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Abstract

The problem of enumerating vector partitions is the d-dimensional analogue of the well-studied coin
exchange problem. Given a set of vectors a1, . . . , an ∈ Zd, the vector partition function yields the
number of solutions to a1x1 + . . . , anxn = b as a function of b. One can view this as the enumeration
of integer points in the polytope {x ∈ Nn : Ax = b, x ≥ 0} where A is the matrix whose columns
are a1, . . . , an. The vector partition function pA associated to the matrix A takes b as input and
returns the corresponding number of vector partitions. Sturmfels (1994) showed that vector partition
function can be represented explicitly as a piecewise quasi-polynomial (roughly a polynomial with
periodic coefficients) whose domains of quasi-polynomiality are the maximal cones (chambers) of a
fan (called the chamber complex) associated to the matrix A. In addition, Sturmfels and De Loera
(2003) showed that if A is unimodular (every square submatrix has determinant 0, ±1), then the
quasi-polynomials are actually each polynomials.

We show that for certain chambers of A (which we call external chambers) the associated quasi-
polynomial arises from a coin exchange problem, and is univariate after an appropriate change of
variables. Additionally, we show that if A is unimodular, then the polynomial associated to an
external chamber is given by a negative binomial coefficient which depends on a single facet of the
chamber. We also show that one can easily calculate linear factors of polynomials associated to other
chambers of A (which we call semi-external chambers) in the case that A is unimodular.

The Littlewood-Richardson and Kronecker coefficients are two different sets of structure constants
associated to the Schur polynomials. Rassart (2004) and Mishna, Rosas, Sundaram (2021) have con-
sidered vector partition function approaches to computing Littlewood-Richardson and Kronecker
coefficients respectively. We exploit Rassart’s approach in order to derive a new determinantal for-
mula for the Littlewood-Richardson coefficients associated to GL3. We also use it to give a novel
geometrical interpretation of a well-known stability result. Additionally, we address some answers
related to symmetries of the Littlewood-Richardson coefficients, partially by computing the cham-
ber complex for the Littlewood-Richardson coefficients associated to GL4. In our work on Kronecker
coefficients, we use the vector partition function approach to create a computational tool for Kro-
necker coefficients with partition lengths bounded by 2, 4, and 8. Additionally, we obtain vanishing
conditions and generate a stable face of the Kronecker polyhedron. Finally, we obtain new upper
bounds for the Kronecker coefficients, which in some cases seem to be the best known.

Keywords: Vector partition functions, Littlewood-Richardson coefficients, Kronecker coefficients
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Chapter 1

Background

1.1 Introduction

The vector partition enumeration problem is the d-dimensional analogue of the coin ex-
change problem that students of mathematics often study in an introductory discrete math-
ematics course. We state the problem here to help motivate vector partitions, and because
it plays a role in some of the proofs of Chapter 2. We note that throughout this text N
denotes the set of non-negative integers.

Definition 1.1.1 (Coin exchange problem). Let a1, . . . , an be positive integers. The prob-
lem of computing the number of solutions x = (x1, . . . , xn) ∈ Nn of

a1x1 + · · · + anxn = b

for a non-negative integer b is called the coin exchange problem.

Replacing each ai with a vector ai ∈ Zd, and also replacing b with a vector b ∈ Zd, we
obtain the equation

a1x1 + · · · + anxn = b. (1.1)

Let us consider the problem of enumerating the number of solutions x = (x1, . . . , xn) ∈ Nn

of Eq. (1.1). Equivalently, this is the problem of enumerating the number of solutions x ∈ Nn

of the equation
Ax = b (1.2)

where A is the d × n integral matrix whose columns are a1, . . . an. The number of solutions
x ∈ Nn of Eq. (1.1) may be infinite – for example if n = 2, a2 = −a1, and b = 0. In order
to ensure that this does not occur, one imposes the condition that ker(A) ∩ Rn

≥0 = {0}.
Under these conditions, we say that the problem of counting the number of solutions x ∈ Nn

of Eq. (1.1) is the vector partition enumeration problem. Additionally, the vector partition
function pA(b) associated to the matrix A is the function that yields the number of solutions
x ∈ Nn to Eq. (1.2) as a function of b.
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We note that the vector partition enumeration problem can indeed be viewed as the
d-dimensional analogue of the coin exchange problem, since if d = 1, the condition ker(A) ∩
Rn

≥0 = {0} ensures that either each of the the entries of A are positive integers, or that each
of the entries of A are negative integers. The second of these cases can be reduced to the
first by negating both sides, and so we see without loss of generality that the d = 1 case of
the vector partition enumeration problem is indeed the coin exchange problem.

The coin exchange problem remains an active area of study (see for example [10]) with
many intriguing open problems ([8, Chapter 1] provides a nice summary). However, it
does not fully capture the geometry associated to vector partition functions, which can
be very complex. Vector partition functions can be described explicitly as piecewise quasi-
polynomials (essentially polynomials whose coefficients are periodic functions) whose do-
mains of quasi-polynomiality are maximal cones (called chambers) of a fan associated to the
matrix A (called the chamber complex of A). As an example to illustrate the complexity of
the geometry we refer the reader to the problem of enumerating the number of chambers
associated to Kostant’s partition function described in [53]. Although the matrices associ-
ated to Kostant’s partition function are easy to describe, computing the sequence counting
the number of chambers of these matrices remains an open problem – in fact, only the first
seven instances have been computed.

Vector partition functions appear in many problems associated to algebraic combina-
torics and representation theory. In particular, in the study of Littlewood-Richardson co-
efficients and Kronecker coefficients, vector partition functions can play a prominent role
(see for example [15, 62, 75, 74]). Studying these different coefficients through the vector
partition function lens has proven fruitful and led to many non-trivial results. For exam-
ple, in [16] Briand, Rosas, and Orellana use computational results from [15] to disprove
a saturation conjecture of Mulmuley. As another example, Rassart [75] proves that the
Littlewood-Richardson coefficients associated to the general linear group GLk can be de-
scribed by a piecewise polynomial. Using the geometric description of the resulting piecewise
polynomial in the k = 3 case, Briand and Rosas then discovered a novel linear symmetry of
the Littlewood-Richardson coefficients associated to GL3 and explicitly computed the full
list of symmetries in this case.

1.2 Summary of contribution

The main contributions of this work can roughly be split into two categories. The first are
directly related to the theory of vector partition functions, and the second are related to
algebraic combinatorial problems with associated vector partition functions. Contributions
of the first category are described in Chapter 2 and contributions of the second category
are described in Chapters 3 and 4.
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We begin by describing the contributions in the first category. We define a particular
type of column of the matrix A, which we call an external column. Our main result (Theo-
rem 2.3.4) shows that (up to some lattice requirements) the quasi-polynomial associated to
a chamber γ containing external columns can be obtained by considering a simpler vector
partition function problem. This vector partition function is simpler in the sense that its
dimension is smaller than the original vector partition function by the number of external
columns in γ. In the case that the number of external columns in γ is maximal (without
being a trivial case), we are able to obtain further results. We define such a chamber to
be an external chamber and show that (subject to the same lattice condition) the quasi-
polynomial formulae for such chambers arise from a coin exchange problem, and are thus
Ehrhart (univariate) quasi-polynomial functions after an appropriate change of variables
(Theorem 2.3.5). Moreover, we are able to characterize exactly when the quasi-polynomial
is a polynomial, in which case the formula takes on a particularly nice form – as a negative
binomial coefficient (Theorem 2.4.2). We then apply this result to unimodular matrices in
Corollaries 2.4.5 and 2.4.8. We also conjecture that a result of Baldoni and Vergne [3] on
computing linear factors of polynomials may be generalized. This would potentially allow
one to compute linear factors of polynomials associated to Littlewood-Richardson coeffi-
cients. Finally, we give a pair of examples illustrating how these formulae can be used to
give combinatorial results in Section 2.6. Namely, we derive a novel result related to multi-
graph counting (Theorem 2.6.4), and also rederive a well-known result related to Kostant’s
partition function (Theorem 2.6.9). These results appear in Chapter 2. This work is gathered
in an article (in preperation) for which I am sole author [86].

We now describe the contributions of the second category, which appear in Chapters 3
and 4.

In Chapter 3, we use a vector partition function approach developed by Rassart [75] in
order to obtain some novel results for the Littlewood-Richardson coefficients associated to
GL3. Namely, we obtain a determinantal formula for these coefficients (Theorem 3.6.4), give
a novel geometrical interpretation for some well-known stability results (Theorem 4.6.4) In
addition, we have explicitly computed the fan associated to the Littlewood-Richardson co-
efficients associated to GL4 , and used this result in order to compute the linear symmetries
of the corresponding Littlewood-Richardson coefficients (Theorem 3.7.2). This chapter is
based on work with Briand and Rosas [21]. We reported the computation of the chamber
complex in the GL4 case in [20]. We also include a section on the computation of linear
factors of polynomials arising from the Littlewood-Richardson coefficients. This section is
based on ongoing work and is thus somewhat speculative – it is made up of empirical results
and conjectures.

In Chapter 4, we give some results related to Kronecker coefficients by using a vector
partition function approach due to Mishna, Rosas, and Sundaram [62]. We develop a com-
putational tool to compute Kronecker coefficients gλ,µ,ν with ℓ(λ) ≤ 8, ℓ(µ) ≤ 2, ℓ(ν) ≤ 4.

3



Additionally, we obtain vanishing conditions on the Kronecker coefficients (Theorem 4.5.5).
We also compute a stable face of the Kronecker polyhedron associated to the vector parti-
tion approach (Theorem 4.6.4). Finally, we give upper bounds on the Kronecker coefficients,
which in some cases seem to be the best known (Corollaries 4.7.6 and 4.7.8). This work is
jointly done with Mishna [63] and submitted for publication.

In the current chapter, we have no novel contributions – the aim is solely to build
the necessary theory for the following chapters. We begin by introducing the polyhedra,
cones, and fans in Section 1.3. Next, in Section 1.4, we give a short discussion of Ehrhart
theory. Finally, we introduce symmetric polynomials in Section 1.6 in order to establish the
background for Chapters 3 and 4.

1.3 Polyhedra and cones

The main references we follow in this section are Beck and Robbins [8], Cox, Little and
Schenck [29], and Fulton [38]. Our goal is to define the objects required to understand
the geometry associated to vector partition functions. Although many of the definitions we
give can be made more abstract, we choose to take a more concrete approach and define
everything within the vector space Rd.

An affine hyperplane H ⊆ Rd is the subspace of Rd defined by a single linear equation of
the form m1x1 + · · · + mdxd = b for some m1, . . . , md, b ∈ R with at least one of m1, . . . , md

non-zero. If b = 0, then H is a hyperplane. A closed half-space is a subset of Rd defined by
a single linear inequality of the form m1x1 + · · · + mdxd ≥ b or m1x1 + · · · + mdxd ≤ b. It
is often useful to rewrite the hyperplane equation using dot products, in which case we see
that each hyperplane can be defined by a single vector in Rd. More precisely, for m ∈ Rd,
m ̸= 0, we define the hyperplane Hm

Hm := {u ∈ Rd : m · u = 0},

which divides Rd into the closed half-spaces

H+
m := {u ∈ Rd : m · u ≥ 0} and H−

m := {u ∈ Rd : m · u ≤ 0}.

If S, S′ ⊆ Rd are sets with the property that S ⊆ H+
m and S′ ⊆ H−

m, we say that H separates
S and S′.

A polyhedron P is a set obtained by taking the intersection of finitely many half-spaces
– namely

P =
⋂

m∈S

H+
m

for some finite subset S ⊂ Rd. The ambient dimension of a polyhedron P ⊂ Rd is d and
its dimension is the dimension of the affine space {x + λ(y − x) : x, y ∈ P, λ ∈ R}. If the
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dimension of P is k, we may sometimes say that P is a k-polyhedron. If the intersection of two
polyhedra P1, P2 is a k-polyhedron, then we say that P1 and P2 intersect k-dimensionally.

A hyperplane Hm ⊂ Rd with m ̸= 0 is called a supporting hyperplane of P if P lies
in one of the half-spaces H+

m or H−
m defined by Hm, and the intersection P ∩ H is non-

empty. A face of a polyhedron P is a set of the form P ∩Hm for some supporting hyperplane
Hm ⊂ Rd. We note that faces of polyhedra are themselves polyhedra since Hm = H+

m∩H+
−m

for each m ∈ Rd, m ̸= 0. Faces of dimension 0 are called vertices and faces of co-dimension
1 (relative to the polyhedron) are called facets.

A polytope is a bounded polyhedron. While we can define polytopes by intersections of
half-spaces, they can also be defined by their set of vertices. More precisely, if the vertices
of a polytope P are v1, . . . , vk, then

P = conv(v1, . . . , vk)

where

conv(v1, . . . , vk) := {λ1v1 + · · · + λkvk : λ1, . . . , λk ≥ 0, λ1 + · · · + λk = 1}

is the convex hull of points v1, . . . , vk ∈ Rd. A polytope is called rational if its vertices are
in Qd, and integral if each of its vertices are in Zd. Inheriting the language from polyhedra,
if a polytope has dimension k, we say that it is a k-polytope. It is not trivial to prove that
the half-space and vertex definitions of polytopes are equivalent, and this duality plays an
important role in their study. For a detailed proof, we refer the reader to [55, Appendix A].

Figure 1.1: The polytope P defined by the inequalities b1 + 3b2 ≤ 5, b1 + b2 ≥ 1, and
b1 − b2 ≤ 1. Equivalently P = conv ((1, 0), (−1, 2), (2, 1)).

The central geometric object of our work is a type of unbounded polyhedron, known
as a convex polyhedral cone σ ∈ Rd. It is the positive convex hull of a set of points

5



Figure 1.2: The (unbounded) polyhedron defined by the inequalities b1 ≥ −1, b1 + b2 ≥ 1,
and b1 − b2 ≤ 1.

u1, . . . , uk ∈ Rd, that is:

σ = posR(u1, . . . , uk) := {λ1u1 + λ2u2 + · · · + λkuk : λ1, λ2, . . . , λk ≥ 0}

and we say that σ is generated by u1, . . . , uk ∈ Rd. Additionally, we define posR(∅) = {0}.

Definition 1.3.1 (Dual cone). Let σ be a convex polyhedral cone in Rd. We say that

σ∨ := {m ∈ Rd : m · u ≥ 0 for all u ∈ σ}

is the dual cone of σ.

Since each u ∈ σ can be represented as a non-negative linear combination of the gener-
ators u1, . . . , uk of σ,

σ∨ = {m ∈ Rd : m · uj ≥ 0 for all j = 1, . . . , k}.

Therefore, we see that the dual cone σ∨ is an intersection of finitely many half-spaces,
and is thus a polyhedron. In fact, σ∨ is a convex polyhedral cone, and (σ∨)∨ = σ. We remark
that the convex polyhedral cone σ is also technically a polyhedron since it is the dual of
a convex polyhedral cone. Therefore, the definitions associated to polyhedra also apply
to convex polyhedral cones. Faces of convex polyhedral cones are themselves also convex
polyhedral cones, and each proper face of a convex polyhedral cone is the intersection of all
facets containing it.

For a convex polyhedral cone σ with supporting hyperplane H, we say that u is an inner
facet normal of σ if u ∈ H+ is normal to H (i.e normal to each element of H), and that u
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is an outer facet normal of σ if u ∈ H− is normal to H. An important duality we exploit is
that the rays of the dual cone σ∨ correspond to facets of σ and vice-versa. We describe this
duality formally in the following proposition (which is described partially in Proposition
1.2.8 of [29] and partially in the discussion immediately following it).

Proposition 1.3.2. [29, Proposition 1.28] Let σ ⊆ Rd be the polyhedral cone σ = H+
m1 ∩

H+
m2 ∩ . . . ∩ H+

ms
. Then σ∨ = posR(m1, m2, . . . , ms). In particular, m1, m2, . . . , ms are

inner facet normals of σ if and only if m1, m2, . . . , ms generate rays of σ∨.

A convex polyhedral cone σ ⊆ Rd is rational if it can be generated by a finite number
of integer points, and it is pointed if it contains no 1-dimensional subspace. In general in
this thesis, we deal with convex rational pointed polyhedral cones, so we simply call these
cones for short.

The faces of a cone are also cones, and faces of dimension 1 are called rays. The dual
of a cone σ ⊆ Rd is a rational convex polyhedral cone, but need not be pointed unless σ is
d-dimensional, in which case σ∨ is indeed also a cone.

Given a ray r, we say that w = (w1, . . . , wd) ∈ Rd is a ray generator of r if r = posR(w).
If additionally, w ∈ Zd and gcd({wi : 1 ≤ i ≤ d}) = 1, then we say that w is the minimal ray
generator of r. Any set of generators of a cone σ contains some minimal subset of generators,
which still generate σ. This subset consists of exactly the vectors that generate its rays. We
call such a subset a minimal generating set of σ, and call its elements ray generators of σ.
If a minimal generating set S of σ additionally has the property that each element is a
minimal ray generator, then we say that S is the set of minimal ray generators of σ. Each
cone σ has a unique set of minimal ray generators. We say that σ is simplicial if its set of ray
generators is linearly independent. A triangulation of a cone σ is a collection of simplicial
cones σ1, . . . , σm such that ∪m

i=1σi = σ, and for each 1 ≤ i < j ≤ m the intersection σi ∩ σj

of any pair of cones σi, σj is a face of both σi and σj . It is a non-trivial fact that any cone
admits a triangulation with no new ray generators – that is the union of the minimal ray
generators of the σi is the set of minimal ray generators of σ. We refer the reader to [55,
Appendix B] for the full details of the proof.

Remark 1.3.3. We have deviated slightly from the notation of [29] and [38]. In [38] what we
call “ray generators” are called “minimal generators”. In [29] what we refer to as the “mini-
mal ray generator” is simply called the “ray generator”, and what we call “ray generators”
of σ are called “minimal generators” of σ. Our choice is dictated by our introduction of
the terms “external ray generators” and “minimal external ray generators” for which either
notation scheme (i.e that of [29] or [38]) would cause confusion.

Example 1.3.4. Consider the cone

σ = posR

([
1
1

]
,

[
1
2

])
⊆ R2
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and its dual cone

σ∨ = posR

([
1

−1

]
,

[
−1
2

])

which are illustrated in Figure 1.3. The faces of σ are:

2d face the whole cone σ,

1d face the ray/facet {t

[
1
1

]
: t ≥ 0} = {(b1, b1) : b1 ≥ 0},

1d face the ray/facet {t

[
2
1

]
: t ≥ 0} = {(2b2, b2) : b2 ≥ 0},

0d face the origin.

We note that the dual cone σ∨ is indeed generated by the inner facet normals of σ.

Figure 1.3: A cone σ shaded in dark magenta and its dual σ∨ shaded in light cyan. The
purpose of the labelled points is to explicitly describe the direction of the rays containing
them.

A fan Σ is a set of cones such that if σ ∈ Σ, then every face of σ is in Σ, and for all
σ1, σ2 ∈ Σ the intersection σ1 ∩ σ2 is a face of both σ1 and σ2. Maximal cones of Σ are
called chambers. We note that a fan is defined by its chambers, since the fan is the set of
chambers along with all of their faces. Therefore, fans can be expressed more succinctly
simply by giving the list of chambers. Figure 1.4 illustrates a fan comprised of seven cones:
the chambers σ1 := posR ((0, 1), (1, 2)) , σ2 := posR ((1, 2), (1, 1)) , σ3 := posR ((1, 1), (1, 0)),
the rays r1 := posR ((0, 1)) , r2 := posR ((1, 2)) , r3 := posR ((1, 1)) , r4 := posR ((1, 0)), and
the origin v := posR(∅).

1.4 Ehrhart theory

Ehrhart theory is the study of enumerating integer points in dilations of rational polytopes.
It has many applications in algebraic combinatorics, optimization, graph theory, and alge-
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Figure 1.4: The fan Σ ⊆ R2 defined by the chambers σ1 (shaded in cyan), σ2 (shaded in
pink), σ3 (shaded in grey). The cones of σ are the three 2-dimensional cones σ1, σ2, σ3, the
four 1-dimensional rays/facets r1, r2, r3, r4, and the 0-dimensional vertex v (the origin).

braic geometry (among others1). For an excellent introduction to the topic, we refer the
reader to the survey The many aspects of counting lattice points in polytopes by De Loera
[31], which gives several examples of applications as well as an overview of the theory. For
a more in-depth treatment, the books Computing the continuous discretely by Beck and
Robbins [8] and Integer points in polyhedra by Barvinok [5] provide excellent sources of in-
formation. The study of this problem provides the geometrical intuition for understanding
vector partition functions, which are our central object of study.

In order to link the enumeration of integer points in polytopes to vector partition func-
tions, we begin by describing a well-known embedding that makes the correspondence clear.
Given a polytope P ⊂ Rd described by ℓ linear inequalities, we introduce slack variables
s1, . . . , sℓ in order to rewrite each of the ℓ inequalities as equalities. Then we can write

P = {x ∈ Rd : [A|Iℓ×ℓ]
[
x
s

]
= b, s ≥ 0}

1In [31], De Loera states: “Counting lattice points in (four dimensional) convex bodies is something that
credit card cyber-thieves would care about too!” before explaining that the factorization of numbers arising
in RSA encryption can be viewed as counting the number of integer points in a 4-dimensional polytope.
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where s = (s1, . . . , sℓ). Since P is bounded, we can translate it into the cone x ≥ 0 to obtain
a translation of the polytope, P ′ of the form

P ′ = {x ∈ Rd : [A|Iℓ×ℓ]
[
x
s

]
= b, x, s ≥ 0}.

Next we may embed P ′ into Rd+ℓ via the mapping x →
[
x
s

]
to obtain a polytope P ′′ ⊆ Rd+ℓ

defined by

{
[
x
s

]
∈ Rd+ℓ : [A|Iℓ×ℓ]

[
x
s

]
= b, x, s ≥ 0}.

The polytope P ′′ has essentially the same properties as P. We note in particular that
P ′′ has the same number of integer points as P (i.e #(P ∩Zd) = #(P ′′ ∩Zd+ℓ)). Therefore,
without loss of generality we may view any polytope P as a set of the form

P = {x ∈ Rd : Ax = b, x ≥ 0}

and so we see that the enumeration of points in the polytope P is equivalent to the vector
partition enumeration problem with the matrix A and vector b.

Let P be the polytope defined as the convex hull of points v1, . . . , vk, and let t be a
positive integer. The polytope tP, called the tth dilate of P is the set

tP = conv(tv1, . . . , tvk).

If the polytope is represented as {x ∈ Rd : Ax = b, x ≥ 0}, then

tP = {x ∈ Rd : Ax = tb, x ≥ 0}.

Let LP(t) := #(tP ∩ Zd) be the number of integer points in the tth dilation of P. The
sequence of integer points in successive dilations of P

(LP(t))t≥1

is encoded in the coefficients of the power series

EhrP(z) := 1 +
∑
t≥1

#(tP ∩ Zd)zt

called the Ehrhart series of the polytope P.
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Example 1.4.1. Let ∆ := conv ((0, 0), (1, 0), (0, 1)). Then, as Figure 1.5 illustrates,

Ehr∆(z) = 1 + 3z + 6z2 + 10z3 + · · · =
∑
t≥0

(
t + 1

2

)
zt.

We note that for this polytope ∆, the coefficients of the series are the triangular numbers.

(a) Polytope ∆ has 3
integer points

(b) Polytope 2∆ has 6
integer points

(c) Polytope 3∆ has
10 integer points

Figure 1.5: The first three dilations of the polytope ∆. The integer points in each polytope
are emphasized by the thick discs. The initial terms of Ehr∆(z) are 1+3z+6z2 +10z3 + . . . .

In the above example, we see that the function L∆(t) =
(t+1

2
)

is a polynomial in t. We
now describe the general form of the function L∆(t), which can be viewed as a polynomial
with periodic coefficients. More precisely, a univariate quasi-polynomial f(t) is a function
of the form

f(t) :=
d∑

k=1
ck(t)tk

where c1(t), . . . , cd(t) : Z → Q are periodic functions in t. The degree of the quasi-polynomial
f is d (here we assume that cd is not the zero function) and the period of f is the lowest
common multiple of the periods of c1, . . . , cn.

Theorem 1.4.2 (Ehrhart, 1962 [34]). Let P be a rational d-polytope. Then LP(t) is a
quasi-polynomial of degree d in t. Moreover, if P is an integral d-polytope, then LP(t) is a
polynomial.

We call LP(t) the Ehrhart quasi-polynomial of P, and if LP(t) is actually polynomial
we call it the Ehrhart polynomial of P.

Ehrhart quasi-polynomials have many nice, and often surprising properties. We highlight
one of these properties that we will exploit in the proof of Theorem 2.5.3. As a notational
point, for a set S ⊆ Rk, we use S◦ to denote the interior of S.

Theorem 1.4.3 (Ehrhart-Macdonald reciprocity). Let P be a rational polytope. Then

LP(−t) = (−1)dim(P)LP◦(t).
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In words, evaluating the Ehrhart quasi-polynomial at a negative integral value −t (for
some positive integer t) has a geometrical meaning – namely, it is (up to sign) the number
of integer points in the interior of the dilated polytope tP.

1.5 Vector partition functions

Here we give a brief primer on vector partition functions, generally following the notation
of [84]. Throughout the rest of this section A will denote a d × n matrix of rank d with
integer entries and

ker(A) ∩ Rn
≥0 = {0}.

We begin by recalling the definition of the vector partition function.

Definition 1.5.1. The vector partition function of A

pA : Zd → N

is defined by
pA(b) := #{x ∈ Nn : Ax = b}.

One can view this problem as enumerating the number of “partitions” of the vector b
whose parts are the columns of A – hence the name vector partition function.

Remark 1.5.2. Recall that the condition ker(A)∩Rn
≥0 = {0} is imposed so that pA is indeed

a function. Otherwise we may have that pA(b) is not finite for some b ∈ Zd.

Given a matrix M with columns m1, m2, . . . , mk, we define the cone associated to M ,
denoted posR(M) to be the set {λ1m1 + λ2m2 + · · · + λkmk : λ1, . . . , λk ≥ 0}. In words,
posR(M) is the cone generated by the columns of M .2 For any s ⊆ {1, 2, . . . , n}, we de-
fine As to be the submatrix of A composed of the columns of s. For any s satisfying
|s| = rank(As) = rank(A) = d, we say that posR(As) is a simplicial cone of A. The
chamber complex of A is the fan obtained as the common refinement of the simplicial cones
of A (viewed as fans). Explicitly, defining cone(b) to be the intersection of all simplicial
cones of A containing b - that is,

cone(b) := {
⋂

s⊆[n]
posR(As) : |s| = rank(As) = d, b ⊆ posR(As)}

the chamber complex of A is the set of cones {cone(b) : b ∈ posR(A)} along with all of
their faces.

2Some authors use posR(M) to indicate the cone generated by the rows of M .
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The cones of maximal dimension of the chamber complex are called geometrical chambers
- we call them chambers for short3. Equivalently, these are the cones of dimension d of the
chamber complex.

We list some facts about the chamber complex that we exploit throughout this thesis.
These facts can be derived directly from the definition of the chamber complex.

1. Any chamber is exactly the intersection of all simplicial cones containing it.

2. For any b ∈ posR(A), the intersection of all simplicial cones containing b is a cone
of the chamber complex – in particular if the intersection is d-dimensional, it is a
chamber.

3. For a given chamber γ, if b ∈ γ◦ (where γ◦ denotes the interior of γ), then γ is the
intersection of all simplicial cones containing b.

4. If a chamber γ of A intersects a simplicial cone σ of A d-dimensionally, then γ ⊆ σ.

5. Let j ∈ {1, . . . , n}. If column aj is in a chamber γ, then aj is a ray generator of γ.

The vector partition function pA can be described explicitly as a piecewise function
whose domains are the chambers of A. The functions that are valid on the chambers are
quasi-polynomials, which are finite sums of the form

q(z1, . . . , zk) =
∑

(i1,...,ik)∈S

ci1,...,ik
(z1, . . . , zk)zi1

1 , . . . , zik
k

where S ⊂ Zk is finite and the ci1,...,ik
are non-zero periodic functions in (z1, . . . , zk). That

is, there exist positive integers n1, . . . , nk such that ci1,...,ik
(z1, . . . , zk) = cj1,...,jk

(z′
1, . . . , z′

k)
whenever zℓ ≡ z′

ℓ mod nℓ for ℓ = 1, . . . , k. The degree of the quasi-polynomial q is the
maximum over the sums i1 + · · · + ik, and the period of q is the minimal positive integer N

such that ci1,...,ik
(z1, . . . , zk) = cj1,...,jk

(z1, . . . , zk) whenever iℓ ≡ jℓ mod N for ℓ = 1, . . . , k

for all (i1, . . . , ik) ∈ S. We remark that a quasi-polynomial in one variable is indeed a
univariate quasi-polynomial as defined in Section 1.4, and also that a quasi-polynomial
with period equal to one is just a polynomial. To indicate the quasi-polynomial associated
to a chamber γ, we write pγ

A.
The explicit characterization of the form of the vector partition function is due to Sturm-

fels, and we record it in the following theorem.

Theorem 1.5.3 (Sturmfels, 1994 [84]). Let A be a d × n matrix of rank d. The vector
partition function of A, pA, is a piecewise quasi-polynomial of degree n − d whose domains
of quasi-polynomiality are the maximal cones (chambers) in the chamber complex of A.

3In the literature chambers are usually defined to be the interiors of what we call chambers (i.e the
maximal cells of the chamber complex). We use this terminology since we are, much more often than not,
interested in the closed sets and not their interiors.
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Remark 1.5.4. For each b ∈ Zd, the Ehrhart quasi-polynomial LP(t) associated to the
polytope P := {x ∈ Rd : Ax = b, x ≥ 0} is equal to pA(tb) (viewed as a function of
t). Thus, we can draw intuition for the previous result from Ehrhart theory in order to
understand the quasi-polynomial nature of pA. Geometrically, for all b in the interior of a
given chamber, the “general shape” of the polytope Ax = b, x ≥ 0 is the same, and only
shifts when we cross into another chamber.

Barvinok’s algorithm [7] allows one to explicitly compute the piecewise quasi-polynomial
pA in polynomial time for fixed dimension n. Multiple implementations of Barvinok’s algo-
rithm exist: Latte [54] developed by De Loera, Hemmecke, Tauzer, and Yoshida can be used
to (among many other things) compute the quasi-polynomial pA(tb) for any b ∈ posR(A)
and is integrated in Sagemath; Barvinok [88], developed by Koeppe, Verdoolaege, and Woods
can be used to compute the full piecewise quasi-polynomial pA

4. While Barvinok’s algorithm
is polynomial time for fixed dimension n, the problem of computing the vector partition
function quickly becomes intractable as the dimension grows. For example, we were unable
to compute the vector partition function associated to the 4 × 30 matrix A3,3 described in
Section 4.4.3.

The generating function formulation (due to Euler [36]) is in terms of the coefficient of
the term xb in the Taylor series expansion of a product of geometric series:

pA(b) = [xb]
n∏

j=1

1
1 − xaj

, (1.3)

with the convention that for vectors u, v ∈ Zd, uv denotes the product
d∏

i=1
uvi

i . The rational

function
n∏

j=1
1

1−xaj is called the vector partition generating function of A.

We give the following example for two reasons: firstly it can be worked out by hand,
and secondly it serves to motivate Lemma 2.3.3 in the following chapter.

Example 1.5.5. Let A =
[
1 0 1
0 1 1

]
. Let b =

[
b1

b2

]
∈ N2. We wish to compute the vector

partition function

pA(b) = #{x ∈ N3 : Ax = b}

= #{(x1, x2, x3) ∈ N3 : x1 + x3 = b1, x2 + x3 = b2}.

For any choice of x3 with 0 ≤ x3 ≤ min(b1, b2) there is a unique solution for x1 and x2

(namely x1 = b1 − x3, x2 = b2 − x3). Since there are min(b1, b2) + 1 choices of x3, we find

4The algorithm implemented by Koeppe, Verdoolaege, andWoods is called the Barvinok-Woods algorithm.
It is based on the original formulation of Barvinok.
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that
pA(b) = min(b1, b2) + 1.

We can represent this as a piecewise quasi-polynomial (more precisely piecewise polynomial
in this case):

pA(b) =

b1 + 1 if b2 ≥ b1 ≥ 0

b2 + 1 if b1 ≥ b2 ≥ 0.

We now present a slightly different approach to this problem, the purpose of which is to
motivate our approach in the following chapter. We note that throughout this thesis we
use 1 to denote the all-ones vector, and ei to denote the ith standard basis vector (in the
following case since the dimension is 2, 1 = (1, 1), e1 = (1, 0), e2 = (0, 1)). Consider a
scenario in which we are given A as well as the two chambers of A

σ1 := {(b1, b2) ∈ R2 : b1 ≥ b2 ≥ 0} = {λ1e2 + λ21 : λ1, λ2 ≥ 0},

and
σ2 := {(b1, b2) ∈ R2 : b2 ≥ b1 ≥ 0} = {λ1e1 + λ21 : λ1, λ2 ≥ 0}.

Let us compute the quasi-polynomial pσ1
A associated to the chamber σ1. First note that x1

may be viewed as a slack variable, so that

pσ1
A (b) = #{(x2, x3) ∈ N2 : x3 ≤ b1, x2 + x3 = b2} (1.4)

for all b ∈ Z2 ∩ σ1. Exploiting the fact that b ∈ σ1, we have b2 ≤ b1, and so

x2 + x3 = b2

=⇒ x2 + x3 ≤ b1

=⇒ x3 ≤ b1

and so the inequality x3 ≤ b1 is not necessary in Eq. (1.4). In particular,

pσ1
A (b) = #{(x2, x3) ∈ N2 : x2 + x3 = b2},

and so
pA(b) = pB(b2),

where B =
[
1 1

]
.

Therefore, we have reduced the problem of computing pσ1
A (b) for b ∈ N2 to the coin

exchange problem of computing pB(b2) for b2 ∈ N. In fact, viewing b2 ∈ N as a variable,
the quasi-polynomial pB(b2) is simply the number of partitions of b2 into two non-negative

15



integer parts x2, x3. That is,

pB(b2) =
(

b2 + 2 − 1
2 − 1

)
= b2 + 1.

One can apply the same approach to compute that pσ2
A (b) = pB(b1) = b1 + 1.

In the previous example, we draw attention to the fact that the chamber σ1 (respectively
σ2) contains e1 (e2) as a ray generator, and that the quasi-polynomial pA restricted to σ1

(σ2) does not depend on b1 (b2). In Chapter 2 we shall see how one can exploit this in order
to compute quasi-polynomial formulae for particular chambers.

1.6 Symmetric polynomials

We mainly follow the classic text Symmetric functions and Hall polynomials [56] by I.G.
Macdonald in this section.

A partition λ = (λ1, λ2, . . . , λn) is a weakly decreasing sequence of non-negative integers.
The elements λ1, . . . , λn of the partition are its parts, and the length of the partition, denoted
ℓ(λ) is the number of non-zero parts of λ. Additionally, we say that λ is a partition of N ∈ N,
denoted λ ⊢ N if

∑n
i=1 λi = N . In this case, we also say that the size of λ, denoted |λ|,

is N . For any positive integer n, δ(n) := (n − 1, n − 2, . . . , 1, 0) is the nth staircase partition.
For independent variables x1, . . . , xn, we consider a subring of Z[x1, . . . , xn]. Namely,

we define Λn to be the subset of polynomials of Z[x1, . . . , xn] that are invariant under per-
mutation of the variables x1, . . . , xn. The elements of Λn are called symmetric polynomials.
We note that Λn is indeed a subring of Z[x1, . . . , xn] since 1 ∈ Λn and the difference and
product of a pair of symmetric polynomials are both symmetric polynomials themselves.

Example 1.6.1. The function f(x1, x2) = x2
1x2 is not a symmetric polynomial in Λ2 since

f(x2, x1) = x1x2
2 ̸= f(x1, x2). On the other hand g(x1, x2) = x2

1x2 + x1x2
2 is a symmetric

polynomial in Λ2.

The ring Λn has additional structure – it has a natural grading by polynomial degree

Λn =
⊕
k≥0

Λk
n

where Λk
n denotes the group of homogeneous symmetric polynomials of degree k along with

the 0 polynomial. One may also view Λn as a module over Z, for which there are six widely
used bases in the literature. We first describe the monomial basis in order to establish the
connection between partitions and symmetric polynomials.

For a partition λ = (λ1, . . . , λn) of length at most n, define

mλ(x1, . . . , xn) :=
∑

α

xα
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where α runs over all distinct permutations of the parts of λ. For example, the function f

in Example 1.6.1 is m(2,1)(x1, x2). We remark without proof that the set

{mλ(x1, . . . , xn) : ℓ(λ) ≤ n}

forms a basis for Λn that is called the monomial basis.
We now define another Z-basis of Λn, the Schur basis, which plays an important role

in Chapters 3 and 4. For a partition λ of length at most n, the alternant aλ(x1, . . . , xn) is
defined as

aλ(x1, x2, . . . , xn) := det (xλj

i )1≤i,j≤n.

The alternant is skew-symmetric - that is for all permutations σ ∈ Sn, we have

aλ(xσ(1), . . . , xσ(n)) = (−1)sgn(σ)aλ(x1, . . . , xn)

where sgn(σ) denotes the sign of permutation σ. The set An of skew-symmetric polynomials
is a Z-module, of which the set of alternants {aλ+δ : ℓ(λ) ≤ n} forms a basis. The Schur
polynomial sλ(x1, . . . , xn) is defined as the ratio of alternants

sλ(x1, . . . , xn) :=
aλ+δ(n)(x1, x2, . . . , xn)
aδ(n)(x1, x2, . . . , xn) . (1.5)

The alternant aδ(n) is the Vandermonde determinant

∏
1≤i<j≤n

(xi − xj).

