(δe)| ≥ |R(e∗

1 ∪ e∗
2)| − |R(e)| ≥ 3

because |R(e∗
1)| ≥ 2 and |R(e∗

2)| ≥ 2 by definition. Similarly for an improvement δe with
|δe| = 1, |R(δe)| − |R(e)| ≥ 1. Since each edge of Q is incident to two edges of Q∗ and any
edge e∗ of Q∗ is only incident to one edge of Q, |Q∗| = 2|Q|. Hence, we have the following
property.

Property 4.5. Let C(3), Q and Q∗ be defined as above.

(1) There exists an improvement δe w.r.t. M ′ for every e ∈ Q such that edges of δe are
not incident to edges of δe′ for every pair e, e′ ∈ Q.

(2) |R(Q)| ≥ |R(Q∗)|
2λ .

Lemma 4.2. |R(M ′ \ Q)| ≥ 2
3λ |R(M∗ \ Q∗)|.

Proof. Let F1 = {C ∈ F \ C(3) | |R(M ′ ∩ E(C))| = 1} and F2 = F \ (F1 ∪ C(3)). Let
M ′

1 = ∪C∈F1M ′ ∩ E(C), M∗
1 = ∪C∈F1M∗ ∩ E(C), M ′

2 = ∪C∈F2M ′ ∩ E(C) and M∗
2 =

∪C∈F2M∗ ∩ E(C). We first consider (1) F1, and then (2) F2.
(1) For each C ∈ F1, C has exactly one edge e of M ′ and at most two edges of M∗. If

C contains two edges e∗
1 and e∗

2 of M∗, then one of e∗
1 and e∗

2 contains only one passenger
by the definition of C(3). This implies that

|R(e)|
|R(e∗

1) ∪ R(e∗
2)| ≥ 1

λ + 1 ≥ 2
3λ

for λ ≥ 2.

90



If C contains only one edge e∗ of M∗, |R(e)|/|R(e∗)| ≥ 1/λ. From these, |R(M ′
1)| ≥

2
3λ |R(M∗

1 )|.
(2) Let F ′

2 = {C ∈ F2 | |M ′ ∩ E(C)| = 1}. For each C ∈ F ′
2 and an edge e ∈ M ′ ∩ E(C),

|R(e)| ≥ 2 by the definition of F1. Then,

|R(e)|
|R(M∗(e))| ≥ |R(e)|

(|R(e)| + 1)λ ≥ 2
3λ

. (4.3)

Let F ′′
2 = {C ∈ F2 | |M ′ ∩ E(C)| ≥ 2}. For any C ∈ F ′′

2 and every two edges e1 and
e2 in M ′ ∩ E(C) that are connected by an edge of M∗ ∩ E(C), there can be at most
|R(e1) ∪ R(e2)| + 1 edges of M∗ incident to e1 and e2. From this,

|R(e1 ∪ e2)|
|R(M∗(e1) ∪ M∗(e2))| ≥ |R(e1) ∪ R(e2)|

(|R(e1) ∪ R(e2)| + 1)λ ≥ 2
3λ

. (4.4)

Eq (4.3) and Eq (4.4) imply that |R(M ′
2)|

|R(M∗
2 )| ≥ 2

3λ . Since M ′ \ Q = M ′
1 ∪ M ′

2 ∪ (M ′ ∩ M∗) and
M∗ \ Q∗ = M∗

1 ∪ M∗
2 ∪ (M ′ ∩ M∗), |R(M ′ \ Q)| ≥ 2

3λ |R(M∗ \ Q∗)| from the above.

Let B = {a1, a2, . . . , am} be any subset of A such that w(a1) ≤ w(ai) ≤ w(aj) ≤ w(am)
for 1 ≤ i < j ≤ m, m ≥ 2 and λ ≥ 2. For two integers 1 ≤ x ≤ y ≤ m, let B(x, y) =
{ax, . . . , ay}. Since B ⊆ A, we know that

w(A) − w(B) ≥ z · (w(A) − w(B)) = z · w(A) − z · w(B)

for any constant 0 ≤ z ≤ 1. Hence, we have the following property.

Property 4.6. 2
λ+1w(B) − w(B) ≥ 2

λ+1w(A) − w(A) for λ ≥ 1.

Lemma 4.3. Let B′ = B(1, ⌊ (λ−1)m
λ+1 ⌋) for λ ≥ 2. For matching M ′′ = (M ′ \ B′) ∪ EB′,

where EB′ ⊆ (E(H+) \ B′) is a (an empty) set of edges incident to B′ s.t. M ′′ remains as
a matching, w(M ′′) ≥ c.

Proof. Each edge e ∈ B that is replaced by the algorithm can reduce w(M ′) by at most
w(e) since the improvement δe of e has weight w(δe) ≥ 0. Recall that the elements of B

are sorted in the increasing order of their weights. For B′ = B(1, ⌊ (λ−1)m
λ+1 ⌋), B′ contains at

most λ−1
λ+1 smallest elements in B ⊆ A. Hence,

w(B′) ≤ λ − 1
λ + 1w(B) = (1 − 2

λ + 1)w(B).

Let M ′′ = (M ′ \ B′) ∪ EB′ . From w(EB′) ≥ 0, Property 4.6 and Assumption 4.1,

w(M ′′) ≥ w(M ′) − w(B′) ≥ w(M ′) − (1 − 2
λ + 1)w(B)

= w(M ′ \ B) + 2
λ + 1w(B)
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≥ w(M ′ \ A) + 2
λ + 1w(A) ≥ c.

During Step 2 of Algorithm LS2, an edge e∗ ∈ Q∗ remains unblocked if e∗ is not incident
to any edge of improvement δe for any e ∈ A; and, after the augmentation of any improve-
ment δe for some e ∈ A, an unblocked edge e∗ ∈ Q∗ becomes blocked if e∗ is incident to any
edge of δe, that is, D(e∗) ∩ D(δe) ̸= ∅ or R(e∗) ∩ R(δe) ̸= ∅.

Lemma 4.4. Let M be the final matching found by the LS2 algorithm. Let M∗ be a matching
in H+ such that |R(M∗)| is maximized and w(M∗) ≥ c, representing an optimal solution
to the RPC+ problem. For λ = 2, |R(M)|

|R(M∗)| ≥ 2
3λ .

Proof. We show that at least |Q|/3 additional edges are added to M ′, that is, |R(M)| −
|R(M ′)| ≥ |Q|/3. For λ = 2, removing |B(1, ⌊ (λ−1)m

λ+1 ⌋)| ≥ |B(1, ⌊m
3 ⌋)| edges of A from M ′

results in a matching M ′′ with w(M ′′) ≥ c by Lemma 4.3. Letting m = |A| − ⌊2|A|/3⌋ ≥
⌈|A|/3⌉ ≥ ⌈|Q|/3⌉ implies that ⌊⌈|A|/3⌉/3⌋ ≥ ⌈|Q|/9⌉ improvements (in augmentations)
can be performed on M ′ such that the resulting matching M ′′ has weight w(M ′′) ≥ c. By
the definition of C(3), each improvement δe of e ∈ Q contains the two edges e∗

1, e∗
2 ∈ Q∗

incident to e. Let δQ = {δe | e ∈ Q} be the set of such improvements. An improvement δe

for e ∈ A \ Q adds 3 additional edges to M ′ and can be incident to at most 4 improvements
of δQ since e is not incident to any edge of Q∗. An improvement δe for e ∈ Q adds at least 3
additional edges to M ′ and can be incident to at most 5 improvements of δQ (four different
improvements plus the one already incident to e). This implies that, in the worst case, after
⌈|Q|/9⌉ improvements with |Q|/3 additional edges, there are still some improvements of
δQ not incident to these ⌈|Q|/9⌉ improvements. Hence, at least |Q|/3 additional edges are
added to M ′.

Recall from Lemma 4.2 and Property 4.5 (2) that |R(M ′ \ Q)| ≥ 2
3λ |R(M∗ \ Q∗)| and

|R(Q)| ≥ |R(Q∗)|/2λ. We have

|R(M)| ≥ |R(M ′ \ Q)| + |R(Q)| + |Q|
3 = |R(M ′ \ Q)| + 4|R(Q)|

3 (4.5)

≥ 2
3λ

|R(M∗ \ Q∗)| + 2
3λ

|R(Q∗)|

From Eq (4.5),

|R(M)|
|R(M∗)| ≥

2
3λ |R(M∗ \ Q∗)| + 2

3λ |R(Q∗)|
|R(M∗ \ Q∗)| + |R(Q∗)| = 2

3λ
. (4.6)

Therefore, the lemma holds.

Lemma 4.5 is proved in a similar way as the proof of Lemma 4.4.
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Lemma 4.5. Let M be the final matching found by the LS2 algorithm. Let M∗ be a matching
in H+ such that |R(M∗)| is maximized and w(M∗) ≥ c, representing an optimal solution
to the RPC+ problem. For λ ≥ 3, |R(M)|

|R(M∗)| ≥ 2
3λ .

Proof. We show that at least |Q|/3 additional edges are added to M ′, that is, |R(M)| −
|R(M ′)| ≥ |Q|/3. For λ ≥ 3, removing |B(1, ⌊ (λ−1)m

λ+1 ⌋)| ≥ |B(1, ⌊m
2 ⌋)| edges of A from M ′

results in a matching M ′′ with w(M ′′) ≥ c by Lemma 4.3. Letting m = |A| − ⌊|A|/3⌋ ≥
⌈2|A|/3⌉ ≥ ⌈2|Q|/3⌉ implies that ⌊⌈2|Q|/3⌉/2⌋ ≥ ⌈|Q|/3⌉ improvements (in augmentations)
can be performed on M ′ such that the resulting matching M ′′ has weight w(M ′′) ≥ c.
By Property 4.5 (1), there are 2|Q| improvements w.r.t. M ′, each of which is an edge in
Q∗. An improvement δe for e ∈ A \ Q adds |R(δe)| − 1 ≥ 1 additional edges to M ′ and
can be incident to at most |R(δe)| unblocked edges of Q∗ since e is not incident to any
edge of Q∗; and these unblocked edges become blocked and are no longer improvements
after augmenting δe. Similarly, an improvement δe for e ∈ Q with |δe| = 2 adds at least
|R(δe)| − 1 ≥ 3, due to maximum improvement, additional edges to M ′ and can be incident
to at most |R(δe)| + 2 unblocked edges of Q∗. It is possible that after some augmentations,
an improvement δe for e ∈ Q contains only one edge due to blocked edges of Q∗; and in
this case, each such improvement δe adds at least |R(δe)| − 1 ≥ 1 additional edges to M ′

and can be incident to at most |R(δe)| + 1 unblocked edges of Q∗. These imply that, in the
worst case, even after ⌈|Q|/3⌉ improvements with |Q|/3 additional edges, not all edges of
Q∗ are incident to some edges of these ⌈|Q|/3⌉ improvements, that is, there are edges of Q∗

remain unblocked. Hence, at least |Q|/3 additional edges are added to M ′. Therefore, by
Eq (4.5) and Eq (4.6), the lemma holds.

From Theorem 4.5, Lemma 4.4 and Lemma 4.5, we have Theorem 4.6.

Theorem 4.6. Let M ′ be the matching found by Step 1 of the LS2 algorithm and M be
the final matching found by the LS2 algorithm. Let A = {e ∈ M ′ | |R(e)| = 1}. Let 0 ≤
c ≤ w(M ′) and M∗ be a matching in H+ such that |R(M∗)| is maximized and w(M∗) ≥ c.
|R(M ′)|
|R(M∗)| ≥ 1

2λ for λ ≥ 1, and if c ≤ w(M ′ \ A) + 2w(A)
λ+1 for λ ≥ 2, then |R(M)|

|R(M∗)| ≥ 2
3λ .

4.5 Experiment

We conduct an extensive empirical study to evaluate our model and algorithms for RPC1
and RPC+. Our goal is to have a simulation as realistic as possible. To the best of our
knowledge, there is no practical test dataset publicly available for the RPC problem at the
moment. To clear this hurdle, we create a simulation dataset by incorporating a real-world
ridesharing dataset from Chicago City with the driver profit model of Uber. In Subsec-
tion 4.5.1, we introduce the simulation setup and describe the ridesharing dataset of Chicago
City. We describe how to apply the profit/revenue model of Uber to assign a profit/revenue
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value to each feasible match in Subsection 4.5.2. In Subsection 4.5.3, we describe the test
instances in detail. Experimental results are reported in Subsection 4.5.4.

4.5.1 Simulation and dataset overview

The simulated centralized system receives a batch of driver offer trips D and passenger
request trips R in a fixed time interval, where the origin oi and destination di are within
Chicago City for every driver ηi ∈ D and passenger ri ∈ R. The roadmap data of Chicago
city is retrieved from OpenStreetMap (BBBike.org)1. We used the GraphHopper2 library to
construct the logical graph data structure of the roadmap, which contains 290048 vertices
and 414124 edges.

The ridesharing dataset (denoted by TNP) we use is publicly available on Chicago Data
Portal (CDP), maintained by Chicago Transit Authority (CTA)3. The ridesharing dataset
TNP contains completed trips records, reported by Transportation Network Providers
(which are rideshare companies) to CTA. The TNP dataset range is chosen from May
1st, 2022 to May 31st, 2022. The Chicago city is divided into 77 official community areas
(area for brevity and labeled as A1 to A77). Each record in the TNP dataset describes a
passenger trip served by a driver who provides the ride service. A trip record in the TNP
dataset contains:

• A pick-up time, a drop-off time, a pick-up area (Census Tract) and a drop-off area (Census
Tract) for the passenger.

• Duration and distance travelled of the trip.

• A fare and an optional tip paid by the passenger, where the fare does not include the tip.

Note that the exact pick-up and drop-off locations are not provided from the dataset and
times are rounded to the nearest 15 minutes. We removed any trip record that is missing
any of the essential information, “short” trips (less than 1.5 miles or 6 minutes) and “long”
trips (greater than 35 miles or 70 minutes) from the dataset. Our experiment focuses on
weekdays only. This results in 2453435 trip records from the TNP dataset. We group one or
more adjacent areas together to create 25 regions to represent the Chicago City. Areas of
a region are grouped together based on the total number of trips with pick-up and drop-off
areas in that region. That is, areas with smaller number of trips are grouped together as
shown in Figure 4.4. Since the trip records in TNP are aggregated in every 15 minutes, we
partition a day from 6:00 to 23:59 into 72 time intervals (each has 15 minutes). In each time
interval, drivers and passengers are generated for each of the 25 regions.

1Planet OSM. https://planet.osm.org. BBBike. https://download.bbbike.org/osm/

2GraphHopper 6.0. https://www.graphhopper.com

3CDP. https://data.cityofchicago.org. CTA. https://www.transitchicago.com
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Figure 4.4: The 77 community areas are grouped into 25 regions.

4.5.2 Profit for feasible matches

First, we describe how we estimate the revenue rev(ηi, Ri) of a feasible match (ηi, Ri) for a
driver ηi using the TNP dataset. Since the trip records in TNP are reported by rideshare
companies in the US, we use the price scheme from Uber, based on its upfront cost estimator4

(Lyft has a similar scheme). Recall that SFP(ηi, Ri) is the shortest feasible path ηi needs
to traverse to serve all of Ri. Let ζ = |Ri| and SFP(ηi, Ri) = (l0, l1, . . . , l2ζ+1) such that
for 1 ≤ a ≤ 2ζ, la is a location (a vertex in the road network graph) representing either
an origin oj or a destination dj of passenger rj in Ri, where l0 = oi and l2ζ+1 = di. For
1 ≤ a < b ≤ 2ζ, let p(a, b) be the subpath of SFP(ηi, Ri) from la to lb. For a passenger
rj ∈ Ri, let p(j1, jq) be the subpath such that lj1 = oj and ljq = dj . In other words, p(j1, jq)
is the path passenger rj needs to traverse. Denoted by t(la, lb) is the estimated travel time
(duration) for traversing p(a, b).

We define a cost function g(ηi, rj) representing how much rj needs to pay. The cost of a
trip for a passenger from Uber’s cost estimator includes: a base fare f1, a per-minute cost
multiplier f2, a per-mile cost multiplier f3 and a booking/service fee f4. Then the cost for
passenger rj ∈ Ri is

g(ηi, rj) = γ(rj) · [f1 + f2 · t(j1, jq) + f3 · dist(p(j1, jq))] + f4,

4Uber cost estimator. https://www.uber.com/global/en/price-estimate.
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where γ(rj) ≥ 1 is a surge pricing factor. Surge pricing factor γ(rj) fluctuates based on
passenger-demand and driver-supply, which depends on when rj is picked-up, oj and dj .
Let f(ηi, rj) = g(ηi, rj) − f4. Uber takes all of the booking fee f4 and takes a portion of
f(ηi, rj), which is known as the “take-rate” θ(rj , Ri), and it is usually 0.2 ≤ θ(rj , Ri) ≤ 0.25.
In addition, rj has the option to include a tip ϵ(rj) > 0 for driver ηi. The estimated revenue
rev(ηi, Ri) for driver ηi and |Ri| = {rj} is (1 − θ(rj , Ri)) ·

∑
rj∈Ri

f(ηi, rj) + ϵ(rj).
If |Ri| > 1, the match (ηi, Ri) may become shared trips. The price scheme is similar,

except a discounted rate ω(rj , Ri) is applied to f(ηi, rj), where 0 ≤ ω(rj , Ri) ≤ 1 and
ω(rj , Ri) = 1 means no discount. Let dp(rj , Ri) be the number of different passengers
in Ri \ {rj} encountered by rj while traversing p(j1, jq). We set ω(rj , Ri) = max{1.0 −
0.2dp(rj , Ri), 0.2} (a linear relation). In addition, the cost for shared distance travelled (per-
minute and per-mile) is split among the passengers in the car at the time. For 1 ≤ a ≤ 2ζ−1,
let np(la, la+1) be the number of passengers in the car while travelling from la to la+1.
The take-rate θ(rj , Ri) for shared trips (e.g., UberPool) can be set lower to adjust for the
earnings of the drivers: take-rate θ(rj , Ri) for a passenger rj ∈ Ri is selected uniformly at
random from [max{0.05, 0.2ω(rj , Ri)}, max{0.1, 0.25ω(rj , Ri)}]. The final estimated revenue
rev(ηi, Ri) is

∑
rj∈Ri

(1 − θ(rj , Ri)) · ω(rj , Ri) · γ(rj) · (f1 +
∑

j1≤a≤jq−1

f2 · t(la, la+1) + f3 · dist(la, la+1)
np(la, la+1) ) + ϵ(rj).

Next, we describe how we estimate the fee components, surge pricing factor, travel time,
tip amount, and profit w(ηi, Ri) in detail. From Uber’s cost estimator, we can determine
that f1, f2 and f3 are fixed regardless of the distance of the trip. The booking fee increases as
the estimated distance of the trip increases. Table 4.1 shows the cost for each fee component

base fare f1 per-minute f2 per-mile f3 booking fee f4
1.8 0.27 0.8 min{max{1, 1 + 0.25(miles − 2)}, 10}

Table 4.1: The cost (in USD) for each fee component of a trip.

for a single-passenger trip used in our experiment. The choice of the fees is validated by
examining the TNP dataset as follows. Let Z(h, x, y) be the set of trips with pick-up times
during hour h, origins (pick-up areas) in region x, and destinations (drop-off areas) in y.
For each set Z(h, x, y) of trips, we calculate the average fare avg(Z(h, x, y)) paid by the
passengers of these trips, namely, sum the fare of the trips in Z(h, x, y) and divide it by
|Z(h, x, y)|. Then, we examine the periods of time containing many trips during which
surge pricing is unlikely to occur (before noon, as demonstrated by [113]). We compare
the estimated average fare f ′(Z(h, x, y)), calculated using the chosen fee component costs
in Table 4.1, against the the average fare avg(Z(h, x, y)) for h ∈ {10, 11}. From the stats
in Table 4.2, the cost for each fee component shown in Table 4.1 is reasonable. Note that
fares are rounded to the nearest $2.50, so some inaccuracy may occur due to this. The ratio
γ(h, x, y) = avg(Z(h, x, y))/f ′(Z(h, x, y)) is also the estimated average surge pricing factor
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Ratio range Percentage of ∪x,yZ(h, x, y) fall in the range
h = 10 h = 11

avg(Z(h,x,y))
f ′(Z(h,x,y)) > 1.25 8.64% 13.48%

1.25 ≤ avg(Z(h,x,y))
f ′(Z(h,x,y)) ≤ 0.75 84.48% 82.02%

0.9 ≤ avg(Z(h,x,y))
f ′(Z(h,x,y)) ≤ 1.1 40.32% 38.52%

avg(Z(h,x,y))
f ′(Z(h,x,y)) < 0.75 6.88% 4.49%

Table 4.2: Percentage of ∪x,yZ(h, x, y) that fall in different ranges of avg(Z(h,x,y))
f ′(Z(h,x,y)) .

(same surge pricing factor γ(rj) mentioned above) for a passenger rj with an origin in region
x and a destination in region y that is picked-up during hour h. Promotion discounts are
given out regularly by ridesharing companies, which can cause the fare to be lower than
normal. We simulate this type of discount by applying a surge pricing factor γ(h, x, y) < 1
to any passenger trip rj in Z(h, x, y), causing f(ηi, rj) to be lower.

