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Abstract

The thesis focuses on simulation-based methods for estimation and inferences when many
auxiliary statistics are available. In the first chapter, we establish the consistency of the
simulated minimum distance estimator in such a situation and derive its asymptotic
distribution. Our estimator contributes to the asymptotic theory for estimators obtained
by simulated minimum distance in situations where the number of auxiliary statistics (or
the number of matched moments) is large, which has not been covered in the existing
literature. The estimator is easy to implement and allows us to exploit all the
informational content of a large number of auxiliary statistics without having to, (i) know
these functions explicitly, or (ii) choose a priori which functions are the most informative.
This allows us to exploit, among other things, long-run information.

In the second chapter, we illustrate the implementation of the proposed method through
Monte-Carlo simulation experiments based on small- and medium-scale New Keynesian
models. These examples illustrate how to exploit information from matching a large
number of impulse responses including at long-run horizons. It is revealed that the
utilization of many auxiliary statistics and data-driven regularization effectively improves
estimation in terms of precision and coverage rate.

In the third chapter, we propose tests of the null hypothesis of autoregressive models against
ones with Markov-switching autoregressive components. The empirical simulation-based
tests allow for unknown distributions and use Monte-Carlo test techniques. The approach is
flexible and computationally simple. The designed test statistic allows for a large number of
empirical moments and relies on simulations under the null hypothesis which permits the use
of higher-order moments. Our simulation experiments demonstrate that more information
can be harvested with more moments matched, with evidence of increased empirical power.
The Monte-Carlo testing methodology is illustrated with a mean-variance switching model,
an autoregressive coefficient switching model, and an application to US output growth
modeling.
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Chapter 1

Simulation-based Estimation with
Many Auxiliary Statistics: Theory

1.1 Introduction

Estimation methods based on simulation with auxiliary statistics (or SAS) have become
very popular to estimate the underlying parameters of complex structural models, and
include such estimators as Indirect Inference (I-I, Gouriéroux et al. (1993)), Simulated
Method of Moments (Duffie and Singleton (1993), Smith (1993)), or Efficient Methods
of Moments (Gallant and Tauchen (1996)); see Forneron and Ng (2018) and associated
references for a recent review. These estimation procedures have the advantage of bypassing
the characterization of a likelihood function - often difficult to obtain for complex models -
by focusing instead on "matching" auxiliary statistics chosen to summarize key features of
the data generating process of interest. More specifically, these estimators are obtained by
minimizing the distance between the auxiliary statistic computed with observed data and
an average of the auxiliary statistics computed with simulated data for a given parameter
value.

The main objective of this chapter is to consider the extension of the above-mentioned
SAS or I-I estimation procedures to the case where a large number of auxiliary statistics
is chosen to estimate the finite-dimensional parameter of interest, so-called simulation with
many auxiliary statistics or SMAS. We will consider cases where the number of components
of the vector of auxiliary statistics is large and typically larger than the sample size. Our
framework offers two main advantages. First, the practitioner does not need to select a priori
a small number of auxiliary statistics. In general, it is actually difficult to determine which
statistics are most informative. Second, long-run information can easily be incorporated:
for example, the long-run dynamic responses of macro variables to unitary shocks contain
information that can be harvested by including their impulse responses at large horizons in
the auxiliary statistics.
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With a finite-dimensional vector of auxiliary statistics denoted ψ̂, a SAS or I-I based
estimator minimizes the L2 distance between ψ̂ and an average of the auxiliary statistics
computed with simulated data for given parameter value θ, say ψ̂s(θ). When the number
of matched auxiliary statistics becomes large, the norm is rather determined in a Hilbert
space and requires the introduction of an operator. We establish the consistency of the
associated SMAS-based estimator in this situation and derive its asymptotic distribution.
We also derive the optimal (covariance) operator that delivers asymptotic efficiency and
design a bootstrap-based procedure to estimate it. To implement our efficient estimator, it
is necessary to invert the optimal operator which is highly unstable due to the large number
of underlying auxiliary statistics. We rely on Tikhonov regularization to stabilize its inverse,
and design a cross-validation procedure to choose the associated tuning parameter.

Our work contributes to the literature on minimum distance estimation of a
finite-dimensional vector of parameters when a large number of moments is available.
More specifically, we build on Carrasco and Florens (2000) who extend the generalized
method of moments procedure to the case of a continuum of moment conditions. We
consider instead auxiliary statistics that are not always moments, and that are not
necessarily known analytically but rather simulation-based. In that sense, our work is also
related to section 5 in Carrasco et al. (2007) where the authors explain how to handle
characteristic-function based estimation when the characteristic function is not available
in closed form (e.g. because the model involves latent variables). In such a case, ML
efficiency is still achievable and the associated optimal operator is obtained through the
same kernel-based estimation as with a tractable characteristic function. We instead need
to design a residual-based bootstrap to estimate the optimal operator. Further, it is
important to mention that our interest in considering a large number of auxiliary statistics
is not directly related to efficiency in the sense that we have no hope of achieving the
Cramer-Rao efficiency bound in the complex structural models we have in mind - even
with such a large number of matched auxiliary statistics. Our motivation to consider a
large number of statistics stems from two main practical reasons: (i) to avoid the ad hoc
pre-selection of a small number of statistics; (ii) to incorporate information from the DGP
that can only be harvested - as far as we know - from allowing a large number of auxiliary
statistics: e.g. by letting the horizon of matched impulse responses grow to infinity to
incorporate long-run dynamic responses of key macro variables.

The main theoretical results of the SMAS estimator are presented in this chapter. In
Section 1.2, the estimation methodology and general algorithm are introduced. Section 1.3
demonstrates the asymptotic normality of the SMAS estimator and its optimal asymptotic
covariance. The implementation of the estimator in practice with regularized inversion is
explained in Section 1.4. Section 1.5 concludes. The proofs of our theoretical results are
presented in Appendix A.
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1.2 Framework and notations

We start by introducing our framework and notations through a brief review of the
traditional SAS or I-I based estimation procedure. It can be understood as an extension of
classical minimum distance estimation (such as GMM) when the underlying "moments"
are not analytically tractable, but can easily be evaluated on simulated data.

Consider the sample of observed data of length T denoted XT = (x1, · · · , xT )′. We
assume throughout that XT are stationary and can be represented by a parametric model
with probability measure Pθ0 where θ0 ∈ Θ ⊂ Rp. In that sense, our interest lies in
estimating θ0 the "true" unknown value of the parameter θ that has generated the data.
SAS or I-I based estimation traditionally relies on matching a vector of H ≥ p auxiliary
statistics ψ̂T ≡ ψ̂(XT ) evaluated at the observed data XT with its counterpart evaluated
on simulated data ψ̂s

T (θ) ≡ ψ̂s(X s
T (θ)) where X s

T (θ) ≡ X s
T (ϵs, θ) represents a sample of T

simulated data for given θ with errors ϵs drawn from an assumed distribution Fϵ. The SAS
or I-I estimator is then defined by minimizing the L2 norm between ψ̂T and ψ̂s

T (θ),
specifically1:

arg min
θ∈Θ

[
z′

T (θ)WT zT (θ)
]

with zT (θ) = ψ̂T − 1
S

S∑
s=1

ψ̂s
T (X s

T (θ)) ,

for some weighting matrix WT of size (H,H) that converges to a positive-definite matrix
W .

We now propose to generalize SAS or I-I based estimation to allow for a large
(possibly infinite) number of auxiliary statistics to be matched to estimate θ. Accordingly,
we introduce the "distance" function, zT (., θ), the real-valued function defined over the set
of integers2 N which corresponds to the difference between the auxiliary statistic
computed on observed and simulated data. Intuitively, we are looking for the value of θ
that will make zT (., θ) as close as possible to 0. Following Carrasco and Florens (2000) -
and forgetting for the time being that zT (.) is not analytically tractable - the appropriate
norm is defined in the Hilbert space of squared-integrable real-valued functions through a
linear operator denoted B and our estimator based on simulation with many auxiliary
statistics (or SMAS) is defined as

θ̂SMAS ≡ arg min
θ∈Θ

∥BT zT (., θ)∥ with zT (h, θ) = ψ̂T (h) − 1
S

S∑
s=1

ψ̂s
T (h,X s

T (θ)) ∀h ∈ N ,

1It is common practice to consider the average of ψ̂s(θ) obtained with S simulated paths X s
T (θ) (s =

1, · · · , S); however S can be as small as 1 as discussed in Gouriéroux et al. (1993).

2For ease of exposition, we present our results with a function z(., θ) defined over the set of integers.
However, our results are not restricted to this particular indexation and can be extended to e.g. h ∈ [0, 1];
see related discussions in Carrasco and Florens (2000).
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where BT converges to B.
The introduction of the Hilbert space (and associated operator B) provides a

convenient framework that allows the information contained in the entire function z(., θ)
to be harvested - rather than evaluating it at a small number of chosen points, say
[zT (h1, θ), zT (h2, θ), · · · , zT (hJ , θ)]. Compared to the literature that relies on "many
instruments", when J → ∞, our framework also avoids having to specify the growth rate
of J in relation to the sample size T .

For example, the impulse response matching estimator of Guerron-Quintana et al. (2017)
relies on a finite vector of auxiliary statistics chosen as the first J impulse responses of key
macro variables: hence, zT (θ) is a vector of size J with components zT (h, θ) with h =
1, · · · , J . Such an estimator focuses on the short-run dynamic behavior of these macro
variables. We propose instead to consider infinitely many impulse responses in order to
incorporate the long-run dynamic behavior of these variables through z(h, θ) for any h ∈ N.
In our simulation study in section 2.1, we show that long-run information can easily be used
to estimate the structural parameters of interest.

We conclude this section by providing the algorithm that describes the key steps of our
simulation-based approach with many auxiliary statistics taken as impulse responses.

Algorithm 1. (Practical implementation)

1. Using the sample of T observations, compute the chosen impulse responses ψ̂T (XT ) as well as
the transition matrix and the residuals ϵ̂T . 3

2. For given θ ∈ Θ, use the simulator to generate S independent samples of T observations;
compute the associated (chosen) impulse responses, ψ̂s

T (θ) with s = 1, · · · , S, as well as
zT (θ) = ψ̂T (XT ) −

∑
s ψ̂

s
T (θ)/S.

3. Estimate the optimal operator K̂−1/2∗
T,a (a the regularizing parameter).

(a) Re-sample with replacement from the residuals ϵ̂T to get ϵ∗T,n.

(b) Use the transition matrix and ϵ∗T,n to generate X ∗
T,n and compute ψ̂∗

T,n.4

(c) Repeat independently N times to get ψ̂∗
T,n with n = 1, · · · , N .

(d) Compute K̂−1/2∗
T using ψ̂∗

T,n by following the procedure described in section 1.4.

4. Obtain θ̂SMAS as the minimizer over θ of ∥K̂−1/2∗
T,a zT (θ)∥.

1.3 Asymptotic properties of the SMAS estimator

In this section, we present our main theoretical results, namely consistency and asymptotic
normality of our SMAS estimator.

3Computation of structural impulse response functions with a VAR model is explained in Appendix B.1.

4Alternatively, compute ψ̂∗
T,n with the simulator, selected θ, and error term ϵT (the double-bootstrap

approach). See section 1.4 for further explanation and Algorithm 4 in Appendix A.2.
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1.3.1 Consistency of the SMAS estimator

Let X be a random element defined on a complete probability space (Ω,F , P0) which can be
represented by a parametric model with probability measure P0 ≡ Pθ0 where θ0 ∈ Θ ⊂ Rp.
X takes its values in (S,S).

Assumption 1. (Data Generating Process)
The observed sequence XT = (x1, . . . , xT ) is a stationary realization of the stochastic process
X.

To formally characterize the simulated data X s
T (θ), let (Ωs,Fs, P s) denote the associated

probability space, and let Xs be a random element defined on the product probability space
(Ω,F , P0) × (Ωs,Fs, P s) that takes its values in (Ss,Ss). The joint probability measure is
denoted P ≡ P0 × P s.

Definition 1. (Simulator)
For a fixed vector θ of size p, X s

T (θ) ≡ X s
T (ϵs, θ) denotes a sample of size T of data simulated

under θ with errors ϵs drawn from an assumed distribution Fϵ.

Several comments are worth mentioning.

(i) In many cases, the observed data contains some endogenous variables yt and some
exogenous variables wt, so that xt = (yt, wt). In such cases, the simulator will deliver
(ys

1, · · · , ys
T ) for given θ, (w1, · · · , wT ) and some initial conditions y0. To simplify our

notations, we keep referring to the simulated data as X s
T (θ); see e.g. Gouriéroux and

Monfort (1996) for extensive discussions.

(ii) The parameter of interest (say θ1) is typically a subset of the full set of parameters θ
(with θ = (θ1, θ2)) needed to simulate the chosen auxiliary statistics, while the
remaining parameter θ2 can be seen as nuisance parameters: e.g. the underlying
parameters of the distribution Fϵ. To simplify our presentation, we work on the full
vector of parameters θ. For alternatives, see Dridi et al. (2007) who introduce the
Partial Indirect Inference where θ2 is estimated, Khalaf et al. (2019) who conduct
fully parametric inference in a DSGE framework where θ2 is known under the null,
Khalaf and Saunders (2019) who derive statistics invariant5 to θ2 for inference in
autoregressive panels, and Antoine et al. (2023) who extend SAS or I-I based
inference to allow for θ to be weakly identified and for θ2 to be approximately
calibrated in the sense that it may not be correctly calibrated.

As explained in the previous section, our estimation strategy consists in matching the
chosen auxiliary statistic computed on observed data with that computed on simulated

5As models’ complexity increases, invariant statistics are typically hard to come by: for example in models
such as DSGE.
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data. To formalize our analysis, we introduce the real-valued distance function z(., θ) as the
difference between the (population) function of interest denoted ψ(.) and its simulation-
based counterpart denoted ψs(.). The function ψ(.) implicitly depends on the DGP X, while
the function ψs(.) depends on the simulator Xs and the associated vector of parameters θ.

Definition 2. (Distance function)
The distance function z(.) is defined on (N × S × Ss × Θ) as

z(h,X,Xs, θ) ≡ ψ(h,X) − ψs(h,Xs, θ) .

It is important to mention that ψ(.) is not itself random, as it rather corresponds to the
population function of interest. To fix ideas, consider the following two examples:

- when matching moments of X, ψ(h,X) corresponds to the moment of order h of X
computed with respect to P0;

- when matching structural impulse responses - as in our simulation study - ψ(h,X)
corresponds to the dynamic response of interest at horizon h which can be expressed
implicitly as a function of the first and second moments of X; see e.g. discussions in
Guerron-Quintana et al. (2017) p146.

Our analysis requires the introduction of H, the Hilbert space of square integrable real-
valued functions defined over the set of integers with the inner product (., .) and associated
norm ∥.∥. Specifically, the inner product is defined6 as

(f, g) =
∑
j∈N

fjgj .

Assumption 2. (Regularity of the auxiliary statistics)

(i) As a function of h ∈ N, the distance function z(.) (see Definition 2) belongs to the
Hilbert space H. It is also a measurable function of (h,X,Xs) for any θ, and it is
continuous in θ, ∀θ ∈ Θ ⊂ Rp with Θ compact. When there is no confusion, we simply
write z(., θ) or z(θ).

(ii) The equation, z(h, θ) = 0 for all h ∈ N, almost surely, has a unique solution θ0 in the
interior of Θ.

Assumption 2(i) requires z(., θ) to be square integrable (as an element of the Hilbert
space H). When matching impulse responses, this follows from Assumption 1 maintained

6Our setup implicitly rules out applications where z(.) is not square-integrable. Alternatively, we could
consider square-integrability with respect to a given probability measure, which would alter the definition
of the inner product. As explained after Assumption 2, in our applications of interest z(.) is indeed square-
integrable, and we proceed without introducing such a probability measure.
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on the underlying DGP: in general, it is known that weakly dependent sequences are
characterized by absolutely summable impulse response coefficients of their Wold
decomposition; see e.g. Hassler and Kokoszka (2010). Assumption 2(ii) is an identification
assumption: intuitively, θ0 is the only value of the (unknown) parameter θ that allows for
a "perfect match" between ψ(.) and ψs(.) for all possible values of h.

Assumption 3. (Operator)

(i) B is a nonrandom, nonsingular, bounded linear operator defined on D(B) ⊂ H valued
in H. The operator does not depend on θ but may depend on θ0.

(ii) z(., θ) ∈ D(B) ∀θ ∈ Θ.

Assumption 3 maintains regularity assumptions on the operator B to ensure that the
population objective function (or the norm of the operator applied to z) is well-defined and
uniquely minimized at θ0. Since B is assumed non-singular, its null space is equal to {0}
which ensures that the equation Bz(., θ) = 0 has a unique solution.

Assumption 4. (Sample counterparts of the operator and objective function)

(i) Let BT be a sequence of nonsingular random bounded linear operators such that
BT : D(BT ) ⊂ H → H. Let zT (., θ) denote the sample counterpart of z(., θ), that is
the difference between the estimated auxiliary statistics obtained with observed and
simulated data. We assume that zT (., θ) ≡ zT (.,XT ,X s

T , θ) ∈ D(BT ), ∀θ and that
QT (θ) ≡

∥∥BT zT (., θ)
∥∥ is a continuous function of θ.

(ii) QT (θ) P→ Q0(θ) ≡
∥∥Bz(., θ)∥∥ uniformly in θ ∈ Θ.

For details on how to compute impulse response functions, see e.g. Hamilton (1994).

Theorem 1. (Consistency of the SMAS estimator)
Under Assumptions 1 to 4, the SMAS estimator defined as,

θ̂SMAS ≡ arg min
θ∈Θ

QT (θ) , (1.1)

is consistent for θ0, that is θ̂SMAS
P−→ θ0.

1.3.2 Asymptotic distribution

In order to derive the asymptotic distribution of our SMAS estimator, additional regularity
conditions are needed.

Assumption 5. (Differentiability)

(i) The function θ → z(h, θ) is differentiable with respect to θ with
Gj(., θ) ≡ ∂z(., θ)/∂θj ∈ D(B) for j = 1, · · · , p.

7



(ii) The (p, p)-matrix
(
BG(., θ), BG(., θ)

)
=
∥∥BG(., θ)

∥∥2 with element (i, j) defined as
(BGi(., θ), BGj(., θ)) (for i, j = 1, · · · , p), is positive definite and symmetric.

Assumption 6. (Commutativity)

(i) For any functions u(., θ) and v(., θ) in H, we have:

∂

∂θ′ (u(., θ), v(., θ)) =
( ∂

∂θ′u(., θ), v(., θ)
)

+
(
u(., θ), ∂

∂θ′ v(., θ)
)
.

(ii) B and BT commute with the differential operator, that is
∂[Bu(., θ)]/∂θ′ = B[∂u(., θ)/∂θ′] for any function u(., θ) ∈ D(B).