Additionally, for each 1 ≤ i < j ≤ n, the polynomial (xi −xj) divides aλ+δ(n)(x1, x2, . . . , xn)
in Z[x1, . . . , xn] since setting xj := xi causes the matrix (xλj

i )1≤i,j≤n to have two equal
columns, and thus determinant zero. Therefore, the Schur polynomial sλ(x1, . . . , xn) is in-
deed a polynomial in Z[x1, . . . , xn]. In fact, sλ(x1, . . . , xn) is a symmetric polynomial in Λn

since it is the ratio of skew-symmetric polynomials.
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Example 1.6.2. We compute the Schur polynomial s(2,1,0)(x1, x2, x3):

s(2,1,0)(x1, x2, x3) =

∣∣∣∣∣∣∣∣
x4

1 x2
1 1

x4
2 x2

2 1
x4

3 x2
3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x2

1 x1 1
x2

2 x2 1
x2

3 x3 1

∣∣∣∣∣∣∣∣
= x4

1x2
2 − x2

1x4
2 − x4

1x2
3 + x4

2x2
3 + x2

1x4
3 − x2

2x4
3

(x1 − x2)(x1 − x3)(x2 − x3)
= x2

1x2 + x1x2
2 + x2

1x3 + 2x1x2x3 + x2
2x3 + x1x2

3 + x2x2
3.

The following result is well-known, see for example [57].

Theorem 1.6.3. The set of Schur polynomials

{sλ(x1, . . . , xn) : ℓ(λ) ≤ n} (1.6)

forms a basis for the Z-module Λn.

While the Schur polynomials form a basis for Λn, the problem of computing structure
constants (the coefficients to express a given symmetric polynomial in the Schur basis) is
not straightforward. In fact, the study of such coefficients provides some of the most rich
and interesting problems in algebraic combinatorics. We consider two sets of coefficients
that naturally arise in this manner in Chapter 3 (the Littlewood-Richardson coefficients)
and Chapter 4 (the Kronecker coefficients).

Remark 1.6.4. In this section we have not discussed symmetric functions which can roughly
be viewed similarly to symmetric polynomials with an infinite number of variables (so that
polynomials are replaced with infinite sums). For this work, it will always be sufficient to
work within Λn, for some n large enough.
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Chapter 2

External chambers of vector
partition functions

2.1 Summary of contribution

In this chapter we define external columns, which are certain distinguished columns of A.
Our main result shows that (up to a lattice condition) for a chamber γ of A with k external
columns, the quasi-polynomial pγ

A can be obtained from a vector partition function whose
dimension is k less than that of A. We also define a chamber of a vector partition function
which we call an external chamber. Our main result applied in this case yields that the
quasi-polynomial associated to such a chamber arises from a coin exchange problem. By
considering this case in more detail, we are able to obtain negative binomial coefficient
formulae in specific cases, as well as to classify when pγ

A is polynomial. Unless explicitly
stated, all of the results in this chapter are novel.

In Section 2.2, we introduce objects which we call external columns, rays, facets, and
chambers. We then deduce some basic properties of these objects.

In Section 2.3, we prove our main result, Theorem 2.3.4, which states that the quasi-
polynomial for an external chamber (that obeys some lattice conditions) arises from a coin
exchange problem. We then use this result in order to show that the quasi-polynomial is also
the Ehrhart quasi-polynomial associated to a single ray of the chamber (Theorem 2.3.5).

In Section 2.4, we show that if such a quasi-polynomial is actually polynomial, then it
must actually be given by a negative binomial coefficient (Theorem 2.4.2). We then use this
result to study a class of matrices called unimodular matrices for which we derive some
results (Corollary 2.4.5 and Corollary 2.4.8).

In Section 2.5, we re-derive a known result (Theorem 2.5.3) involving linear factors of
polynomials associated to certain chambers for unimodular matrices. Our aim is to suggest
a generalization of this result (Conjecture 2.5.4) that can be used to compute linear factors
of polynomials arising from Littlewood-Richardson coefficients. We address this connection
in Section 3.8.
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In Section 2.6, we consider two applications of these results. In 2.6.1, we give an ap-
plication to the exact enumeration of multigraphs with a given degree sequence. In 2.6.2
we show that one can handily apply Theorem 2.5.3 to re-derive known results related to
Kostant’s partition function.

2.2 External columns and chambers

In this section, we introduce the main objects of study of this chapter: external columns,
rays, facets, and chambers. Additionally, we describe some properties of these objects that
will be necessary for our main result, Theorem 2.3.4. Throughout this chapter A will denote
a d × n matrix with integer entries, of rank d, and satisfying

ker(A) ∩ Rn
≥0 = {0}.

We denote the columns of A by a1, . . . , an.

2.2.1 External columns

Here, we often refer to a chamber of the matrix A instead of saying a chamber in the chamber
complex of A for short. Given a d × n matrix M , by Mî,ĵ we denote the (d − 1) × (n − 1)
submatrix obtained by removing row i and column j. We also denote by Mî,· the (d−1)×n

matrix obtained by removing row i, and by M·,ĵ the d×(n−1) matrix obtained by removing
column j. Similarly for a vector v, by vî, we denote v with the ith coordinate removed.

Definition 2.2.1. Let aj be the jth column of A for some j ∈ {1, . . . , n}. We define aj to
be an external column of A if aj /∈ posR(A·,ĵ).

If aj is an external column of A, then the cone posR(A·,ĵ) is a proper subset of posR(A).

Proposition 2.2.2. Let aj be a column of A for some j ∈ {1, . . . , n}. Then aj is an external
column of A if and only if aj is a ray generator of posR(A) and no other column of A is in
the span of aj.

Proof. Let aj be an external column of A. Since posR(A·,ĵ) ̸= posR(A), aj is part of a
minimal generating set of posR(A), and thus is a ray generator of posR(A). Also, no other
column c of A is in its span. Otherwise, either c is a positive multiple of aj in which case
aj ∈ posR(A·,ĵ) or c is a negative multiple of aj in which case ker(A) ∩ Rd

≥0 ̸= {0}.
Conversely, let aj be a ray generator of posR(A) with no other column of A in its span.

Then aj is in a minimal generating set of posR(A), and since no other column of A is in its
span, aj /∈ posR(A·,ĵ). Therefore, aj is an external column of A.

A straightforward consequence of this proposition is that external columns of A lie on
facets of posR(A). The following proposition will be useful in the following section, and is
also a straightforward consequence of Proposition 2.2.2.
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Proposition 2.2.3. Let aj be an external column of A for some j ∈ {1, . . . , n}, and let
posR(As) for some s ⊆ {1, . . . , n}. If aj ∈ posR(As), then aj is a ray generator of posR(As).
In particular, j ∈ s.

One can also define the external columns in terms of the vector partition function pA.
They are exactly the columns of A for which pA(taj) ≤ 1 for all non-negative integers t (i.e
for which the Ehrhart quasi-polynomial pA(taj) has degree 0).

2.2.2 External chambers

We now introduce external chambers, the main objects of study in this chapter.

Definition 2.2.4. Let γ be a chamber of A. We define γ to be an external chamber of A

if all but one ray of γ is generated by an external column of A. Further, we define the rays
that are generated by external columns of A to be external rays of γ and the other ray to
be the internal ray of γ. Moreover, we define any generator of an external ray to be an
external ray generator of γ and any ray generator of an internal ray to be an internal ray
generator of γ.

Remark 2.2.5. The reader may wonder what happens in the case that γ is generated solely
by external columns. This case is degenerate: A has a single chamber and pA(b) ≤ 1 for all
b ∈ posR(A) ∩ Zd.

Example 2.2.6. Consider the following matrix

A2,2 =
[
1 0 1 1
0 1 1 2

]

given in [62] that is a member of a family of matrices Am,n that we study in Chapter 4 in
our work on Kronecker coefficients. Call its columns a1, a2, a3, a4. The chamber complex of
A2,2 is defined by the three chambers

γ1 = posR (a1, a3) , γ2 = posR (a3, a4) , γ3 = posR (a2, a3) .

The external columns of T are a1 and a2, and so we see that γ1 and γ3 are external chambers
while γ2 is not. The columns and chambers of A2,2 are depicted in Figure 2.1.

The next proposition follows directly from the definition of the chamber complex of A.

Proposition 2.2.7. If a chamber γ of A contains d linearly independent columns of A, say
a1, . . . , ad then γ = posR (a1, . . . , ad).

Proposition 2.2.8. External chambers of A are simplicial.
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Figure 2.1: The columns and chambers of A2,2.

Proof. Let γ be an external chamber of A. If γ is not simplicial, then it must contain at
least d external columns, say a1, . . . , ak for some k ≥ d. By definition, γ is contained in some
simplicial cone posR(As) for some s ⊆ [n] with |s|= rank(As) = d. By Proposition 2.2.3,
{1, . . . , k} ⊆ s, so k ≤ d. Thus k = d, and we find that

posR(a1, . . . , ad) ⊆ γ ⊆ posR(As) = posR(a1, . . . , ad). (2.1)

Therefore γ = posR(a1, . . . , ad) which is a contradiction since γ must have an internal ray
generator.

Remark 2.2.9. In Theorem 2.3.4, we make a statement about simplicial chambers of A

which contain external columns (and satisfy a lattice condition). At one point of this work
we suspected that it is sufficient for a chamber of A to contain at least one external column
in order to be simplicial. This is not the case as the following counterexample illustrates.
Consider the matrix C below

C =


1 0 2 3 4 2
0 1 2 0 1 1
1 1 1 1 1 1
0 0 0 0 0 1

 .

Using Barvinok, we compute that the 4-dimensional cone

γ := posR




2
1
1
1

 ,


3
2
2
0

 ,


5
2
2
0

 ,


6
1
3
0

 ,


9
4
7
0

 ,


19
4
7
0



 (2.2)
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is a chamber of C, and contains the external column (2, 1, 1, 1) of C. However, γ is not
simplicial as the 6 generators given in Eq. (2.2) form a minimal generating set of γ which
is 4-dimensional.

The following lemma will prove useful in terms of computing external chambers. Addi-
tionally, it plays a key role in the results of Section 2.3. Figure 2.2 provides an illustration
of some of the elements of the proof, and may be a useful visual guide.

Lemma 2.2.10. Let aj be an external column of A for some j ∈ {1, . . . , n}. Then any
chamber of A containing aj has a single facet f not containing aj. Moreover, if H is the
supporting hyperplane of f , then H separates aj and posR(A·,ĵ).

Proof. Since aj is an external column of A, by definition aj ̸∈ posR(A·,ĵ). Let f1, . . . , fk

denote the faces of posR(A·,ĵ) of dimension d−1. We note that these faces are not necessarily
facets of posR(A·,ĵ): if posR(A·,ĵ) is (d − 1)-dimensional, then k = 1 and f1 = posR(A·,ĵ).
However, the proof proceeds in the same way regardless of whether posR(A·,ĵ) is of dimension
d or d − 1.

For i = 1, . . . , k, the faces fi can be described as fi = posR(A·,ĵ)∩Hi for some supporting
hyperplanes H1, . . . , Hk ⊂ Rd. Without loss of generality, let H1, H2, . . . , Hℓ be the set
of hyperplanes that separate aj and the cone posR(A·,ĵ) and also do not contain aj . For
i = 1, . . . , ℓ, let κi be the cone generated by aj and the columns of A·,ĵ that generate fi. Since
fi is generated by columns of A·,ĵ spanning Hi, it follows that κi is a union of simplicial
cones of A – that is, κi = ∪s∈S posR(As) for some S ⊂ P({1, . . . , n}) with each s ∈ S

satisfying |s|= rank(As) = d.
Let γ be a chamber of A containing aj . Then γ has a d-dimensional intersection with a

simplicial cone of A that is contained in κi∗ for some 1 ≤ i∗ ≤ ℓ, and so γ ⊆ κi∗ . Let τ be
a facet of γ not contained in fi∗ , so τ is not contained in posR(A·,ĵ). By the definition of
the chamber complex, τ must be contained in a facet τ ′ of a simplicial cone σ of A. Thus,
we can write τ ′ = σ ∩ H ′ for some hyperplane H ′ ⊆ Rd. Then γ ∩ H ′ defines a proper
face of γ containing the facet τ , and so τ = γ ∩ H ′. Since τ ′ is generated by columns of
A and not contained in posR(A·,ĵ), aj is a ray generator of τ ′. Thus, aj ∈ H ′, and since
aj ∈ γ by assumption, aj ∈ τ . Finally, we see that the unique facet of γ not containing aj

is γ ∩ Hi∗ = γ ∩ fi∗ and Hi∗ is a separating hyperplane of aj and posR(A·,ĵ).

We define the cone generated by the external ray generators of an external chamber
γ to be an external facet of A. The following result illustrates how to identify external
facets and compute the corresponding external chambers. We impose the somewhat artificial
condition that A should have at least two chambers to avoid the degenerate case referred
to in Remark 2.2.5.

Proposition 2.2.11 (Constructing external chambers). Assume that the chamber complex
of A contains at least two chambers, and let f be a (d− 1)-dimensional cone in the chamber
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Figure 2.2: A sketch of some of the elements in the proof of Lemma 2.2.10. Here A is
a 3 × 6 matrix with columns a1, . . . , a6. The polytope with vertices labelled a1, a4, a5, a6
represents a 2-dimensional cross-section of the 3-dimensional cone posR(A). Each of the
points labelled by a column aj of A represent the ray generated by aj . From the picture
we see that a1, a4, a5, a6 are the external columns of A. The cone posR(A·,1̂) is shaded in
dark magenta. The hyperplanes H1 and H2 separate a1 and posR(A·,1̂). Any chamber γ
containing a1 must be contained in one of the cones κ1 (shaded dark green) or κ2 (shaded
light grey) and the unique facet of γ not containing a1 is equal to γ ∩ f1 or γ ∩ f2.

complex. Then f is an external facet of A if and only if f is a facet of posR(A) containing
exactly d − 1 columns of A. Moreover, if the columns of A generating f are a1, . . . , ad−1,
then the unique external chamber containing f is

γ :=
n−d⋂
k=0

posR(a1, . . . , ad−1, ad+k).

Proof. We begin with the forward direction. Suppose that f is an external facet of A, and
assume towards a contradiction that f is not a facet of posR(A) containing exactly d − 1
columns of A. Since f is an external facet of A, it is a facet of an external chamber γ′ of A.
Since γ′ is simplicial, it has d facets, say f1, . . . , fd−1, fd = f . Assume moreover that fi is
the unique facet of γ′ not containing ai for each i = 1, . . . , d − 1. Let ι1, . . . , ιd be the inner
facet normals (with respect to γ′) corresponding to the facets f1, . . . , fd, and H1, . . . , Hd be
the corresponding supporting hyperplanes. Since f is not a facet of A containing exactly
d − 1 columns of A, there are two options to consider
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1. f is not a facet of posR(A),

2. f is a facet of posR(A), but contains more than d − 1 columns of A.

In the first case there is some column a of A with ιd ·a ≤ 0 and a /∈ γ. By Lemma 2.2.10,
the hyperplane Hj separates the column aj from the cone posR(A·,ĵ) for each j = 1, . . . , d−1.
Therefore, ιj · a ≤ 0 for each j = 1, . . . , d − 1. Then −a ∈ γ′, since ιj · (−a) ≥ 0 for
each j = 1, . . . , d. Now, let posR(As) be a simplicial cone of A for some s ⊆ {1, . . . , n}
with |s|= rank(As) = d so that γ′ ⊆ posR(As). Since −a ∈ γ′, −a ∈ posR(As), and so
−a =

∑
i∈s λiai for some λi ≥ 0. But then,

∑
i∈s λiai + a = 0, and so ker(A) ∩ Rd

≥0 ̸= {0}.
This is a contradiction. Therefore, f is indeed a facet of posR(A), and f contains exactly
the d − 1 columns of A, a1, . . . , ad−1.

In the second case, there is some column a ∈ f with a /∈ {a1, . . . ad−1}. However, since
a is a column of A, it generates a 1-dimensional cone of the chamber complex of A, and so
f = posR(a1, . . . ad−1) cannot be a cone of the chamber complex. This contradicts the fact
that f is an external facet.

We now prove the reverse direction. If f is a facet of posR(A) containing exactly d − 1
columns of A, then each of these columns is a ray generator of posR(A) and no pair is
linearly dependent. Therefore, each of a1, . . . , ad−1 are external columns of A.

Finally, we show that γ is indeed a chamber of A. First note that none of the columns
ad, . . . , an lie on f , and so posR(a1, . . . , ad−1, ad+k) is a simplical cone of A for each k =
0, . . . , n − d. Therefore γ is the intersection of simplicial cones, and since each of these
simplicial cones lie on the same side of the facet f , the cone γ must be d-dimensional.
Consider the point

b := a1 + · · · + ad−1. (2.3)

Since {a1, . . . , ad−1} is a linearly independent set, and f is a facet of posR(A), the formula-
tion of (2.3) is the unique way to represent b as a N-linear combination of the columns of
A. Therefore, any simplicial cone posR(As) of A containing b must contain each of the ex-
ternal columns a1, . . . , ad−1. Moreover, a1, . . . , ad−1 are each ray generators of posR(As) by
Proposition 2.2.3. Therefore, γ is a chamber of A since it is a d-dimensional cone obtained
as the intersection of all simplicial cones containing b. Furthermore, γ is the unique exter-
nal chamber containing f , since any other d-dimensional cone containing b and obtained
by an intersection of simplicial cones of A (necessarily containing all of a1, . . . , ad−1 as ray
generators) must contain γ as a subset.

By Lemma 2.2.10, there is a unique facet of γ not containing ai for each 1 ≤ i ≤ d − 1,
and so γ is simplicial. Therefore, γ = posR(a1, . . . , ad−1, v) for some ray generator v. Since
A has at least two chambers, it must have some column c /∈ γ. As well, c /∈ f , so
γ′ := posR(a1, . . . , ad−1, c) is a simplicial cone of A, and γ ⊊ γ′. Therefore, it follows that
v ∈ posR(a1, . . . , ad−1, c) and so v is an internal ray generator for γ. Thus, γ is an external
chamber of A and f is an external facet of A.
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The previous result allows us to compute external chambers without having to compute
the entire chamber complex of A, which can be computationally intensive. We note however
that in some cases there are no external chambers. For example, for the matrix

K4 =


1 1 1 1 0 0 0 0 0 0

−1 0 0 0 1 1 1 0 0 0
0 −1 0 0 −1 0 0 1 1 0
0 0 −1 0 0 −1 0 −1 0 1


the chamber complex of K4 has 48 chambers, none of which are external. The matrix K4

is part of a family of matrices associated to Kostant’s partition. We study the associated
vector partition functions in Section 2.6.2.

Finally, we remark that external facets of A are exactly the facets f of posR(A) for
which pA(b) ≤ 1 for all b ∈ f .

2.2.3 A vector partition function preserving transformation

We now prove some results that allow us to transform the matrix A while preserving the
vector partition function (up to an appropriate change of variables) and the structure of
the chamber complex. We use these results in Section 2.3 in order to transform A into a
form well-suited for analysis (described in Lemma 2.3.3).

Proposition 2.2.12. Let M ∈ Qd×d be an invertible matrix with integer entries. Then
pA(b) = pMA(Mb) for all b ∈ Zd.

Proof. The matrices A and M both have integer entries, and so MA also has integer entries.
Since M is invertible, MA also has rank d, and ker(A) = ker(MA). Therefore pMA is well
defined, and since Ax = b ⇐⇒ MAx = Mb, it follows that pA(b) = pMA(Mb) as
required.

For a cone σ ⊆ Rd and invertible matrix M ∈ Qd×d, define the cone Mσ := {Mb : b ∈
σ}. We note that {u1, . . . uk} is a generating set of σ if and only if {Mu1, . . . Muk} is a
generating set of Mσ.

Proposition 2.2.13. Let M ∈ Qd×d be an invertible matrix. The cone γ is a chamber of A

if and only if Mγ is a chamber of MA. Moreover, {u1, . . . , uk} is a minimal generating set
of γ if and only if {Mu1, . . . , Muk} is a minimal generating set of Mγ.

Proof. Assume that γ is a chamber of A. We show that Mγ is indeed a chamber of MA.
Since γ is a chamber of A, it is the intersection of all simplicial cones containing it, so for
some

S := {s ⊆ [n] : |s|= rank(As) = d, γ ⊆ posR(As)} (2.4)
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we can write γ as
γ =

⋂
s∈S

posR(As).

For any s ⊆ [n], the cone posR(As) is a simplicial cone of A if and only if posR(MAs) is
a simplicial cone of MA since rank(As) = rank ((MA)s). Further, b ∈ posR(As) if and only
if Mb ∈ posR ((MA)s) for all b ∈ Rd. Thus,

Mγ =
⋂
s∈S

posR((MA)s).

The cones posR(As) with s ∈ S are also the exact set of simplicial cones of A containing
b for any point b ∈ γ◦. Therefore, the cones posR((MA)s) are exactly the set of simplicial
cones of MA containing Mb ∈ Mγ◦. As γ is d-dimensional, so is Mγ, and so Mγ is a
chamber of MA (since it is the d-dimensional intersection of simplicial cones containing a
point in posR(MA)).

Since M is invertible, the reverse implication also holds – that is, if Mγ is a chamber
of MA, then γ is a chamber of A.

Finally, since generating sets of γ map to generating sets of Mγ (and vice-versa), mini-
mal generating sets must also map to minimal generating sets (and vice-versa). Therefore,
{u1, . . . , uk} is a minimal generating set of γ if and only if {Mu1, . . . , Muk} is a minimal
generating set of Mγ as required.

Remark 2.2.14. The previous proposition does not always hold if we replace “minimal gen-
erating set” with “minimal ray generators”. In the case that γ is a simplicial cone with
minimal ray generators v1, . . . , vd, then Mv1, . . . , Mvd are minimal ray generators of Mγ

if and only if M is invertible over Z (equivalently det(M) = ±1).

Proposition 2.2.15. Let M ∈ Qd×d be an invertible matrix. Let aj be a column of A for
some j ∈ {1, . . . , n}. Then aj is an external column of A if and only if Maj is an external
column of MA.

Proof. Assume without loss of generality that j = 1. Points b in posR(A·,1̂) map to points
in posR(MA·,1̂) under the invertible mapping b 7→ Mb:

b ∈ posR(A·,1̂) ⇐⇒ b =
n∑

i=2
λiai (for λ2, . . . , λn ≥ 0)

⇐⇒ Mb =
n∑

i=2
λiMai

⇐⇒ Mb ∈ posR(MA·,1̂)
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Therefore a1 /∈ posR(A·,1̂) if and only if Ma1 /∈ posR(MA·,1̂), and so a1 is an external
column if and only if Ma1 is an external column.

Proposition 2.2.16. Let M ∈ Qd×d be an invertible matrix. Then γ is an external chamber
of A if and only if Mγ is an external chamber of MA.

Proof. This follows immediately from Propositions 2.2.13 and 2.2.15.

The following example illustrates how to compute the quasi-polynomial associated to the
chamber γ3 of the matrix A2,2 given in Example 2.2.6 by hand: we first apply an appropriate
transformation M so that the external column of Mγ3 is a standard basis vector, allowing
us to reduce dimension by removing a redundant equation (as in Example 1.5.5). As we
shall see in Section 2.3, this process can be applied to any simplicial chamber γ containing
external columns, and the appropriate transformation M is related to the dual cone γ∨.

(a) The columns and chambers of A2,2. (b) The columns and chambers of A2,2.

Figure 2.3: An illustration of the transformation A2,2 7→ MA2,2 on the columns and cham-
bers.

Example 2.2.17. Let M ∈ Q2×2 be the invertible matrix

M =
[
−2 1
1 0

]
,

and recall the matrix A2,2 from Example 2.2.6 given explicitly below

A2,2 =
[
1 0 1 1
0 1 1 2

]
.

We reproduce an illustration of the columns and chambers of A2,2 in Figure 2.3a. Consider
the matrix A2,2 := MA2,2:

A2,2 =
[
−2 1 −1 0
1 0 1 1

]
,

and the vector

b = Mb =
[
b2 − 2b1

b1

]
.
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Denote the columns of A2,2 by a1, a2, a3, a4, noting that aj = Maj for each j = 1, 2, 3, 4.
The chambers of A2,2 are

γ1 = posR (a1, a3) , γ2 = posR (a3, a4) , γ3 = posR (a2, a4) .

The columns and chambers of A2,2 are illustrated in Figure 2.3b. One should check that
γj = Mγj for each j = 1, 2, 3. Recall also that the external columns of A2,2 are a1 and
a2, and that its external chambers are γ1 and γ3. As Figure 2.3b illustrates, the external
columns of A2,2 are a1 = Ma1 and a2 = Ma2, and its external chambers are γ1 = Mγ1

and γ3 = Mγ3. As a whole, Figure 2.3 illustrates the correspondence between columns and
chambers of A2,2 and A2,2.

The chamber γ3 of A2,2 has now been mapped to the chamber γ3 of A2,2 which is simply
the positive quadrant (defined by b1, b2 ≥ 0). Additionally, the external column of γ3 has
been mapped to the standard basis vector e1.

We now utilize the same approach as in Example 1.5.5 in order to compute the quasi-
polynomial pγ3

A . That is: we observe that one of the equations arising from Ax = b can be
written as an inequality by noting that one of the xi is a slack variable, and then we show
that this inequality is implied when b is in the appopriate chamber.

Consider some point b ∈ γ3 ∩ Z2. Any solution x ∈ N4 to the equation A2,2x = b, also
satisfies A2,2x = b, and so

b1 = −2x1 − x2 + x4

b2 = x1 + x2 + x3

and since x4 ≥ 0, it can be viewed as a slack variable, so the number x ∈ N4 satisfying the
previous pair of equations is equal to the number of (x1, x2, x3) ∈ N3 satisfying:

b1 ≥ −2x1 − x2 (2.5)

b2 = x1 + x2 + x3. (2.6)

Since b ∈ γ3, it follows that b ∈ γ3, which is the positive quadrant

b1 ≥ 0 (2.7)

b2 ≥ 0 (2.8)
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and so, we see that Inequality (2.7) implies Inequality (2.5). In other words, for b ∈ γ3 ∩Z2,
we find that

pA(b) = #{x ∈ N4 : A2,2x = b}

= #{x ∈ N4 : A2,2x = b}

= #{(x1, x2, x3) ∈ N3 : x1 + x2 + x3 = b2}

which (as in Example 1.5.5) is a coin exchange problem. In this case, we see that pγ3
A (b) is

just the number of ways of partitioning b2 into three non-negative integer parts x1, x2, x3 -
and so:

pγ3
A (b) =

(
b2 + 2

2

)

=
(

b1 + 2
2

)
.

As we shall see in the following section, the procedure illustrated in Example 2.2.17 forms
the essence of our approach. That is: given an external chamber γ of A (satisfying some
lattice requirements), we construct an invertible matrix M ∈ Qd×d with integer entries (we
call this matrix, described in the preamble to Theorem 2.3.5, the dual ray matrix) that maps
each of the external columns of A in γ to positive multiples of the standard basis vectors.
From this form, each of the corresponding variables can be viewed as slack variables in order
to obtain some 1 × (n − d + 1) matrix B with the property that

#{x ∈ Nd : Ax = b} = #{x ∈ Nd : MAx = Mb}

= #{x ∈ Nd : Bx = (Mb)d}.

This reduces the problem of computing the quasi-polynomial pγ
A associated to the external

chamber to that of solving a coin exchange problem.

2.3 Dimension reduction and determinantal formula

In this section, we consider chambers of A that contain external columns. Up to a lattice
condition, we show that the quasi-polynomial pγ

A for such a chamber γ can be obtained via a
vector partition function of lower dimension. In particular, if γ has k external columns, then
(up to a change of variables) pγ

A = pγ′

B for a matrix B of k fewer rows and columns than A,
and chamber γ′ of B. When this result is applied to external chambers, we find that B has
a single row, so that pγ

A is obtained from a coin exchange problem. As a consequence, such
a pγ

A is a univariate quasi-polynomial. Indeed, pγ
A is precisely the Ehrhart quasi-polynomial

associated to the internal ray of γ.
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Let L(A) denote the lattice generated by the columns of A, and posN(A) denote the
affine semigroup generated by the columns of A - that is,

L(A) :=
{

n∑
i=1

λiai : λi ∈ Z
}

,

posN(A) :=
{

n∑
i=1

λiai : λi ∈ N
}

.

Often we informally identify a matrix with its set of columns, so that we may write
posN(a1, . . . , an) in lieu of posN(A).

Definition 2.3.1. Let s ⊆ {1, . . . , n}. If

posN(As) = L(A) ∩ posR(As)

then we say that the set of columns {aj : j ∈ s} is A-lattice minimal.1

Clearly, the condition posN(As) ⊆ L(A) ∩ posR(As) is always satisfied, so to verify A-
lattice minimality, one only has to prove the reverse inclusion: L(A)∩posR(As) ⊆ posN(As).

Example 2.3.2. Consider the matrix C below:

C =

c1 c2 c3 c4
2 0 0 1

0 2 0 −1
0 0 1 1

.

We prove that the singleton set {c1} is C-lattice minimal. Assume towards a contradiction
that there is some element u = (u1, u2, u3) ∈ L(C) ∩ posR(c1) that is not in posN(c1). Then
u1 ≡ 1 mod 2, and u2 = u3 = 0. Since u ∈ L(C),

u = m1c1 + m2c2 + m3c3 + m4c4

for some integers m1, m2, m3, m4. Therefore,

2m1 + m4 ≡ 1 mod 2

2m2 − m4 ≡ 0 mod 2

which is a contradiction since m4 cannot be both even and odd. A similar argument shows
that the singleton set c2 is also C-lattice minimal.

1Equivalently, the semigroup posR(As) is saturated in the lattice L(A) (i.e if cv ∈ posR(A) for a positive
integer c and v ∈ L(A), then v ∈ posR(A)). See [67, Proposition 1.1] for details.
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On the other hand, the set {c1, c2} is not C-lattice minimal since the element

v := (1, 1, 0) = c2 − c3 + c4

is in L(C) ∩ posR(c1, c2) but is not in posN(c1).

The following technical lemma shows that under certain conditions a quasi-polynomial
pγ

A can be obtained from the vector partition function of B for a submatrix B of A. The
proof involves several intermediate results and is worked out in detail in Appendix A.

Lemma 2.3.3. Let γ be a chamber of A. Assume without loss of generality that the external
columns of A in γ are a1, . . . , aℓ for some ℓ ∈ {0, . . . , d − 1}. Also assume that ai = kiei

for each i ∈ {1, . . . , ℓ} and some positive integers k1, . . . , kℓ. Finally assume that the set
{a1, . . . , aℓ} is A-lattice minimal. Let B be the matrix obtained by removing the first ℓ rows
and columns of A. Then there exists a chamber γ′ of B such that

pγ
A(b) = pγ′

B (bℓ+1, . . . , bd)

for all b = (b1, . . . , bn) ∈ posN(A) ∩ γ.

In the previous lemma, the condition that the external columns γ are given by positive
integer multiples of standard basis vectors may appear contrived. However, we now show
that if A has a simplicial chamber γ with A-lattice minimal external columns, one can
always apply an appropriate change of variables so that the pair A and γ are in the form
of Lemma 2.3.3.

For a chamber γ of A fix an ordering v1, . . . , vm of the minimal ray generators of γ. We
define the ray matrix Mγ of γ to be the matrix whose rows are the minimal ray generators
of γ. If γ is a simplicial cone with minimal ray generators v1, v2, . . . , vd, let w1, . . . , wd be
minimal ray generators of γ∨ so that wi is the internal facet normal of the sole facet of
γ not containing vi. We abuse notation by setting Mγ∨ to be the matrix whose rows are
w1, . . . , wd (so that the order of rows of Mγ∨ is set by the ordering of minimal ray generators
of γ). We call Mγ∨ the dual ray matrix.

The matrix M∨
γ maps the external columns of γ to positive integer multiples of standard

basis vectors (as is necessary for Lemma 2.3.3). Moreover, M∨
γ maps the chamber γ to the

positive orthant (defined by b1, . . . , bd ≥ 0). This is not a necessary condition for Lemma
2.3.3, but is nice to have. In particular, if M∨

γ γ is the positive orthant in Rd (i.e the cone
defined by each variable being non-negative), then the chamber γ′ of B obtained by Lemma
2.3.3 is the positive orthant in Rd−ℓ (see Appendix A for details).

Theorem 2.3.4. Let A be a d × n matrix of rank d with integer entries, and let γ be a
chamber of A that is simplicial. Without loss of generality assume that a1, . . . , aℓ are the
external columns of γ. Assume additionally that {a1, . . . , aℓ} is A-lattice minimal. Let B be
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the matrix obtained by removing the first ℓ rows and columns from Mγ∨A. Then

pγ
A(b) = pγ′

B

(
(Mγ∨b)ℓ+1, . . . , (Mγ∨b)d

)
for all b ∈ γ ∩ posN(A). Moreover, γ′ is the positive orthant in Rd−ℓ.

Proof. Since γ is simplicial, the dual ray matrix M := Mγ∨ is well defined. Consider the
matrix MA with columns m1 := Ma1, . . . , mn := Man. Our goal is to apply Lemma 2.3.3
with the matrix MA, chamber Mγ, and columns m1, . . . , mℓ so we show that each of its
conditions are met.

The matrix Mγ∨ is invertible over Q and has integer entries, and thus satisfies the
conditions of Propositions 2.2.12–2.2.16. Therefore, the vector partition functions of A and
Mγ∨A are the same up to a change of variables. More precisely,

pγ
A(b) = pMγ

MA(Mb) (2.9)

for all b ∈ γ ∩ posN(A).
By Proposition 2.2.13, Mγ is a chamber of MA, and m1, . . . , mℓ are ray generators

of Mγ (which is the positive orthant defined by the inequalities b1, . . . , bd ≥ 0). By Proposi-
tion 2.2.15 they are each external columns of MA. Additionally, the set of external columns
is MA-lattice minimal. Up to re-ordering of the columns, m1 = k′

1e1, . . . , mℓ = k′
ℓeℓ for

some positive integers k′
1, . . . , k′

ℓ. Therefore MA, Mγ, and m1, . . . , mℓ do indeed meet the
conditions of Lemma 2.3.3, and so

pMγ
MA(Mb) = pγ′

B ((Mb)ℓ+1, . . . , (Mb)d) (2.10)

for each b ∈ γ ∩ posN(A) where γ′ is the positive orthant in Rd−ℓ. Putting together (2.9)
and (2.10) yields the result.

We note that, in the previous result, the condition that γ must be simplicial is used so
that the dual ray matrix is defined, which in turn yields that the chamber γ′ is the positive
orthant in Rd−ℓ. However, one can replace the role of the dual ray matrix with any linear
mapping M ∈ Qd×d with integer entries that sends the external columns of γ to positive
scalar multiples of the standard basis. In particular, one can replace Mγ∨ in the above proof
with the mapping Mσ∨ for some simplicial cone σ of A containing the columns {a1, . . . , aℓ}.
Then, we no longer need the condition that γ is simplicial. However, γ′ will not be the
positive orthant in Rd−ℓ.

In essence, (up to A-lattice minimality) one can reduce the dimension of the vector
partition function for a particular chamber by the number of external columns present in
that chamber.
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In particular, if γ is an external chamber whose external columns are A-lattice minimal,
then B is a 1 × (n − d) matrix, and so the quasi-polynomial pγ

A arises from a coin exchange
problem. By exploiting this fact, we prove that pγ

A can also be obtained from the Ehrhart
quasipolynomial associated to the single internal ray of γ after an appropriate change of
variables.

Theorem 2.3.5. Let A be a d × n matrix of rank d with integer entries. Let γ be an
external chamber of A, and without loss of generality assume that the external columns
of γ are a1, . . . , ad−1. Assume additionally that the set {a1, . . . , ad−1} is A-lattice minimal.
Denote by v1, v2, . . . , vd−1 ∈ Zd the external ray generators corresponding to a1, . . . , ad−1

respectively, and let vd ∈ Zd be an internal ray generator. If f(t) := pA(tvd) is the Ehrhart
quasi-polynomial associated to the polytope Ax = vd, x ≥ 0, then the quasi-polynomial
pγ

A(b) associated to γ is equal to

pγ
A(b) = f

(det(v1, . . . , vd−1, b)
det(v1, v2, . . . , vd)

)

for all b ∈ γ ∩ posN(A).

Proof. Since γ is an external chamber, by Proposition 2.2.8, it is simplicial, and so the dual
ray matrix of γ exists. Let M := Mγ∨ following the same ordering as the ray generators
v1, . . . , vd. Let b ∈ γ ∩ posN(A). Then

b = λ1v1 + · · · + λdvd (2.11)

for some λ1, . . . , λd ≥ 0, and so

Mb = λ1k1e1 + · · · + λdkded.

By Theorem 2.3.4, we have
pγ

A(b) = pB(λdkd)

where B is the 1× (n−d+1) matrix obtained by removing the first d−1 rows and columns
of the matrix MA. On the other hand, by setting λ1 = . . . = λd−1 = 0 in Eq. (2.11), we
find that pγ

A(λdvd) = pB(λdkd) as well. Therefore, pγ
A(b) = pγ

A(λdvd) = f(λd). Finally, by
Cramer’s rule

λd = det(v1, . . . , vd−1, b)
det(v1, v2, . . . , vd)

and so as quasi-polynomials,

pγ
A(b) = f

(det(v1, . . . , vd−1, b)
det(v1, v2, . . . , vd))

)
as required.
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Example 2.3.6. Recall the matrix from our running example

A2,2 =
[
1 0 1 1
0 1 1 2

]

whose columns we denote by a1, a2, a3, a4. The chamber

γ1 = posR(a1, a3)

is an external chamber with external column a1. From Figure 2.1, we can see that the
column a3 is an internal ray generator for γ1. In particular we can take v1 = a1 to be the
external ray generator and v2 = a3 to be the internal ray generator. Let f(t) = pA2,2 (ta3)
be the Ehrhart quasi-polynomial associated to the internal ray of γ1. We can compute using
Latte:

f(t) =


(t+2)2

4 if t ≡ 0 mod 2
(t+1)(t+3)

4 if t ≡ 1 mod 2.

By Theorem 2.3.5 we deduce that

pγ1
A2,2(b) = f

( det (a1, b)
det (a1, a2)

)

= f


det

([
1 b1

0 b2

])

det
([

1 1
0 1

])


=


(b2+2)2

4 if b2 ≡ 0 mod 2
(b2+1)(b2+3)

4 if b2 ≡ 1 mod 2.

This agrees with previous computations [62], and the output of Barvinok.