We use a similar process to estimate the average vehicle (driving) speed from one region
to another region. For each set Z(h, x, y) of trips, we calculate the average speed spd(h, x, y)
by these trips, namely, the sum of the distance of trips in Z(h, x, y) is divided by the sum
of the duration of the trips in Z(h, x, y). In this way, the average speed spd(h, x, y) gives
variable vehicle speeds according to the time h of day from region x to region y. Since
the TNP does not contain exact coordinates for pick-up and drop-off locations and travel
time is required for profit/revenue calculations, we estimate the travel time during hour h

from a location la in region x to location lb in region y as t(la, lb) = dist(la, lb)/spd(h, x, y).
Note that for both estimated surge pricing factor γ(h, x, y) and spd(h, x, y), x = y is also
considered.

From the TNP dataset, we calculate the average amount of tips and the percentage
of trips which a tip is given as follows. The distance of a trip is rounded to the nearest
mile; and we denote the set of trips with distance d as Zd. Let Z+

d be the set of trips

Figure 4.5: Average amount of a tip ϵ(rj , d) and ratio |Z+
d

|
|Zd| for each rounded distance d.
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with tips given and ϵ(rj , d) be the average amount of a tip given by a passenger rj for trip
distance d. Figure 4.5 shows ϵ(rj , d) and p(d) = |Z+

d |/|Zd| for each distance d round to the
nearest mile. We use this result to determine a tip given by a passenger. Given a match
(ηi, Ri), SFP(ηi, Ri) and a passenger rj ∈ Ri, let drj be the nearest mile of the subpath
(oj , dj) in SFP(ηi, Ri). Recall that SFP(ηi, Ri) is the computed feasible shortest path to
serve all passengers of Ri (defined in Section 4.1). Then ϵ(rj , drj ) is the average amount of
tip from rj (blue bar in Figure 4.5) if rj pays a tip, and p(drj ) is the probability rj pays
a tip (orange line in Figure 4.5). The average tip amount of a passenger trip rj ∈ Ri is
ϵ(rj) = p(drj ) · ϵ(rj , drj ).

The cost tc(ηi, Ri) of a match (ηi, Ri) for a driver ηi is the travel cost for traversing
SFP(ηi, Ri). Then, tc(ηi, Ri) = dist(SFP(ηi, Ri))·cost(type), where cost(type) is an estimate
average cost per mile for a vehicle type under normal traffic conditions. We use the estimate
costs from [11, 20] (which are based on the average gas prices for a 12-month period ending
May 2022 in the US): the cost per mile for small Sedan, medium Sedan and medium SUV
are $0.1251, $0.1437 and $0.1889 (USD), respectively.

ω(rj , Ri) discounted rate for the fee components
θ(rj , Ri) take-rate for a passenger trip rj ∈ Ri and is selected uniformly at random from

[max{0.05, 0.2ω(rj , Ri)}, max{0.1, 0.25ω(rj , Ri)}]
γ(h, x, y) surge pricing factor for a passenger picked-up during hour h, from region x to

region y
spd(h, x, y) average vehicle speed during hour h from region x to region y
ϵ(rj) the average amount of a tip given by a passenger rj

tc(ηi, Ri) the travel cost for traversing SFP(ηi, Ri) based on a vehicle-type mileage-cost
cost(type)

t(la, lb) estimated travel time (duration) of from location la to location lb in SFP(ηi, Ri)

Table 4.3: Notation used in estimating revenue rev(ηi, Ri) and profit w(ηi, Ri).

Table 4.3 summarizes the notation for all the estimations. Putting everything together,
the estimated revenue rev(ηi, Ri) is

∑
rj∈Ri

(1 − θ(rj , Ri)) · ω(rj , Ri) · γ(rj) · (1.8 +
∑

j1≤a≤jq−1

0.27 · t(la, la+1) + 0.8 · dist(la, la+1)
np(la, la+1) ) + ϵ(rj),

and the estimated profit w(ηi, Ri) after all of Ri are served is

w(ηi, Ri) = rev(ηi, Ri) − tc(ηi, Ri) = rev(ηi, Ri) − dist(SFP(ηi, Ri)) · cost(type).

4.5.3 Driver and passenger trips generation

For each 15-minute time interval ht, 1 ≤ t ≤ 4, in hour h, we first generate a set of
passengers and then a set of drivers. Passengers are generated according to the average
number of trips occurred per hour, calculated using the TNP dataset. Let Z(ht, x, y) be
the set of trip records in the TNP dataset with pick-up time in interval ht, origins (pick-
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up areas) in region x, and destinations (drop-off areas) in region y. Let R(ht, x, y) be the
set of passengers generated for interval ht with origins in x and destinations in y. Then,
|R(ht, x, y)| = ⌈|Z(ht, x, y)|/days(ht, x, y)⌉, where days(ht, x, y) is the number of weekdays
in TNP that contain at least a trip record of Z(ht, x, y). After R(ht, x, y) is generated, a
set D(ht, x) of drivers with origins in region x is generated. The destination region y of a
driver ηi ∈ D(ht, x) is decided as follows. Let sum(ht, x) = ∑

y |R(ht, x, y)| for each region
x. Then, ηi has a destination in region y with probability |R(ht, x, y)|/sum(ht, x). For any
driver ηi ∈ D(ht, x) or passenger ri ∈ R(ht, x, y), the actual origin oi and destination di are
two random locations in regions x and y, respectively. The only exceptions are regions R25
and R20 (where the O’Hare International and Midway airports are located, respectively); all
drivers’ and passengers’ origins and destinations in R25 are the O’Hare airport, and there
is 50% chance that origins and destinations in R20 are the Midway airport. The ridesharing
instance in interval ht consists of D = ∪xD(ht, x) and R = ∪x,yR(ht, x, y).

For variant RPC1, we set 0.9 ≤ ⌈ |D(ht,x)|
|R(ht,x,y)|⌉ ≤ 1.1, depending on the hour of the day.

For variant RPC+, |D(ht, x)| = ⌈ |R(ht,x,y)|
4 ⌉ for each ht during peak hours (7:00-9:59) and

(16:00-19:59); and ⌈ |R(ht,x,y)|
3 ⌉ ≤ |D(ht, x)| ≤ ⌈ |R(ht,x,y)|

2 ⌉ during non-peak hours. Figure 4.6
shows the number of drivers and passenger generated for each interval. These numbers are

Figure 4.6: The number of drivers and passenger generated for each interval.

selected with the consideration of surge pricing factor and capacities of drivers’ vehicles.
Since the trip records in the TNP dataset are for served (completed) trips, the number
of drivers should not be too low. We consider only Sedan vehicle types with capacity for
variant RPC1. For variant RPC+, we consider three vehicle types: small and medium Sedans
with capacity [1,3] and SUVs with capacity [1,5] inclusive. During peak hours, roughly 95%
and 5% of vehicles have capacities randomly selected from Sedan and SUV, respectively.
During non-peak hours, roughly 90% and 10% of vehicles have capacities randomly selected
from Sedan and SUV, respectively. Other parameters for drivers and passengers are listed
in Table 4.4.
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SP(o, d) shortest path from location o to location d
Earliest departure time αi immediate to end of a time interval ht for any driver

ηi or passenger ri in D(ht, x) ∪ R(ht, x, y)
Driver detour limit zi for ηi ∈ D(ht, x) at most max{ a·dist(SP(oi,di))

spd(h,x,y) , 45}, a ∈ [1.2, 1.4]
Latest arrival time for ηi ∈ D(ht, x) αi + a( dist(SP(oi,di))

spd(h,x,y) + zi), a ∈ [1.0, 1.25]
Max travel duration for ηi ∈ D(ht, x) dist(SP(oi,di))

spd(h,x,y) + zi

Latest arrival time for rj ∈ R(ht, x, y) αj + a·dist(SP(oj ,dj))
spd(h,x,y) , a ∈ [2.0, 3.0]

Max travel duration for rj ∈ R(ht, x, y) a·dist(SP(oj ,dj))
spd(h,x,y) , a ∈ [1.5, 2.0]

Table 4.4: Parameters for drivers and passengers.

Feasible matches are computed from D and R in each interval ht. For a driver ηi, a
feasible match (ηi, Ri) with |Ri| = 1 is called a base match because for any feasible match
(ηi, R′

i) with |R′
i| > 1, the match (ηi, Ri) with Ri ⊂ R′

i must exist [101, 102] (restated as
Observation 5.1). We compute base matches first and then feasible matches with |Ri| > 1
as in [6, 99] (the details of computing the feasible matches are described in Chapter 5,
Subsection 5.2.2). Shortest paths in our simulation are computed in real-time. To speedup
the computation of feasible matches for practical reasons, we first apply a check to see if a
driver ηi and a passenger rj is a candidate pair. That is, test ηi and rj should be considered
in a base match by estimating the travel distance without computing any shortest path. We
also limit the number of base matches and total feasible matches a driver ηi can have.

1. Let dist(o, d) be the straight-line distance from location o to location d. Let ed(ηi, rj) =
τ · (dist(oi, oj) + dist(oj , dj) + dist(dj , di)) be the estimating travel distance, for some
τ > 0. If the maximum travel distance for ηi is at least ed(ηi, rj), then the match
(ηi, Ri = {rj}) is a candidate. Otherwise, (ηi, {rj}) is unlikely a feasible match (so
(ηi, {rj}) is not checked).

2. Any driver ηi can have at most 50 base matches and at most 500 feasible matches
in total; and each passenger can belong to at most 20 base matches (so 20 different
drivers).

4.5.4 Computational results

All algorithms were implemented in Java, and the experiments were conducted on an Intel
Core i7-6700 processor with 2133 MHz of 12 GBs RAM available to JVM. The ILP formu-
lations in the algorithms are solved by CPLEX v12.10.1. We label the algorithm CPLEX
uses to solve ILP formulations (iii)-(v) and (iii)-(vi) for RPC1 and RPC+ by Exact. Note
that by default, CPLEX uses multithreading, and we leave it as it is. Recall that for RPC1,
the implementation use ILPs is labeled as ExactNF1, the implementation based on graph
algorithms is labeled as ExactNF2 and the greedy 1

2 -approximation algorithm is labeled
as Greedy. A passenger rj ∈ R is called served if rj ∈ Ri such that (ηi, Ri) is a feasible
match belongs to a solution computed by one of the algorithms.
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RPC1 results.

The base case instances use the profit calculation described in Section 4.5.2. The estimated
distance factor used is τ = 0.6 for the computation heuristic described in 4.5.3. The overall
results are shown in Table 4.5 for profit targets c1 = w(M ′), c2 = 0.8 · w(M ′) and c3 =
0.6 · w(M ′), where M ′ is a maximum weight matching in H for each interval. Due to the

Algorithm Total number of passengers served in all intervals
(c′

1=$1587436) (c′
2=$1269949) (c′

3=$952462)
Greedy 109770 109775 109775
ExactNF1 109771 110035 110035
ExactNF2 109771 110035 110035
Exact 109771 110035 110035

Total profit of served matches in all intervals
Greedy $1587436 $1587432 $1587432
ExactNF1 $1587436 $1586707 $1586707
ExactNF2 $1587436 $1586707 $1586707
Exact $1587436 $1465676 $1457338

Avg running time (sec) per interval
Greedy 5.573 5.670 5.765
ExactNF1 6.248 6.223 6.379
ExactNF2 4.765 4.484 4.565
Exact 7.030 6.591 6.298

Avg running time to compute the matches per interval 238.713 seconds
Total number of drivers and passengers generated resp. 124340 and 126625

Table 4.5: Performances of algorithms for RPC1 on base case instances. For 1 ≤ a ≤ 3,
c′

a = ∑18
h=1

∑4
ht=1 ca (in dollar).

profit calculation, there are only 7.28 negative-profit matches per interval on average, which
is about 0.019% of the average number of matches per interval (37939.99). This is by design
for drivers to make money in practice, which results in the excellent performance of Greedy,
as optimal solutions have very few negative-profit matches. The Greedy solutions serve
about 99.76% of passengers served by optimal solutions computed by the exact algorithms.
In some intervals, Greedy solutions have higher profits due to negative matches are assigned
in the optimal solutions. From Table 4.5, ExactNF2 runs faster than other algorithms,
and ExactNF1/2 always produce optimal solutions with the highest profits of all optimal
solutions.

The base case instances may not truly reflect the whole picture when retail gas price
increases and traffic congestion occurs. The gas price (regular) in Chicago was increased
by nearly 35% from March 2022 to June 2022 and nearly 80% from Dec. 2021 to June
20225. According to [69], fuel consumption can increase 30% under heavily congestion. Note
that the cost increase from these two together are multiplicative. Although the cost due to

5Energy Information Administration. https://www.eia.gov
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congestion is compensated by a higher revenue (longer travel time), not all cost caused by
congestion is recovered. We considered five different settings for travel cost increases due to
extra fuel cost (gas price + congestion):

• 0-20% increase (from 0% for non-peak hours to 20% for peak hours), 20-40%, 40-60%, 60-80%
and 80-100%.

In addition to gas price, other major operating costs for drivers include maintenance, depre-
ciation, insurance and tax, especially for drivers that provide frequent ridesharing service.
From the findings in [11, 20], we add the following maintenance + depreciation (based on
20k miles/year) operating costs, labeled as OP, to tc(ηi, Ri) for each match (ηi, Ri):

• $0.0887 + $0.1851 per mile for Small Sedan and $0.1064 + $0.2505 per mile for Medium
Sedan.

For all other costs, an extra 20%/40% cost increase is applied to tc(ηi, Ri) for each match
(ηi, Ri). Altogether, we tested the following six cost settings (fuel and operating costs) added
to the base case:

• S1 (20-40% cost increase + operating costs OP), S2 (40-60% + OP), S3 (60-80% + OP), S4
(80-100% + OP), S5 (100-120% + OP), S6 (120-140% + OP).

The results of these six settings are depicted in Table 4.6 for profit target c = 0.8 · w(M ′)
for each interval. From Tables 4.5 and 4.6, the performance of Greedy is from about 99.76%

Greedy ExactNF1 ExactNF2 Exact
#S1 107233 110035 110035 110035
#S2 106953 110035 110035 110035
#S3 106658 110035 110035 110035
#S4 106387 110035 110035 110035
#S5 106081 110035 110035 110035
#S6 105795 110035 110035 110035

$S1 c′=$931569 $1162693 $1150650 $1150650 $1006764
$S2 c′=$907483 $1132014 $1118309 $1118309 $977763
$S3 c′=$883652 $1101575 $1086034 $1086034 $949875
$S4 c′=$860079 $1071137 $1053821 $1053821 $922326
$S5 c′=$836773 $1041053 $1021658 $1021658 $897687
$S6 c′=$813739 $1010972 $989553 $989553 $871236

ΘS1 (second) 3.316 3.976 4.066 4.577
ΘS2 (second) 3.246 3.921 4.658 4.564
ΘS3 (second) 3.308 3.909 3.986 4.672
ΘS4 (second) 3.301 3.962 4.526 4.696
ΘS5 (second) 3.351 3.919 3.904 4.496
ΘS6 (second) 3.343 3.989 4.600 4.720

Table 4.6: (#) Total number of passengers served and ($) total profit of served matches in all intervals,
and (Θ) average running time per interval for RPC1 using different cost settings. c′ =

∑18
h=1

∑4
ht=1 c

(in dollar).
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(base case) to 96.1% (the worst case S6) of the exact algorithms in the total number of
passengers served. In the tested instances, Greedy has the fastest average running time in
this scenario. Exact is still the slowest, and ExactNF1 is slightly faster than ExactNF2
on average. Table 4.7 shows results related to negative profits for selected cost settings:
S2, S4, and S6. Solutions produced by Greedy have higher total profits than that of Ex-

Greedy ExactNF1 ExactNF2 Exact

Avg % of negative-profit matches served per
interval out of all served matches

(S2) 0.8219% 1.2332% 1.2314% 3.5371%
(S4) 1.2361% 1.8867% 1.8867% 4.6540%
(S6) 1.8073% 2.8391% 2.8373% 5.9127%

Avg number of negative-profit matches per
interval

(S2) 3651.903 (9.625% of total matches)
(S4) 5013.125 (13.213% of total matches)
(S6) 6517.472 (17.178% of total matches)

Table 4.7: Results relate to profit for S2, S4, and S6.

actNF1/ExactNF2 and Exact because Greedy solutions have lower number of matches with
negative profit, compared to the ExactNF1/ExactNF2/Exact solutions, as stated in Ta-
ble 4.7. Of course, ExactNF always produces optimal solutions. As a result, ExactNF1 and
ExactNF2 always outperform Exact. As the number of matches with negative profit in-
creases (S1→S6), Greedy serves less passengers, and the exact algorithms stay the same.
These may suggest that when there are more matches with negative profit, ExactNF1 is
a better choice as it runs slightly faster than ExactNF2 on average. On the other hand,
if profit is also important, using Greedy is acceptable since it produces the highest total
profits and its performance is about 96.1% of the exact algorithms in the total number of
passengers served.

The mean occupancy rate (in each interval) for exact algorithms stays the same for all six
settings S1 to S6. The mean occupancy rate is calculated as, in each interval, (the number of
served passengers + the total number of drivers) divided by the total number of drivers. The
mean occupancy rates for each time interval in S2 and S6 are shown in Figure 4.7. The mean

Figure 4.7: The mean occupancy rate in each interval for S2 and S6.
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occupancy rates follow a similar distribution as the number of passengers generated. The
average occupancy rate for exact algorithms (calculated as the sum of the mean occupancy
rate for each interval and divided it by 72) is 1.8868. When there are many drivers and
passengers generated (balanced supply and demand), many of them are matched together.
During morning and afternoon peak/rush hours, the mean occupancy rates are close to 2,
meaning most of the generated drivers are assigned a passenger. It may be beneficial to
decrease the the parameter τ for candidate pair checks when supply/demand are lower in
some time intervals, so more driver-passenger pairs are considered. Finally, from Table 4.5,
the total maximum number of passengers served is at 110035 for c2 and c3 (same in Table 4.6
for c = 0.8 · w(M ′)). This may indicate that c2 = 0.8 · w(M ′) is a relative stable choice for
profit target in general.

RPC+ results.

The base case instances use the profit calculation described in Section 4.5.2. The estimated
distance factor used is τ = 0.8 for the computation heuristic described in 4.5.3. We assume
all passengers are willing to participant in ridesharing. Recall that the 2

3λ -approximation
algorithm that solves RPC+ is labeled as LS2 and the first step of LS2 is labeled as Simple-
Greedy. For this variant, the profit target c is upper bounded by the weight w(M ′) of the
matching M ′ found by SimpleGreedy. Recall that A = {e ∈ M ′ | |R(e)| = 1}, as defined in
the description of algorithm LS2, and Assumption 4.1 requires c ≤ w(M ′\A)+2w(A)/(λ+1).
We set a lower bound LB = min{w(M ′ \ A) + 2w(A)/(λ + 1), 0.6w(M ′)}. We tested three
profit targets c1 = w(M ′), c2 = 0.5 · (w(M ′) − LB) + LB and c3 = LB. The overall results
are shown in Table 4.8. The performances of SimpleGreedy and LS2 are about 89.25% and

Algorithm Total number of passengers served in all intervals
(c′

1=$845817) (c′
2=$676653) (c′

3=$507490)
SimpleGreedy 63554 63554 63554
LS2 64099 64118 64118
Exact 71197 71208 71208

Total profit of served matches in all intervals
SimpleGreedy $845817 $845817 $845817
LS2 $848677 $848271 $848271
Exact $846967 $702130 $681472

Avg running time (sec) per interval
SimpleGreedy 0.0445 0.0386 0.0397
LS2 0.0761 0.0708 0.0695
Exact 47.880 33.279 35.664

Avg number of feasible matches per interval 103612.431
Avg running time to compute the matches per interval 389.176 seconds
Total number of drivers and passengers generated resp. 40573 and 126625

Table 4.8: Performances of algorithms for RPC+ on base case instances. For 1 ≤ a ≤ 3, c′
a =∑18

h=1
∑4

ht=1 ca (in dollar).
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90.04% of the exact algorithm (Exact), in the total number of passengers served. The run-
ning time of LS2 is only 0.0325 second longer than that of SimpleGreedy. On the other hand,
the running time of Exact is 470-630 times longer than that of LS2, depending on the profit
target. For an even larger instance, Exact may not be suitable for real-time computation.
The overall running time is practical enough as shown in Table 4.8.

In terms of occupancy rates, Exact has the best mean occupancy rate in each interval
as expected, and its mean occupancy rate is also more stable compared to the other two
algorithms (see an example for c1 in Figure 4.8). In most intervals, the mean occupancy
rate of Exact is 2.7 or higher, and the mean occupancy rates of LS2 and SimpleGreedy
close to 2.6. The average occupancy rate for each algorithm is depicted in Table 4.9. This
aligns with previous studies that there is potential in ridesharing. Our experiment further
shows that there is potential in profit-maximizing MoD platforms by utilizing ridesharing
as profit targets are achieved by our algorithms. It is beneficial to use different algorithms
for different intervals (depending on the supply and demand) if time limit for computing a
solution is important.

Figure 4.8: The mean occupancy rate in each interval for RPC+ and c1.

Table 4.9: The average occupancy rate.