Assumption 7. (Convergence in norm and Functional convergence)

(i) Define ∥B∥ = sup
∥f∥≤1

∥Bf∥. We have: ∥BT −B∥ → 0 in probability.

(ii)
√
TzT (., θ0) d→ Z ∼ N (0,K) on H as T goes to infinity. Z is the Gaussian random

element of H that has mean zero and covariance operator K. In addition, Z ∈ D(B)
with probability 1.

Assumption 7 is key to ensure that BT (
√
TzT (., θ0)) is well-behaved asymptotically.

Sufficient conditions to ensure the convergence of the H-valued random element zT (., θ0)
stated in Assumption 7(ii) include e.g. mixing conditions: see Chen and White (1998).
Asymptotic properties of estimated impulse response functions of weakly dependent
processes are discussed, e.g., in Lütkepohl (1990).

We are now ready to state our main result.

Theorem 2. (Asymptotic distribution of SMAS)
Under Assumptions 1 to 7,

√
T (θ̂SMAS − θ0) d−→ N (0, V ) ,

where V =
∥∥BG(θ0)

∥∥−2
(
BG(θ0), (BKB′)BG(θ0)

)∥∥BG(θ0)
∥∥−2

,

with B′ the adjoint operator of B.

The asymptotic covariance V displays the typical "sandwich form", which should yield
the optimal choice of the operator B as the one such that BKB′ equals the identity
operator with associated V =

∥∥BG(θ0)
∥∥−2. Unfortunately, one cannot directly choose B as

K−1/2 does not satisfy Assumption 3 and BT (
√
TzT (., θ0)) would not be well-defined

asymptotically in the Hilbert space7. The choice of the (optimal) operator is postponed
until the end of the next section, after we explain how to estimate the covariance operator
K.

7This issue is not specific to our framework; see e.g. Remark 4 in Carrasco and Florens (2000).
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1.4 Practical implementation of the SMAS estimator

In this section, we explain how to compute the (optimal) SMAS estimator in practice. We
first explain how to estimate the kernel operator K by bootstrap. Then, we explain how to
compute its inverse which is ill-behaved and needs to be regularized in practice. Finally, we
propose a data-driven procedure to select the regularization parameter.

1.4.1 Estimation of the covariance operator K

The estimation of the kernel operator K amounts to estimating the covariance between
z(h, θ0) and z(s, θ0) for all possible pairs (h, s). In practice, we may consider relying on
the sample counterparts ẑT (h, θ0) and ẑT (s, θ0). However, it is important to realize that in
our general framework (e.g. when matching impulse responses), ẑT (h, θ0) actually depends
on the entire sample of observations XT - as well as the entire simulated sample X s

T . As a
result, direct estimation of the kernel operator is not feasible, and we are going to bootstrap
it instead.

We consider two approaches to generate bootstrap samples. First, we assume that a
bootstrap sample X ∗

T is obtained by resampling with replacement from XT . As a result, the
sample counterpart of the operator does not require a preliminary (first-step) estimator of
the vector of parameters θ. A possible drawback of such a simple approach is associated
with the fact that the auxiliary model is not assumed to be the true DGP, but only an
approximation. This may put in jeopardy the validity of the above-mentioned resampling
scheme8: e.g. if the errors inherit some of the serial dependence of the underlying DGP. As
an alternative, we propose a double-bootstrap approach in which the simulator is used to
generate bootstrap paths (for a given parameter value, say θ̄): the second layer conditions
on the first layer to "recenter" the criterion function at the appropriate "true" value. This
approach was recently formalized in a much more general framework (e.g. without assuming
identification of the true unknown parameter value) by Antoine et al. (2022). Compared to
the resampling scheme, it is computationally more demanding as it is conditional on the
parameter value. Both procedures will be considered in our Monte-Carlo study.

To formalize the bootstrap, we follow Dovonon and Gonçalves (2017) (see their section
B.1). Given our underlying (product) probability space (Ω,F , P0)× (Ωs,Fs, P s) introduced
in section 1.3 and our observed sample of size T XT , we assume that a bootstrap sample X ∗

T is
obtained by resampling9 from XT : X ∗

T is then viewed as a realization of a stochastic process
defined on another probability space (Ω∗,F∗, P ∗). X ∗

T actually depends on two sources

8We thank a referee for bringing this concern to our attention.

9As a result, the sample counterpart of the operator does not require a preliminary (first-step) estimator
of the vector of parameters θ. Alternatively, we could also rely on the simulator to generate bootstrap paths,
which would require knowing θ. Both procedures will be considered in our Monte-Carlo study.
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of randomness, one related to the observed data and the other related to the resampling
mechanism. When the joint randomness is of interest, the bootstrap statistic can be viewed
as being defined on the product probability space

[
(Ω,F , P0) × (Ωs,Fs, P s)

]
×(Ω∗,F∗, P ∗).

Recall also that P ≡ P0 × P s. Given any bootstrap statistic X∗
T , we follow Dovonon and

Gonçalves (2017) and define10:

• X∗
T

P ∗
−−→ 0 in prob-P if for any ϵ, δ > 0, P

(
P ∗(
∣∣X∗

T

∣∣ > ϵ) > δ
)

→ 0 as T → ∞.

• X∗
T = OP ∗(1) in prob-P if for any δ > 0, there exists 0 < M < ∞ such that

P
(
P ∗(
∣∣X∗

T

∣∣ ≥ M) > δ
)

→ 0 as T → ∞.

• X∗
T

d∗
−→ X∗ in prob-P if E∗g(X∗

T ) → EPg(X∗) in prob-P for every continuous and
bounded function g, where E∗(·) is the expectation operator with respect to the
bootstrap probability measure conditional on the data.

Assumption 8. The sample distance function zT and its bootstrap counterpart z∗
T are such

that
√
T
(
zT (., θ0) − z∗

T (., θ0)
)

= oP ∗(1) in prob-P.

Assumption 8 is essential to ensure that the population covariance operator K can be
estimated from the bootstrap sample. More specifically, we will estimate the covariance
operator associated with the following kernel k∗ which corresponds to the long-run
covariance of z∗(., θ0) defined as the limit of z∗

T (., θ0).

Assumption 9. We assume that there exists z∗(., θ0) such that

z∗
T (., θ0) d∗

−→ z∗(., θ0) in prob-P.

Then, the bootstrap covariance kernel k∗(h, s) is the L2-kernel defined as

k∗(h, s) ≡ lim
τ→∞

τ∑
−τ

EP
[
(z∗(h,X∗

t , θ0) − EPz
∗(h,X∗

t , θ0))

×(z∗(s,X∗
t+τ , θ0) − EPz

∗(s,X∗
t+τ , θ0))

]
,

where, with a slight abuse of notations, X∗
t′ corresponds to the bootstrap path starting at

observation t′.

The maintained assumption that k∗(.) is an L2-kernel requires that,

∑
h

∑
s

k∗(h, s)2 < ∞ .

Since k∗(.) corresponds to the long-run covariance of z∗(., θ0), sufficient conditions are
well-known, including e.g. boundedness and mixing conditions. Related conditions are

10See also Guerron-Quintana et al. (2017)
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maintained on zT (., θ0) in Assumption 7; see also Assumption 8.
Assumption 9 implies that the underlying covariance operator K is an Hilbert-Schmidt
operator. In our proofs, we rely on the fact that: (i) the associated (Hilbert-Schmidt)
norm is finite; and (ii) K can be approached by a sequence of bounded operators.

The sample counterpart of k∗, denoted k∗
T , is obtained using N(T ) (independent)

bootstrap paths of length T denoted X n
T (with n = 1, · · · , N(T )), and associated distance

functions denoted z
∗(n)
T (., θ0). Thus, we have:

k∗
T (h, s) ≡

T −1∑
m=−T +1

ω

(
m

MT

)
Γ̂T (|m|) ,

where ω(.) is a kernel, MT is a bandwidth that diverges with T , and, for m ≥ 0,

Γ̂T (m) = 1
N(T )

N(T )∑
n=1

[
z

∗(n)
T (h,X(n)

1 (T −m), θ0) − z∗
T (h, θ0)

]

×
[
z

∗(n)
T (s,X(n)

1+m(T −m), θ0) − z∗
T (s, θ0)

]
.

with z∗
T (h, θ0) ≡ 1

N(T )

N(T )∑
n=1

z
∗(n)
T (h,X(n)

1 (T ), θ0) ,

and X
(n)
t (L) the n-th bootstrap path of length L starting at observation t. The chosen

kernel and bandwidth will affect the asymptotic properties of the sample operator KT

associated with k∗
T . To simplify our exposition, we consider throughout the Bartlett kernel,

ω(x) =

 1 − |x| if x ≤ 1
0 otherwise

,

and the bandwidth is set according to the rule-of-thumb commonly used in practice, that
is MT = ⌊0.75 × T 1/3⌋. For a thorough treatment of the links between the chosen kernel
and bandwidth and the asymptotic properties of the associated operator, see e.g. Carrasco
et al. (2007). Notice that in an i.i.d. framework where the autocorrelations can be ignored,
the bootstrap covariance kernel’s expression simplifies to,

EP
[
(z∗(h,X∗

t , θ0) − EPz
∗(h,X∗

t , θ0))(z∗(s,X∗
t , θ0) − EPz

∗(s,X∗
t , θ0))

]
,

and its sample counterpart does not involve any kernel,

1
N(T )

N(T )∑
n=1

[
z

∗(n)
T (h,X(n)

1 (T ), θ0) − z∗
T (h, θ0)

]
×
[
z

∗(n)
T (s,X(n)

1 (T ), θ0) − z∗
T (s, θ0)

]
.
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The sample operator KT associated with k∗
T has the following representation, for any

function g ∈ D(KT ),

(KT g)(h) =
∞∑

s=1
k∗

T (h, s)g(s) .

The operator KT has a degenerate kernel and therefore, contrary to K, has a
finite-dimensional closed range. As a result, the number of its eigenvalues and
eigenfunctions is finite (equal to N(T )): as we explain next, these can be computed by
solving a linear system of N(T ) equations. This extends section 3 in Carrasco and Florens
(2000) to a time series framework11.

Lemma 3. (Computation of the eigenvalues and eigenvectors of KT )
Let ϕ(T )

j denote the j-th eigenfunction and λ
(T )
j the associated eigenvalue of KT with j =

1, · · · , N(T ). These eigenvalues and eigenfunctions are obtained as follows:

1. Find the eigenvalues µ
(T )
j and the associated eigenvectors Bj = [β1

j β2
j ... β

N(T )
j ]′

(j = 1, . . . , N(T )) of the (N(T ), N(T ))-matrix C with (n, n′)-element

cn,n′ = 1
N(T )

∞∑
s=1

T −1∑
m=−T +1

ω

(
m

MT

)(
z

∗(n)
T (s,X(n)

1+m(T −m), θ0) − z̄∗
T (s, θ0)

)
×
(
z

∗(n′)
T (s,X(n′)

1 (T −m), θ0) − z̄∗
T (s, θ0)

)
.

2. The eigenvalues of KT are such that: λ(T )
j = µ

(T )
j for j = 1, · · · , N(T ).

3. The eigenfunctions of KT are such that, for j = 1, . . . , N(T ),

ϕ
(T )
j (h) = 1

N(T )
(
z

(T )
h

)′
Bj

with z
(T )
h ≡



∑T −1
m=−T +1 ω

(
m

MT

) (
z

∗(1)
T (h,X(1)

1 (T −m), θ0) − z̄∗
T (h, θ0)

)
∑T −1

m=−T +1 ω
(

m
MT

) (
z

∗(2)
T (h,X(2)

1 (T −m), θ0) − z̄∗
T (h, θ0)

)
...∑T −1

m=−T +1 ω
(

m
MT

) (
z

∗(N(T ))
T (h,X(N(T ))

1 (T −m), θ0) − z̄∗
T (h, θ0)

)



From now on, we assume that the eigenvalues λ(T )
j are ranked in descending order, and

that the eigenfunctions ϕ(T )
j (h) have been orthonormalized. Our next result, Theorem 4,

11An alternative approach that does not involve the computation of eigenvalues and eigenfunctions is
developed in section 3.3 in Carrasco et al. (2007): these authors argue that it may have some computational
advantages, particularly in large samples. The sample sizes we consider are small to moderately large in
accordance with our macro applications.
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guarantees that the sample covariance operator and the associated eigenvalues are well-
behaved asymptotically.

Assumption 10. EP∥z∗∥4 < ∞.

Theorem 4. (Asymptotic behavior of the covariance operator)
Under Assumptions 1 to 10, when T/N(T ) → ζ as T → ∞ with 0 < ζ < ∞, we have:

∥KT −K∥ = OP ∗

( 1
T ν

)
in prob-P ,

with ν = 1/3 in the general case with serial dependence, and ν = 1/2 in the i.i.d. case.

1.4.2 Estimation of the optimal operator K− 1
2

To get the optimal SMAS estimator, the control operator B should be set equal to K− 1
2 .

Finding the inverse of the covariance operator K amounts to solving a Fredholm equation
of the first kind in Φ, KΦ = g, for some known g ∈ L2, which is, in general, an ill-posed
problem: that is, the solution Φ is unstable for small variations of g; see e.g. Wahba (1973),
Groetsch (1993), Carrasco and Florens (2000), Carrasco et al. (2007), and Amengual et al.
(2020). In order to stabilize the above solution (and the associated inverse of the covariance
operator), we rely on Tikhonov regularization12 and replace K−1 by K−1

a ≡ (K2 + aI)−1K

for some positive a that converges to 0.
The optimal SMAS estimator is obtained as:

θ̂opt
SMAS ≡ arg min

θ

∥∥∥∥K−1/2
T,a zT (θ)

∥∥∥∥ = arg min
θ

∞∑
j=1

λ
(T )
j

(λ(T )
j )2 + a

|(zT (θ), ϕ(T )
j )|2 . (1.2)

In order to derive its asymptotic properties, Assumptions 3 and 5 need to be updated:
this is because the regularity properties maintained on the operator B (e.g. boundedness)
are not satisfied by K−1/2. As in Nashed and Wahba (1974), we let H(K) denote the domain
of the operator K−1/2, that is, the reproducing kernel Hilbert space of K.

Assumption 11. (i) z(., θ) ∈ H(K) + H(K)⊥ ∀θ ∈ Θ.

(ii) The function θ → z(h, θ) is differentiable with respect to θ with
Gj(., θ) ≡ ∂z(., θ)/∂θj ∈ D(K−1/2) for j = 1, · · · , p.

(iii) The (p, p)-matrix
(
K−1/2G(., θ),K−1/2G(., θ)

)
=
∥∥∥K−1/2G(., θ)

∥∥∥2
with element (i, j)

defined as (K−1/2Gi(., θ),K−1/2Gj(., θ)) (for i, j = 1, · · · , p), is positive definite and
symmetric.

12Other regularization schemes have been used in practice: see e.g. Carrasco (2012).
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We also need to introduce an additional regularity assumption.

Assumption 12. (i)
∥∥zT (., θ) − z(., θ)

∥∥ = OP( 1√
T

) uniformly in θ ∈ Θ;

(ii)
∥∥z∗

T (., θ) − z(., θ)
∥∥ = OP ∗( 1√

T
) in prob-P uniformly in θ ∈ Θ;

(iii)
∥∥∥∂zT (.,θ)

∂θ − ∂z(.,θ)
∂θ

∥∥∥ = OP( 1√
T

) uniformly in θ ∈ Θ;

(iv)
∥∥∥∥∂z∗

T (.,θ)
∂θ − ∂z(.,θ)

∂θ

∥∥∥∥ = OP ∗( 1√
T

) in prob-P uniformly in θ ∈ Θ.

The next theorem presents the asymptotic properties of the optimal SMAS estimator.

Theorem 5. (Asymptotic behavior of the optimal SMAS estimator)
Under Assumptions 1, 2, 4, and 6 to 12, the optimal SMAS estimator defined in (1.2) is√
T -consistent and asymptotically normally distributed with mean zero and variance∥∥∥K−1/2G(θ0)]

∥∥∥−2
, as T → ∞, T νa3/2 → ∞, a → 0, and ν as in Theorem 4.

In practice, the regularization parameter a is selected by cross-validation, and we explain
how to implement such a cross-validation procedure next.

1.4.3 Selection of the regularization parameter

In this subsection, we introduce our data-driven procedure to select the regularization aT .
In practice, we explain how to choose the parameter c by cross-validation where aT ≡ c/T ℓ

with given 0 < ℓ < 2ν/3. Notice that the rate of decay of aT to 0 is motivated by our
theoretical (asymptotic) results for the optimal SMAS in Theorem 5.

We first sketch how cross-validation works in practice. We start by splitting the sample
of T observations into two subsamples: the training subsample - labelled "tr" - which
corresponds to the first T̃ observations, and the testing subsample - labelled "test" - which
corresponds to the remaining observations. For each candidate value for the parameter c,
say cj , we compute the corresponding optimal SMAS estimator over the training sample,
say θ̂opt

SMAS(cj): e.g. using the regularized optimal operator with regularization parameter
aj = cj/T̃

ν . This SMAS estimator is then used to simulate a pseudo-testing-sample and to
compute the corresponding (optimal) SMAS objective function over the testing sample.
The regularization parameter cj is then chosen as the one that minimizes the objective
function over the testing sample.

Let C denote the grid of candidate values for the parameter c.

Algorithm 2. (Cross-validation to select the regularization parameter)

1. Split the sample of T observations into the training subsample "tr" which collects the first T̃ ≡
⌊2T/3⌋ observations, and the testing subsample "test" with the remaining (T−T̃ ) observations.

2. Given c ∈ C:
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(a) Using the training sample, follow Algorithm 1 to compute the regularized optimal SMAS
estimator (as in (1.2)) obtained with the regularized optimal operator K̂−1/2

T̃ ,aT̃

with aT̃ =
c/T̃ ν , that is:

θ̂opt
SMAS(c) = arg min

θ∈Θ
∥K−1/2

T̃ ,aT̃

ztr(θ)∥ .

(b) Use the simulator with θ̂opt
SMAS(c) to generate S independent sample of (T − T̃ )

observations; compute the associated auxiliary statistics and match them to the
auxiliary statistics computed over the testing sample to get ztest(θ̂opt

SMAS(c)). Evaluate
the associated SMAS objective function.

3. The regularization parameter (for the whole sample of size T ) is a∗
T = c∗/T ν where c∗ is

obtained by minimizing the SMAS objective function over the testing sample with respect to c.