In the previous example, we could have also applied Theorem 2.3.4 to prove that for all
b ∈ γ3,

pγ1
A2,2(b) = pB(b2)

where B =
[
1 1 2

]
, and then solved the corresponding coin exchange problem. Exam-

ple 2.6.3 in Section 2.6 provides a slightly more involved application of the determinant
formula.
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2.4 Unimodular case

In the previous section we showed that if γ is an external chamber of A whose external
columns form an A-lattice minimal set, then the quasi-polynomial pγ

A is equal to pB for a
1 × k matrix B with integer entries. Next, we exploit this this fact in order to characterize
exactly when pγ

A is a polynomial. Moreover, we show that this polynomial is given by
a negative binomial coefficient and is easy to compute, without explicitly computing the
chamber γ. For a class of matrices (called unimodular matrices), this result immediately
allows us to prove that the polynomial pγ

A for an external chamber γ is given by a negative
binomial coefficient that is readily computable.

Lemma 2.4.1. Let B = [b1,1, . . . , b1,k] be a 1×k integer matrix for some positive integer k,
and assume that ker(B) ∩ Rk

≥0 = {0}. Then pB is a polynomial of degree k − 1 on posN(B)
if and only if each of the k entries of B are equal to some non-zero integer β. In this case,

pB(b) =
(

b
β + k − 1

k − 1

)

for all b ∈ posN(B).

Proof. We begin by proving the reverse implication. Assume B is a 1 × k integer matrix
with each of the k entries equal to some non-zero integer β. Then for any b ∈ posN(B),
pB(b) is the number of ways of partitioning b/β into k equal non-negative integral parts.
Therefore,

pB(b) =
(

b
β + k − 1

k − 1

)
(2.12)

is a polynomial in b for b ∈ posN(B).
We now prove the forward implication. Suppose pB is a polynomial of degree k − 1. We

may assume that k ≥ 2, since if k = 1, B has a single entry. We note further that the entries
of B must be either all positive or all negative or else ker(B) ∩Rk

≥0 ̸= {0}. We assume that
all entries are positive, noting that the negative case follows a similar argument. For any
1 ≤ j ≤ k, the vector partition function pB·,ĵ

is a polynomial of degree k − 2 since it is the
difference of two polynomials:

pB·,ĵ
(b) = pB(b) − pB(b − b1,j)

for all b ∈ L(B) ∩ N. In particular, by repeated application of this fact, it follows that for
each 1 × 2 submatrix of B, the vector partition function is a polynomial of degree 1.

Assume towards a contradiction that B has two distinct entries, say, without loss of
generality, b1,1 and b1,2. Let B′ = [b1,1, b1,2] be the 1 × 2 submatrix consisting of the two
distinct entries, so that pB′ is a polynomial of degree 1. Also, pB′(0) = pB(min(b1,1, b1,2)) =
1, so pB′(b) = 1 for all b ∈ N since pB′ is linear. However, pB′(b1,1b1,2) ≥ 2 since both
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x = (b1,2, 0) and x = (0, b1,1) are solutions to B′x = b1,1b1,2 with x ∈ N2. This contradicts
that pB′ is a polynomial of degree 1, and thus that pB is a polynomial of degree k − 1.
Therefore, the entries of B must be the same as required.

For a facet f of a cone σ ⊂ Rm, we call an inner/outer facet normal ι ∈ Zm of f

a minimal inner/outer facet normal if ι is a minimal generator of the ray {tι : t ≥ 0}.
By Proposition 1.3.2, ι is a ray generator of σ∨. Therefore, if f is a facet of a simplicial
chamber γ of A, then ι is a row of the dual ray matrix Mγ∨ . This observation allows us to
characterize exactly when pγ

A is a polynomial on posN(A) if γ is an external chamber whose
external columns form an A-lattice minimal set.

Theorem 2.4.2. Let γ be an external chamber of A, with external facet f , and let ι be the
minimal inner facet normal of f . Assume without loss of generality that a1, . . . , ad−1 are
the external columns of γ. Let ad+ℓ be a column of A for some ℓ ∈ {0, . . . , n − d}. Finally
assume that {a1, . . . , ad−1} is A-lattice minimal. Then pγ

A is a polynomial on γ ∩ posN(A)
if and only if

ι · aj =

0 if aj ∈ f

β if aj ̸∈ f

for each j = 1, . . . , n, for some positive integer β. Moreover, if pγ
A is a polynomial on

posN(A), then

pγ
A(b) =

(
ι·b
β + n − d

n − d

)
(2.13)

=
( det(a1,...,ad−1,b)

det(a1,...,ad−1,ad+ℓ) + n − d

n − d

)
(2.14)

for each b ∈ γ ∩ posN(A).

Proof. We have ι · aj = 0 for each j = 1, . . . , d − 1. Let M := Mγ∨ be the dual ray matrix of
γ so that the first d − 1 rows appear in the same order as the corresponding d − 1 external
columns of γ. By Theorem 2.3.4, for each b ∈ γ,

pγ
A(b) = pB((Mb)d)

where B is the 1 × (n − d + 1) matrix obtained by removing the first d − 1 rows and
columns from MA. Additionally, the last row of M is simply ι since ι is the only minimal
ray generator of γ∨ not corresponding to a column in f . Therefore, the last row of MA is
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ιT A, and so we have

B1,j = (MA)d,d−1+j

= ι · ad−1+j

for each j = 1, . . . , n − d + 1. By Lemma 2.4.1, pB is polynomial on posN(B) if and only if
each of these entries is equal to some positive integer β. Since pγ

A(b) = pB((Mb)d) for all
b ∈ γ ∩ posN(A), pγ

A is polynomial if and only if pB is polynomial.
We now prove that Eq. (2.13) and Eq. (2.14) hold if pγ

A is polynomial. In this case, for
all b ∈ γ ∩ posN(A),

pγ
A(b) = pB((Mb)d)

= pB(ι · b)

=
(

ι·b
β + n − d

n − d

)

and so Eq. (2.13) holds. Since b ∈ γ, by Proposition 2.2.11, b is in the simplicial cone of A,
posR(As), where s = {1, . . . , d − 1, d + ℓ}. Therefore, b = λ1a1 + · · · + λd−1ad−1 + λdad+ℓ

for some λ1, . . . , λd ≥ 0. Then

ι · b = λd(ι · ad+ℓ) (2.15)

= λd (2.16)

= det(a1, . . . , ad−1, b)
det(a1, . . . , ad−1, ad+ℓ)

(2.17)

where the last equality follows from Cramer’s rule. Eq. (2.14) now follows by plugging in
Eq. (2.17) into Eq. (2.13).

We note also that in the previous result the columns a1, . . . , ad−1 can be replaced by
any ray generators v1, . . . , vd−1 with posR(vi) = posR(ai) for i = 1, . . . , d − 1.

Remark 2.4.3. We note that if a column of A is an internal ray generator v of γ (equivalently
some column of A is in γ but is not an external column of γ), then

pA(v) = n − d + 1.

This is exactly the number of simplicial cones of A that contain γ as a subset since there
are n − (d − 1) choices of dth column to add to the d − 1 columns on the external facet. For
each such simplicial cone posR(As) (i.e with γ ⊆ posR(As)), there is exactly one solution
x ∈ Nn to Ax = v with xi = 0 for all i /∈ s (since the columns of A in s form a basis of
Rd and v ∈ posR(As)). Therefore, we find that each solution to Ax = v is of this form, and
that no other solutions x ∈ Nn exist.
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We suspect that the A-lattice minimality condition in the previous theorem can be
removed (intuitively we view A-lattice minimality as “nice” from the periodic point of view,
so we expect that removing this property on the external columns introduces periodicity).

We now introduce unimodular matrices – these matrices have the special property that
pA is a piecewise polynomial, so pγ

A is polynomial for each chamber.
A full rank d × n matrix A with integer entries is unimodular if every d × d submatrix

of A has determinant 1, −1, or 0 (see for example [80, Section 19.1]). If A is unimodular,
then posN(A) = posR(A) ∩ Zd.

In [53], De Loera and Sturmfels introduce a generalization of matrix unimodularity given
by a geometrical criterion. Both of these definitions appear in this section, so we distinguish
them by refering to the older definition simply as unimodular and the one introduced by De
Loera and Sturmfels as DeLS-unimodular. A d × n matrix A with integer entries is defined
to be DeLS-unimodular if the polyhedron {x ∈ Rd : Ax = b, x ≥ 0} associated to the vector
partition function pA(b) has only integral vertices whenever b is in the lattice spanned by
the columns of A. Under these conditions, pA is piecewise polynomial by the following result
of De Loera and Sturmfels. We remark that unimodular matrices are DeLS-unimodular.

Theorem 2.4.4 (De Loera, Sturmfels 2003 [53]). Let A be a d×n DeLS-unimodular matrix
of rank d. Then pA is a piecewise polynomial of degree n − d on L(A) ∩ posR(A) and is zero
everywhere else on Zd ∩ posR(A).

If A is DeLS-unimodular, then each subset of columns of A is A-lattice minimal. If A

is unimodular then it is also DeLS-unimodular, and therefore if A is a unimodular matrix,
then the subset of columns of A are also A-lattice minimal. The following corollary now
follows immediately.

Corollary 2.4.5. Let A be a d×n DeLS-unimodular matrix of rank d, and γ be an external
chamber of A with external columns a1, a2, . . . , ad−1. Let ad+ℓ be a column of A for some
ℓ ∈ {0, . . . , n − d}. Then

pγ
A(b) =

( det(a1,...,ad−1,b)
det(a1,...,ad−1,ad+ℓ) + n − d

n − d

)
(2.18)

for all b ∈ posN(A) ∩ γ.

Example 2.4.6. Consider the following DeLS-unimodular matrix

D =


2 0 0 2 2
0 2 0 2 0
0 0 2 0 2

 .

that we have obtained by multiplying the matrix in the running example of [53] by two.
This multiplication has no effect on the chamber complex (i.e the chamber complex of D is
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the same as that in their running example). However,

L(D) := {(b1, b2, b3) ∈ Z3 : b1, b2, b3 ≡ 0 mod 2}

in our example, whereas in their running example, the lattice spanned by the matrix is Z3.
The first three columns are external and the other two are not. Additionally, the chamber

γ := posR




0
0
1

 ,


0
1
0

 ,


1
1
1




is external with minimal internal ray generator
1
1
1

 .

We now compute the polynomial associated to γ using Corollarly 2.4.5 with the first column
of D playing the role of ad+ℓ. Let d denote the ratio of determinants – that is,

d := det




0 0 b1

0 2 b2

2 0 b3



/

det




0 0 2
0 2 0
2 0 0


 = b1

2 .

Then

pγ
D(b) =

(
d + 2

2

)

=
(

b1
2 + 2

2

)

for all b ∈ posN(D) ∩ γ. Since b1 ≡ 0 mod 2, the resulting polynomial does indeed yield
integers. Finally, remark that we could have also used the fourth or fifth columns of D in
the place of the first column (only the external columns of γ cannot be used).

In the case that A is unimodular (not just DeLS-unimodular), we can further simplify
the expression given in Theorem 2.4.4. We begin with the following useful lemma.

Lemma 2.4.7. Let A be a d × n unimodular matrix of rank d. Let f be a facet of posR(A)
with minimal inner facet normal ι. Let c be a column of A. Then

ι · c =

0 if c ∈ f

1 if c /∈ f.
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Proof. If c ∈ f then ι · c = 0, so assume that c /∈ f . In this case, there are linearly
independent columns a1, . . . , ad−1 of A lying on f so that posR(a1, . . . , ad−1, c) is a simplicial
cone of A. Since A is unimodular, the matrix M whose columns are a1, . . . , ad−1, c must
have determinant ±1. Thus M is invertible over Z, and in particular, there exists a vector
v in Zd such that c · v = 1. Since c, v ∈ Zd with c · v = 1, we see that gcd(c1, . . . , cd) = 1.
Finally since ι ∈ Zd as well, ι · c is integral, and since ι is minimal, gcd(ι1, . . . , ιd) = 1, and
so ι · c = 1 as required.

Corollary 2.4.8. Let A be a d × n unimodular matrix of rank d, f be a facet of A con-
taining exactly d − 1 columns of A, and ι be the minimal inner normal of f . Moreover, let
a1, . . . , ad−1 be the external columns of A on f , and let γ be the external chamber containing
f . Then the polynomial pγ

A(b) associated to γ is

pγ
A(b) =

(
ι · b + n − d

n − d

)
. (2.19)

=
(

|det(a1, . . . , ad−1, b)|+n − d

n − d

)
(2.20)

Remark 2.4.9. We note that |det(a1, . . . , ad−1, b)| is the continuous volume of the paral-
leliped

Π := {λ1a1 + · · · + λd−1ad−1 + λdb : 0 ≤ λ1, . . . , λd ≤ 1}

generated by a1, . . . , ad−1, b.

2.5 Semi-external chambers

In this section we rederive a known result on linear factors appearing in polynomials associ-
ated to certain chambers of vector partition functions whose associated matrix is unimod-
ular. The theorem in this section (Theorem 2.5.3) was originally proven in 2008 by Baldoni
and Vergne [3, Corollary 14]. We worked out this result prior to knowing about their paper,
but keep it in the document (along with the proof) since we believe that it may be possible
to generalize – see Conjecture 2.5.4 for the exact statement.2

In Section 3.8 we show that the generalization suggested by Conjecture 2.5.4 can aid in
the computation of linear factors of polynomials associated to the Littlewood-Richardson
coefficients.

Definition 2.5.1. For a d × n matrix A of rank d, we define a chamber of A to be semi-
external if it intersects a facet of posR(A) (d − 1)-dimensionally.

2In [3] the result of Theorem 2.5.3 is given as a corollary of a result of Dahmen and Micchelli. It is also
stated that this result follows from “reciprocity relations for the vector partition function”, which is the
approach we take. In [3] the explicit proof using this approach is not given.
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Example 2.5.2. Shown in Figure 2.4 is a 2-dimensional projection of the 3-dimensional
chamber complex of a matrix K3 with 6 columns. The intersection of each column with the
slice is a vertex labeled with the appropriate column number. Additionally, the intersection
of each chamber is given by a labeled (with Roman numerals) 2-dimensional region bounded
by edges. The facets of posR(K3) correspond to the three line segments bounded by vertices
1, 6, vertices 1, 4, and vertices 4, 6. Of the seven chambers, we see that Chambers I, III, IV,
V, VI are semi-external, and the rest are not. We study this in more detail in Example 2.6.7
of Section 2.6.2.

Figure 2.4: A 2-dimensional projection of a 3-dimensional chamber complex of a matrix
with 6 columns. Chambers correspond to the 2-dimensional regions labeled with roman
numerals. Chambers I, III, IV, V, VI are semi-external.

We note that external chambers are also semi-external chambers.

Theorem 2.5.3 (Baldoni, Vergne, 2008 [3]). Let A be a d×n unimodular matrix of rank d,
let f be a facet of posR(A) with inner facet normal ι, and let γ be a semi-external chamber
of A intersecting f (d − 1)-dimensionally. Let k be the number of columns of A not in f .
Then pγ

A(y) has linear factors
(ι · y) + i

for i = 1, . . . , k − 1.
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Proof. Let v ∈ γ◦ ∩ Zd such that ι · v = i for some i ∈ {1, . . . , k − 1} (notice that such a v
does exist since γ is d-dimensional). Let P be the polytope defined by

P := {x ∈ Rd : Ax = v, x ≥ 0}.

Our aim is to show that the interior P◦ of P, has no integer points, and then exploit
the Ehrhart reciprocity result of Theorem 1.4.3 in order to compute evaluations of the
polynomial pγ

A on the hyperplane (ι · y) + i = 0.
Without loss of generality let a1, . . . , ak be the columns of A not on f so that aj · v = 1

for each j = 1, . . . , k by assumption. For each integral point x = (x1, . . . , xn) ∈ P , it follows
that

v = x1a1 + · · · + xnan

=⇒ ι · v = ι · (x1a1 + · · · + xnan)

=⇒ i = x1 + · · · + xk.

In particular, since x1, . . . , xk are all non-negative integers and since i ≤ k − 1, it follows
that xj = 0 for some j ∈ {1, . . . , k}.

On the other hand, we claim that for each j = 1, . . . , k, there is some integral point in
P with xj > 0. If this is not the case, then v − aj /∈ posR(A). Then for some minimal inner
facet normal ι′ of posR(A), we find that

ι′ · (v − aj) < 0 (2.21)

=⇒ ι′ · v < 1 (2.22)

=⇒ ι′ · v = 0 (2.23)

where the last inequality arises since ι′ · v is an integer. This is a contradiction since v ∈ γ◦

so γ does not lie on a facet of posR(A).
For each j = 1, . . . , k, define Hj ⊆ Rn to be the hyperplane xj = 0. The polytope

P ∩ Hj is a proper face of P for each j since P ̸⊆ Hj for any j ∈ {1, . . . , k}. Therefore,
each integral point of P must lie on a proper face of P, since it must lie on at least one of
the Hj . Therefore P◦ contains no integer points, and since LP(t) = pγ

A(tv), it follows by
Ehrhart reciprocity that

LP(−1) = pγ
A(−v)

= 0.

For all α ∈ R, let H̃α be the affine space defined by the equation ι · y = α. Consider
the set S := H̃i ∩ γ◦. The set S contains the (d − 1)-dimensional translated cone v +
f := {v + w : w ∈ f}. As we previously showed, any u ∈ S ∩ Zd satisfies pγ

A(−u) = 0.
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Therefore, pγ
A vanishes on the integer points of the translated (d − 1)-dimensional cone

−v − f := {−v − w : w ∈ f} ⊆ H̃−i. Moreover, by the Combinatorial Nullstellensatz, the
polynomial pγ

A vanishes on the entire affine space H̃−i, and so ι · y + i appears as a linear
factor of pγ

A.

We suspect that Theorem 2.5.3 can be generalized since we have found evidence of linear
factors appearing in non-unimodular cases, and also since the unimodularity of A is not fully
exploited in the previous theorem. In particular, we suspect that the key is the dot product
condition of Lemma 2.4.7. Motivated by this, we make the following conjecture.

Conjecture 2.5.4. Let A be a d×n matrix of rank d with integer entries, let f be a facet of
posR(A) with inner facet normal ι, and let γ be a semi-external chamber of A intersecting
γ (d − 1)-dimensionally. Assume that ι · c = 1 for each column c of A not on f and that
pγ

A(y) is a polynomial. Let k be the number of columns of A not on f . Then pγ
A(y) has linear

factors
(ι · y) + i

for i = 1, . . . , k − 1 for all chambers of A intersecting f (d − 1)-dimensionally.

The issue in the proof of Theorem 2.5.3 if only the assumptions of Conjecture 2.5.4 are
taken lies in proving that there is some integral point in P with xj > 0. We suspect that
this can be remedied by a more careful choice of v.

Theorem 2.5.3 and Corollary 2.4.8 suggest the following procedure to compute linear
factors associated to semi-external chambers of a full rank unimodular matrix A.

1. Compute minimal ray generators of the dual cone posR(A)∨, and call these ι1, . . . , ιm

(these are the minimal inner facet normals of posR(A)),

2. For each ℓ = 1, . . . , m, compute the number k of columns c of A such that ιℓ · c = 1,

3. For any chamber γ of A intersecting the corresponding facet fℓ (d − 1)-dimensionally

ι · y + 1, . . . , ι · y + n − ℓ + 1

occur as linear factors of pγ
A(y). In the case that k = d − 1 (so the facet is external),

we know that the polynomial is

pγ
A(y) =

(
ι · y + n − d

n − d

)

and we may also compute the associated external chamber via Proposition 2.2.11.

Remark 2.5.5. Corollary 2.4.8 can also be derived from the result of Baldoni and Vergne
(our Theorem 2.5.3), since in this case Theorem 2.5.3 predicts the linear factors

ι · b + 1, . . . , ι · b + n − d − 1.
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The constant can then be computed by observing that pγ
A(0) = 1.

2.6 Examples

2.6.1 Multigraph counting

In this section we consider the problem of enumerating the number of labelled multigraphs
with vertices v1, . . . , vm and a given sequence d1, . . . , dm so that deg(vi) = di for 1 ≤ i ≤ m.
In order that this may be encoded as a vector partition function, we allow multiple edges
between any pair of vertices but do not allow loops. Most known results for enumerating
the number of graphs or multigraphs with a given degree sequence are asymptotic (see for
example [6, 40, 60]). We give an exact result for a relatively simple case, that we found
by identifying external chambers of the corresponding vector partition functions. We have
not seen this result in the literature, nor any attempts to approach this problem via the
vector partition function formulation. This is somewhat surprising since it is well known that
the enumeration of simple graphs with a given degree sequence can be viewed as counting
integer points in polytopes.

For any positive integer m, define Mm(d1, . . . , dm) to be the number of multigraphs on
the vertex set v1, . . . , vm with degree sequence (d1, . . . , dm). We note that we do not assume
that the degree sequence is monotonically decreasing unless explicitly stated.

For each pair of distinct vertices vi and vj (1 ≤ i ̸= j ≤ m), let xi,j denote the number
of edges joining vi and vj . A multigraph on the vertex set v1, . . . , vm has degree sequence
(d1, . . . , dm) if the following m linear equations are satisfied:

m∑
i=1
i ̸=j

xi,j = dj for all j = 1, . . . , m. (2.24)

The number of edges between any pair of vertices is a non-negative integer, and so one can
describe Mm(d1, . . . , dm) as the number of solutions x = (x1,2, . . . , xm−1,m) ∈ Nm satisfy-
ing the linear equations of (2.24). This description leads to the following vector partition
function formulation.

Proposition 2.6.1. Let m be a positive integer, and let Gm denote the incidence matrix
of the complete graph Km. Then

Mm(d1, . . . , dm) = pGm(d1, . . . , dm)

for any degree sequence (d1, . . . , dm) ∈ Nm on the lattice d1 + d2 + · · · + dm ≡ 0 mod 2.

Example 2.6.2. Let us compute M4(5, 4, 3, 2) which is the number of multigraphs on the
vertex set {v1, v2, v3, v4} and degree sequence d = (5, 4, 3, 2). By Proposition 2.6.1, this is
equivalent to computing pG6(d), and thus of enumerating the number of integer solutions
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Table 2.1: The multigraphs with vertices v1, v2, v3, v4 and degree sequence d = (5, 4, 3, 2).
Each multigraph is labeled by the corresponding solution x ∈ N6 of G4x = d.

x = (x1,2, x1,3, x1,4, x2,3, x2,4, x3,4) ∈ Z6 in the polytope G4x = d, x ≥ 0. Using Latte we
compute the solutions explicitly; there are six of them. In Table 2.1 we give each of the
solutions x ∈ Z6 along with the corresponding multigraph.

Our goal is to study a particular external chamber of the vector partition function pGm .

Example 2.6.3. Let m = 6. Then

G6 =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1


and the chamber γ of G6 defined by minimal ray generators

v1 := (3, 1, 1, 1, 1, 1), v2 := (1, 1, 0, 0, 0, 0), v3 := (1, 0, 1, 0, 0, 0),

v4 := (1, 0, 0, 1, 0, 0), v5 := (1, 0, 0, 0, 1, 0), v6 := (1, 0, 0, 0, 0, 1)

is external with v1 the sole internal ray generator as v2, . . . , v6 are external columns of G6.
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Our aim is to compute the quasi-polynomial pγ
G6

. The matrix G6 is not DeLS-unimodular
(and therefore also not unimodular), since 1 ∈ L(G6), but the polytope defined by G6x = 1,
x ≥ 0 is not integral – for example one of its vertices is:

(1/2, 1/2, 0, 0, 0, 1/2, 0, 0, 0, 0, 0, 0, 1/2, 1/2, 1/2).

Therefore we cannot use Corollary 2.4.5 or Corollary 2.4.8. We illustrate two methods, one
using Theorem 2.3.5 and another using Theorem 2.4.2.

We begin by showing that the set of external columns {v2, . . . , v6} is G6-lattice minimal:
if u ∈ posR(v2, . . . , v6) ∩ L(G6), then

u = λ2v2 + · · · + λ6v6

= (λ2 + · · · + λ6, λ2, . . . , λ6)

for some λ2, . . . , λ6 ≥ 0. Since u ∈ L(G6) each of λ2, . . . , λ6 must also be integral, and so
u ∈ posN(G6). Therefore, posR(v2, . . . , v6) ∩ L(G6) ⊆ posN(G6). The reverse inclusion is
immediate, so the columns {v2, . . . , v6} do indeed form a G6-lattice minimal set.

Using Latte, we compute that

f(t) := pG6(tv1) =
(

t + 9
9

)
,

and so by Theorem 2.3.5,

pγ
G6

= f

( det d, v2, v3, v4, v5, v6
det v1, v2, v3, v4, v5, v6

)
=
(

−d1+d2+d3+d4+d5+d6
2 + 9

9

)

on the lattice d1 + d2 + d3 + d4 + d5 + d6 ≡ 0 mod 2.
Since pγ

G6
is a polynomial, we see that applying Theorem 2.4.2 is a simpler approach,

since no computer aid is required. For the external facet of γ generated by v2, . . . , v6, the
minimal inner facet normal is ι = (−1, 1, 1, 1, 1, 1). We note that ι · g = 2 for all columns g
of G6 not on the external facet. Therefore,by Theorem 2.4.2,

pγ
G6

(d) =
(

ι·d
2 + 9

9

)

=
(

−d1+d2+d3+d4+d5+d6
2 + 9

9

)
.

We prove combinatorially that this result is true in general.
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Theorem 2.6.4. Let m be a positive integer, and let (d1, . . . , dm) ∈ Nm be monotonically
decreasing. If d1 + dm ≥

∑m−1
i=2 di, then

Mm(d1, . . . , dm) =
(

e − d1 +
(m−1

2
)

− 1(m−1
2
)

− 1

)
(2.25)

where e is the number of edges
∑m

i=1
di
2 of any multigraph with degree sequence (d1, . . . , dm).

Proof. Since d1 + dm ≥
∑m−1

i=2 di, we see that 2(d1 + dm) ≥
∑m

i=1 di, so d1 + dm ≥
∑m

i=1 di

2
and so dm ≥ e − d1. Now consider distributing edges between the vertices v2, v3, . . . , vm.
There are e − d1 edges to distribute, and

(m−1
2
)

vertex pairs. Since di ≥ dm ≥ e − d1 for any
2 ≤ i ≤ m, we may distribute these edges in any way possible, and no vertex will be incident
to too many edges. One can see that the number of such choices is given by Eq. (2.25). This
leaves a single way to distribute the remaining edges from v1 to {v2, v3, . . . , vm}.

Remark 2.6.5. Recall that in Example 2.6.2 we computed M4(5, 4, 3, 2) using Latte. Since
d1 + d4 = 5 + 2 ≥ 4 + 3 = d2 + d3, we can also apply Theorem 2.6.4 to compute this value.
Here e = 7, d1 = 5 and m = 4, and so by Theorem 2.6.4:

M4(5, 4, 3, 2) =
(

7 − 5 +
(4−1

2
)

− 1(4−1
2
)

− 1

)
= 6

agreeing with the value computed with Latte.

Although Theorem 2.6.4 in the end has a simple combinatorial proof, the vector partition
function approach yields the correct inequalities to consider for which the formula becomes
simple. We also give a geometric proof of Theorem 2.6.4. Recall from Example 2.6.3, that
the matrices Gm are not DeLS-unimodular in general, so we cannot use Corollary 2.4.5 or
Corollary 2.4.8 to compute the polynomial. Instead, we use Theorem 2.4.2.

Lemma 2.6.6. Let m ≥ 3 be an integer. The cone defined by the minimal ray generators

γ := {(m − 3)e1 +
m∑

i=2
ei} ∪ {e1 + ei : 2 ≤ i ≤ m}

is an external chamber of Gm. Moreover the ray generator in the first set is the sole internal
ray generator, and the ray generators in the second set are external columns. Finally the
second set is Gm-lattice minimal.

Proof. The Gm-lattice minimality of the second set follows similarly to the proof in Exam-
ple 2.6.3.

We now prove that γ is an external chamber of Gm. The vector e1 + ei is a column of
Gm corresponding to the edge (1, i) of the complete graph Km. Additionally, every other
column c must have a non-zero entry cj for some j /∈ {1, i}. Therefore, e1 + ei is not in the
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cone generated by the other
(m

2
)

− 1 columns of Gm, and is thus an external ray generator.
The cone f generated by {e1 + ei : 2 ≤ i ≤ m} is the (n − 1)-dimensional intersection
of the cone posR(Gm) with the hyperplane d1 −

∑m
i=2 di, and is thus a facet of posR(Gm).

No other columns of Gm appear in the facet f , so f is an external facet. By Proposition
2.2.11, the external chamber γ̃ containing f is the intersection of all simplicial cones of Gm

containing each of the columns e1 + ei for 2 ≤ i ≤ m. For j, k with 1 < j < k < m, set
σj,k := posR(f, ej + ek) where we overload notation by denoting the ray generators of f by
f . Then

γ̃ =
⋂

1<j<k≤m

σj,k.

We now prove that γ = γ̃.
The cone σj,k is defined by the inequalities

di ≥ 0 for all i ̸= 1, j, k
m∑

i=2
di ≥ d1

d1 + dj ≥
m∑

i=2,i ̸=j

di

d1 + dk ≥
m∑

i=2,i ̸=k

di

and so γ̃ is defined by the inequalities

m∑
i=2

di ≥ d1 (2.26)

d1 + dl ≥
m∑

i=2,i ̸=l

di for all 2 ≤ l ≤ m (2.27)

where the inequalities di ≥ 0 for 2 ≤ i ≤ m follow implicilty from Inequalities (2.26) and
(2.27). This is the same set of inequalities defining γ.

The inequality defining the external facet f is
∑m

i=2 di ≥ d1. Thus we see that for column
k corresponding to the vector ei + ej (1 ≤ i < j ≤ m) the entry (1, k) of M∨

γ Gm is

(−1, 1, . . . , 1) · (ei + ej) =

0 if i = 1

2 if i ̸= 1

and so by Theorem 2.4.2,

pGm(d) =
(−d1+d2+···+dm

2 +
(m−1

2
)

− 1(m−1
2
)

− 1

)
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on the chamber defined by Inequalities (2.26) and (2.27).
This concludes our geometric proof of Theorem 2.6.4.

2.6.2 Kostant’s Partition Function

Here we give an example where the matrices are unimodular, but where external chambers
do not exist in each dimension (for example there are no external chambers in dimension 4).
However, we are able to exploit Theorem 2.5.3 in order to handily reproduce a known result
of Rassart [74].

For any positive integer m, let K ′
m be the adjacency matrix of the directed tournament

on m + 1 vertices, and define Km to be the matrix obtained by removing the last row of
K ′

m. The matrices Km are unimodular and of rank m. The corresponding vector partition
functions pKm are the Kostant’s partition functions for the root system Am−1.

Although the matrices are easy to describe, it is still open to compute the number of
chambers of Km (a problem posed by Kirilov [48]). This number has been computed for
m ≤ 7, and the piecewise polynomials pKm have been explicitly computed for m ≤ 6 [53].
In this section, we use Theorem 2.5.3 in order to compute linear factors of polynomials of
pKm whose chambers intersect facets (m − 1)-dimensionally. We begin with an illustrative
example.

Example 2.6.7. Consider the case of directed tournaments on 4 vertices. The correspond-
ing vector partition function is pK3 where

K3 =


1 1 1 0 0 0

−1 0 0 1 1 0
0 −1 0 −1 0 1

 .

The minimal inner facet normals of posR(K3) are

ι1 := (1, 0, 0, ), ι2 := (1, 1, 0), ι3 := (1, 1, 1).

A projection of the chamber complex of K3 onto the plane {(x, y) : 3x + 2y + z = 1} is
illustrated in Figure 2.5. This plane was chosen to have normal vector ι1 + ι2 + ι3. From
the figure we see that there are three facets of the cone posR(K3), of which a single facet –
the one generated by columns 1 and 6 of K3 and with inner facet normal ι2 - is external.
We conclude from Corollary 2.4.5 that for the corresponding external chamber γ generated
by columns 1,6 the associated polynomial is given by pγ

A3
(b) =

(b1+b2+b3+3
3

)
. Table 2.6.7

illustrates how one can use Theorem 2.5.3 in order to find linear factors for pγ′

K3
for any

chamber γ′ intersecting one of the three facets 2-dimensionally. We abuse notation by writing
the linear factors l(b) + 1, . . . , l(b) + k in the form

(l(b)+k
k

)
.

50



Table 2.2: Linear factors associated to facets of posR(K3).

facet normal inequality columns in facet # missing columns linear factors
ι1 b1 ≥ 0 4,5,6 3

(b1+2
2
)

ι2 b1 + b2 ≥ 0 1,6 4
(b1+b2+3

3
)

ι3 b1 + b2 + b3 ≥ 0 1,2,4 3
(b1+b2+b3+2

2
)

Proposition 2.6.8. The minimal inner facet normals of posR(Km) are

(1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1). (2.28)

Proof. The minimal inner facet normals of posR(Km) generate the dual cone posR(Km)∨.
Also, v ∈ posR(Km)∨ if and only if v · c ≥ 0 for each column c of Km. We now show that
the second condition is equivalent to the condition vi ≥ vi+1 ≥ 0 for each i = 1, . . . , m − 1.
Indeed, each column of Km containing a −1 entry contains a +1 entry before it, and for
each j = 2, . . . , m there is a column of Km containing a −1 at entry j. Therefore the dual
cone is defined precisely by the inequalities v1 ≥ v2 ≥ . . . ≥ vm ≥ 0. Equivalently the
dual cone is generated by the vectors of (2.28), and so these are the inner facet normals of
posR(Km). Finally, we note that they are indeed minimal.

We now give linear factors for polynomials associated to chambers intersecting facets of
posR(Km) (m − 1)-dimensionally. We remark once again that this result is originally due
to Rassart [74]. Our purpose in describing it is to illustrate the utility of Theorem 2.5.3 -
that is, simply knowing the facet normals of the cone posR(Km) yields enough information
to compute linear factors of some of the polynomials of pKm .

Theorem 2.6.9 (Rassart, 2004 [74]). Let γ be a chamber of Km intersecting a facet f of
posR(Km) (m − 1)-dimensionally. Let ι be the minimal inner facet normal of f so that ι is
a vector obtained by taking k ones followed by m − k zeroes for some 1 ≤ k ≤ m. Then the
polynomial pγ

Km
(b) has linear factors

ι · b + 1, . . . , ι · b + (m + 1 − k)k − 1.

Proof. We utilize the correspondence of columns of Km and edges of the complete graph
on m + 1 vertices in order to count the number of columns of Km not in f . A column c of
Km does not lie in f if it is not perpendicular to ι, which is equivalent to c having exactly
one non-zero entry in the first k entries. The set of such columns corresponds to the set of
edges with exactly one end in the first k vertices of the complete graph, and one end in the
remaining m + 1 − k vertices. Therefore there are (m + 1 − k)(k) such columns. The result
now follows by application of Theorem 2.5.3.
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Figure 2.5: A projection of the chamber complex of K3 via (x, y, z) → ( x
3x+2y+z , y

3x+2y+z ).
Here vertex i is obtained by projecting the ith column of K3 (given in Example 2.6.7). The
sole unnumbered vertex is the projection of the ray generated by (1, 1, −1) obtained in the
refinement process.
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Chapter 3

Littlewood-Richardson coefficients

3.1 Background

The Littlewood-Richardson coefficients are the structure constants appearing from the or-
dinary multiplication of Schur functions (equivalently Schur polynomials with sufficiently
many variables). That is, for partitions λ, µ, ν, the Littlewood-Richardson (LR) coefficients
cν

λ,µ are the coefficients appearing in the equation

sλsµ =
∑

ν

cν
λ,µsν .

Recall that the Schur polynomials form a basis for the Z-module of symmetric polynomials
in n variables Λn, so that the Littlewood-Richardson coefficients are indeed well defined.

From this definition, one can show that a particular LR coefficient cν
λ,µ can only be non-

zero when |λ|+|µ|= |ν|. One can also understand the Littlewood-Richardson coefficients
from the representation theory perspective. The irreducible polynomial representations of
the complex general linear group GLk are labelled by partitions of length ≤ k. Denote by
Wα the irreducible representation labelled by partition α. Given any triple of partitions
λ, µ, ν the Littlewood–Richardson coefficient cν

λ,µ is defined as the multiplicity of Wν in the
tensor product Wλ ⊗Wµ. We often make reference to the Littlewood-Richardson coefficients
of GLk in the text, by which we mean that the partitions λ, µ, ν each have length at most
k.

The LR coefficients are non-negative integers, and have various combinatorial inter-
pretations, called Littlewood-Richardson rules. Some examples are Littlewood-Richardson
tableaux [52], Berenstein-Zelevinsky triangles [9], hives [50], and Littleman paths [51]. As
a historical note, the first of these Littlewood-Richardson rules was initially conjectured,
and partially proven in 1934, but its proof would wait 40 years, until 1974. Amusingly, as
Gordon James relates in [44]:
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Unfortunately the Littlewood-Richardson rule is much harder to prove than was
at first suspected. The author was once told that the Littlewood-Richardson rule
helped to get men on the moon but was not proved until after they got there.

Finding a proof of the Littlewood-Richardson rule was not the only long-standing problem
in this area – the Saturation Conjecture (now Theorem) states that if cNν

Nλ,Nµ ̸= 0 (where
Nλ denotes the multiplication of each part of λ by N) for some positive integer N , then
cν

λ,µ ̸= 0. This result was finally proven true by Knutson and Tao in 1999 [50].
Another interesting phenomenon that appears for Littlewood-Richardson coefficients is

that of stability. For partitions α = (α1, . . . , αk), β = (β1, . . . , βk) of length at most k, denote
the component-wise sum (α1 + β1, . . . , αk + βk) by α + β. A triple of partitions λ∗, µ∗, ν∗ of
length at most k is a stable triple if cν∗

λ∗,µ∗ > 0 and the sequence

(cν+Nν∗

λ+Nλ∗,µ+Nµ∗)N≥0

converges for any partitions λ, µ, ν of length at most k for which cν
λ,µ > 0. Moreover, the

limit of this sequence is called the stable value. For certain triples of partitions λ∗, µ∗, ν∗,
this phenomenon was studied by Murnaghan (see [65]). However, the systematic study
only began in 2014 due to Stembridge (see [83]). In [78, Theorem 4.6], Sam and Snowden
characterize the set of stable triples λ∗, µ∗, ν∗ - namely they show that they are exactly the
partition triples for which cν∗

λ∗,µ∗ = 1.
Littlewood-Richardson coefficients have many applications in physics. The classification

of orbital states of particles in the nuclear shell model is one such application where the
LR coefficients represent the total angular momentum [35]. The LR coefficients also have
applications in boundary conformal theory and integrable 2-d field theory [28, 37]. Other
notable references include [39, 57, 66, 76, 79, 89].

