

OAKION SYSTEMS

Distributed Computing Network

WHO WE ARE

OAKION SYSTEMS - GROUP 9

- We specialize in Distributed Computing Solutions for the optimization of processing data across network infrastructures in the OT industry.
- Our solutions conforms to the latest trends of the industry and can be customized to our clients needs.
- We provide scalable, flexible and robust solutions for any companies business needs; large or small.

THE TEAM

OAKION SYSTEMS - GROUP 9

- CEO: Justin Singh
- CTO: Tony Tan
- CBO: Swimm Chan
- CSA: Aaron Nguyen
- CLI: Shawn Wang (Chief Lead Intern)

PURPOSE

Design, Develop, Integrate and Deploy a Solution to Optimize Data Processing in the OT Industry

4 Months

- Show the Potential for optimization
- Develop a Microservice Architecture
 System Implementation
- Theoretical Benchmarking
- Visualization of Performance
- Deployment of Current System

Figure 1 - Project Cycle^[5]

BACKGROUND

Optigo Networks

- Targets the OT industry
- Provide network health analysis with a Software as a Service model

Oakion Systems

- Targets the OT industry
- Focuses primarily on software optimization solutions for cost efficiency

Figure 2 – Optigo's Visual BACnet

MOTIVATION

Flexible, Scalable and Robust Software Solutions

Oakion Systems

- The future is distributed
- Traditional monolithic software architecture is becoming obsolete
 - It solves a real world computing problem

BUSINESS MODEL

- Market Analysis
- Competition

© Oakion Systems 2019

MARKET ANALYSIS

Ideal customers

COMPETITION

OT INDUSTRY DATA DRIVEN BUSINESSES

FINANCES

- Development Costs
- Operational Costs

		Resources	Description	Quantity	Price per month (\$)	Subtotal per month (\$)
		Atlassian JIRA	Issue & Project Tracking Software	5 (seats)	10.00 (for 10 seats)	10.00
DEVEL		Atlassian Bitbucket	A web-based version control repository hosting service	5 (seats)	0.00	0.00
C		Development Team	The man hours needed to develop and deploy the product to a customer	est: 640 hours	5333.00	5333.00
					Total	\$5343.00 (CAD)

 Table 1 - Monthly Development Costs

	RESOURCES	DESCRIPTION	QUANTITY	PRICE PER MONTH (\$)	SUBTOTAL PER MONTH (\$)
	Amazon Web Service EC2 Instance	Instance Type: r5.xlarge	1	155.63	155.63
	Amazon Web Service EC2 Instance	Instance Type: t2.xlarge	2	112.55	225.10
	Amazon Web Service EC2 Instance	Instance Type: i3.xlarge	1	209.44	209.44
	Amazon EBS Volumes (Storage)	Volume Type: Magnetic	5	17.16	85.80
	PostgreSQL	An open-source relational database	1	0	0.00
	InfluxDB	An open-source Time Series Database (TSDB) ^[2]	1	0	0.00
	Kibana	Monitors application logs for each module and visually displays the results	1	0	0.00
	Grafana	Monitors application metrics modularly for the entire system ^[2]	1	0	0.00
	Nomad	Deployment tool	1	0	0.00
	Docker	Tool designed to make it easier to create, deploy, and run applications by using containers.	1	0	0.00
				Total:	\$675.98 (ÇAD)

© Oakion Systems 2019

OPERATIONAL

COST

Table 2 - Monthly Operational Costs

TECHNICAL MODEL

Flexible, Scalable and Robust Software Solutions

- Microservice
- Proof of Concept Design
- Performance Monitoring

MICROSERVICES

(Why we are using one)

© Oakion Systems 2019

PERFORMANCE MONITORING

Grafana

Figure 8 – Performance Monitoring with Grafana

PERFORMANCE MONITORING

Microservice Perspective

Performance Metrics

- Performance metrics is used to understand low-level system performance and behavior
 - Any type of distributed system will eventually fail
- The key is to monitor systems over time to prevent failure and improve performance