1.5 Conclusion

In the first chapter, we propose a new simulation-based estimator which handles a large
number of auxiliary statistics simultaneously. It extends the SAS or I-I estimation as we
focus on "matching" auxiliary statistics chosen to summarize key features of the data
generating process of interest. Unlike classical minimum distance estimators, we do not
rely on the characterization of a likelihood function that leads to an analytical formula of
the estimator. We demonstrate the consistency and asymptotic normality of the SMAS
estimator. Its asymptotic distribution displays the typical "sandwich form", which implies
an optimal choice of the operator that governs the matched statistics. It requires the
estimation of the covariance operator, which is implemented through a bootstrap-based
procedure. Due to its unstable nature with a large number of underlying auxiliary
statistics, Tikhonov regularization is introduced to stabilize its inverse. We also present a
cross-validation procedure for selecting the associated tuning parameter.
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Chapter 2

Simulation-based Estimation with
Many Auxiliary Statistics:
Applications to Long-run Dynamic
Analysis

2.1 Introduction

We illustrate the implementation and performance of our proposed estimator through
Monte-Carlo simulation experiments based on two well-known small- and medium-scale
New Keynesian models. The New Keynesian approach is built on the DSGE framework
originally developed for Real Business Cycle models, wherein agents optimize their utility
functions while nominal wages and/or prices exhibit rigidity. These models are composed
of equations that describe the micro-founded movements in macroeconomics; see
Schorfheide (2008) for a survey on DSGE model-based estimation of the New Keynesian
model. Compared to full information maximum likelihood estimators of DSGE models,
impulse response matching estimation is preferred by some researchers as it allows for a
focus on the aspects of the model that are most important for macroeconomics (Dridi
et al. (2007)).

Our large number of auxiliary statistics corresponds to the dynamic responses of key
macro indices (such as inflation and interest rate) at various horizons (including large
ones) after a monetary shock: these impulse responses are not known in closed form and
are rather obtained by simulation. Our examples show how to incorporate long-run
information that can be used to improve the precision of estimates of structural
parameters of interest. Our paper then contributes to the literature on impulse response
matching estimation as done in Christiano et al. (2005), Inoue and Kilian (2013), or
Guerron-Quintana et al. (2017). More specifically, Guerron-Quintana et al. (2017) consider
VAR-based impulse response matching estimation of the parameters of DSGE models
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when the number of impulse responses exceeds the number of VAR model parameters, but
remains fixed. We extend Guerron-Quintana et al. (2017) to allow the number of
components of the chosen auxiliary statistic to be infinitely large. In our Monte-Carlo
experiments, we illustrate how the performance of their procedure deteriorates when a
large number of "moments" is matched. And, more importantly, how long-run information
can easily be incorporated to estimate the structural parameters with our proposed SMAS
in the previous chapter. Sokullu (2020) proposes an alternative approach to constructing
an I-I estimator using IRF matching, also employing Tikhonov regularization for the
optimal weighting matrix. Their minimum distance estimator minimizes the difference
between the empirical IRFs estimated from a VAR model and the theoretical IRFs implied
by the structural model. In contrast, our SMAS estimator does not require an analytical
expression for the IRFs.

The rest of this chapter unfolds as follows. In Section 2.2, we illustrate the small
sample properties of the SMAS estimator by revisiting the small-scale New Keynesian
model in Guerron-Quintana et al. (2017) with two macroeconomic indices. We compare
the performance of six estimators: regularized SMAS with the diagonal operator, SMAS
with the diagonal operator, regularized SMAS with the optimal operator, SMAS with the
optimal operator, and two more estimators originally proposed in Guerron-Quintana et al.
(2017), under a variety of simulation conditions. We also demonstrate the robustness of
the covariance operator by an alternative constructed conditional on the values of the
parameters of interest, instead of the one constructed by bootstrapping, using the SMAS
estimator with the diagonal operator. In Section 2.3, we illustrate the performance of the
SMAS estimator with a medium-scale New Keynesian model proposed by Smets and
Wouters (2007), by matching impulse responses of all seven indices and of a subset of four
indices, when estimating the degree of price indexation, the Calvo parameter, and both of
them together. In Section 2.2.3, we consider the baseline stylized DSGE model from
Fernández-Villaverde et al. (2016) to quantify the loss in estimation efficacy due to the
infeasibility of the analytical IRF.

2.2 Small-scale New Keynesian model with 2 indices

2.2.1 Model and estimator

In our first set of experiments, we revisit the small-scale New Keynesian model of Guerron-
Quintana et al. (2017) and focus on the estimation of price stickiness. In the model, π, R,
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and x denote respectively, the inflation rate, interest rate, and output gap:

πt = κxt + βEt(πt+1) (Phillips Curve)

Rt = ρrRt−1 + (1 − ρr)ϕππt + (1 − ρr)ϕxxt + ξt (Taylor rule)

xt = Et(xt+1) − σ[Et(Rt) − Et(πt+1) − zt] (Investment-Savings)

zt = ρzzt−1 + σzϵzt (real output shock)

ξt = σrϵrt (monetary policy shock)

where κ = (1 − α)(1 − αβ)
α

ω + σ

σ(ω + θ) , with α the probability to fix price, β the discounting
factor, ω the disutility to work, and σ and θ the elasticities of substitution across time
and across various commodities. ϕπ and ϕx measure how responsive the central bank is to
changes in inflation and the output gap. ϵz and ϵr in the shocks’ dynamics are white noise
processes.

Expectations are history based, and we generate our sample of observations on inflation
and interest rate using Dynare1. Because inflation and output gap do not react to concurrent
monetary shock, but react to the concurrent real shock, the structural shocks in the VAR
model can be identified. The true values of structural parameters are provided as follows,
α = 0.75, β = 0.99, ω = 1, σ = 1, θ = 6, ρr = 0.75, ρz = 0.90, ϕπ = 1.5, ϕx = 0.125, σz =
0.30, σr = 0.20. In this experiment, we focus on estimating α, and calibrate all the other
parameters to their true value2.

Given the sample of T observations on inflation and interest rate, a VAR(p) model is
estimated; see section B.1 in the Appendix. In what follows, we refer to the VAR model as
the reduced-form model, and to the DGP as the structural model. Based on the estimated
VAR(p) model, associated transition matrix, residuals and impulse responses3 of chosen
horizons (e.g. from 1 to H) are obtained. Since in each period two shocks cast influence on
two indices, a total of 4×H impulse responses, denoted ψ̂T , are obtained and matched with
the corresponding impulse responses obtained from simulated data generated for a given α

value, denoted ψ̂s
T (α). In addition, N bootstrap datasets of length T are generated using

the reduced-form model with the estimated transition matrix and associated residuals, from
which z

∗(n)
T,h and z̄∗

T,h can be computed, along with the eigenvalues λ(T )
j and eigenfunctions

1Dynare is a software platform for handling a wide class of economic models, in particular dynamic
stochastic general equilibrium (DSGE). It is used to generate our sample of observations according to the
structural model given the true model parameters.

2For results that allow parameters to be incorrectly calibrated, see the recent work of Antoine et al.
(2022)

3We focus here on matching (so-called) structural impulse responses (see details in Appendix B.1).
However, our procedure can easily accommodate other (dynamic) responses such as local projections (see
e.g. Jordà (2005) and more recently Plagborg-Møller and Wolf (2021)), or nonlinear impulse responses (see
Goncalves et al. (2021)).
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ϕ
(T )
j of the covariance operator as explained in section 1.4.1. The (optimal) SMAS estimator

of α is then

α̂T = arg min
α

∞∑
j=1

λ
(T )
j

(λ(T )
j )2 + aT

| < zT (α), ϕ(T )
j > |2 with zT (α) = ψ̂T − 1

S

S∑
s=1

ψ̂s
T (α) ,

and aT chosen by cross-validation as explained in section 1.4.3. In practice, the optimization
problem is solved by conducting a grid search over potential values of α. The probability
of the price stickiness α is naturally bounded between 0 and 1, and the grid of candidate
values is set at [0.005, 0.995] with a step of 0.005.

2.2.2 Monte-Carlo experiments

In our baseline experiment, a VAR(2) model is fitted to our sample of T = 232 observations
(which corresponds to 58 years of quarterly observations) and impulse responses are matched
up to horizon H - chosen between 20 and 80 (that is, between 5 and 20 years with quarterly
data) - for a total of 4H matched impulse responses: in other words, we are matching
between 80 and 320 impulse responses, therefore considering cases where it exceeds our
sample size. For the estimation of the optimal operator and its inverse, we consider N =
199 bootstrapped samples and regularization parameter aT selected by cross-validation (as
explained in section 1.4.3). The sample impulse response values are obtained by averaging
the impulse response vectors from S = 10 iterations.

Implementation details

We detail the implementation of optimal SMAS estimation of the aforementioned model
with the resampling method4, assuming that the auxiliary VAR model is deemed suitable.
Consider a sample of T = 232 observations of interest rate RT and inflation πT , the fitted
model VAR(2), and a matching horizon of H = 80.

• Estimate α̂opt
SMAS from the full sample of observations.

1. Fit a VAR(2) model with the observations and get the transition matrix Af , the
model residuals ϵ̂T , and the covariance σ2

f . Compute the structural impulse responses
ψ̂T with Af and σ2

f as introduced in Appendix B.1.

2. Using Af , ϵ̂T , σ
2
f , and randomly selected initial values from true observations, get

N = 199 bootstrapped samples of impulse responses to construct the optimal operator
K̂

−1/2
T,aT

, aT = c∗/T 1/3 (c∗ the selected tuning parameter).

(a) Re-sample with replacement from the residuals ϵ̂T to get ϵ∗T,n.

4Details of the double-bootstrap method are presented in Appendix B.2
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(b) Generate X ∗
T,n and compute ψ̂∗

T,n.

(c) Repeat independently N times to get ψ̂∗
T,n with n = 1, · · · , N .

(d) Compute K̂−1/2∗
T using ψ̂∗

T,n.

3. Iterate over the grid of α and simulate S samples of size T = 232, then generate
impulse responses ψ̂s

T (X s
T (α)). Obtain the optimal estimator as the minimizer over

the search grid of α,

α̂opt
SMAS = arg min

α

∥∥∥∥K̂−1/2
T,aT

zT (α)
∥∥∥∥ , zT (α) = ψ̂T − 1

S

S∑
s=1

ψ̂s
T (X s

T (α))

• Use cross-validation to determine tuning parameter c∗ from the search grid C following
Algorithm 2.

1. Split the sample of size T = 232 into two parts, a training set of the first T̃ = 155
observations and a testing set of the rest T − T̃ = 77 observations.

2. Given c ∈ C, traverse the grid of α and compute the regularized optimal SMAS
estimator obtained with the regularized optimal operator K̂−1/2

T̃ ,aT̃
, aT̃ = c/T̃ 1/3, using

the training sample.

α̂opt
SMAS(c) = arg min

α
∥K−1/2

T̃ ,aT̃
ztr(α)∥ .

ztr(α) denotes the difference between the chosen impulse responses (up to horizon
H = 80) computed from the training set and that computed from simulated samples
of size T̃ = 155 generated with α. K−1/2

T̃ ,aT̃
is constructed the same way as in the

estimation step.

3. Use the simulator with α̂opt
SMAS(c) to generate S independent sample of (T − T̃ ) = 77

observations; compute the impulse responses (up to horizon H = 80) and match
them to those computed over the testing sample to get ztest(α̂opt

SMAS(c)). Evaluate the
associated SMAS objective function.

4. The regularization parameter (for the whole sample of size T ) is a∗
T = c∗/T 1/3 where

c∗ is obtained by minimizing the SMAS objective function over the testing sample
with respect to c.

We compare the performance of the (efficient) SMAS estimator, which uses either the
diagonal or the optimal operator, with and without regularization, to the two estimators
developed in Guerron-Quintana et al. (2017), respectively with a diagonal weighting
matrix and the optimal one. Estimation suggested in Guerron-Quintana et al. (2017)
resembles the SMAS estimator in many ways. However, two major differences between the
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GIK estimator and the SMAS estimator are captured: (i)GIK estimator minimizes the
difference between the impulse response function of a VAR model based on observations
and their theoretical expression based on the same VAR whereas SMAS estimator
minimizes the difference between the impulse response function computed on the
observations and their simulated counterpart without relying on their theoretical
expressions; (ii) GIK estimator does not incorporate any form of regularization whereas
SMAS estimator utilizes Tikhonov regularization to stabilize the behavior of the optimal
operator.

Tables B.1, B.2 and B.3 summarize the performance of these six estimators in terms of
Monte-Carlo average, standard deviation, Root Mean Squared Error (RMSE), and Mean
Absolute Deviation (MAD), as well as effective coverage rates of 95% and 90% confidence
intervals obtained over 1,000 Monte-Carlo replications. In addition, Figures B.2 and B.3
display the Monte-Carlo histograms of these six estimators. We match either: (i) a medium
to large number of IR (from 5 to 20 years with horizons H = 20 to 80) in Table B.1, Table
B.2, and Figure B.2; or (ii) a small number of IR (from 0.5 to 2 years with horizons H = 2
to 8) in Table B.3 and Figure B.3. We also compare a smaller sample size of T = 100
observations (or 25 years of quarterly observations) when matching a medium to large
number of IR in Table B.4. Moreover, we present a robustness check with the operator
obtained by double-bootstrap mentioned in Section 1.4.1 which depends on the parameter
value, in comparison to that generated from resampling.

Experiment results

• Regularized SMAS vs non-regularized SMAS:
Overall, the regularized estimator behaves much better than the non-regularized one
according to all reported measures of performance (including RMSE and MAD) when
matching a medium to large number of IR. The Monte-Carlo distribution of the
regularized SMAS is accordingly much better behaved than that of the non-regularized
one: specifically, the distribution is closer to being symmetric around the true unknown
parameter value, more concentrated around it, and closer to being bell-shaped. Without
regularization, the empirical coverage rates often fall below the nominal level (95% and
90%).
In addition, when only matching a small number of IR, the two estimators are very close
to each other, with the regularized one slightly better in terms of SD and RMSE, and
often equally as good in terms of MAD and Bias.

• SMAS with diagonal operator vs SMAS with optimal operator:
Overall, the SMAS estimator with the optimal operator outperforms the one with the
diagonal operator. Specifically, the SMAS estimator with the optimal operator presents
a smaller RMSE even when the MAD is slightly larger, showing it is more concentrated
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around the true unknown parameter value. It is true with short and long horizons matched.
Effective coverage rates are often equally good for both estimators.

• SMAS vs benchmark estimation in Guerron-Quintana et al. (2017) (GIK estimators):
Since the impulse response functions in Guerron-Quintana et al. (2017) are generated

by the fitted structural VAR model, theoretically, if the VAR model approximates well
the DGP, then the GIK estimators would excel. This advantage is demonstrated by the
comparisons between the SMAS estimator with the diagonal (optimal) operator but not
regularized and the GIK estimator with the diagonal (optimal) operator where the GIK
estimator usually dominates.
Overall, the regularized SMAS estimator behaves much better than both GIK estimators.
For all the horizons we consider - even the shorter ones, it always outperforms them
according to all measures of performance, and displays the smallest bias, MAD, SD, and
RMSE throughout - even when considering smaller sample sizes. In addition, effective
coverage rates are much closer to their nominal levels for the regularized SMAS estimator
than for the GIK ones.

• Performance as a function of the horizon H and the order p of the fitted VAR:
Overall, the performance of the regularized SMAS estimator is remarkably stable as a
function of H - including when H is large and/or when the number of matched conditions
exceeds the sample size. Finally, the choice of the order p of the fitted VAR model does not
seem to affect the performance of the regularized SMAS estimator much.

2.2.3 Robustness check

As a robustness check, we consider the double-bootstrap approach proposed in Section
1.4.1. Specifically, the covariance operator is computed using IRs generated from
simulations conditional on the parameter value.

We implement estimation with a VAR(2) model fitted to our sample of T = 232, and
a matching horizon of H = 80. As shown in Table B.6, the estimator with the diagonal
operator or optimal operator conditional on the parameter value is nearly as effective as the
general SMAS estimator, with only a slight difference in the chosen measures of performance,
with regularization in particular. When employing the double-bootstrap approach with
regularization, the estimator with the optimal operator performs slightly weaker than that
with the diagonal operator in the chosen measure. The outcome may be attributed to the
compounded complexity arising from both correlation and varying parameter values. The
findings indicate that our proposed estimator is resilient in its ability to handle variations
in the structural model specification.
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2.3 Medium-scale New Keynesian model with 7 indices

In our second set of experiments, we consider a medium-scale New Keynesian model in
the style of Smets and Wouters (2007), and focus on the estimation of the price stickiness
(Calvo parameter) and the degree of price indexation. The model corresponds to a 30-
equation dynamic linear system, which involves output, consumption, investment, wage,
working hours, inflation, and interest rate; see e.g. section 1 in Smets and Wouters (2007)
p588. Our sample of observations on the seven above-mentioned indices is generated using
Dynare5 with parameter values set as in Table B.7: in particular, the Calvo parameter ξp

is set at 0.908 and the degree of price indexation γp is set at 0.469.
Our estimation procedure closely follows what was done in the previous section: first, a

VAR(p) model is applied to our sample of T observations, and transition matrix, residuals
and chosen impulse responses are obtained accordingly; second, these impulse responses
are matched to corresponding ones obtained from simulated data generated for a given
value of the unknown parameter; third, the (optimal) covariance operator - and
corresponding eigenvalues and eigenfunctions - is obtained from N additional bootstrap
samples. The regularization parameter is chosen once again by cross-validation. Both
parameters of interest are naturally bounded between 0 and 1. The grid of candidate
values for γp is set at [0.05, 0.95] with a step of 0.05. The search step of candidate values
for ξp is set at 0.05 in the interval [0.1, 0.6], and at 0.005 in the interval [0.61, 1],
respectively. See also the previous subsection for implementation details.

We focus here on the impact of a monetary policy shock, and consider dynamic responses
associated with a unit shock in interest rate. In our baseline experiment, a VAR(4) model
is fitted to our sample of T = 236 observations (59 years of quarterly observations), and
impulse responses are matched up to horizon H - chosen between 20 and 80 (that is,
between 5 and 20 years after the shock with quarterly data). We either consider the dynamic
responses in all seven indices, or in a subset of 4 indices (consumption, labor force, inflation,
and interest rate). For the estimation of the optimal operator and its inverse, we consider
N = 100 bootstrapped samples.

(1) Estimation of the degree of price indexation alone.
Table B.8 summarizes the performance of the (efficient) SMAS estimator (with and without
regularization) in terms of Monte-Carlo average, standard deviation, Root Mean Squared
Error (RMSE), and Mean Absolute Deviation (MAD), as well as effective coverage rates of
95% and 90% confidence intervals obtained over 1,000 Monte-Carlo replications.

5We thank Nicola Viegi (http://www.nviegi.net/teaching/master/monmas.htm) and Johannes Pfeifer
(https://github.com/JohannesPfeifer/DSGE_mod/tree/master/Smets_Wouters_2007) for sharing their
Dynare code.

23

http://www.nviegi.net/teaching/master/monmas.htm
https://github.com/JohannesPfeifer/DSGE_mod/tree/master/Smets_Wouters_2007


Overall, the performance of the regularized SMAS estimator dominates that of the non-
regularized one, and we focus on the regularized SMAS estimator in our discussion of the
results below.

