March 14, 2019

Dr. Andrew Rawicz

School of Engineering Science
Simon Fraser University
Burnaby, BC, V5A 156

RE: ENSC 405W/440 Design Specification for the Distributed \t A K IO N
Computing Network by Oakion Systems N\

Dear Dr. Rawicz,

The attached document provides the design specification for the Distributed Computing
Network being implemented by Oakion Systems described previously in our Requirements
Document!!l. The definition of success for this project, will be to optimize the current Visual
BACnet architecture at Optigo systems, a data analytics company for Building Automation, in a
systematic method to help ease computational and bandwidth bottlenecks occuring on their
current Visual BACnet SaaS product under high network traffic.

This document will outline the system architecture designs and implementation specifications
in a modular format, complimenting our Microservice solution architecture layout. We will
begin by breaking down these subsystems and providing background on why certain decisions
are made in our system design. We will provide further details of how the implementation will
occur, the coordination of the subsystems and the communication systems in place. Next, we
will provide information on how the currently deployed embedded systems provided by
Optigo Networks will be utilized and how that data will be displayed. Lastly, we will touch on
how performance and optimization will be measured for the subsystems individually, and the
system as a whole, as defined by our definition of success.

Oakion Systems is comprised of 5 talented senior engineering students: Justin Singh, Tony Tan,
Shawn Wang, Swimm Chan, and Aaron Nguyen. These individuals come from a strong
background in software development, problem solving and systems design. Oakion is confident
that the task at hand will be delivered with success and confidence to solve Optigo’s request.

Thank you for reviewing our design specification. If you have any inquiries, please do not
hesitate to contact myself, Justin Singh by phone: 250-961-3527 or email: jksingh@sfu.ca

Sincerely,

Justin Singh.
Chief Executive Officer
Oakion Systems

Enclosed: The Design Specification for the Distributed Computing Network



DESIGN SPECIFICATION

Distributed Computing Network

flexible scalable robust

Project Members:

Contact Person:

Submitted to:

Issue Date:

Swimm Chan
Aaron Nguyen
Justin Singh
Tony Tan

Shawn Wang

Justin Singh
jksingh@sfu.ca

250-961-3527

Craig Scratchley (ENSC 405W)
Dr. Andrew Rawicz (ENSC 440)
School of Engineering Science

Simon Fraser University

March 14, 2019



A Aon
h Design Specification - Distributed Computing Network

ABSTRACT

This document outlines the design specification for the Distributed Computing Network
project provided by Oakion Systems to Optigo Networks in accordance with ENSC 405W /440.
The project comprises a complete software systems solution which will optimize Optigo’s
computational and bandwidth bottleneck issue that arise under high network traffic.

Oakion Systems’ Distributed Computing Network leverages the existing embedded systems
infrastructure deployed with Optigo Networks, to form a Cluster Computing Distributed
System on LAN that provides a Microservice solution. Computing nodes (Capture Tools)
produce packet data, perform pre-filtering, and strategically split the packet stream, before
sending Kafka hosted through a cloud service provider. Kafka then publishes tasks to available
subscriber nodes to complete analysis and aggregation. The end result is then sent to Optigo’s
server for visualization. This process solves the bottleneck issues that currently face the
centralized client-server model.

The user interface for the Distributed Computing Network will consist of powering on the
embedded Capture Tool using a on/off switch on the device, application performance monitor
GUIs that will update the user on the performance of our middleware and Visual BACnet,
providing visualization of the data analytics occurring and the health of the network that the
Capture Tool is placed on.

© Oakion Systems 2019 i



1 /

(i J

\ Agion
\&:;&,; g

Design Specification - Distributed Computing Network

TABLE OF CONTENTS

Abstract

Table of Contents
List of Tables
List of Figures

Glossary

1 Introduction

1.1 Scope ... .o
1.2 Intended Audience . ........ ...t

1.3 Design Classification . ..................oiiiiiiiiiiia..

2 System Analysis

2.1 Proof of Concept System Overview ........................
2.2 Engineering Prototype System Overview ...................

23 PCAPLifeCycle.... ... ..o

3 System High Level Specifications

4 Software Design Specifications

4.1 ProducerModule....... ... ..
4.1.1 Producer BACnetFilter............................
42 KafkaDSMS ... ...
421 KafkaOverview .........c.c.ooviiiiniiiiniinneenn..

43 Splitter . ... ...

© Oakion Systems 2019 ii

ii

vii

X



/ |
f |
u‘/{ ,I;
L Ayﬁ/o N
- Design Specification - Distributed Computing Network
44 ConsumerModule..................... ... ...l 13
45 ReducerModule..... ... ... .. 16
5 Hardware Design Specifications 18
6 Integration with Visual BACnet 19
6.1 K2V Connector (F1) . ... vver it e e et e 19
6.2 M2K Connector (H2) . . oo v vttt e e e e e e e e 20
6.3 PostgreSQL Database ................ ... ... ... ... 21
7 Overall Performance Specifications 23
7.1 Application Performance Monitoring . ................... ... ... .... 23
7101 Grafana........... 23
7.1.2 ElasticSearch (Kibana) . .......... ..., 24
7.2 Microservice Load Balancing .. .............. ... ... ... ... oL 25
7.2.1 Design Overview and Efficiency Analysis Example............. 25
7.2.2 Dual Queue Design (In Progress) . ............ ..., 26
7.2.3 Consumer Load-Balancing ............................... ... 27
7.2.4 Reducer Load-Balancing .................................... 28
8 Conclusion 30
References 32
Appendix A: Supporting Test Plans 35
Al Functional Tests......... ... .. i 35
A2 IntegrationTests.......... ... i 42

© Oakion Systems 2019 ii



L aglon
- Design Specification - Distributed Computing Network

A3 SystemTests....... ... 44

A4 Acceptance Tests . ... ... ... 45
Appendix B: User Interface Design 46
B.1 Introduction........ ... ... . 46

B.1.1 Purpose...... ... o 47

B.1.2 Scope. ... ... 47

B2 User Analysis.........coiiiiii i 47

B.3 Technical Analysis.......... ... 48

B.3.1 Discoverability .............. ... ... i 48

B.3.2 Feedback........... . . 49

B.3.3 ConceptualModel ........................................ 52

B34 Affordances........... ... ... 52

B.3.5 Signifiers..... ... ... 54

B.3.6 Mappings.......... ... 54

B.3.7 Constraints........... ... . 54

B.4 Engineering Standards............ ... ... i 54

B.4.1 ISO 9241-161 Ergonomics of Human-System Interaction - Part 54

161: Guidance on Visual User-Interface Elements...............
B.4.2 ISO 14756 Measurement and Rating of Performance of 55
Computer-Based Software Systems . ..........................