For an excellent (although now slightly dated) overview of results relating to the LR
coefficients the reader is directed to [87]. Additionally, the Symmetric Functions Catalog [1]
maintained by Per Alexandersson provides a great resource for the current state of research.

Our work on Littlewood-Richardson coefficients is based on the approach of Rassart [75],
who used the combinatorial interpretation of LR coefficients as counting hives in order to
relate them to vector partition functions. Using this approach (and some additional facts),
he proved that the LR coefficients associated to GLk are given by a piecewise polynomial
Φk whose domains of polynomiality are the maximal cones of a fan denoted by LRk. Ad-
ditionally, Rassart explicitly computes the piecewise polynomial Φ3 associated to the GL3

case.
The next three sections do not contain novel results. In Section 3.2 we introduce hives

and explain their connection with LR coefficients. We then describe how to construct the
vector partition function formulation from the hive interpretation in Section 3.3. We also
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explicitly describe the piecewise polynomial Φ3 in Section 3.4. The remainder of the chapter
is new results, summarized in Section 3.5 and developed in Sections 3.6, 3.7, and 3.8.

3.2 Hives

Here we follow the notation of [75]. For k ∈ N, a k-hive is a triangular array of numbers ai,j

such that 0 ≤ i, j ≤ k and i + j ≤ k. If ai,j ∈ Z for all i, j we say that (ai,j) is integral. We
are interested in integral k-hives that also satisfy two sets of conditions: hive conditions HC
and boundary conditions BC.

The hive conditions are given by the following set of inequalities that hold for all i, j ≥ 0
such that i + j ≤ k − 2:

ai+1,j + ai,j+1 ≥ ai,j + ai+1,j+1

ai+1,j + ai+1,j+1 ≥ ai+2,j + ai,j+1

ai,j+1 + ai+1,j+1 ≥ ai+1,j + ai,j+2

The boundary conditions are given by a triple of partitions (λ, µ, ν) each of length ≤ k.
They are:

a0,0 = 0

a0,j = λ1 + · · · + λj for all 0 ≤ j ≤ k

ai,0 = ν1 + · · · + νi for all 0 ≤ i ≤ k

am,k−m = |λ|+µ1 + · · · + µm for all 0 ≤ m ≤ k

For m = 0, a0,k = |λ| which agrees with our definition for a0,j with j = k. Similarly, for
m = k, ak,0 = |λ|+|µ|= |ν| and thus this agrees with ai,0 with i = k.

Theorem 3.2.1 (Knutson, Tao, 1999 [50]). Given partitions λ, µ, ν of length at most k,
cν

λ,µ is the number of integral k-hives satisfying the hive conditions, and boundary conditions
given by (λ, µ, ν).

Example 3.2.2. A generic integral 3-hive satisfying BC is shown in Figure 3.1.

0 λ1 λ1 + λ2 λ1 + λ2 + λ3
ν1 a1,1 |λ|+µ1

ν1 + ν2 |λ|+µ1 + µ2
|ν|

Figure 3.1: A 3-hive satisfying the boundary conditions for λ, µ, ν
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For λ = (5, 3, 0), µ = (4, 2, 0), ν = (7, 5, 2), the following are the only integral 3-hives
satisfying HC and BC. Therefore, cν

λ,µ = 3.

0 5 8 8
7 10 12

12 14
14

0 5 8 8
7 11 12

12 14
14

0 5 8 8
7 12 12

12 14
14

3.3 A vector partition function for Littlewood-Richardson
coefficients

Using the hive interpretation of Littlewood-Richardson coefficients, if the length of the par-
titions λ, µ, ν are fixed by some k, we can express the Littlewood-Richardson coefficients as
something resembling a vector partition function. This is achieved by writing the boundary
conditions and hive conditions in matrix form (introducing slack variables to express the
hive conditions as equalities). This section provides a partial summary of the work done by
Rassart in [75].

We begin by describing the process of building the vector partition function formulation
from the hive conditions in the k = 3 case. We do not give the k = 1 or k = 2 cases since
in this case, the Littlewood-Richardson coefficient is always either 0 or 1 (in these cases
each of the hive entries are determined by the boundary conditions). Given λ, µ, ν, Figure
3.1 illustrates a 3-hive satisfying the boundary conditions BC. We note that in this case,
the only unknown is a1,1. We first rewrite each of the hive conditions, isolating a1,1 in each
inequality:

a1,1 ≤ a0,1 + a1,0 − a0,0 −a1,1 ≤ a0,2 − a0,1 − a1,2 −a1,1 ≤ a2,0 − a1,0 − a2,1

−a1,1 ≤ a0,1 − a1,0 − a0,2 a1,1 ≤ a0,2 + a1,2 − a0,3 −a1,1 ≤ a2,1 − a2,0 − a1,2

−a1,1 ≤ a1,0 − a2,0 − a0,1 −a1,1 ≤ a1,2 − a2,1 − a0,2 a1,1 ≤ a2,0 + a2,1 − a3,0

There are 9 defining inequalities for a1,1. Substituting in the boundary conditions and
introducing slack variables s1, s2, . . . , s9 ∈ N, we obtain the system:

a1,1 + s1 = λ1 + ν1 −a1,1 + s2 = −λ1 − λ3 − µ1 −a1,1 + s3 = −|λ|−µ1 − µ2 + ν2

−a1,1 + s4 = −λ2 − ν1 a1,1 + s5 = λ1 + λ2 + µ1 −a1,1 + s6 = µ2 − ν1 − ν2

−a1,1 + s7 = −λ1 − ν2 −a1,1 + s8 = −λ1 − λ2 − µ2 a1,1 + s9 = |λ|+µ1 + µ2 − ν3.

Finally, we rewrite this as the matrix equation:

E3(a1,1, s1, . . . , s9)T = B3(λ1, λ2, λ3, µ1, µ2, µ3, ν1, ν2, ν3)T
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where

E3 =



1 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0

−1 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1


and

B3 =



1 0 0 0 0 0 1 0 0
−1 0 −1 −1 0 0 0 0 0
−1 −1 −1 −1 −1 0 0 1 0
0 −1 0 0 0 0 −1 0 0
1 1 0 1 0 0 0 0 0
0 0 0 0 1 0 −1 −1 0

−1 0 0 0 0 0 0 −1 0
−1 −1 0 0 −1 0 0 0 0
1 1 1 1 1 0 0 0 −1



.

Thus, the Littlewood-Richardson coefficient cν
λ,µ is the number of solutions

x = (a1,1, s1, . . . , s9)T ∈ N10

to the equation
E3x = B3(λ|µ|ν)

where (λ|µ|ν) denotes the column vector (λ1, λ2, λ3, µ1, µ2, µ3, ν1, ν2, ν3)T .
We have encoded the hive conditions into a linear system for which the number of

solutions is equal to the Littlewood-Richardson coefficient cν
λ,µ. This formulation can be

generalized for any k ≥ 3. Up to a permutation of rows, one obtains matrices Ek and Bk,
which are the coefficient matrices for the hive inequalities and their corresponding slack
variables; and (λ, µ, ν) respectively. For λ, µ, ν with ℓ(λ), ℓ(µ), ℓ(ν) ≤ k, one can express the
Littlewood-Richardson coefficient cν

λ,µ as the number of solutions x ∈ Nd to the equation

Ekx = Bk(λ|µ|ν) (3.1)

where d is the number of undetermined hive values plus the number of slack variables
introduced (one for each inequality).

57



Define Tk := {(λ, µ, ν) : ℓ(λ), ℓ(µ), ℓ(ν) ≤ k, |λ|= |µ|= |ν|}, and the function

Φk : Tk → N

(λ, µ, ν) 7→ cν
λ,µ.

Rewriting Eq. (3.1) using vector partition functions, we obtain

cν
λ,µ = Φk(λ, µ, ν) = pEk

(Bk(λ, µ, ν)). (3.2)

Therefore, one can compute LR coefficients by computing the vector partition function
associated to Ek, finding the chamber containing the point p := Bk(λ, µ, ν), and finally
using the appropriate quasi-polynomial to evaluate p. However, this approach is inefficient
since the dimension of the chamber complex of Ek, 3

(k
2
)
, is larger than 3k−1 (the dimension

of the space containing Tk). Additionally, one would ideally like an explicit description of
the function Φk. In fact, Rassart proves that such a description not only exists, but that it
is also particularly nice.

Theorem 3.3.1 (Rassart, 2004 [75]). The function Φk is a piecewise polynomial of degree
at most

(k−1
2
)

whose domains of polynomiality are the maximal cones of a fan LRk.

We note that the matrices Ek are not necessarily unimodular (nor DeLS-unimodular),
so that the polynomiality of Φk is not immediately evident from the vector partition for-
mulation of Eq. (3.2). For example, as we illustrate in Section 3.8, the matrix E4 is neither
unimodular nor DeLS-unimodular.

We now summarize Rassart’s process for obtaining the fan LRk from the chamber
complex of Ek. For ease of notation, we let Γk denote the chamber complex of Ek, and let
τk be cone defined by the inequalities λk, µk ≥ 0. Figure 3.2 provides an illustration of the
process with each arrow labelled by the corresponding step outlined below.

1. Intersect Γk with the column space of Bk, col(Bk), to obtain the fan Ck.

2. Replace each cone σ in Ck defined by inequalities {ιi · Bk(λ|µ|ν)T ≥ 0 : i = 1, . . . , m}
with the cone ρk(σ) defined by the inequalities {BT

k ιi · (λ|µ|ν)T ≥ 0 : i = 1, . . . , m} in
order to obtain a fan B∗

kCk ⊆ R3k. Rassart calls this the rectified complex - following
this nomenclature, we call the process of replacing σ with ρk(σ) rectifying the cone σ.

3. Take the intersection of B∗
kCk with the cone τk to obtain the fan LRk ⊆ R3k.1

1In Rassart’s original formulation, the intersection is taken with two cones – one defining partition inequal-
ities, and another defining conditions for the LR coefficient to be non-zero. However, Pak and Vallejo [71]
have shown that each of the partition inequalities except λk, µk, νk ≥ 0 are implied by the hive inequalities,
and Briand [14] has shown that νk ≥ 0 is also implied. The non-negativity conditions are also implied since
each cone of Γk is in posR(Ek).
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Figure 3.2: Obtaining the fan LRk from the chamber complex Γk of Ek.

The chambers of LRk each arise as a set of the form

ρk (γ ∩ col(Bk)) ∩ τk,

for some chamber γ of Ek. We remark however that not all of the chambers of Ek map
to chambers of LRk. Indeed, as we shall see in Section 3.8, the chamber complex of E3

has 21 chambers, of which only 18 map to chambers of LR3. Now, consider some chamber
γ′ ∈ LRk with

γ′ := ρk(γ ∩ col(Bk)) ∩ τk

for some chamber γ of Ek. Then

Φγ′

k (λ, µ, ν) = pγ
Ek

(Bk(λ|µ|ν))

and so pγ
Ek

is a polynomial. In words, the quasipolynomials associated to chambers of Ek

that map to chambers of LRk via Rassart’s procedure are actually polynomials.
The union of the cones of LRk is called the positive Horn cone, and we denote it by

H+
k . The positive Horn cone H+

k admits an explicit description – namely, it is the set of
points in R3k satisfying |λ|+|µ|= |ν|, each of the partition inequalities λi ≥ λi+1 ≥ 0,
µi ≥ µi+1 ≥ 0, νi ≥ νi+1 ≥ 0 for i = 1, . . . , k − 1, as well as a set of inequalities
called Horn inequalities. These inequalities have been described explicitly by Klyachko, as
well as (independently) Knutson and Tao (we direct the reader to [47, Theorem 2.3] for the
formulation). We remark that not all Horn inequalities define facets of H+

k . Those that do
are called essential Horn inequalities.

3.4 The piecewise polynomial Φ3

As previously stated, the piecewise polynomial Φ3 is given explicitly by Rassart in [75]. We
reproduce it here following the the same notation. The rays of the fan LR3 are generated
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by the following minimal ray generators:

a1 = (1, 1, 1 | 0, 0, 0 | 1, 1, 1) a2 = (0, 0, 0 | 1, 1, 1 | 1, 1, 1)

b = (2, 1, 0 | 2, 1, 0 | 3, 2, 1) c = (1, 1, 0 | 1, 1, 0 | 2, 1, 1)

d1 = (1, 1, 0 | 1, 0, 0 | 1, 1, 1) d2 = (1, 0, 0 | 1, 1, 0 | 1, 1, 1)

e1 = (1, 1, 0 | 0, 0, 0 | 1, 1, 0) e2 = (0, 0, 0 | 1, 1, 0 | 1, 1, 0)

f = (1, 0, 0 | 1, 0, 0 | 1, 1, 0)

g1 = (1, 0, 0 | 0, 0, 0 | 1, 0, 0) g2 = (0, 0, 0 | 1, 0, 0 | 1, 0, 0)

and the chambers (along with their polynomials) are given in Table 3.1. We have followed the
notation of [75]. The purpose of pairing off minimal ray generators (i.e having a1, a2) is to
emphasize the effect of the linear symmetry of the LR coefficients obtained by interchanging
λ and µ (this will be discussed in more detail in Section 3.7). The ray generators that have
no pair (b, c, f) are each stabilized by the symmetry. Throughout this section e1, e2 denote
the vectors given above, unless it is explicitly specified that we are dealing with standard
basis vectors.

We note that LR3 is the fan defined by the chambers κ1, . . . , κ18 - that is the cones
of LR3 are the cones κ1, . . . , κ18 along with all of their faces. Similarly, H+

3 is the cone
generated by each of the minimal ray generators, that is: H+

3 = posR(a1, a2, . . . , g2).
The polynomials of Φ3 were computed by interpolation by Rassart. We note that the

description of Φ3 given in [75] contains a couple of typos: ν3 appears in Chambers 13 and
14 (in [75]) instead of ν1 (which is correct).

Example 3.4.1. Let λ = (5, 3, 0), µ = (4, 2, 0), ν = (7, 5, 2), and let p = (λ|µ|ν). Then p
is in κ1 since

p = 2b + e1.

Evaluating using the polynomial Φκ1
3 associated to κ1, we find that

cν
λ,µ = 1 − λ2 − µ2 + ν1

= 1 − 3 − 2 + 7

= 3.

This matches the answer found by counting hives in Example 3.2.2. The point p is also in
Chambers 3, 4, 6, 7, 9, 10, 11, 13, 15, 17, and 18. One can check that the result is invariant to
the choice of chamber containing p.
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Table 3.1: The piecewise-polynomial Φ3

Chamber Ray generators Polynomial
κ1 a1, a2, b, c, d1, d2, e1, e2 1 − λ2 − µ2 + ν1
κ2 a1, a2, b, c, d1, d2, g1, g2 1 + ν2 − ν3
κ3 a1, a2, b, c, e1, e2, g1, g2 1 + λ1 + µ1 − ν1
κ4 a1, a2, b, d1, d2, e1, e2, f 1 + ν1 − ν2
κ5 a1, a2, b, d1, d2, f , g1, g2 1 + λ2 + µ2 − ν3
κ6 a1, a2, b, e1, e2, f , g1, g2 1 − λ3 − µ3 + ν3
κ7 a1, a2, b, c, d1, d2, e1, g1 1 + λ3 + µ1 − ν3
κ8 a1, a2, b, c, d1, d2, e2, g2 1 + λ1 + µ3 − ν3
κ9 a1, a2, b, c, d1, e1, e2, g2 1 + λ1 − λ2
κ10 a1, a2, b, c, d2, e1, e2, g1 1 + µ1 − µ2
κ11 a1, a2, b, c, d1, e1, g1, g2 1 − λ2 − µ3 + ν2
κ12 a1, a2, b, c, d2, e2, g1, g2 1 − λ3 − µ2 + ν2
κ13 a1, a2, b, d1, d2, e1, f , g1 1 − λ1 − µ3 + ν1
κ14 a1, a2, b, d1, d2, e2, f , g2 1 − λ3 − µ1 + ν1
κ15 a1, a2, b, d1, e1, f , g1, g2 1 + µ2 − µ3
κ16 a1, a2, b, d2, e2, f , g1, g2 1 + λ2 − λ3
κ17 a1, a2, b, d1, e1, e2, f , g2 1 + λ1 + µ2 − ν2
κ18 a1, a2, b, d2, e1, e2, f , g1 1 + λ2 + µ1 − ν2

Briand, Rosas, and I have computed the fan LR4 [20] by using the GIT-fan library
developed by Boehm, Keicher and Ren [12] in Singular [32]2. In this case, there are 67769
chambers and 515 rays (i.e 1-dimensional cones of the fan LR4). In Section 3.7, we illustrate
how the explicit description of LR4 aids in computing symmetries of the LR coefficients.
Additionally, in Section 3.8 we use this explicit description in order to make some conjectures
about the linear factors of the polynomials of Φk.

3.5 Summary of original contributions

In the remainder of this chapter, we present novel results related to Littlewood-Richardson
coefficients.

The main result of Section 3.6 is a unifying determinantal formula for the Littlewood-
Richardson coefficients of GL3 (Theorem 3.6.4) starting from Rassart’s description of the
fan LR3. We also describe a different result characterizing the polynomials of GL3 via
integral points on an interval. This interpretation then enables us to find a geometrical
interpretation for a well-known stability result (Proposition 3.6.9) for the LR coefficients

2The chamber complex of A can be obtained as the GIT-fan of A along with the 0 ideal of the ring
C[x1, . . . , xn].
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associated to GL3. This is our second main result. The two are connected by the observation
that a single ray of LR3 has a non-constant Ehrhart polynomial.

In [19], Briand and Rosas computed the full group of linear symmetries of the Littlewood-
Richardson coefficients of GL3. Surprisingly, they found that the number of such symmetries
is 288 - significantly more than the 24 well-known symmetries in the literature. As previ-
ously mentioned, Briand, Rosas, and I have computed the fan LR4. In Section 3.7 we use
the explicit description of the fan LR4 in order show that in the GL4 case the only linear
symmetries are the 24 well-known ones (Theorem 3.7.2). Additionally, we present cell dia-
grams through which one can view the effect of the linear symmetries on the cones of the
chamber complex of SL(3) (obtained by removing the rays a1, a2 from the fan LR3).

In Section 3.8, we study the appearance of linear factors arising in the polynomials
of Φk. The chambers and associated polynomials of Φk arise from the vector partition
function pEk

. In Conjecture 3.8.1 we hypothesize a simple connection between the facets of
H+

k and posR(Ek) that, in conjunction with Conjecture 2.5.4, would allow one to compute
these linear factors. Notably, in the case that a facet of posR(Ek) is external, the formula
for the corresponding external chamber of Ek can be computed via Theorem 2.4.2. In such
a case we would obtain a negative binomial coefficient formula for the associated chamber
of H+

k (see Example 3.8.3).

3.6 Novel results in the k = 3 case

In this section, we consider the GL3 case in more detail. In particular, we exploit the
linearity of the polynomials of Φ3 and properties of the ray generators in order to obtain a
determinantal formula, as well as some stability results.

3.6.1 Determinantal formula

The polynomials for each chamber of LR3 were computed by interpolation by Rassart. By
studying the geometry closely, we are able to find a determinantal formula that yields a new
interpretation for the LR coefficients associated to GL3. This interpretation shows that the
LR coefficients of GL3 can be viewed as continuous volumes of a parallelepiped.

Our main observation is that the only minimal ray generator of the fan LR3 that has a
non-constant Ehrhart polynomial is b, for which the the Ehrhart polynomial is

Φ3(tb) = t + 1.

Indeed, for any of the other minimal ray generators v ∈ {a1, a2, c, d1, d2, e1, e2, f , g1, g2},
the Ehrhart polynomial is constant, i.e Φ3(tv) = 1. Recall from the previous chapter that
external columns aj of A (for some j ∈ {1, . . . , n}) can also be characterized as exactly
the columns of A for which the associated Ehrhart quasi-polynomial pA(taj) has degree
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0. In fact, the external columns generate exactly the set of 1-dimensional cones (rays) of
the chamber complex of A whose associated Ehrhart quasi-polynomial has degree 0. In
this sense, we may view the minimal ray generators {a1, a2, c, d1, d2, e1, e2, f , g1, g2} as
“external” and the minimal ray generator b as internal. Moreover, each of the chambers of
LR3 is simplicial, and contains b as a ray generator. Therefore, we may also (in some sense)
view each of the chambers as “external.” Theorem 3.6.4 in this section, as well as Example
3.8.3 in Section 3.8 suggest that the results of the previous section may be generalized
beyond vector partition functions. Unfortunately, we have not yet been able to prove this
generalization.

We note that the Ehrhart polynomials associated to the ray generators can easily be
verified by evaluating Rassart’s polynomials at the appropriate vectors. However, one can
also compute the Ehrhart polynomials directly from the hive interpretation.3 We note that
what we have called Ehrhart polynomials here are generally called stretched Littlewood-
Richardson coefficients in the literature.

It will also be useful to introduce the auxilliary function Ψ3 : H+
3 ∩ Z9 → N defined by

Ψ3(λ, µ, ν) := Φ3(λ, µ, ν) − 1.

We note that Ψ3 is a piecewise polynomial as well, and moreover, the polynomials of Ψ3 are
linear forms. Also, Ψ3(b) = 1, and Ψ3(v) = 0 for all v ∈ {a1, a2, c, d1, d2, e1, e2, f , g1, g2}.

Recall that each of the chambers of LR3 is simplicial. Thus, for any chamber γ ∈ LR3,
each point p ∈ γ ∩ Z9 can be expressed uniquely as a linear combination of the minimal
ray generators of γ. For such a minimal ray generator v of γ, denote by tγ

p,v the coefficient
of v in this expression. Recall also that b is a ray generator for each of the 18 chambers
of LR3. Thus, given a point p = (λ|µ|ν) ∈ γ, the coefficient tγ

p,b associated to b is well-
defined regardless of the choice of γ. In fact, tγ

p,b is invariant to the choice of chamber γ

containing p.

Lemma 3.6.1. Let p ∈ H+
3 ∩ Z9, such that p ∈ γ for some chamber γ in LR3. Then tγ

p,b
is invariant to the choice of γ containing p.

Proof. Let γ1, γ2, . . . , γm be the chambers of LR3 containing the point p. Then

γ′ :=
m⋂

i=1
γi ∈ LR3

is a face of each of γ1, γ2, . . . , γm since LR3 is a fan. In particular, γ′ is simplicial and
generated by the common minimal ray generators of γ1, . . . , γm. Each of γ′, γ1, . . . , γm are
simplicial, so there is a unique way to express p as a linear combination of the minimal ray

3The fact that Φ3(tb) = t+1 can also be viewed as a special case of a nice result proved by Ikenmeyer [42]
that Φk(t(λ|µ|ν)) = t + 1 whenever cν

λ,µ = 2.
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generators of each of these cones. This unique choice is given by the linear combination of
minimal ray generators of γ′ in each case, and so tγ

p,b is indeed invariant to the choice of
chamber γ containing p.

Motivated by this, we define the b-coefficient of a point p, denoted tp,b to be the
coefficient of b when p is expressed as a linear combination of the generating vectors of γ

for any chamber γ containing p.

Proposition 3.6.2. Let λ, µ, ν be partitions of length ≤ 3, and let p := (λ|µ|ν). Then
cν

λ,µ = tp,b + 1.

Proof. Let γ ∈ LR3 be a chamber containing p, with generators b, v1, . . . , v7, so that
p = tp,bb + tγ

p,v1v1 + · · · + tγ
p,v7v7. Then

cν
λ,µ = Φ3(p) (3.3)

= Ψ3(tp,bb + tγ
p,v1v1 + · · · + tγ

p,v7v7) + 1 (3.4)

= tp,bΨ3(b) + tγ
p,v1Ψ3(v1) + · · · + tγ

p,v7Ψ3(v7) + 1 (3.5)

= tp,b + 1 (3.6)

as required. We note that (3.5) follows by the linearity of Ψ3.

Example 3.6.3. Recall from Example 3.4.1 that for λ = (5, 3, 0), µ = (4, 2, 0), ν = (7, 5, 2)
the point p = (5, 3, 0, 4, 2, 0, 7, 5, 2) is in κ1, and that p = 2b + e1. Thus, tp,b = 2, and so
cν

λ,µ = 2 + 1 = 3.

We now rewrite the b-coefficient by exploiting Cramer’s rule. In order to do this, it is
convenient to project the fan LR3 into R8 by dropping the last coordinate to obtain a fan

˜LR3 ⊆ R8. Since LR3 ⊆ R9 lies in the 8-dimensional subspace defined by the equation
|λ|+|µ|= |ν|, the last coordinate can be recovered. For each of the relevant objects in R9,
we define the analogous objects in R8 obtained by deletion of the final coordinate by putting
a˜overhead. That is, we denote the union of the chambers of ˜LR3, by H̃+

3 , the chambers of
˜LR3 by κ̃1, . . . , κ̃18, and so on.

Then, p ∈ γ if and only if p̃ ∈ γ̃. Additionally, tp̃,b̃ is well-defined (i.e doesn’t depend
on choice of chamber of ˜LR3 containing p̃), and is equal to tp,b. Fix an ordering of the ray
generators of ˜LR3, say

ã1 < ã2 < b̃ < c̃ < d̃1 < d̃2 < ẽ1 < ẽ2 < f̃ < g̃1 < g̃2.

Let λ, µ, ν be partitions of length ≤ 3, and let p̃ = (λ1, λ2, λ3, µ1, µ2, µ3, ν1, ν2). For a given
chamber γ̃ ∈ ˜LR3 containing p̃, let Dγ̃ be the matrix with the generators of γ̃ as its columns
(respecting the given ordering). Let i be the column index corresponding to b̃, and let Dp̃

γ̃

be the matrix Dγ̃ with column i replaced by p̃.
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Then, by Cramer’s rule, the Littlewood-Richardson coefficient cν
λ,µ is

cν
λ,µ =

det(Dp̃
γ̃ )

det(Dγ̃) + 1.

Furthermore, we may note that for any chamber γ̃ ∈ ˜LR3, det(Dγ̃) = ±1, and that the
signs of det(Dγ̃) and det(Dp̃

γ̃ ) are the same, so this expression simplifies to |det(Dp̃
γ̃ )|+1.

We record this result in the following theorem. Here ν̃ = (ν1, ν2).

Theorem 3.6.4. Let λ, µ, ν be partitions with ℓ(λ), ℓ(µ), ℓ(ν) ≤ 3, p̃ := (λ|µ|ν̃), and
γ̃ ∈ ˜LR3 be a chamber containing p̃. Then

cν
λ,µ = |det(Dp̃

γ̃ )|+1.

Let ṽ1, . . . , ṽ7 denote the minimal ray generators of γ̃ apart from b̃. Then |det(Dp̃
γ̃ )|

represents the volume of the parallelepiped

Πγ̃
p̃ := {t0p̃ + t1ṽ1 + · · · + t7ṽ7 : 0 ≤ t0, . . . , t7 ≤ 1}

and so the Littlewood-Richardson coefficient cν
λ,µ = Φ3(p) can be viewed as a continuous

volume.

Example 3.6.5. Consider our running example with λ = (5, 3, 0), µ = (4, 2, 0), ν = (7, 5, 2),
p = (5, 3, 0, 4, 2, 0, 7, 5, 2) (so that p̃ = (5, 3, 0, 4, 2, 0, 7, 5)) and γ = κ1. We deduce that

Dp̃
γ̃ =

ã1 ã2 p̃ c̃ d̃1 d̃2 ẽ1 ẽ2



1 0 5 1 1 1 1 0
1 0 3 1 1 0 1 0
1 0 0 0 0 0 0 0
0 1 4 1 1 1 0 1
0 1 2 1 0 1 0 1
0 1 0 0 0 0 0 0
1 1 7 2 1 1 1 1
1 1 5 1 1 1 1 1

One can check that |det(Dp̃
γ̃ )|= 2 as expected, and so cν

λ,µ = 2 + 1 = 3.

We now consider some consequences of our determinantal formula. Firstly, we are able
to obtain a straightforward proof of the following theorem of King, Tollu, and Toumazet.

Corollary 3.6.6 (King, Tollu, Toumazet, 2004 [46]). Let λ, µ, ν be partitions of length at
most 3. Then

cNν
Nλ,Nµ = 1 + N(cν

λ,µ − 1) (3.7)
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for any positive integer N .

Proof. This follows from the properties of the determinant.

Rassart reproves this result with a case by case analysis on each of the 18 polynomi-
als corresponding to the chambers. However, this follows directly from Theorem 3.6.4 by
determinant properties. Letting p̃ = (λ1, λ2, λ3, µ1, µ2, µ3, ν1, ν2), and γ̃ ∈ ˜LR3 a chamber
containing p̃, we have:

cNν
Nλ,Nµ = |det(DN p̃

γ̃ )|+1

= N |det(Dp̃
γ̃ )|+1

= N(cν
λ,µ − 1) + 1.

Secondly, we can deduce the the Saturation Theorem for the GL3 case since if

cNν
Nλ,Nµ = |det(DN p̃

γ̃ )| + 1 > 0

then clearly cν
λ,µ = |det(Dp̃

γ̃ )|+1 > 0 as well.
Finally, consider (λ, µ, ν) with cν

λ,µ = 1. It is clear that p̃ = (λ1, λ2, λ3, µ1, µ2, µ3, ν1, ν2)
must be in the facet of γ̃ generated by all vectors of γ̃ with the exception of b̃. Thus, N p̃
must also lie in this facet for all positive integers N , and so cν

λ,µ = 1 =⇒ cNν
Nλ,Nµ = 1 as

well. From a geometrical point of view, we see that in this case the paralleliped Πγ̃
p̃ is not

8-dimensional so its volume is 0.

3.6.2 An alternative interpretation of Φ3

In this section we show how to obtain the polynomials of Φ3 from the hive inequalities. Our
main purpose is to prove a result on stability (Proposition 3.6.9). However the intermediate
result given in this section (Eq. (3.8)) is of independent interest.

The piecewise polynomial Φ3 can also be well understood from the hive inequalities,
which we reproduce here (with some rearrangement, and by using the equality |λ|+|µ|= |ν|):
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a1,1 ≤ λ1 + ν1︸ ︷︷ ︸
f1

(H1)

a1,1 ≤ ν1 + ν2︸ ︷︷ ︸
f2

(H2)

a1,1 ≤ λ1 + λ2 + µ1︸ ︷︷ ︸
f3

(H3)

a1,1 ≥ λ2 + ν1︸ ︷︷ ︸
g1

(h1)

a1,1 ≥ ν1 + ν3 − µ3︸ ︷︷ ︸
g2

(h2)

a1,1 ≥ −µ2 + ν1 + ν2︸ ︷︷ ︸
g3

(h3)

a1,1 ≥ λ1 + ν2︸ ︷︷ ︸
g4

(h4)

a1,1 ≥ λ1 + λ2 + µ2︸ ︷︷ ︸
g5

(h5)

a1,1 ≥ λ1 + λ3 + µ1︸ ︷︷ ︸
g6

(h6)

where the inequalities (H1)–(H3) are upper bounds on a1,1 and the inequalities (h1)–(h6)
are lower bounds on a1,1. For each i = 1, 2, 3, let fi(λ, µ, ν) denote the the ith upper bound
of a1,1, and for each j = 1, . . . , 6 let gj(λ, µ, ν) denote the jth lower bound of a1,1. In [21],
we show that each of the 18 chambers corresponds to a particular choice of (i, j). For such a
choice, say (i∗, j∗), the associated chamber κi∗,j∗ (this will be one of the chambers κ1, . . . , κ18

described in Table 3.1 - we index it here by the pair i∗, j∗ to emphasize the correspondence)
is given by the following inequalities

gj∗(λ, µ, ν) ≤ fi∗(λ, µ, ν)

fi∗(λ, µ, ν) ≤ fi(λ, µ, ν) for each i = 1, 2, 3

gj∗(λ, µ, ν) ≥ gj(λ, µ, ν) for each j = 1, . . . , 6.

Together with the hive inequalities, we find that for (λ|µ|ν) ∈ κi∗,j∗ , the possible values of
a1,1 are exactly the integer points on the interval [gj∗(λ, µ, ν), fi∗(λ, µ, ν)]. Each such choice
of a1,1 corresponds to an integral k-hive satisfying BC and HC, and so by Theorem 3.2.1,

cν
λµ = [fi∗(λ, µ, ν), gj∗(λ, µ, ν)] ∩ Z

= fi∗(λ, µ, ν) − gj∗(λ, µ, ν) + 1.
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This formula is valid for each (λ|µ|ν) ∈ γ and is a linear polynomial. Therefore it is exactly
the polynomial of Φ3 associated to γ - that is: Φγ

3 = fi∗(λ, µ, ν) − gj∗(λ, µ, ν) + 1.

As an example, if we choose inequalities (H1) and (h1), we find that

f1(λ, µ, ν) − g1(λ, µ, ν) = (λ1 + ν1) − (λ2 + ν1)

= λ1 − λ2,

which corresponds to the chamber κ9 since the associated polynomial is exactly 1+λ1 −λ2.
From this view, we see that

Φ3(λ, µ, ν) = min
ℓ∈{1,...,18}

Φκℓ
3 (λ, µ, ν), (3.8)

since
Φ3(λ, µ, ν) = 1 + min

i∈{1,2,3}
fi(λ, µ, ν) − max

j∈{1,...,6}
gj(λ, µ, ν).

Conversely, for any choice of p := (λ|µ|ν) ∈ H+
3 one can compute the set of chambers

containing p as follows. Let m be the minimum value over the evaluations fi(λ, µ, ν) (for
i = 1, 2, 3), and M be the maximum value over the evaluations gj(λ, µ, ν) (for j = 1, . . . , 6).
Then compute the sets

S1 := {i : fi(λ, µ, ν) = m} ⊆ {1, 2, 3}

S2 := {j : gj(λ, µ, ν) = M} ⊆ {1, . . . , 6}.

The set of chambers κi,j containing (λ|µ|ν) is exactly the set for which (i, j) ∈ S1 × S2.

Example 3.6.7. For λ = (5, 3, 0), µ = (4, 2, 0), ν = (7, 5, 2),

f1(λ, µ, ν) = f2(λ, µ, ν) = f3(λ, µ, ν) = 12,

g1(λ, µ, ν) = g3(λ, µ, ν) = g4(λ, µ, ν) = g5(λ, µ, ν) = 10,

and
g2(λ, µ, ν) = g6(λ, µ, ν) = 9.

The minimum over the fi is 12 and is achieved by f1, f2, f3 and the maximum over the gj is 10
which is achieved by g1, g3, g4, g5. Therefore (λ|µ|ν) is in exactly the set of chambers of LR3

associated to some (i, j) ∈ {1, 2, 3} × {1, 3, 4, 5}. Equivalently, this is the set of chambers
of LR3 with polynomial in the set {1+fi(λ, µ, ν)−gj(λ, µ, ν) : i ∈ {1, 2, 3}, j ∈ {1, 3, 4, 5}},
which is the same set of 12 chambers described in Example 3.2.2.

We remark that Eq. (3.8) implicitly addresses an interesting question – what happens if
the point (λ|µ|ν) is evaluated with the “wrong” polynomial of Φ3 - i.e if we compute Φγ

3(p)
for a polynomial Φγ

3 associated to a chamber γ not containing p. Eq. (3.8) tells us that this

68



Figure 3.3: Evaluations of fi and gj for λ = (5, 3, 0), µ = (4, 2, 0), ν = (7, 5, 2). Each fi

and gj appears directly below the corresponding evaluation fi(λ, µ, ν) or gj(λ, µ, ν). The
integer points on the interval [maxj gj(λ, µ, ν), mini fi(λ, µ, ν)] = [10, 12] are indicated by
large filled in discs, while the integer points are indicated by smaller open circles. The
Littlewood-Richardson coefficient cν

λ,µ is given by the number of integer points on this
interval, and is therefore equal to 3.

evaluation is at least as large as the evaluation Φγ∗

3 for some chamber γ∗ containing p. We
exploit this fact in our discussion of stability in Section 3.6.3.

We note that by our previous discussion, the statement of Eq. (3.8) can be strengthened.
Let (λ|µ|ν) ∈ H+

3 , and let γ, γ′ be chambers of LR3 such that (λ|µ|ν) ∈ γ and (λ|µ|ν) /∈ γ′.
Then

Φγ
3(λ, µ, ν) < Φγ′

3 (λ, µ, ν).

Notably, one can compute the exact set of chambers containing (λ|µ|ν) without explicitly
using geometry, by computing Φκi

3 (λ, µ, ν) for each i = 1, . . . , 18. The chambers containing
(λ|µ|ν) are exactly those for which the minimimum value of Φκi

3 is attained.

3.6.3 Stability

Our work in Section 3.6.2 allows us to give a geometrical perspective for a well-known
stability result. We begin with the following straight-forward proposition.

Proposition 3.6.8. Let p, r ∈ H+
3 ∩ Z9 be in a common chamber γ ∈ LR3 with tb,r = 0,

then Φ3(p + r) = Φ3(p).

Proof. We proceed by exploiting the linearity of Ψγ
3 :

Φ3(p + r) = Ψγ
3(p + r) + 1

= Ψγ
3(p) + Ψγ

3(r) + 1

= tb,p + tb,r + 1

= tb,p + 1

= Φ3(p).

The first part of the following proposition follows immediately from the result of Sam and
Snowden – that is, that the set of stable triples (λ, µ, ν) are exactly those partition triples
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for which cν
λ,µ = 1 [78, Theorem 4.6]). In particular if b = (λ|µ|ν), the condition tb,r = 0

appearing in the statement of the proposition is equivalent to cν
λ,µ = 1. Our contribution

is the geometrical interpretation (which we give in detail in the discussion immediately
following the result).