• Matching IR up to medium horizons vs up to long horizons:
The performance of the regularized SMAS estimator improves when adding IR at long
horizons. When comparing the first two columns in Table B.8, all measures of performance
indicate that there is useful information contained in long-run IR. This holds whether one is
matching IR on all seven indices (Panel A), or on a subset of 4 indices (Panel B) - though the
improvements from column 1 to column 2 are more modest in Panel B. Also, such long-run
information does not improve the coverage rates much, and inference remains conservative
with effective coverage rates above their nominal levels.

• Matching IR up to long horizons vs from medium to long horizons:
The performance of the regularized SMAS estimator improves when adding IR at short
horizons. When comparing the last two columns in Table B.8, all measures of performance
indicate that there is useful information contained in short-run IR. This holds whether one
is matching IR on all seven indices (Panel A), or on a subset of 4 indices (Panel B) - though
the improvements from column 3 to column 2 are quite modest in Panel A. Also, such
short-run information does not improve the coverage rates much, and inference remains
conservative with effective coverage rates above their nominal levels.

• Robustness check:
As a robustness check, we report in Table B.9 results obtained when using alternate VAR
models. Overall, the choice of the order of the fitted VAR model does not seem to affect
much the performance of the regularized SMAS estimator.

(2) Estimation of the Calvo parameter alone.
By design, the estimation of the Calvo parameter is more challenging as its true unknown
parameter value is much closer to the upper bound 1. Table B.10 summarizes the
performance of the (efficient) SMAS estimator (with and without regularization) in terms
of Monte-Carlo average, standard deviation, Root Mean Squared Error (RMSE), and
Mean Absolute Deviation (MAD), as well as effective coverage rates of 95% and 90%
confidence intervals obtained over 1,000 Monte-Carlo replications.

Overall, the performance of the regularized SMAS estimator is excellent and dominates
that of the non-regularized one which suffers from very large size distortions, even when
large sample sizes are considered. Similarly to what was reported for the estimation of the
degree of price indexation, there is useful information contained in long-run IR, and both
SD and RMSE of regularized SMAS do improve when matching up to horizon 80 - even
with a relatively small sample size.

(3) Joint estimation of the degree of price indexation and the Calvo parameter.
When it comes to the joint estimation of the degree of price indexation and the Calvo
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parameter, Table B.11 summarizes the performance of the (efficient) SMAS estimator
(with and without regularization) in terms of Monte-Carlo average, standard deviation,
Root Mean Squared Error (RMSE), and Mean Absolute Deviation (MAD), as well as
effective coverage rates of 95% and 90% confidence intervals obtained over 1,000
Monte-Carlo replications.

Overall, the performance of the regularized SMAS estimator is excellent and dominates
that of the non-regularized one which still suffers from large size distortions. Similarly to
what was reported when estimating each parameter individually, there is useful information
contained in long-run IR, and both SD and RMSE of regularized SMAS do improve when
matching up to horizon 80.

2.4 Baseline stylized DSGE model

In our last set of experiments, we consider the baseline stylized DSGE model from
Fernandez-Villaverde et al. (2016) as adapted from DelNegro and Schorfheide (2008)
where the IRs are known analytically. This allows us to compare the performance of two
versions of our regularized SMAS estimator: the feasible one - as previously described - as
well as the infeasible one which relies on the analytical IRs instead of computing them by
simulation6.

The stylized DSGE model consists of several sectors including households,
intermediate and final goods producers, and a monetary authority. A Calvo assumption
introduces nominal rigidity in prices, and firms that cannot reoptimize their prices at a
given time adjust these by the steady-state inflation rate. This baseline model is designed
to have a state-space representation which is used to obtain associated IRs analytically.
Details can be found in Appendix B.3.3.

Once again, we focus on delivering inference on only one parameter of the model, namely
the Calvo parameter, while the remaining structural parameters are calibrated to values
suggested in the literature. In our experiment, a VAR(4) model is fitted to our sample
of T = 200 (or 400) observations and impulse responses to a monetary policy shock are
matched up to horizon H = 20 or 80. The results are reported in Table B.13.

Overall, the infeasible SMAS estimator performs better than the SMAS, both in terms
of bias and standard deviation. However, the differences remain small. It is interesting to
note that for the smaller sample sizes, differences between the two versions of SMAS are
mainly driven by biases, whereas for larger sample sizes they are mainly driven by standard

6The second SMAS is labelled "infeasible" because, in general, impulse responses are not known
analytically. In our previous two experiments, IRs are not known analytically and the infeasible SMAS
is not available.
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deviations. There are little to no size distortions, and the coverage of associated confidence
intervals remains very close to the nominal sizes for the feasible SMAS estimator.

2.5 Conclusion

The simulation experiments conducted on three models reveal that the incorporation of
many auxiliary statistics and data-driven regularization significantly enhance the precision
and coverage rate of the estimation. Our proposed SMAS estimator provides a
straightforward solution for estimating complex models such as the New Keynesian
equation system, without relying on the often unattainable likelihood function or
analytical expressions of the objective function. We also demonstrate the robustness of our
estimator to variations in the simulated operator approximation. Moreover, the efficiency
loss due to the constraint of feasibility of the SMAS estimator is negligible and can be
compensated with additional observations.
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Chapter 3

Simulation-based Inference with
Many Auxiliary Statistics:
Hypothesis Testing with Many
Moments

3.1 Introduction

The autoregressive model is a prevalent method for analyzing the temporal progression of
economic phenomena. This concise yet robust tool enables researchers to simulate business
cycles for significant economic indicators, model stock market volatility, evaluate
monetary policy, exchange rates, and more. Hamilton (1989) adds a two-regime switching
component, which follows a Markov process, to the linear autoregressive specification,
enabling the economic trajectory to be influenced by either a positive growth state or a
negative growth state. Kim and Nelson (1999) in their paper on the business cycles in the
US advocate the Markov-switching model to characterize the structural break in the US
real GDP growth towards more stabilization. Outside economics, the hidden Markov
model (HMM) is a popular statistical model for many real-world applications like speech
recognition, facial expression recognition, musical composition, and bio-informatics (see
Mor et al. (2021)).

Typically, estimating statistical models with unobserved Markov processes requires
creating and analyzing likelihood functions, which can be computationally intensive.
Similarly, performing tests to compare models with one state to those with two or more
states using likelihood-based methods can also pose computational challenges and
potential issues. Davies (1977, 1987, 2002) address the issue that the likelihood ratio (LR)
does not possess the standard χ2 distribution when a hidden nuisance parameter exists
under different scenarios. A second problem arises when the regularity conditions are
violated, for example, with identically zero scores and the scores not having positive
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variances. It also leads to LR test statistic with a non-standard distribution. Hansen
(1992, 1996) and Garcia (1998) design LR tests specifically for addressing these types of
violations. Though treating the nuisance parameters vector differently, both of their
methods involve exploring the intervening nuisance parameter space and assessing the
Markov-switching likelihood function at each grid point, which makes them
computationally demanding.

Carrasco et al. (2014) reduces the computational cost by suggesting a parametric
bootstrap approach that needs model estimation under the null hypothesis only to
determine critical values. Their proof of optimality involves showing that, for fixed values
of the nuisance parameters, the proposed test is asymptotically locally equivalent to the
LR test. On the other hand, Dufour and Luger (2017) addresses the statistical challenge of
establishing the LR function by presenting test statistics based on the moments of the
least-squares residuals. Their pivotal compound statistics incorporate the mean, variance,
skewness, and kurtosis of the residuals of the model.

We propose a novel approach that also employs the Monte-Carlo framework to
overcome the challenges in deriving and estimating the LR functions. Our method adds to
the regime-switch testing literature by allowing the incorporation of higher-order moments
in the design of test statistics, without being limited by the availability of analytical
expressions of moments. By introducing a norm that is controlled by a specialized
operator in a Hilbert space of real-valued functions that are squared-integrable, we can
combine infinitely many discrete empirical moments into a single squared norm. This
method avoids the need to find the moment generating functions and the operator
presented in Section 3.2.2 aids in the practical integration of a large number of moments.

In a preceding paper, Antoine and Sun (2022) introduced a simulation-based
estimation method, which matches a large number of auxiliary statistics; see also Chapter
1. This method was inspired by the generalized method of moments procedure, extended
to a continuum of moment conditions with regularization (Carrasco and Florens (2000)).
Unlike that paper, our current work does not aim to estimate the underlying parameters,
nor derive the asymptotic distribution of the associated estimator, rather it designs a
specification test to decide whether a (simple) stable model is appropriate. Our motivation
for considering a large number of moments is not related to optimality (e.g. to get "close"
to the LR test), but rather to extract information from the higher-order moments of the
data. In addition, it is worth mentioning that our procedure is easy to implement since it
relies on simulation rather than finding a pivotal statistic that may not be available, or
convenient to compute.

The performance of our proposed test is demonstrated through a series of Monte-Carlo
experiments. First, we examine the mean-variance switching model, with weak and strong
inter-temporal correlations, and demonstrate that our test gains power with higher-order
moments matched, in comparison to examples provided by Dufour and Luger (2017).
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Second, we test the changing slope coefficients and demonstrate that our test can detect
significant differences against the generic AR model under the null. Finally, we revisit
Hamilton’s Markov-switching model of postwar US output growth and show that the
linear AR(4) model fails to accurately capture the dynamics between 1952 and 2010.
Overall, we conclude that a higher number of matched moments leads to the acquisition of
more information, with evidence of increased empirical power.

The paper proceeds as follows. In Section 3.2, we introduce the framework of testing a
Markov-switching model, leading with a simple example of the moment-matching test by
bootstrap, and formulate the algorithm. In Section 3.3, we illustrate the performance of our
proposed test through Monte-Carlo experiments with autoregressive models. In Section 3.4,
we apply our testing procedure to revisit Hamilton’s Markov-switching model of the US
output growth, with seasonal observations of 32 years and 58 years, respectively. Section
3.5 concludes.

3.2 Test Design

Hypothesis testing of the discrete-state switching means and variances suggested in Dufour
and Luger (2017) exploits four statistics based on mean, variance, skewness, and kurtosis of
the samples. In the same spirit of moment matching, our method extends the number and
choice of moments - allowing for many, possibly higher-order, moments - without requiring
their analytical expressions. In this section, we exemplify the simulation-based hypothesis
test design using an AR(1) model with a two-state Markov-switching component.

3.2.1 Moment-matching test by bootstrap

We start by introducing moment-matching testing with an example of the test for the
difference between two means. With observations of sample A, XA = {xA

1 , x
A
2 , . . . , x

A
L1

},
and sample B, XB = {xB

1 , x
B
2 , . . . , x

B
L2

}1, consider testing whether the two (unknown)
population means, respectively µA and µB, are equal:

H0 : µA − µB = 0 vs. H1 : µA − µB ̸= 0 (3.1)

Under standard regularity conditions, according to the central limit theorem, we can
calculate the sample mean difference and derive its asymptotic distribution, then use it as
a test statistic for the above null. The Monte-Carlo testing design does not require
knowledge of the (asymptotic) distribution of the test statistics. Instead, it is replaced
with an approximation by bootstrap.

1Two integers L1, L2 are not assumed to be the same.
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The hypothesis can be written as H0 : (µA − µB)2 = 0 vs. H1 : (µA − µB)2 > 0. The
sample test statistic zL1,L2 = (X̄A−X̄B)2 is the squared norm of the sample mean difference.
The distribution of the test statistic under the null is established by bootstrap. A bootstrap
sample is generated by random selection with replacement2, of size L1 for sample A and
size L2 for sample B, and the bootstrapped sample mean is denoted X̄∗

n,A or X̄∗
n,B. With

N − 1 pairs of such samples, we compute the squared norm of the difference between the
sample average z∗

n = (X̄∗
n,A − X̄∗

n,B)2, n = 1, 2, . . . , N − 1. The MC p-value based on the
realizations of test statistics z∗

n’s is then defined as

Gz[zL1,L2 ;N ] = N + 1 −Rz[zL1,L2 ;N ]
N

(3.2)

where Rz[zL1,L2 ;N ] is the rank of zL1,L2 when zL1,L2 , z
∗
1 , z

∗
2 , . . . , z

∗
N−1 are placed in an

ascending order. The number of iterations N is preset and can be as small as 20 to obtain a
test with an exact level of 5%. A larger N reduces randomness within the simulations and,
in general, leads to the power increase; however, the gain is limited for N greater than 100
(Dufour et al. (2004)). For a more detailed discussion on the critical region and empirical
p-value of the Monte-Carlo test method, see Dufour and Khalaf (2001).

This illustrates the bootstrap-based test for the equality of the means of two populations.
Dufour and Luger (2017) create the pivotal test statistic using sample moments with an
analytical function, and build the distribution of the composite statistic under the null by
the Monte-Carlo method. Under a similar framework, our method puts no limit on the
number of moments, since we do not need their closed-form expression.

3.2.2 Framework and motivation

Consider a sequence of XT = {x1, x2, . . . , xT }, generated from an autoregressive process
containing a regime-switching component following a first-order Markov chain process. Let
St denote the random variable of the state.

xt = µst + ρ(xt−1 − µst−1) + σstϵt, t = 2, . . . , T (3.3)

The latent random variable St takes the integer value 1 or 2 in each and every period
with probability

Pr(St = j) =
2∑

i=1
pijPr(St−1 = i), pij = Pr(St = j|St−1 = i), j = 1, 2

2In our MC test, we go beyond this simple example and use a simulator function to generate the “bootstrap
samples".
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The transition matrix is

P =

p11 p12

p21 p22


where pi1 + pi2 = 1, and ϵt

i.i.d.∼ N (0, 1). St and ϵt are independent.
Let θ denote the set of all model parameters, both constant and varying included. As

in model (3.3) above, θst = {ρ, µst , σst}. The proposed hypothesis is H0 : all elements of θst

are stable, θ1 = θ2 = θ0. Alternative expressions of the null hypothesis are p11 = p21 = 1
or p12 = p22 = 1. Though this method tests the closeness between the observations and
the proposed distribution in the hypothesis by moment-matching, it requires no analytical
formula of moments or likelihood function. Instead, we rely on simulations to build the test
statistics and rely on the Monte-Carlo method to find the empirical p-values. In practice,
our method is less demanding in terms of the maintained assumptions of the distribution
functions, and the computational complexity only depends on the choice of simulator under
the null hypothesis.

The data generating process (DGP) under the null hypothesis is denoted g(·, θ). Let θ̂0
T

be the restricted consistent estimator of θ and g(·, θ̂0
T ) which will be used as the simulator

for later bootstrapping. The generated data is denoted X̃T (θ̂0
T ). To execute the MC test,

we only assume that the moments of data can be simulated under the null hypothesis and
they take continuous values.

For the case of model (3.3), the data is tested against the hypothesis of an AR(1) process
with no regime change. The observations of size T , {x1, x2, . . . , xT }, are fitted to an AR(1)
model with maximum likelihood estimation3, xt = ρ0 +ρ1xt−1 + ϵt, t = 2, . . . , T . Let ρ̂0 and
ρ̂1 be the consistent estimates. The h-th order empirical moment ξt,h can be computed for
the true observations and bootstrapped data at time t. Type A moments are moments of
demeaned observations, ξA

t,h = (xt − x̄T )h, where x̄T is the sample average. Type B moments
are moments of demeaned sample residuals, ξB

t,h = (zt − z̄T )h where zt = xt − ρ̂0 − ρ̂1xt−1,
and z̄T being the average of residuals. For the selected h, the stacked vector of moments
is denoted ξh = [ξ1,h ξ2,h . . . ξT,h]′, and ξ̄h = 1

T

∑T
t=1 ξt,h. All of the computed empirical

moments are collected in the stacked vector of H moments ξ
T

= [ξ̄1, ξ̄2, . . . , ξ̄H ].
In practice, we define a norm governed by special operator B in a Hilbert space of

squared-integrable real-valued functions to harvest the information in the higher-order
moments. We also define the associated inner product (·, ·) and the norm ∥.∥ in the Hilbert
space. See Carrasco and Florens (2000) and Antoine and Sun (2022) for more discussion
about the operator, the inner product, and the norm.

Next, we introduce the test statistic with B. Let ξ̃
null

be the values of H moments under
the null hypothesis, which is computed from the simulated sample X̃T (θ̂0

T ).

3According to the specific assumptions held, consistent θ̂0
T might be estimated in a different way.
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q =
∥∥∥BT (ξ

T
− ξ̃

null
)
∥∥∥2

=
∞∑

j=1

λ
(T )
j

(λ(T )
j )2 + a

|(ξ
T

− ξ̃
null

, ϕ
(T )
j )|2 (3.4)

Let K be the covariance operator of the distance ξ
T

− ξ̃
null

, and KT be its sample
counterpart with a degenerate kernel. ϕ(T )

j is defined as the j-th eigenfunction of KT and
λ

(T )
f the associated eigenvalue. a is a preset regularization parameter for covariance operator

inversion.
We now formulate the MC test as stated in this section.

Algorithm 3. (Monte-Carlo test)

1. Fit model xt = ρ̂0 + ρ̂1xt−1 + et under the null hypothesis, as the simulator;

2. Compute sample moments of true observations ξ
T

;

3. Simulate data under the null hypothesis using the linear model g(·, θ̂0
T ) and error term

as assumed, and compute their moments ξ̃
null

4;

4. Construct the test statistic q =
∥∥∥BT (ξ

T
− ξ̃

null
)
∥∥∥2

;

5. Build the bootstrapped distribution of the test statistic under the null hypothesis;

• Simulate N − 1 independent samples under the null hypothesis (the same way as
described in step 3) and compute their moments ξ̃n

null
, n = 1, 2, . . . , N − 1;

• Calculate qn =
∥∥∥BT (ξ̃n

null
− ξ

null
)
∥∥∥2

for each n;

6. Rank q, q1, q2, . . . , qN−1 in ascending order, then calculate the empirical p-value defined
in (3.2), Gq[q;N ] = N + 1 −Rq[q;N ]

N
.

3.3 Simulation Studies

In this section, we illustrate the proposed Monte-Carlo hypothesis testing method with
two autoregressive models. The first one is a mean-variance switch model from Dufour and
Luger (2017), and the second one is a Hamilton-type regression model from Ghysels and
Marcellino (2018). Here we provide the Monte-Carlo experiments results of the models. For
both of them, we present the empirical size and empirical power of the tests, with two
families of moments introduced in Section 3.2.2, the moments of demeaned observations
(Type A) and moments of demeaned residuals (Type B).

In this section, all simulation-based tests use a total of H = 4, 12, or 20 moments.
The empirical size is computed from rejections out of 5000 independent replications. For

4In practice, ξ̃
null

is imputed by the sample average from Nnull independent samples
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each replication, N − 1 = 499 simulation samples are generated to construct the empirical
distribution of the test statistic under the null hypothesis. We consider Nnull = 20 samples
generated under the null and compute the value of moments whose sample mean is used as
the moments under the null. For the estimation of the empirical operator BT and its inverse,
we consider Nboot = 20 bootstrapped samples and arbitrary regularization parameter a =
0.0001.