B.5 Usability Testing . ..........oo 56

B.5.1 Analytical ........ ... o 56

B.52 Empirical ............ 57

B6 Summary................. 58

© Oakion Systems 2019 iv



i‘%\
VA4 ]
{ /
‘”‘i‘f /
\ AgionN
\ N

Design Specification - Distributed Computing Network

LIST OF TABLES

Table 1.1 CodeScheme....... ... ... 2
Table 2.1 PCAPRoadmap ... i 6
Table 3.1 High Level General System Specifications . ........................ 7
Table 4.1 Producer Module Specifications . ................... ... ... ... 8
Table 4.2 Kafka Module Specifications .. .................................. 10
Table 4.3 Splitter Module Specifications . . ................. i 12
Table 4.4 Consumer Module Specifications . . ....................... ... ... 13
Table 4.5 List of Network Filters .. ....... ... ... 14
Table 4.6 Reducer Module Specifications . ............. .. ... .o o 17
Table 5.1 Capture Tool Specifications . .................. ... 18
Table 6.1 K2V Connector Specifications . .. ............ ... oo 19
Table 6.2 M2K Connector Specifications . .................. ... ... 20
Table 6.3 Database Proof of Concept.......... ..., 21
Table 7.1 Grafana Specifications . ............ ... ... o oo 24
Table 7.2 Kibana Specifications . .......................... ... 24
Table 7.3 Consumer Load Balancing Specifications . ......................... 27
Table 7.4 Reducer Load-Balancing Specifications . .......................... 28
Table A.1.1 Functional Test Suite . ......... ... .o i 35

© Oakion Systems 2019 v



Design Specification - Distributed Computing Network

Table A.1.2 BACnet Analytical Checks . ........... ... ... o i L 38
Table A.2.1 IntegrationTests . . ........ .. ... 42
Table A.3.1 System Tests........ ..o 44

© Oakion Systems 2019 vi



Design Specification - Distributed Computing Network

Figure 2.1 PoC System Overview. . ........ ... ... i 3
Figure 2.2 Engineering Prototype System Overview. ......................... 5
Figure 4.1 Producer Proof of Concept ................. . ... ..l 9
Figure 4.2 PCAP Format. .. ... 10
Figure 4.3 Splitter Engineering Prototype ............ ... ... ... ... ... .. ... 12
Figure 4.4 Consumer Proof of Concept.......... .. ... .. il 14
Figure 4.5 Reducer Proof of Concept........... ..., 18
Figure 6.1 K2V Connector Proof of Concept................................. 20
Figure 6.2 M2K Connector Proof of Concept................................ 21
Figure 6.3 Database Proof of Concept . ............. ... ... ... L. 23
Figure 7.1 Grafana Integration with our System . ............................ 24
Figure 7.2 Kibana Integration withour System ...................... ... ..... 25
Figure 7.3 Diagram of combination of Consumer and Reducer load balancing 26

processing and analyzing the PCALin parallel ....................

Figure 7.4 Diagram of Consumer load balancing splitting by row, analyzing each 28
chunk in parallel before placementinCSV ........................

Figure 7.5 Diagram of Reducer load balancing splitting by column analyzing 29
each chunk in parallel before results stored inCSV.................

Figure B.1 AWS Interface 48
Figure B.2 LED indicating active and inactive state of Capture Tool ............ 49
Figure B.3 Grafana Web Interface .............. . ... ... ... ... L 50

© Oakion Systems 2019 vii



Design Specification - Distributed Computing Network

Figure B.4 Kibana Web Interface . ............ ... ... . o i il 51
Figure B.5 Conceptual Model of the Distributed Computing Network .......... 52
Figure B.6 Nomad Web Interface................ ... . ... ..., 53
Figure B.7 Signifers integrated in Grafana . ..................... ... ... ..., 54
Figure B.8 User Interface Design . ........... ... ... . .. . i 55

© Oakion Systems 2019 viii



A Aon
h Design Specification - Distributed Computing Network

GLOSSARY

ACID ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties of database
transactions.

APM Application Performance Management monitors and manages performance and
availability of software applications that strives to detect and diagnose complex
application performance to maintain an expected level of service."

AWS Amazon Web Service is a cloud computing platform built and hosted by Amazon.com to
provide users with a pay-as-you-go scalable compute, storage and throughput
computing model. !

BACnet Communications protocol for Building Automation and Control networks that
leverage the I1SO 16484-5 protocol."

Cloud Storage Cloud computing model in which data is stored on remote servers accessed
from the internet, or "cloud." It is maintained, operated and managed by a cloud storage
service provider on a storage servers that are built on virtualization techniques.”

Docker A deployment tool that packages code and software including dependencies to allow
applications to run reliably on one computing environment to another.”

DogStatsD An open-source lightweight metric aggregation service built in Go, extending the
StatsD protocol. Part of the TICK Stack.
[https:/ /docs.datadoghq.com/developers/dogstatsd /]

DSMS Data Stream Management System, a software that takes in data and converts various
kinds of data into a single storage container, or aggregates diverse data into a consistent
resource, such as a database. !l

GUI Graphical User Interface is an interface through which a user interacts with electronic
devices such as computers, hand-held devices and other appliances. This interface uses
icons, menus and other visual indicator (graphics) representations to display
information and related user controls, unlike text-based interfaces, where data and
commands are in text.*!

Grafana An open source metric analytics & visualization suite. It is most commonly used for
visualizing time series data for infrastructure and application analytics but many use it
in other domains including industrial sensors, home automation, weather, and process
control.”’]

© Oakion Systems 2019 ix



A Aon
= Design Specification - Distributed Computing Network

InfluxDB An open-source Time Series Database (TSDB) written in Go and optimized for fast,
high-availability storage and retrieval of time series data in fields such as operations
monitoring, application metrics, Internet of Things sensor data, and real-time analytics.
It provides SQL-like with built-in time-centric functions for querying. Part of the TICK
Stack. [https://en.wikipedia.org/wiki/InfluxDB]

IoT Internet of Things, a system of interrelated computing devices, mechanical and digital
machines, objects, animals or people that are provided with unique identifiers and the
ability to transfer data through network without requiring human-to-human or
human-to-computer interaction."!

Kafka A software that takes in data and converts various kinds of data into a single storage
container, or aggregates diverse data into a consistent resource, such as a database. !