Proposition 3.6.9. Let p, r ∈ H+
3 ∩ Z9 with tb,r = 0. Then there exists a positive integer

k0 such that Φ3 (p + (k + 1)r) = Φ3(p + kr) for all integers k ≥ k0. Moreover, the stable
value is

min
γ∈LR3

{Φγ
3(p) : r ∈ γ}.

Proof. The key is to observe that there exists a positive integer k′ such that p + k′r and r
are in the same chamber γ∗. Since γ∗ is a cone, p + kr ∈ γ∗ for all k ≥ k′. Also,

Φ3(p + kr) = 1 + Ψγ∗

3 (p) + kΨγ∗

3 (r) (3.9)

= 1 + Ψγ∗

3 (p). (3.10)

where Eq. (3.10) follows from Eq. (3.9) since Ψγ∗

3 (r) = tb,r = 0. By the same argument
Φ3(p + k′r) is also equal to the expression in (3.10). Thus, taking k0 as k′ confirms the first
part of the result.

Since p + kr ∈ γ∗, by Eq. (3.8), it follows that

Φγ∗

3 (p + kr) ≤ Φγ
3(p + kr)

for all chambers γ ∈ LR3, and so

Ψγ∗

3 (p + k0r) = min
γ∈LR3

{Ψγ′

3 (p + k0r) : r ∈ γ}. (3.11)

Since r is in each of the chambers appearing in the set in the right-hand side of (3.11), and
since Ψ3(r) = 0,

Ψγ∗

3 (p) = min
γ∈LR3

{Ψγ
3(p) : r ∈ γ}

and thus
Φγ∗

3 (p) = min
γ∈LR3

{Φγ
3(p) : r ∈ γ}.

The geometrical interpretation of Proposition 3.6.9 is that the sequence (Φ3(p + kr))k≥0
stabilizes exactly at the first integral value of k for which p + kr is in a chamber contain-
ing r. Additionally, the previous result reveals an interpretation of evaluating a point with
the “wrong” polynomial. More precisely, the stable value Φ3(p + kr) is given by the evalu-
ation Φγ∗

3 (p) of the point p using the polynomial Φγ∗

3 associated to the chamber γ∗ ∈ LR3

which does not necessarily contain p. We have exploited the linearity of the piecewise-
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polynomial Ψ3 in order to obtain the result, but it is worth asking to what extent such a
result may generalize or whether a weaker formulation exists for the general GLk case or
for vector partition functions.

Example 3.6.10. Let λ = (5, 3, 1), µ = (6, 3, 2), ν = (10, 6, 4), so that

p = (5, 3, 1, 6, 3, 2, 10, 6, 4),

and let
r = (1, 0, 0, 1, 0, 0, 2, 0, 0).

Then, tb,r = 0. The sequence Φ3(p + kr) for k = 0, . . . , 6 is illustrated in Table 3.2. We
see from the table that the stable value is 7. We now compute this value by using Proposi-
tion 3.6.9. We first compute that r is only in Chambers κ2, κ3, κ5, κ6, κ11, κ12, κ15, and κ16.
Next, we compute the value Φγ

3(p) in each of these chambers, to find that the minimimum
value of 7 occurs in Chambers 11 and 15. Table 3.3 gives the values of Φ3(p) for each
chamber containing r, with the minimum values in bold font.

Table 3.2: Stability of Φ3(p + kr)

k p + kr λ µ ν cν
λ,µ = Φ3(p + kr)

0 (5, 3, 1, 6, 3, 2, 10, 6, 4) (5, 3, 1) (6, 3, 2) (10, 6, 4) 2
1 (6, 3, 1, 7, 3, 2, 12, 6, 4) (6, 3, 1) (7, 3, 2) (12, 6, 4) 3
2 (7, 3, 1, 8, 3, 2, 14, 6, 4) (7, 3, 1) (8, 3, 2) (14, 6, 4) 4
3 (8, 3, 1, 9, 3, 2, 16, 6, 4) (8, 3, 1) (9, 3, 2) (16, 6, 4) 5
4 (9, 3, 1, 10, 3, 2, 18, 6, 4) (9, 3, 1) (10, 3, 2) (18, 6, 4) 6
5 (10, 3, 1, 11, 3, 2, 20, 6, 4) (10, 3, 1) (11, 3, 2) (20, 6, 4) 7
6 (11, 3, 1, 12, 3, 2, 22, 6, 4) (11, 3, 1) (12, 3, 2) (22, 6, 4) 7

Table 3.3: Evaluation of Φ3(p) in chambers containing r

Chamber κi containing r κ2 κ3 κ5 κ6 κ11 κ12 κ15 κ16
Evaluation Φκi

3 (p) 9 72 9 72 7 74 7 74

3.7 Symmetries of the Littlewood-Richardson coefficients

The study of symmetries associated to the Littlewood-Richardson coefficients is an area of
active research (see [19, 30, 41, 73]). In this section, we compute the set of linear symmetries
associated to the general linear group GL4.

Let λ = (λ1, . . . , λk), µ = (µ1, . . . , µk), ν = (ν1, . . . , νk) be partitions of length at most k.
We define a linear symmetry of the LR coefficient cν

λ,µ to be a linear mapping M on
(λ1, . . . , λk, µ1, . . . , µk, ν1, . . . , νk) such that if M(λ, µ, ν) = (λ∗, µ∗, ν∗) and λ∗, µ∗, ν∗ are
partitions, then cν

λ,µ = cν∗
λ∗,µ∗ . In order to describe the linear symmetries, we introduce some
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notation. For a partition α = (α1, . . . , αk), we write α□ for a partition obtained by tak-
ing the conjuage of α within a rectangle – that is α□ denotes any partition of the form
(j − αk, . . . , j − α1) for some integer j ≥ α1. In the description of the maps, we do not
explicitly give the j.

There are 24 well known-symmetries of the Littlewood-Richardson coefficients associated
to GLk. They are generated by the linear maps:

(λ, µ, ν) 7→ (µ, λ, ν) (3.12)

(λ, µ, ν) 7→ (λ□, µ□, ν□) (3.13)

(λ, µ, ν) 7→ (ν□, µ, λ□) (3.14)

(λ, µ, ν) 7→ (λ − (λk − µk)1, µ − (µk − λk)1, ν) (3.15)

and form a group isomorphic to S2 × S2 × S3. We follow [21] in calling these the general
symmetries of the Littlewood-Richardson coefficients.

The first three of these symmetries (and thus the 6 symmetries that they generate) can
be derived from the interpretation of LR coefficients as intersections of triples of Schubert
varieties [85] (there are also combinatorial proofs given in [71]). The last of these has long
been known – for example via Schur functions [18].

In a recent preprint, Briand and Rosas [19] studied the linear symmetries of the LR
coefficients associated to the special linear group SL(3), and surprisingly found 144 sym-
metries (this translates to 288 linear symmetries of the LR coefficients associated to GL3).
In addition to the general symmetries, they found the following symmetry:

(λ1, λ2, λ3, µ1, µ2, µ3, ν1, ν2, ν3) 7→ (λ1 + µ1 − ν2, λ2 + µ1 − ν2, λ3, ν2, µ2, µ3, ν1, µ1, ν3)

that together with the general symmetries generates the full 288 element symmetry group,
which is isomorphic to S2 × S2 × (S3 ≀ S2) where ≀ denotes the wreath product (for the
definition of wreath product, see for example [[33], page 187]). In [21], we show that these
linear symmetries act on the rays (1-dimensional cones) of LR3 by permutations that fix
each of the sets

{a1, a2}, {b}, {c, f}, {d1, e2, g1}, {d2, e1, g2}

and allow the interchange of the sets {d1, e2, g1}, {d2, e1, g2}. These are exactly the per-
mutations of rays that preserve the chamber complex. We also introduce objects called cell
diagrams that capture the 144 symmetries of the SL(3) case. These diagrams encode each
of the cones of the fan associated to the LR coefficients of SL(3) (which is obtained by
deleting the generating rays a1, a2 from each of the cones of LR3). They encode each of the
9 generating rays of this fan (i.e b, c, d1, d2, e1, e2, f , g1, g2) via items which are one of: a
vertex of a hexagon, a left (“West”) pointing triangle, a right (“East”) pointing triangle, or
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a central dot. See Table 3.4 for the exact correspondence. Each of the cones of the fan is
then given by the set of all items associated to the rays of the cone.

g2 e1 d2

e2 g1 d1

c b f

Table 3.4: The cell diagrams of the nine minimal rays of the SL(3) chamber complex

In order to describe how the linear symmetries act on the cell diagrams, we define two
triangles TN and TS . Let TN be the triangle joining the vertices of the hexagon corresponding
to rays d1, e2, g1, and let TS be the triangle joining the vertices of the hexagon corresponding
to rays g2, d2, e1 (see Table 3.4 for more details – the triangle TN points “North” and the
triangle TS points “South”). Then the group of linear symmetries associated to SL3 is
generated by:

1. the symmetries of the hexagon,

2. the symmetries of TN (keeping all other items unchanged),

3. the symmetries of TS (keeping all other items unchanged),

4. the involution which maps the West pointing triangle to the East pointing triangle
and vice-versa.

We remark that a different interpretation of the symmetries of the LR coefficients as-
sociated to SL(3) appears in [30]. There the symmetries are encoded by actions on two
3 × 3 matrices (transposition of both matrices, simultaneous permutation of rows, simul-
taneous permutation of columns, and exchange of the two matrices). An advantage of the
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cell diagrams is that they encode information about the cone itself – for example the num-
ber of items is the dimension of the cone (which is not easy to discern in the array-pair
interpretation).

The computation of the 288 symmetries in the k = 3 case was made through the following
observation.

Theorem 3.7.1 (Briand, Rosas, 2020 [19]). A linear symmetry of the LR coefficients as-
sociated to GLk induces a permutation of the chambers of LRk.

Recall that we have computed the fan LR4. By using Theorem 3.7.1 in this case, we are
able to compute the linear symmetries in the k = 4 case.

Theorem 3.7.2. There are 24 linear symmetries of the Littlewood-Richardson coefficients
associated to GL4. They are the general symmetries.

Question 3.7.3. Is it true that for all positive integers k > 3 that the only linear symmetries
of the LR coefficients associated to GLk are exactly the 24 general symmetries? This seems
intuitively true for two reasons:

1. As k grows, the fan LRk has many more chambers and rays, therefore it seems less
likely that there exist permutations of the rays that preserve each of the chambers.

2. The polynomials of the Φ3 case are all of degree 1 so it is unsurprising that they
interact well with linear symmetries. However, for k > 3, the polynomials of Φk are
not linear.

Remark 3.7.4. Other symmetries of the Littlewood-Richardson coefficients (that are not
linear) have also been studied. For example, a result of Coquereaux and Zuber [28] relating
to the LR coefficients of SL(3) states that for any λ, µ with ℓ(λ), ℓ(µ) ≤ 2,

∑
ν

cν
λ,µ =

∑
ν′

cν′

λ,µ
. (3.16)

The symmetry underlying Eq. (3.16) is not linear, but piecewise linear (see [28] for details).

3.8 Linear factors of Littlewood-Richardson polynomials

In this section, we discuss our attempts to apply the work of Chapter 2 to the study of
Littlewood-Richardson coefficients. Our aim is to study the appearance of linear factors in
the polynomials of Φk by studying the matrices Ek and their associated vector partition
functions pEk

. Ideally, we would like to prove the following conjecture.

Conjecture 3.8.1. Let f be a facet of H+
k which is not defined by one of the two hyperplanes

λk = 0 or µk = 0. Let ι be an inner normal of f. Let W denote the subspace of R3k defined
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by |λ|+|µ|= |ν|. Then f corresponds to a facet f ′ of posR(Ek) with inner normal ι by the
following relation

(ι′)T Bk − ι ∈ W.

Moreover, for any chamber γ of LRk intersecting f (3k − 1)-dimensionally, the polyno-
mial Φγ

k has linear factors
ι · (λ|µ|ν) + i

for i = 1, . . . , k − 1 where k is the number of columns of Ek not on f .

We first discuss the correspondence of facets of posR(Ek) and facets of H+
k described by

Conjecture 3.8.1. By applying Rassart’s procedure, we can relate the positive Horn cone to
posR(Ek) by the following equation

H+
k = ρk(posR(Ek) ∩ col(Bk)) ∩ τk.

Consider a facet f ′ of posR(Ek) with minimal inner normal ι′, so f ′ = Hι′ ∩ posR(Ek).
Such a facet describes one of the inequalities ι′ · b ≥ 0 which defines the cone posR(Ek).
It may (or may not) also describe an inequality of the form ι′ · (Bk(λ|µ|ν)) ≥ 0 for the
cone pos(Ek) ∩ col(Bk). In such a case we see that the rectification process produces the
inequality (

(ι′)T Bk

)
· (λ|µ|ν) ≥ 0

If this is not already implied by the inequalities of τk, then this inequality defines a facet
f of the positive Horn cone H+

k with inner normal ι := (ι′)T Bk. Our claim is that every
facet H+

k with the exception of the one defined by λk = 0 and the one defined by µk = 0 is
obtained in this manner. We have checked this result numerically for the cases k = 3, 4, 5, 6.

Ideally, we would like to apply the result of Baldoni and Vergne (Theorem 2.5.3) in
order to compute linear factors of polynomials associated to semi-external chambers of Ek.
However, as we remarked in Section 3.3, the matrices Ek are not unimodular in general,
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and so Theorem 2.5.3 does not apply. For example in the k = 4 case, the matrix

E4 =



1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

−1 1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
−1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


is not unimodular as the submatrix obtained by taking the set of columns with indices
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 20, 21} has determinant 2. In fact, E4 is not
even DeLS-unimodular.

On the other hand, we do know that for each of the chambers γ of Ek for which
ρk(γ ∩ col(Bk)) ∩ τk is a chamber of LRk, that pγ

Ek
is a polynomial. Therefore, sub-

ject to proving Conjecture 2.5.4, one only needs to verify that the dot product condition of
Conjecture 2.5.4 holds for a given facet of posR(Ek) in order to compute linear factors. We
have verified that this condition does indeed hold for the cases k = 3, 4, 5, 6.

We now illustrate some evidence for Conjecture 2.5.4. As stated earlier, the fan LR4

has 67769 chambers – we abuse notation slightly by calling them κ1, . . . , κ67769. It should
be understood from context if we are talking about chambers of the GL3 or GL4 case.

Example 3.8.2. Consider the facet f of H+
4 corresponding to the essential Horn inequality

λ2 + µ2 ≥ ν3.
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Exactly 12 of the ray generators of LR4 lie on f . The chamber κ67579 with minimal ray
generators

(0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

(1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0) (1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0) (1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1)

(1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0) (1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1)

(2, 1, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1) (4, 2, 1, 0, 4, 2, 1, 0, 5, 4, 3, 2)

meets f 10-dimensionally (the only minimal ray generator of κ67579 not lying on f is
(4, 2, 1, 0, 4, 2, 1, 0, 5, 4, 3, 2)). In this case, we find by interpolation that the associated poly-
nomial Φκ67579

4 (λ|µ|ν) is

1
6(λ2 +µ2 −ν3 +1)(λ2 +µ2 −ν3 +2)(−3λ1 −2λ2 −3λ4 −2µ1 −3µ3 +3µ4 +3ν1 +3ν2 +2ν3 +3).

The facet f corresponds to the facet f ′ of posR(E4) with minimal inner normal

ι′ := (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0)

since (ι′)T B4(λ|µ|ν) is the Horn inequality corresponding to the facet f . We find that
exactly 3 columns of E4 do not lie on f . We note that the facet f ′ satisfies the conditions
of Conjecture 2.5.4 that predicts the factors λ2 + µ2 − ν3 + 1 and λ2 + µ2 − ν3 + 2.

Example 3.8.3. Consider the facet f of H+
4 corresponding to the essential Horn inequality

λ1 + λ3 + µ1 + µ2 ≥ ν1 + ν3.

The facet f is contained in the chamber κ67709 of LR4 with minimal ray generators

(0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1) (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1)

(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0) (1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1)

(1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1) (1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1) (1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1)

(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1) (4, 3, 1, 0, 3, 2, 1, 0, 6, 4, 3)

We have computed by interpolation that the polynomial Φγ
4 is

Φγ
4(λ, µ, ν) =

(
λ1 + λ3 + µ1 + µ2 − ν1 − ν3 + 3

3

)
.

We note that the facet f corresponds to the facet f ′ of E4 with minimal inner normal

ι′ := (0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0).
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since ι′B4(λ|µ|ν) is the essential Horn inequality corresponding to the facet f . One should
not be surprised to find that f ′ is an external facet of E4. In this case we do not need to
rely on Conjecture 2.5.4, as the formula is given by applying Theorem 2.4.2 (having checked
the E4-minimality of the external columns on f ′).

In the k = 4 case, there are 21 facets of H+
4 which correspond to external facets of E4.

These are defined by essential Horn inequalities (coincidentally this is exactly the number
of external facets of E3 - however, not of H+

3 ). We list the linear forms associated to the
essential Horn inequalities:

−λ1 − λ2 − µ3 − µ4 + ν1 + ν2 −λ1 − λ3 − µ2 − µ4 + ν1 + ν2

−λ1 − λ3 − µ3 − µ4 + ν1 + ν3 −λ1 − λ4 − µ1 − µ4 + ν1 + ν2

−λ1 − λ4 − µ2 − µ4 + ν1 + ν3 −λ2 − λ3 − µ2 − µ3 + ν1 + ν2

−λ2 − λ3 − µ2 − µ4 + ν1 + ν3 −λ2 − λ3 − µ3 − µ4 + ν2 + ν3

−λ2 − λ4 − µ1 − µ3 + ν1 + ν2 −λ2 − λ4 − µ1 − µ4 + ν1 + ν3

−λ2 − λ4 − µ2 − µ3 + ν1 + ν3 −λ2 − λ4 − µ2 − µ4 + ν2 + ν3

−λ3 − λ4 − µ1 − µ2 + ν1 + ν2 −λ3 − λ4 − µ1 − µ3 + ν1 + ν3

−λ3 − λ4 − µ2 − µ3 + ν2 + ν3 λ2 + λ3 + µ1 + µ2 − ν2 − ν3

λ1 + λ3 + µ1 + µ3 − ν2 − ν3 λ1 + λ3 + µ1 + µ2 − ν1 − ν3

λ1 + λ2 + µ2 + µ3 − ν2 − ν3 λ1 + λ2 + µ1 + µ3 − ν1 − ν3

λ1 + λ2 + µ1 + µ2 − ν1 − ν2

The polynomial associated to each corresponding chamber is indeed given by the ap-
propriate negative binomial coefficient.

We now reconstruct the k = 3 case to further illustrate the facet correspondence de-
scribed by Conjecture 3.8.1. Recall that E3 is the matrix

E3 =



1 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0

−1 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1



.

The cone posR(E3) has 21 facets. In fact, E3 has 21 chambers, each of which is external
– thus the facets of posR(E3) are all external facets, and there is a 1 to 1 correspondence
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between facets of posR(E3) and chambers of E3. For each of these facets, we compute the
minimal inner facet normal ι′ and then compute ιT B3. We then identify whether or not
ι := ιT B3 is an inner facet normal for some facet of H+

3 .
Table 3.5 illustrates the correspondence of facets of posR(E3) and facets of H+

3 . The
facets of posR(E3) are represented by their corresponding minimal inner facet normals in
the second column. The linear forms potentially defining facets of H+

3 are given in the third
column. We note that Facets 7, 17, and 21 of posR(E3) do not map to facets of H+

3 , but
we give the corresponding linear forms regardless. In the fourth column we illustrate the
LR3 chamber containing the facet of H+

3 or indicate if there is no such chamber (since the
facet of posR(E3) does not map to a facet of H+

3 ). In total there are 22 facets of H+
3 , and,

as expected, there are two which are not mapped to, which are defined by the equations
λ3 = 0 and µ3 = 0.

Table 3.5: Correspondence of facets of posR(E3) and facets of H+
3 .

# posR(E3) inner facet normal Potential H+
3 facet linear form LR3 chamber

1 (1, 1, 0, 0, 0, 0, 0, 0, 0) −λ3 − µ1 + ν1 κ14
2 (1, 0, 1, 0, 0, 0, 0, 0, 0) λ1 + µ3 − ν3 κ8
3 (1, 0, 0, 1, 0, 0, 0, 0, 0) λ1 − λ2 κ9
4 (1, 0, 0, 0, 0, 1, 0, 0, 0) λ1 + µ2 − ν2 κ17
5 (1, 0, 0, 0, 0, 0, 1, 0, 0) ν1 − ν2 κ4
6 (1, 0, 0, 0, 0, 0, 0, 1, 0) −λ2 − µ2 + ν1 κ1
7 (1, 0, 0, 0, 0, 0, 0, 0, 0) λ1 + ν1 None
8 (0, 1, 0, 0, 1, 0, 0, 0, 0) λ2 − λ3 κ16
9 (0, 1, 0, 0, 0, 0, 0, 0, 1) λ2 + µ2 − ν3 κ5
10 (0, 0, 1, 0, 1, 0, 0, 0, 0) −λ3 − µ2 + ν2 κ12
11 (0, 0, 1, 0, 0, 0, 0, 0, 1) ν2 − ν3 κ2
12 (0, 0, 0, 1, 1, 0, 0, 0, 0) λ1 + µ1 − ν1 κ3
13 (0, 0, 0, 1, 0, 0, 0, 0, 1) −λ2 − µ3 + ν2 κ11
14 (0, 0, 0, 0, 1, 1, 0, 0, 0) −λ3 − µ3 + ν3 κ6
15 (0, 0, 0, 0, 1, 0, 1, 0, 0) λ2 + µ1 − ν2 κ18
16 (0, 0, 0, 0, 1, 0, 0, 1, 0) µ1 − µ2 κ10
17 (0, 0, 0, 0, 1, 0, 0, 0, 0) λ1 + λ2 + µ1 None
18 (0, 0, 0, 0, 0, 1, 0, 0, 1) −µ2 − µ3 κ15
19 (0, 0, 0, 0, 0, 0, 1, 0, 1) −λ1 − µ3 + ν1 κ13
20 (0, 0, 0, 0, 0, 0, 0, 1, 1) λ3 + µ1 − ν3 κ7
21 (0, 0, 0, 0, 0, 0, 0, 0, 1) −µ3 + ν1 + ν2 None

The problem of computing linear factors of the stretched Littlewood-Richardson polyno-
mials P ν

λ,µ(t) := ctν
tλ,tµ has been studied by King, Tollu, and Toumazet [47, Section 6]. They

offer conjectures based on what they call the negatively stretched Littlewood-Richardson
coefficients.

Last year, in [23], Chaput and Ressayre proved an interesting result relating particular
Littlewood-Richardson coefficents and binomial coefficients. For positive integers p, q and a
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partition α of length at most k define α(p, q) to be the partition

α(p, q) := (pα1, . . . , pα1, pα2, . . . , pα2, . . . , pαk, . . . , pαk)

where each pαi appears exactly q times.

Theorem 3.8.4 (Chaput, Ressayre, 2022 [23]). Let λ, µ, ν be partitions of length at most
k with cν

λ,µ = 2. Then

c
ν(p,q)
λ(p,q),µ(p,q) =

(
p + q

q

)
for any positive integers p, q.

Finally, the following conjecture about the matrices Ek may be interesting to prove in
order to better understand the facets of posR(Ek).

Conjecture 3.8.5. Each of the columns of Ek is an external column.
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Chapter 4

Kronecker Coefficients

4.1 Background

The Kronecker coefficients gλ,µ,ν are the structure constants in the decomposition of a tensor
product of irreducible representations of the symmetric group into irreducible representa-
tions:

Vµ ⊗ Vν =
⊕

λ

gλ,µ,νVλ.

Consequently, they can be expressed using Schur polynomials

sλ[XY ] =
∑
µ,ν

gλ,µ,νsµ[X]sν [Y ], (4.1)

where X := (x1, . . . , xm), Y := (y1, . . . , yn), XY := (x1y1, x1y2, . . . , xmyn). Here, the Schur
polynomials are indexed by partitions λ, µ, ν with at most mn, m, n parts, respectively.

Since their introduction in 1938 by Murnaghan, the Kronecker coefficients have proved
to be among the most intriguing objects in algebraic combinatorics. After several decades of
research, many open questions about the Kronecker coefficients remain. They are all non-
negative integers, but have no known combinatorial interpretation, unlike the Littlewood-
Richardson coefficients. One might view Kronecker coefficients as a generalization of the
Littlewood-Richardson coefficients, hence the resistance to a clear interpretation is surpris-
ing, particularly in view of the publicity they have received1.

The basic problem of computing the Kronecker coefficient gλ,µ,ν for general partitions
λ, µ, ν is #P-hard (in the bitlength of the size of the partitions) and contained in GapP [22]2.
Baldoni, Vergne and Walter distribute code [2] for use with Maple mathematical software to
compute Kronecker coefficients for partitions λ, µ, ν of bounded lengths (ℓ(λ), ℓ(µ), ℓ(ν) ≤ 3;

1“One of the main problems in the combinatorial representation theory of the symmetric group is to
obtain a combinatorial interpretation for the Kronecker coefficients.” [81]

2Problems in GapP can be expressed as the difference of two functions which are in #P.
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and ℓ(λ) ≤ 6, ℓ(µ) ≤ 2, ℓ(ν) ≤ 3). There are at least two packages that handle partition
sets without a bound on length, such as [25] and the SF Maple package of Stembridge [82].
These two packages are prohibitably computationally expensive except for some small or
particular cases.

Even the problem of approximating the Kronecker coefficients is non-trivial and very
few useful bounds are known. Pak and Panova [68, Corollary 3.4] determine a bound for
partitions λ, µ, ν with ℓ(λ) ≤ l, ℓ(µ) ≤ m, ℓ(ν) ≤ n:

gλ,µ,ν ≤
l∏

i=1

(
λi − i + mn

mn − i

)
. (4.2)

More recently, in [70], they obtained the following bound in N = |λ|= |µ|= |ν| via contin-
gency tables

gλ,µ,ν ≤
(

1 + lmn

N

)N (
1 + N

lmn

)lmn

. (4.3)

We remark that both of these bounds are polynomial in the length of the partitions –
however, the degree is generally not optimal. For example, when l = 4, m = 2, n = 2, we
find that if λ = (N

4 , N
4 , N

4 , N
4 ), both bounds are of the order O(N16) whereas the actual

growth is (more precisely) O(N2) [15].
By h(u), we denote the hook-length of the box u in the Ferrers diagram of λ. The hook

length formula [70, Corollary 3.2] also gives a bound:

gλ,µ,ν ≤ min(fλ, fµ, fν),

where fα := k!∏
u∈[λ]

h(u) for a partition α of length k.

Some progress has been made to understand conditions on λ, µ, ν for which gλ,µ,ν = 0.
Denote by kα the partition obtained by multiplying each part of α by k. Recall that the
Littlewood-Richardson coefficients satisfy a saturation property:

cν
λ,µ = 0 ⇐⇒ ckν

kλ,kµ = 0.

The Kronecker coefficients do not satisfy such a property universally:

g(1,1),(1,1),(1,1) = 0, but g(2,2),(2,2),(2,2) = 1.

Even deciding “gλ,µ,ν = 0?" is NP-hard [43]. There are numerous vanishing conditions
known – typically expressed as inequalities in the parts of λ, µ, ν which guarantee that
the coefficient gλ,µ,ν is zero. A classical result of Murnaghan and Littlewood (appearing for
example in [45]) is that for any non-zero Kronecker coefficient gλ,µ,ν , it follows that λ ≤ µ+ν,
where γ is the partition obtained by deleting the first part of partition γ. Consider the set
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of points constructed by concatenating partitions of fixed length. Those points that come
from partitions giving a non-zero Kronecker coefficient have a nice geometry. Specifically,

Kronl,m,n := {(λ, µ, ν) ∈ Zl+m+n : gλ,µ,ν ̸= 0, ℓ(λ) ≤ l, ℓ(µ) ≤ m, ℓ(ν) ≤ n}

is a finitely generated semigroup in Zl+m+n that generates a rational polyhedral cone.
Following Manivel [58], we call this cone the Kronecker polyhedron and denote it PKronl,m,n.
In [49] the cone PKronl,m,n is computed explicitly for small values of l, m, n, and it seems
the number of inequalities increases rapidly. While this set is theoretically computable for
any positive integers l, m, n, it is quickly computationally infeasible to do so. Another set
of vanishing conditions valid for triples of partitions of any lengths were given recently by
Ressayre in [77, Theorems 1 & 2].

Just as the Littlewood-Richardson coefficients, the Kronecker coefficients also exhibit
the phenomenon of stability. A classic result of Murnaghan states that for partitions (λ, µ, ν)
the sequence

(
gλ+(k),µ+(k),ν+(k)

)
k≥0

eventually stabilizes. Since then, many other partition
triples α, β, γ with this property have been identified– that is, the values of the sequence
(gλ+kγ,µ+kα,ν+kβ)k≥0 stabilize for any choice of λ, µ, ν. Such triples (α, β, γ) are called stable
triples. Stabilization phenomenon have been studied in [17, 58, 59, 72, 83].

Applications of Kronecker coefficients extend beyond the realm of algebraic combina-
torics. The Geometric Complexity Theory (GCT) program, developed by Mulmuley and
Sohoni, with the goal of solving P versus NP , relies heavily on the computation of Kro-
necker coefficients as one of its main ingredients (see [11, 43, 64]). More specifically, problems
of positivity (as discussed in the Appendix of [16] entitled Erratum to the saturation hypoth-
esis (SH) in “Geometric Complexity Theory VI” and contributed by Mulmuley) related to
the previously described saturation problems play an important role.

Kronecker coefficients appear in quantum computing where they encode the relationship
between composite systems and their subsystems [25, 26, 27]. As in the case of GCT, being
able to determine the positivity of Kronecker coefficients is useful. In the context of quantum
computing, non-zero Kronecker coefficients correspond to admissible spectral triples which
play an important role in the study of bipartite quantum states in quantum information
theory [24].

4.1.1 Kronecker coefficients and vector partition functions

Here, we address many of these fundamental questions on Kronecker coefficients using a
detailed analysis of Eq. (4.1). The first step is to deduce an expression for gλ,µ,ν using
coefficient extraction of multivariate Taylor series of rational functions. This formulation
allows us to represent Kronecker coefficients as a signed sum of vector partition function
evaluations.
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We reformulate the expression for gλ,µ,ν given in [62, Theorem 26] as Theorem 4.1.1
below. Once positive integers m, n are chosen, the main ingredients in this approach are:

1. a matrix Am,n and its vector partition function pAm,n ;

2. vectors α, β of length m − 1 and n − 2 respectively;

3. linear functions rs, rt;

4. linear functions ls(·; σ), lt(·; σ) defined for each σ ∈ Smn.

The quantities α, β, and the linear functions rs, rt, ls, lt (which all depend on m, n) are
explicitly given in the discussion after Theorem 4.1.1 and defined (implicitly) in [62]. The
matrices Am,n are given implicitly in [62]; we give explicitly only the cases m = 2, n = 3, 4
used in our work. For given m, n and σ, we call the function in the parts of λ, µ, ν given by

bm,n(λ, µ, ν; σ) := (rs(µ, ν) + α − ls(λ; σ), rt(µ, ν) + β − lt(λ; σ))

the vector partition function input of σ. Additionally, we refer to the quantity

sgn(σ) pAm,n

(
bm,n(λ, µ, ν; σ)

)
as the contribution of the alternant term associated to σ. In general it will be clear to which
m, n we refer, but we explicitly state this when needed.

Theorem 4.1.1 (Mishna, Rosas, Sundaram, 2021, [62]). Let m, n be positive integers. Then
for any partitions λ, µ, ν with ℓ(λ) ≤ mn, ℓ(µ) ≤ m, ℓ(ν) ≤ n, we have

gλ,µ,ν =
∑

σ∈Smn

sgn(σ) pAm,n

(
bm,n(λ, µ, ν; σ)

)
. (4.4)

The following expressions are implicit in [62], however we have computed here the explicit
formulations. With the exception of the vector partition function pAm,n , they constitute the
necessary ingredients of Theorem 4.1.1. The expressions are valid for all integers u, v with
1 ≤ u ≤ m − 1 and 1 ≤ v ≤ n − 2. The components of the vectors α, β are:

α0 = 1
2 (nm + n − m − 2)(n − 1)(m − 1)

αu = 1
2
(
u2n − 2 unm + 2 nm2 − u2 + u − n − 2 m + 2

)
(n − 1)

βv = 1
12
(
8 n2m2 − 6 vnm + 5 n2m − 10 nm2 + 6 v2 − 12 vn + 6 vm − 19 nm + 2 m2 + 18 v + 14 m

)
(m − 1).
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The components of the vectors rs(µ, ν) and rt(µ, ν) are:

rs(µ, ν)0 = |ν|−ν1 +
(

n − 1
2

)
rs(µ, ν)u =

m∑
i=u+1

µi + |ν|−ν1 +
(

m − u

2

)
+
(

n − 1
2

)

rt(µ, ν)v =
m∑

i=2

(i − 1)µi + (m − 1)
v+1∑
j=2

νj + m

n∑
j=v+2

νj +
(

m

3

)
+ (m − 1)

(
n − 1

2

)
+
(

n − v − 1
2

)
.

The components of the vectors ls(λ; σ) and lt(λ; σ) are:

ls(λ; σ)0 =
mn∑

i=m+1

(
λσ(i) + δ

(mn)
σ(i)

)

ls(λ; σ)u =
m+u(n−1)∑

i=u+1

(
λσ(i) + δ

(mn)
σ(i)

)
+ 2

mn∑
i=m+u(n−1)+1

(
λσ(i) + δ

(mn)
σ(i)

)

lt(λ; σ)v =
m∑

i=2

(i − 1)
(

λσ(i) + δ
(mn)
σ(i)

)
+ (m − 1)

m+v∑
i=m+1

(
λσ(i) + δ

(mn)
σ(i)

)
+ m

m+n−1∑
i=m+v+1

(
λσ(i) + δ

(mn)
σ(i)

)

+
m−1∑
i=1

v∑
j=1

(i + m − 1)
(

λσ(m+i(n−1)+j) + δ
(mn)
σ(m+i(n−1)+j)

)
+

m−1∑
i=1

n−1∑
j=v+1

(i + m)λm+i(n−1)+j .

The identity permutation in Smn is denoted by Id. It is convenient to have an explicit
derivation in the case when σ = Id:

ls(λ; Id)0 =
mn∑

i=m+1
λi + 1

2 (mn − m − 1)(n − 1)m

ls(λ; Id)u =
m+u(n−1)∑

i=u+1
λi + 2

mn∑
i=m+u(n−1)+1

λi + 1
2(m − u)

(
2mn − u − m − 1

)

+ (n − 1)2m −
(

n

2

)
+ 1

2(n − 1)(m − 1)
(

n(m − 1) − m

)
+ 1

2(n − 1)(m − u)
(

mn − u(n − 1) − m − 1
)

lt(λ; Id)v =
m∑

i=2
(i − 1)λi + (m − 1)

m+v∑
i=m+1

λi + m
m+n−1∑

i=m+v+1
λi

+
m−1∑
i=1

v∑
j=1

(i + m − 1)λm+i(n−1)+j +
m−1∑
i=1

n−1∑
j=v+1

(i + m)λm+i(n−1)+j

+ m

12
(
8 m2 − 3 m + 1

)
n2 − m (m + 1) (10 m + 6 v − 1) n

+ 2 m
(
3 v2 + 3 vm + 2 m2 + 6 v + 3 m + 1

)
.

For u = 0, . . . , m−1, the constant term (with respect to λ1, . . . , λmn, µ1, . . . , µm, ν1, . . . , νn)
of the ith coordinate of rs(µ, ν) + α − ls(λ; Id) is 0, and for all 1 ≤ v ≤ n − 2, the constant
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term of the jth coordinate of rt(µ, ν) + β − lt(λ; Id) is also 0. In other words both rs(µ, ν) +
α − ls(λ; Id) and rt(µ, ν) + β − lt(λ; Id) are linear forms whose variables are the parts of
λ, µ, ν (and thus so is the vector partition function input bm,n(λ, µ, ν; Id)).

The expression in Eq. (4.4) writes the Kronecker coefficient gλ,µ,ν as a signed sum over
permutations. As we shall see, the single term associated with the identity permutation is
the largest, and can be used to derive properties about the Kronecker coefficient. Specifically,
for partitions λ, µ, ν with ℓ(µ) ≤ m, ℓ(ν) ≤ n ℓ(λ) ≤ mn, the atomic Kronecker coefficient
g̃m,n

λ,µ,ν is the coefficient obtained by taking only the contribution of the alternant term
corresponding to the identity permutation in Eq. (4.4) - that is,

g̃m,n
λ,µ,ν := pAm,n

(
bm,n(λ, µ, ν; Id)

)
. (4.5)

Atomic Kronecker coefficients were introduced in [62], where it was proven that in the
m = n = 2 case they provide an upper bound for the Kronecker coefficients. These authors
also conjecture that they provide an upper bound in general [61]. This seems to be justified
in each computation we have made (in the m = 2, n = 3, 4 cases). Interestingly, the atomic
Kronecker coefficients depend on the values m, n and not just the indexing partitions. As
an example (given also in [62]), consider λ = (12, 7, 4, 1), µ = (12, 12), ν = (12, 12). If we
set, m = n = 2, the atomic Kronecker coefficient g̃2,2

λ,µ,ν is 32 - however, by padding λ and
ν with zeroes (i.e. representing λ, ν as λ = (12, 7, 4, 1, 0, 0), ν = (12, 12, 0)), we find that the
atomic Kronecker coefficient g̃2,3

λ,µ,ν in this case is 8793. The atomic Kronecker coefficients
are expressed using a single partition function, which is polynomial time computable for a
fixed dimension. However, the dimension grows very quickly as a function of m, n.

4.2 Vector partition functions and Kronecker coefficients

The central formula, Eq. (4.4), was developed by Mishna, Rosas and Sundaram [62]. It is
deduced from the formula using Schur polynomials, determinant formulas for Schur poly-
nomials and, a variable substitution. We reproduce some of the details here to establish
notation.