3.3.1 Mean-variance Markov-switching autoregression model

We revisit the model considered by Dufour and Luger (2017):

xt = µst +
r∑

k=1
ρk(xt−k − µst−k) + σstεt (3.5)

The state variable {St} can take two values, 1 and 2. It follows the first-order Markov
chain process with transition matrix

P =

p11 p12

p21 p22


where ∑2

j=1 pij = 1, for i = 1, 2.
Without loss of generality, consider the AR(1) case of model (3.5),

xt = µst + ρ(xt−1 − µst−1) + σstϵt (3.6)

where µst = µ1I[St = 1] + µ2I[St = 2], σst = σ1I[St = 1] + σ2I[St = 2], µ1, µ2, σ1, σ2, ρ

are constants. ϵt is i.i.d. white noise.
Rewrite model (3.6) as

xt =
2∑

i=1
µiI[St = i] + ρ(xt−1 −

2∑
i=1

µiI[St−1 = i]) +
2∑

i=1
σiI[St = i]εt (3.7)

Define zt(ρ) = xt − ρxt−1, t = 2, . . . , T , then

zt(ρ) = µ∗
1I[S∗

t = 1] +µ∗
2I[S∗

t = 2] +µ∗
3I[S∗

t = 3] +µ∗
4I[S∗

t = 4] + (σ1I[St = 1] +σ2I[St = 2])εt

where
µ∗

1 = µ1(1 − ρ), µ∗
2 = µ2 − ρµ1, µ

∗
3 = µ1 − ρµ2, µ

∗
4 = µ2(1 − ρ)

S∗
t denotes the four possible cases depending on the constant values. Only when µ1 = µ2

and σ1 = σ2, zt has constant mean and variance over time. Depending on the true value of
ρ, when µ1 ̸= µ2, zt reveals to be a mixture of two (when ρ = 0), three (when ρ = 1 or −1),
or four normals (with other values of ρ). Nonetheless, under the null hypothesis µ1 = µ2
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and σ1 = σ2, the moments of zt are non-varying, the moment-based test thus identifies the
discrepancies in some or all of the moments when the switch is present.

In the simulation study, observations are tested against a linear AR(1) specification.
Model parameters are unknown. The maximum likelihood estimation of the AR(1) model’s
constant is denoted ρ̂0, and that of the slope coefficient is denoted ρ̂. In example model (3.6),
we obtain the demeaned model residuals ẑt = xt − ρ̂0 − ρ̂xt−1, t = 2, 3, . . . , T with consistent
AR coefficient ρ̂, whose moments are computed for the test purpose. As a comparison, we
also obtain (demeaned) moments of XT and execute the moment-based test.

The Monte-Carlo experiments feature the same setup as Table 2-4 in Dufour and Luger
(2017). Overall, our results are in line with theirs and with less computational complexity
from deriving the pivotal statistics.
Empirical size of tests. Time series samples of T observations are generated by model (3.6)
under the hypothesis that no latent state switch in model parameters exists. The DGP is
AR(1) with no constant and coefficient of the first lag ρ. The error term is characterized by
the independent standard normal distribution.

Table C.1 reports the empirical size of the test at a nominal significance level of 5%. In
practice, ρ is set at 0.1 or 0.9, to show low and high intertemporal correlation. Tests are
executed with sample sizes of T = 100 or 200. For both values of ρ, reported empirical sizes
are significantly lower than the nominal level 5% with only the first 4 and 12 moments of
observations. With the first 20 moments incorporated and a larger sample size, the reported
empirical sizes are close to 5% for the Type B test.
Empirical power of tests. Samples of T observations are generated by model (3.7), T =
100, 200. The DGP is AR(1) with two latent states which follow a first-order Markov process.
Three transition matrices are considered: (p11, p22) = (0.9, 0.9), (0.9, 0.5), (0.9, 0.1). The
model parameters are summarized as,

State 1 State 2
Case 1 µ1 = 0, σ1 = 1 µ2 = 2, σ2 = 1
Case 2 µ1 = 2, σ1 = 1 µ2 = 2, σ2 = 2
Case 3 µ1 = 0, σ1 = 1 µ2 = 2, σ2 = 3

Table C.2 and C.3 reports the empirical power of tests with ρ = 0.1 and ρ = 0.9,
respectively. The nominal level of significance is set at 5%. The power of the proposed test
increases with the sample size, and disparity in µ and σ. The test power is the lowest with
inactive regime switch (p11, p22) = (0.9, 0.9), and increases with the frequency of the switch.
With (∆µ,∆σ) = (2, 2), the empirical power exceeds 96% when ρ = 0.1 for both types of
test, and it exceeds 92% when ρ = 0.9 for Type B test.
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3.3.2 Markov-switching (auto)regression model with switching
coefficients

We present the Markov-switching regression model used in Ghysels and Marcellino (2018).
Unlike the example in the previous section, the slope coefficient is dynamic and determined
by the current state. XT = {x1, x2, . . . , xT } is generated from an autoregressive process
with state-dependent AR coefficients and constant,

xt = ρ0,st +
r∑

k=1
ρk,stxt−k + ϵt (3.8)

where {St} takes values {1, 2} and follows a first-order Markov process, but states are
not observed. ϵt is i.i.d. white noise.

Even with the simple illustration of AR(1) model xt = ρ0,st + ρ1,stxt−1 + ϵt, the
distribution of xt is not as straightforward as a mixture of normal distributions when the
parameters are state-sensitive. {xt − ρ0,st − ρ1,stxt−1} would be a standard normal process
with static ρ0 and ρ1.

Consider the two-state case where ρk,1 ̸= ρk,2, k = 0, 1,

xt = ρ0,st + ρ1,stxt−1 + ϵt

= (ρ0,1 + ρ1,1xt−1)I[St = 1] + (ρ0,2 + ρ1,2xt−1)I[St = 2] + ϵt
(3.9)

Let ρ̂0 and ρ̂1 be the maximum likelihood estimation of the AR(1) model parameters
with no switch. I(·) is the indicator function.

ẑt = xt − ρ̂0 − ρ̂1xt−1

= (ρ0,1 − ρ̂0)I[St = 1] + (ρ0,2 − ρ̂0)I[St = 2]

+ (ρ1,1 − ρ̂1)xt−1I[St = 1] + (ρ1,2 − ρ̂1)xt−1I[St = 2] + ϵt

(3.10)

The model residuals fluctuate with the changing regimes thus the sequence is not
stationary. Since the slope coefficients are state-dependent, it is difficult to transform ẑt

into a mixture of multiple normal processes like in the previous example. The model
residuals should follow a normal distribution without a state switch.

Model illustrated in the experiment is an AR(2) model with a constant. The coefficient
on the first lag is dynamic, and the coefficient on the second lag is static.

xt = ρ0,st + ρ1,stxt−1 + ρ2xt−2 + ϵt (3.11)

which can be rewritten as

xt =
2∑

i=1
ρ0,iI[St = i] +

2∑
i=1

ρ1,ixt−1I[St = i] + ρ2xt−2 + ϵt (3.12)
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Ghysels and Marcellino (2018) compares the one-step ahead recursive forecast
performance of an AR(2) model and a Markov-switching AR(2) model estimated with
data from a Markov-switching AR(2) DGP. They conclude that both models have similar
forecasting accuracy. We adopt the same DGP, however, our test rejects the null
hypothesis of no switching regimes.
Empirical size of tests Samples are generated from model (3.11) with constant ρ0 = −0.2,
ρ1 = 1.2, and ρ3 = −0.3. Sample sizes are 500 or 1000.

The upper panel of Table C.4 shows the test results. With only the first four moments,
almost no rejections are reported out of the 5000 random samples. The empirical size grows
closer to 5% as more moments are incorporated, and when the sample size doubles, as
expected.
Empirical power of the tests Samples of T observations are generated from model (3.12),
T = 500, 1000. When St = 1, the model parameters are the same as in the experiment for
empirical size. When St = 2, the parameters change to ρ0,2 = 0.2 and ρ1,2 = 0.4. ρ2 remains
constant. The transition matrix is (p11, p22) = (0.83, 0.75).

The lower panel of Table C.4 shows the empirical power of the tests. With the suggested
model, when higher order of moments is applied, Type B test outperforms Type A test,
and the rejection rate ranges between 50% to 92%. It demonstrates that the moment-based
test captures the significant difference between the DGP and the generic AR model under
the null hypothesis.

3.4 US Real GNP Growth

Hamilton (1989) suggests modeling the US real GNP growth from the year 1952 to 1984
with a Markov-switching specification as in model (3.5) with r = 4, MSAR(4), where
only the mean is subject to regime changes. The author argues that the business cycles of
expansion and recession are reflected by the switch between high and low growth rates in the
economy, thus the MSAR(4) model outperforms the linear model by featuring the changes.
In this section, we apply the proposed simulation-based MC procedures to test against the
linear AR(4) specification by examining the original Hamilton’s model of observations from
1952Q2 to 1984Q4, and an extended sample from 1952Q2 to 2010Q4 as in Dufour and Luger
(2017).

The quarterly US GNP data is acquired from the Federal Reserve Economic Database5.
The quarterly growth rate at period t is computed as

rt = (lnGNPt − lnGNPt−1) × 100

5This data is available from U.S. Bureau of Economic Analysis, Gross National Product [GNP], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GNP
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Since we consider the AR(4) model specification, four more observations are added prior to
the start of the data. The sample size equals 135 for Hamilton’s original data set, and it
equals 239 for the extended sample.

We estimate the model by maximum likelihood estimation with observations of rt’s,

rt = ρ0 + ρ1rt−1 + ρ2rt−2 + ρ3rt−3 + ρ4rt−4 + ϵt (3.13)

and obtain the constant and slope coefficients estimates ρ̂0, ρ̂1, ρ̂2, ρ̂3, ρ̂4. The fitted model
is then used as the simulator in the test. The Type B test is based on the model residuals:

ẑt = rt − ρ̂0 − ρ̂1rt−1 − ρ̂2rt−2 − ρ̂3rt−3 − ρ̂4rt−4 (3.14)

Table C.5 summarizes the empirical p-values out of 1000 repeated tests when the order
of moment matched H = 4, 12, or 20. For the estimation of the optimal operator and
its inverse, we consider N = 20 bootstrapped samples and an arbitrary tuning parameter
a = 0.0001.

In Table C.5, results displayed in Panel A are based on observations between 1952Q2
and 1984Q4. Both types of tests with smaller and higher orders of moments show that the
null hypothesis of a linear AR(4) model cannot be rejected at the usual levels of significance.
It demonstrates that Hamilton’s selected data is compatible with a linear and stationary
autoregressive presentation. Panel B presents test results using the extended observations
from 1952Q2 to 2010Q4. For Type A tests using moments of demeaned observations, with
smaller numbers of moments H = 4 and 12, the null hypothesis is rejected at a significance
level of 10% but not rejected at a significance level of 5% or lower. When the order of
moments increases to 20, more information can be harvested so that the null hypothesis
can be rejected at a significance level of 5% or 2.5%. The result is in line with the findings
of Dufour and Luger (2017) that echo the detection of the structural break in the US
economic growth by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000). It
is worth noting that in this case, the Type B test gives a different conclusion. A possible
explanation can be that a sample size of 239 is still not large enough and part of the residual
information is lost when the data is filtered by the AR(4) specification.

3.5 Conclusion

The present study proposes a novel Monte-Carlo test for comparing a Markov-switching
autoregressive model against a linear specification. Our approach allows for the
incorporation of a large number of empirical moments without requiring analytical
expressions. The test’s size is controlled by the Monte-Carlo method, and our simulation
experiments demonstrate that more information can be obtained with a higher number of
matched moments, with evidence of increased empirical power. We apply our method to
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test the specification of a Markov-switching AR(4) model for the US output growth rate
and find that the null hypothesis of linearity is not rejected using Hamilton’s original
dataset, but it is rejected when using an extended sample that includes more recent
observations. This result aligns with previous research on US business cycles. Potential
avenues for future research include developing a data-driven method to determine the
regularization parameter and exploring alternative testing statistics beyond empirical
moments.
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Appendix A

Simulation-based Methodology
with Many Auxiliary Statistics: An
Estimator

A.1 Proofs

• Proof of Theorem 1:
Under our regularity assumptions, the consistency of extremum estimators follows, and the
proof is rather standard. It requires showing that

sup
θ∈Θ

|QT (θ) −Q(θ)| = oP(1) .

This, together with the fact that θ0 is the unique solution of z(θ0) = 0 - and unique
minimizer of Q(θ) over Θ - delivers the result. ■

• Proof of Theorem 2:
We start our proof by showing a preliminary result.

Lemma A.1.1. Assumption 7 implies that BT (
√
TzT (., θ0)) d→ BZ ∼ N (0, BKB′) with

B′ the adjoint operator of B.

Proof of Lemma A.1.1:
Throughout, we write zT (θ) for zT (., θ). By assumption 7(ii), the random element

√
TzT (θ0)

is bounded for T large enough, and it converges to Z in distribution as T → ∞. By definition,

the covariance of Z is E
[
(Z − EZ)(Z − EZ)

]
. Then, for any f well-defined in the Hilbert
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space H, the covariance of the inner product (Z, f) is:

E

(
[(Z, f) − E(Z, f)][(Z, f) − E(Z, f)]

)
= E

(
[(Z, f) − (EZ, f)][(Z, f) − (EZ, f)]

)
= E

[
(Z − EZ, f)(Z − EZ, f)

]
= E

(
(Z − EZ, f)(Z − EZ), f

)
,

where E
[
(Z − EZ, f)(Z − EZ)

]
≡ Kf defines the covariance operator K.

Then, we can show that BT

√
TzT (θ0) d→ BZ:∥∥∥BZ −BT

√
TzT (θ0)

∥∥∥ =
∥∥∥BZ −BTZ +BTZ −BT

√
TzT (θ0)

∥∥∥
≤ ∥BZ −BTZ∥ +

∥∥∥BTZ −BT

√
TzT (θ0)

∥∥∥
≤ ∥B −BT ∥∥Z∥ +∥BT ∥

∥∥∥Z −
√
TzT (θ0)

∥∥∥
P−→ 0

which follows from Assumption 7(i) and (ii) which ensure that each term is either bounded
or converging to 0 appropriately.
Similarly, the covariance of the inner product (BZ, f) is

E

(
[(BZ, f) − E(BZ, f)][(BZ, f) − E(BZ, f)]

)
= E

(
[(BZ, f) − (EBZ, f)][(BZ, f) − (EBZ, f)]

)
= E

[
(BZ −B(EZ), f)(BZ −B(EZ), f)

]
= E

[
(B(Z − EZ), f)(B(Z − EZ), f)

]
= E

(
(B[Z − EZ], f)B[Z − EZ], f

)
.

Define the operator BKB′ such that

(BKB′)(f) ≡ E
[
(B[Z − EZ], f)B[Z − EZ]

]
.

The covariance of (BZ, f) is then
(
f, (BKB′)(f)

)
. □

We now return to the proof of Theorem 2. From the definition of the SMAS estimator, we
have:

θ̂SMAS ≡ arg min
θ∈Θ

∥∥BT zT (., θ)
∥∥ = arg min

θ∈Θ

(
BT zT (., θ), BT zT (., θ)

)
.
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By Assumption 6 and from the symmetry of the inner product, the first order conditions
(FOC) are: (

BT
∂

∂θ′ zT (θ̂SMAS), BT zT (θ̂SMAS)
)

= 0 .

From Theorem 1, we know θ̂SMAS
a.s.−−→ θ0; then, and a mean value expansion of zT (θ̂SMAS)

around θ0 yields:

zT (θ̂SMAS) =
(
zT (θ0) + ∂

∂θ′ zT (θ̄)(θ̂SMAS − θ0)
)

=
(
zT (θ0) +GT (θ̄)(θ̂SMAS − θ0)

)
,

where θ̄ lies between θ0 and θ̂SMAS component by component, and GT (θ) ≡ ∂zT (θ)/∂θ′.
Substitute back into the FOC to get:(

BTGT (θ̂SMAS), BT

(
zT (θ0) +GT (θ̄)(θ̂SMAS − θ0)

))
= 0

⇔
(
BTGT (θ̂SMAS), BT zT (θ0) +BTGT (θ̄)(θ̂SMAS − θ0)

)
= 0

⇔
(
BTGT (θ̂SMAS), BT zT (θ0)

)
+
(
BTGT (θ̂SMAS), BTGT (θ̄)(θ̂SMAS − θ0)

)
= 0 .

Under our regularity assumptions, combined with Lemma A.1.1, we can write, for T large
enough: √

T (θ̂SMAS − θ0) =
(
BG(θ0), BG(θ0)

)−1(
BG(θ0), BZ

)
+ oP(1) .

Since BZ ∼ N (0, BKB′) and BG(θ0) ∈ H, we have, by definition

(BG(θ0), BZ) ∼ N (0,
(
BG(θ0), (BKB′)BG(θ0)

)
) .

Therefore, as T → ∞, we have:
√
T (θ̂T − θ0) d−→ N (0, V ) ,

with V =
∥∥BG(θ0)

∥∥−2
(
BG(θ0), (BKB′)BG(θ0)

)∥∥BG(θ0)
∥∥−2

.

■

• Proof of Lemma 3:
In this proof, we keep the length of the bootstrap path used to compute z∗(n)

T (h, .) equal
to (T − Q) (where Q corresponds to the cutoff determined by the rule-of-thumb used to
choose the bandwidth associated with the Bartlett kernel). In addition, when there is no
confusion, we simplify our notations as follows:

z
∗(n)
T,h,1 ≡ z

∗(n)
T (h,X(n)

1 (T −Q), θ0)

z
∗(n)
T,h,1+|m| ≡ z

∗(n)
T (h,X(n)

1+|m|(T −Q), θ0)
z̄∗

T,h ≡ z̄∗
T (h, θ0)
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for any integer h and any m = −Q, · · · , Q.

By definition, any eigenfunction ϕ(T ) and corresponding eigenvalue λ(T ) of the operator KT

are such that:

(KTϕ
(T ))(h) = λ(T )ϕ(T )(h)

⇔ 1
N(T )

N(T )∑
n=1

Q∑
m=−Q

ω

(
m

MT

)(
z

∗(n)
T,h,1 − z̄∗

T,h

) ∞∑
s=1

(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)
ϕ(T )(s)

= λ(T )ϕ(T )(h) ,

from the representation of KT . Since λ(T ) is a scalar, and since
∞∑

s=1

(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)
ϕ(T )(s)

does not depend on s, there must exist some βn such that:

ϕ(T )(h) = 1
N(T )

N(T )∑
n=1

(
z

∗(n)
T,h,1 − z̄∗

T,h

)
βn .