Microservice Architecture An Architectural style that structures an application as a collection
of services that are highly maintainable and testable, loosely coupled, independently
deployable, organized around business capabilities. '

Nomad A deployment tool that allows users to manage the different modules in the
Distributed Computing Network system.

PCAP Data Packet Capture consists of an application programming interface for capturing
network traffic.

Telegraf An open-source plugin-driven server agent for collecting, processing, aggregating,
and writing metrics. Part of the TICK Stack.
[https:/ /www.influxdata.com /time-series-platform /telegraf/]

Visual BACnet is an advanced visualization tool for Building Automation System Service

Providers. The powerful analytics engine quickly identifies common problems and
anomalous behavior in the BACnet infrastructure. ')

© Oakion Systems 2019 X



| Agion
o Design Specification - Distributed Computing Network

I INTRODUCTION

BACKGROUND

The prevalence of the IoT has presented an opportunity for Oakion Systems to manage the
inundation of data that companies like Optigo face with. The amount of data that flows to
Optigo exponentially increases as their client base grows. This growth will cause a
computational and bandwidth bottleneck in the near future (~8GB/day currently). Without
changing or improving their current architecture, Optigo will face issues with continuous
analytics and performance.

Oakion Systems’ Distributed Network solution focuses on a primarily software solution to the
computational and bandwidth issues. More precisely, this solution is a Microservice Solution
which provides scalability and robustness which are two core principles that can be scaled to
the requirements of any customer's network. Also, it empowers them to maximize their
software capabilities before justifying changes on the hardware level. Oakion Systems takes
pride in following the current trends of large platform industries such as Amazon that have
internally been evolving their applications toward Microservice architectures since 2015 ©.

This section will highlight the major advantages from a Microservice Software Architecture as
follows:

1. Strong Independent Modules: Each module is development independent from each
other, which becomes increasingly important as a company’s development grows.
Companies can form tight-knit teams around the ownership structure of a set of small
services, which leads to clearer interfaces with stronger boundaries, not just between the
teams, but as a consequence also between the software (sub) systems these teams are
building®.

2. Independent Deployment: The system in natural allows a Continuous Delivery
approach to software development!™. This means that old architectural software which
used to be released once a quarter or monthly, are now having release cycles several
times per day. The main competitive advantage that results from the ability to deploy at
a high frequency comes from the increased speed of responding to the market, or
offering a new feature faster than your competitors'®.

3. Increased Speed and Availability: Speed and availability of the overall system are

improved, while at the same time cost, size, and errors due to software dependencies to
the business are reduced. The much shortened feedback loop for code that is deployed

© Oakion Systems 2019 1



| Agion
o Design Specification - Distributed Computing Network

via small, isolated services, which means the overall rate of change to the system can be
increased relatively safely".

1.1 SCOPE

This document outlines the design specifications for the Distributed Computing Network
microservice solution provided by Oakion Systems. It will break down the design of the overall
system and all the sub system modules. Proof of Concept Prototype will be emphasized
throughout the document, however other design phases will be mentioned. Appendix A
contains a Supporting Test Plan and Appendix B contains the User Interface and Appearance
Appendices that provide further detail the usability of the product.

1.2 INTENDED AUDIENCE

This document is intended to serve as a technical reference for Oakion System Inc. employees,
stakeholders, potential clients, Dr. Craig Scratchley, Dr. Andrew Rawciz and ENSC 405W /440
teaching assistants. Oakion Systems will refer to this document for design clarification
throughout the implementation of all Prototypes.

1.3 DESIGN CLASSIFICATION

Oakion Systems expected timeline for an individual design specification as follows:
1. Proof of Concept Prototype - Specification will be carried out by April 2019
2. Engineering Prototype - Specification will be carried out by August 2019
3. Final Prototype - Specification will be carried out past August 2019

To specify a requirement, the document will use the following scheme:

DES [Section].[Module Sub Section].[Requirement Number]-[Code Scheme]

Code Scheme Description
PoC Proof of Concept Prototype
EP Engineering Prototype
FpP Final Prototype

NOTE: All specification dates may be subject to change.
Table 1.1 - Code Scheme

© Oakion Systems 2019 2



Design Specification - Distributed Computing Network

For example, the fourth specification in section 2.6 that will be included in the Engineering
Prototype would correspond to
DES 2.6.4-EP Insert Specification Description Here

2 SYSTEM ANALYSIS

2.1 PROOF OF CONCEPT SYSTEM OVERVIEW

The Distributed Computing Network consists of five main modules:

Module 1: Producer - Collects original packets from smart devices

Module 2: Kafka + Zookeeper (DSMS) - Stores all data for centralized access

Module 3: Consumer - Processes related packet chunks

Module 4: Reducer - Combines the processed packet chunks through packet reducing

Module 5: Grafana - Monitors application metrics modularly for the entire system and visually
displays these results

The PoC system overview of the Distributed Computing Network is shown in Figure 2.1.

Application

Performance .
Monitoring (APM) * Timing
« CPU

GRAFANA * Memory Usage

Kafka + Zookeeper
(Data Stream Management System)

L Aggregate
Filtered Data1 ‘

- m
Producer
® ]
BAChet NTM -
........ "
Capture »Il E—/
—
o )

BACnet Router

Visualization of
performance

BACnet Devices

Analytics
|

-
CaptureTool

Figure 2.1 - PoC System Overview

© Oakion Systems 2019 3



(I dely/‘o N
e Design Specification - Distributed Computing Network

All raw packets will initially go to the Producer on the Capture Tool from the building of smart
devices. The raw packet data will be filtered separately and compressed on the Producer to
reduce the data size before being sent to Kafka. Kafka, a centralized queue, will send and
receive packet data from other modules. The Consumer gathers the necessary raw packet data
and processes in parallel to result in more throughput to Kafka with minimal synchronization.
Once all the packets have been processed, the Reducer module will then analyze these packets
for specific network health checks and append the data into CSV formatted structure for future
visualization on Visual BACnet. The Reducer is the last job completed before the analytics are
sent back to the Optigo server displayed on the front-end, Visual BACnet. The performance of
each module will be monitored through the application Grafana which will visualize the
throughput to detect bottlenecks in our system.