4.2.1 From Schur polynomials to vector partition generating functions

Recall from Chapter 1 the staircase partition δ(k) = (k − 1, k − 2, . . . , 1, 0). Also recall that
the alternant aλ(x1, . . . , xk) is the anti-symmetric polynomial

aλ(x1, . . . , xk) := det(xλj

i )1≤i,j≤k.
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An expression for the Kronecker coefficients involving alternants is

aδ(m)[X]aδ(n)[Y ]
aδ(mn)[XY ]

aλ+δ(mn) [XY ] =
∑
µ,ν

gλ,µ,νS(aµ+δ(m) [X])S(aν+δ(n) [Y ]), (4.6)

where

X = (1, x1, . . . , xm−1), Y = (1, y1, . . . , yn−1),

XY = (1, x1, . . . , xm−1, y1, . . . , yn−1, x1y1, x1y2, . . . , xm−1yn−1),

and

S(aα(z1, . . . , zk)) =
k∏

i=1
zαi

i ,

for a partition α of length at most k. We note that in each of X, Y, XY of our starting point,
Eq. (4.1), one of the indeterminates has been replaced with 1. This can be done since the
Schur polynomials are homogeneous (each term is of the same degree).

The ratio of alternants a
δ(m) [X]a

δ(n) [Y ]
a

δ(mn) [XY ] simplifies to the rational function

aδ(m) [X]aδ(n) [Y ]
aδ(mn) [XY ] = 1

ABCDEF

with the following polynomials:

A =
n∏

j=1

m∏
i=1

(xi − yj) (4.7)

B =
n∏

j=1

m∏
i=1

(1 − xiyj) (4.8)

C =
m−1∏
i=1

xn−1
i

n−1∏
j=1

ym−1
j

m−1∏
i=1

(1 − xi)
n−1∏
j=1

(1 − yj)m−1 (4.9)

D =
m−1∏

k=1,k ̸=i

m−1∏
i=1

n−1∏
j=1

(xk − xiyj)
m−1∏

k=1,k ̸=i

m−1∏
i=1

n−1∏
j=1

(yk − xiyj) (4.10)

E =
n−1∏

j ̸=l=1

∏
1≤i<k≤m−1

(xiyj − xkyl) (4.11)

F =
m−1∏
i=1

x
(n−1

2 )
i

n−1∏
j=1

y
(m−1

2 )
j

∏
1≤i<k≤m−1

(xi − xk)n−1 ∏
1≤j<l≤n−1

(yj − yl)m−1. (4.12)

After the variable substitution

xi = s1s2 . . . si(t1t2 . . . tn−2)i for 1 ≤ i ≤ m − 1, (4.13)

and yj = s0s1 . . . sm−1(t1t2 . . . tn−2)m−1t1t2 . . . tj−1 for 1 ≤ j ≤ n − 1 (4.14)
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the rational function 1
ABCDEF can be written as the product

sαtβFm,n(s0, s1, . . . , sm−1, t1, . . . , tn−2)

where Fm,n(s0, s1, . . . , sm−1, t1, . . . , tn−2) is a vector partition generating function. After
the variable substitution, the terms S(aµ+δ(m) [X]) and S(aν+δ(n) [Y ]) become srs(µ,ν) and
trt(µ,ν) respectively. Finally, the term of the determinant

aλ+δ(mn)(1, s0, . . . , sm−1, t1, . . . , tn−2)

corresponding to permutation σ becomes sls(λ;σ)tlt(λ;σ).
For a monomial M and variable x, by degx(M) we denote the exponent of x in the

monomial M .

Proposition 4.2.1. Let u ∈ {1, s0, . . . , sm−1, t1, . . . , tn−2}. Then

degu(1) ≤ degu(x1) ≤ . . . ≤ degu(xm−1)

≤ degu(y1) ≤ . . . ≤ degu(yn−1)

≤ degu(x1y1) ≤ degu(x1y2) ≤ . . . ≤ degu(xm−1yn−1). (4.15)

4.2.2 The vector partition functions pAm,n

By PA(b) we denote the set PA(b) := {x ∈ Nn : Ax = b} of vector partitions of b,
so that pA(b) is the cardinality of PA(b). By exploiting some of the properties of the
matrices Am,n given in Corollary 30 of [62] (Properties 1–5 in the list below), we can
deduce properties of the corresponding vector partition functions pAm,n without explicitly
computing the associated piecewise quasi-polynomials:

(i) each entry of Am,n is a non-negative integer;

(ii) the largest entry of Am,n is 2m − 1;

(iii) the number of columns of Am,n is
(mn

2
)

−
(n

2
)

−
(m

2
)
;

(iv) the number of rows of Am,n is m + n − 2;

(v) each of the standard basis vectors appears as a column of Am,n, and so its rank is
m + n − 2.

(vi) the standard basis vectors e1, . . . , en each appear exactly once as a column of Am,n,
and the standard basis vectors en+1, . . . , em+n−2 each appear exactly m − 1 times as
a column of Am,n.
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4.3 Plan for the rest of the chapter

The rest of this chapter consists of our work on Kronecker coefficients. These results are
novel unless explicitly stated otherwise.

Our main aim is to apply Theorem 4.1.1 to study some of the main questions of Kro-
necker coefficients: exact computation, vanishing conditions, stability, and upper bounds.
In [62] the authors focused on the m = n = 2 case; we adapt the main ideas of that article
to general m, n.

Once an expression of the vector partition function pAm,n as a piecewise quasi-polynomial
has been computed, the complexity of using this form to determine the Kronecker coefficient
comes from the large number (mn)! of terms in the sum. Significantly fewer than the (mn)!
terms are needed (either due to vanishing or cancellation): when m = n = 2 only 7 of the
24 terms are needed, and when m = 2, n = 3 at most 482 are needed. However, we do not
know how many terms are needed in general for a given m, n.

Using this to compute gλ,µ,ν is efficient for small m and n, and we have developed a
Sagemath tool for computing Kronecker coefficients gλ,µ,ν for l ≤ 8, m ≤ 2, n ≤ 4. The exact
formulas are given in Section 4.4. This section is split into two subsections – in 4.4.1 we
describe the more restricted case ℓ(µ) ≤ 2, ℓ(ν) ≤ 3, ℓ(λ) ≤ 6, and in 4.4.2 we describe
the general case.

In Section 4.5, we show vanishing conditions (conditions on λ, µ, ν ensuring that the
coefficient in question is 0) on the atomic Kronecker coefficient give vanishing conditions for
the Kronecker coefficients. We subsequently deduce explicit conditions. These are given in
Theorem 4.5.5. For each m, n we obtain a set of m + n − 2 conditions for partitions λ, µ, ν

with ℓ(µ) ≤ m, ℓ(ν) ≤ n, ℓ(λ) ≤ mn. Our conditions have the advantage of being easy to
compute and implement practically.

By considering the set of partition triples (λ, µ, ν) satisfying the equation

bm,n(λ, µ, ν; Id) = 0 (4.16)

we obtain a stable face of the Kronecker cone PKronm,n,mn. Additionally, each triple
(λ, µ, ν) satisfying the above equation is stable (Theorem 4.6.4). Eq. (4.16) is natural to con-
sider from the point of view of the expression for the Kronecker coefficient given in Eq. (4.4).
In this case, the contribution of the alternant term associated to the identity permutation
is 1, and the contribution of all other alternant terms is 0 (and so the atomic Kronecker
coefficient and Kronecker coefficient are both equal to 1). These results are described in
Section 4.6.

The atomic Kronecker coefficient can be bounded from above using binomial coefficients
(Theorem 4.7.5). By bounding each of the terms of Eq. (4.4) we are able to obtain upper
bounds for the Kronecker coefficients which seem to be best known in certain cases. This is
described in Section 4.7, and the main results are Corollaries 4.7.8 and 4.7.6.
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4.4 Explicit computation of Kronecker coefficients

When the partition lengths are sufficiently small, it is computationally feasible to determine
the vector partition functions needed to compute individual Kronecker coefficients gλ,µ,ν .
We provide explicit formulas for two cases here, starting from Eq. (4.4), rewritten below:

gλ,µ,ν =
∑

σ∈Smn

sgn(σ) pAm,n

(
bm,n(λ, µ, ν; σ)

)
.

We compute pAm,n first for m = 2, n = 3, then m = 2, n = 4 (the m = n = 2 case appears
in [62]). We note that, to compute a coefficient, it is best to minimize the choice of m and
n that bound the lengths of µ and ν. The first optimization comes from trying to identify
which terms in the sum are zero. Recall, in the m = n = 2 case, only 7 of the terms are
needed since of the original 4! = 24 terms in the right hand side: 13 of them always evaluate
to zero for partitions λ, µ, ν, and another 4 of them cancel pairwise. To eliminate terms in
other cases, we consider restrictions imposed by positivity in the linear algebra system, and
the partition inequalities on the parts of the partitions.

4.4.1 Exact expressions for gλ,µ,ν when ℓ(λ) ≤ 6, ℓ(µ) ≤ 2, ℓ(ν) ≤ 3

The matrix A2,3 is determined in [62, Example 5]:

A2,3 =


1 0 0 1 0 0 0 1 1 1 1
0 1 0 0 1 1 1 1 1 2 2
0 0 1 1 1 1 2 1 2 2 3


Using Barvinok it is straightforward to determine that the corresponding vector partition

function pA2,3 is of degree 8 and has 34 chambers. At most 482 of the 720 terms of the
alternant aλ+δ(6) yield a non-zero contribution to the Kronecker coefficient computation.
The most non-zero terms we have found for any given coefficient is 288. This occurs for
µ = (99, 99), ν = (66, 66, 66), λ = (87, 87, 24, 0, 0, 0). It is less clear how to find cancelling
pairs as in the m = n = 2 case, so this remains a place for potential optimization – each term
represents a vector partition function evaluation, which in the worst case means searching
through all chambers. The formula is as follows.

Proposition 4.4.1. Let λ, µ, ν be partitions with ℓ(λ) ≤ 6, ℓ(µ) ≤ 2, ℓ(ν) ≤ 3. Then the
Kronecker coefficient is given by

gλ,µ,ν =
∑

σ∈S6

sgn(σ)pA2,3 (ν2 + ν3 + 6 − ls(λ; σ)1, µ2 + ν2 + ν3 + 11 − lt(λ; σ)1, µ2 + ν2 + 2ν3 + 13 − lt(λ; σ)2) .
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and the atomic Kronecker coefficient is given by

g̃2,3
λ,µ,ν = pA2,3 (ν2 + ν3 − λ3− λ4 − λ5 − λ6, µ2 + ν2 + ν3 − λ2 − λ3 − λ4 − 2λ5 − 2λ6,

µ2 + ν2 + 2ν3 − λ2 − λ3 − 2λ4 − 2λ5 − 3λ6) . (4.17)

Our implementation seems to be significantly faster at computing single Kronecker coef-
ficients in the ℓ(λ) ≤ 6, ℓ(µ) ≤ 2, ℓ(ν) ≤ 3 case than that of Baldoni, Vergne, and Walter [2].
However, they are able to compute dilated Kronecker coefficients and, more generally, ex-
pressions that hold over the entire chamber, while our code does not do either.

4.4.2 Exact expressions for gλ,µ,ν when ℓ(λ) ≤ 8, ℓ(µ) ≤ 2, ℓ(ν) ≤ 4

It is straightforward to determine A2,4 following the same method

A2,4 =


0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1
0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 2 2 2
0 1 0 0 1 0 1 1 1 1 1 1 1 2 1 2 2 2 2 3 3
1 0 0 0 1 1 0 0 1 1 1 1 2 1 1 2 1 2 2 2 3

 .

The corresponding vector partition function pA2,4 is of degree 17 with 4328 chambers. It
took roughly 20 days to compute it on the Compute Canada Cedar research cluster. The
vector partition function is available in .sobj format and in .txt format. The .txt format is
the raw output from Barvinok.

Out of the 8! = 40320 terms of the alternant aλ+δ(8) , at most 28322 yield a non-zero
contribution to the Kronecker coefficient. It is not apparent if they can be grouped for
cancellation as in the m = n = 2 case.

Proposition 4.4.2. Let λ, µ, ν be partitions with ℓ(λ) ≤ 8, ℓ(µ) ≤ 2, ℓ(ν) ≤ 4. Then the
Kronecker coefficient is given by

gλ,µ,ν =
∑

σ∈S8

sgn(σ)pA2,4(ν2 + ν3 + ν4 + 15 − ls(λ; σ)1, µ2 + ν2 + ν3 + ν4 + 24 − ls(λ; σ)2,

µ2 + ν2 + 2ν3 + 2ν4 + 32 − lt(λ; σ)1, µ2 + ν2 + ν3 + 2ν4 + 27 − lt(λ; σ)2), (4.18)

and the atomic Kronecker coefficient is given by

g̃2,4
λ,µ,ν = pA2,4(ν2 + ν3 + ν4 − λ3 − λ4 − λ5 − λ6 − λ7 − λ8,

µ2 + ν2 + ν3 + ν4 − λ2 − λ3 − λ4 − λ5 − 2λ6 − 2λ7 − 2λ8,

µ2 + ν2 + 2ν3 + 2ν4 − λ − λ3 − 2λ4 − 2λ5 − 2λ6 − 3λ7 − 3λ8,

µ2 + ν2 + ν3 + 2ν4 − λ2 − λ3 − λ4 − 2λ5 − 2λ6 − 2λ7 − 3λ8) (4.19)
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Example 4.4.3. This formula gives the same result for the following example, taken
from [4]. For λ = (6, 4, 4, 1), µ = (12, 3), ν = (5, 4, 3, 3), we compute that gλ,µ,ν = 4.
The authors of [4] computed this via a combinatorial rule – in this case the Kronecker
coefficient is counting combinatorial objects called Kronecker tableaux. We note that in this
case the atomic Kronecker coefficient g

(4,4)
λ,µ,ν is 45310.

Example 4.4.4. Let λ = (57, 57, 57, 33, 33, 33, 10, 0), µ = (140, 140), ν = (70, 70, 70, 70),
we compute that gλ,µ,ν = 391. We were unable to compute this example with the package SF
(it ran into a memory error after using 203146718216 bytes), nor the Sagemath symmetric
functions package (which also ran into a memory error). It cannot be computed by the
Maple package of Baldoni, Vergne, and Walter [2] which specifically handles the cases
ℓ(λ), ℓ(µ), ℓ(ν) ≤ 3 and ℓ(λ) ≤ 6, ℓ(µ) ≤ 2, ℓ(ν) ≤ 3.

4.4.3 Some notes on the ℓ(λ) ≤ 9, ℓ(µ) ≤ 3, ℓ(ν) ≤ 3 case

The A3,3 matrix is straightforward to compute, it has 4 rows and 30 columns. However
obtaining the piecewise quasi-polynomial representation of the vector partition function
was not computationally feasible: we had no results after roughly 30 days on the Compute
Canada research cluster Cedar at which time the computation was terminated by the server.

4.4.4 External chambers

Given our work in Chapter 2, it is natural to ask whether the matrices Am,n have external
chambers in general. Unfortunately, while A2,2, A2,3 and A3,3 each have the external cham-
ber posR(e1, . . . , em+n−3, 1), this pattern does not extend beyond these cases. Indeed, the
matrices Am,n have no external chambers for m ≥ 4 or n ≥ 4.

4.5 Vanishing conditions

A key to our analysis is a dominance property of vector partition functions (not to be
confused with dominance order of partitions). We use this property to prove Theorem 4.5.5,
a generalization of some non-vanishing conditions for the Kronecker coefficients given in
[13]. Let u, v ∈ Rk. We say that u dominates v if ui ≥ vi for each 1 ≤ i ≤ k, and we denote
this by u ⪰ v.

Lemma 4.5.1. Let m, n be positive integers, if a ⪰ b, then pAm,n(a) ≥ pAm,n(b)

Proof. Each of the standard basis vectors e1, . . . , em+n−2 is a column of Am,n. Without
loss of generality assume that columns 1, . . . , m + n − 2 are the standard basis vectors
e1, . . . , em+n−2 in the same order. It follows that any vector partition x ∈ SAm,n(b) can be
mapped to a unique vector partition x′ ∈ SAm,n(a) by taking x′

i := xi + (ai − bi)ei for each
1 ≤ i ≤ m + n − 2. This forms an injective map from PA(b) to PA(a).
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Lemma 4.5.2. Let m, n be positive integers. Let σ1, σ2 ∈ Smn such that

(ls(λ; σ1), lt(λ; σ1)) ⪰ (ls(λ; σ2), lt(λ; σ2))

for all partitions λ with ℓ(λ) ≤ mn. Then

pAm,n

(
bm,n(λ, µ, ν; σ1)

)
≤ pAm,n

(
bm,n(λ, µ, ν; σ2)

)
for all partitions λ, µ, ν with ℓ(λ) ≤ mn, ℓ(µ) ≤ m, ℓ(ν) ≤ n.

Proof. Multiplication by −1 reverses domination. The domination of one vector over another
is preserved if we subtract the same vector from both sides, and if we add a positive vector
to the larger one. Thus, for any partitions λ, µ, ν with ℓ(λ) ≤ mn, ℓ(µ) ≤ m, ℓ(ν) ≤ n, we
find that

bm,n(λ, µ, ν; σ2) =
(

rs(µ, ν), rt(µ, ν)) + (α, β) − (ls(λ; σ2), lt(λ; σ2)
)

⪰
(

rs(µ, ν), rt(µ, ν)) + (α, β) − (ls(λ; σ1), lt(λ; σ1)
)

= bm,n(λ, µ, ν; σ1).

Then, by Lemma 4.5.1 we have that pAm,n

(
bm,n(λ, µ, ν; σ2)

)
≥ pAm,n

(
bm,n(λ, µ, ν; σ1)

)
as required.

The previous lemma induces a poset structure on Smn via the relation σ2 ≥ σ1 if and
only if

(ls(λ; σ1), lt(λ; σ1)) ⪰ (ls(λ; σ2), lt(λ; σ2))

for all partitions λ with ℓ(λ) ≤ mn. Figure 4.1 illustrates the poset for the m = n = 2 case,
showing only the permutations associated to the 7 alternant terms which contribute to the
Kronecker coefficient. The poset in the figure is the dependency digraph for the monomials
in Pλ given in [62, Figure 4]. However, there the poset is computed by comparing the
contributions of the alternant terms as opposed to the vector partition function inputs. Our
approach allows us to compute the posets for larger m, n than the previous method. In such
cases comparing the contributions is infeasible (either due to the large number of chambers
or the difficulty of computing the vector partition function as a piecewise quasi-polynomial).

In the following lemma we show that the identity permutation is a maximal element of
the poset for any positive integers m, n (in fact it is unique, and thus the maximal element).

Lemma 4.5.3. For all σ ∈ Smn and partitions λ of length at most mn,

(ls(λ; σ), lt(λ; σ)) ⪰ (ls(λ; Id), lt(λ; Id)).
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Figure 4.1: The poset of contributing alternant terms in the m = n = 2 case. Each alternant
term is given by its permutation in one line notation.

Proof. The alternant aλ+δ(mn) is the determinant of the matrix (zλj

i )1≤i,j≤mn where zi is
the ith variable in XY . The kth coordinate of (ls(λ; σ), lt(λ; σ)) is

(ls(λ; σ), lt(λ; σ))k =
mn∑
i=1

(λi + mn − i) degu(zσ−1(i)) (4.20)

where u is the kth element of (1, s0, . . . , sm−1, t1, . . . , tn−2). Since (λ1 + mn − 1, λ2 + mn −
2, . . . , λmn) is a monotonically decreasing sequence, and degu monotonically increasing over
(1, x1, . . . , xm−1, y1, . . . , yn−1,

x1y1, . . . , xmyn), the above expression is minimized for the term obtained by the change of
variables from

1λ1+mn−1xλ2+mn−2
1 . . . (xmyn)λmn

corresponding to the identity permutation.

Combining the previous two lemmas yields the following result relating the atomic Kro-
necker coefficient g̃m,n

λ,µ,ν with the Kronecker coefficient gλ,µ,ν , from which vanishing condi-
tions (given in Theorem 4.5.5) can be derived.

Lemma 4.5.4. Let λ, µ, ν be partitions with ℓ(λ) ≤ mn, ℓ(µ) ≤ m, ℓ(ν) ≤ n for some
positive integers m, n. If g̃m,n

λ,µ,ν = 0, then gλ,µ,ν = 0.

Proof. If g̃m,n
λ,µ,ν = 0 then for any σ ∈ Smn,

0 = g̃m,n
λ,µ,ν = pAm,n

(
bm,n(λ, µ, ν; Id)

)
by Eq. (4.5),

≥ pAm,n

(
bm,n(λ, µ, ν; σ)

)
by Lemmas 4.5.2 and 4.5.3,

≥ 0,
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and thus pAm,n

(
bm,n(λ, µ, ν; σ)

)
= 0. Since it is true for all σ, all the terms in the sum in

Eq. (4.4) vanish, and so gλ,µ,ν = 0.

The converse of this lemma is not true. For instance in [62, Example 8], Mishna, Rosas,
and Sundaram show that for λ = (12, 7, 4, 1), µ = (12, 12), ν = (12, 12) the Kronecker
coefficient is 0, but the atomic Kronecker coefficient is 32. Notably, each of the 7 necessary
contributing terms of the alternant aλ+δ(4) are non-zero, and no pair cancels out.

Since g̃m,n
λ,µ,ν is given by a single vector partition function evaluation pAm,n(b), we know

that it is 0 exactly when b is not in the cone generated by the columns of Am,n. This occurs
if and only if bi < 0 for some 1 ≤ i ≤ m+n−2. Since b = (rs(µ, ν)+α− ls(λ, Id), rt(µ, ν)+
β − lt(λ, Id)) for the atomic Kronecker coefficient g̃m,n

λ,µ,ν , we get a set of vanishing conditions
for the Kronecker coefficient gλ,µ,ν . We express the conditions using the contrapositive (i.e.
we give conditions imposed on λ, µ, ν if the Kronecker coefficient is non-zero) since the set
of λ, µ, ν satisfying them forms a cone.

Theorem 4.5.5. Let m, n be positive integers and λ, µ, ν be partitions so that ℓ(λ) ≤ mn,
ℓ(µ) ≤ m, ℓ(ν) ≤ n. If gλ,µ,ν ̸= 0 then each of the following inequalities hold:

m∑
k=1

λk ≥ ν1;

For all a satisfying 1 ≤ a ≤ m − 1:

a∑
k=1

λk −
m+(a+1)(n−1)∑

k=m+n

λk ≥ ν1 −
m∑

k=a+1
µk

For all b satisfying 1 ≤ b ≤ n − 2:

mλ1 +

m∑
k=2

(m − k + 1)λk +

m+b∑
k=m+1

λk −

m−1∑
i=1

b∑
j=1

(i − 1)λm+i(n−1)+j −

m−1∑
i=1

n−1∑
j=b+1

iλm+i(n−1)+j ≥ mν1 +

b+1∑
k=2

νk −

m∑
k=2

(k − 1)µk.

Remark 4.5.6. When m = n = 2, Theorem 4.5.5 reduces to vanishing conditions given by
Bravyi in [13]. This case was worked out explicitly in [62, Proposition 5].

An inequality n · x ≤ 0 is essential for a cone τ if {x : n · x = 0} ∩ τ is a facet of τ , and
each p ∈ τ satisfies the inequality (n · p ≤ 0 for all p ∈ τ).
Remark 4.5.7. Klyachko [49] gives the full list of 41 essential inequalities in the m = 2, n = 3
case. In this case, none of our inequalities appear on Klyachko’s list. Thus, while our in-
equalities are easy to compute and use practically, regrettably none are essential inequalities
for the cone PKron2,3,6. Thus, one should not expect, for general m, n, that the inequalities
given by Theorem 4.5.5 are essential.

Ressayre determined two sets of vanishing conditions for the Kronecker coefficients for
any lengths l, m, n which are essential, [77, Theorems 1 & 2].
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Theorem 4.5.8 (Ressayre, 2019, [77]). Let e, f be two positive integers, and let λ, µ, ν be
partitions of N with

ℓ(µ) ≤ e + 1, ℓ(ν) ≤ f + 1, ℓ(λ) ≤ e + f + 1 (4.21)

If gλ,µ,ν ̸= 0, then
N + λ1 + λe+j ≤ µ1 + ν1 + νj

for all 2 ≤ j ≤ f + 1.

These are quite strong, although there is likely a smaller error in these conditions, given
the following example we found.

Example 4.5.9. Upon setting e = 1, f = 3, n = 4 and j = 4 in Eq. (4.21), we have that
ℓ(µ) ≤ 2, ℓ(ν) ≤ 4, ℓ(λ) ≤ 5 and the Kronecker coefficient gλ,µ,ν should be 0 if, furthermore,

|λ|+λ1 + λ5 > µ1 + ν1 + ν4. (4.22)

Consider λ = (1, 1, 1, 1, 0), µ = (2, 2), ν = (2, 2). Inequality (4.22) is satisfied, but
gλ,µ,ν = 1, not 0. A second example is given by λ = (4), µ = (2, 2), ν = (2, 2).

4.6 Stability

By considering a set of conditions implying that the atomic Kronecker coefficient and Kro-
necker coefficient are both equal to 1, we are able to obtain a stable face of the Kronecker
polyhedron PKronm,n,mn for each m, n. Moreover, each partition triple (λ, µ, ν) satisfying
these conditions is a stable triple. We note that elements of this approach appear in [61] for
the case m = n = 2.

Proposition 4.6.1. If bm,n(λ, µ, ν; Id) = 0, then gλ,µ,ν = g̃m,n
λ,µ,ν = 1.

Proof. When bm,n(λ, µ, ν; Id) = 0, bm,n(λ, µ, ν; σ) has at least one negative coordinate for
each σ ∈ Smn, σ ̸= Id, and so

gλ,µ,ν = g̃m,n
λ,µ,ν

= pAm,n(bm,n(λ, µ, ν; Id))

= 1.

The condition bm,n(λ, µ, ν; Id) = 0 yields m + n − 2 equations involving the parts of
λ, µ, ν. By also including the equations |λ|= |µ|= |ν|, we obtain relatively simple expressions
for each part of µ and ν in the parts of λ.
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Proposition 4.6.2. Let λ, µ, ν be partitions of the same positive integer N with ℓ(µ) ≤
m, ℓ(ν) ≤ n, ℓ(λ) ≤ mn. Then bm,n(λ, µ, ν; Id) = 0 if and only if (λ, µ, ν) satisfy the
following equations:

µu = λu +
m+u(n−1)∑

i=m+(u−1)(n−1)+1
λi for u = 1, . . . , m (4.23)

ν1 =
m∑

i=1
λi (4.24)

νv =
m−1∑
i=0

λm+(n−1)i+v−1 for v = 2, . . . , n. (4.25)

The proof of this appears in Appendix B.1. The following result follows directly from
Propositions 4.6.1 and 4.6.2.

Corollary 4.6.3. Let λ, µ, ν be partitions of N with ℓ(µ) ≤ m, ℓ(ν) ≤ n, ℓ(λ) ≤ mn, such
that λ, µ, ν satisfy Eqs. (4.23)–(4.25). Then gλ,µ,ν = g̃m,n

λ,µ,ν = 1.

We can say more about the partition triples (λ, µ, ν) satisfying Eqs. (4.23)–(4.25). We
follow [59] for notation. A triple of partitions (λ, µ, ν) is called weakly stable if gkλ,kµ,kν = 1
for each positive integer k. Recall that a triple of partitions (λ, µ, ν) is stable if for any
partitions α, β, γ the sequence (gα+kλ,β+kµ,γ+kν)k≥0 stabilizes.

For given positive integers l, m, n, the weight lattice Wl,m,n is the sublattice of Zl+m+n

defined by the equations |λ|= |µ|= |ν|. In [59], Manivel defines a stable face of the cone
PKronl,m,n to be a face of PKronl,m,n whose intersection with Wl,m,n is a subset of
SKronl,m,n - the set of all weakly stable triples (λ, µ, ν) with ℓ(λ) ≤ l, ℓ(µ) ≤ m, ℓ(ν) ≤ n.
A stable face is maximal if it is maximal in SKronl,m,n.

We note that the set of triples (λ, µ, ν) satisfying Eqs. (4.23)–(4.25) along with the
partition inequalities (for any partition α of length k, α1 ≥ α2 ≥ . . . ≥ αk ≥ 0) generate
a cone τm,n. By Corollary 4.6.3, each λ, µ, ν in the intersection τm,n ∩ Wmn,m,n is weakly
stable. In fact, as the next theorem shows, they are actually stable.

Theorem 4.6.4. Each triple λ, µ, ν satisfying Eqs. (4.23) – (4.25) is a stable triple. More-
over, the cone τm,n is a stable face of PKronmn,m,n.

The proof of the previous theorem is given in Appendix B.2. It relies on the connection
between additive tableaux and stable faces given in [58, Propositions 7 and 9].

Example 4.6.5. Let λ = (10, 8, 5, 3, 2, 2), µ = (17, 12), ν = (18, 7, 5). One can check
that λ, µ, ν satisfy Eqs (4.23)–(4.25). Further we have checked that gkλ,kµ,kν = 1 for
all positive integers k computing the quasi-polynomial gkλ,kµ,kν via the code of Baldoni,
Vergne and Walter. We now give an example to illustrate the stability of λ, µ, ν. For
α = (34, 27, 20, 12, 4, 3), β = (70, 30), ν = (43, 39, 18), the sequence (gα+kλ,β+kµ,γ+kν)k≥1
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stabilizes at 44729 at k = 6. The sequence from k = 0 to 6 is 2566, 18028, 36174, 43896,
44638, 44713, 44729.

We note that the stable face τm,n is not maximal in general. For example, τ3,3 is contained
in the stable faces F −

2 , F −
5 , F −

7 and F8 from [59, Example 2]. In particular, F −
5 is the

(maximal) stable facet defined by the intersection of PKron3,3,9 and the equation

µ2 + 2µ3 + 2ν2 + 3ν3 = λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8 + 5λ9

which is b3,3(λ, µ, ν; Id)4 = 0.
We remark also that a couple well-known results are implied by Theorem 4.6.4. When

λ, µ, ν are each rectangular partitions of lengths mn, m, n respectively (that is λ1 = · · · =
λmn, µ1 = · · · = µm, ν1 = · · · = νn), the Kronecker coefficient is 1 (and the triple (λ, µ, ν) is
stable). It is straightforward to check that λ, µ, ν satisfy Eqs. (4.23)–(4.25). The case µ = λ

and ℓ(ν) = 1 (so ν = (|λ|)) also satisfies the same equations (and again the Kronecker
coefficient in this case is 1, and the partition triple (λ, µ, ν) is stable).

4.7 Bounds

The atomic Kronecker coefficients are given by a single vector partition function evaluation
pAm,n(b). By constructing a companion matrix to Am,n, we are able to obtain a simpler
vector partition function for which the evaluations can be computed by hand and whose
evaluations bound pAm,n from above. By bounding each of the terms of Eq.(4.4), we are
then able to obtain upper bounds for the Kronecker coefficients.

4.7.1 A bound in terms of atomic Kronecker coefficients

In [62], Mishna, Rosas and Sundaram show that in the m = n = 2 case, the atomic Kronecker
coefficient g̃2,2

λ,µ,ν bounds the corresponding Kronecker coefficient gλ,µ,ν from above, and
in [61] they conjecture that this is the case in general. Since we do know that the atomic
Kronecker coefficient is the largest term in the sum, we can use this to give a general weaker
bound.

Proposition 4.7.1. Let λ, µ, ν be partitions with ℓ(µ) ≤ m, ℓ(ν) ≤ n, ℓ(λ) ≤ ln. Then

gλ,µ,ν ≤ (mn)!
2 g̃m,n

λ,µ,ν .

Proof. Splitting the sum in Eq. (4.4) in two halves, one for the permutations with positive
sign, and one for the permutations with negative sign, we bound each of the negative sign
terms above by 0 and each of the positive terms by the atomic term (by Lemmas 4.5.1 and
4.5.3).
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Finally, we remark that there is still much work to do in obtaining effective upper
bounds for the Kronecker coefficients. Recall from Example 4.4.3 that for λ = (6, 4, 4, 1), µ =
(12, 3), ν = (5, 4, 3, 3) the Kronecker coefficient is gλ,µ,ν = 4. In this case our bounds give
gλ,µ,ν ≤ 4.72 · 1011. Similarly, recall from Example 4.4.4 that for the triple of partitions
λ = (57, 57, 57, 33, 33, 33, 10, 0), µ = (140, 140), ν = (70, 70, 70, 70) the Kronecker coefficient
is gλ,µ,ν = 391. In this case our bound yields gλ,µ,ν ≤ 1.08 · 1067.

4.7.2 Estimating atomic Kronecker Coefficients

We can approximate the partition function of a matrix A by replacing its columns with
standard basis vectors so that the rank is preserved. Partition functions of such matrices
are easy to write using binomial coefficients. Lemma 4.7.3 describes the replacement process
and Proposition 4.7.4 is the resulting bound. The following proposition sets up Lemma 4.7.3.

Proposition 4.7.2. Let A be a d × n matrix with integer entries and ker(A) ∩Rm
≥0 = {0}.

Let c be a column of A, and let c′ be a 1 × n vector. Let A′ be the matrix obtained by
replacing column c with c′. If pA′(c) ≥ pA(c), then

pA′(b) ≥ pA(b)

for all b ∈ Nd.

Proof. Let j be the index at which column c appears in A (and thus column c′ appears
in A′). Partition the set of vector partitions PA(b) of b into U1 := {x : Ax = b, xj = 0}
and U2 := {x : Ax = b, xj > 0}. The set U1 is equal to the set {x : A′x = b, xj = 0}.
Also c ∈ {A′x : xj > 0} since pA′(c) ≥ pA(c), and so |U2|≤ |{x : A′x = b, xj > 0}|. Thus
pA(b) = |U1|+|U2|≤ pA′(b) as required.

The following Lemma describes how to replace columns of Am,n with standard basis
vectors via the previous proposition.

Lemma 4.7.3. Let A be a d×n matrix with non-negative integer entries and each standard
basis vector e1, . . . , ed appearing as a column of A. Let c be a column of A, and let I =
{k : ck > 0, 1 ≤ k ≤ n} be the set of non-zero coordinates of c. Let E(i) denote the matrix
obtained by replacing column c with ei for some i ∈ I. Then

pE(i)(b) ≥ pA(b)

for all b ∈ Nd.
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Proposition 4.7.4. Let E be a d × n matrix such that the columns of E are formed by
taking ij copies of each standard basis vector ei where i1, . . . , id ≥ 0. Then

pA(b) =
k∏

i=1

(
bi + ij − 1

ij − 1

)
.

Proof. For each component i we must take a total of bi copies of the standard basis vector
ei. We can think of this problem as distributing bi balls to the ij different columns of A

which are the copies of ei. This is counted by the ith term in the given product of binomial
coefficients.

By application of Lemma 4.7.3 and Proposition 4.7.4 we obtain binomial coefficient
bounds for the atomic Kronecker coefficients, and thus the Kronecker coefficients as well.
The technical details of the proof appear in Appendix B.3 where we work out explicitly
which columns have which non-zero coordinates. We note that there are many choices of
column replacements that can be made, and different choices provide better bounds for
certain choices of λ, µ, ν. The formulation of Theorem 4.7.5 represents a single choice whose
advantage is that it is relatively simple to explain.

Theorem 4.7.5. Let m, n be positive integers, and λ, µ, ν be partitions with ℓ(λ) ≤ mn,
ℓ(µ) ≤ m, ℓ(ν) ≤ n. Then:

g̃m,n
λ,µ,ν ≤

(
b1 + c1

b1

)(
b2 + c2

b2

)(
bm+n−2 + c3

bm+n−2

)
m∏

i=3

(
bi + f1(i)

bi

)
n−3∏
j=1

(
bm+j + f2(j)

bm+j

)
. (4.26)

where b = (b1, . . . , bm+n−2) = bm,n(λ, µ, ν; Id) and

c1 = (m2 − 1)(n − 1) − 1

c2 = (m − 1)(n − 1)2 − 1

c3 =
(

m − 1
2

)
(n − 1) + (m − 1) − 1

f1(i) = 2
(

n − 1
2

)
(i − 2) − 1

f2(j) = (n − j − 1)(m − 1) − 1

Corollary 4.7.6. Theorem 4.7.5 in combination with Proposition 4.7.1 gives:

gλ,µ,ν ≤ (mn)!
2 R1

where R1 is the expression on the right-handside of Inequality (4.26).
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We also give a weaker general bound which depends only on m, n and the size N of the
partitions λ, µ, ν. We do this by bounding the coordinates of bm,n by multiples of N .

Corollary 4.7.7. Let m, n be positive integers, and λ, µ, ν, be partitions of N with lengths
at most mn, m, n respectively.

g̃m,n
λ,µ,ν ≤

(
N + c1

N

)(
2N + c2

2N

)(
(2m − 1)N + c3

(2m − 1)N

) m∏
i=3

(
2N + f1(i)

2N

) n−3∏
j=1

(
(2m − 1)N + f2(j)

(2m − 1)N

)
.

(4.27)

where c1, c2, c3, f1, f2 are as in Theorem 4.7.5.

Proof. Recall that for each component of

bm,n(λ, µ, ν; Id) = (rs(µ, ν) + α − ls(λ; Id), rt(µ, ν) + β − lt(λ; Id)

the constant terms cancel. Therefore each bi of Theorem 4.7.5 is bounded above by linear
combination in the parts of µ, ν appearing. Explicitly, we find that b1 ≤ N , bi ≤ 2N for
2 ≤ i ≤ m and bm+j ≤ (2m − 1)N for 1 ≤ j ≤ n − 2.

As before, combining the previous result with Proposition 4.7.1, we obtain the following
bound for the Kronecker coefficients.

Corollary 4.7.8. Let m, n be positive integers, and λ, µ, ν be partitions of N of lengths at
most mn, m, n respectively. Then

gλ,µ,ν ≤ (mn)!
2 R2

where R2 is the expression on the right-hand side of Inequality (4.27).