Overall, we can write:

(KTϕ
(T ))(h) = λ(T )ϕ(T )(h)

⇔ 1
N(T )

N(T )∑
n=1

(
z

∗(n)
T,h,1 − z̄∗

T,h

) ∞∑
s=1

Q∑
m=−Q

ω

(
m

MT

)(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)

× 1
N(T )

N(T )∑
n′=1

(
z

∗(n′)
T,s,1 − z̄∗

T,s

)
βn′

= λ(T ) 1
N(T )

N(T )∑
n=1

(
z

∗(n)
T,h,1 − z̄∗

T,h

)
βn

To solve for λ(T ) and B = [β1 β2 ... βN(T )]′ in the previous equation, it is equivalent to solve
the following system of N(T ) equations, for n = 1, . . . , N(T ):

1
N(T )

N(T )∑
n′=1

βn′
∞∑

s=1

(
z

∗(n′)
T,s,1 − z̄∗

T,s

) Q∑
m=−Q

ω

(
m

MT

)(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)
= λ(T )βn .

And, with the (N(T ), N(T ))-matrix C as defined in Lemma 3, the above system of linear
equations can be rewritten as:

CB = λ(T )B .

It is then easy to see that the eigenvalues of KT , namely λ
(T )
j , are also the eigenvalues of

the matrix C with associated eigenvectors Bj = [β1
j β

2
j ... β

N(T )
j ]′, j = 1, . . . , N(T ). Further,
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the eigenfunctions of KT are such that, for j = 1, . . . , N(T ),

ϕ
(T )
j (h) = 1

N(T )
(
z

(T )
h

)′
Bj with z

(T )
h ≡



∑Q
m=−Q ω

(
m

MT

) (
z

∗(1)
T,h,1+|m| − z̄∗

T,h

)
∑Q

m=−Q ω
(

m
MT

) (
z

∗(2)
T,h,1+|m| − z̄∗

T,h

)
...∑Q

m=−Q ω
(

m
MT

) (
z

∗(N(T ))
T,h,1+|m| − z̄∗

T,h

)


.

■

• Proof of Theorem 4:
We start our proof by showing a preliminary result about the asymptotic behavior of the
eigenvalues of the operator.

Theorem A.1.1. Under Assumptions 1 to 10, when T/N(T ) → ζ as T → ∞ with 0 < ζ <
∞, we have:

(λ(T )
j − λj) =

{
OP ∗( 1√

T
) in prob-P when the autocorrelations can be ignored

OP ∗( 1
T 1/3 ) in prob-P otherwise

Proof of Theorem A.1.1:
Our proof builds on the proof of Theorem 3 in Carrasco and Florens (2000). We consider
λj as a function of F , the c.d.f of the joint probability measure P, that is λj = Λ(F ). The
bootstrap counterpart of F is denoted FT , and, accordingly, we have λ(T )

j = Λ(FT ). We
define DΛF as the Fréchet derivative of the operator Λj with respect to F . A first-order
Taylor expansion with Fréchet derivative gives

λ
(T )
j − λj = DΛF (FT − F ) + ϵ(FT − F )∥FT − F∥ .

where norm is the sup-norm. Also, under Assumptions 7 and 8, the term ϵ(FT −F ) converges
to zero, and

√
T∥FT − F∥ is bounded in the sense that

ϵ(FT − F ) P ∗
→ 0 in prob-P and

√
T∥FT − F∥ = OP ∗(1) in prob-P.

As a result, we have:
√
T (λ(T )

j − λj) =
√
TDΛF (FT − F ) + oP ∗(1) in prob − P . (A.1)

Rewrite the following equation (Kϕj)(h) = λjϕj(h) as∑
s

k∗(h, s)ϕj(s) = λjϕj(h) ⇔
∑

s

EP(z∗(h, s))ϕj(s) = λjϕj(h)

⇔
∑

s

EF (z∗(h, s))ϕj(s) = λjϕj(h) , (A.2)
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with

z∗(h, s)

≡ lim
m

m∑
−m

(z∗(h,X∗
t , θ0) − EP(z∗(h,X∗

t , θ0)))(z∗(s,X∗
t+m, θ0) − EP(z∗(s,X∗

t+m, θ0)))

Differentiate equation (A.2) with respect to F to get:∑
s

E
F̃

(z∗(h, s))ϕj(s) +
∑

s

EF (z∗(h, s))ϕ̃j(s) = λjϕ̃j(h) + λ̃jϕj(h) .

where E
F̃

, ϕ̃, and λ̃ denote the differential elements respectively1.

Multiply by ϕj(h) on both sides, and integrate with respect to h to get:∑
h

∑
s

E
F̃

(z∗(h, s))ϕj(h)ϕj(s) +
∑

h

∑
s

EF (z∗(h, s))ϕj(h)ϕ̃j(s)

=
∑

h

λjϕ̃j(h)ϕj(h) +
∑

h

λ̃jϕ
2
j (h) .

Assume now that the eigenvalues λj (and λ(T )
j ) are ranked in descending order, and that the

eigenfunctions ϕj(.) (and ϕ
(T )
j (.)) are orthonormalized (e.g. ∑h ϕ

2
j (h) = 1). The previous

equation simplifies to:∑
h

∑
s

E
F̃

(z∗(h, s))ϕj(h)ϕj(s) +
∑

h

∑
s

EF (z∗(h, s))ϕj(h)ϕ̃j(s)

=
∑

h

λjϕ̃j(h)ϕj(h) + λ̃j .

Using (A.2), the second term on the left hand side can be rewritten as:∑
h

∑
s

EF (z∗(h, s))ϕj(h)ϕ̃j(s) =
∑

s

ϕ̃j(s)
∑

h

EF (z∗(h, s))ϕj(h)

=
∑

s

ϕ̃j(s)λjϕj(s)

=
∑

h

λjϕ̃j(h)ϕj(h)

Therefore, we get:

λ̃j =
∑

h

∑
s

E
F̃

(z∗(h, s))ϕj(h)ϕj(s)

=
∑

h

∑
s

EFT (z∗
T (h, s))ϕj(h)ϕj(s) −

∑
h

∑
s

EF (z∗(h, s))ϕj(h)ϕj(s)

+ϵ′(FT − F )∥FT − F∥
=

∑
h

∑
s

EFT (z∗
T (h, s))ϕj(h)ϕj(s) − λj + ϵ′(FT − F )∥FT − F∥ .

1For example, λ̃ = DΛ(∆F )
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where ϵ′(FT − F ) P ∗
→ 0 in prob-P and

√
T∥FT − F∥ = OP ∗(1) in prob-P.

After substituting into (A.1), we have:
√
T (λ(T )

j − λj)

=
√
T

[∑
h

∑
s

EFT (z∗
T (h, s))ϕj(h)ϕj(s) − λj

]
+ oP ∗(1)

=
√
T

N(T )

N(T )∑
n=1

[∑
h

∑
s

N(T )−1∑
m=−N(T )+1

ω

(
m

MT

)(
z

∗(n)
T,h,1 − z̄∗

T,h

)(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)
− λj

]
+oP ∗(1)

=
√
T

N(T )1/3 × N(T )1/3

N(T )

N(T )∑
n=1

[∑
h

∑
s

N(T )−1∑
m=−N(T )+1

ω

(
m

MT

)

×
(
z

∗(n)
T,h,1 − z̄∗

T,h

)(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)
− λj

]
+ oP ∗(1)

Under Assumption 10, and the maintained regularity conditions on the chosen Bartlett
kernel and associated bandwidth, a bootstrap CLT applies to[∑

h

∑
s

N(T )−1∑
m=−N(T )+1

ω

(
m

MT

)(
z

∗(n)
T,h,1 − z̄∗

T,h

)(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)
− λj

]
,

with the fastest available rate of N(T )1/3 as shown in Andrews (1991).
Since T/N(T ) → ζ some positive constant, the result follows.

When the autocorrelations can be ignored, the expression for z∗
T (h, s) simplifies as it does

not involve a kernel and, in the summation over m only one term remains (m = 0). In that
case, a bootstrap CLT applies instead to[∑

h

∑
s

(
z

∗(n)
T,h,1 − z̄∗

T,h

)(
z

∗(n)
T,s,1 − z̄∗

T,s

)
− λj

]
,

with rate
√
N(T ), and the result follows. ■

We now return to the proof of Theorem 4. Our proof builds on the proof of Theorem 4 in
Carrasco and Florens (2000) and the proof of Theorem 3.3 in Carrasco et al. (2007). By
Assumption 9, the kernel k∗(h, s) satisfies

∑
h

∑
s

k∗(h, s)2 =
∞∑

j=1
λ2

j < ∞ ,

and the Hilbert-Schmidt norm of K is defined as:

∥K∥HS =
( ∞∑

j=1
λ2

j

) 1
2

.
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Since ∥KT −K∥ ≤∥KT −K∥HS , we have:

∥KT −K∥2 ≤
∑

h

∑
s

[
k∗

T (h, s) − k∗(h, s)
]2

=
∑

h

∑
s

[
1

N(T )

N(T )∑
n=1

k
∗(n)
T (h, s) − k∗(h, s)

]2

= 1
N(T )2

N(T )∑
n,n′=1

∑
h,s

[
k

∗(n)
T (h, s) − k∗(h, s)

][
k

∗(n′)
T (h, s) − k∗(h, s)

]
where, with the notations introduced in the proof of Lemma 3,

k
∗(n)
T (h, s) ≡

N(T )∑
m=−N(T )+1

ω

(
m

MT

)(
z

∗(n)
T,h,1 − z̄∗

T,h

)(
z

∗(n)
T,s,1+|m| − z̄∗

T,s

)

Because the n-th and n′-th simulation paths are independent, we have

EP ∗

{∑
h,s

[
k

∗(n)
T (h, s) − k∗(h, s)

][
k

∗(n′)
T (h, s) − k∗(h, s)

]
|X n′

T

}
= 0

Under Assumption 10, and the maintained regularity conditions on the chosen Bartlett
kernel and associated bandwidth, we get, using Theorem A.1.1 and results established in
its proof:

∥KT −K∥2 =
{

OP ∗(1/T ) in prob-P when the autocorrelations can be ignored
OP ∗(1/T 2/3) in prob-P otherwise

And the expected results follow. ■

• Proof of Theorem 5:
We start our proof by showing a preliminary result to ensure that our simulation-based
objective function converges to its population counterpart asymptotically.

Theorem A.1.2. For any g, gT such that ∥gT − g∥ = OP ∗( 1√
T

) in prob-P, and assuming
∥KT −K∥ = OP ∗(1/T ν) in prob-P for some ν > 0, we have:
(i)
∥∥∥∥K− 1

2
T,agT −K− 1

2 g

∥∥∥∥ P ∗
→ 0 in prob-P, when g ∈ H(K) + H(K)⊥, as a → 0 and T νa

3
4 → ∞;

(ii)
∥∥∥K−1

T,agT −K−1g
∥∥∥ P ∗

→ 0 in prob-P, when g ∈ D(K−1), as a → 0 and T νa3/2 → ∞.

Proof of Theorem A.1.2:
Our proof builds on the proofs of Theorem 7 in Carrasco and Florens (2000) and Lemma
B.2 in Carrasco et al. (2007). First, notice that:∥∥∥∥K− 1

2
T,agT −K− 1

2 g

∥∥∥∥ ≤
∥∥∥∥K− 1

2
T,agT −K

− 1
2

T,ag

∥∥∥∥+
∥∥∥∥K− 1

2
T,ag −K

− 1
2

a g

∥∥∥∥+
∥∥∥∥K− 1

2
a g −K− 1

2 g

∥∥∥∥
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We study each of the 3 terms on the RHS separately to show that:

(A)
∥∥∥∥K− 1

2
T,agT −K

− 1
2

T,ag

∥∥∥∥ P ∗
→ 0 in prob-P as T

√
a → ∞ and a → 0

(B)
∥∥∥∥K− 1

2
T,ag −K

− 1
2

a g

∥∥∥∥ P→ 0 as T νa3/4 → ∞ and a → 0

(C)
∥∥∥∥K− 1

2
a g −K− 1

2 g

∥∥∥∥ → 0 as a → 0

Then, the expected result follows by applying, e.g. Lemma B.2 from Dovonon and Gonçalves
(2017).
• Part (A): ∥∥∥∥K− 1

2
T,agT −K

− 1
2

T,ag

∥∥∥∥ ≤
∥∥∥∥K− 1

2
T,a

∥∥∥∥∥gT − g∥

with
∥∥∥∥K− 1

2
T,a

∥∥∥∥2
=

(
(K2

T + aI)− 1
2K

1
2
T , (K

2
T + aI)− 1

2K
1
2
T

)
=

(
(K2

T + aI)− 1
2 , (K2

T + aI)− 1
2KT

)
≤

∥∥∥(K2
T + aI)− 1

2

∥∥∥∥∥∥(K2
T + aI)− 1

2KT

∥∥∥ .
The second term is bounded by 1, while the first term is bounded by 1/

√
a for T large

enough. As a result, since ∥gT − g∥ = OP ∗( 1√
T

) by assumption, the result follows as long
as

√
Ta1/4 → ∞.

• Part (B): ∥∥∥∥K− 1
2

T,ag −K
− 1

2
a g

∥∥∥∥ ≤
∥∥∥∥(K2

T + aI)− 1
2K

1
2
T g − (K2

T + aI)− 1
2K

1
2 g

∥∥∥∥ (B1)

+
∥∥∥(K2

T + aI)− 1
2K

1
2 g − (K2 + aI)− 1

2K
1
2 g
∥∥∥ (B2)

- Part (B1)∥∥∥∥(K2
T + aI)− 1

2K
1
2
T g − (K2

T + aI)− 1
2K

1
2 g

∥∥∥∥ =
∥∥∥∥(K2

T + aI)− 1
2 (K

1
2
T −K

1
2 )g
∥∥∥∥

≤
∥∥∥(K2

T + aI)− 1
2

∥∥∥∥∥∥∥K 1
2
T −K

1
2

∥∥∥∥∥g∥

The first term is bounded by 1/
√
a as discussed in Part (A). The second term is such that:∥∥∥∥K 1

2
T −K

1
2

∥∥∥∥ = OP ∗( 1
T ν ) in prob-P which follows from Theorem 4 and the continuity of the

square-root transformation. Hence, overall, (B1) goes to zero as T ν√
a → ∞.
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- Part (B2)∥∥∥(K2
T + aI)− 1

2K
1
2 g − (K2 + aI)− 1

2K
1
2 g
∥∥∥

≤
∥∥∥(K2

T + aI)− 1
2K

1
2 g − (K2

T + aI)− 1
2K(K2 + aI)− 1

2K
1
2 g
∥∥∥ (B2.1)

+
∥∥∥(K2

T + aI)− 1
2K(K2 + aI)− 1

2K
1
2 g − (K2

T + aI)− 1
2KT (K2 + aI)− 1

2K
1
2 g
∥∥∥ (B2.2)

+
∥∥∥(K2

T + aI)− 1
2KT (K2 + aI)− 1

2K
1
2 g − (K2 + aI)− 1

2K
1
2 g
∥∥∥ (B2.3)

We study each term on the right-hand side separately:

(B2.1) ≤
∥∥∥(K2

T + aI)− 1
2K
∥∥∥∥∥∥∥(K− 1

2 −K
− 1

2
a )g

∥∥∥∥
The first term goes to one as a → 0 and T → ∞, while the second one goes to zero as a → 0
as shown in Part (C).

(B2.2) ≤
∥∥∥(K2

T + aI)− 1
2

∥∥∥∥KT −K∥
∥∥∥∥K− 1

2
a g

∥∥∥∥
The first term is bounded by 1/

√
a as discussed in Part (A). From Theorem 4, the second

term is such that: ∥KT −K∥ = OP ∗( 1
T ν ) in prob-P. Finally, the third term is bounded by

a−1/4∥g∥ as shown in Part (A).

(B2.3) =
∥∥∥∥((K2

T + aI)− 1
2K

1
2
T −K

− 1
2

T )K
1
2
T (K2 + aI)− 1

2K
1
2 g

∥∥∥∥
=

∥∥∥∥(K− 1
2

T,a −K
− 1

2
T )K

1
2
T (K2 + aI)− 1

2K
1
2 g

∥∥∥∥
≤

∥∥∥∥K 1
2
T (K2 + aI)− 1

2K
1
2

∥∥∥∥∥∥∥∥(K− 1
2

T,a −K
− 1

2
T )g

∥∥∥∥
Similar to (B2.1), the first term converges to one as a → 0 and T → ∞. The second term
converges to 0 when a → 0 for T large enough. Hence, overall, (B2) goes to 0 as T νa3/4 → ∞.

When we combine the properties of (B1) and (B2), we obtain the expected result.

• Part (C):
By definition, with λj and ϕj the eigenvalues and eigenfunctions of K, we have:

K− 1
2 g =

∞∑
j=1

1√
λj

(g, ϕj)ϕj .

We also have:
K

− 1
2

a g =
∞∑

j=1

√
λj√

λ2
j + a

(g, ϕj)ϕj ,

since
K

− 1
2

a g = (K2 + aI)− 1
2K

1
2 g = [(K2 + aI)K−1]−

1
2 g ,
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and we can easily show that (K2 + aI)K−1 has eigenvalues λ2
j+a

λj
and eigenfunctions ϕj .

Indeed, we have:

Kϕj = λjϕj

⇒ K2ϕj = λ2
jϕj and K−1ϕj = (1/λj)ϕj

⇒ (K2 + aI)ϕj = (λ2
j + a)ϕj and K−1ϕj = (1/λj)ϕj

⇒ (K2 + aI)K−1ϕj =
λ2

j + a

λj
ϕj

Thus, we have:

K
− 1

2
a g −K− 1

2 g =
∞∑

j=1

 √
λj√

λ2
j + a

− 1√
λj

 (g, ϕj)ϕj

⇒
∥∥∥∥K− 1

2
a g −K− 1

2 g

∥∥∥∥2
=

∞∑
j=1

 √
λj√

λ2
j + a

− 1√
λj


2

(g, ϕj)2ϕ2
j

=
∞∑

j=1

 √
λj√

λ2
j + a

− 1√
λj


2

(g, ϕj)2

≤
∞∑

j=1

1
λj

(g, ϕj)2 < ∞

since it is easy to show that  √
λj√

λ2
j + a

− 1√
λj


2

≤ 1
λj

∀j .

To compute the limit of the LHS when a → 0, we switch the summation and the limit and
conclude that it converges to 0.

Overall,
∥∥∥∥K− 1

2
T,agT −K− 1

2 g

∥∥∥∥ P ∗
→ 0 in prob-P when a → 0 and T νa

3
4 → ∞. The proof of part

(ii) is similar to that of part (i). □

We now return to the proof of Theorem 5.
The consistency of the estimator (as T → ∞, a → 0, and T νa3/4 → ∞) directly follows
from Theorem A.1.2 applied to z∗

T and z under Assumption 12:∥∥∥∥K− 1
2

T,az
∗
T (., θ) −K− 1

2 z(., θ)
∥∥∥∥ P ∗

→ 0 in prob-P∥∥∥K−1
T,a∂z

∗
T (., θ)/∂θ −K−1∂z(., θ)/∂θ

∥∥∥ P ∗
→ 0 in prob-P ,
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Following similar steps as those taken in the proof of Theorem 2, we can show that:

(K−1/2
T,a GT (θ̂opt

SMAS),K−1/2
T,a zT (θ0)) + (K−1/2

T,a GT (θ̂opt
SMAS),K−1/2

T,a GT (θ)(θ̂opt
SMAS − θ0)) = 0

⇔ (K−1/2
T,a GT (θ̂opt

SMAS),K−1/2
T,a GT (θ))

√
T (θ̂opt

SMAS − θ0) = −(K−1
T,aGT (θ̂opt

SMAS),
√
TzT (θ0))

where θ lies between θ0 and θ̂opt
SMAS component by component.