SimpleGreedy LS2 Exact

Average occupancy rate
c1 2.5808 2.5933 2.7628
c2 2.5808 2.5938 2.7631
c3 2.5808 2.5938 2.7631

Discussion.

Based on the RPC1 and RPC+ results, we can see that our algorithms are effective for
achieving the optimization goal in practical scenarios. The exact algorithms are efficient to
find optimal solutions. The approximation algorithms Greedy and LS2 can achieve 96.1%
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and 90.04% of the optimal solutions to RPC1 and RPC+, respectively, in the number of
passengers served. The average occupancy rates for RPC1 and RPC+ improve the reported
occupancy rate in the US (which is 1.5 in 2017) for all algorithms tested. Our experiment
results suggest that there is potential in profit-maximizing/profit-incentive MoD platforms
by utilizing ridesharing.

We also computed optimal solutions to the RP problem (formulation (i)-(ii)) using some
RPC1 and RPC+ test instances. The results are shown in Table 4.10. From this, optimal

RPC1 base RPC1: S2 RPC1: S4 RPC1: S6 RPC+ base

* #109770 #106074 #105072 #103883 #65913
$1587436 $1134354 $1075099 $1017174 $893879

⋄ #109771 #110035 #110035 #110035 #71197
$1586707 $1118309 $1053821 $989553 $846893

Table 4.10: Total number # of passengers served and total profit $ of served matches in all intervals.
(*) Optimal solutions to RP. (⋄) Optimal solutions to RPC1 (for ExactNF and c2) and RPC+ (for
Exact and c1).

solutions to RPC1 and RPC+ serve 5.92% (S6) and 8.02% (RPC+) more passengers than
the respective RP optimal solutions. The profits of the optimal solutions for RPC1 and
RPC+ are reasonably close to that of the RP optimal solutions. RPC can be an alternative
to RP in practice since more passengers are served with a controllable profit target, which
can be adjusted for each interval. MoDs can choose to compensate the drivers that serve
negative-profit matches (e.g., lower the take-rate).

4.6 Summary

In this chapter, we study the RPC problem: Find a set Π of pairwise disjoint feasible
matches such that |R(Π)| is maximized and w(Π) ≥ c for some integer c. The RPC problem
provides a new framework to incorporate a flexible pricing scheme to maximize the number
of passengers served while meeting a profit target; and the studying of the RPC problem
gives some insight into the potential of ridesharing in profit-maximizing platforms. The
RPC problem is a more complex variant of the well-studied weighted set packing problem
(an ILP formulation to the problem is given); and inherently, RPC is NP-hard. Two variants
of RPC are studied (labeled as RPC1 and RPC+). In RPC1, the vehicle capacity of each
driver is one, that is, each driver can serve at most one passenger in any solution to RPC1.
We present a polynomial-time exact algorithm framework (labeled as ExactNF) and a 1

2 -
approximation algorithm for RPC1. ExactNF is a network flow based algorithm, and two
practical implementations of ExactNF are presented: one uses LP that may need to compute
min-cost flows anew repeatedly, and the other uses graph algorithm that computes a min-
cost flow from the min-cost flow computed in the previous iteration. In RPC+, drivers have
arbitrary vehicle capacity, but only feasible matches with positive profit are considered in
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any solution to RPC+. We present a fast 2
3λ -approximation algorithm for RPC+. Lastly,

we create a dataset to evaluate our model and algorithms, based on a real-life ridesharing
dataset in Chicago City. The dataset provides the features and a base to simulate the real
world RPC problems.
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Chapter 5

Multimodal Transportation with
Ridesharing Problem

Caused by poor city planning or underdevelopment, a major drawback of public transit is the
inconvenience and inflexibility of first mile/last mile (FM/LM) transportation, compared
to personal vehicles. The spareness of transit networks usually is the main cause of the
inconvenience in public transit. Such transit networks have infrequent transit schedule and
choiceless for customers to reach their destinations. All of the above can cause longer waiting
time and more transfers for customers, and/or overcrowded transit. As a result, many people
to choose to use personal vehicles for work commute. In this chapter, we investigate the
potential effectiveness of integrating public transit with ridesharing to reduce travel time
for commuters and increase occupancy rate in such sparse transit networks (with the focus
on work commute). For example, people who drive their vehicles to work can pick-up transit
users, who use public transit regularly, and drop-off them at some transit stops close to the
users’ destinations. In this way, passengers are presented with a cheaper alternative than
ridesharing for the entire trip, and it is more convenient than using public transit only. The
transit system also gets a higher ridership, which aligns with the recommendation of [34,
116] for a more sustainable transportation system. Our research focuses on an integrated
transportation system (ITS) that is capable of matching drivers and passengers satisfying
their trips’ requirements while achieving an optimization goal. When a passenger (a transit
user) is assigned a driver, we call this ridesharing route, and it is compared with the fastest
public transit route for this passenger, which uses only public transit. If the ridesharing
route is faster than the public transit route, the ridesharing route becomes an acceptable
ridesharing route (acceptable route for short); and the acceptable route is provided to both
the passenger and driver for acceptance confirmation. To increase the number of passenger
participants, the optimization goal of the ITS is to maximize the number of passengers, each
is assigned an acceptable route. We call this the multimodal transportation with ridesharing
(MTR) problem.
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We now formally introduce the MTR problem. In an instance of the MTR problem, we
have the ITS, and for every fixed time interval, the system receives a set A = D ∪ R of
participant trips with D ∩ R = ∅, where D = {η1, . . . , ηk} is the set of driver trips and
R = {r1, . . . , rn} is the set of passengers trips. Each trip consists of an individual (driver or
passenger) and is represented by an integer i for convenience, as in the ridesharing problem.
Each driver of D provides ridesharing service, and each passenger of R is a transit users
and wants to receive ridesharing service to reduce his/her travel time.

A connected public transit network with a fixed timetable T is given by the ITS. The
timetable T contains each transit vehicle’s departure and arrival times for each transit
stop/station (a transit vehicle includes bus, metro train, rail and so on). We assume that
given an earliest departure time from any source location o to a destination location d in
the public transit network, the fastest travel time from o to d (including transfer time) can
be computed from T quickly. Given an earliest departure time dt from a passenger ri ∈ R, a
public transit route π̂i(dt) for ri is a travel plan using only public transportation, whereas a
ridesharing route πi(dt) for ri is a travel plan using a combination of public transportation
and ridesharing to reach from ri’s origin to ri’s destination satisfying ri’s requirements.

Each trip i ∈ A has the same parameters related to a road network N as in the rideshar-
ing problems as well as the RPC problem (Table 4.4). In addition to those parameters, a
passenger ri also contains an acceptance threshold θi for a ridesharing route πi(αi), that is,
πi(αi) is given to passenger ri if t(πi(αi)) ≤ θi ·t(π̂i(αi)) for every public transit route π̂i(αi)
and 0 < θi ≤ 1, where t(·) is the travel time of a route. Such a route πi(αi) is called an
acceptable ridesharing route (acceptable route for brevity). For example, suppose the fastest
public transit route π̂i(αi) takes 100 minutes for ri and θi = 0.9. An acceptable route πi(αi)
implies that t(πi(αi)) ≤ θi · t(π̂i(αi)) = 90 minutes.

We consider two match types for practical reasons (although our system can extend to
different match types):

• Type 1 (rideshare-transit): a driver may make multiple stops to pick-up different
passengers, but makes only one stop to drop-off all passengers. In this case, the pick-
up locations are the passengers’ origin locations, and the drop-off location is a public
station.

• Type 2 (transit-rideshare): a driver makes only one stop to pick-up passengers and
may make multiple stops to drop-off all passengers. In this case, the pick-up location
is a public station and the drop-off locations are the passengers’ destination locations.
Passengers have to go to the pick-up location themselves.

Drivers and passengers specify which match type to participate in; they are allowed to choose
both in hope to increase the chance being selected, but the system will assign them only one
of the match types such that the optimization goal of the MTR problem is achieved, which
is to assign acceptable routes to as many passengers as possible. Formally, the optimization
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Notation Definition
oi Origin (start location) of i (a vertex in N)
di Destination of i (a vertex in N)
λi Number of seats (capacity) of ηi available for passengers
zi Maximum detour time ηi willing to spend for offering ridesharing services
pi An optional preferred path of ηi from oi to di in N
δi Maximum number of stops ηi willing to make to pick-up passengers for

match Type 1 or drop-off passengers for match Type 2
αi Earliest departure time of i
βi Latest arrival time of i
γi Maximum trip time of i
θi Acceptance threshold (0 ≤ θi < 1) for a ridesharing route πi(αi) for ri

πi(αi) Route for ri using a combination of public transit and ridesharing
π̂i(αi) Route for ri using only public transit

d(πi(αi)) The driver who provides the ridesharing route πi(αi)
t(pi) Shortest travel time for traversing path pi by private vehicle

t(πi(αi)) & t(π̂i(αi)) Shortest travel time for traversing route πi(αi) and π̂i(αi) resp.
t(u, v) & t̂(u, v) Shortest travel time from location u to v by vehicle and transit resp.

Table 5.1: Parameters for a trip announcement i.

goal of the MTR problem is to maximize the number of passengers, each is assigned an
acceptable route. We denote an instance of this maximization MTR problem by (N, A, T ).

For clarity, we summarize the parameters of trips in A in Table 5.1 and restate the
constraints/requirements of the parameters from the definitions in Section 2.3 (which has
some minor differences) in the following. For a driver ηi ∈ D and a set J ⊆ R of passengers,
the set σ(i) = {ηi} ∪ J is called a feasible match if driver i can serve this group J of
passengers together, using a route in N from oi to di, while all requirements (constraints)
specified by the parameters of the trips in σ(i) are satisfied collectively, as listed below:

1. Ridesharing route constraint: for J = {rj1 , . . . , rjp}, there is a path FP(ηi, J) =
(oi, oj1 , . . . , ojp , s, di) in N , where s is the drop-off location for Type 1 match; or there
is a path FP(ηi, J) = (oi, s, dj1 , . . . , djp , di) in N , where s is the pick-up location for
Type 2 match. Note that if pi is given and detour limit zi = 0, path FP(ηi, J) = pi for
either match type (assuming driver ηi specifies a station s). Otherwise, the centralized
system computes the path FP(ηi, J).

2. Capacity constraint: limits the number of passengers a driver can serve, 1 ≤ |J | ≤ λi

with the assumption λi ≥ 1.

3. Acceptable constraint: each passenger rj ∈ J is given an acceptable route πj(αj) such
that t(πj(αj)) ≤ θj · t(π̂j(αj)) for 0 < θj ≤ 1, where the ridesharing part of πj(αj) is
a subpath of FP(ηi, J) and π̂j(αj) is the fastest public transit route for rj given αj .

4. Travel time constraint: each trip j ∈ σ(i) departs from oj no earlier than αj , arrives
at dj no later than βj , and the total travel duration of j is at most γj . The exact
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application of these time constraints is described in Subsection 5.2.2. (Algorithm 7
and Algorithm 8).

5. Stop frequency constraint: the number of unique locations visited by driver ηi to pick-
up (for Type 1) or drop-off (for Type 2) all passengers of σ(i) is at most δi.

5.1 Related work

As pointed out by Ma et al. [80], some basic form of collaboration between MoD services and
public transit already exists (for first and last mile transportation). For example, Thao et
al. [106] mentioned in their study that a basic integration of ridesharing and public transport
in rural Switzerland is already in place; and there have been pilot projects (e.g., Taxito,
Ebuxi/mybuxi, Kollibri, sowiduu) promoting the integration of public transit and MoD
in Switzerland. There is an increasing interest for collaboration between private companies
and public sector entities [91]. These studies/reports suggest that multimodal transportation
with ridesharing is practical, which further motives us.

There is a rich literature on standalone ridesharing/carpooling, from theoretical to com-
putational studies (e.g., [1, 6, 48, 112]). Since ridesharing related work has been reviewed in
Section 3.1, we refer readers to [2, 39, 81, 85, 104, 111] for more in-depth literature reviews
on ridesharing.

A few studies on the integration of public transit with dynamic ridesharing have also
been reported. Aissat and Varone [4] proposed an approach which, given a public transit
route for a passenger, substitutes each part of the route with ridesharing if ridesharing
is better than the original part. Their algorithm finds the best route for each passenger
in first-come first-serve (FCFS) basis, where an optimization goal of the system is not
considered, and the algorithm is computational intensive. Huang et al. [58] presented a
more robust approach, compared to [4], by combining two networks N, N ′ (representing
the public transit and ridesharing network, respectively) into one single routable graph G.
The graph G uses the time-expanded model to maintain the information about all public-
vehicle schedule, passengers’ and drivers’ origins, destinations and time constraints. The two
networks N, N ′ are connected by creating edges between them whenever a passenger can
be picked-up/dropped-off from/at a public stop within time constraints. For any passenger
travel query, a ridesharing route is found on G, if available, by a shortest path algorithm.
Their approach is also FCFS basis. Masoud et al. [82] used a similar idea of time-expanded
network. Their algorithm and experiment only consider a limited number of transfer points,
which may constrain their algorithm in large-scale transit systems. Due to the nature of
FCFS basis in the above mentioned papers, no exact and approximation algorithms are
considered to achieve an overall optimization goal.

Kumar and Khani [64] studied the FM/LM problem for transit in which individuals have
no or limited transit service due to limited transit coverage and connectivity. A schedule-
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based transit network graph N is used in [64], which connects the road network and the
public transit service network to capture time constraints and related time sensitivity move-
ments for passengers. Then, acceptable waiting time/walking time for feasible transfers can
be computed from N . A set of feasible matches is determined by using N (each feasible
match consists of a driver and a passenger that satisfies all the constraints). Then, they
formulate an ILP to find an optimal match from the computed feasible matches. Their
approach only consider at most one passenger per driver. Molenbruch et al. [84] studied a
similar FM/LM problem where public transit is not available to passengers, so the passen-
gers have to rely on demand-responsive services to connect to major transit stations. The
difference is that [84] focuses more on the dial-a-ride problem (DARP). The authors use
a variant of the metaheuristic Large Neighborhood Search to compute a list of candidate
passengers, that can be served by each DAR vehicle. Then, candidates are verified based on
their (users’ and DAR vehicles’) time constraints. Objective is to design minimum-distance
DAR routes, satisfying all user requests.

Luo et al. [76] proposed a different multimodal transportation system for FM/LM prob-
lem. Their transportation system integrates micromobility services with MoD, where mi-
cromobility services include bikes and electric scooters sharing services for shorter trips. In
the system, travellers use micromobility services for the FM/LM connections to hubs for
ridesharing supported by MoD. As pointed out by the authors, the placement of hubs is
crucial since the hub locations are fixed in their model, but it is difficult to find an optimum
placement for the hubs (NP-hard). Their model also incorporates the idea of re-positioning
micromobility vehicles to balanced demand/supply. The optimization goals include finding
optimum placements of hubs and micromobility vehicles for given demands and supplies (re-
positioning the micromobility vehicles as well). Salazar et al. [94] introduced autonomous
vehicle into the integration of public transit and MoD while considering the energy con-
sumption MoD autonomous vehicles. A relevant optimization goal considered in [94] is to
minimize passengers’ travel time together with the operational costs of the autonomous
fleet and public transportation.

Several transportation systems integrating public transit and ridesharing have been
proposed to address the FM/LM problem. Ma et al. [80] presented a transportation system
with policy design that integrates public transit and ridesharing using a fleet of dedicated
vehicles to provide the ridesharing service. When a request from a passenger that enters the
system, a best option (fastest travel option) is computed approximately and provided to the
passenger, and the system is FCFS basis. Their model/system also includes the relocation
of the ridesharing vehicles if they are idle. Narayan et al. [87] gave a similar system (without
vehicle re-location). Their conditions for best routes are different from [80] and the routes
are computed differently. The models in [80, 87] are different from our model in which
personal drivers are the main focus.
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Ma [79] and Stiglic et al. [102] proposed models to integrate public transit and rideshar-
ing as graph matching problems to achieve certain optimization goals. In the models of [79,
102], a set of drivers, a set of passengers and a public transit network are given. The mod-
els assign passengers to drivers to use ridesharing for replacing FM/LM transit (exclusive
ridesharing can be supported, as described in [102]). A group of passengers can be assigned
to a driver if all constraints of the passengers in the group and the driver are satisfied.
Each of passenger groups and drivers is represented as a node in a shareability graph (RV
graph [95] and RTV graph [6]); and there is an edge between a passenger group node and a
driver node if the group of passengers can be assigned to the driver. The passenger and driver
assignment problem is modelled as graph matching problem in the graph (then formulated
as an ILP problem and solved by an ILP solver).

The optimization goal in [79] is to minimize the cost related to waiting time and travel
time. Two optimization goals are considered in [102]: one is to maximize the number of
passengers assigned to drivers, and the other is to minimize the total distance increase for
all drivers. These models are closely related to ours, but there are differences and limitations.
The goal in [79] is different from ours and does not guarantee ridesharing routes better than
the public transit routes. One of the goals in [102] aligns with ours, but there are restrictions:
a passenger group can have at most two passengers, each passenger must use the transit
stop closest to the passenger’s destination, and more importantly, the ridesharing routes
are not guaranteed to be better than public transit routes. We extend the work in [102] to
eliminate the limitations described above. That is, a ridesharing match allows more than
two passengers, passengers can be picked-up/dropped-off at any feasible transit stop, and
ridesharing routes assigned to passengers is quicker than the fastest public transit routes.

It is worth to mention that the ILP formulation (described in Section 5.2) for the MTR
problem is a special case of the Separable Assignment Problem (SAP), which is a generaliza-
tion of the Generalized Assignment Problem (GAP). Given a β-approximation algorithm
for the single-bin subproblem in SAP, Fleischer et al. [37] presented two approximation
algorithms for SAP: an LP-rounding based ((1− 1

e )β)-approximation algorithm and a local-
search ( β

β+1 − ϵ)-approximation algorithm, ϵ > 0. If interested, a problem related to SAP is
the Multiple Knapsack Problem with Assignment Restrictions (e.g., [30]).

5.2 Exact algorithm approach

Our exact algorithm approach for the MTR problem is presented in this section, which
is similar to the matching approach described in [6, 95] for ridesharing and in [79, 102]
for integration of public transit and ridesharing. Our approach computes a hypergraph
representing all feasible matches in an instance (N, A, T ) of the MTR problem, which is
similar to [77, 95]. The hypergraph allows a better intuition of the approximation algorithms
described in Section 5.3. We give a detailed description of our hypergraph approach as some
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of the definitions/notations are used in our approximation algorithms. More importantly,
we show that the MTR problem is in fact NP-hard using our ILP formulation from the
hypergraph representing.

5.2.1 Integer program formulation

The exact algorithm approach is described in the following. Given an instance (N, A, T ) of
the MTR problem, we first compute all feasible matches for each driver ηi ∈ D. Then, we
create a bipartite (hyper)graph H(V, E), where V (H) = D ∪ R. For each driver ηi ∈ D and
a non-empty subset J ⊆ R, if {ηi} ∪ J is a feasible match, create a hyperedge e = {ηi} ∪ J

in E(H). Any driver ηi ∈ D or passenger rj ∈ R does not belong to any feasible match is
removed from V (H), that is, H contains no isolated vertex (such passengers must use public
transit). For each edge e = {ηi} ∪ J in E(H), assign a weight w(e) = |J | (representing the
number of passengers in e). Let D(H) = D ∩ V (H) and R(H) = R ∩ V (H). For an edge
e = {ηi} ∪ J in E(H), let D(e) = ηi (the driver of e) and R(e) = J (the passengers of
e). For a subset E′ ⊆ E(H), let D(E′) = ∪e∈E′D(e) and R(E′) = ∪e∈E′R(e). For a vertex
j ∈ V (H), define Ej = {e ∈ E(H) | j ∈ R(e)} to be the set of edges in E(H) incident to j.
An example of the hypergraph H(V, E) is given in Figure 5.1. To solve the MTR problem,

Figure 5.1: A bipartite hypergraph H(V, E) representing all feasible matches of an instance
(N, A, T ), where |D(H)| = a and |R(H)| = b.

we give an integer linear programming (ILP) formulation:

maximize
∑

e∈E(H)
w(e) · xe (5.1)

subject to
∑

e∈Ej

xe ≤ 1, ∀ j ∈ A (5.2)

xe ∈ {0, 1}, ∀ e ∈ E(H) (5.3)

The binary variable xe indicates whether the edge e = (ηi, J) is in the solution (xe = 1)
or not (xe = 0). If xe = 1, it means that all passengers of J are assigned to ηi and can be
delivered by ηi satisfying all constraints. Inequality (5.2) in the ILP formulation guarantees
that each driver serves at most one feasible set of passengers and each passenger is served
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by at most one driver. Note that the ILP (5.1)-(5.3) is similar to a set packing formulation.
An advantage of this ILP formulation is that the number of constraints is substantially
decreased, compared to traditional ridesharing formulation.

Observation 5.1. A match σ(i) for any driver ηi ∈ D is feasible if and only if for every
subset J ⊆ (σ(i) \ {i}), {ηi} ∪ J is a feasible match [101].

From Observation 5.1, it is not difficult to see that Proposition 5.1 holds.