The bound given in line (4.7.8) is O(Nd), where d is the difference between the number
of columns and rows of Am,n - that is:

d =
(

mn

2

)
−
(

n

2

)
−
(

m

2

)
− n − m + 2

whereas the bound given in [70] is O(N (mn)2). We note that this analysis holds for the case
when ℓ(µ) = m, ℓ(ν) = n, ℓ(λ) = mn. For example, the bound given by Pak and Panova
is stronger if ℓ(λ) = ℓ(µ) = ℓ(ν) = m since in this case their bound is O(Nm3), while our
bound is O(N(m2

2 )−2(m
2 )−2m+2). If ℓ(µ) = m, ℓ(ν) = n are fixed, we find that the exponent

x given by our O(Nx) expression is smaller when

ℓ(λ) >
mn

2 −
(

m2 + n2 + m + n − 4
2mn

)
− 1

2 (4.28)
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Source Bound

Corollary 4.7.6 1.42 · 1016

Corollary 4.7.8 5.38 · 1045

Pak and Panova, Inequality (4.2) [69] 2.84 · 1027

Pak and Panova, Inequality (4.3) [70] 1.13 · 1054

Table 4.1: Upper bound comparison for g153 105 5,352 30,40 302

and larger when the inequality is flipped. We note that for ℓ(µ), ℓ(ν) ≥ 2 (i.e. m, n ≥ 2),
the expression on the right-hand side of (4.28) is smaller than mn

2 .
We give the explicit bound in the m = n = 3 case for which there is no efficient

computational tool.

Corollary 4.7.9. For all partitions λ, µ, ν of N with ℓ(µ), ℓ(ν) ≤ 3, ℓ(λ) ≤ 9.

gλ,µ,ν ≤ 9!
2

(
b1 + 15

15

)(
b2 + 7

7

)(
b3 + 1

1

)(
b4 + 3

3

)

where

b1 = ν2 + ν3 − λ4 − λ5 − λ6 − λ7 − λ8 − λ9

b2 = µ2 + µ3 + ν2 + ν3 − λ2 − λ3 − λ4 − λ5 − 2λ6 − 2λ7 − 2λ8 − 2λ9

b3 = µ3 + ν2 + ν3 − λ3 − λ4 − λ5 − λ6 − λ7 − 2 λ8 − 2 λ9

b4 = µ2 + 2 µ3 + 2 ν2 + 3 ν3 − λ2 − 2 λ3 − 2 λ4 − 3 λ5 − 3 λ6 − 4 λ7 − 4 λ8 − 5 λ9.

Example 4.7.10. Table 4.1 presents bounds on gλ,µ,ν in the ℓ(λ) ≤ 9, ℓ(µ), ℓ(ν) ≤ 3 case
for the partitions λ = (15, 15, 15, 10, 10, 10, 10, 10, 5), µ = (35, 35, 30), ν = (40, 30, 30).

The bound given by Inequality (4.2) by Pak and Panova is better on some examples.
From our experience our bound is the better choice when λ is close to rectangular due to
the large coefficients on small parts of λ.

102



Chapter 5

Outlook

In this thesis, we have derived results about the quasi-polynomials arising from vector
partition functions. We have then used these results in order to study of combinatorial
objects which count integral points in polytopes (multigraphs with a given degree sequence,
and Kostant’s partition function for the root system Am−1). Also, we have studied two sets of
algebraic combinatorial coefficients – the Littlewood-Richardson and Kronecker coefficients
– which can be understood (less directly) through a vector partition function lens.

One potentially interesting avenue of research is to study other combinatorial objects
that are related to vector partition functions in order to obtain results like the one we
obtained for multigraphs: Theorem 2.6.4. Recall that in this case we identified a sequence
of external chambers of the corresponding vector partition functions pGm . Moreover, the
inequalities defining the external chamber for each m depend solely on m. By exploiting
this, we were able to obtain a geometric result enumerating multigraphs (Theorem 2.6.4).

The goal is to apply the same process for other combinatorial objects – that is, to identify
“persisting” external chambers (i.e a sequence of external chambers whose inequalities only
depend on the size of the objects being enumerated). Then one can use the reduction to
coin exchange problems via Theorem 2.3.4 (or Theorem 2.4.2 in the case that its conditions
are satisfied) to potentially obtain exact enumeration results. In the case of Theorem 2.6.4
the combinatorial proof is simpler than the geometrical one. However, the vector partition
function approach is still valuable in such a case since the computation of the vector partition
function (or just of external chambers) yields the inequalities one should consider, as well as
instances of the general formula which should be proven. It would be particularly interesting
to identify a case where the geometrical proof is simpler than the combinatorial proof.

1. Compute external chambers for small instances (if they exist).

2. Identify the first few terms of a sequence of “persisiting” external chambers.

3. Prove an exact enumeration result for the number of combinatorial objects satisfying
the inequalities given by the “persisting” external chambers using either the geomet-
rical approach or a combinatorial approach.
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Of course, one can also consider applying this process for other (non-external) chambers,
in which case we may not obtain an exact formula, but could potentially compute linear
factors.

For the Littlewood-Richardson coefficients, our main aim is to complete the study of the
appearance of linear factors in the polynomials of Φk. Namely, we would like to prove or
disprove Conjecture 3.8.1 - the conjecture relating the facets of Ek and LRk and thus the
associated linear factors. Additionally, we hope to use the hive interpretation to understand
the facets of Ek in order to compute the number of linear factors combinatorially. Finally, we
remark that the Littlewood-Richardson coefficients can also be expressed as an alternating
sum of vector partition functions (via Kostant’s partition function). It may be interesting to
research “atomic LR coefficients” in the same mannner as we have done for the Kronecker
coefficients via the approach of Mishna, Rosas, and Sundaram.

We also leave some potentially interesting problems related to our work on Kronecker
coefficients via the approach of Mishna, Rosas, and Sundaram.

1. Compute the piecewise quasi-polynomial pA3,3 .

2. Prove that the atomic Kronecker coefficient bounds the Kronecker coefficient (to re-
move the (mn)!

2 term in the upper bound of Corollaries 4.7.6 and 4.7.8).

3. Study the properties of the posets of alternant terms.

We also quickly remark that, while computing the full piecewise quasi-polynomial pA3,3

was not feasible for us, we could compute the piecewise quasi-polynomial for the external
chamber. It may be interesting to try computations for Kronecker coefficients for which
each alternant term is in the external chamber (or yields 0).

Finally, we leave some questions about Kronecker coefficients which are not directly
related to the approach of Mishna, Rosas, and Sundaram. Like the Littlewood-Richardson
coefficients, for partitions λ, µ, ν of bounded lengths ℓ(λ) ≤ mn, ℓ(µ) ≤ m, ℓ(ν) ≤ n, the
Kronecker coefficients can be described by a piecewise quasi-polynomial κm,n (this is not
a piecewise polynomial as in the LR coefficient case however) whose domains of quasi-
polynomiality are governed by a fan. The function κ2,2 has been explicitly computed by
Briand, Orellana, and Rosas [15], and the software of Baldoni, Vergne and Walter [2] allows
one to explicitly compute chambers and quasi-polynomials of κ2,3.

Briand, Rosas and I have done some work to better understand the piecewise quasi-
polynomial Kronecker function κ2,2. Namely, we found a poset structure of the chambers
associated chamber complex which is related to objects analagous to external rays (i.e rays
of the chamber complex which have constant Ehrhart quasi-polynomial). Surprisingly, we
have also found that an analogue of the determinantal formula of Theorem 2.3.5 can be used
to compute one of the quasi-polynomials of the Kronecker function κ2,2. It would be curious
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to justify why this should happen in order to understand the extent to which Theorem 2.3.5
can be generalized.

In [2], Baldoni, Vergne, and Walter identify that on some faces of the fan of the κ2,3

case the Kronecker coefficients are given by a polynomial. Additionally, they remark on the
high number of linear factors of this polynomial.1 One possible line of research would be
to study the linear factors appearing on such faces – specifically to check whether or not
Theorem 2.5.3 can be applied in such a case.

1From Baldoni, Vergne, Walter [2]: “We summarize our results in Table 3. We find that, remarkably, the
symbolic function on cvFI

is polynomial, instead of merely quasipolynomial (first row). It is a striking fact
that this polynomial function is divisible by 7 linear factors with constant values 1, 2, 3, 4, 5, 6, 7 on the
face FI .”
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Appendix A

Lemma 2.3.3 Proof

A.1 Statement and notation

We begin by recalling Lemma 2.3.3, written here as Lemma A.1.1 below.

Lemma A.1.1. Let γ be a chamber of A. Assume without loss of generality that the external
columns of A in γ are a1, . . . , aℓ for some ℓ ∈ {0, . . . , d − 1}. Also assume that ai = kiei

for each i ∈ {1, . . . , ℓ} and some positive integers k1, . . . , kℓ. Finally assume that the set
{a1, . . . , aℓ} is A-lattice minimal. Let B be the matrix obtained by removing the first ℓ rows
and columns of A. Then there exists a chamber γ′ of B such that

pγ
A(b) = pγ′

B (bℓ+1, . . . , bd) (A.1)

for all b = (b1, . . . , bn) ∈ posN(A) ∩ γ.

To prove this lemma, we proceed by induction on ℓ. The base case ℓ = 0 is clear. We assume
henceforth that ℓ ≥ 1. For the inductive step there are two things that we need to show
(labelled [C] and [V] below):

[C] The matrix A1̂,1̂ also satisfies the hypotheses of Lemma 2.3.3, that is:

(a) there is a chamber γ′ of A1̂,1̂ which is simplicial. Furthermore, for all b ∈ γ, it
follows that b1̂ ∈ γ′,

(b) the columns {(a2)1̂, . . . , (aℓ)1̂} are external columns of A1̂,1̂,
(c) the set {(a2)1̂, . . . , (aℓ)1̂} is A1̂,1̂-lattice minimal.

[V] The vector partition function of A1̂,1̂ respects Eq. (A.1), that is: pγ
A(b) = pγ′

A1̂,1̂
(b1̂)

for all b ∈ posN(A) ∩ γ.

By proving [C] and [V], we show that we can iteratively remove the ℓ rows and columns of
A corresponding to the external columns of γ.

Having outlined our plan, we begin by introducing some notation.
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Throughout this appendix, we assume that γ is a simplicial chamber of A. We additionally
assume that γ has external columns a1, . . . , aℓ satisfying ai = kiei for some positive integers
k1, . . . , kℓ, and that the set {a1, . . . , aℓ} is A-lattice minimal.

We also use Ã to denote the matrix A1̂,1̂, and we overload notation by denoting the columns
of Ã by ã2, . . . , ãn (in order to keep the indexing consistent between A and Ã). Similarly
for a subset s̃ ⊆ {2, . . . , n}, we write Ãs̃ to indicate the submatrix of Ã whose columns are
{ãi : i ∈ s̃}. Finally, by B, we denote the matrix obtained by removing the first ℓ rows and
columns of A. We write the general form of the matrices A and Ã below:

A =

a1 a2 . . . aℓ aℓ+1 . . . an



k1

∗k2
. . .

kℓ

0 B

Ã =

ã2 . . . ãℓ ãℓ+1 . . . ãn



k2 ∗. . .
kℓ

0 B

.

A.2 Proof of [C]

A.2.1 The simplicial cones of Ã

We now prove some results which relate the simplicial cones of A with those of Ã with a
view towards proving the conditions of [C].

Recall that posR(As) is a simplicial cone of A if and only if |s|= rank(As) = d.

Proposition A.2.1. Let s̃ ⊆ {2, . . . , n}, and let s := {1}∪ s̃. Then posR(As) is a simplicial
cone of A if and only if posR(Ãs̃) is a simplicial cone of Ã.

Proof. This result follows immediately from the observation that rank(As) = rank(Ãs̃) + 1.

In the following proposition we use b̃ to denote b1̂.

Proposition A.2.2. Let b ∈ γ. Let posR(Ãs̃) be a simplicial cone of Ã for some subset
s̃ ⊆ {2, . . . , n}, and let s := {1} ∪ s̃. Then b ∈ posR(As) if and only if b̃ ∈ posR(Ãs̃).

Proof. The forward direction (if b ∈ posR(As) then b̃ ∈ posR(Ãs̃)) is clear, so we prove
only the reverse direction.

Since b̃ ∈ posR(Ãs̃),
b̃ =

∑
i∈s̃

λiãi
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for some λi ≥ 0. Let
c :=

∑
i∈s̃

λiai.

There are two cases to consider.

Case 1: If c1 ≤ b1, then

b = (b1 − c1)e1 + c

= b1 − c1
k1

a1 +
∑
i∈s̃

λiai

=
∑
i∈s

λiai (setting λ1 := b1 − c1
k1

)

and so b ∈ posR As.

Case 2: If c1 > b1, then

c = b + (c1 − b1)e1

= b + c1 − b1
k1

a1

and since a1, b ∈ γ, it follows that c ∈ γ. Moreover, by definition c ∈ posR(A1̂). Therefore,
c lies on the unique facet f of γ not containing a1. Since f is a face of γ, if the sum of any
two vectors in γ is in f , then both of those vectors must be in f (see [38, Section 1.2] for
example). Therefore, b, c1−b1

k1
a1 ∈ f and in particular, a1 ∈ f . This is a contradiction since

f is the unique facet of γ not containing a1, and so Case 2 cannot occur.

Therefore, b ∈ posR(As) as required.

A.2.2 (a) Simplicial chamber

Let S denote the subset of P([n]) such that s ∈ S if and only if posR(As) is a simplicial
cone satisfying γ ⊆ posR(As), and let S̃ := {s \ {1} : s ∈ S}.

Proposition A.2.3. The cone
γ̃ :=

⋂
s̃∈S̃

posR(Ãs̃) (A.2)

is a chamber of Ã. Additionally, b ∈ γ if and only if b̃ ∈ γ̃.

Proof. Recall that we can represent γ as the intersection of all simplicial cones of A contain-
ing b for some b ∈ γ◦. Consider b̃ := b1̂. By Proposition A.2.2, it follows that the simplicial
cones of Ã containing b̃ are exactly the simplicial cones appearing on the right-hand side
of (A.2). Therefore, γ̃ is a cone in the chamber complex of Ã. By construction, b ∈ γ if and
only if b̃ ∈ γ̃.

In order to prove that γ̃ is a chamber of Ã, we must show that it is (d − 1)-dimensional.
Let G be the matrix whose columns are the minimal ray generators of γ (up to column

114



permutation) so that the first column of G is a1 = k1e1. Then, the columns of G1̂,1̂ are
exactly the minimal ray generators of γ̃. Since rank(G) = rank(G1̂,1̂) + 1, it follows that γ̃

is indeed (d − 1)-dimensional, and thus a chamber of Ã.

We note that ã2, . . . , ãℓ ∈ γ̃. In the next section we show that each of these columns is an
external column of Ã.

A.2.3 (b) External columns

Proposition A.2.4. Each of the columns ã2, . . . , ãℓ are external columns of Ã.

Proof. We give the proof for ã2 noting that the other cases follow similarly.

Assume towards a contradiction that ã2 is not an external column of Ã. Since a cone
can be triangulated into simplicial cones with no new ray generators, there is some subset
s′ ⊆ {3, . . . , n} such that

ã2 ∈ posR(Ãs′)

and {ãi : i ∈ s′} is linearly independent. Additionally, since ã2 is part of a linearly dependent
set, we see that s′ can be extended to some set s̃ ⊆ {3, . . . , n} with rank(Ãs̃) = |s̃|= d − 1.
Therefore, ã2 is in the simplicial cone posR(Ãs̃) of Ã, and so by Proposition A.2.2, a2 ∈
posR(As) where s = s̃ ∪ {1}. This is a contradiction since a2 is an external column.

A.2.4 (c) A-lattice minimality

Recall that a set of columns of A whose indices lie in s for some s ⊆ [n] is A-lattice minimal
if

posN(As) = L(A) ∩ posR(As).

We note that posN(a1, . . . , aℓ) ⊆ L(A) ∩ posR(a1, . . . , aℓ) for any choice of columns, so one
only needs to show the reverse inclusion.

Proposition A.2.5. The set of columns {ã2, . . . , ãℓ} is Ã-lattice minimal.

Proof. We need to prove that posR(ã2, . . . , ãℓ) ∩ L(Ã) ⊆ posN(ã2, . . . , ãℓ).

Let b̃ ∈ posR(ã2, . . . , ãℓ) ∩ L(Ã). Since b̃ ∈ L(Ã), there exist integers d2, . . . , dn such that

b̃ =
n∑

i=2
diãi.

and since b̃ ∈ posR(ã2, . . . , ãℓ), there exist λ2, . . . , λn ≥ 0 such that

b̃ =
n∑

i=2
λiãi.
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Let
c :=

n∑
i=2

diai ∈ L(A),

and let
c′ :=

n∑
i=2

λiai ∈ posR(a1, . . . , aℓ).

By construction, c2 = c′
2, . . . , cd = c′

d. Let N be a positive integer satisfying k1N > c′
1 − c1,

and let b := c + Na1, so that b1 = c1 + k1N . Then b ∈ L(A) since a1, c ∈ L(A) and N is
an integer. Additionally,

b = c′ + (k1N + c1 − c′
1)e1

= c′ + k1N + c1 − c′
1

k1
a1

and since a1, c′ ∈ posR(a1, . . . , aℓ) and k1N+c1−c′
1

k1
> 0, it follows that b ∈ posR(a1, . . . , aℓ).

By the A-lattice minimality of {a1, . . . , aℓ} it follows that b ∈ posN(a1, . . . , aℓ), and so

b = m1a1 + · · · + mℓaℓ

for some non-negative integers m1, . . . , mℓ. Therefore, b̃ = m2ã2 + · · · + mℓãℓ, and thus
b̃ ∈ posR(ã2, . . . , ãℓ) as required.

A.3 Proof of [V]

Let γ̃ be defined as in (A.2) - equivalently

γ̃ = {b1̂ : b ∈ γ}.

Before proceeding to the proof we make a quick remark about A-lattice minimality which
we exploit. If {a1, . . . , aℓ} is A-lattice minimal and each aj for j = 1, . . . , ℓ is an external
column, then the singleton sets {aj} are also A-lattice minimal.

Lemma A.3.1. Let b ∈ posN(A) ∩ γ, and let b̃ := b1̂. Then

pγ
A(b) = pγ̃

Ã
(b̃).

Proof. The following proof proceeds in two stages. In the first stage, we use the assumption
that b ∈ posN(A). In the second stage we use geometrical methods exploiting the fact that
b ∈ γ.

Denote the entry at the rth row and cth column of A by ar,c. We note that a2,1 . . . , an,1 = 0,
because the first column is k1e1.
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Let b = (b1, . . . , bd) ∈ posN(A) ∩ γ. Consider some x̃ = (x2, . . . , xn) ∈ Nn−1 satisfying

a1,2x2 + · · · + a1,nxn ≤ b1 (A.3)
a2,2x2 + · · · + a2,nxn = b2 (A.4)

...
...

...
ad,2x2 + · · · + ad,nxn = bd. (A.5)

For such x̃,

u := b − x2a2 − . . . − xnan

= ((b1 − (a1,2x2 + · · · + a1,nxn︸ ︷︷ ︸
m

), 0, . . . , 0)

= me1

where m is a non-negative integer. So, u ∈ posR(e1) and since b ∈ posN(A) ⊆ L(A), and
a2, . . . , an ∈ L(A), it follows that u ∈ L(A) as well. By hypothesis

L(A) ∩ posR(e1) = posN(a1)
= posN(k1e1)

hence k1|m. Any such x̃ extends uniquely to the solution

x =
(

m

k1
, x2, . . . , xn

)
∈ N

of Ax = b. We note that this is the unique choice for x1, because

Ax =


k1x1 + b1 − m

b2
...

bd


and so k1x1 + b1 − m = b1 implying that x1 = m/k1. The previous argument describes an
injective map from the set of solutions x′ ∈ Nd−1 satisfying Lines (A.3)–(A.5) to the set of
solutions x ∈ Nd of Ax = b. This map is clearly a bijection since the inverse map is the
projection x = (x1, . . . , xn) 7→ (x2, . . . , xn).

We now show that the conditions b ∈ γ and A1̂,·x = b1̂ are sufficient to imply Inequal-
ity (A.3). The second of these assumptions will be used to obtain Eq. (A.7) from Eq. (A.6).
Equations (A.4) – (A.5) are equivalent to A1̂,·x = b1̂ since a2,1, . . . , an,1 = 0.

By Lemma 2.2.10, γ has a unique facet f = γ ∩ H not containing k1e1, where H is a
supporting hyperplane of γ separating a1 from posR(A·,1̂). Let ι denote an inner normal of
H with respect to the cone γ. Since k1e1 ∈ H+, we have that ι · (k1e1) > 0 and so ι1 > 0.
By definition, we also have that ιT b ≥ 0 for all b ∈ γ, and since H separates a1 from
posR(A·,1̂), we find that posR(A·,1̂) ⊆ H− and so ιT A·,1̂x1̂,· ≤ 0.
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We have

ιT b = ι1b1 + ι1̂ · b1̂ (A.6)
= ι1b1 + ιT

1̂ A1̂,·x (A.7)

= ι1b1 + ιT A·,1̂x1̂ − (ι1a1,2x2 + · · · + ι1a1,nxn) (A.8)

= ι1

(
b1 − (a1,2x2 + · · · + a1,nxn)

)
+ ιT A·,1̂x1̂ (A.9)

where Eq.(A.8) follows since a2,1 = · · · = ad,1 = 0 as the first column of A is k1e1. Rear-
ranging Eq. (A.9) to solve for b1, we have

b1 =
ιT b − ιT A·,1̂x1̂

ι1
+ (a1,2x2 + · · · + a1,nxn)

≥ a1,2x2 + · · · + a1,nxn.

Therefore, we see that Equations (A.4) – (A.5) do indeed imply Inequality (A.3). Since x′

satisfying Inequality (A.3) and Equations (A.4) – (A.5) extends to a solution x of Ax = b,
we find that for b ∈ γ ∩ posN(A), the sets {x ∈ Nn : Ax = b} and {x ∈ Nn : A1̂,·x = b1̂}
are equal. Therefore, pA(b) = pA1̂,·

(b1̂). Finally since the first column of A1̂,· is all zeroes,
we have that pA1̂,·

(b1̂) = pA1̂,1̂
(b1̂), and so

pA(b) = pA1̂,1̂
(b1̂) = pγ̃

Ã
(b̃)

completing the proof.

Now that we have proven [C] and [V], we see that we can indeed iteratively remove the first
ℓ rows and columns of A. This concludes our proof of Lemma 2.3.3.
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Appendix B

Kronecker coefficient proofs

B.1 Proof of Proposition 4.6.2

We begin by restating Proposition 4.6.2.

Proposition B.1.1. Let λ, µ, ν be partitions of the same positive integer N with ℓ(µ) ≤
m, ℓ(ν) ≤ n, ℓ(λ) ≤ mn. Then bm,n(λ, µ, ν; Id) = 0 if and only if (λ, µ, ν) satisfy the
following equations:

µu = λu +
m+u(n−1)∑

i=m+(u−1)(n−1)+1
λi for u = 1, . . . , m (B.1)

ν1 =
m∑

i=1
λi (B.2)

νv =
m−1∑
i=0

λm+(n−1)i+v−1 for v = 2, . . . , n. (B.3)

Proof. One can check that for λ, µ, ν respecting Eqs. (4.23) – (4.25) we do indeed get
bm,n(λ, µ, ν; Id) = 0.

The set of solutions (λ, µ, ν) to bm,n(λ, µ, ν; Id) = 0 over Rm+n+mn with |λ|= |µ|= |ν| is
ker(Q) for a matrix Q whose rows are given by the equations |µ|= |λ|, |ν|= |λ| and the
coordinate-wise equalities bm,n(λ, µ, ν; Id)i = 0 for 1 ≤ i ≤ m + n − 2. Below we give the
matrix Q′ obtained from Q by removing all columns indexed by λ. The row corresponding
to coordinate i of bm,n(λ, µ, ν; Id) is indexed by the s or t variable from which the equation
arises. The matrix Q′ is
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µ1 µ2 µ3 . . . µm−1 µm ν1 ν2 ν3 . . . νn−1 νn



|µ|= |λ| 1 1 . . . . . . . . . 1 0 0 . . . . . . . . . 0
|ν|= |λ| 0 0 . . . . . . . . . 0 1 1 . . . . . . . . . 1

s0 0 0 . . . . . . . . . 0 0 1 1 . . . . . . 1
s1 0 1 1 . . . . . . 1 0 1 1 . . . . . . 1
s2 0 0 1 . . . . . . 1 0 1 1 . . . . . . 1
...

...
...

...
sm−1 0 0 0 . . . 0 1 0 1 1 . . . . . . 1

t1 0 1 2 . . . m − 2 m − 1 0 m − 1 m m . . . m
t2 0 1 2 . . . m − 2 m − 1 0 m − 1 m − 1 m . . . m
...

...
...

...
tn−2 0 1 2 . . . m − 2 m − 1 0 m − 1 m − 1 m − 1 . . . m − 1

and its rank is m + n. Therefore Q also has rank m + n, and so ker(Q) has dimension mn
and co-dimension m + n. Since the set of λ, µ, ν respecting Eqs. (4.23) – (4.25) also has
co-dimension m + n, we see that the two systems of linear equations are equivalent.

B.2 Proof of Theorem 4.6.4

In [58], Manivel gives a description of the stable faces of the Kronecker polyhedron in terms
of a particular type of standard tableau. A standard tableau T of shape m × n is additive if
there exist increasing sequences x1 < x2 < · · · < xm, y1 < y2 < · · · < yn with the property
that

T (i, j) < T (l, k) ⇐⇒ xi + xj < xl + xk.

For an m × n additive tableau T and partition λ of length at most mn, Manivel defines the
partitions aT (λ) and bT (λ) as follows:

aT (λ)i =
m∑

j=1
λT (i,j) for i = 1, . . . , m

bT (λ)j =
n∑

i=1
λT (i,j) for j = 1, . . . , n.

Then (λ, aT (λ), bT (λ)) is a stable triple [58, Proposition 7] and the set {(λ, aT (λ), bT (λ)) :
ℓ(λ) ≤ mn} is a face of the Kronecker polyhedron of minimal dimension [58, Proposition
9]. We now restate Theorem 4.6.4, and then show that τm,n can be described by an additive
tableau, thus proving that each λ, µ, ν satisfying Eqs. (4.23) – (4.25) is a stable triple.

Theorem B.2.1. Each triple λ, µ, ν satisfying Eqs. (4.23) – (4.25) is a stable triple. More-
over, the cone τm,n is a stable face of PKronmn,m,n.
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Proof. Consider the tableau

T =


1 m + 1 m + 2 . . . m + n − 1
2 m + (n − 1) + 1 m + (n − 1) + 2 . . . m + 2(n − 1)
3 m + 2(n − 1) + 1 m + 2(n − 1) + 2 . . . m + 3(n − 1)
...

...
...

...
m m + (m − 1)(n − 1) + 1 m + (m − 1)(n − 1) + 2 . . . mn


defined by

Ti,1 = i for i = 1, . . . , m

Ti,j = m + i(n − 1) + j for i = 2, . . . , m, j = 1, . . . , n.

It is straightforward to check that for any λ with ℓ(λ) ≤ mn, aT (λ) and bT (λ) are the
partitions µ and ν defined by Eqs. (4.23) – (4.25). We now show that T is an additive
tableau.

Consider the sequences
xi = (i − 1)(n − 1) for i = 1, . . . , m

and
y1 = 0, yj = (m − 1)(n − 1) + j − 1 for j = 2, . . . , m.

If Ti,j < Tk,l, we have three main cases to consider.

1. If l = 1, then j = 1, and so i < k. In this case xi + y1 < xk + y1 since xi < xk.

2. If l ≥ 2 and j = 1, then

xi + y1 ≤ (m − 1)(n − 1)
< (m − 1)(n − 1) + 1
≤ xk + y2

≤ xk + yl

3. If l, j ≥ 2, then Ti,j < Tk,l if and only if i < k or (i = k and j < l).
If i < k, then

xi + yj = (i − 1)(n − 1) + (m − 1)(n − 1) + j − 1
< i(n − 1) + (m − 1)(n − 1) + 1
≤ xi+1 + y2

≤ xk + yl

so xi + yj < xk + yl.
If i = k and j < l, then xi + yj < xk + yl since yj < yl.
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Therefore T is an additive tableau and τm,n is the face associated to T . Thus, we conclude
that each triple of partitions λ, µ, ν satisfying Eqs. (4.23) – (4.25) is stable, and that τm,n

is a stable face of PKronmn,m,n.

Remark B.2.2. Manivel [58] introduced the (T, λ)-reduced Kronecker coefficient gT,λ(α, β, γ)
to be the stable value of the sequence (gα+kλ,β+kµ,γ+kν)k≥0. He also shows that the (T, λ)-
reduced Kronecker coefficient counts integral points in a polytope PT,λ (and thus may be
written as a vector partition function). It may be interesting to compare (T, λ)-reduced
Kronecker coefficients (for the T given above) and atomic Kronecker coefficients for a given
m, n (although the choice of λ is not a priori obvious).

B.3 Proof of Theorem 4.7.5

We begin by restating Theorem 4.7.5.

Theorem B.3.1. Let m, n be positive integers, and λ, µ, ν be partitions with ℓ(λ) ≤ mn,
ℓ(µ) ≤ m, ℓ(ν) ≤ n. Then:

g̃m,n
λ,µ,ν ≤

(
b1 + c1

b1

)(
b2 + c2

b2

)(
bm+n−2 + c3

bm+n−2

)
m∏

i=3

(
bi + f1(i)

bi

)
n−3∏
j=1

(
bm+j + f2(j)

bm+j

)
, (B.4)

where b = (b1, . . . , bm+n−2) = bm,n(λ, µ, ν; Id) and

c1 = (m2 − 1)(n − 1) − 1
c2 = (m − 1)(n − 1)2 − 1

c3 =
(

m − 1
2

)
(n − 1) + (m − 1) − 1

f1(i) = 2
(

n − 1
2

)
(i − 2) − 1

f2(j) = (n − j − 1)(m − 1) − 1

Proof. For each of column c of Am,n we analyze which of the indices 1 ≤ h ≤ m + n − 2 are
non-zero, in order to understand which of the standard basis vectors e1, . . . , em+n−2 we may
use to replace c with. The columns of Am,n arise from the binomials of A, . . . , F from lines
(4.8) – (4.12) after the substitution to s, t variables. Explicitly, if column c of Am,n corre-

sponds to the binomial 1−
m−1∏
u=0

n−2∏
v=1

spu
u trv

v for non-negative integers p0, . . . , pm−1, r1, . . . , rn−2,
then

ck =
{

pk−1 if 1 ≤ k ≤ m

rk−m if m + 1 ≤ k ≤ m + n − 2.
.

If ck is non-zero, then by Proposition 4.7.3, we can replace column c by ek. In the following
discussion, we analyze each column of Am,n to find which standard basis vectors may be
used to replace it in order to obtain bounds. The information is collected in Table B.1.
We note that we only three cases – when replacement can be done via the standard basis
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vector e1, when it can be done via e2, or when any of the standard basis vectors em+b for
b = 1, . . . , n − 2 can be used. We use this approach in order to keep the number of cases
relatively low.

column origin binomial # columns e1 e2 em+b

A 1 − yj

xi
(m − 1)(n − 1) ✓

B 1 − xiyj (m − 1)(n − 1) ✓ ✓ ✓
C 1 − xi (m − 1)(n − 1) ✓ ✓
C 1 − yj (m − 1)(n − 1) ✓ ✓ ✓
D 1 − xiyj

xk
2
(m−1

2
)
(n − 1) ✓ ✓ ✓

D 1 − xiyj

yk
2
(n−1

2
)
(m − 1) ✓

E 1 − xkyl
xiyj

2
(n−1

2
)(m−1

2
)

F 1 − xk
xi

(n − 1)
(m−1

2
)

✓
F 1 − yl

yj
(m − 1)

(n−1
2
)

Table B.1: Columns of Am,n and the standard basis vectors which can be used to replace
them.

For each column type (defined by the form of the binomial it arose from), we provide
the number of such columns and illustrate which of the standard basis vectors in the set
{e1, e2} ∪ {em+b}1≤b≤n−2 can be used to replace such a column.

Columns arising from A

The binomials of A are of the form 1 − yj

xi
for 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1. There are

(m − 1)(n − 1) columns of this type. After the variable substitution, the binomial in s, t
arising from a given i, j is

1 − s0(si+1 . . . sm−1)(t1 . . . tn−2)m−1−i(t1 . . . tj−1).

Here s0 appears for each choice of i, j. Therefore we can replace any of the columns arising
from A by e1. We thus choose e1 to replace all such columns.

Columns arising from B

The binomials of B are of the form 1 − xiyj for 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1. There are
(m − 1)(n − 1) columns of this type. After the variable substitution, the binomial in s, t
arising from a given i, j is

1 − (s1 . . . si)(t1 . . . tn−2)i(s0 . . . sm−1)(t1 . . . tn−2)m−1(t1 . . . tj−1).

Each sa and tb, (0 ≤ a ≤ m − 1, 1 ≤ b ≤ n − 2) appear for all choices of i, j. Therefore
we can replace any of the columns arising from B by any of the standard basis vectors
e1, . . . , em+n−2. We choose e1 to replace all such columns.
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Columns arising from C

There are two types of binomials arising from C.

The first type of binomial of C is of the form 1 − xi for 1 ≤ i ≤ m − 1. In this case each
binomial is raised to the power n−1, so there are (m−1)(n−1) columns of this type. After
the variable substitution, the binomial in s, t arising from a given i is

1 − (s1 . . . si)(t1 . . . tn−2)i.

Here s1 and tb (1 ≤ b ≤ n − 2) appear for all choices of i. Therefore we can replace any of
the columns of the first type arising from C by e2 or em+b for 1 ≤ b ≤ n − 2. We choose e2
to replace all such columns.

The second type of binomial of C is of the form 1 − yj for 1 ≤ j ≤ n − 1. In this case each
binomial is raised to the power m − 1, so there are (m − 1)(n − 1) columns of this type.
After the variable substitution, the binomial in s, t arising from a given j is

1 − (s0 . . . sm−1)(t1 . . . tn−2)m−1(t1 . . . tj−1)

Here each sa, tb (0 ≤ a ≤ m − 1, 1 ≤ b ≤ n − 2) appear for all choices of j. Therefore we
can replace any of the columns of the second type arising from C by any of the standard
basis vectors e1, . . . , em+n−2. We choose e1 to replace all such columns.

Columns arising from D

There are two types of binomials arising from D. The first type of binomial of D is of the
form 1 − xiyj

xk
for 1 ≤ i ≤ m − 1, 1 ≤ k ≤ m − 1, 1 ≤ j ≤ n − 1 with k ̸= i. There are

2
(m−1

2
)
(n − 1) columns of this type. After the variable substitution, the binomial in s, t

arising from a given choice of i, j, k is

1 − (s0 . . . si)(sk+1 . . . sm−1)(t1 . . . tn−2)m+i−k−1(t1 . . . tj−1)

Here s0, s1 and tb (1 ≤ b ≤ n − 2) each appear for all choices of i, j, k. Therefore, we can
replace any of the columns of the first type arising from D by e1, e2 or em+b for 1 ≤ b ≤ n−2.
We choose e1 to replace all such columns.

The second type of binomial of D is of the form 1− xiyj

yk
for 1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1, 1 ≤

k ≤ n − 1 with k ̸= j. There are 2
(n−1

2
)
(m − 1) columns of this type. After the variable

substitution, the binomial in s, t arising from a given choice of i, j, k is

1 − (s1 . . . si)(t1 . . . tk−1)i−1(tk . . . tn−2)i(t1 . . . tj−1)

Here s1 appears for each choice of i, j, k. Therefore we can replace any of the columns of
the first type arising from D by e2. We thus choose e2 to replace all such columns.
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Columns arising from E

The binomials of E are of the form 1− xkyl
xiyj

for 1 ≤ i < k ≤ m−1, 1 ≤ j ≤ n−1, 1 ≤ l ≤ n−1
with j ̸= l. There are 2

(n−1
2
)(m−1

2
)

columns of this type. After the variable substitution, the
binomial in s, t arising from a given choice of i, j, k, l is

1 − (si+1 . . . sk)(t1 . . . tj−1)k−i−1(tj . . . tn−2)k−i(t1 . . . tl−1)

Here none of the variables appear for each choice of i, j, k, l. However, for any q = 2, . . . , m−
1, we may consider the set of rows for which sq appears and no sr with r > q appears. In
each of these cases using eq+1 to replace the row is a sensible choice for any choice of q.
There are

2
(

n − 1
2

)
(q − 1)

such columns for each 2 ≤ q ≤ m − 1 (note that q ̸= 1 since i + 1 ≥ 2).

Columns arising from F

There are two types of binomials arising from F . The first type of binomial of F is of the
form 1 − xk

xi
for 1 ≤ i < k ≤ m − 1. Each of these binomials is raised to the power n − 1, so

there are
(m−1

2
)
(n − 1) columns of this type. After the variable substitution, the binomial

in s, t arising from a given choice of i, k is

1 − (si+1 . . . sk)(t1 . . . tn−2)k−i

Here tb (1 ≤ b ≤ n − 2) appears for all choices of i, k. Therefore we can replace any of the
columns arising from A by em+b for 1 ≤ b ≤ n − 2. We choose em+n−2 to replace all such
columns.

The second type of binomial of F is of the form 1 − yl
yj

for 1 ≤ j < l ≤ n − 1. Each of these
binomials is raised to the power m−1, so there are

(n−1
2
)
(m−1) columns of this type. After

the variable substitution, the binomial in s, t arising from a given choice of j, l is

1 − (tj . . . tl−1)

Here none of the variables appear for all choices of j, l. However, for any q = 1, . . . , n − 2 we
may consider the set of rows for which tq appears but no tr appears with r < q. In each of
these cases using em+q to replace the row is a sensible choice for any choice of q. There are

(n − 1 − q)(m − 1)

such columns for each 1 ≤ q ≤ n − 2 (note that q < l, so q ̸= n − 1).