2.2 ENGINEERING PROTOTYPE SYSTEM OVERVIEW

The Distributed Computing Network Engineering Prototype will add the following modules
and functionality on top of the Proof of Concept prototype (Section 2.1):

Module 6: Splitter - Integrated into the Producer module for symplicity, it strategically breaks
up incoming packets through packet mapping to enable load balancing for the system

Module 7: K2V Connector - Inserts analytical data into Postgres database from Kafka and is
integrated through REST API to allow Visual BACnet to pull this analytical data when ready
Module 8: M2K Connector - Notifies Visual BACnet when data for a certain PCAP is ready to
be pulled

Module 9: Kibana - Monitors application logs for each module and visually displays this result

The Engineering Prototype system overview of the Distributed Computing Network is shown
in Figure 2.2.

© Oakion Systems 2019 4



Design Specification - Distributed Computing Network

Application Logs————————{  Elastic Search
| Kibana
Application
Performance —_—
Monitoring (APM) Visualization of Logs
+ Timing
« CPU
A
+ Memory Usage AA
> GRAFANA

BAC! i t Network
-—I

— Sl Visualization of
3) (>
BACnet Router w PostgreSQL performance Visual BACnet
Capture
Kafka + Zookeeper Query/insert from
PostgreSQL Pull Analytical Data

K2v c(;l;.;lector Notify
Y M2K C 1
m o (;g)nec :

Aggregate Analytics

Filtered Data

CaptureTool  [jsten

Producer /
Splitter

Figure 2.2 - Engineering Prototype System Overview

The majority of the Engineering Prototype will be focused on optimization of the PoC and
integration with Optigo Network’s Visual BACnet SaaS product. Regarding optimization, the
Producer module now will not only filter and compress the raw packet data, but also
systematically slice this data down to appropriate sized packet chunks (PCs) to reduce the
amount of processing required for the Consumer and Reducer modules and enable the potential
of load balancing (See Section 7.2 for more details). Using application performance monitoring
(APM) through Grafana and Kibana allows further improvement to fully optimize the
microservice architecture as well as load balancing for the final product (See Section 7.1 for
more details).

Regarding integration, the K2V Connector is introduced to act as an intermediary, inserting the
analytical data analyzed in our system into a PostgreSQL database on the AWS cloud and
allowing Visual BACnet to pull this data when ready. The M2K Connector notfies Visual
BACnet when PCAP file analytics are ready to be pulled, allowing encapsulation from our
system in the event it is compromised in any way. (See Section 6 for more details).

© Oakion Systems 2019 5



| Agion

Design Specification - Distributed Computing Network

23 PCAP LIFE CYCLE

The PCAP file which contains all the necessary BACnet information is passed along sequentially
across the modules. The end-to-end life cycle is summarized in Table 2.1.

Steps Source Destination Data Description

Step 1: The BACnet device sends its necessary status, | BACnet Capture Tool Data: PCAP

information, and alerts through the BACnet network | Device Protocol Type: Many

which ultimately lands on the Capture Tool. Note

that the Capture Tool may obtain other protocols

than BACnet protocol.

Step 2: The Producer listens onto the same data on Capture Producer Data: PCAP

the Capture Tool Tool Protocol Type: Many

Step 3: The Producer decides to filter out all Producer Kafka Data: PCAP

protocols except for BACnet protocol PCAP files, Protocol Type:

which is sent to Kafka. BACnet

Step 4: The Splitter receives the PCAP files from Kafka Splitter Data: PCAP

Kafka. Protocol Type:
BACnet

Step 5: The Splitter decides to divide the PCAP files | Splitter Kafka Data: PCs

into Packet Chucks (PCs) based on a size, which is Protocol Type:

sent to Kafka. BACnet

Step 6: The Consumer receives the PCs from Kafka. | Kafka Consumer Data: PCs
Protocol Type:
BACnet

Step 7: The Consumer interprets the PC Headers & Consumer | Kafka Data: CSV formatted

Data in a CSV format that is understable for BACnet Data

analytics to be performed on, which is sent to Kafka. Protocol Type:
BACnet

Step 8: The Reducer receives the CSV formatted Kafka Reducer Data: CSV formatted

BACnet data. BACnet Data
Protocol Type:
BACnet

© Oakion Systems 2019 6




\ AYION

Design Specification - Distributed Computing Network

Step 9: The Reducer analyzes all the data available Reducer Kafka Data: Analyzed
for the amount of checks that it is designed to do. Network Data
The analyzed data is sent to Kafka. More
information on the checks can be seen in Appendix
A Table A.1.2.
Step 10: Kafka will be able to send the analyzed Kafka Connector Data: Analyzed Data
network data to the Connector module.
Step 11: K2V Connector will be able to place (write) [ K2V Postgres Data: Analyzed Data
the analyzed data into the Postgres database. Connector | Database
Step 12: M2K Connector will notify Visual BACnet M2K Visual BACnet | Data: ACK
that PCAP file analytics are read to be pulled Connector
Step 13: K2V Connector will also provide an API PostgreSQL [ K2V Connector | Data: SQL parsed
layer for Visual BACnet to query results from said | Database Analyzed Data
database (read).
Step 14: Visual BACnet (Client) accesses the K2v Visual BACnet | Data: SQL
analyzed data through a series of queries to Connector Commands
database.
Table 2.1 - PCAP Roadmap
3 SYSTEM HIGH LEVEL SPECIFICATIONS
DES 3.1-PoC The system shall process all incoming BACnet data using Capture Tool
Interface.
DES 3.2-PoC The system performance must be measurable through combination of
Grafana, InfluxDB and Telegraf (Section 6.1).
DES 3.3-PoC The system shall perform 7 BACnet analytical checks.
DES 3.4-PoC The deployment of the system must be done with Nomad and AWS.
DES 3.5-PoC The system modules shall be written in GoLang.
DES 3.6-EP All PCAP data shall be transferred using SSL/TLS throughout the system.
DES 3.7-EP The system must be able to display all performing checks on Visual
BACnet.

© Oakion Systems 2019




AWION

Design Specification - Distributed Computing Network

DES 3.8-EP The system must be able to handle processing a single PCAP that is sized
up to 1GB.

DES 3.9-EP The system shall be to be integrated into the current Optigo System using
self-defined APIs

DES 3.10.-EP The system modules shall be able to join/leave the network for
load-balancing

DES 3.11-EP The system modules must have redundancy, if one module fails, a copy of
the same module will take over

DES 3.12-EP The system software shall be updated alongside Optigo’s update cycle

DES 3.13-EP The system modules must work in Linux containers such as Docker

DES 3.14-EP The system application logs will be monitored by Kibana (Section 6.2)

Table 3.1 - High Level General System Specifications

4 SOFTWARE DESIGN SPECIFICATIONS

41 PRODUCER MODULE

DES 4.1.1-EP The Producer shall receive the PCAP from the Capture Tool.