Proposition 5.1. Let D′ ⊆ D and P (D′) be a maximal set of passengers served by D′.
There always exists a set of feasible matches for D′ such that σ(i) ∩ σ(i′) = ∅ for every
ηi, ηi′ ∈ D′ and

⋃
ηi∈D′ σ(i) \ {ηi} = P (D′).

Theorem 5.1. Given a hypergraph H(V, E) for an instance of the multimodal transporta-
tion with ridesharing (MTR) problem, an optimal solution to the ILP (5.1)-(5.3) is an
optimal solution to the MTR problem and vice versa.

Proof. From inequality (5.2) in the ILP, the solution found by the ILP is always feasible
to the MTR problem. By Proposition 5.1 and objective function (5.1), an optimal solution
to the ILP (5.1)-(5.3) is an optimal solution to the MTR problem. Obviously, an optimal
solution to the MTR problem is an optimal solution to the ILP (5.1)-(5.3).

5.2.2 Computing feasible matches

Recall that λi is the capacity of a driver ηi (the maximum number of passengers i can
serve at once). The maximum number of feasible matches for ηi is ∑λi

p=1
(|R|

p

)
. Assuming the

capacity λi is a very small constant (which is reasonable in practice), the above summation
is polynomial in R, that is, O((|R| + 1)λi) (partial sums of binomial coefficients). Let λ =
maxi∈D λi be the maximum capacity among all vehicles/drivers. Then, in the worst case,
|E(H)| = O(|D| · (|R| + 1)λ).

In the next two subsections, we describe how to compute all feasible matches between
drivers and passengers in A = D ∪ R, given an instance (N, A, T ) of the MTR problem.
Let σ(i) = {ηi} ∪ J be a feasible match for driver ηi ∈ D and subset J ⊆ R. Let FP(ηi, J)
be the actual path in N (route for short) that satisfies the feasibility of the match σ(i),
namely, FP(ηi, J) is the route driver ηi uses to deliver all passengers of J that starts at oi

and ends at di. During the computation of σ(i) = {ηi} ∪ J , the route FP(ηi, J) of shortest
travel time is computed, assuming a shortest path from one location to another can be
computed from roadmap network N . Because the number of locations ηi needs to visit for
a feasible match σ(i) is limited, enumerating all possible locations to compute FP(ηi, J) is
still quick (detailed description is given in Algorithm 8). The general procedure to compute
all feasible matches is similar to [102] with some minor differences to further extend and
overcome the limitations of [102], as mentioned in the related work (Section 5.1). Further,
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some definitions are required to show that the route ri computed for driver i indeed has the
shortest travel time. Hence, we give a full description for computing all feasible matches.

Computing all feasible matches between D and R is done in two phases. In phase
one, for each driver ηi, we find all feasible matches σ(i) = {ηi, rj} consisting of only one
passenger rj . Such a feasible match is called the base match. In phase two, for each driver
i, we compute all feasible matches σ(i) = {ηi, rj1 , . . . , rjp} with p passengers, based on the
previously computed feasible matches σ(i) with p−1 passengers, for p = 2 upto the number
of passengers ηi can serve. Recall that, from Table 5.1, each trip i ∈ A is specified by the
parameters (oi, di, λi, zi, pi, δi, αi, βi, γi, θi). The maximum trip time γi of a driver ηi ∈ D

can be calculated as γi = min{γi, t(pi) + zi} if pi is given, where t(pi) is the shortest travel
time on path pi; otherwise γi = min{γi, t(oi, di) + zi}, where t(oi, di) is the shortest travel
time of a path from oi to di. For a passenger rj , γj is more flexible; it is default to be
γj = t(π̂j(αj)) in our experiment, where π̂j(αj) is the fastest public transit route. We make
two simplifications in our algorithms:

• Given an origin oj and a destination dj of a passenger rj with earliest departure time
αj at oj , we use a simplified transit system in our experiments to calculate the fastest
public transit route π̂j(αj) from oj to dj .

• We use a simplified model for the transit travel time, transit waiting time and rideshar-
ing service time (time it takes to pick-up and drop-off passengers, walking time be-
tween locations and stations). Given the fastest travel time t(u, v) by car from location
u to location v, we multiply a small constant ϵ > 1 with t(u, v) to simulate the transit
time and ridesharing service time. In this model, the transit time and ridesharing
service time are considered together, as a whole.

Phase one (Algorithm 7).

We now describe how to compute a feasible match between a driver and a passenger for
Type 1. The computation for Type 2 is similar and we omit it. For every trip i ∈ D ∪ R, we
first compute the set Sdo(i) of feasible drop-off locations for trip i. Each element in Sdo(i)
is a station-time tuple (s, αi(s)) of i, where αi(s) is the earliest possible time i can reach
station s. The station-time tuples are computed by the following preprocessing procedure.

• We find all feasible station-time tuples for each passenger rj ∈ R. A station s is time
feasible for rj if rj can reach dj from s within time window [αj , βj ] and t(oj , s)+ t̂(s, dj) ≤
min{γj , θj · t̂(oj , dj)}.

– The earliest possible time to reach station s for rj can be computed as αj(s) =
αj + t(oj , s) without pick-up time and drop-off time. Since we do not consider
waiting time and ridesharing service time separately, αj(s) also denotes the earliest
time for j to depart from station s.
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– Let t̂(s, dj) be the travel time of a fastest public route. Station s is time feasible if
αj(s) + t̂(s, dj) ≤ βj and t(oj , s) + t̂(s, dj) ≤ min{γj , θj · t̂(oj , dj)}.

• The feasible station-time tuples for each driver ηi ∈ D is computed by a similar calcula-
tion.

– Without considering pick-up time and drop-off time separately, the earliest arrival time
of ηi to reach s is αi(s) = αi + t(oi, s). Station s is time feasible if αi(s) + t(s, di) ≤ βi

and t(oi, s) + t(s, di) ≤ γi.

After the preprocessing, Algorithm 7 finds all base matches. For each pair (ηi, rj) in
D × R, let τi(oj) = max{αi, αj − t(oi, oj)} be the latest departure time of driver ηi from oi

such that ηi can still pick-up rj at the earliest; this minimizes the time (duration) needed
for driver ηi to wait for passenger rj . Hence, the total travel time of ηi is minimized when
i uses a path FP(ηi, J) with shortest travel time and departure time ηi(oj). The process of
checking if the match σ(i) = {ηi, rj} is feasible for all pairs of (ηi, rj) can be performed as
in Algorithm 7.

Algorithm 7 (Phase one) Compute base matches
1: for each pair (ηi, rj) in D × R do
2: for each station s in Sdo(i) ∩ Sdo(j) do
3: t1 = t(oi, oj) + t(oj , s); t2 = t(oj , s); // travel duration for ηi and rj to reach s resp.
4: t = τi(oj) + t1; // earliest departure time from station s for everyone.
5: if (t + t(s, di) ≤ βi ∧ t1 + t(s, di) ≤ γi) and (t + t̂(s, dj) ≤ βj ∧ t2 + t̂(s, dj) ≤ min{γj , θj ·

t̂(oj , dj)}) then
6: create an edge (ηi, J = {rj}) in E(H) to represent σ(i) = {ηi, rj}.
7: break inner for-loop; // can be allowed to run to completion for a better route
8: end if
9: end for

10: end for

Phase two (Algorithm 8).

We extend Algorithm 7 to create matches with more than one passenger. Let H(V, E) be
the graph after computing all feasible base matches (instance computed by Algorithm 7).
We start with computing, for each driver ηi, feasible matches consisting of two passengers,
then three passengers, and so on until min{δi, λi}. Let Ω(i) be the set of feasible matches
found so far for driver ηi and Ω(i, p − 1) = {σ(i) ∈ Ω(i) | |σ(i) \ {ηi}| = p − 1} be
the set of matches with p − 1 passengers, and we try to extend Ω(i, p − 1) to Ω(i, p) for
2 ≤ p ≤ min{δi, λi}. Let σ(i) = {ηi} ∪ J be a match in Ω(i, p), where J = {rj1 , . . . , rjp}. Let
FP(ηi, J) = (l0, l1, . . . , lp, s, di) denotes an ordered potential route for driver ηi to pick-up
all p passengers of J and drop-off them at station s, where l0 is the origin of ηi and ly is
the pick-up location (origin of passenger rjy ), 1 ≤ y ≤ p. We extend the notion of τi(oj),
defined above in Phase one, to every pick-up location of FP(ηi, J). That is, τi(lp) is the
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latest time of ηi to depart from oi to pick-up each of the passengers rj1 , . . . , rjp such that
the waiting time of ηi is minimized, and hence, travel time of ηi is minimized. We simply call
τi(lp) the latest departure of ηi to pick-up σ(i). All possible combinations of FP(ηi, J) are
enumerated to find a feasible path FP(ηi, J); the process of finding FP(ηi, J) is described
in the following.

• First, we fix a combination of FP(ηi, J) such that |σ(i)| ≤ λi +1 and FP(ηi, J) satisfies
the stop constraint. The visiting order of the pick-up origin locations is known when
we fix a route for FP(ηi, J).

• Then, the algorithm determines the actual drop-off station s, by checking each time
feasible station, in FP(ηi, J) = (l0, l1, . . . , lp, s, di). Let rjy be the passenger corre-
sponds to pick-up location ly for 1 ≤ y ≤ p and l0 = oi. For each station s in⋂

0≤y≤p Sdo(rjy ), the algorithm checks if FP(ηi, J) = (l0, l1, . . . , lp, s, di) admits a time
feasible path for all trips in σ(i) as follows.

– The total travel time (duration) for ηi from l0 to s is ti = t(l0, l1)+· · ·+t(lp−1, lp)+
t(lp, s). The total travel time (duration) for rjy from ly to s is tjy = t(ly, ly+1) +
· · · + t(lp−1, lp) + t(lp, s), 1 ≤ y ≤ p.

– Since the order for ηi to pick up rjy (1 ≤ y ≤ p) is fixed, τi(lp) can be calculated
as τi(lp) = max{αi, αj1 − t(l0, l1), αj2 − t(l0, l1)− t(l1, l2), . . . , αjp − t(l0, l1)−· · ·−
t(lp−1, lp)}. The earliest arrival time at s for all trips in σ(i) is t = τi(lp) + ti.

– If t + t(s, di) ≤ βi, ti + t(s, di) ≤ γi, and for 1 ≤ y ≤ p, t + t̂(s, djy ) ≤ βjy and
tjy + t̂(s, djy ) ≤ θjy · t̂(ojy , djy ), then FP(ηi, J) is feasible.

• If FP(ηi, J) is feasible, add to H the match (ηi, J). Otherwise, check next combination
of FP(ηi, J) until a feasible path is found or all combinations are exhausted.

The pseudo code for the above process is given in Algorithm 8. We show that the latest
departure τi(lp) used in Algorithm 8 indeed minimizes the total travel time of ηi to reach
lp.

Theorem 5.2. Given a feasible path FP(ηi, J) = (l0, . . . , lp, s, di) for driver ηi to serve p

passengers in a match σ(i). The latest departure time τi(lp) calculated above minimizes the
total travel time of ηi to reach lp.

Proof. Prove by induction. For the base case τi(l1) = max{αi, αj1−t(l0, l1)}, and by choosing
departure time τi(l1), driver ηi does not need to wait for passenger rj1 at αj1 . Hence, using
a shortest (time) path from l0 to l1 with departure time τi(l1) minimizes the travel time of
ηi to pick-up rj1 . Assume the lemma holds for 1 ≤ y − 1 < p, that is, τi(ly−1) minimizes
the total travel time of ηi to reach ly−1. We prove for y. From the calculation of τi(ly−1),
τi(ly) = max{ηi(ly−1), αjy −t(l0, l1)−t(l1, l2)−· · ·−t(ly−1, ly)}. By the induction hypothesis,
τi(ly) minimizes the total travel time of ηi when using a shortest path (l0, . . . , ly).

118



Algorithm 8 (Phase two) compute all feasible matches
1: for i = 1 to |D| do
2: p = 2;
3: while (p ≤ min{δi, λi} and Ω(i, p − 1) ̸= ∅) do
4: for each match σ(i) in Ω(i, p − 1) do
5: for each rj ∈ R s.t. rj /∈ σ(i) do
6: if σ(i) ∪ {rj} does not satisfy Observation 5.1, then continue;
7: (skip rj)
8: if ((σ(i) \ {q}) ∪ {rj}) ∈ Ω(i, p − 1) for all q ∈ σ(i) \ {ηi} then
9: if (σ(i) ∪ {rj} has not been checked) and (feasibleInsert(σ(i), rj)) then

10: create an edge {ηi} ∪ J in E(H), where J = σ(i) \ {ηi};
11: add σ(i) ∪ {ηj} to Ω(i, p);
12: end if
13: end if
14: end for
15: end for
16: p = p + 1;
17: end while
18: end for
19: Procedure feasibleInsert(σ(i), rj) // find a feasible path for ηi to serve σ(i) ∪ {rj} if exists
20: Let FP(ηi, J) = (l0, l1, . . . , lp, s, di) denotes a potential path for driver ηi to serve all passengers

in J = {rj1 , . . . , rjp};
21: for each station s in

⋂
0≤y≤p Sdo(jy) do

22: for each combination of FP(ηi, J) that satisfies the stop constraint do
23: ti = t(l0, l1) + · · · + t(lp−1, lp) + t(lp, s); tjy

= t(ly, ly+1) + · · · + t(lp−1, lp) + t(lp, s);
24: t = τi(lp) + ti; // the earliest arrival time at s for all trips in σ(i)
25: if (t+t(s, di) ≤ βi∧ti+t(s, di) ≤ γi) and (for 1 ≤ y ≤ p, t+t̂(s, djy ) ≤ βjy ∧tjy +t̂(s, djy ) ≤

min{γj , θj · t̂(ojy , djy )}) then
26: return True;
27: end if
28: end for
29: end for
30: return False;

The running time of Algorithm 8 heavily depends on the number of subsets of pas-
sengers to be checked for feasibility. One way to speed up Algorithm 8 is to use dynamic
programming (or memoization) to avoid redundant checks on a same subset. For each fea-
sible match σ(i) = {ηi} ∪ J of p − 1 passengers for a driver ηi ∈ D, we store every feasible
path FP(ηi, J) = (l0, l1, . . . , lp−1, s, di) and extend from FP(ηi, J) to insert a new trip to
minimize the number of ordered potential paths we need to test. We can further make sure
that no path FP(ηi, J) is tested twice during execution. First, the set R of passengers is
given a fixed ordering (based on the integer labels). For a feasible path FP(ηi, J) of a driver
ηi, the check of inserting a new passenger rj into FP(ηi, J) is performed only if rj has a
label larger than every passenger in FP(ηi, J) according to the fixed ordering. Furthermore,
A heuristic approach to speed up Algorithm 8 is given at the end of Subsection 5.4.2.
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5.3 Approximation Algorithms

We show that the MTR problem is NP-hard and give approximation algorithms for the
problem. When every edge in H(V, E) consists of only two vertices (one driver and one
passenger), the ILP (5.1)-(5.3) formulation is equivalent to the maximum weight matching
problem, which can be solved in polynomial time. However, if the edges contain more
than two vertices, they become hyperedges. In this case, the ILP (5.1)-(5.3) becomes a
formulation of the maximum weighted set packing problem (MWSP), which is NP-hard in
general [40, 62]. In fact, the ILP (5.1)-(5.3) formulation gives a special case of MWSP (due
to the structure of H(V, E)). We first show that this special case is also NP-hard, and by
Theorem 5.1, the MTR problem is NP-hard.

5.3.1 NP-hardness

It was mentioned in [95] that their minimization problem related to shareability hyper-
network is NP-complete, which is similar to the MTR problem formulation. However, an
actual reduction proof was not described. We prove the MTR problem is NP-hard by a
reduction from a special case of the maximum 3-dimensional matching problem (3DM).
An instance of 3DM consists of three disjoint finite sets A, B and C, and a collection
F ⊆ A × B × C. That is, F is a collection of triplets (a, b, c), where a ∈ A, b ∈ B and
c ∈ C. A 3-dimensional matching is a subset M ⊆ F such that all sets in M are pairwise
disjoint. The decision problem of 3DM is that given (A, B, C, F) and an integer q, decide
whether there exists a matching M ⊆ F with |M| ≥ q. We consider a special case of 3DM:
|A| = |B| = |C| = q; it is still NP complete [40, 62]. Given an instance (A, B, C, F) of 3DM
with |A| = |B| = |C| = q, we construct an instance H(V, E) (bipartite hypergraph) of the
MTR problem as follows:

• Create a set of drivers D(H) = A with capacity λi = 2 for every driver ηi ∈ D(H)
and a set of passengers R(H) = B ∪ C.

• For each f ∈ F , create a hyperedge e(f) in E(H) containing elements {a, b, c}, where
a represents a driver and b, c represent two different passengers. Further, create edges
e′(f) = {a, b} and e′′(f) = {a, c} so that Observation 5.1 is satisfied.

Theorem 5.3. The MTR problem is NP-hard.

Proof. By Theorem 5.1, we only need to prove the ILP (5.1)-(5.3) is NP-hard, which is done
by showing that an instance (A, B, C, F) of the maximum 3-dimensional matching problem
has a solution M of cardinality q if and only if the objective function value of ILP (5.1)-(5.3)
is 2q.

Assume that (A, B, C, F) has a solution M = {f1, f2, . . . , fq}. For each fi (1 ≤ i ≤ q),
set the corresponding binary variable xe(fi) = 1 in ILP (5.1)-(5.3). Since fi ∩ fj = ∅ for
1 ≤ i ̸= j ≤ q, constraint (5.2) of the ILP is satisfied. Further, each edge e(fi) corresponding
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to fi ∈ M has weight w(e(fi)) = 2, implying the objective function value of ILP (5.1)-(5.3)
is 2q.

Assume that the objective function value of ILP (5.1)-(5.3) is 2q. Let X = {e(f) ∈
E(H) | xe(f) = 1}, where xe(f)’s are the binary variables of ILP (5.1)-(5.3). For every
edge e(f) ∈ X, add the corresponding set f ∈ F to M. From constraint (5.2) of the ILP,
X is pairwise disjoint and |X| ≤ |D(H)|. Hence, M is a valid solution for (A, B, C, F)
with |M| = |X|. Since every e(f) ∈ X contains at most two different passengers and
|X| ≤ |D(H)| = q, |X| = q for the objective function value to be 2q. Thus, |M| = q.

The size of H(V, E) is polynomial in q. It takes a polynomial time to convert a solution
of H(V, E) to a solution of the 3DM instance (A, B, C, F) and vice versa.

5.3.2 Proposed approximation algorithms

Since solving the ILP (5.1)-(5.3) formulation exactly is NP-hard, it may require exponential
time in a worst case, which is not acceptable in practice. One way to solve this is to have
a time limit on any solver (or exact algorithm). When the time limit is reached, output
the current solution or the best solution found so far. However, this does not guarantee
the quality of the solution. Hence, it is important to use an approximation algorithm as a
fallback plan.

The approximation ratio of a ρ-approximation algorithm for a maximization problem is
defined as w(M)

w(OPT) ≥ ρ for ρ < 1, where w(M) and w(OPT) are the values of approximation
and optimal solutions, respectively. In this section, we give a (1 − 1

e )-approximation algo-
rithm and a 1

2 -approximation algorithm for the MTR problem. Our (1 − 1
e )-approximation

algorithm (refer to as LPR) is a simplified version of the LP-rounding based algorithm ob-
tained by Fleischer et al. [37]. Our 1

2 -approximation algorithm (refer to as ImpGreedy) is a
simplified version of the simple greedy [16, 24] discussed in Subsection 5.3.3. By computing
a solution directly from H(V, E) without solving the independent set/weighted set packing
problem, the running time and memory usage of ImpGreedy are significantly improved over
the simple greedy.

The LPR algorithm.

The ILP (5.1)-(5.3) formulation is a special case of the Separable Assignment Problem
(SAP): Given a set U of bins, a set I of items, a value fij for assigning item j to bin i, and
a collection Ii of subsets of I for each bin i, SAP asks to find an assignment of items to
bins such that each bin i can be assigned at most one set of Ii, each item can be assigned
to at most one bin and the total value fij of the assigned item is maximized. When only
one bin i is considered, the problem is called the single-bin subproblem of SAP. It can be
seen that the ILP (5.1)-(5.3) formulation of a hypergraph H(V, E) is a special case of SAP,
where the bins are drivers, items are passengers and the edges of H are ∪i∈U Ii with unit
value fij for all drivers i and passengers j.

121



Given a β-approximation algorithm for the single-bin subproblem of SAP, Fleischer et
al. [37] obtained a local-search ( β

β+1 − ϵ)-approximation algorithm (ϵ > 0) and an LP-
rounding based ((1 − 1

e )β)-approximation algorithm for SAP. Both of these algorithms
approximate the ILP (5.1)-(5.3). The local-search ( β

β+1 − ϵ)-approximation algorithm pre-
sented by Fleischer et al. [37] is not efficient if one wants to have an approximation ratio
as close to 1/2 as possible, assuming β ≈ 1. This is because the number of iterations of the
local-search algorithm is inverse-related to ϵ. The authors of [37] gave an LP for SAP, but it
can have exponential number of variables due to |Ii| can be exponentially large in general.
By the assumption that the maximum capacity λ of all vehicles is a small constant, |Ii|
is polynomially bounded in our case. From this and unit value, the single-bin subproblem
of the MTR problem can be solved efficiently (β = 1). This gives a (1 − 1

e )-approximation
algorithm for the MTR problem. More importantly, the LP of ILP (5.1)-(5.3) can be solved
directly because |E(H)| (|Ii|) is polynomially bounded. For completeness, we describe the
LPR algorithm using our notation as follows.