Figure 7 – Performance Monitoring

PROOF OF CONCEPT DEMO

© Oakion Systems 2019

REAL HARDWARE SETUP

What Our "NUC" Represents

Figure 9 – Hardware Setup at Optigo Networks

SPOOFING USING A NUC

The NUC replays pre-capture traffics from BACnet devices

This simulates a real bacnet network

GRAFANA PERFORMANCE DEMO

© Oakion Systems 2019

DATA ANALYSIS

Optigo vs Oakion Syste

PERFORMANCE COMPARISON

Optigo vs Oakion Systems

RISK ANALYSIS

- Product Safety
- Business Risks

PRODUCT SAFETY

- Tool Dependency
 - Version Control

Encryption

- Data in Transit
- Data at Rest
- Authentication
 - SASL

Figure 11 – Strong Software quality philosophy Pyramid^[9]

BUSINESS RISKS

- Companies' needs may outgrow the solution
 - Hardware resource constraint
- Adaptation needed to continuously offer high integrated solution

Figure 12 – Business is all about taking risks

ENGINEERING STANDARDS

- What our product complies to
- ISO and IEEE will provide regulatory guidelines for quality management

Software Life Cycle Processes						
Agreement Processes		Technical Management Processes		Technical Processes		
Acquisition Process (6.1.1)		Project Planning Process (6.3.1)		Business or Mission Analysis Process (6.4.1)		
Supply Process (6.1.2)		Project Assessment and Control Process (6.3.2)		Stakeholder Needs and Requirements Definition Process (6.4.2)		
Organizational Project-Enabling		Decision Management Process (6.3.3)		Systems/Software Requirements Definition Process (6.4.3)		
Life Cycle Model Management Process (6.2.1)		Risk Management Process (6.3.4)		Architecture Definition Process (6.4.4)		
Infrastructure Management Process (6.2.2)		Configuration Management Process (6.3.5)		Design Definition Process (6.4.5)		
Portfolio Management Process (6.2.3)		Information Management Process (6.3.6)		System Analysis Process (6.4.6)		
Human Resource Management Process (6.2.4)		Measurement Process (6.3.7)		Implementation Process (6.4.7)		
Quality Management Process (6.2.5)		Quality Assurance Process (6.3.8)		Integration Process (6.4.8)		
Knowledge Management Process (6.2.6)				Verification Process (6.4.9)		
	J			Transition Process (6.4.10)		

Figure 13 - Software Life Cycle Processes

Validation Process (6.4.11) Operation Process (6.4.12)

ISO 12207

Software Life Cycle Processes

ISO 12207 is an international standard for the software lifecycle processes

Defines how user oriented performance of computer-based software systems may be measured and rated.

- Execution Time
- Throughput
- Timeliness

ISO 14756

Measurement and rating of performance of computerbased software systems

A simple guideline for visual userinterface elements

User Interface Design									
Interactive	Informative	Decorative							
Properties	Properties	Properties							

Figure 14 – User Interface Concept

ISO 9241-161

Ergonomics of humansystem interaction --Part 161: Guidance on visual user-interface elements

ACCEPTANCE TEST PLANS

© Oakion Systems 2019

PROOF OF CONCEPT TESTING

What major components are ready?

Hardware Checks

Security Checks -> In EP Stage

Data Stream Management Service Checks

Producer Module Checks

Splitter Module Checks -> In EP Stage

Consumer Module Checks

Reducer Module Checks

Performance Checks

© Oakion Systems 2019

PROOF OF CONCEPT: HARDWARE CHECKS

Acceptance Test Plan

- The capture tool is required in 2 states: active or inactive
- The Capture tool must operate under 82 °C

PROOF OF CONCEPT: DSMS CHECKS

Acceptance Test Plan

Kafka Industry Usage

- Kafka is open source
- Maintained by Apache and has an active community
- Used by large companies^[10]
 - LinkedIn
 - Netflix
 - Spotify
 - Cisco

Kafka Tests

- Monitor Transaction Rate
- Monitor the Queue size of the DSMS
- Monitor System Load
- Alert when Service Down
- Unplanned shutdown

PROOF OF CONCEPT: MODULE CHECKS

Acceptance Test Plan

Functionality of Modules

- All modules cover 2 major functions
 - Receive data from Kafka
 - Send data to Kafka

Module Monitoring

- The key to the success of Oakion Systems is whether we can monitor the system per module
 - Each module can be monitored from Grafana

PROOF OF CONCEPT: BACNET CHECKS

Currently Implemented

© Oakion Systems 2019

PROOF OF CONCEPT TEST SUITE OVERVIEW

Acceptance Test Plan

TEST SUITE EXAMPLE:

CHECKSUM

Acceptance Test Plan

What is a Checksum Check?