We focus on the RHS term:

(K−1
T,aGT (θ̂opt

SMAS),
√
TzT (θ0))

= (K−1
T,aGT (θ̂opt

SMAS) −K−1G(θ0),
√
TzT (θ0)) + (K−1G(θ0),

√
TzT (θ0))

Since
√
TzT (θ0) d→ Z ∼ N (0,K), we have:

(K−1G(θ0),
√
TzT (θ0)) d→ N (0, (K−1G(θ0),K−1G(θ0)) .

In addition, we have:

(K−1
T,aG(θ̂opt

SMAS) −K−1G(θ0),
√
TzT (θ0))

≤ ∥K−1
T,aGT (θ̂opt

SMAS) −K−1G(θ0)∥ × ∥
√
TzT (θ0)∥

= oP ∗(1) in prob-P

since ∥
√
TzT (θ0)∥ = OP(1) and

∥K−1
T,aGT (θ̂opt

SMAS) −K−1G(θ0)∥
≤ ∥K−1

T,a∥∥GT (θ̂opt
SMAS) −G∗

T (θ̂opt
SMAS)∥ + ∥K−1

T,aG
∗
T (θ̂opt

SMAS) −K−1G(θ0)∥
= oP ∗(1) in prob-P

where the last equality follows from Theorem A.1.2 - and intermediate results in its proof
such as ∥K−1

T,a∥ ≤ 1/
√
a for T large enough - as well as

∥GT (θ̂opt
SMAS) −G∗

T (θ̂opt
SMAS)∥

≤ ∥GT (θ̂opt
SMAS) −G(θ̂opt

SMAS)∥ + ∥G(θ̂opt
SMAS) −G∗

T (θ̂opt
SMAS)∥

= OP ∗(1/
√
T ) in prob-P

which holds under the uniform convergence results maintained in Assumption 12 combined
with Lemma B.2 in Dovonon and Gonçalves (2017).

To complete the proof, notice that we have, for T large enough with a → 0 and T νa3/2 → ∞:
√
T (θ̂opt

SMAS − θ0) = −(K−1/2G(θ0),K−1/2G(θ0))(K−1G(θ0), Z) + oP×P ∗(1)
with (K−1/2G(θ0),K−1/2G(θ0))(K−1G(θ0), Z) ∼ N (0, ∥K−1/2G(θ0)∥−2) .

Finally, the optimality of θ̂opt
SMAS amounts to showing that (V − ∥K−1G(θ0)∥−2) is positive

definite - with V the asymptotic variance derived in Theorem 2. A similar result has already
been shown in Carrasco and Florens (2000) at the end of the proof of Theorem 8 . ■
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A.2 Algorithm 1 supplement: double-bootstrap

The double-bootstrap approach features a different way to construct the controlling
operator whose unit sample paths are generated by the simulator and depend on the
values of parameters. See Section 1.4.

Algorithm 4. (double-bootstrap implementation)

1. Using the sample of T observations, compute the chosen impulse responses ψ̂T (XT ) as well as
the transition matrix and the residuals ϵ̂T as explained in Appendix B.1.

2. For given θ ∈ Θ, use the simulator to generate S independent samples of T observations;
compute the associated (chosen) impulse responses, ψ̂s

T (θ) with s = 1, · · · , S, as well as
zT (θ) = ψ̂T (XT ) −

∑
s ψ̂

s
T (θ)/S.

3. With the same θ in Step 2, estimate the optimal operator K̂−1/2∗
T,a (θ) with the double-bootstrap

method (a the regularizing parameter).

(a) Use the simulator (same as in Step 2) to generate X ∗
T,n(θ) and compute ψ̂∗

T,n(θ).

(b) Repeat independently N times to get ψ̂∗
T,n(θ) with n = 1, · · · , N .

(c) Compute K̂−1/2∗
T (θ) using ψ̂∗

T,n(θ) by following the procedure described in section 1.4.

4. Obtain θ̂SMAS as the minimizer over θ of ∥K̂−1/2∗
T,a (θ)zT (θ)∥.
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Appendix B

Simulation-based Methodology
with Many Auxiliary Statistics:
Applications to Long-run Dynamic
Analysis

B.1 Computation of the (structural) impulse responses

We start by postulating a reduced-form VAR model of order p to represent the dynamics
of the vector of observables XT on inflation and interest rate:

xt = Φ1xt−1 + Φ2xt−2 + . . .+ Φpxt−p + Φ0 + ut, ut ∼ i.i.d.(0,Σ)

Assuming that the reduced-form errors ut are linked to the structural model innovations
ϵt via the equation Put = ϵt with PΣP ′ = I, a Choleski decomposition can be applied to
the variance-covariance matrix Σ. The impulse response of the structural shock ϵj,t on the
variable xi,t at horizon h is defined as

IRF (i, j, h) = ∂xi,t+h/∂ϵj,t

and given by the appropriate coefficient in the following model,

xt = Θ(L)P−1Put ≡ Ψ(L)ϵt, ϵt ∼ i.i.d.(0, I)

After estimating the above model, we obtain the impulse responses at chosen horizon h, as
well as the residuals ϵ̂t and the transition matrix Ψ̂(L).
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B.2 Implementation details of double-bootstrap method

Consider a sample of T = 232 observations of interest rate RT and inflation πT , the fitted
model VAR(2), and a matching horizon of H = 80.

• Estimate α̂opt
SMAS from the full sample of observations.

The subsequent discussion centers on the double-bootstrap method, which formalizes a more
general framework to establish the governing operator with the simulator instead of the
reduced-form VAR model.

1. Fit a VAR(2) model with the observations and get the transition matrix Af , the
model residuals ϵ̂T , and the covariance σ2

f . Compute the structural impulse responses
ψ̂T with Af and σ2

f as introduced in Appendix B.1.

2. For given α, simulate N = 199 independent samples with the simulator and compute
impulse responses for each of them. Construct the optimal operator with N IRFs
K̂

−1/2
T,aT

(α), aT = c∗/T 1/3 (c∗ the selected tuning parameter).

(a) Generate X ∗
T,n(α) with the simulator and compute ψ̂∗

T,n(α).

(b) Repeat independently N times to get ψ̂∗
T,n(α) with n = 1, · · · , N .

(c) Compute K̂−1/2∗
T (α) using ψ̂∗

T,n(α).

3. With the same α in Step 2, simulate S samples of size T = 232, then generate impulse
responses ψ̂s

T (X s
T (α)). Obtain the optimal estimator as the minimizer over the search

grid of α,

α̂opt
SMAS = arg min

α

∥∥∥∥K̂−1/2
T,aT

(α)zT (α)
∥∥∥∥ , zT (α) = ψ̂T − 1

S

S∑
s=1

ψ̂s
T (X s

T (α))

• Use cross-validation to determine tuning parameter c∗ from the search grid C following
Algorithm 2.

1. Split the sample of size T = 232 into two parts, a training set of the first T̃ = 155
observations and a testing set of the rest T − T̃ = 77 observations.

2. Given c ∈ C, traverse the grid of α and compute the regularized optimal SMAS
estimator obtained with the regularized optimal operator K̂

−1/2
T̃ ,aT̃

(α), aT̃ = c/T̃ 1/3,
using the training sample.

α̂opt
SMAS(c) = arg min

α
∥K−1/2

T̃ ,aT̃
(α)ztr(α)∥ .

ztr(α) denotes the difference between the chosen impulse responses (up to horizon
H = 80) computed from the training set and that computed from simulated samples
of size T̃ = 155 generated with α. K−1/2

T̃ ,aT̃
(α) is constructed the same way as in the

estimation step.
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3. Use the simulator with α̂opt
SMAS(c) to generate S independent sample of (T − T̃ ) = 77

observations; compute the impulse responses (up to horizon H = 80) and match
them to those computed over the testing sample to get ztest(α̂opt

SMAS(c)). Evaluate the
associated SMAS objective function.

4. The regularization parameter (for the whole sample of size T ) is a∗
T = c∗/T 1/3 where

c∗ is obtained by minimizing the SMAS objective function over the testing sample
with respect to c.
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B.3 Results of the Monte-Carlo simulation study

B.3.1 Small-scale model

0 10 20 30 40 50 60 70 80

h

0

0.05

0.1

0.15

0.2

0.25

IR
F

s

pi in response to pi shock

R in response to pi shock

pi in response to R shock

R in response to R shock

Figure B.1: Impulse responses of the small-scale DSGE model as a function of the horizon.
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Matching IR at horizons 1 to 20, sample size T = 232
VAR(2)

SMAS GIK

diagonal reg. diagonal
non-reg. optimal reg. optimal

non-reg. diagonal optimal

mean 0.7412 0.6935 0.7396 0.6944 0.7311 0.7177
MAD 0.0088 0.0565 0.0104 0.0556 0.0189 0.0323
SD 0.0673 0.1666 0.0653 0.1630 0.0813 0.0829
RMSE 0.0679 0.1760 0.0661 0.1722 0.0835 0.0890
Coverage
95% 95.8 92.0 95.3 92.3 94.2 93.1
90% 91.4 89.1 91.1 89.4 91.4 88.2

VAR(4)
SMAS GIK

diagonal reg. diagonal
non-reg. optimal reg. optimal

non-reg. diagonal optimal

mean 0.7412 0.6920 0.7380 0.6940 0.7327 0.7084
MAD 0.0088 0.0580 0.0120 0.0560 0.0173 0.0416
SD 0.0761 0.1808 0.0716 0.1818 0.0858 0.0880
RMSE 0.0766 0.1899 0.0726 0.1902 0.0875 0.0973
Coverage
95% 94.6 91.9 93.9 92.2 94.3 91.7
90% 91.2 89.5 91.0 90.0 92.8 88.0

VAR(6)
SMAS GIK

diagonal reg. diagonal
non-reg. optimal reg. optimal

non-reg. diagonal optimal

mean 0.7406 0.6897 0.7418 0.6927 0.7393 0.7088
MAD 0.0094 0.0603 0.0082 0.0573 0.0107 0.0412
SD 0.0798 0.1922 0.0749 0.1860 0.0845 0.0817
RMSE 0.0804 0.2014 0.0753 0.1946 0.0852 0.0915
Coverage
95% 94.8 91.6 94.4 91.8 93.9 90.7
90% 92.5 89.7 91.1 89.5 91.1 87.2

Table B.1: Small-scale model estimation using medium-term IRs

Note: Performance of the SMAS estimators (with and without regularization) and two
estimators of Guerron-Quintana et al. (2017) for different simulations designs when
matching IR over 20 periods (5 years) with a sample size T = 232 and VAR of orders 2, 4
and 6. We report the Monte-Carlo Mean, Mean Absolute Deviation (MAD), Standard
deviation (SD), RMSE, and effective coverage probabilities of 95% and 90% confidence
intervals obtained over 1,000 Monte-Carlo replications.
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Matching IR at horizons 1 to 80, sample size T = 232
VAR(2)

SMAS GIK

diagonal reg. diagonal
non-reg. optimal reg. optimal

non-reg. diagonal optimal

mean 0.7401 0.6532 0.7385 0.6485 0.7163 0.6887
MAD 0.0099 0.0968 0.0115 0.1005 0.0337 0.0613
SD 0.0706 0.1860 0.0663 0.1879 0.1066 0.1041
RMSE 0.0713 0.2096 0.0673 0.2131 0.1118 0.1208
Coverage
95% 94.8 91.1 95.1 90.5 93.4 90.5
90% 92.7 87.2 91.6 86.7 90.3 86.3

VAR(4)
SMAS GIK

diagonal reg. diagonal
non-reg. optimal reg. optimal

non-reg. diagonal optimal

mean 0.7409 0.6450 0.7399 0.6415 0.7106 0.6565
MAD 0.0091 0.1050 0.0101 0.1085 0.0394 0.0935
SD 0.0802 0.2126 0.0721 0.2107 0.1155 0.1326
RMSE 0.0807 0.2371 0.0728 0.2370 0.1220 0.1623
Coverage
95% 95.7 89.4 94.8 89.5 93.7 89.6
90% 92.4 86.4 91.7 85.0 91.1 83.8

VAR(6)
SMAS GIK

diagonal reg. diagonal
non-reg. optimal reg. optimal

non-reg. diagonal optimal

mean 0.7437 0.6338 0.7422 0.6394 0.7170 0.6495
MAD 0.0063 0.1162 0.0078 0.1106 0.0330 0.1005
SD 0.0815 0.2268 0.0757 0.2226 0.1095 0.1405
RMSE 0.0817 0.2548 0.0761 0.2486 0.1144 0.1727
Coverage
95% 95.7 88.6 95.7 88.6 93.0 87.7
90% 91.8 84.7 91.7 85.8 90.3 82.8

Table B.2: Small-scale model estimation using long-term IRs

Note: Performance of the SMAS estimators (with and without regularization) and two
estimators of Guerron-Quintana et al. (2017) for different simulations designs when
matching IR over 80 periods (20 years) with a sample size T = 232 and VAR of orders 2, 4
and 6. We report the Monte-Carlo Mean, Mean Absolute Deviation (MAD), Standard
deviation (SD), RMSE, and effective coverage probabilities of 95% and 90% confidence
intervals obtained over 1,000 Monte-Carlo replications.
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Figure B.2: Monte-Carlo distribution: estimation of Small-scale model, medium- and long-
term IR

Note: Monte-Carlo distribution of the following four estimates obtained when matching IR
up to H = 20 (top three rows) and up to H = 80 (bottom three rows) over 1,000
replications: regularized SMAS with diagonal operator(top left), SMAS with diagonal
operator(top right), regularized SMAS with optimal operator(middle left), SMAS with
optimal operator(middle right), Guerron-Quintana et al. (2017) with optimal weighting
matrix (bottom left), and Guerron-Quintana et al. (2017) with diagonal weighting matrix
(bottom right). The vertical line represents the true value of the parameter.
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Figure B.3: Monte-Carlo distribution: estimation of Small-scale model, short-term IR

Note: Monte-Carlo distribution of the following six estimates obtained when matching IR
up to H = 2 (top three rows) and up to H = 8 (bottom three rows) over 1,000
replications: regularized SMAS with diagonal operator(top left), SMAS with diagonal
operator(top right), regularized SMAS with optimal operator(middle left), SMAS with
optimal operator(middle right), Guerron-Quintana et al. (2017) with optimal weighting
matrix (bottom left), and Guerron-Quintana et al. (2017) with diagonal weighting matrix
(bottom right). The vertical line represents the true value of the parameter.

65



Figure B.4: Monte-Carlo distribution: estimation of Small-scale model, sample size T = 100

Note: Monte-Carlo distribution of the following six estimates obtained when matching IR up
toH = 80 with a smaller sample size T = 100 over 1,000 replications: regularized SMAS with
diagonal operator(top left), SMAS with diagonal operator(top right), regularized SMAS
with optimal operator(middle left), SMAS with optimal operator(middle right), Guerron-
Quintana et al. (2017) with optimal weighting matrix (bottom left), and Guerron-Quintana
et al. (2017) with diagonal weighting matrix (bottom right). The vertical line represents the
true value of the parameter.
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Matching IR at medium to long-term horizons with sample size T = 232
SMAS GIK

diagonal reg. diagonal
non-reg. optimal reg. optimal

non-reg. diagonal optimal

mean 0.6139 0.4593 0.6227 0.4647 0.6422 0.6673
MAD 0.1361 0.2907 0.1273 0.2853 0.1078 0.0827
SD 0.2387 0.2904 0.2378 0.2901 0.2040 0.1264
RMSE 0.2748 0.4109 0.2697 0.4069 0.2307 0.1511
Coverage
95% 86.3 75.6 86.7 76.3 88.6 89.6
90% 82.9 66.4 83.6 67.3 85.1 86.7

Table B.5: Small-scale model estimation, matching IR at horizons 21 to 40

Note: Performance of the SMAS estimators (with and without regularization) and two
estimators of Guerron-Quintana et al. (2017) for different simulations designs when
matching IR in the long-term but ignoring the short-term, H = 21 − 40, with sample size
T = 232. We report the Monte-Carlo Mean, Mean Absolute Deviation (MAD), Standard
deviation (SD), RMSE, and effective coverage probabilities of 95% and 90% confidence
intervals obtained over 1,000 Monte-Carlo replications.

Matching IR with diagonal operator conditional on the parameter value
Operator obtained by double-bootstrap Operator obtained by resampling
diagonal reg. diagonal non-reg. diagonal reg. diagonal non-reg.

Mean 0.7338 0.6722 0.7401 0.6532
MAD 0.0162 0.0778 0.0099 0.0968
SD 0.0719 0.1690 0.0706 0.1860
RMSE 0.0737 0.1861 0.0713 0.2096
Coverage
95% 94.5 90.6 94.8 91.1
90% 91.9 87.7 92.7 87.2
Matching IR with optimal operator conditional on the parameter value

Operator obtained by double-bootstrap Operator obtained by resampling
diagonal reg. diagonal non-reg. diagonal reg. diagonal non-reg.