1. Obtain a linear programming LP of ILP (5.1)-(5.3) by relaxing the 0-1 variables xe

to nonnegative real variables; and solve the LP.

2. Independently for each driver ηi ∈ D(H), assign ηi a match σ(i) = {ηi} ∪ J corre-
sponding to the edge e = {ηi} ∪ J with probability xe (based on all edges containing
ηi, namely, for all e ∈ Ei such that xe > 0). Let M be the resulting intermediate
solution, which contains a set of feasible matches.

3. For any passenger rj ∈ R(H), let Mj = {σ(i) ∈ M | rj ∈ σ(i)} be the set of matches
in M containing rj .

If |Mj | ≥ 2, then remove rj from every match of Mj except one match (any one match)
of Mj . Finally, remove from M every match σ(i) = {ηi}.

The matches in M are pairwise disjoint. From Step 2, no two matches of M contain a same
driver. From Step 3, no two matches of M contain a same passenger. In Step 3, after the
removal of a set of passengers J from a match σ(i) ∈ M , σ(i) \ J is still a feasible match if
|σ(i)\J | ≥ 2 by Observation 5.1. Therefore, M is a feasible solution to an instance (N, A, T )
of the MTR problem.

Theorem 5.4. Let OPT be the objective function value of the ILP (5.1)-(5.3) formulation,
which is the maximum number of passengers can be served. Then the expected value Q of
the rounded solution M of Algorithm LPR is at least (1 − 1

e )OPT.

Proof. Let OPT∗ be the objective function value of the LP relaxation. Then OPT∗ ≥ OPT.
From Theorem 2.1 in [37], Q ≥ (1 − (1 − 1

m)m)OPT∗ ≥ (1 − 1
e )OPT, where m = |M |. Since

M is a feasible solution as explained above, the theorem holds.
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The ImpGreedy algorithm.

The ImpGreedy algorithm is similar to the 1
λ+1 -approximation algorithm obtained by Santi

et al. [95] assuming the maximum capacity λ is at least two. However, a detailed analysis
for the approximation ratio of their greedy algorithm is not presented in [95]. Hence, in
this section, we describe our ImpGreedy algorithm along with a complete proof for its
constant 1

2 -approximation ratio. For the hypergraph H(V, E) constructed for an instance
(N, A, T ) of the MTR problem, denoted by Σ ⊆ E(H) is the current partial solution
computed by ImpGreedy (recall that each edge of E(H) represents a feasible match). Let
R(Σ) = ⋃

e∈Σ R(e), called the covered passengers. Initially, Σ = ∅. In each iteration, we add
an edge with the most number of uncovered passengers to Σ, that is, select an edge e such
that |R(e)| is maximum, and then add e to Σ. Remove Ee = ∪j∈eEj from E(H), where Ej

is the set of edges in E(H) incident to j. Repeat until |R(Σ)| = |R(H)| or |Σ| = |D(H)|.
The pseudo code of ImpGreedy is shown in Algorithm 9.

Algorithm 9 ImpGreedy.
1: Input: The hypergraph H(V, E) for problem instance (N, A, T ).
2: Output: A solution Σ for (N, A, T ) with 1

2 -approximation ratio.
3: Σ = ∅; P (Σ) = ∅;
4: while (|P (Σ)| < |R(H)| and |Σ| < |D(H)|) do
5: compute e = argmaxe∈E(H)|R(e)|; Σ = Σ ∪ {e}; update P (Σ); remove Ee from E(H);
6: end while

Next, we prove the correctness of Algorithm ImpGreedy. In ImpGreedy, when an edge
e is added to Σ, Ee is removed from E(H), so Property 5.1 holds for Σ. Further, the edges
in Σ are pairwise vertex-disjoint, implying Σ is a feasible solution.

Property 5.1. For every ηi ∈ D(H), at most one edge e from Ei can be selected in any
solution.

Let Σ = {x1, x2, . . . , xa} be a solution found by Algorithm ImpGreedy, where xi is the ith

edge added to Σ. Throughout the analysis, we use OPT to denote an optimal solution, that
is, OPT is a set of edges that are pairwise vertex-disjoint and R(OPT) ≥ R(Σ). Further,
Σi = ⋃

1≤b≤i xb for 1 ≤ i ≤ a, Σ0 = ∅ with R(Σ0) = ∅, and Σa = Σ. Since each edge e of
E(H) represents a feasible match, we overload any edge xi ∈ Σ to denote a match as well.
For each xi ∈ Σ, by Property 5.1, there is at most one y ∈ OPT with D(y) = D(xi). We
order OPT and introduce dummy edges to OPT such that D(yi) = D(xi) for 1 ≤ i ≤ a.
Formally, for 1 ≤ i ≤ a, define

OPT(i) = {y1, .., yi | 1 ≤ b ≤ i, D(yb) = D(xb) if yb ∈ OPT, otherwise yb a dummy edge}.

A dummy edge yb ∈ OPT(i) is defined as D(yb) = D(xb) with R(yb) = ∅. Notice that for
any y ∈ OPT \ OPT(a), D(y) ̸= D(x) for every x ∈ Σ.
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Lemma 5.1. Let OPT be an optimal solution and Σ = {x1, . . . , xa} be a solution found by
ImpGreedy. For any 1 ≤ i ≤ a, |R(yi) \ R(Σi−1)| ≤ |R(xi)|.

Proof. If |R(yi)| ≤ |R(xi)|, then the lemma holds. Suppose |R(yi)| > |R(xi)|. Since the
algorithm selects xi instead of yi, it must mean that R(yi) ∩ R(Σi−1) ̸= ∅, and yi has been
removed from E(H) while searching for xi. By Observation 5.1, there is an edge ez ∈ E(H)
such that D(ez) = D(yi) and R(ez) = R(yi) \ R(Σi−1); and |R(ez)| ≤ |R(xi)| from the
algorithm. Hence, |R(yi) \ R(Σi−1)| ≤ |R(xi)|.

Lemma 5.2. Let OPT′ = OPT \ OPT(a). Then, R(OPT′) ⊆ R(Σ).

Proof. Assume for contradiction that there exists an edge y ∈ OPT′ s.t. R(y) \ R(Σ) ̸= ∅.
By Observation 5.1, there is an edge ez ∈ E(H) such that D(ez) = D(y) and R(ez) =
R(y) \ R(Σ), and ez /∈ Σ. Since ez is not incident to any vertex of D(Σ) ∪ R(Σ), the
algorithm should have added ez to Σ, a contradiction.

Theorem 5.5. Given a hypergraph instance H(V, E), Algorithm ImpGreedy computes a
solution Σ for H such that |R(Σ)|

|R(OPT)| ≥ 1
2 , where OPT is an optimal solution, with running

time O(|D(H)| · |E(H)|) and |E(H)| = O(|D| · (|R| + 1)λ).

Proof. Let Σ = {x1, . . . , xa}, OPT(a) as defined above, and OPT′ = OPT \ OPT(a). From
Lemma 5.1, we get

|
a⋃

i=1
R(yi) \ R(Σi−1)| ≤ |

a⋃
i=1

R(xi)| = |R(Σ)|.

From this and Lemma 5.2, we obtain

|R(OPT)| = |R(OPT(a)) ∪ R(OPT′)|

≤ |
a⋃

i=1
(R(yi) \ R(Σi−1)) ∪ R(Σ) ∪ R(OPT′)|

= |(
a⋃

i=1
R(yi) \ R(Σi−1))| + |R(Σ)|

≤ |R(Σ)| + |R(Σ)| = 2|R(Σ)|.

In each iteration of the while-loop, it takes O(|E(H)|) to find an edge x with maximum
|R(x)|, and there are at most |D(H)| iterations. Hence, Algorithm ImpGreedy runs in
O(|D(H)| · |E(H)|) time.

5.3.3 Approximation algorithms for maximum weighted set packing

Now, we explain the algorithms for the maximum weighted set packing problem, which
can also solve the MTR problem. Given a universe U and a family S of subsets of U such
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that every subset S ∈ S has at most k elements, the maximum weighted k-set packing
problem (MWSP) asks to find a packing C with the largest total weight. We can see that
the ILP (5.1)-(5.3) formulation of a hypergraph H(V, E) is a special case of the maximum
weighted k-set packing problem, where the trips of D(V ) ∪ R(V ) is the universe U and
E(H) is the family S of subsets, and every e ∈ E(H) is a set in S representing at most
k = λ + 1 trips. Hence, solving MWSP also solves the MTR problem. Hazan et al. [51]
showed that the k-set packing problem cannot be approximated to within O( k

lnk ) in general
unless P = NP. Chandra and Halldórsson [24] presented a 3

2(k+1) -approximation and a
5

2(2k+1) -approximation algorithms (referred to as BestImp and AnyImp, respectively),
and Berman [16] presented a ( 2

k+1)-approximation algorithm (referred to as SquareImp)
for the weighted k-set packing problem. Here, k ≥ 3.

The three algorithms in [16, 24] (AnyImp, BestImp and SquareImp) solve the weighted
k-set packing problem by first transferring it into a weighted independent set problem,
which consists of a vertex weighted graph G(V, E) and asks to find a maximum weighted
independent set in G(V, E). We briefly describe the common local search approach used in
these three approximation algorithms. A claw C in G is defined as an induced connected
subgraph that consists of an independent set TC of vertices (called talons) and a center
vertex Cz that is connected to all the talons (C is an induced star with center Cz). For
any vertex v ∈ V (G), let N(v) denotes the set of vertices in G adjacent to v, called the
neighborhood of v. For a set U of vertices, N(U) = ∪v∈U N(v). The local search of AnyImp,
BestImp and SquareImp uses the same central idea, summarized as follows:

1. The approximation algorithms start with an initial solution (independent set) I in G

found by a simple greedy (referred to as Greedy) as follows: select a vertex u ∈ V (G)
with largest weight and add to I. Eliminate u and all u’s neighbors from being selected.
Repeatedly select the largest weight vertex until all vertices are eliminated from G.

2. While there exists claw C in G w.r.t. I such that independent set TC improves the
weight of I (different for each algorithm), augment I as I = (I \ N(TC)) ∪ TC ; such
an independent set TC is called an improvement.

To apply these algorithms to the MTR problem, we need to convert the bipartite hypergraph
H(V, E) to a weighted independent set instance G(V, E), which is straightforward. Each
hyperedge e ∈ E(H) is represented by a vertex ve ∈ V (G). The weight w(ve) = w(e) for
each e ∈ E(H) and ve ∈ V (G). There is an edge between ve, ve′ ∈ V (G) if e ∩ e′ ̸= ∅ where
e, e′ ∈ E(H). We observed the following property.

Property 5.2. When the size of each set in the set packing problem is at most k (|w(e)| =
k − 1, e ∈ E(H)), the graph G(V, E) has the property that it is (k + 1)-claw free, that is,
G(V, E) does not contain an independent set of size k +1 in the neighborhood of any vertex.

Applying this property, we only need to search a claw C consists of at most k talons,
which upper bounds the running time for finding a claw within O(nk), where n = |V (G)|.
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When k is very small, it is practical enough to approximate the ILP (5.1)-(5.3) of a hyper-
graph H(V, E) computed by Algorithm 8. It has been mentioned in [95] that the approx-
imation algorithms in [24] can be applied to their ridesharing problem. However, only the
simple greedy (Greedy) was implemented in [95]. Notice that ImpGreedy (Algorithm 9) is a
simplified version of the Greedy algorithm, and Greedy is used to get an initial solution in
algorithms AnyImp, BestImp and SquareImp. From Theorem 5.5, we have Corollary 5.1.

Corollary 5.1. Each of Greedy, AnyImp, BestImp and SquareImp algorithms computes a
solution to H(V, E) with 1

2 -approximation ratio.

Since ImpGreedy finds a solution directly on H(V, E) without converting it to an in-
dependent set problem G(V, E) and solving it, ImpGreedy is more time and space efficient
than the algorithms for MWSP. In the rest of this chapter, Algorithm 9 is referred to as
ImpGreedy.

5.4 Experiment

We create a simulation environment, which consists of a integrated transportation system
(ITS) that integrates public transit and ridesharing. The ITS receives continuous batches
of discrete driver and passenger trips. We implement the approximation algorithms Imp-
Greedy, LPR, Greedy, AnyImp and BestImp, and an exact algorithm that solves ILP for-
mulation (5.1)-(5.3) to evaluate the benefits of having such an integrated transportation
system. The results of SquareImp are not discussed because its performance is the same
as AnyImp when using the smallest improvement factor (α > 1 in [24]); this is due to the
implementation of the independent set instance G(V, E) having a fixed search/enumeration
order of the vertices and edges, and each vertex in V (G) has an integer weight.

We use a simplified transit network of Chicago to simulate the public transit and
ridesharing. The data instances generated in our experiments focus more on trips that
commute to and from work (to and from the downtown area of Chicago). To the best of
our knowledge, a mass transportation system in large cities integrating public transit and
ridesharing has not been implemented in real-life. There is not any large dataset containing
customers that use both public transit and ridesharing transportation modes. Hence, we use
two related datasets to generate representative instances for our experiments. One dataset
contains transit ridership data, and the other dataset contains ridesharing trips data. The
transit ridership dataset allows us to determine the busiest transit routes, and we use this
information to create passenger demand in these busiest regions. We describe this more in
Subsection 5.4.1. We assume passengers of longer transit trips would like to reduce their
travel duration by using the integrated ridesharing service. The ridesharing dataset reveals
whether there are enough personal drivers willing to provide ridesharing services. We under-
stand that these drivers may not be the ones who drive their vehicles to work, but at least
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it shows that there are currently enough drivers to support the proposed transportation
system. We describe how to generate the drivers and passengers in Subsection 5.4.2.

5.4.1 Description and characteristics of the datasets

We built a simplified transit network of Chicago to simulate practical scenarios of public
transit and ridesharing. The roadmap data of Chicago is retrieved from OpenStreetMap1.
We used the GraphHopper2 library to construct the logical graph data structure of the
roadmap, which contains 177037 vertices and 263881 edges. The Chicago city is divided
into 77 official community areas, each of which is assigned an area code. We examined two
different datasets in Chicago to reveal some basic traffic pattern (the datasets are provided
by the Chicago Data Portal (CDP) and Chicago Transit Authority (CTA)3, maintained by
the City of Chicago). The first dataset contains bus and rail ridership, which shows the
monthly averages and monthly totals for all CTA bus routes and train station entries. We
denote this dataset as PTR, public transit ridership. The PTR dataset range is chosen from
June 1st, 2019 to June 30th, 2019. The second dataset contains rideshare trips reported by
Transportation Network Providers (sometimes called rideshare companies) to the City of
Chicago. We denote this dataset as TNP. The TNP dataset range is chosen from June 3rd,
2019 to June 30th, 2019, total of 4 weeks of data. Table 5.2 and Table 5.3 show some basic
stats of both datasets.

Total Bus Ridership 20,300,416
Total Rail Ridership 19,282,992
12 busiest bus routes 3, 4, 8, 9, 22, 49,

53, 66, 77, 79, 82,
151

The busiest bus routes
selected

4, 9, 49, 53, 77, 79,
82

Table 5.2: Basic stats of the PTR dataset.

# of original records 8,820,037
# of records considered 7,427,716
# of shared trips 1,015,329
# of non-shared trips 6,412,387
The most visited commu-
nity areas selected

1, 4, 5, 7, 22,
23, 25, 32, 41,
64, 76

Table 5.3: Basic stats of the TNP dataset.

In the PTR dataset, the total ridership for each bus route is recorded; there are 127 bus
routes in the dataset. We examined the 12 busiest bus routes based on the total ridership.
7 out of the 12 routes are selected (excluding bus routes that are too close to train stations)
as listed in Table 5.2 to support the selection of the community areas. We also selected all
the major trains/metro lines within the Chicago area except the Brown Line and Purple
Line since they are too close to the Red and Blue lines. Note that the PTR dataset also
provides the total rail ridership. However, it only provides the number of people entering

1Planet OSM. https://planet.osm.org

2GraphHopper 1.0. https://www.graphhopper.com

3CDP. https://data.cityofchicago.org. CTA. https://www.transitchicago.com
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every station in each day; it does not provide the number of people exiting a station nor
the time related to the entries.

Each record in the TNP dataset describes a passenger trip served by a driver who
provides the rideshare service; a trip record consists of a pick-up and a drop-off time and
a pick-up and a drop-off community area of the trip, and exact locations are not provided.
We removed records where the pick-up or drop-off community area is hidden for privacy
reason or not within Chicago, which results in 7.4 million ridesharing trips. We calculated

Figure 5.2: The average number of trips per day departed from and arrived at each area.

the average number of trips per day departed from and arrived at each area. The results
are plotted in Figure 5.2; the community areas that have the highest numbers of departure
trips are almost the same as that of the arrival trips.

We selected 11 of the 20 most visited areas as listed in Table 5.3 (area 32 is Chicago
downtown, areas 64 and 76 are airports) to build the transit network for our simulation.
From the selected bus routes, trains and community areas (22 areas in total), we created a
simplified public transit network connecting the community areas, depicted in Figure 5.3.
Three of the 22 community areas are the designated locations which include the downtown
region in Chicago and the two airports. We label the rest of the 19 community areas as urban
community areas. Each rectangle on the figure represents an urban community within one
urban community area or across two urban community areas, labeled in the rectangle.
The blue dashed rectangles/urban communities are chosen due to the busiest bus routes
from the PTR dataset. The rectangles/urban communities labeled with red area codes are
chosen due to the most visited community areas from the TNP dataset. The dashed lines
are the trains, which resemble the major train services in Chicago. The solid lines are the
selected bus routes connecting the urban communities to their closest train stations. We
assume that there is a major bus route travels within each urban community or some minor
bus route (not labeled in Figure 5.3) that travels to the nearest train station from each
urban community. From the datasets, many people travel to/from the designated locations
(downtown region and the two airports).

The travel time between two locations by car (each location consists of the latitude
and longitude coordinates) uses the fastest/shortest route computed by the GraphHopper
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Figure 5.3: Simplified public transit network of Chicago with 19 urban community areas and 3
designated locations (minor bus routes are not shown). Figure on the right has the Chicago City
map overlay for scale.

library. The shortest paths are computed in real-time, unlike many previous simulations
where the shortest paths are pre-computed and stored. As mentioned in Subsection 5.2.2,
transit travel and waiting time (transit time for short) and service time are considered in a
simplified model; we multiply a small constant ϵ > 1 to the fastest route to mimic transit
time and service time. For instance, consider two consecutive metro stations s1 and s2. The
travel time t(s1, s2) is computed by the fastest route travelled by personal cars, and the
travel time by train between from s1 to s2 is t̂(s1, s2) = 1.15 · t(s1, s2). The constant ϵ for
bus service is 2. Passenger trips originated from all locations (except airports) must take a
bus to reach a metro station when ridesharing service is not involved.

5.4.2 Generating instances

In our simulation, we partition a day from 6:00 to 23:59 into 72 time intervals (each has
15 minutes), and we only focus on weekdays. To observe the common ridesharing traffic
pattern, we calculated the average number of served passenger trips per hour for each day
of the week using the TNP dataset. The dashed (orange) line and solid (blue) line of the
plot in Figure (5.4a) represent shared trips and non-shared trips, respectively. A set of trips
are called shared trips if this set of trips are matched for the same vehicle consecutively
such that their trips may potentially overlap, namely, one or more passengers are in the
same vehicle. The number of shared trips shown in Figure 5.4a suggests that drivers and
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(a) Average numbers of shared and non-shared trips in TNP
dataset.

(b) Total number of driver and passen-
ger trips generated for each time inter-
val.

Figure 5.4: Plots for the number of trips for every hour from data and generated.

passengers are willing to share the same vehicle. For all other trips, we call them non-shared
trips. From the plot, the peak hours are between 7:00AM to 10:00AM and 5:00PM to 8:00PM
on weekdays for both non-shared and shared trips. The number of trips generated for each
interval roughly follows the function plotted in Figure (5.4b), which is a scaled down and
smoothed version of the TNP dataset for weekdays. For the base instance, the ratio between
the number of drivers and passengers generated is roughly 1:3 (1 driver and 3 passengers)
for each interval. Such a ratio is chosen because it should reflect the system’s potential as
capacity of 3 is common for most vehicles. For each time interval, we first generate a set R

of passengers and then a set D of drivers. We do not generate a trip where its origin and
destination are close. For example, any trip with an origin in Area25 and destination in
Area15 is not generated.

Generation of passenger trips.

We assume that the numbers of passengers entering and exiting a station are roughly the
same each day. Next we assume that the numbers of passengers in PTR over the time
intervals each day follow a similar distribution of the TNP trips over the time intervals.
Each day is divided into 6 different consecutive time periods (each consists of multiple
time intervals): morning rush, morning normal, noon, afternoon normal, afternoon rush,
and evening time periods. Each time period determines the probability and distribution of
origins and destinations. Based on the PTR dataset and Rail Capacity Study by CTA [25],
many users are going into downtown in the morning and leaving downtown in the afternoon.