- Indicates the percentage of packets with checksum errors in the capture
- Indicates how healthy the network is

TEST SUITE EXAMPLE: CHECKSUM

Acceptance Test Plan

Visual BACnet

Packets for Checksum Error Type - BACnet							
Show 10	w 10 🔶 entries			Search:			
Time	↓≟ Nu	mber ↓↑	Source 👫	Destination 🔰	Service Choice	Packet Length	1t
20:58:21	8626	28	255	Who-	Is-Router-To-Network	21	
20:59:21	21421	28	255	Who-	Is-Router-To-Network	21	
	1	Î	Ť			Ť	

Oakion Systems

Figure 17 – Visual BACnet

SELF REFLECTION

- Reflection
- Changes for ENSC 440

REFLECTION

What we've learned

- Key to success is good teamwork and communication
- Delegating tasks
- Making decisions
- Time management
- Standards and simplistic UI
- Online Collaboration

PLAN FOR 440

Design, Develop, Integrate and Deploy a Solution to Optimize Data Processing in the OT Industry

- Optimization of Current Performance
- Integration with Visual BACnet
- Final Deployment

DEVELOPMENT PROCESS PLAN FOR ENSC 440

Find optimal balance between: Memory, I/O and CPU usage for this problem for Optigo Networks

Load Balancing for Performance Maximization

Kibana For Log Visualization

System Integration with Optigo Networks Visual BACnet

Show System is Optimized running a 1:1 test with current system in place at Optigo Networks

ENGINEERING PROTOTYPE DESIGN

Figure 19 – Engineering Prototype Design

CONCLUSION

Prototypes

THANK YOU

- Justin Singh
- 250 961 3527
- jksingh@sfu.ca

ACKNOWLEDGEMENTS

Instructional Team here at SFU

- Specifically Craig Scatchley, Andrew Rawicz and our TAS
- Optigo Networks

QUESTIONS?

© Oakion Systems 2019

REFERENCES

- 1. "State of the Industry 2016: The Industrial Internet of Things," *Highway*. [Online]. Available: https://www.oemoffhighway.com/electronics/smart-systems/article/12260093/the-industrial-internet-of-things . [Accessed: 14-Apr-2019].
- 2. C. Croft, "Teamwork Foundations," Lynda.com from LinkedIn, 17-Sep-2015. [Online]. Available: https://www.lynda.com/Business-Skills-tutorials/Teamwork-Fundamentals/365728-2.html. [Accessed: 14-Apr-2019].
- 3. J. Martinez, "What is Considered a Single Microservice?," codeburst, 24-Dec-2017. [Online]. Available: https://codeburst.io/what-is-considered-a-single-microservice-74cd6353b886. [Accessed: 14-Apr-2019].
- 4. "IEEE Trial-Use Standard--Adoption of ISO/IEC TR 15026-1:2014 Systems and Software Engineering--Systems and Software Assurance--Part 1: Concepts and Vocabulary."
- 5. L. Hanson, "How I Became a Self-Taught Software Engineer at a Major Tech Company," *Code Like A Girl*, 31-May-2018. [Online]. Available: https://code.likeagirl.io/thoughts-on-becoming-a-self-taught-software-engineer-c8d8e7bde704. [Accessed: 14-Apr-2019].
- 6. ISO/IEC/IEEE 12207:2017 Systems and software engineering -- Software life cycle processes
- 7. https://www.linkedin.com/company/trackinno-oy/?originalSubdomain=ca
- 8. R. Anderson and D. Ciruli, *Scaling SOA with Distributed Computing*. [Online]. Available: http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2006/0611/061001ra01/061001ra01.html. [Accessed: 14-Apr-2019].
- 9. Carl, "Medical Device Software Safety, Quality, and Compliance: What Really Makes A Difference?," *MedTech Intelligence*, 19-Oct-2015. [Online]. Available: https://www.medtechintelligence.com/feature_article/medical-device-software-safety-quality-and-compliance-what-really-makes-a-difference/. [Accessed: 15-Apr-2019].
- 10. J. Rao and J. Kreps, "Apache Software Foundation," *Powered By Apache Kafka Apache Software Foundation*. [Online]. Available: https://cwiki.apache.org/confluence/display/KAFKA/Powered By. [Accessed: 14-Apr-2019].
- 11. https://hackernoon.com/monitoring-containerized-microservices-with-a-centralized-logging-architecture-ba6771c1971a