DES 4.1.2-EP The Producer shall upload the PCAP file to Kafka.

DES 4.1.3-EP The Producer shall tag a reference ID of the original raw PCAP into Kafka

DES 4.1.4-EP The Producer shall requeue the PCAP in the event Kafka is unavailable
due to connection issues.

DES 4.1.5-EP The Producer shall requeue the PCAP in the event of Kafka failures.

DES 4.1.6-EP The Producer must stash unsent PCAPs locally until the connection is
re-established between the Producer and Kafka.

DES 4.1.7-EP The Producer shall delete oldest PCAPs if the local storage is full & the
connection to Kafka is off.

DES 4.1.8-EP The Producer must have a throttling mechanism if the queue is too
busy/full.

DES 4.1.9-EP The filtering shall remove all network data except BACnet data.

© Oakion Systems 2019




Design Specification - Distributed Computing Network

DES 4.1.10-EP The filtering must support MS/TP, BACnet IP.

Table 4.1 - Producer Module Specifications
Proof of Concept

The Producer resides on the Capture Tool. It is the first module in our system. It receives raw
packets (network traffic) intercepted from smart building device communications. As the
system is only interested in BACnet data, the primary concern at the early stage is how to
separate these BACnet data from the various other different network data that streams into the
Capture Tool. This brings us to the filtering. The secondary concern, to be delivered by the time
of Engineering Prototype will be Splitting PCAP files by row, in order to facilitate Consumer
load-balancing.

4.1.1 PRODUCER BACNET FILTER

Filtering is a step that the Producer performs on raw, incoming PCAP data stream. The process
may significantly reduce the workload of the subsequent processes and is thus crucial to system
performance. In terms of bandwidth, it is likely that this process may help ease congestion in

BACnet Global Tag
BACnet
TCP

PRt Yes
ARP L BACnet /\
|| 1 B i protocols—» 0 [ Pcap O-’\):_I}O
o m o
] SSL
Kafka + Zookeeper
NO——————— Others

Producer

this aspect as well.

f

Figure 4.1 - Producer Proof of Concept
Figure 4.1 demonstrates the filter workflow. All network traffic is intercepted by the Capture

Tool and streamed into our Producer module, consisting of numerous types of network data.
The Producer performs a rudimentary inspection of each packet to determine its protocol type.

© Oakion Systems 2019 9



(I dely/‘o N
e Design Specification - Distributed Computing Network

During this process, it determines the specific byte that delimits packets as well, i.e., parsing.
This is convenient because it is necessary for our secondary feature of the Producer, the Splitter,
to be able to split intelligently and not segment packet header or body.

The PCAP file format is defined as a standard for capturing packets of network data.

Global Header | Packet Header @ Packet Data | Packet Header | Packet Data | Packet Header @ Packet Data

Figure 4.2 - PCAP Format

4.2 KAFKA DSMS

DES 4.2.1-PoC Kafka must run on a cloud server AWS S3.

REQ 4.2.2-PoC There shall be methods to manage Kafka

REQ 4.2.3-EP All modules shall only communicate through the queue on Kafka .

REQ 4.2.4-EP Kafka shall be able to receive and handle requests from all other modules
defined.

REQ 4.2.5-EP Kafka must store data for at least 14 days.

REQ 4.2.6-EP Kafka must garbage collect obsolete data.

REQ 4.2.7-EP Kafka must be entirely transparent to the client.

REQ 4.2.8-EP Kafka must be able to process data concurrently to achieve higher
performance.

Table 4.2 - Kafka Module Specifications

4.2.1. KAFKA OVERVIEW

Proof of Concept

Apache Kafka is a distributed streaming platform for the system modules, which is provided by
Apache as open source. This allows our system to do 3 major tasks:

1. Publish and subscribe to streams of records, similar to a message queue
2. Store streams of records in a fault-tolerant durable way

© Oakion Systems 2019 10



(I dely/‘o N
e Design Specification - Distributed Computing Network

3. Process streams or records as they occur

Kafka is used for the design because of its ability to build real-time streaming data pipelines
that reliably get data between systems. More information about Kafka can be seen by the
documentation provided by Apache .

By choosing cloud service providers, Kafka’s performance is favourable due to the access,
location, replication, and failure transparencies that it provides. Figure 2.1 & 2.2 shows how
Kafka will interact with the modules of the system.

Kafka is also part of the system design because the security it provides ™.

1. Encryption of data in-flight using SSL / TLS: This allows the data to be encrypted
between the modules and Kafka.

2. Authentication using SSL or SASL: This allows the nodes to authenticate to the Kafka
cluster, which verifies their identity. It’s also a secure way to enable your clients to
endorse an identity.

3. Authorization using ACLs: Once the clients are authenticated, the Kafka brokers can
run them against access control lists (ACL) to determine whether or not a particular
client would be authorised to write or read to some topic.

The basic architecture of Kafka is organized around a few key terms: Topics, Producers,
Consumers, and Brokers. All Kafka messages are organized into Topics. If you wish to send a
message you send it to a specific Topic and if you wish to read a message you read it from a
specific Topic. A Consumer pulls messages off of a Kafka Topic while Producers push messages
into a Kafka Topic. The data in a particular Topic may also be split, dividing a Topic into a
number of Partitions. Partition allows for multiple Consumer groups to read from a topic in
parallel, providing high message throughput™'.

© Oakion Systems 2019 11



Design Specification - Distributed Computing Network

43 SPLITTER

The reason for splitting PCAP file into chunks is simple and crucial - to divide a large PCAP file
down to manageable sizes, in order to leverage the existing embedded infrastructure on site,
namely, Capture Tools.

DES 4.3.1-EP The Splitter shall be able to only receive raw PCAP from Kafka.
DES 4.3.2-EP The Splitter shall be able split the PCAP file into PCs based on size.
DES 4.3.3-EP The Splitter shall only split at the end of a header, preserving packet
integrity
DES 4.3.4-EP The Splitter can be operated under 2GB of RAM.
Table 4.3 - Splitter Module Specifications
Proof of Concept

Figure 4.3 below, shows the engineering prototype for the Splitter module. For the proof of
concept, there will be no splitting of data as splitting mainly enables our system design to
support load balancing in the Reducer and Consumer modules, please see Section 6.2 for more

information.