Mean 0.7292 0.6303 0.7385 0.6485
MAD 0.0208 0.1198 0.0115 0.1005
SD 0.0768 0.2155 0.0663 0.1879
RMSE 0.0796 0.2466 0.0673 0.2131
Coverage
95% 93.8 88.0 95.1 90.5
90% 90.0 85.5 91.6 86.7

Table B.6: Small-scale model estimation with operators conditional on the parameter value

Note: Performance of the SMAS estimators (with and without regularization) when
matching IR in the long-term H = 80, with sample size T = 232. The sequence of data is
fitted to a VAR(2) model. The diagonal operator is generated conditional on the value of
the parameter of interest.
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B.3.2 Medium-scale model

model variable
W real wage
Y output
I investment
C consumption
L hours worked
π inflation
R nominal interest rate
parameter parameter value
α capital share 0.30
β time discount factor 0.99
τ capital accumulation 0.025
cy consumption-output ratio 0.6
iy investment-output ratio 0.22
λw wage markup 0.5
ϕi investment adjustment cost 6.771
σc risk aversion 1.353
h external habit formation 0.573
ξw Calvo parameter wage 0.737
σL inverse elasticity of labor supply 2.400
ξp Calvo parameter price 0.908
ξe fraction of firms able to adjust employment 0.599
γw degree of wage indexation 0.763
γp degree of price indexation 0.469
ψ capital utilization cost 0.169
ϕy one plus share of the fixed cost in production 1.408
rπ Taylor rule inflation feedback 1.684
r∆π Taylor rule inflation change feedback 0.14
ρ degree of interest rate smoothing 0.961
ry Taylor rule output level feedback 0.099
r∆y Taylor rule output growth feedback 0.159
ρa persistence productivity shock 0.823
ρb persistence risk premium shock 0.855
ρg persistence spending shock 0.949
ρl persistence labor shock 0.889
ρi persistence investment shock 0.927
ρπ persistence price markup shock 0.924

Table B.7: Parameter values in the medium-scale model.
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Panel A: Matching IR over medium to long horizons on all 7 indices
Horizons 1 to 20 Horizons 1 to 80 Horizons 21 to 80

regularized non-reg. regularized non-reg. regularized non-reg.
mean 0.4862 0.5133 0.4740 0.5327 0.4720 0.5606
MAD 0.0172 0.0443 0.0050 0.0637 0.0030 0.0916
SD 0.2714 0.2794 0.2608 0.2850 0.2638 0.2889
RMSE 0.2719 0.2829 0.2608 0.2920 0.2638 0.3031
Coverage
95% 100.0 100.0 100.0 100.0 100.0 100.0
90% 95.8 92.6 95.7 91.4 97.2 94.6
Panel B: Matching IR over medium to long horizons on 4 indices

Horizons 1 to 20 Horizons 1 to 80 Horizons 21 to 80
regularized non-reg. regularized non-reg. regularized non-reg.

mean 0.4845 0.4915 0.4802 0.5514 0.4964 0.4330
MAD 0.0155 0.0225 0.0112 0.0824 0.0274 0.0360
SD 0.2718 0.2873 0.2674 0.2929 0.2730 0.2575
RMSE 0.2722 0.2882 0.2676 0.3043 0.2744 0.2600
Coverage
95% 100.0 100.0 100.0 100.0 100.0 100.0
90% 96.6 94.2 94.9 95.4 95.6 94.6

Table B.8: Estimation of the degree of price indexation, medium- to long-run

Note: Estimation of the degree of price indexation γp = 0.469. Performance of SMAS
estimators (with and without regularization) when matching impulse responses over
medium to long horizons in all indices (Panel A), or in a subset of 4 indices, consumption,
labor force, inflation, interest rate (Panel B). We consider dynamic responses obtained up
to five years after the shock (20 periods), up to twenty years (80 periods), or between five
and twenty years (60 periods). The sample size is T = 236; we consider VAR(4),
N = 1, 000 replications.
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Panel A: Matching IR over long horizons on all 7 indices
VAR(2) model VAR(4) model VAR(8) model

regularized non-reg. regularized non-reg. regularized non-reg.
mean 0.4796 0.4901 0.4740 0.5327 0.4613 0.5208
MAD 0.0106 0.0211 0.0050 0.0637 0.0077 0.0518
SD 0.2618 0.2929 0.2608 0.2850 0.2643 0.2799
RMSE 0.2620 0.2937 0.2608 0.2920 0.2644 0.2847
Coverage
95% 100.0 100.0 100.0 100.0 100.0 100.0
90% 93.7 92.0 95.7 91.4 94.4 94.1
Panel B: Matching IR over long horizons on 4 indices

VAR(2) model VAR(4) model VAR(8) model
regularized non-reg. regularized non-reg. regularized non-reg.

mean 0.4773 0.4458 0.4802 0.5514 0.4847 0.5358
MAD 0.0083 0.0232 0.0112 0.0824 0.0157 0.0668
SD 0.2595 0.2298 0.2674 0.2929 0.2651 0.2807
RMSE 0.2596 0.2310 0.2676 0.3043 0.2656 0.2885
Coverage
95% 100.0 99.0 100.0 100.0 100.0 100.0
90% 95.9 91.6 94.9 95.4 93.1 92.0

Table B.9: Estimation of the degree of price indexation, VAR order p = 2, 4, 8

Note: Estimation of the degree of price indexation γp = 0.469. Performance of SMAS
estimators (with and without regularization) when matching impulse responses up to
twenty years after the shock (80 periods) in all indices (Panel A), or in a subset of 4
indices, consumption, labor force, inflation, interest rate (Panel B). We consider different
reduced-form models, VAR(2), VAR(4), and VAR(8). The sample size is T = 236 with
N = 1, 000 replications.

70



M
at

c h
in

g
IR

ov
er

m
ed

iu
m

to
lo

ng
ho

ri
zo

ns
on

al
l

7
in

di
ce

s
H

or
iz

on
s

1
to

20
H

or
iz

on
s

1
to

80
T

=
23

6
T

=
94

4
T

=
23

6
T

=
94

4
re

gu
la

riz
ed

no
n-

re
g.

re
gu

la
riz

ed
no

n-
re

g.
re

gu
la

riz
ed

no
n-

re
g.

re
gu

la
riz

ed
no

n-
re

g.
m

ea
n

0.
79

54
0.

53
17

0.
83

99
0.

47
28

0.
78

84
0.

51
19

0.
84

45
0.

51
79

M
A

D
0.

11
26

0.
37

63
0.

06
81

0.
43

52
0.

11
96

0.
39

61
0.

06
35

0.
39

01
SD

0.
21

03
0.

30
46

0.
19

01
0.

33
59

0.
19

22
0.

33
25

0.
17

81
0.

33
54

R
M

SE
0.

23
85

0.
48

41
0.

20
19

0.
54

98
0.

22
64

0.
51

72
0.

18
91

0.
51

45
C

o v
er

ag
e

95
%

91
.3

60
.3

92
.9

56
.3

92
.2

59
.3

93
.6

63
.9

90
%

89
.9

55
.7

92
.6

49
.7

91
.4

55
.9

92
.9

58
.4

T a
bl

e
B.

10
:E

st
im

at
io

n
of

th
e

C
al

vo
pa

ra
m

et
er

.

N
ot

e:
Es

tim
at

io
n

of
th

eC
al

vo
pa

ra
m

et
er
ζ p

=
0.

90
8.

Pe
rfo

rm
an

ce
of

SM
A

S
es

tim
at

or
s(

w
ith

an
d

w
ith

ou
tr

eg
ul

ar
iz

at
io

n)
w

he
n

m
at

ch
in

g
im

pu
lse

re
sp

on
se

so
ve

rm
ed

iu
m

to
lo

ng
ho

riz
on

si
n

al
li

nd
ic

es
.W

e
co

ns
id

er
dy

na
m

ic
re

sp
on

se
so

bt
ai

ne
d

up
to

fiv
e

ye
ar

sa
fte

rt
he

sh
oc

k
(2

0
pe

rio
ds

),
or

up
to

tw
en

ty
ye

ar
s

(8
0

pe
rio

ds
)

w
ith

sa
m

pl
e

siz
es
T

=
23

6,
or

T
=

94
4.

W
e

fit
VA

R
(4

)
an

d
co

ns
id

er
N

=
1,

00
0

re
pl

ic
at

io
ns

.

71



M
at

c h
in

g
IR

ov
er

m
ed

iu
m

to
lo

ng
ho

ri
zo

ns
on

al
l

7
in

di
ce

s
w

it
h
T

=
23

2
H

or
iz

on
s

1
to

20
H

or
iz

on
s

1
to

80
R

eg
ul

ar
iz

ed
N

on
-r

eg
ul

ar
iz

ed
R

eg
ul

ar
iz

ed
N

on
-r

eg
ul

ar
iz

ed
γ

p
ζ p

γ
p

ζ p
γ

p
ζ p

γ
p

ζ p
m

ea
n

0.
46

74
0.

78
88

0.
41

30
0.

43
34

0.
47

22
0.

79
15

0.
44

00
0.

56
70

M
A

D
0.

00
16

0.
11

92
0.

05
59

0.
47

46
0.

00
32

0.
11

65
0.

02
90

0.
34

10
SD

0.
27

79
0.

22
79

0.
26

08
0.

35
51

0.
26

35
0.

18
44

0.
27

52
0.

33
08

R
M

SE
0.

27
79

0.
25

71
0.

26
68

0.
59

27
0.

26
35

0.
21

81
0.

27
67

0.
47

51
C

o v
er

ag
e

95
%

10
0

90
.0

10
0

48
.8

10
0

92
.7

10
0

68
.5

90
%

95
.8

89
.4

94
.9

46
.8

95
.9

91
.7

95
.2

67
.0

Jo
in

t
C

ov
er

ag
e

95
%

90
.5

84
.5

93
.2

75
.8

90
%

89
.6

49
.1

91
.5

67
.4

Ta
bl

e
B.

11
:J

oi
nt

es
tim

at
io

n
of

th
e

de
gr

ee
of

pr
ic

e
in

de
xa

tio
n

an
d

th
e

C
al

vo
pa

ra
m

et
er

.

N
ot

e:
Jo

in
te

st
im

at
io

n
of

th
ed

eg
re

eo
fp

ric
ei

nd
ex

at
io

n
γ

p
=

0.
46

9
an

d
th

eC
al

vo
pa

ra
m

et
er
ζ p

=
0.

90
8.

Pe
rfo

rm
an

ce
of

SM
A

S
es

tim
at

or
s

(w
ith

an
d

w
ith

ou
t

re
gu

la
riz

at
io

n)
w

he
n

m
at

ch
in

g
im

pu
lse

re
sp

on
se

s
ov

er
m

ed
iu

m
to

lo
ng

ho
riz

on
s

in
al

li
nd

ic
es

.W
e

co
ns

id
er

dy
na

m
ic

re
sp

on
se

s
ob

ta
in

ed
up

to
fiv

e
ye

ar
s

af
te

r
th

e
sh

oc
k

(2
0

pe
rio

ds
),

or
up

to
tw

en
ty

ye
ar

s
(8

0
pe

rio
ds

)
w

ith
sa

m
pl

e
siz

es
T

=
23

6.
W

e
fit

VA
R

(4
)

an
d

co
ns

id
er
N

=
1,

00
0

re
pl

ic
at

io
ns

.

72



B.3.3 Baseline stylized DSGE model

We consider the baseline stylized DSGE model from Fernandez-Villaverde et al. (2016) as
adapted from DelNegro and Schorfheide (2008). The log-linearized equilibrium conditions
of the model for output, Xt, labor share, lsht, inflation, πt and interest rate, Rt, are given
by:

x̂t = Et[x̂t+1] − (R̂t − Et[π̂t+1]) + Et[zt+1] l̂sht = x̂t + ϕt ,

π̂t = βEt[π̂t+1] + (1 − ζpβ)(1 − ζp)
ζp

(l̂sht + λt) R̂t = 1
β
π̂t + σRϵR,t.

where the log deviation of a variable wt from its steady-state is denoted by ŵt; β is the
stochastic discount rate and ζp is the Calvo parameter (or probability with which a given
firm is unable to re-optimize its price). Four exogenous shocks influence the dynamics of
the variables: a technology shock, zt, a price markup shock, λt, a shock that affects the
preference for leisure, ϕt, and a monetary policy shock, ϵR,t. Except for the monetary policy
shock, which is assumed to be independently and identically normally distributed with
mean zero and variance one, the remaining shocks are assumed to follow autoregressive
processes. Thus, for each shock i = z, λ, ϕ, the autoregression coefficient is ρi and the
standard deviation is σi. Overall, the unknown structural parameters of the model are
[ζp, β, γ, λ, π

∗, ρϕ, ρλ, ρz, σϕ, σλ, σz, σR]′, where γ is the growth rate of technology, λ is the
steady-state markup charged by the intermediate goods producers, and π∗ is the steady-
state inflation rate. The steady-states for the interest rate and for the labor share can be
obtained from the expressions R̄ = π∗γ/β, and, ¯lsh = 1/(1 + λ), respectively.

This baseline model is designed to have a state-space representation which is used to
obtain the associated IRs analytically. Let γt and st denote the vector of observables and
state variables, respectively, with γt = M ′

γ [log(Xt/Xt−1), log lsht, log πt, logRt]′ - with M ′
γ

a selection matrix - and st = [ϕt, λt, zt, ϵR,t, x̂t−1]′. Then, we have:

γt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φϵ(θ)ϵt ,

with

Ψ0(θ) = M
′
γ

[
log γ

log(lsh)
logπ∗

log(π∗γ/β)

]
, xϕ =

κpψp/β

1 − ψpρϕ

, xλ =
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xϵR

= −ψpσR

Ψ1(θ) = M
′
γ


xϕ xλ xz + 1 xϵR

−1
1 + (1 + v)xϕ (1 + v)xλ (1 + v)xz (1 + v)xϵR

0
κp

1 − βρϕ

(1 + (1 + v)xϕ)
κp

1 − βρλ

(1 + (1 + v)xλ)
κp

1 − βρz
(1 + v)xz κp(1 + v)xϵR

0

κp/β

1 − βρϕ

(1 + (1 + v)xϕ)
κp/β

1 − βρλ

(1 + (1 + v)xλ)
κp/β

1 − βρz
(1 + v)xz κp(1 + v)xϵR

/β + σR 0


Φ1(θ) =

ρϕ 0 0 0 0
0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xϕ xλ xz xϵR

0

 ,Φϵ(θ) =

σϕ 0 0 0
0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0

 .
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From the above state-space representation, the IR function to shock j at horizon h can be
written as:

ψ0(., j, h) = Ψ1Φh
1 [Φϵ].j

where [A].j is the j−th column of a matrix A.

Parameter Value
β stochastic discount rate 0.98
γ growth rate of technology 1.005
λ steady-state intermediate goods markup 0.15
π∗ steady-state inflation rate 1.005
ρz autoregression parameter of the technology shock 0.13
ρλ autoregression parameter of the price markup shock 0.88
ρϕ autoregression parameter of the shock that affects the preference for leisure 0.30
σz standard deviation of the technology shock 1.50
σλ standard deviation of the price markup shock 0.50
σϕ standard deviation of the shock that affects the preference for leisure 3.00
σR standard deviation of the monetary policy shock 1.00

Table B.12: Parameter values in the baseline stylized model.
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Appendix C

Simulation-based Methodology
with Many Auxiliary Statistics:
Hypothesis Testing with Many
Moments

C.1 Tables

Standard AR(1) ρ = 0.1 ρ = 0.9
T=100 T=200 T=100 T=200

H Type A Type B Type A Type B Type A Type B Type A Type B
4 0.32 0.18 0.24 0.16 1.14 0.18 1.62 0.26
12 1.30 1.46 0.88 0.94 2.28 1.12 2.40 1.12
20 3.52 3.68 4.14 5.06 2.68 3.96 2.60 4.82

Table C.1: Empirical size of tests for AR(1) model with no switch

Note: We report the empirical rejection rates under the null in Section 3.3.1. The DGP is
AR(1) and has no Markov-switching component. The nominal level of significance is 5%.
Type A test uses the moments of y’s and Type B test uses the moments of residuals.
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Model 1 (no switch)
yt = −0.2 + 1.2yt−1 − 0.3yt−2 + ϵt, ϵt ∼ N (0, 1)

T=500 T=1000
Number of moments Type A Type B Type A Type B

4 0.02 0 0 0
12 2.96 3.92 3.8 4.56
20 3.24 4.34 3.98 4.76

Model 2 (2-state AR coefficient switch)
State 1: yt = −0.2 + 1.2yt−1 − 0.3yt−2 + ϵt
State 2: yt = 0.2 + 0.4yt−1 − 0.3yt−2 + ϵt
ϵt ∼ N (0, 1)
transition matrix: (p11, p22) = (0.83, 0.75)

T=500 T=1000
Number of moments Type A Type B Type A Type B

4 8.12 0.18 50.66 6.74
12 14.46 54.8 28.78 91.22
20 9.36 50.86 19.72 86.42

Table C.4: Tests of Markov-switching model with changing slope coefficients

Note: We report the Monte Carlo test results for the model with a switching component in
level and the first order autoregressive coefficient in Section 3.3.2. Results from tests using
the first 4, 12, and 20 moments of observation are presented. The DGP is AR(2) and the
sample sizes are T = 500 or T = 1000 respectively. The upper panel shows the empirical
size of the tests. The lower panel shows the empirical power of the tests. The switch in mean
and variance follows a first-order Markov process. The nominal level of significance is 5%.
Type A test uses the moments of y’s and Type B test uses the moments of residuals.
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Panel A: USA real GNP growth 1952Q2 - 1984Q4
Number of moments Type A Type B

4 0.5119 0.3534
12 0.2149 0.4200
20 0.6781 0.8145

Panel B: USA real GNP growth 1952Q2 - 2010Q4
Number of moments Type A Type B

4 0.0985 0.1850
12 0.0971 0.2296
20 0.0245 0.4078

Table C.5: Test results: US GNP growth

Note: We report the empirical p-value when the output growth rate data is tested against
a stationary linear AR(4) model with no regime switch. Panel A presents the p-values of
tests of the US GNP data from 1952 to 1984 using different numbers of moments, and
Panel B features an extended sample period from 1952 to 2010. The empirical p-value is
calculated as the average p-value out of 1000 repeated tests. For the output growth rate
between 1952Q2 and 2010Q4, the hypothesis that the observations follow a linear AR(4)
model is rejected at α = 0.05 with our simulation-based MC test using H = 20.
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C.2 eigenvalues and eigenvectors of KT

K is defined as the asymptotic covariance operator of the stacked moments. Let KT

denote its sample counterpart with a degenerate kernel. For assumptions needed about the
operator B and BT , and their properties, see Antoine and Sun(2022).

To compute the eigenfunction ϕ
(T )
j and the associated eigenvalue λ

(T )
j , we simulate

another set of S samples of size T . This batch of simulations is not generated under the
null hypothesis as for data used to compute ξ̃

null
and ξ̃

n

null
. Instead, the S samples

X∗,s
T (θ̂0

T ), s = 1, . . . , S are generated by residual bootstrapping with simulator g(·, θ̂0
T , êT ),

where êT is the vector of sample residuals.

Therefore, to compute ϕ(T )
j and λ

(T )
j , j = 1, . . . , S, we need to

1. Get S samples X∗,s
T (θ̂0

T ), s = 1, . . . , S;

2. Compute the values of H moments ξ∗,s
T,h
, h = 1, . . . ,H and their average ξ̄∗

T

3. Find the eigenvalues µ(T )
j and the associated eigenvectors β

j
= [β1

j β2
j ... βS

j ]′ (j =
1, . . . , S) of the matrix (S, S)-matrix C with (s, s′) element;

css′ = 1
S

H∑
h=1

(
ξ∗,s

T,h
− ξ̄

∗
T,h

)(
ξ∗,s′

T,h
− ξ̄

∗
T,h

)
;

4. Get λ(T )
j = µ

(T )
j for j = 1, · · · , S;

5. Compute

ϕ
(T )
j (h) = 1

S

(
ξ∗(T )

h

)′
β

j
with ξ∗(T )

h
≡


ξ∗,1

T,h
− ξ̄

∗
T,h

ξ∗,2
T,h

− ξ̄
∗
T,h

...
ξ∗,S

T,h
− ξ̄

∗
T,h


, for j = 1, . . . , S
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