For each passenger trip ri generated, we first randomly decide a pickup area where
origin oi is located within, then decide a dropoff area where destination di is located within.
A pickup area or a dropoff area is one of the 22 community areas we selected to build our
geological map for the simulation. For each community area, a set of points spanning the area
is defined (each point is represented by a latitude-longitude pair). To generate a passenger
trip ri during morning rush time period, the pickup area for ri is selected uniformly at
random from the list of 22 community areas. The origin oi is a point selected uniformly
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at random from the set of points in the selected pickup area. Then, we use the standard
normal distribution to determine the dropoff area, namely, the 22 selected community areas
are transformed to follow the standard normal distribution. Specifically, downtown area is
within two SDs (standard deviations), airports are more than two and at most three SDs,
and the other urban community areas are more than three SDs away from the mean. Then,
the dropoff area is sampled/selected randomly from this distribution. The destination di is
a point selected uniformly at random from the set of points in the selected dropoff area.

The above is repeated until at passengers are generated, where at + at/3 (passengers +
drivers so that it is roughly 1:3 driver-passenger ratio) is the total number of trips for time
interval t shown in Figure (5.4b). For any pickup area c, let ct be the number of generated
passengers originated from c for time interval t, that is, ∑

c ct = at. Other time periods
follow the same procedure, and all urban communities and designated locations can be
selected as pickup and dropoff areas.

1. Morning normal (10:00AM to 12:00AM). For selecting pickup areas, the 22 com-
munity areas are transformed to follow the standard normal distribution: urban com-
munity areas are within two SDs, downtown is more than two and at most three SDs,
and airports are more than three SDs away from the mean; and destination areas are
selected using uniform distribution.

2. Noon (12:00PM to 2:00PM). Pickup/dropoff areas are selected uniformly at random
from the list of 22 community areas.

3. Afternoon normal (2:00PM to 5:00PM). For selecting pickup areas, downtown and
airport are within two SDs and urban community areas are more than two SDs away
from the mean. For selecting dropoff areas, urban community areas are within two
SDs, and downtown and airports are more than two SDs away from the mean.

4. Afternoon rush (5:00PM to 8:00PM). For selecting pickup areas, downtown is within
two SDs, airports are more than two SDs and at most three SDs, and urban community
areas are more than three SDs away from the mean. For selecting dropoff areas, urban
community areas are within two SDs, airports are more than two SDs and at most
three SDs, and downtown is more than three SDs away from the mean.

5. Evening (8:00PM to 11:59PM). For both pickup and dropoff areas, urban community
areas are within two SDs, downtown is more than two and at most three SDs, and
airports are more than three SDs away from the mean.

Generation of driver trips.

We examined the TNP dataset to determine whether, in practice, there are enough drivers
who can provide ridesharing service to passengers that follow match Types 1 and 2 traffic
pattern. First, we removed any trip from TNP if it is too short (less than 15 minutes or
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origin and destination are adjacent areas). We calculated the average number of trips per
hour originated from every pre-defined area in the transit network (Figure 5.3), and then
plotted the destinations of such trips in a grid heatmap. In other words, each cell (c, r) in
the heatmap represents the the average number of trips per hour originated from area c to
destination area r in the transit network (Figure 5.3). An example is depicted in Figure 5.5.
From the heatmaps, many trips are going into the downtown area (A32) in the morning; and

Figure 5.5: Traffic heatmaps for the average number of trips originated from one area (x-
axis) during hour 7:00 (left) and hour 17:00 (right) to every other destination area (y-axis).

as time progresses, more and more trips leave downtown. This traffic pattern confirms that
there are enough drivers to serve the passengers in our simulation. The number of shared
trips shown in Figure 5.4a also suggests that many passengers are willing to share a same
vehicle. We slightly reduce the difference between the values of each cell in the heatmaps
and use the idea of marginal probability to generate driver trips. Let d(c, r, h) be the value
at the cell (c, r) for origin area c, destination r and hour h. Let P (c, h) be sum of the average
number of trips originated from area c for hour h (the column for area c in the heatmap
corresponds to hour h), that is, P (c, h) =

∑
r d(c, r, h) is the sum of the values of the whole

column c for hour h. Given a time interval t, for each area c, we generate ct/3 drivers (ct

is defined in Generation of passenger trips) such that each driver i has origin oi = c and
destination di = r with probability d(c, r, h)/P (c, h), where t is contained in hour h. The
probability of selecting an airport as destination is fixed at 5%.

Deciding other parameters for each trip.

After the origin and destination of a passenger or driver trip have been determined, we decide
other parameters of the trip. The capacity λi of drivers’ vehicles is selected from three ranges:
the low range [1,2,3], mid range [3,4,5], and high range [4,5,6]. During morning/afternoon
peak hours, roughly 95% and 5% of vehicles have capacities randomly selected from the
low range and mid range, respectively. It is realistic to assume vehicle capacity is lower for
morning and afternoon peak-hour commute. While during off-peak hours, roughly 80%, 10%
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and 10% of vehicles have capacities randomly selected from low range, mid range and high
range, respectively. The number δi of stops equals to λi if λi ≤ 3, else it is chosen uniformly
at random from [λi − 2, λi] inclusive. The detour limit zi of each driver is within 5 to 20
minutes because traffic is not considered, and transit time and service time are considered
in a simplified model. Earliest departure time αi of a driver or passenger i is from immediate
to two time intervals. Latest arrival time βi of a driver ηi is at most 1.5 · (t(oi, di) + zi) + αi.
Latest arrival time βj of a passenger rj is αj + t(π̂j(αj)), where π̂j(αj) is the fastest public
transit route for rj . The acceptance threshold θj of every passenger rj is 0.8 for the base
instance. The general information of the base instance is summarized in Table 5.4. Note that
the earliest departure time all trips generated in the last four time intervals is immediate
for computational-result purpose.

Major trip patterns from urban communities to downtown and vice versa for
peak and off-peak hours, respectively; trips specify one
match type for peak hours and can be in either type for
off-peak hours

# of intervals simulated start from 6:00 AM to 11:59 PM; each interval is 15 minutes
# of trips per interval varies from [350, 1150] roughly, see Figure 5.4
Driver-passenger ratio 1:3 approximately
Capacity λi of vehicles low range: [1,3], mid range: [3,5] and high range: [4,6] in-

clusive
Number of stops limit δi = λi if λi ≤ 3, or δi ∈ [λi − 2, λi] if λi ≥ 4
Earliest departure time αi immediate to 2 intervals after a trip i (driver or passenger)

is generated
Driver detour limit zi 5 minutes to min{2 · t(oi, di) (driver’s fastest route), 20

minutes}
Latest arrival time of driver ηi βi ≤ 1.5 · (t(oi, di) + zi) + αi

Latest arrival time of passenger rj βj = αj + t(π̂j(αj)), where π̂j(αj) is the fastest public
transit route for j with earliest departure time αj from oj

Travel duration of driver ηi γi = t(oi, di) + zi

Travel duration of passenger rj γj = t(π̂j(αj)), where π̂j(αj) is the fastest public transit
route for j

Acceptance threshold 80% for all passengers (0.8 times the fastest public transit
route)

Train and bus travel time average at 1.15 and 2 times the fastest route by car, re-
spectively

Table 5.4: General information of the base instance.

Reduction configuration procedure.

When the number of trips increases, the running time for Algorithm 8 and the time needed
to construct the k-set packing instance (and independent set instance) also increase. This
is due to the increased number of feasible matches for each driver ηi ∈ D. In a practical
setup, we may restrict the number of feasible matches a driver can have. Recall that each
match produced by Algorithm 7 is a base match, consisting of one driver and one passenger.
To make the simulation feasible and practical, we heuristically limit the numbers of base
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matches for each driver and each passenger and the number of total feasible matches for
each driver. We use (x%, y, z), called reduction configuration (Config for short), to denote
that for each driver ηi, the number of base matches of ηi is reduced to x percentage and
at most y total feasible matches are computed for ηi; and for each passenger rj , at most z

base matches containing rj are used.
After Algorithm 7 is completed. A reduction procedure may be evoked with respect to

a Config. Let H(V, E) be the graph after computing all feasible base matches (instance
computed by Algorithm 7 and before Algorithm 8 is executed). For a trip i ∈ A, let Ei be
the set of base matches of i. The reduction procedure works as follows.

• First of all, the set of drivers is sorted in descending order of the number of base
matches each driver has.

• Each driver ηi is then processed one by one.

1. If driver ηi has at least 10 base matches, then Ei is sorted, based on the number of
base matches each passenger included in Ei has, in descending order. Otherwise,
skip ηi and process the next driver.

2. For each base match e = (ηi, rj) in the sorted Ei, if passenger rj belongs to z or
more other matches, remove e from Ei.

3. After above step 2, if Ei has not been reduced to x%, sort the remaining matches
in descending order of the travel time from oi to oj for remaining matches e =
(ηi, rj). Remove the first x′ matches from Ei until x% is reached.

The original sorting of the drivers allows us to first remove matches from drivers that have
more matches than others. The sorting of the base matches of driver ηi in step 1 allows us
to first remove matches containing passengers that also belong to other matches. Passengers
farther away from a driver ηi may have lower chance to be served together by ηi; this is the
reason for the sorting in step 3.

5.4.3 Computational results

We use the same transit network and same set of generated trip data for all algorithms. All
algorithms were implemented in Java, and the experiments were conducted on Intel Core i7-
2600 processor with 1333 MHz of 8 GB RAM available to JVM. To solve the ILP formulation
(5.1)-(5.3) and the formulation in LPR, we use CPLEX v12.10.0; and we label the algorithm
CPLEX uses to solve these ILP formulations by Exact. Since the optimization goal is to
assign acceptable ridesharing routes to as many passengers as possible, the performance
measure is focused on the number of passengers serviceable by acceptable ridesharing routes,
followed by the total time saved for the passengers as a whole. We record both of these
numbers for each of the algorithms: ImpGreedy, LPR, Exact, Greedy, AnyImp and BestImp.
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A passenger rj ∈ R is called served if rj ∈ σ(i) for some driver ηi ∈ D such that σ(i) belongs
to a solution computed by one of the algorithms.

Results on a base instance

The base case instance uses the parameter setting described in Subsection 5.4.2 and Config
(30%, 600, 20). The overall experiment results are shown in Table 5.5. Although the solutions

ImpGreedy LPR Exact Greedy AnyImp BestImp
Total number of passengers served 26597 22583 27940 26597 27345 27360
Avg number of passengers served per interval 369.4 313.7 388.1 369.4 379.8 380.0
Total time saved of all passengers riders 309369.1 260427.3 324718.4 309369.1 318729.6 318983.9
Avg time saved of served passengers per interval 4296.8 3617.0 4510.0 4296.8 4426.8 4430.3
Avg time saved per served passenger 11.63 11.53 11.62 11.63 11.65 11.66
Avg time saved per passenger 6.68 5.75 7.17 6.68 7.03 7.04
Avg public transit duration per passenger 30.54 minutes
Total number of passengers and public transit duration 45314 and 1384100.97 minutes

Table 5.5: Base case solution comparison between all algorithms. Every time unit is measured in
minute.

computed by AnyImp and BestImp are slightly better than that of ImpGreedy, it takes
much longer for AnyImp and BestImp to run to completion, as shown in a later experiment
(Figure 5.8). The average number of passengers served per interval is calculated as the
total number of passengers served divided by 72 (the number of intervals). The average
time saved per served passenger is calculated as the total time saved divided by the total
number of served passengers. The results of ImpGreedy and Greedy are aligned since they
are essentially the same algorithm: 58.69% of total number of all passengers are assigned
acceptable routes and 22.35% of total time are saved for those passengers. The results
of AnyImp and BestImp are similar because of the density of the independent set graph
G(V, E) due to Observation 5.1. For AnyImp and BestImp, roughly 60.38% of total number
of all passengers are assigned acceptable routes and 23.05% of total time are saved. For
LPR, 49.8% of total number of all passengers are assigned acceptable routes and 18.82% of
total time are saved. We show that LPR is worse than ImpGreedy in terms of performance
and running time in a later experiment. For Exact, 61.66% of total number of all passengers
are assigned acceptable routes and 23.46% of total time are saved.

The average public transit duration per passenger is calculated as the total public transit
duration divided by total number of all passengers, which is 30.54 minutes. The average
time saved per passenger is calculated as the total time saved divided by the total number of
all passengers (served and unserved). From Algorithm Exact, a passenger is able to reduce
their travel duration from 30.54 minutes to 23.37 minutes on average (save 7.17 minutes)
with the integration of public transit and ridesharing.

If we consider only the served passengers (26597 for ImpGreedy and 27940 for Exact),
the average origin public transit duration per served passenger is 30.29 (30.30) minutes
for ImpGreedy (Exact respectively) In this case, the average public transit + ridesharing
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duration per served passenger is 18.65 (18.67) minutes, 11.63 (11.62) minutes saved, for
ImpGreedy (Exact respectively). Although this is only a side-effect of the optimization goal
of MTR, it reduces passengers’ travel duration significantly. The results of these algorithms
are not too far apart. However, it takes too long for AnyImp and BestImp to run to comple-
tion. A 10-second limit is set for both algorithms in each iteration for finding an independent
set improvement. With this time limit, AnyImp and BestImp run to completion within 10
minutes for almost all intervals. The optimal solution computed by Exact serves only about
5% more total passengers than that of the solution computed by ImpGreedy; and it is
most likely constrained by the number of feasible matches each driver has, which is also
limited by the base match reduction Config (30%, 600, 20). We explore more about this in
Subsection 5.4.3.

We also examined results from the drivers’ perspective; we recorded both the mean
occupancy rate and vacancy rate of drivers. The results are depicted in Table 5.6 and
Figure 5.6. The mean occupancy rate is calculated as, in each interval, (the number of
served passengers + the total number of drivers) divided by the total number of drivers.
The mean vacancy rate describes the number of empty vehicles, so it is calculated as, in
each interval, the number of drivers who are not assigned any passenger divided by the total
number of drivers. The average occupancy rate per interval is the sum of mean occupancy
rate in each interval divided by the number of intervals (72); and similarly for average
vacancy rate per interval. The occupancy rate results show that in many intervals, 1.7-1.8
passengers are served by each driver on average (except Algorithm LPR). The vacancy
rate results show that in many intervals, only 4-7.5% and 2-5% of drivers are not assigned
any passenger for ImpGreedy and BestImp/Exact, respectively, during all hours except
afternoon peak hours. This is most likely due to the origins of many trips are from the same

ImpGreedy LPR Exact BestImp
Average occupancy rate per interval 2.703 2.417 2.789 2.753
Average vacancy rate per interval 0.0693 0.193 0.0289 0.0436

Table 5.6: The average occupancy rate and vacancy rate per interval.

Figure 5.6: The average occupancy rate and vacancy rate of drivers for each interval.
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area (downtown); and if the destinations of drivers and passengers do not have the same
general direction originated from downtown, the drivers may not be able to serve many
passengers. On the other hand, when their destinations are aligned, drivers are likely to
serve more passengers. The occupancy rate is much lower in the last interval because the
number of passengers is low, causing the number of served passengers low.

Results on different reduction configurations

Another major component of the experiment is to measure the performance of the algorithms
using different reduction configurations. We tested 12 different Configs:

• Small1 (20%,300,10), Small2 (20%,600,10), Small3 (20%,300,20), Small4-10 (20%,600,20).

• Medium1 (30%,300,10), Medium2 (30%,600,10), Medium3 (30%,300,20), Medium4-10 (30%,600,20).

• Large1 (40%,300,10), Large2 (40%,600,10), Large3-10 (40%,300,20), and Large4-10 (40%,600,20).

Any Config with label “-10” at the end means there is a 10-second limit for AnyImp and
BestImp to find an independent set improvement (Configs without any label have a 20-
second limit). Note that all 12 Configs have the same sets of driver/passenger trips and base
matches but have different feasible matches generated at the end (after Algorithm 8). The
performance and running time results of all 12 Configs are depicted in Figures 5.7 and 5.8,
respectively. Since the performance results of ImpGreedy and Greedy are the same, we skip
Greedy.

The results are divided into peak and off-peak hours for each Config, averaging all inter-
vals of peak hours and off-peak hours. As expected, larger Configs give better performance
(more passengers are served by drivers). The increase in performance of Exact, compared
to ImpGreedy, remains at about 5% for each different Config. This shows that ImpGreedy
is practical in terms of performance. For all algorithms, the increase in performance from
Small1 to Small3 is much larger than that from Small1 to Small2 (same for Medium and
Large), implying any parameter in a Config should not be too small. The increase in per-
formance from Large1 to Large4 is higher than that from Medium1 to Medium4 (similarly

Figure 5.7: Average performance of peak and off-peak hours for different configurations.
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Figure 5.8: Average running time of peak and off-peak hours for different configurations.

for Small). Therefore, a balanced configuration is more important than a configuration em-
phasizes only one or two parameters. The average running times of ImpGreedy, LPR and
Exact are under a second for all Configs. On the other hand, for AnyImp and BestImp dur-
ing peak hours, they require 600-800 seconds and 400-500 seconds for Large3/Large4 and
for Medium3/Medium4 Configs, respectively. By reducing more matches, we are able to
improve the running time of AnyImp and BestImp significantly by sacrificing performance
slightly. However, it may still be not practical to use AnyImp and BestImp for peak hours.

We specifically compared the performance of ImpGreedy and LPR since these two are
the more practical approximation algorithms. The performance and running time results
of ImpGreedy and LPR using Medium4 and Large4 configs are depicted in Figure 5.9. For

Figure 5.9: Performance of ImpGreedy and LPR using Medium4 and Large4 Configs.

both Configs, ImpGreedy is better than LPR in both performance and running time for
each interval. The difference in performance is most likely due to the removal of passengers
(step 3 of LPR). After a passenger rj is removed from a match σ(i), a match σ′(i) with
j /∈ σ′(i) and |σ′(i)| > |σ(i) \ {j}| for driver ηi is not searched (even if such a match exists).

We further tested ImpGreedy, Exact and Greedy with the following Configs: Huge1
(100%,600,10), Huge2 (100%,2500,20) and Huge3 (100%,10000,30) (these Configs have the
same sets of driver/passenger trips and base match sets as those in the previous 12 Configs).
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The focus of these Configs is to see if these algorithms can handle large number of feasible
matches. The results are shown in Table 5.7.

ImpGreedy Huge1 Huge2 Huge3
Avg number of riders served for peak/off-peak hours 405.8 / 329.2 458.7 / 347.5 482.5 / 354.2
Avg time saved of riders for peak/off-peak hours (min) 3462.7 / 4500.1 3987.6 / 4756.9 4237.4 / 4836.9
Avg time saved of riders per interval (min) 4154.3 4500.5 4637.0
Avg running time for peak/off-peak hours (sec) 0.0690 / 0.0254 0.327 / 0.0824 0.806 / 0.170
Exact Huge1 Huge2 Huge3
Avg number of riders served for peak/off-peak hours 442.4 / 355.5 488.9 / 371.0 507.7 / 375.6
Avg time saved of riders for peak/off-peak hours (min) 3701.6 / 4911.7 4118.8 / 5128.3 4322.9 / 5216.2
Avg time saved of riders per interval (min) 4508.3 4791.8 4918.4
Avg running time for peak/off-peak hours (sec) 1.246 / 0.818 6.689 / 2.621 26.315 / 5.757
Greedy Huge1 Huge2 Huge3
Avg running time for peak/off-peak hours (sec) 10.499 / 2.371 N/A N/A
Avg instance size G(V, E) of morning peak (|E(G)|) 0.014 billion 0.25 billion 2.4 billion
Avg time creating G(V, E) of morning peak (sec) 10.43 200.41 1391.48

Table 5.7: The results of ImpGreedy and Greedy using Huge Configs.

Because ImpGreedy does not create the independent set instance, it runs quicker and
uses less memory space than those of Greedy. Greedy cannot run to completion for Huge2
and Huge3 Configs because in many intervals, the whole graph G(V, E) of the independent
set instance is too large to hold in memory (8.00 GB for JVM). The average numbers
of edges in G(V, E) for morning peak hours are 0.014, 0.25 and 2.4 billion for Huge1,
Huge2 and Huge3, respectively. There are techniques in graph processing to solve this
problem. For example, one can use the out-of-core technique, which is to load the needed
portion of a graph G(V, E) for processing and unload the processed portion if necessary
(e.g., [70, 109, 110]). However, this increases the total running time of the algorithms as
the number of I/Os increases. Another way is to use distributed architecture to process
large graphs [18, 74]. This approach may not create a burden in the running time, but
it complicates the implementation and maintenance of the system. More importantly, the
time it takes to create G(V, E) can excess practicality in the first place regardless of what
technique is used. The time, displayed in the last row of Table 5.7, is only the duration
for finding all overlapping feasible matches to see if edges of G(V, E) should be created (no
actual independent set instance was created for Huge2 and Huge3).