N
$rep
\_/

Kafka + Zookeeper

© Oakion Systems 2019

( BACnet PCAP (

BACnet /\
—PCs QY0
\_“/

Kafka + Zookeeper

\ \ Y Y Y
Packet Packet Packet Packet Packet
Chuck Chuck Chuck Chuck Chuck

1 2 3 4

Splitter

Figure 4.3 - Splitter Engineering Prototype

12




| Agion
o Design Specification - Distributed Computing Network

The Splitter is designed to split the PCAP file into a PCAP chunks which is sized based a
parameter defined by the system. This is configured by the network administrator (user) based
on network traffic conditions.

The Consumer module is the main beneficiary of this design. Through splitting a PCAP file, a
Consumer instance is now tasked with only generating CSV data of PCAP chunks (more on this
later in Section 4.4 (Consumer Module), consisting of far few packets. By reducing the
workload of a single instance of the Consumer, it can be ran on much more limited resources,
carrying out the Micro-Service philosophy.

44 CONSUMER MODULE

DES 4.4.1-PoC The Consumer shall be able to receive only required PCs from Kafka.

DES 4.4.2-PoC The Consumer shall be able to format all PCs gathered from the Kafka to
CSV format.

DES 4.4.3-PoC The Consumer shall decode PCAP PCs using Wireshark.

DES 4.4.4-EP The Consumer can be operated under 1GB of RAM.

DES 4.4.5-EP The Consumer decoding task must finish under 10 minutes.

Table 4.4 - Consumer Module Specifications
Proof of Concept

The Consumer module decodes the packet chunks using Wireshark. The Consumer is designed
to interpret all associated fields required for the analytics in a CSV format. The implementation
is simple: Calling Wireshark specifies all the fields (column) and formatting parameters.
However, which columns to extract becomes a bit more complex when considering load
balancing to reduce computational time further, see Section 7.2.3 for details. Figure 4.4 shows
the proof of concept for the Consumer module.

© Oakion Systems 2019 13



Design Specification - Distributed Computing Network

Packet
Chuck

PCs—p|

N
02 O
NS,

Kafka + Zookeeper

@ Yes—p

Network CSV
Data

Kafka + Zookeeper

Consumer

Figure 4.4 - Consumer Proof of Concept

Table 4.5 below, encapsulates a sampling of what fields are extracted using Wireshark:

Filter Reference | Field Name Description
Frame Display Filter Reference: Frame
Protocol field name: frame
frame.number Frame Number
frame.time_epoch Epoch Time
frame.len Frame length on the wire
frame.protocols Protocols in frame
Malformed Display Filter Reference: Malformed Packet
Packet Protocol field name: _ws.malformed
_ws.malformed.expert | Malformed Packet (Exception occurred)
Ethernet Display Filter Reference: Ethernet
Protocol field name: eth
eth.src Source
eth.dst Destination
eth.fcs.status FCS Status
© Oakion Systems 2019 14




\ AYION

Design Specification - Distributed Computing Network

Internet Display Filter Reference: Internet Protocol
Protocol Version 4
Protocol field name: ip

ip.src Source

ip.dst Destination

ip.checksum.status Header checksum status
Transmission Display Filter Reference: Transmission Control
Control Protocol
Protocol Protocol field name: tcp

tcp.srcport

Source Port

tcp.checksum.status

Checksum Status

User Datagram

Display Filter Reference: User Datagram Protocol

Link Control

Protocol Protocol field name: udp
udp.srcport Source Port
udp.dstport Destination Port
udp.checksum.status | Checksum Status
BACnet MS/TP Display Filter Reference: BACnet MS/TP
Protocol field name: mstp
mstp.src Source Address
mstp.dst Destination Address
mstp.frame_type Frame Type
mstp.checksum.status | Checksum Status
BACnet Virtual Display Filter Reference: BACnet Virtual Link

Control
Protocol field name: bvlc

bvlc.function Function
bvlc.fwd_ip IP
bvlc.fwd_port Port

© Oakion Systems 2019 15




AWION

Design Specification - Distributed Computing Network

Building Display Filter Reference: Building Automation
Automation and Control Network NPDU
and Control Protocol field name: bacnet
Network NPDU
bacnet.mesgtyp Network Layer Message Type
bacnet.hopc Hop Count
bacnet.dnet Destination Network Address
bacnet.dlen Destination MAC Layer Address Length
bacnet.dadr_mstp DADR
bacnet.dadr_eth Destination ISO 8802-3 MAC Address
bacnet.dadr_tmp Unknown Destination MAC
bacnet.snet Source Network Address
bacnet.slen Source MAC Layer Address Length
bacnet.sadr_mstp SADR
bacnet.sadr_eth SADR
bacnet.sadr_tmp Unknown Source MAC
bacnet.rejectreason Reject Reason
Building Display Filter Reference: Building Automation
Automation and Control Network APDU
and Control Protocol field name: bacapp
Network APDU

bacapp.instance_num
ber

Instance Number

NOTE: All Filters used may be subject to change.
Table 4.5 - List of Network Filters

45 REDUCER MODULE

A Reducer instance is responsible for either the entirety of checks, or a subset of checks
pertaining to a single PCAP file, See Figure 4.5 below.

© Oakion Systems 2019

16




\ agfon
Design Specification - Distributed Computing Network

DES 4.5.1-PoC In a single PCAP, a Reducer instance is responsible for all analytical
checks.

DES 4.5.2-PoC The Reducer shall be able to receive from Kafka.

DES 4.5.3-PoC The Reducer shall contain a unified data structure on output data for the

Consumer.

DES 4.5.4-EP The Reducer shall be able to aggregate analytical data of every Consumer
without missing data.

DES 4.5.5-EP The Reducer shall be able to distinguish PCs that depend on each other.

DES 4.5.6-EP The Reducer must be modular enough to add in more analytics/checks in
the future

DES 4.5.7-EP The Reducer can be operated under 4GB of available RAM.

DES 4.5.8-EP Load Balancing on the Reducer must be present. See Section 7.2.

Table 4.6 - Reducer Module Specifications
Proof of Concept

For proof of concept, a single Reducer instance will be responsible for the entirety of checks
pertaining to a single PCAP file. This means it will have O(n) performance, where n is the
number of rows in a PCAP file. In this design, in the Reducer, there is an “iterate” of sorts. This
iterator is visible by all the checking methods. It starts from the first row, and is only
incremented when all checking methods are finished processing this row. For trivial checks, this
could mean only checking if a CRC checksum is incorrect. For more complex checks like Round
Trip Time, this could mean checking if this is an appropriate datagram, and if so, calculating the
time difference between this datagram and the previous occurrence.

When it is only responsible for a subset of checks pertaining to a single PCAP file, this becomes
a bit more complex. Please see section 7.2.4 for detailed analysis.