Replacing each column via the process described above produces the bound given in The-
orem 4.7.5, where c1 + 1 is the number of columns replaced by e1, c2 + 1 is the number of
comlumns replaced by e2, c3 + 1 is the number of columns replaced by em+n−2, f1(i) + 1
is the number of columns replaced by ei (for 3 ≤ i ≤ m) and f2(j) + 1 is the number of
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columns replaced by em+j (for 1 ≤ j ≤ n − 3). We note that the added ones appear since
c1, c2, c3, f1, f2 have incorporated the subtraction by one necessary for the negative binomial
coefficient.
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Appendix C

Code

C.1 The AlternantTerm class

1 class AlternantTerm :
2 def __init__( s e l f , m, n , perm) :
3 s e l f .m = m
4 s e l f . n = n
5 s e l f . perm = perm
6

7

8 @staticmethod
9 def dominates ( v1 , v2 ) :

10 " " "
11 Checks i f a tup l e v1 ’ dominates ’ another tup l e v2 . That i s , checks i f

each p a r t i a l sum of v1 i s at l e a s t the p a r t i a l sum of v2 . The p a r t i a l
sums o f a tup l e are j u s t the sums o f the f i r s t k e lements f o r a l l k from
1 to the l ength o f v1 .

12

13 : param v1 : a tup l e
14 : param v2 : a tup l e
15 : r e turn : a bool
16 " " "
17 l = len ( v1 )
18 return a l l ( [sum( v1 [ : i ] ) >= sum( v2 [ : i ] ) for i in range (1 , l +1) ] )
19

20 def __le__( s e l f , a lternant_term ) :
21 " " "
22 Returns True i f the vec to r p a r t i t i o n func t i on eva lua t i on o f s e l f i s

always at most the vec to r p a r t i t i o n func t i on eva lua t i on o f alternant_term
r e g a r d l e s s o f the cho i c e o f lmbda , mu, nu . We do t h i s by check ing
domination o f the s & t vec to r s o f both .

23

24 : param alternant_term : an AlternantTerm
25 : r e turn : a bool
26 " " "
27

28 bool1 = a l l ( [ s e l f . dominates ( s e l f . s ( ) [ k ] , a lternant_term . s ( ) [ k ] ) for k in
range ( s e l f .m) ] )

29 bool2 = a l l ( [ s e l f . dominates ( s e l f . t ( ) [ k ] , a lternant_term . t ( ) [ k ] ) for k in
range (1 , s e l f . n−1) ] )
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30

31 return bool1 and bool2
32

33 def __lt__( s e l f , a lternant_term ) :
34 " " "
35 Returns True i f the vec to r p a r t i t i o n func t i on eva lua t i on o f s e l f i s

always l e s s than the vec to r p a r t i t i o n func t i on eva lua t i on o f
alternant_term r e g a r d l e s s o f the cho i c e o f

36 lmbda , mu, nu . We do t h i s by check ing domination o f the s & t vec t o r s o f
both .

37

38 : param alternant_term : an AlternantTerm
39 : r e turn : a bool
40 " " "
41

42 i f s e l f <= alternant_term and s e l f != alternant_term :
43 return True
44

45 else :
46 return False
47

48 def __ge__( s e l f , a lternant_term ) :
49 " " "
50 Returns True i f the vec to r p a r t i t i o n func t i on eva lua t i on o f s e l f i s

always at l e a s t the vec to r p a r t i t i o n func t i on eva lua t i on o f
alternant_term r e g a r d l e s s o f the cho i c e o f lmbda , mu, nu . We do t h i s by
check ing domination o f the s & t ve c to r s o f both .

51

52 : param alternant_term : an AlternantTerm
53 : r e turn : a bool
54 " " "
55 return not s e l f < alternant_term
56

57 def __gt__( s e l f , a ltnerant_term ) :
58 " " "
59 Returns True i f the vec to r p a r t i t i o n func t i on eva lua t i on o f s e l f i s

always g r e a t e r than the vec to r p a r t i t i o n func t i on eva lua t i on o f
alternant_term r e g a r d l e s s o f the cho i c e o f lmbda , mu, nu . We do t h i s by
check ing domination o f the s & t ve c to r s o f both .

60

61 : param alternant_term : an AlternantTerm
62 : r e turn : a bool
63 " " "
64 return not s e l f <= alternant_term
65

66 def b_value_dominates ( s e l f , alternant_term , lmbda , mu, nu) :
67 " " "
68 Checks i f the b value a s s o c i a t ed to s e l f and the p a r t i t i o n s lmbda , mu, nu

i s at l e a s t as l a r g e as the b value as a s s o c i a t ed to alternant_term and
the p a r t i t i o n s lmbda , mu, nu in each coord inate .

69

70 : param alternant_term : an AlternantTerm
71 : param lmbda : a p a r t i t i o n o f l ength m∗n
72 : param mu: a p a r t i t i o n o f l ength m
73 : param nu : a p a r t i t i o n o f l ength n
74 : r e turn : a bool
75 " " "
76 b1 = s e l f . vpf_input ( lmbda , mu, nu)
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77 b2 = alternant_term . vpf_input ( lmbda , mu, nu)
78

79 i f a l l ( [ x > y for (x , y ) in zip ( b1 , b2 ) ] ) :
80 return True
81

82 else :
83 return False
84

85 def de l t a ( s e l f ) :
86 " " "
87 Returns the p a r t i t i o n delta_mn = (mn−1, mn−2, . . . , 1 , 0) .
88

89 : r e turn : a l i s t o f l ength m∗n
90 " " "
91 m, n = s e l f .m, s e l f . n
92 return tuple ( [m∗n − i − 1 for i in range (m∗n) ] )
93

94 def part_sum( s e l f , part_vector , lmbda ) :
95 " " "
96 Returns a l i n e a r combination o f the par t s o f ( lambda + delta_mn ) .
97

98 : param part_vector : an i t e r a b l e o f l ength m∗n
99 : param lmbda : a p a r t i t i o n o f l ength m∗n

100 : r e turn : a non−negat ive i n t e g e r
101 " " "
102 de l t a = s e l f . d e l t a ( )
103

104 ps = 0
105 for i , c o e f f in enumerate ( part_vector ) :
106 ps += c o e f f ∗ ( lmbda [ i ] + de l t a [ i ] )
107 return ps
108

109 def ind ices_to_parts ( s e l f , i n d i c e s ) :
110 " " "
111 Converts a l i s t o f i n d i c e s i n to a binary vec to r whose k−th index i s 1 i f

k+1 i s in the i n d i c e s l i s t ( the d i s c r epency i s due to Pythonic notat ion ) .
112

113 : param i nd i c e s : a l i s t o f non−negat ive i n t e g e r s
114 : r e turn : a binary vec to r o f l ength m∗n
115 " " "
116 m, n = s e l f .m, s e l f . n
117 return vec to r ( [ i+1 in i n d i c e s for i in range (m∗n) ] )
118

119 def x_indices ( s e l f ) :
120 " " "
121 Computes the par t s o f lambda coming from the exponents o f x f o r the

a l t e rnan t term ’ s e l f ’ from the LHS o f the Jacobi−Trudi i d e n t i t y .
122

123 : r e turn : a d i c t i onary , key=po s i t i v e i n t e g e r in 1 , . . ,m−1, va l=l i s t o f
non−negat ive i n t e g e r s

124 " " "
125 m, n , perm = s e l f .m, s e l f . n , s e l f . perm
126 x_inds = {}
127 for i in range (1 , m) :
128 x_inds [ i ] = [ perm [ i ] ] + perm [m + ( i ) ∗ (n − 1) :m + ( i + 1) ∗ (n −

1) ]
129 return x_inds
130
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131 def y_indices ( s e l f ) :
132 " " "
133 Computes the par t s o f lambda coming from the exponents o f y f o r the

a l t e rnan t term ’ s e l f ’ from the LHS o f the Jacobi−Trudi i d e n t i t y .
134

135 : r e turn : a d i c t i onary , key=po s i t i v e i n t e g e r in 1 , . . , n−1, va l=l i s t o f
non−negat ive i n t e g e r s

136 " " "
137 m, n , perm = s e l f .m, s e l f . n , s e l f . perm
138 y_indices = {}
139 for j in range (1 , n ) :
140 y_indices [ j ] = [ perm [m−1+j ] ]
141

142 for k in range (1 , m) :
143 y_indices [ j ] . append (perm [m−1+j+k∗(n−1) ] )
144

145 return y_indices
146

147 def x ( s e l f ) :
148 " " "
149 Represents the output o f x_indices us ing a binary vec to r .
150

151 : r e turn : a d i c t i ona ry where key i s an i n t e g e r from 0 to m−1 & va l i s
b inary vec to r o f l ength m−1 ( ? )

152 " " "
153 x_parts = {}
154 for i in range (1 , s e l f .m) :
155 x_parts [ i ] = s e l f . ind ices_to_parts ( s e l f . x_indices ( ) [ i ] )
156 return x_parts
157

158 def y ( s e l f ) :
159 " " "
160 Represents the output o f y_indices us ing a binary vec to r .
161

162 : r e turn : a d i c t i ona ry where key i s an i n t e g e r from 0 to n−1 & va l i s
b inary vec to r o f l ength m∗n .

163 " " "
164 y_parts = {}
165 for i in range (1 , s e l f . n ) :
166 y_parts [ i ] = s e l f . ind ices_to_parts ( s e l f . y_indices ( ) [ i ] )
167 return y_parts
168

169 def s ( s e l f ) :
170 " " "
171 Computes the par t s o f lambda from the vec to r l_s . We note that no

cons tant s appear here s i n c e they can be computed i f we know the par t s o f
lambda − each lambda_i comes with m∗n − i . For example the output {0 : (0 ,
0 , 1 , 1) , 1 : (0 , 1 , 1 , 2) } corresponds to the l_s ( lambda ) = ( lambda_3 +
lambda_4 + 1 , lambda_2 + lambda_3 + 2lambda_4 + 3)

172

173 : r e turn : a d i c t i ona ry where key i s an i n t e g e r from 0 to m−1 & va l i s a
vec to r o f l ength m∗n with non−negat ive i n t e g e r coo rd ina t e s .

174 " " "
175 m, n = s e l f .m, s e l f . n
176 s_parts = {}
177 s_parts [ 0 ] = sum( s e l f . y ( ) [ j ] for j in range (1 , n ) )
178

179 for k in range (1 , m) :
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180 s_parts [ k ] = sum( s e l f . x ( ) [ i ] for i in range (k ,m) ) + sum( s e l f . y ( ) [ j ] for
j in range (1 , n ) )

181

182 return s_parts
183

184 def t ( s e l f ) :
185 " " "
186 Computes the par t s o f lambda from the vec to r l_t . note that no cons tant s

appear here s i n c e they can be computed i f we know the par t s o f lambda −
each lambda_i comes with m∗n − i .

187

188 : r e turn : a d i c t i ona ry where key i s an i n t e g e r from 1 to n−2 & va l i s a
vec to r o f l ength m∗n with non−negat ive i n t e g e r coo rd ina t e s .

189 " " "
190 m, n = s e l f .m, s e l f . n
191 t_parts = {}
192 for l in range (1 , n − 1) :
193 t_parts [ l ] = (sum( i ∗ s e l f . x ( ) [ i ] for i in range (1 , m) ) +
194 sum( s e l f . y ( ) [ j ] for j in range ( l + 1 , n) ) +
195 (m − 1) ∗ sum( s e l f . y ( ) [ j ] for j in range (1 , n ) ) )
196

197 return t_parts
198

199 def s i gn ( s e l f ) :
200 " " "
201 Returns the s i gn a s s o c i a t ed to ’ s e l f ’ . I f t h i s s i gn i s po s i t i v e , the

a l t e rnan t term w i l l always make a non−negat ive con t r i bu t i on to the
Kronecker c o e f f i c i e n t . I f i t i s negat ive the con t r i bu t i on w i l l always be
non−p o s i t i v e .

202

203 : r e turn : +/− 1
204 " " "
205 return s e l f . perm . s i gn ( )
206

207 def vpf_input ( s e l f , lmbda , mu, nu) :
208 " " "
209 Returns the vpf input a s s o c i a t ed to a l t e rnan t term ’ s e l f ’ and the

p a r t i t i o n s lmbda , mu, nu . This i s the value which w i l l be eva luated by
the vec to r p a r t i t i o n func t i on in order to determine the con t r i bu t i on o f
a l t e rnan t term ’ s e l f ’ to the Kronecker c o e f f i c i e n t .

210

211 : r e turn : a l i s t o f l ength m+n−2.
212 " " "
213 return [ r−l for r , l in zip ( s e l f . rhs_powers (mu, nu) ,

s e l f . lhs_powers ( lmbda ) ) ]
214

215 def symbolic_vpf_input ( s e l f ) :
216 " " "
217 Computes the vpf input f o r the a l t e rnan t term ’ s e l f ’ as a func t i on o f the

par t s o f lmbda , mu, nu . For example , in the K22 case , f o r at =
K22 . a lternant_terms [ 0 ] ( the atomic KC) the output i s [− l 3 − l 4 + n2 , −l 2
− l 3 − 2∗ l 4 + m2 + n2 ]

218

219

220 : r e turn : a l i s t o f l ength m + n − 2 whose e n t r i e s are degree 1 f unc t i on s
in the par t s o f lmbda , mu, nu .

221 " " "
222 m, n = s e l f .m, s e l f . n
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223

224 lmbda = var ( ’ ␣ ’ . j o i n ( [ f ’ l { i } ’ for i in range (1 , m∗n+1) ] ) )
225 mu = var ( ’ ␣ ’ . j o i n ( [ f ’m{ i } ’ for i in range (1 , m+1) ] ) )
226 nu = var ( ’ ␣ ’ . j o i n ( [ f ’ n{ i } ’ for i in range (1 , n+1) ] ) )
227 return s e l f . vpf_input ( lmbda , mu, nu)
228

229 def alpha_beta ( s e l f ) :
230 " " "
231 Computes ( alpha , beta ) .
232

233 : r e turn : a l i s t o f l ength m+n−2
234 " " "
235 n ,m = s e l f . n , s e l f .m
236

237 the_constants = [ ]
238

239 # 1 s t coord ina te comes from s0
240 alpha_0 = 1/2∗(m∗n + n − m − 2) ∗(n−1)∗(m−1)
241 the_constants . append ( alpha_0 )
242

243 # coord ina t e s 1 , . . . ,m−1 come from sa
244 for u in range (1 ,m) :
245 alpha_u = 1/2∗(u^2∗n − 2∗u∗n∗m + 2∗n∗m^2 − u^2 + u − n − 2∗m +

2) ∗(n−1)
246 the_constants . append ( alpha_u )
247

248 # coord ina t e s m+1 , . . , n+m−2 come from tb
249 for v in range (1 , n−1) :
250 beta_v = 1/12∗(8∗n^2∗m^2 − 6∗v∗n∗m + 5∗n^2∗m − 10∗n∗m^2 + 6∗v^2 −

12∗v∗n + 6∗v∗m − 19∗n∗m + 2∗m^2 + 18∗v + 14∗m) ∗(m−1)
251 the_constants . append ( beta_v )
252

253 return the_constants
254

255 def lhs_powers ( s e l f , lmbda ) :
256 " " "
257 Returns a l i s t which i s the eva lua t i on ( ( l_s ( lmbda ; sigma ) ,

l_t ( lmbda ; sigma ) ) where ’ sigma ’ i s the permutation o f s e l f ( i . e
s e l f . perm) .

258

259 : r e turn : a l i s t o f non−negat ive i n t e g e r s
260 " " "
261 m, n = s e l f .m, s e l f . n
262 powers = [ ]
263 for i in range (m) :
264 powers . append ( s e l f . part_sum( s e l f . s ( ) [ i ] , lmbda ) )
265

266 for j in range (1 , n−1) :
267 powers . append ( s e l f . part_sum( s e l f . t ( ) [ j ] , lmbda ) )
268

269 return powers
270

271 l_st = lhs_powers # th i s i s the name we use in the paper .
272

273 def rhs_powers ( s e l f , mu, nu , no_constants = False ) :
274 " " "
275 Returns a l i s t which i s the eva lua t i on ( r_s (mu, nu) , r_t (mu, nu) ) +

( alpha , beta ) where ’ sigma ’ i s the permutation o f s e l f ( i . e s e l f . perm) .
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276

277 : r e turn : a l i s t o f non−negat ive i n t e g e r s
278 " " "
279 return [ x+y for x , y in zip ( s e l f . r_st (mu, nu) , s e l f . alpha_beta ( ) ) ]
280

281 def r_st ( s e l f , mu, nu) :
282 " " "
283 Computes ( r_s (mu, nu) , r_t (mu, nu) ) .
284

285 : param mu: a p a r t i t i o n o f l ength at most m
286 : param nu : a p a r t i t i o n o f l ength at most n
287

288 : r e turn : a l i s t o f l ength m+n−2
289 " " "
290 m, n = s e l f .m, s e l f . n
291

292 # 1 s t coord ina te comes from s0
293 mu_part = 0
294 nu_part = sum(nu) − nu [ 0 ]
295

296

297 constant_part = binomial (n − 1 , 2)
298 r_st_coords = [mu_part + nu_part + constant_part ]
299

300 # coord ina t e s 1 <= u <= m comes from s1 to sn
301 for u in range (1 , m) :
302 mu_part = sum( [mu[ i ] for i in range (u , m) ] )
303 nu_part = sum(nu) − nu [ 0 ]
304

305 constant_part = binomial (m − u , 2) + binomial (n − 1 , 2)
306 r_st_coords . append (mu_part + nu_part + constant_part )
307

308 # coord ina t e s m+1 to m+n−2 ( i . e . m+v f o r 1 <= v <= n−2) comes from t1 to
tm−2

309 for v in range (1 , n−1) :
310 mu_part = sum( [ i ∗mu[ i ] for i in range (1 , m) ] )
311 nu_part = (m−1)∗sum( [ nu [ j ] for j in range (1 , n ) ] ) + sum( [ nu [ j ] for j in

range ( v+1, n) ] )
312

313 constant_part = binomial (m, 3) + (m−1)∗binomial (n−1, 2) +
binomial (n−v−1, 2)

314 r_st_coords . append (mu_part + nu_part + constant_part )
315

316 return r_st_coords
317

318 def lmn_coef f_vectors ( s e l f ) :
319 " " "
320 Returns the [ FI\lambda IN ]
321

322 : r e turn : a tup l e
323 " " "
324 m, n = s e l f .m, s e l f . n
325

326 co e f f_vec t o r s = [ ]
327

328 lmbda = var ( ’ ␣ ’ . j o i n ( [ f ’ l { i } ’ for i in range (1 , m∗n+1) ] ) )
329 mu = var ( ’ ␣ ’ . j o i n ( [ f ’m{ i } ’ for i in range (1 , m+1) ] ) )
330 nu = var ( ’ ␣ ’ . j o i n ( [ f ’ n{ i } ’ for i in range (1 , n+1) ] ) )
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331

332 for expr in s e l f . symbolic_vpf_input ( ) :
333 lmbda_coeffs = [ expr . c o e f f i c i e n t ( lmbda [ i ] ) for i in range (m∗n) ]
334 mu_coeffs = [ expr . c o e f f i c i e n t (mu[ i ] ) for i in range (m) ]
335 nu_coef f s = [ expr . c o e f f i c i e n t (nu [ i ] ) for i in range (n) ]
336

337 co e f f_vec t o r s . append ( tuple ( lmbda_coeffs + mu_coeffs + nu_coef f s ) )
338

339 return co e f f_vec t o r s

C.2 The KroneckerComputer class

1 load ( ’ AlternantTerm . sage ’ )
2 load ( ’ PiecewiseQuas ipo lynomia l . sage ’ )
3

4 from i t e r t o o l s import combinat ions
5 from c o l l e c t i o n s import Counter
6

7 class KroneckerComputer :
8 def __init__( s e l f , m, n , alternant_terms , vec to r_par t i t i on_funct i on ) :
9 s e l f .m = m

10 s e l f . n = n
11 s e l f . a l ternant_terms = alternant_terms
12 s e l f . v ec to r_par t i t i on_funct i on = vec to r_par t i t i on_funct i on
13

14 def alternant_terms_by_evaluation ( s e l f , lmbda , mu, nu) :
15 " " "
16 Returns a record o f the vec to r p a r t i t i o n eva lua t i on s a s s o c i a t ed to each

AlternantTerm when computing the Kronecker c o e f f i c i e n t o f lmbda , mu, nu .
17

18 : param lmbda : p a r t i t i o n o f l ength at most m∗n
19 : param mu: p a r t i t i o n o f l ength at most m
20 : param nu : p a r t i t i o n o f l ength at most n
21 : r e turn : d i c t i onary , key=intege r , va l=l i s t o f a l t e rnan t terms
22 " " "
23 d = {}
24 vp = s e l f . v ec to r_par t i t i on_funct i on
25 for alternant_term in s e l f . a l ternant_terms :
26 b = alternant_term . vpf_input ( lmbda , mu, nu)
27 va l = vp . eva luate (b) ∗ alternant_term . s i gn ( )
28 d . s e t d e f a u l t ( val , [ ] ) . append ( alternant_term )
29 return d
30

31 def atomic_kronecke r_coe f f i c i en t ( s e l f , lmbda , mu, nu) :
32 " " "
33 Returns the atomic Kronecker c o e f f i c i e n t f o r p a r t i t i o n s lmbda , mu, nu .
34

35 : param lmbda : p a r t i t i o n o f l ength at most m∗n
36 : param mu: p a r t i t i o n o f l ength at most m
37 : param nu : p a r t i t i o n o f l ength at most n
38 : r e turn : a non−negat ive i n t e g e r
39 " " "
40 atomic_alternant_term = s e l f . a l ternant_terms [ 0 ]
41 b = atomic_alternant_term . vpf_input ( lmbda , mu, nu)
42 vp = s e l f . v ec to r_par t i t i on_funct i on
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43 return vp . eva luate (b)
44

45 def bounds ( s e l f , lmbda , mu, nu) :
46 " " "
47 Returns the bounds from Coro l l a ry 6 .6 o f our paper ‘ Est imating and

computing Kronecker c o e f f i c i e n t s . ’
48

49 : param lmbda : p a r t i t i o n o f l ength at most m∗n
50 : param mu: p a r t i t i o n o f l ength at most m
51 : param nu : p a r t i t i o n o f l ength at most n
52 " " "
53 m, n = s e l f .m, s e l f . n
54

55 c1 = (n−1)∗(m^2−1) − 1
56 c2 = (m−1)∗(n−1)^2 − 1
57 c3 = (n−1)∗binomial (m−1, 2) + (m−1) − 1
58

59 def f 1 ( i ) :
60 return 2∗ binomial (n−1, 2) ∗( i −2) − 1
61

62 def f 2 ( j ) :
63 return (n−j −1)∗(m−1) − 1
64

65 at = s e l f . a l ternant_terms [ 0 ]
66 b = at . vpf_input ( lmbda , mu, nu)
67

68 P1 = ( binomial (b [ 0 ] + c1 , b [ 0 ] ) ∗binomial (2∗b [ 1 ] + c2 , b [ 1 ] ) ∗
69 binomial (b [ −1] + c3 , b [ −1]) )
70 P2 = product ( [ b inomial (b [ i −1] + f1 ( i ) , b [ i −1]) for i in range (3 ,m) ] )
71 P3 = ( product ( [ b inomial (b [m+j −1] + f2 ( j ) , b [m+j −1])
72 for j in range (1 , n−2) ] ) )
73

74 return f a c t o r i a l (m∗n) ∗P1∗P2∗P3/2
75

76 def bounds_simple ( s e l f , N) :
77 " " "
78 Returns the bounds from Coro l l a ry 6 .8 o f our paper ‘ Est imating and

computing Kronecker c o e f f i c i e n t s ’ .
79

80 : param lmbda : p a r t i t i o n o f l ength at most m∗n
81 : param mu: p a r t i t i o n o f l ength at most m
82 : param nu : p a r t i t i o n o f l ength at most n
83 : r e turn : a non−negat ive r a t i o n a l number
84 " " "
85 m, n = s e l f .m, s e l f . n
86

87 c1 = (m^2−1)∗(n−1) − 1
88 c2 = (m−1)∗(n−1)^2 − 1
89 c3 = binomial (m−1, 2) ∗(n−1) + (m−1) − 1
90

91 def f 1 ( i ) :
92 return 2∗ binomial (n−1, 2) ∗( i −2) − 1
93

94 def f 2 ( j ) :
95 return (n−j −1)∗(m−1) − 1
96

97 P1 = binomial (N + c1 , N) ∗binomial (2∗N + c2 , 2∗N) ∗binomial ( (2∗m − 1) ∗N +
c3 , (2∗m − 1) ∗N)
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98 P2 = product ( [ b inomial (2∗N + f1 ( i ) , 2∗N) for i in range (3 ,m+1) ] )
99 P3 = product ( [ b inomial ( (2∗m−1)∗N + f2 ( j ) , (2∗m−1) ) for j in range (1 ,

n−2) ] )
100

101 return f a c t o r i a l (m∗n) ∗P1∗P2∗P3/2
102

103 def k r on e ck e r_co e f f i c i e n t ( s e l f , lmbda , mu, nu) :
104 " " "
105 Computes the Kronecker c o e f f i c i e n t f o r lambda , mu, nu .
106

107 : param lmbda : a p a r t i t i o n o f l ength m∗n
108 : param mu: a p a r t i t i o n o f l ength m
109 : param nu : a p a r t i t i o n o f l ength n
110 : r e turn : non−negat ive i n t e g e r
111 " " "
112 kc = 0
113 vp = s e l f . v ec to r_par t i t i on_funct i on
114

115 for alternant_term in s e l f . a l ternant_terms :
116 b = alternant_term . vpf_input ( lmbda , mu, nu)
117 vp_val = vp . eva luate (b)
118 kc += vp_val∗ alternant_term . s i gn ( )
119

120 return kc
121

122 def k rone cke r_coe f f i c i en t_tab l e ( s e l f , lmbda , mu, nu , non_zero_only = True ,
inc lude_st = False ) :

123 " " "
124 Returns the Kronecker c o e f f i c i e n t and the number o f a l t e rnan t terms with

a non−zero cont r ibut i on , as we l l as a t ab l e s t o r i n g
125 − the permutation f o r each a l t e rnan t term
126 − the s & t vec t o r s f o r the a l t e rnan t term ( opt iona l , by d e f au l t t h i s i s

not shown )
127 − the b value f o r that a l t e rnan t term at lmbda , mu, nu
128 − the eva lua t i on o f the b value by the vec to r p a r t i t i o n func t i on
129 One can op t i o na l l y show only the a l t e rnan t terms with a non−zero

con t r i bu t i on ( t h i s i s the d e f au l t )
130 or a l l o f the a l t e rnan t terms .
131

132 : param lmbda : a p a r t i t i o n o f l ength m∗n
133 : param mu: a p a r t i t i o n o f l ength m
134 : param nu : a p a r t i t i o n o f l ength n
135 : param non_zero_only : a bool
136 : param inc lude_st : a bool
137 : r e turn : a non−negat ive in t ege r , a tab le , and a p o s i t i v e i n t e g e r
138 " " "
139 kc = 0
140 vp = s e l f . v ec to r_par t i t i on_funct i on
141 num_terms = 0
142

143 table_rows = [ ]
144 for alternant_term in s e l f . a l ternant_terms :
145 b = alternant_term . vpf_input ( lmbda , mu, nu)
146 vp_val = vp . eva luate (b)
147 kc += vp_val∗ alternant_term . s i gn ( )
148

149 i f vp_val != 0 :
150 num_terms += 1
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151

152 i f vp_val != 0 or not non_zero_only :
153

154 i f inc lude_st :
155 table_rows . append ( [ alternant_term . perm ,
156 alternant_term . s ( ) , a lternant_term . t ( ) ,
157 tuple (b) , vp_val∗ alternant_term . s i gn ( ) ] )
158

159 else :
160 table_rows . append ( [ alternant_term . perm ,
161 tuple (b) , vp_val∗ alternant_term . s i gn ( ) ] )
162

163 table_rows . s o r t ( key=lambda row : −row [ −1]^2)
164

165 i f inc lude_st :
166 header = [ [ ’ Permutation ’ , ’ s ’ , ’ t ’ , ’ b␣ value ’ , ’ Signed ␣ eva lua t i on ’ ] ]
167

168 else :
169 header = [ [ ’ Permutation ’ , ’ b␣ value ’ , ’ Signed ␣ eva lua t i on ’ ] ]
170

171 table_rows = header + table_rows
172

173 return kc , num_terms , t ab l e ( table_rows , header_row=True )
174

175 def kronecker_coe f f i c i ent_chamber_table ( s e l f , lmbda , mu, nu) :
176 " " "
177 Returns a tab l e s t o r i n g
178 − the permutation f o r each a l t e rnan t term
179 − the b value f o r that a l t e rnan t term at lmbda , mu, nu
180 − a l i s t o f the chambers in which t h i s b value takes p lace
181 − the eva lua t i on o f the b value by the vec to r p a r t i t i o n func t i on
182

183 : param lmbda : a p a r t i t i o n o f l ength m∗n
184 : param mu: a p a r t i t i o n o f l ength m
185 : param nu : a p a r t i t i o n o f l ength n
186 : r e turn : a non−negat ive in t ege r , a tab le , and a p o s i t i v e i n t e g e r
187 " " "
188 kc = 0
189 vp = s e l f . v ec to r_par t i t i on_funct i on
190 num_terms = 0
191

192 table_rows = [ ]
193 for alternant_term in s e l f . a l ternant_terms :
194 b = alternant_term . vpf_input ( lmbda , mu, nu)
195 vp_val , chambers = vp . evaluate_with_chambers (b)
196 kc += vp_val∗ alternant_term . s i gn ( )
197

198 i f vp_val != 0 :
199 num_terms += 1
200

201 table_rows . append ( [ alternant_term . perm , tuple (b) ,
202 chambers , vp_val∗ alternant_term . s i gn ( ) ] )
203

204 table_rows . s o r t ( key=lambda row : −row [ −1]^2)
205 header = [ [ ’ Permutation ’ , ’ b␣ value ’ , ’ chambers ’ , ’ Signed ␣ eva lua t i on ’ ] ]
206 table_rows = header + table_rows
207

208 return kc , num_terms , t ab l e ( table_rows , header_row=True )
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209

210 def murnaghan_inequality ( s e l f ) :
211 " " "
212 Computes Murnaghan ’ s van i sh ing cond i t i on .
213

214 : r e turn : a l i s t conta in ing a s i n g l e tup l e
215 " " "
216 m, n = s e l f .m, s e l f . n
217

218 ineq = [0 for i in range (m∗n + m + n) ]
219

220 for i in range (1 , m∗n) :
221 ineq [ i ] = −1
222

223 for j in range (m∗n + 1 , m∗n + m) :
224 ineq [ j ] = 1
225

226 for k in range (m∗n + m + 1 , m∗n + m + n) :
227 ineq [ k ] = 1
228

229 return [ tuple ( [ 0 ] + ineq ) ]
230

231 def num_terms( s e l f ) :
232 " " "
233 Computes number o f a l t e rnan t terms a s s o c i a t ed to s e l f . Note f o r K22 , K23 ,

K24 we have f i l t e r e d out the a l t e rnan t terms that never have a non−zero
con t r i bu t i on to the Kronecker c o e f f i c i e n t .

234

235 : r e turn : a p o s i t i v e i n t e g e r
236 " " "
237 return len ( s e l f . a l ternant_terms )
238

239 @staticmethod
240 def pad_part i t ion ( pa r t i t i on , k ) :
241 " " "
242 Takes a p a r t i t i o n o f l ength at most k , and re tu rn s the ve r s i on o f the

p a r t i t i o n padded with enough z e ro e s to make the l ength k .
243

244 : param pa r t i t i o n : a p a r t i t i o n o f l ength at most k
245 : param k : a p o s i t i v e i n t e g e r
246 : r e turn : a ’ padded ’ p a r t i t i o n o f l ength k
247 " " "
248 q = k − len ( p a r t i t i o n )
249 return pa r t i t i o n + [0 for i in range ( q ) ]
250

251 def p a r t i t i o n_equ a l i t i e s ( s e l f ) :
252 " " "
253 Returns the tup l e s a s s o c i a t ed to the e q u a l i t i e s
254 | lambda | = |mu| = | nu |
255

256 : r e turn : a l i s t o f e q u a l i t i e s
257 " " "
258 m, n = s e l f .m, s e l f . n
259

260 p a r t i t i o n_equ a l i t i e s = [ ]
261 s t a r t e r = [ 0 for i in range (m∗n + m + n) ]
262

263 # | lambda | = |mu|
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264 eq = [ x for x in s t a r t e r ]
265 for i in range (m∗n+m) :
266 eq [ i ] = (−1)^ int ( i < m∗n)
267 p a r t i t i o n_equ a l i t i e s . append ( eq )
268

269 eq = [ x for x in s t a r t e r ]
270 for i in range (m∗n , m∗n+m+n) :
271 eq [ i ] = (−1)^ int ( i < m∗n + m)
272 p a r t i t i o n_equ a l i t i e s . append ( eq )
273

274 return [ tuple ( [ 0 ] + pq ) for pq in p a r t i t i o n_equ a l i t i e s ]
275

276 def p a r t i t i o n_ i n e q u a l i t i e s ( s e l f ) :
277 " " "
278 Returns the i n e q u a l i t i e s alpha_i >= alpha_{ i+1} >= 0 f o r each o f the

p a r t i t i o n s lambda , mu, nu .
279

280 : r e turn : a l i s t o f i n e q u a l i t i e s
281 " " "
282 m, n = s e l f .m, s e l f . n
283

284 p a r t i t i o n_ i n e q u a l i t i e s = [ ]
285 s t a r t e r = [ 0 for i in range (m∗n + m + n) ] # a l i s t from which we w i l l

generate a l l the tup l e s
286

287 # lambda i n e q u a l i t i e s
288 for i in range (m∗n−1) :
289 ineq = [ x for x in s t a r t e r ]
290 ineq [ i ] = 1
291 ineq [ i +1] = −1
292 p a r t i t i o n_ i n e q u a l i t i e s . append ( ineq )
293

294 ineq = [ x for x in s t a r t e r ]
295 ineq [m∗n−1] = 1
296 p a r t i t i o n_ i n e q u a l i t i e s . append ( ineq )
297

298 # mu i n e q u a l i t i e s
299 for i in range (m∗n , m∗n + m − 1) :
300 ineq = [ x for x in s t a r t e r ]
301 ineq [ i ] = 1
302 ineq [ i +1] = −1
303 p a r t i t i o n_ i n e q u a l i t i e s . append ( ineq )
304

305 ineq = [ x for x in s t a r t e r ]
306 ineq [m∗n+m−1] = 1
307 p a r t i t i o n_ i n e q u a l i t i e s . append ( ineq )
308

309 # nu i n e q u a l i t i e s
310 for i in range (m∗n+m, m∗n + m + n − 1) :
311 ineq = [ x for x in s t a r t e r ]
312 ineq [ i ] = 1
313 ineq [ i +1] = −1
314 p a r t i t i o n_ i n e q u a l i t i e s . append ( ineq )
315

316 ineq = [ x for x in s t a r t e r ]
317 ineq [−1] = 1
318 p a r t i t i o n_ i n e q u a l i t i e s . append ( ineq )
319
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320 # need to put a zero in f r on t o f each f o r the RHS o f the i n e qua l i t y .
321 pa r t i t i o n_ i n e qu a l i t i e s 1 = [ tuple ( [ 0 ] + pi ) for pi in

p a r t i t i o n_ i n e q u a l i t i e s ]
322

323 return pa r t i t i o n_ i n e qu a l i t i e s 1
324

325 def poset ( s e l f ) :
326 " " "
327 Returns a poset o f the a l t e rnan t terms where at1 > at2 i f f each o f the s

& t vec to r s o f at1 are > the s & t vec t o r s o f at2 .
328

329 : r e turn : a Poset
330 " " "
331 l = len ( s e l f . a l ternant_terms )
332 return Poset ( ( l i s t ( [ 0 . . l −1]) , lambda i , j : s e l f . a l ternant_terms [ i ] <=

s e l f . a l ternant_terms [ j ] ) )
333

334 def s tab l e_ face ( s e l f ) :
335 " " "
336 Returns the s t ab l e f a c e from Theorem 5 .4 ( de f ined by the i n e q u a l i t i e s

40−−42 o f Propos i t i on 5 . 2 ) .
337

338 : r e turn : a Cone
339 " " "
340 atomic_at = s e l f . a l ternant_terms [ 0 ]
341 eq_vectors = [ ]
342

343 for coe f f_vec to r in atomic_at . lmn_coef f_vectors ( ) :
344 eq_vector = tuple ( [ 0 ] + l i s t ( coe f f_vec to r ) )
345 eq_vectors . append ( eq_vector )
346

347 P = Polyhedron ( eqns=eq_vectors + s e l f . p a r t i t i o n_equ a l i t i e s ( ) ,
i e q s=s e l f . p a r t i t i o n_ i n e q u a l i t i e s ( ) , base_ring=QQ)

348

349 return Cone (P)
350

351 def van i sh ing_cond i t i ons ( s e l f ) :
352 " " "
353 Returns the s e t o f ( non )−van i sh ing cond i t i on s from Theorem 4 . 4 .
354

355 : r e turn : l i s t o f i n e q u a l i t i e s
356 " " "
357 atomic_at = s e l f . a l ternant_terms [ 0 ]
358 return [ c >= 0 for c in atomic_at . symbolic_vpf_input ( ) ]
359

360 def vanish ing_condit ions_cone ( s e l f ) :
361 " " "
362 Computes a cone such that any t r i p l e ( lambda , mu, nu) out s id e the cone

must have Kronecker c o e f f i c i e n t equal to zero .
363

364 : r e turn : a Cone
365 " " "
366 m, n = s e l f .m, s e l f . n
367

368 atomic_at = s e l f . a l ternant_terms [ 0 ]
369 ineq_vectors = [ ]
370

371 for coe f f_vec to r in atomic_at . lmn_coef f_vectors ( ) :
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372 ineq_vector = tuple ( [ 0 ] + l i s t ( coe f f_vec to r ) )
373 ineq_vectors . append ( ineq_vector )
374

375 P = Polyhedron ( i e q s=ineq_vectors+s e l f . p a r t i t i o n_ i n e q u a l i t i e s ( ) , eqns =
s e l f . p a r t i t i o n_equ a l i t i e s ( ) , base_ring=QQ)

376

377 return Cone (P)
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