Hence, using Greedy for large instances may not be practical, whereas both ImpGreedy
and Exact can handle large instances and can run to completion quickly. For Huge3, there
are 393738 feasible matches on average per interval during peak hours. ImpGreedy and Ex-
act are able to compute a solution from these many feasible matches in about a second and
26 seconds, respectively. This shows that both algorithms are scalable when a reasonable
Config is used or number of feasible matches is only reasonably large. Note that the average
numbers of served passengers (405.8) and running time (0.06904 second) per interval during
peak-hours of ImpGreedy with Huge1 is worse than that (452, 0.02475 second) produced by
ImpGreedy with Medium3. Similarly, the average numbers of served passengers (442.4) and
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running time (1.246 second) per interval during peak-hours of Exact with Huge1 is worse
than that (475.0, 0.6230 second) produced by Exact with Medium3. These support the ob-
servation that a balanced configuration is more important than a configuration emphasizes
only one or two parameters.

Lastly, we looked at the total (CPU) running times of the algorithms including the time
for computing feasible matches (Algorithms 7 and 8). Table 5.8 shows the average running
time of a time interval during peak hours for Algorithm 7 (Alg7), Algorithm 8 (Alg8), and
the total time from Algorithm 7 to the finish of each tested algorithm. The running time

Alg7 + Alg8 Total (CPU) time of Alg7 + Alg8 + each algorithm
ImpGreedy LPR Exact Greedy AnyImp BestImp

Small3 500.58 + 34.63 535.2 535.3 535.6 535.9 739.9 735.5
Small4 500.58 + 35.41 536.0 536.1 536.4 536.9 739.3 750.4
Medium3 500.58 + 62.97 563.6 563.7 564.2 566.3 964.4 981.3
Medium4 500.58 + 55.32 555.9 556.1 556.7 558.8 1053.9 1076.7
Large4 500.58 + 83.26 583.9 584.1 584.9 590.3 1380.8 1419.7
Huge2 500.58 + 310.78 811.7 814.5 818.0 N/A N/A N/A
Huge3 500.58 + 368.93 870.3 878.1 895.8 N/A N/A N/A

Table 5.8: Average computational time (in seconds) of an interval during peak hours for all
algorithms.

of Alg7 solely depends on computing the shortest paths between the trips and stations.
Alg7 runs to completion in about 500 seconds on average per interval during peak hours
(7AM-10AM and 5PM-8PM). As for Algorithm 8, when many trips’ origins/destinations
are concentrated in one area, the running time increases significantly, especially for drivers
with high capacity. Running time of Alg8 can be reduced significantly by Configs with
aggressive reductions. ImpGreedy and Exact are capable of handling large instances tested.
Exact provides better solutions than any of the approximation algorithms. ImpGreedy gives
solutions with quality close to other algorithms with running time less than a second for
instances tested. ImpGreedy may be more practical for instances larger than those tested.

In conclusion, both ImpGreedy and Exact are much faster and uses less memory space,
thus can handle large instances, compared to the other approximation algorithms. From the
experiment results in Figure 5.7 and Table 5.8, it is beneficial to dynamically select different
reduction configurations for each interval depending on the number of trips and the number
of feasible matches. When the size of an instance is large and a solution must be computed
within some time-limit, ImpGreedy may have a slight advantage over the Exact algorithm.
Recall that the MTR problem (the ILP formulation (5.1)-(5.3)) is NP-hard by Theorem 5.3
(Theorem 5.1). From this, if the size of an instance or the number of feasible matches is
larger, the running time of Exact for computing an optimal solution is not known and can
be time consuming. As indicated by the results of Huge3, the running time of Exact is
26 times higher than that of ImpGreedy. A fallback plan would be to run ImpGreedy after
Exact. If after a pre-defined time limit is reached and Exact still cannot compute an optimal
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solution, the solution computed by ImpGreedy can be used. As shown by the experiments,
the performance of ImpGreedy is still competitive.

Effects from different acceptance thresholds.

We consider three different acceptance thresholds for passengers: 0.9, 0.7 and 0.6 (in addition
to 0.8, specified in Table 5.4, that is already tested in the base instance). As a reminder,
an acceptance threshold (AT for short) 0.9 means that the acceptable ridesharing route
given to every passenger rj has travel time (duration) at most 0.9 times rj ’s public transit
duration t(π̂j(αj)). All other parameters in the base instance remain the same. To see the
effect of different acceptance thresholds, two Configs are used: Large4-(40%, 600, 20) and
Huge3-(100%, 10000, 30). Only ImpGreedy and Exact were tested.

The overall results are shown in Table 5.9 for Config Large4 and Table 5.10 for Config
Huge3. The results for Large4 and Huge3 are consistent for both ImpGreedy and Exact.
As somewhat expected, the total number of passengers served decreases for both Configs
as the acceptance threshold decreases, since shorter travel duration is required according to
passengers’ requests. The data in Table 5.9 and Table 5.10 show that the total time saved
of all served passengers increases when the acceptance threshold decreases, which implies
that the number of passengers served is inversely related to the total time saved when the
acceptance threshold changes.

Let us focus on the results using Huge3. From AT 0.9 to 0.8, total number of passengers
served decreases by 3.635% (3.061%), whereas total time saved of all served passengers
increases by 13.055% (15.789%) for ImpGreedy (Exact respectively). From this, decreasing
the acceptance threshold from 0.9 to 0.8 only reduces the number of served passengers
slightly but significantly reduces the travel time for each served passenger. For a smaller AT,

ImpGreedy AT:0.9 AT:0.8 AT:0.7 AT:0.6
Total number of passengers served 27712 27008 26099 23456
Avg number of passengers served per interval 384.9 375.1 362.5 325.8
Total time saved of all served passengers 275329.5 315851.8 344727.3 354368.0
Avg time saved of served passengers per interval 3824.0 4386.8 4787.9 4921.8
Avg time saved per served passenger 9.94 11.69 13.21 15.11
Avg time saved per passenger 6.07 6.97 7.61 7.82
Exact AT:0.9 AT:0.8 AT:0.7 AT:0.6
Total number of passengers served 29176 28430 27561 25184
Avg number of passengers served per interval 405.2 394.9 382.8 349.8
Total time saved of all served passengers 287628.5 331979.0 364905.9 379767.2
Avg time saved of served passengers per interval 3994.8 4610.8 5068.1 5274.5
Avg time saved per served passenger 9.86 11.68 13.24 15.08
Avg time saved per passenger 6.35 7.33 8.05 8.38
Total number of riders and public transit duration 45314 and 1384100.97 minutes

Table 5.9: Overall solution comparison between different acceptance thresholds using Large3
Config. Every time unit is measured in minute.
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ImpGreedy AT:0.9 AT:0.8 AT:0.7 AT:0.6
Total number of passengers served 29657 28579 27218 24655
Avg number of passengers served per interval 411.9 396.9 378.0 342.4
Total time saved of all served passengers 295310.4 333864.3 361674.1 370964.7
Avg time saved of served passengers per interval 4101.5 4637.0 5023.3 5152.3
Avg time saved per served passenger 9.96 11.68 13.29 15.05
Avg time saved per passenger 6.52 7.37 7.98 8.19
Exact AT:0.9 AT:0.8 AT:0.7 AT:0.6
Total number of passengers served 31168 30214 29122 26973
Avg number of passengers served per interval 432.9 419.6 404.5 374.6
Total time saved of all served passengers 305837.6 354127.2 386819.1 405339.6
Avg time saved of served passengers per interval 4247.7 4918.4 5372.5 5629.7
Avg time saved per served passenger 9.81 11.72 13.28 15.03
Avg time saved per passenger 6.75 7.81 8.54 8.95
Total number of riders and public transit duration 45314 and 1384100.97 minutes

Table 5.10: Overall solution comparison between different acceptance thresholds using
Huge3 Config. Every time unit is measured in minute.

a quicker acceptable route is required for a passenger. This may reduces the total number of
passengers served but each served passenger saves more time. As a result, the average time
saved per (served) passenger increases as AT decreases. Because the optimization goal of
the MTR problem is to maximize the number of passengers served, the algorithms for MTR
find solutions with more passengers served instead of focusing on more time saved even if
the solutions for a smaller AT are solutions for a greater AT. From AT 0.8 to 0.7, the gap of
inverse relation reduces to: 4.762% (3.164%) decreased in total number of passengers served
and 8.330% (9.232%) increased in total time saved of all served passengers for ImpGreedy
(Exact respectively); and the gap reduces further from AT 0.7 to 0.6. From the results, it
seems that AT between 0.7-0.8 has a nice balance between the number of passengers served
and time saved of served passengers. Although passengers can choose their own acceptance
thresholds in practice, the system can suggest a default AT for all passengers which would
balance between the chance of being served and the amount of time saved.

The occupancy rate and vacancy rate of drivers for Huge3 are depicted in Figure 5.10.
The average occupancy and vacancy rates for both algorithms align with the result shown
in Table 5.10. The average occupancy rate for Exact with AT 0.9 actually just exceeds 3
people per vehicle. As shown, the vacancy rate increases more as the acceptance threshold
decreases. The average vacancy rate for Exact with AT 0.9 is 1.3%. If the main goal is to
increase occupancy rate and decrease vacancy rate, using a centralized AT of 0.9 is effective.
Bases on this and previous result (Table 5.10), an AT of 0.8 seems to be the most balanced.
As a summary of the performance of Exact with AT 0.8 and Config Huge3, 66.68% of
total passengers are assigned ridesharing routes and 25.59% of total time are saved; and
passengers are able to reduce their average travel duration from 30.54 minutes to 22.73
minutes. If we consider only the served passengers (30214), the average origin public transit

142



Figure 5.10: The average occupancy rate and vacancy rate per interval using Huge3 Config.

duration per served passenger is 30.29 minutes, and the average public transit + ridesharing
duration per served passenger is 18.57 minutes.

5.5 Summary

We present an ILP formulation for the MTR problem. We prove that the MTR problem
is NP-hard and developed an exact algorithm from the ILP (labeled as Exact) and two
practical approximation algorithms for the problem: one (labeled as LPR) with (1 − 1

e )-
approximation ratio and the other (labeled as ImpGreedy) with 1

2 -approximation ratio.
Although Algorithm Exact may run in exponential time in a worst case, experiments show
that it is efficient on practical data if the instance is not substantially large. Algorithm
ImpGreedy outperforms Algorithm LPR in all instances tested for both performance and
running time. Our base case experiments show that, on average, 61.7% and 58.7% of the
passengers are assigned ridesharing routes and able to save 23.5% and 22.4% of travel time
by Exact and ImpGreedy, respectively. Majority of the drivers are assigned at least one
passenger, and vehicle occupancy rate has improved close to 3 (including the driver) on
average. The number of passengers assigned to drivers and the time saved by ImpGreedy
is about 95% of those by Exact. These results suggest that ridesharing can be an effective
complement to public transit.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarize our results and discuss future work for the ridesharing min-
imization problems (RSOne and RSTwo, presented in Chapter 3), the ridesharing maxi-
mization problem (RPC, presented in Chapter 4), and the multimodal transportation with
ridesharing maximization problem (MTR, presented in Chapter 5).

6.1 Ridesharing minimization problems

We have started a line of research that explores the hardness of the general ridesharing
problem. Our results show that even restricted variants of RSOne and RSTwo are NP-hard.
Specifically, if only one of the following Conditions C1-C5 is not satisfied (the four other
conditions are satisfied), both RSOne (RSOne∗) and RSTwo (RSTwo∗) are still NP-hard.

C1. All trips have the same destination or all trips have the same origin, that is, di = dj

for every pair of trip i, j ∈ A or oi = oj for every pair of trip i, j ∈ A.

C2. The individual of each trip can only serve others on the individual’s preferred path
only (without any detour), that is, zi = 0 for every i ∈ A.

C3. There is only one preferred path Pi = Pi for each trip, that is |Pi| ≤ 1 for every i ∈ A.
(note: if Pi = ∅, a shortest path from oi to di is computed by the system.)

C4. Each individual is willing to make at least δi ≥ λi stops to either pick-up or drop-off
passengers (or both), that is, δi ≥ λi for pick-ups and/or drop-offs for every i ∈ A.

C5. All trips have the same earliest departure time and same latest arrival time, that is,
for every i ∈ A, αi = α and βi = β for some α < β.

Further, we show that it is NP-hard to approximate within a constant factor for both RSOne
and RSTwo if one of Conditions C2-C5 is not satisfied. When all five Conditions C1-C5 and
transitive serve relation are satisfied, we give a polynomial-time dynamic programming
algorithm that can solve RSOne and RSTwo and a more time efficient algorithm that solves
RSOne only. These results give a positive answer to the open problem:
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Is there any variant of the ridesharing problem that can be solved in polynomial time?

However, it remains open that:

whether RSOne or RSTwo is NP-hard or polynomial time solvable when the transitive
serve relation is not satisfied and all five Conditions C1-C5 are satisfied.

We then investigate our second question:

Do there exist fast/efficient (practical enough) approximation algorithms for some
variants of the ridesharing problem?

We present three approximation algorithms for RSOneStop (an instance (N, A) of RSOne
that satisfies Conditions C1-C3 and C5). All three algorithms have an approximation ratio
of O(λ+2

2 ), where λ is the maximum vehicle capacity of all trips in an A. Two of these
three approximation algorithms are modified from the approximation algorithms for the
MCMP [65], called EdgeSwap and StarImprove. The third approximation algorithm is our
novel algorithm that is more efficient than EdgeSwap and StarImprove. More precisely, the
running times of EdgeSwap and StarImprove are O(M + l2λ) and O(M +λ · l3), respectively;
our approximation algorithm has a running time of O(M + l2), where M is the size of the
ridesharing instance which contains a road network N and l trips in A.

An limitation of our exact and approximation algorithms for RSOne and RSTwo is that
the algorithms are for some specific variants that must satisfy some of Conditions C1-C5
as mentioned above. That is not to say there are no applications for such variants. For
example, school commute to a college/university and work commute to an office building
align with some of the variants we studied. In other words, our algorithms can apply to
these situations, and in fact, these scenarios have been studied in the literature for car-
pooling/ridesharing. For more general ridesharing cases that only satisfy one or two of
Conditions C1-C5, one can first group the trips/individuals together who satisfy (or nearly
satisfy) more conditions, and then apply our algorithms (as heuristics) to find a solution for
each group. The drawback of this approach is that the approximation ratio is not retained.
It is worth developing approximation algorithms for the NP-hard cases and exploring the
algorithmic complexity of other simplified variants of ridesharing problem. It will be inter-
esting to develop fast/efficient approximation algorithms for more general variants, anew
or by extending our algorithms.

6.2 Ridesharing maximization problem

To reach the acclaimed potential of ridesharing, we need to fully adopt ridesharing in prac-
tice, especially for the existing ridehailing platforms (MoDs, such as Uber and Lyft). To
promote ridesharing in practice, we study the RPC problem, which is to assign the maxi-
mum number of passengers to drivers for ridesharing service while satisfying an overall driver
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profit constraint. Our model of the RPC problem provides a new framework to incorpo-
rate a flexible pricing scheme to maximize the number of passengers served while meeting a
profit target. Our approach for solving the RPC problem allows personal/ad-hoc drivers and
designated drivers to participate in the ridesharing system at the same time. Our solution
approach for the RPC problem were developed by adopting the graph matching approach
proposed by [95]. We create a hypergraph H to represent all feasible matches between the
drivers of D and the passengers of R. We give an ILP formulation to the RPC problem,
which is a variant of the weighted set packing formulation. This implies the NP-hardness
of the RPC problem. Two variants of RPC are studied.

We first study a simpler variant of RPC (labeled as RPC1). In this variant, each driver
can serve at most one passenger in any solution to RPC1. We present a polynomial-time
exact algorithm framework (including two practical implementations of the algorithm) and
a fast 1

2 -approximation algorithm for RPC1. The exact algorithm is based on finding a
sequence of minimum cost flows in a flow network constructed from H. The 1

2 -approximation
algorithm is based on finding a weighted bipartite matching in H.

The second variant of RPC studied is labeled as RPC+. In RPC+, drivers have arbitrary
vehicle capacity, but only feasible matches with non-negative profit are considered in any
solution to RPC+. We present a fast 1

2λ -approximation algorithm for RPC+, which is a local
search algorithm (labeled as LS2). If a specific condition on the profit target is met for an
instance (N, A), the approximation ratio of LS2 becomes 2

3λ .
We create a simulation to evaluate our model and algorithms for both RPC1 and RPC+,

based on a real-world ridesharing dataset in Chicago City. Because there is no practical test
dataset publicly available for the RPC problem at the moment, we generate test instances
(as realistic as possible) by using the ridesharing dataset and estimating Uber’s profit model.
Experimental results show that practical profit (price) schemes can be incorporated into our
model and our algorithms are effective/efficient for the optimization goals.

The RPC+ variant considers only matches with non-negative profit, which may cover
the MoD systems’ profit-incentive, but it may impose a limit on improving the number of
passengers served. It is worth developing algorithms for more general cases where matches
with negative profit are also considered. A related optimization problem is to maximize
the system-wide profit while a number of passengers must be served. Such an optimization
problem may satisfy more demand compared to the RPC problem, which is important in
reducing congestion and CO2 emissions.

A limitation of our models and algorithms for different variants of the ridesharing prob-
lem (RPC, RSOne and RSTwo) presented in this thesis is that they focus on static rideshar-
ing. To realize the full potential of ridesharing in practice, it would be important to extend
these algorithms to dynamic ridesharing.
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6.3 Multimodal transportation with ridesharing problem

We present an ILP formulation for maximizing the number of public transit users assigned to
drivers in a transportation system that integrates public transit and ridesharing (the MTR
problem). We prove that the MTR problem is NP-hard and develop an exact algorithm from
the ILP (labeled as Exact) and two practical approximation algorithms for the problem:
one (labeled as LPR) with (1 − 1

e )-approximation ratio using LP relaxation and rounding
technique and the other (labeled as ImpGreedy) with 1

2 -approximation ratio using a greedy
approach.

Based on real-world ridesharing and transit datasets in Chicago, we create datasets for an
extensive computational study to evaluate our model and algorithms. Although Algorithm
Exact may run in exponential time in a worst case, experiments show that its computational
time is acceptable on practical data if the instance is not substantially large. Algorithm
ImpGreedy runs much faster than Exact and has a performance close to Exact. Despite
the theoretical approximation ratio of LPR is better than that of ImpGreedy, ImpGreedy
outperforms LPR in all instances tested for both performance and running time. Algorithm
ImpGreedy has a polynomial running time in the worst case and runs much faster than
Exact for every instance tested. ImpGreedy can be a fallback plan for Exact when the
latter cannot give a solution within a time limit in practice. Our simulation has shown that
integrating public transit and ridesharing can benefit the transportation system as a whole.

It is worth improving the performance of ImpGreedy while keeping its time efficiency.
The algorithms (exact and approximation) for both MTR and RPC rely on computing the
feasible matches (Algorithm 7 + Algorithm 8) quickly for practical use. For the instances
tested for MTR (Section 5.4) and for RPC (Section 4.5), the time to find all feasible matches
(Algorithm 7 + Algorithm 8) is much longer than the computational times of the exact and
approximation algorithms for either problem to assign passengers to drivers. It is important
to develop faster algorithms for computing feasible matches for practice. There is a limitation
of our simulation setup: we use a simplified transit system. It can be improved (for a more
realistic experiment) by using the real transit schedule, as another future work. The delay
of drivers and passengers due to traffic or any other reason is not exactly considered in our
simulation either (vehicle speed due to traffic is estimated in the experiment for RPC). Since
in practice, delay can happen; and it can cause a cascading effect on subsequent passenger
pick-ups/drop-offs. Incorporating the delay of drivers and passengers into the algorithms
and simulation would align with a more practical scenario.

147



Bibliography

[1] Niels Agatz, Alan Erera, Martin Savelsbergh, and Xing Wang. Dynamic ride-sharing:
A simulation study in metro atlanta. Transportation Research Part B: Methodological,
45(9):1450–1464, 2011.

[2] Niels Agatz, Alan Erera, Martin Savelsbergh, and Xing Wang. Optimization for dy-
namic ride-sharing: A review. European Journal of Operational Research, 223(2):295–
303, 2012.

[3] Ravindra Ahuja, Thomas Magnanti, and James Orlin. Network Flows: theory, algo-
rithms, and applications. Prentice Hall, 1993.

[4] Kamel Aissat and Sacha Varone. Carpooling as complement to multi-modal trans-
portation. In Enterprise Information Systems (ICEIS 2015), pages 236–255, 2015.

[5] María Alonso-González, Theo Liu, Oded Cats, Niels Van Oort, and Serge Hoogen-
doorn. The potential of demand-responsive transport as a complement to public
transport: an assessment framework and an empirical evaluation. Transportation Re-
search Record, 2672(8):879–889, 2018.

[6] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and
Daniela Rus. On-demand high-capacity ride-sharing via dynamic trip-vehicle assign-
ment. Proceedings of the National Academy of Sciences, 114(3):462–467, 2017.

[7] Yasaman Amirkiaee and Nicholas Evangelopoulos. Why do people rideshare? an ex-
perimental study. Transportation Research Part F: Traffic Psychology and Behaviour,
55:9–24, 2018.

[8] Claudia Archetti, M. Grazia Speranza, and Daniele Vigo. Chapter 10: Vehicle Routing
Problems with Profits, pages 273–297. Society for Industrial and Applied Mathematics,
2014.

[9] Vincent Armant and Kenneth N. Brown. Minimizing the driving distance in ride
sharing systems. In 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence, pages 568–575, 2014.