© Oakion Systems 2019 17



Design Specification - Distributed Computing Network

Kafka + Zookeeper

Global Tag Global Tag

[Local Tag] Check 1
CSV PC Data

[Local Tag]
CSV PC Data Check 2

Analytical
Data

[Local Tag]
CSV PC Data

N
03 >0
N,

Check 3

Kafka + Zookeeper

[Local Tag]

CSV PC Data Check 4

i 4l

Reducer

Figure 4.5 - Reducer Proof of Concept

5 HARDWARE DESIGN SPECIFICATIONS

DES 5.1-PoC The Capture Tool shall run a headless Linux OS.
DES 5.2-PoC The Capture Tool shall be on a 32 or 64-bit ARM platform.
DES 5.3-PoC The Capture Tool must have a minimum of 1GB memory
DES 5.4-PoC The Capture Tool must have internet connection via wired ethernet.
DES 5.5-PoC The Capture Tool internet connection must have a minimum of 5 mbit
upload/download to maintain Oakion Systems softwares’ usability
DES 5.6-EP The Capture Tool OS maintains a boot time within 5 minutes.
DES 5.7-EP The Capture Tool must support current Optigo software update cycles.
DES 5.8-EP Current Optigo functionalities on the Capture Tool remains untouched
after Oakion Systems softwares is deployed.
Table 5.1 - Capture Tool Specifications
Proof of Concept

Since the hardware design for this project pertains mostly toward the existing infrastructure
currently deployed by Optigo Networks, this design will not be modified for ease of integration

© Oakion Systems 2019

18




| Agion
o Design Specification - Distributed Computing Network

for the customer and the cost/benefit of our design. The Capture tools are used to send and
receive packet data from smart devices to the Distributed Computing Network. These Capture
Tools are embedded devices enclosed in cases and deployed to customer sites to act as
intermediaries between the smart devices and Optigo Networks. For our prototype and final
design, we will be using a Capture Tool to provide the same functionality that it does in the
field toward our network. In summary, the Capture Tool will match the same specifications as
the current ones deployed by Optigo, for ease of integration as well as accuracy in the
measurement of optimization our network provides in comparison to the current architecture at
Optigo Networks.

6 INTEGRATION WITH VISUAL BACNET

Integration with Visual BACnet, as defined above in Section 2.1 & 2.2 will be done for the

Engineering prototype stage of design (EP) and will not be present in the Proof of Concept
(PoC).

6.1 K2V CONNECTOR (#1)

DES 6.1.1-EP The K2V Connector must receive data from Kafka

DES 6.1.2-EP | The K2V Connector must be insert into PostgreSQL database

DES 6.1.3-EP | The K2V Connector must have a REST API for reading data

DES 6.1.4-EP | The K2V Connector must have be designed to replace Aether (current
architecture)

DES 6.1.5-EP | The K2V Connector must notify M2K Connector that the analytical data is
processed

Table 6.1 - K2V Connector Specifications

KV2 Connector is primarily an intermediary tool between Visual BACnet and our Microservice
system. The tool allows data to be stored into a PostgreSQL database located on the cloud and
allows this data to be pulled correctly at the correct time when Visual BACnet is primed to
receive, see Figure 6.1.

© Oakion Systems 2019 19




Design Specification - Distributed Computing Network

/‘\ — Visual BACnet
o-)ﬂ-)o Analytical Data 1 Analytical Data 2
v Pull

Kafka + Zookeeper

Connector M2K

Notify—p

Analytical Data 3
PostgreSQL Insert

Q uery—? Connector K2V

Figure 6.1 - K2V Connector Proof of Concept

6.2 M2K CONNECTOR (#2)

DES 6.2.1-EP The M2K Connector must receive notifications from Connector 1 through
REST API

DES 6.2.2-EP The M2K Connector must send alerts to Visual BACnet that the PCAP file
is complete.

Table 6.2 - M2K Connector Specifications

M2K Connector allows our system to notify Visual BACnet when analytics on a file are ready to
be pulled to their frontend visualization system. The implementation will be written using
REST API to connect between the KV2 connector and Visual BACnet, allowing for
synchronization between our system and the customers, see Figure 6.2. M2K may seem
redundant given KV2’s existence in our system, but is necessary given that its deployment on
Optigo’s side allows their frontend to only pull when data is ready as well be informed in the

© Oakion Systems 2019 20



Design Specification - Distributed Computing Network

case that our system is offline.

Connector M2K Notficati

Send—— | Alert Message Alert——p Visual BACnet

\

Connector M2K

Figure 6.2 - M2K Connector Proof of Concept

6.3 PostgreSQL Database

DES 6.3.1-EP The database must be able to receive data from K2V Connector

DES 6.3.2-EP | The database must store data in appropriate schema

DES 6.3.3-EP | Each check schema must have a primary key that links to the pcap schema

NOTE: The design of the database is subject to change
Table 6.3 - Database Design Specifications

Our proposed system must store the information analyzed in some organization manner for
Visual BACnet to access. A relational database is the final component of our system and is
located on the AWS cloud™:

1. Self-describing nature of a database system
a. Contains the data & metadata of information which defines and describes the
data and relationships between tables in the database.
2. Data sharing
a. Itallows for data sharing among employees and others who have access to the
system
3. Data Independence

© Oakion Systems 2019 21



(I dely/‘o N
e Design Specification - Distributed Computing Network

a. the data descriptions or metadata are separated from the system. This is possible
because changes to the data structure are handled by the database management
system and are not embedded in the system itself.

The PostgreSQL management system was chosen for the relational database for three main
reasons”:
1. Open Source database management system
2. PostgreSQL is ACID compliant from ground up and ensures that all requirements are
met
3. PostgreSQL is widely used in large systems where read and write speeds are crucial and
data needs to validated.

Proof of Concept

Figure 6.3 shows a proof of concept on how the system will store analytical data once the
network health checks have been completed by the Reducer module. As mentioned in Section
6.1 and Section 6.2, the K2V Connector will insert and query from the database.

The database design has 2 major components:

e FEach PCAP information will be stored in its own schema
o Frame Number
o Device Number
o Vendor
o Anything that is common between all checks

e Each check on the system will contain its own schema
This allows Visual BACnet to access required checks for any particular PCAP within the system.

The combination between K2V Connector, M2K Connector and a PostgreSQL database fully
supports our microservice solution.