[10] Mohammad Asghari and Cyrus Shahabi. Adapt-pricing: A dynamic and predictive
technique for pricing to maximize revenue in ridesharing platforms. In Proceedings
of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’18, page 189–198. Association for Computing
Machinery, 2018.

148



[11] American Automobile Association. Your driving costs fact sheet, August 2022.

[12] American Public Transportation Association. 2022 public transportation fact book.
technical report, January 2023.

[13] Roberto Baldacci, Vittorio Maniezzo, and Aristide Mingozzi. An exact method for
the car pooling problem based on lagrangean column generation. Operation Research,
52(3):422–439, 2004.

[14] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route
planning in transportation networks. In Algorithm Engineering: Selected Results and
Surveys, volume 9220 of LNCS, pages 19–80, Springer, Cham, 2016.

[15] Xiaohui Bei and Shengyu Zhang. Algorithms for trip-vehicle assignment in rideshar-
ing. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018.

[16] Piotr Berman. A d/2 approximation for maximum weight independent set in d-
claw free graphs. In Algorithm Theory - SWAT 2000, pages 214–219. Springer Berlin
Heidelberg, 2000.

[17] Omar Besbes, Francisco Castro, and Ilan Lobel. Surge pricing and its spatial supply
response. Management Science, 67(3):1350–1367, 2021.

[18] Sarra Bouhenni, Saïd Yahiaoui, Nadia Nouali-Taboudjemat, and Hamamache Khed-
douci. A survey on distributed graph pattern matching in massive graphs. ACM
Comput. Surv., 54(2), 2021.

[19] Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing
problem: State of the art classification and review. Computers & Industrial Engineer-
ing, 99:300–313, 2016.

[20] Bureau of Transportation Statistics, United States Department of Transportation. Av-
erage Cost of Owning and Operating an Automobile, National Transportation Statis-
tics, August 2022.

[21] Juan Camilo Castillo, Dan Knoepfle, and Glen Weyl. Surge pricing solves the wild
goose chase. In Proceedings of the 2017 ACM Conference on Economics and Compu-
tation, pages 241–242, 2017.

[22] Brian Caulfield. Estimating the environmental benefits of ride-sharing: A case study of
dublin. Transportation Research Part D: Transport and Environment, 14(7):527–531,
2009.

[23] Center for Sustainable Systems, University of Michigan. Personal transportation fact-
sheet, 2020.

[24] Barun Chandra and Magnús Halldórsson. Greedy local improvement and weighted
set packing approximation. Journal of Algorithms, 39(2):223–240, 2001.

[25] Chicago Transit Authority. System-wide rail capacity study. Published June 2017;
Revised February 2019.

149



[26] Christian Coester and Elias Koutsoupias. The online k-taxi problem. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages
1136–1147, 2019.

[27] Jean-François Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Op-
erations Research, 54(3):573–586, 2006.

[28] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and
algorithms. Annals of Operations Research, 153(1):29–46, 2007.

[29] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 2009.

[30] Milind Dawande, Jayant Kalagnanam, Pinar Keskinocak, Sibel Salman, and Ra-
mamoorthi Ravi. Approximation algorithms for the multiple knapsack problem with
assignment restrictions. Journal of Combinatorial Optimization, 4:171–186, 2000.

[31] Mi Diao, Hui Kong, and Jinhua Zhao. Impacts of transportation network companies
on urban mobility. Nature Sustainability, 4:494–500, 2021.

[32] European Environment Agency. Greenhouse gas emissions from transport in europe,
2019.

[33] A. Di Febbraro, E. Gattorna, and N. Sacco. Optimization of dynamic ridesharing
systems. Transportation Research Record, 2359(1):44–50, 2013.

[34] Sharon Feigon and Colin Murphy. Shared mobility and the transformation of public
transit. TCRP Research Report, Transportation Research Board, 2016.

[35] Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. Jour-
nal of Computer and System Sciences, 48(3):410–428, 1994.

[36] Andres Fielbaum, Xiaoshan Bai, and Javier Alonso-Mora. On-demand ridesharing
with optimized pick-up and drop-off walking locations. Transportation Research Part
C: Emerging Technologies, 126:103061, 2021.

[37] Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko. Tight
approximation algorithms for maximum general assignment problems. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06,
page 611–620. Society for Industrial and Applied Mathematics, 2006.

[38] Martin Fürer and Huiwen Yu. Approximating the k-set packing problem by local im-
provements. In Combinatorial Optimization - Third International Symposium (ISCO
2014), LNCS, pages 408–420. Springer Verlag, 2014.

[39] Masabumi Furuhata, Maged Dessouky, Fernando Ordóñez, Marc-Etienne Brunet, Xi-
aoqing Wang, and Sven Koenig. Ridesharing: The state-of-the-art and future direc-
tions. Transportation Research Part B: Methodological, 57:28–46, 2013.

[40] Michael Garey and David Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

150



[41] Keivan Ghoseiri, Ali Haghani, and Masoud Hamedi. Real-time rideshare matching
problem. Final Report of UMD-2009-04, U.S. Department of Transportation, 2011.

[42] Qian-Ping Gu and Jiajian Liang. Multimodal transportation with ridesharing of
personal vehicles. In 32nd International Symposium on Algorithms and Computation
(ISAAC 2021), volume 212 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021.

[43] Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang. Algorithmic analysis for
ridesharing of personal vehicles. In Proceedings of the 2016 International Conference
on Combinatorial Optimization and Applications, volume 10043 of LNCS, pages 438–
452, 2016.

[44] Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang. Efficient algorithms for
ridesharing of personal vehicles. In Proceedings of the 2017 International Conference
on Combinatorial Optimization and Applications, volume 10627 of LNCS, pages 340–
354, 2017.

[45] Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang. Algorithmic analysis for
ridesharing of personal vehicles. Theoretical Computer Science, 749:36–46, 2018.

[46] Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang. Efficient algorithms for
ridesharing of personal vehicles. Theoretical Computer Science, 788:79–94, 2019.

[47] Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang. Approximate ridesharing of
personal vehicles problem. In Proceedings of the 2020 International Conference on
Combinatorial Optimization and Applications, volume 12577 of LNCS, pages 3–18,
2020.

[48] Qian-Ping Gu, Jiajian Leo Liang, and Guochuan Zhang. Approximate ridesharing of
personal vehicles problem. Theoretical Computer Science, 871:30–50, 2021.

[49] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. Orienteering problem:
A survey of recent variants, solution approaches and applications. European Journal
of Operational Research, 255(2):315–332, 2016.

[50] Irith Ben-Arroyo Hartman, Daniel Keren, Abed Abu Dbai, Elad Cohen, Luk Knapen,
Ansar-Ul-Haque Yasar, and Davy Janssens. Theory and practice in large carpooling
problems. Procedia Computer Science, 32:339–347, 2014.

[51] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating
k-set packing. Computational Complexity, 15(1):20–39, 2006.

[52] Alejandro Henao and Weslet Marshall. The impact of ride-hailing on vehicle miles
traveled. Transportation, 49:2173–2194, 2021.

[53] Wesam Herbawi and Michael Weber. The ridematching problem with time windows
in dynamic ridesharing: A model and a genetic algorithm. In 2012 IEEE Congress on
Evolutionary Computation, pages 1–8, 2012.

[54] John Hopcroft and Richard Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

151



[55] Hadi Hosni, Joe Naoum-Sawaya, and Hassan Artail. The shared-taxi problem: For-
mulation and solution methods. Transportation Research Part B: Methodological,
70:303–318, 2014.

[56] Fu-Shiung Hsieh. A comparative study of several metaheuristic algorithms to optimize
monetary incentive in ridesharing systems. ISPRS International Journal of Geo-
Information, 9(10):590, 2020.

[57] Bin Hu, Ming Hu, and Han Zhu. Surge pricing and two-sided temporal responses in
ride hailing. Manufacturing & Service Operations Management, 24(1):91–109, 2022.

[58] Haosheng Huang, Dominik Bucher, Julian Kissling, Robert Weibel, and Martin
Raubal. Multimodal route planning with public transport and carpooling. IEEE
Transactions on Intelligent Transportation Systems, 20(9):3513–3525, 2019.

[59] Yan Huang, Ruoming Jin, Favyen Bastani, and Xiaoyang Sean Wang. Large scale
real-time ridesharing with service guarantee on road networks. Proceedings of the
VLDB Endowment, 7(14):2017–2028, 2014.

[60] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM, 24(1), 1977.

[61] Jaeyoung Jung, R. Jayakrishnan, and Ji Young Park. Dynamic shared-taxi dispatch
algorithm with hybrid-simulated annealing. Computer-Aided Civil and Infrastructure
Engineering, 31(4):275–291, 2016.

[62] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA, 1972.

[63] Antoon W.J. Kolen, Jan Karel Lenstra, Christos H. Papadimitriou, and Frits C.R.
Spieksma. Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–
543, 2007.

[64] Pramesh Kumar and Alireza Khani. An algorithm for integrating peer-to-peer
ridesharing and schedule-based transit system for first mile/last mile access. Trans-
portation Research Part C: Emerging Technologies, page 122, 2021.

[65] Gilad Kutiel and Dror Rawitz. Local search algorithms for maximum carpool match-
ing. In Proceedings of 25th Annual European Symposium on Algorithms, volume 87,
pages 55:1–55:14, 2017.

[66] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling
problems. Networks, 11(2):221–227, 1981.

[67] Manzi Li, Gege Jiang, and Hong K. Lo. Pricing strategy of ride-sourcing services under
travel time variability. Transportation Research Part E: Logistics and Transportation
Review, 159:102631, 2022.

[68] Jiajian Leo Liang. An algorithmic study on ridesharing problem. Master’s thesis,
Simon Fraser University, 2016.

[69] Todd A. Litman. Transportation Cost and Benefit Analysis Techniques, Estimates and
Implications. Victoria Transport Policy Institute, 2009. (Updated October 2016).

152



[70] Hang Liu and H. Howie Huang. Graphene: Fine-Grained IO management for graph
computing. In 15th USENIX Conference on File and Storage Technologies (FAST
17), pages 285–300, Santa Clara, CA, 2017.

[71] Mengyang Liu, Zhixing Luo, and Andrew Lim. A branch-and-cut algorithm for a
realistic dial-a-ride problem. Transportation Research Part B: Methodological, 81:267–
288, 2015.

[72] Yang Liu and Yuanyuan Li. Pricing scheme design of ridesharing program in morning
commute problem. Transportation Research Part C: Emerging Technologies, 79:156–
177, 2017.

[73] Roger Lloret-Batlle, Neda Masoud, and Daisik Nam. Peer-to-peer ridesharing with
ride-back on high-occupancy-vehicle lanes: Toward a practical alternative mode for
daily commuting. Transportation Research Record, 2668(1):21–28, 2017.

[74] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and
data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, 2012.

[75] Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. Competitive ratios for
online multi-capacity ridesharing. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, page 771–779, 2020.

[76] Qi Luo, Shukai Li, and Robert C. Hampshire. Optimal design of intermodal mobil-
ity networks under uncertainty: Connecting micromobility with mobility-on-demand
transit. EURO Journal on Transportation and Logistics, 10:100045, 2021.

[77] Qi Luo, Viswanath Nagarajan, Alexander Sundt, Yafeng Yin, John Vincent, and
Mehrdad Shahabi. Efficient algorithms for stochastic ridepooling assignment with
mixed fleets, 2022.

[78] Shou Ma, Yu Zheng, and Ouri Wolfson. Real-time city-scale taxi ridesharing. IEEE
Transactions on Knowledge and Data Engineering, 27(7):1782–1795, 2015.

[79] Tai-Yu Ma. On-demand dynamic bi-/multi-modal ride-sharing using optimal
passenger-vehicle assignments. In 2017 IEEE International Conference on Environ-
ment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power
Systems Europe (EEEIC / I CPS Europe), pages 1–5, 2017.

[80] Tai-Yu Ma, Saeid Rasulkhani, Joseph Y.J. Chow, and Sylvain Klein. A dynamic
ridesharing dispatch and idle vehicle repositioning strategy with integrated tran-
sit transfers. Transportation Research Part E: Logistics and Transportation Review,
128:417–442, 2019.

[81] Leandro do Martins, Rocio de la Torre, Canan Corlu, Angel Juan, and Mohamed
Masmoudi. Optimizing ride-sharing operations in smart sustainable cities: Challenges
and the need for agile algorithms. Computers & Industrial Engineering, 153:107080,
2021.

153



[82] Neda Masoud, Daisik Nam, Jiangbo Yu, and R. Jayakrishnan. Promoting peer-to-
peer ridesharing services as transit system feeders. Transportation Research Record,
2650(1):74–83, 2017.

[83] Silvio Micali and Vijay V. Vazirani. An O(
√

|V ||E|) algoithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer
Science (SFCS 1980), pages 17–27, 1980.

[84] Yves Molenbruch, Kris Braekers, Patrick Hirsch, and Marco Oberscheider. Analyzing
the benefits of an integrated mobility system using a matheuristic routing algorithm.
European Journal of Operational Research, 290(1):81–98, 2021.

[85] Abood Mourad, Jakob Puchinger, and Chengbin Chu. A survey of models and algo-
rithms for optimizing shared mobility. Transportation Research Part B: Methodolog-
ical, 123:323–346, 2019.

[86] Ali Najmi, David Rey, and Taha H. Rashidi. Novel dynamic formulations for real-time
ride-sharing systems. Transportation Research Part E: Logistics and Transportation
Review, 108:122–140, 2017.

[87] Jishnu Narayan, Oded Cats, Niels van Oort, and Serge Hoogendoorn. Integrated
route choice and assignment model for fixed and flexible public transport systems.
Transportation Research Part C: Emerging Technologies, 115, 2020.

[88] Mehdi Nourinejad and Mohsen Ramezani. Ride-sourcing modeling and pricing in
non-equilibrium two-sided markets. Transportation Research Part B: Methodologi-
cal, 132:340–357, 2020. 23rd International Symposium on Transportation and Traffic
Theory (ISTTT 23).

[89] Mehdi Nourinejad and Matthew J. Roorda. Agent based model for dynamic rideshar-
ing. Transportation Research Part C: Emerging Technologies, 64, 2016.

[90] Xinwu Qian, Wenbo Zhang, Satish Ukkusuri, and Chao Yang. Optimal assignment
and incentive design in the taxi group ride problem. Transportation Research Part B:
Methodological, 103:208–226, 2017.

[91] Arvind U Raghunathan, David Bergman, John Hooker, Thiago Serra, and Shingo
Kobori. Seamless multimodal transportation scheduling, 2018.

[92] Ulrike Ritzinger, Jakob Puchinger, and Richard F. Hartl. A survey on dynamic and
stochastic vehicle routing problems. International Journal of Production Research,
54(1):215–231, 2016.

[93] Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and branch-
and-cut algorithms for pickup and delivery problems with time windows. Networks,
49(4):258–272, 2007.

[94] Mauro Salazar, Nicolas Lanzetti, Federico Rossi, Maximilian Schiffer, and Marco
Pavone. Intermodal autonomous mobility-on-demand. IEEE Transactions on In-
telligent Transportation Systems, 21(9):3946–3960, 2020.

154



[95] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H. Strogatz,
and Carlo Ratti. Quantifying the benefits of vehicle pooling with shareability net-
works. Proceedings of the National Academy of Sciences, 111(37):13290–13294, 2014.

[96] A. Santos, N. McGuckin, H.Y. Nakamoto, D. Gray, and S. Liss. Summary of travel
trends: 2009 national household travel survey. Technical report, US Department of
Transportation Federal Highway Administration, 2011.

[97] Douglas Santos and Eduardo Xavier. Taxi and ride sharing: A dynamic dial-a-ride
problem with money as an incentive. Expert Systems with Applications, 42(19):6728–
6737, 2015.

[98] Grzegorz Sierpiński. Changes of the modal split of traffic in europe. Archives of
Transport System Telematics, 6(1):45–48, 2013.

[99] Andrea Simonetto, Julien Monteil, and Claudio Gambella. Real-time city-scale
ridesharing via linear assignment problems. Transportation Research Part C: Emerg-
ing Technologies, 101:208–232, 2019.

[100] Statistics Canada. Census: Main mode of commuting, 2016.

[101] Mitja Stiglic, Niels Agatz, Martin Savelsbergh, and Mirko Gradisar. The benefits of
meeting points in ride-sharing systems. Transportation Research Part B: Methodolog-
ical, 82:36–53, 2015.

[102] Mitja Stiglic, Niels Agatz, Martin Savelsbergh, and Mirko Gradisar. Enhancing ur-
ban mobility: Integrating ride-sharing and public transit. Computers & Operations
Research, 90:12–21, 2018.

[103] Maxim Sviridenko and Justin Ward. Large neighborhood local search for the max-
imum set packing problem. In Automata, Languages, and Programming (ICALP),
pages 792–803, 2013.

[104] Amirmahdi Tafreshian, Neda Masoud, and Yafeng Yin. Frontiers in service science:
ride matching for peer-to-peer ride sharing: a review and future directions. Service
Science, 12(2-3):41–60, 2020.

[105] Mohammad Tamannaei and Iman Irandoost. Carpooling problem: A new mathe-
matical model, branch-and-bound, and heuristic beam search algorithm. Journal of
Intelligent Transportation Systems, 23(3):203–215, 2019.

[106] Vu Thi Thao, Sebastian Imhof, and Widar von Arx. Integration of ridesharing with
public transport in rural switzerland: practice and outcomes. Transportation Research
Interdisciplinary Perspectives, 10:100340, 2021.

[107] Ioannis Tikoudis, Luis Martinez, Katherine Farrow, Clara García Bouyssou, Olga
Petrik, and Walid Oueslati. Ridesharing services and urban transport CO2 emissions:
simulation-based evidence from 247 cities. Transportation Research Part D: Transport
and Environment, 97, 2021.

[108] Alejandro Tirachini and Andres Gomez-Lobo. Does ride-hailing increase or decrease
vehicle kilometers traveled (VKT)? a simulation approach for santiago de chile. In-
ternational Journal of Sustainable Transportation, 14(3):187–204, 2020.

155



[109] Keval Vora. LUMOS: Dependency-Driven disk-based graph processing. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 429–442, Renton,
WA, 2019.

[110] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the edges you need: A generic I/O
optimization for disk-based graph processing. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 507–522, Denver, CO, 2016.

[111] Hai Wang and Hai Yang. Ridesourcing systems: A framework and review. Trans-
portation Research Part B: Methodological, 129:122–155, 2019.

[112] Zhengtian Xu, Yafeng Yin, and Jieping Ye. On the supply curve of ride-hailing
systems. Transportation Research Part B: Methodological, 132:29–43, 2020. 23rd
International Symposium on Transportation and Traffic Theory (ISTTT 23).

[113] Chiwei Yan, Helin Zhu, Nikita Korolko, and Dawn Woodard. Dynamic pricing and
matching in ride-hailing platforms. Naval Research Logistics, 67:705–724, 2020.

[114] Hai Yang, Chaoyi Shao, Hai Wang, and Jieping Ye. Integrated reward scheme and
surge pricing in a ridesourcing marke. Transportation Research Part B: Methodologi-
cal, 134:126–142, 2020.

[115] Kenan Zhang and Yu Nie. To pool or not to pool: equilibrium, pricing and regulation.
Transportation Research Part B: Methodological, 151:59–90, 2021.

[116] Yuanyuan Zhang and Yuming Zhang. Exploring the relationship between ridesharing
and public transit use in the united states. International Journal of Environmental
Research and Public Health, 15(8):1763, 2018.

156


	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research overview and contributions
	Ridesharing problem
	Multimodal transportation problem.

	Thesis outline

	Preliminaries
	Basic graph theory
	Matching and set packing
	General ridesharing problem definition

	Ridesharing Minimization Problems
	Related work
	Static and dynamic ridesharing
	Computational complexity of the ridesharing problem
	Single driver, single passenger arrangements
	Single driver, multiple passengers arrangements

	NP-hardness results
	NP-hardness results for C4 and C5
	Inapproximability results for each of Conditions C2-C5
	Extending previous NP-hardness results.

	Polynomial-time solvable problem variants with capacity larger than one
	Transitive serve relation
	Preprocessing
	Dynamic programming algorithm
	Greedy algorithm for RSOne

	Ridesharing problem without the stop frequency condition
	Approximation algorithms based on MCMP
	A novel algorithm for RSOneStop

	Summary

	Ridesharing with Profit Constraint Problem
	Model
	Related work
	RPC1 variant - capacity of one
	Exact algorithm
	Approximation algorithm

	RPC+ variant
	The LS2 Algorithm
	Analysis of LS2

	Experiment
	Simulation and dataset overview
	Profit for feasible matches
	Driver and passenger trips generation
	Computational results

	Summary

	Multimodal Transportation with Ridesharing Problem
	Related work
	Exact algorithm approach
	Integer program formulation
	Computing feasible matches

	Approximation Algorithms
	NP-hardness
	Proposed approximation algorithms
	Approximation algorithms for maximum weighted set packing

	Experiment
	Description and characteristics of the datasets
	Generating instances
	Computational results

	Summary

	Conclusion and Future Work
	Ridesharing minimization problems
	Ridesharing maximization problem
	Multimodal transportation with ridesharing problem

	Bibliography