© Oakion Systems 2019 22



Design Specification - Distributed Computing Network

check_lowhop_count

frame_id int
- )
e e device_id
i int
frame id hopcount
device_id L analytics_timestamp dstetime
vender

check _checksum_error

frame id int
device_id

checksum_flag

analytics_timestamp datetime

check_detect _circular_networks
frame id int
device_id
hopcount

analytics_timestamp datetime

Figure 6.3 - Database Proof of Concept

7 OVERALL PERFORMANCE SPECIFICATIONS

7.1 APPLICATION PERFORMANCE MONITORING

Application performance monitoring, as defined above in Section 2.1 and 2.2 will be done using
Grafana and Kibana, the latter of which will only be present during the Engineering prototype
stage of design (EP) and will not be present in the Proof of Concept (PoC).

711 GRAFANA

© Oakion Systems 2019 23



Design Specification - Distributed Computing Network

DES 7.1.1-PoC | InfluxDB must store all measured metrics from modules

DES 7.1.2-PoC | Grafana must display the time of the life cycle of a PCAP for each module

DES 7.1.3-EP | Grafana must display the memory consumption for each module

DES 7.1.4-EP | Grafana must display the CPU consumption for each module

Table 7.1 - Grafana Specifications

In order to produce metrics with the least overhead, Oakion Systems chose Grafana, which is
designed for analyzing and visualizing metrics such as system CPU, memory, disk and I/O
utilization. Grafana is our metrics monitoring system because it is open source, and has the
most appropriate visualization, dashboard creation, and customization available for our
design.” It is feature-rich, easy to use, and very flexible. See Section B.3 for visualization of
Grafana.

N
oo R @ 35 6
__— « Timing Q0 * Pull
PostgresQL . cPU > —insert— W T . Viswie | Grafana
@+ Zaokeeper « mMemoryusage | Telegraf InfluxDB =

Metrics Presentation

Figure 7.1 - Grafana Integration with our System'"®!

Figure 7.1 encapsulates each module metrics such as CPU, RAM, load, and network traffic to
Grafana.

1. Telegraf will collect all module time-series data (metrics) in real-time.

2. Telegraf will insert all necessary time-series data (metrics) into InfluxDB.

3. Grafana will pull all required information from InfluxDB to be displayed to the user

7.1.2 KIBANA

DES 7.1.5-PoC | Kibana will display application logs for Kafka

DES 7.1.6-EP | Kibana will display application logs for all modules

DES 7.1.7-EP | BEATS must collect all application logs and metrics

© Oakion Systems 2019 24



Design Specification - Distributed Computing Network

DES 7.1.8-EP | Elasticsearch must store all application beat logs and beat metrics

Table 7.2 - Kibana Specifications

In order to properly display application logs, Oakion Systems chose Kibana, which is designed
for analyzing and visualizing logs such as troubleshooting, forensics, and security. Our system
depends on Kibana to produce a rich variety of visualization types, allowing us to create charts
& tables, single metric specifications, time series and markdown visualizations, which are
combined into dashboards. See Section B.3 in Appendix B for visualization of Kibana.

& — 2 r
Applicati Insert- .
PostgreSQL —LSSJEW" Pull—>" d -' [ - Vieualize kibana
Kafka + Zookeeper BEATS ElasticSearch =

Log Presentation

Figure 7.2 - Kibana Integration with our System!'*

As Figure 7.2 illustrates, application logging generated by our system is monitored and pulled
by BEATS. BEATS inserts new logging entries in ElasticSearch Time Series Database. The
logging data is then pulled by Kibana for visualization.

7.2 MICROSERVICE LOAD BALANCING

One of the key features of our product is to have flexible scaling through automatic load
balancing. During a surge of data influx, additional Consumer and Reducer instances can be
launched easily to exploit parallelism. Therefor, this will require some changes to our system’s
internal tracking of data.

7.2.1 EFFICIENCY ANALYSIS EXAMPLE

To balance workload amongst multiple Consumers and Reducers, we will segment the data set.
Row splitting is mentioned previously in Section 4.3 in detail. Let us now examine column
splitting through an example.

Suppose for a total column set of S € {1, 2... n}, there exist checks A and B such that they both
require the same column subset, S1 € {1, 2, 3}, where S1 C S. Therefore, a Consumer may
group columns 1, 2, and 3, publish data in S1 as a sub-topic, as opposed to publishing S as a
whole.

© Oakion Systems 2019 25



s Design Specification - Distributed Computing Network

On the receiving end, a Reducer instance is now ready to subscribe to the topic containing S1
instead of S. The remaining checks may be handled by another Reducer subscribed to S2 = {1, 4,
5... n} for example, or further divided.

Note that S1 N S2 # @. This is not only true because of the need for row ID in each individual
column subset, but also because checks in different subsets may overlap in the columns it
require. The implication of this is that column subsets should not be split too granularly. In the
extreme case, if each Reducer only handles a single check, then for 35 checks our performance
will degrade to O(35n), on par with iterating through the PCAP rows each time a check is
performed, but also with additional I/O overhead due to the aforementioned overlapping.

If pre-filtering is done correctly, the PCAP is completely processed when SIUS2U...USn =S,
where n is the total number of column subsets. In practice, we will simply use the completion of
all the checks as terminating condition. Figure 7.3 illustrates column splitting in conjunction
with row splitting in our system.

Reducer performs
different checks
based on data

received Tag-PCO

0 csv
pcap b Data 0 ubDP p—————»-< reducer 0

: csv
I I
splitter peap 1 ] Tcp

Split by rows

5 csv
Peap ™ Data 2
MSTP | — &

Figure 7.3 - Diagram of the combination of Consumer and Reducer load balancing processing
and analyzing the PCAP in parallel

7.2.2. DUAL QUEUE DESIGN

A dual queue set up is now necessary to facilitate our synchronization needs in the new column
splitting pattern: One queue is necessary for notifications and one for data. We will name them
Job Queue and Work Queue, respectively. Recall in Section 4.2.1 Kafka’s Topic, Partition, and
Messaging paradigm are introduced. They will now be defined and their roles explained for
each of these three components in both queues.

© Oakion Systems 2019 26



| Agion
o Design Specification - Distributed Computing Network

The Job Queue serves as the coordinator of the system. The Topic serves as the unique identifier
of a PCAP file being processed. The Partition on the other hand, defines the column subset,
corresponding to some number of checks. The Message is flexible, it is assigned the total
number of rows for checksum purposes. When a new PCAP file reaches our system, each of its
unprocessed column subsets will be published to the Job Queue as a Partition. The idling
Reducer can thus be notified and assigned a column subset to process. The actual data will
however be received through the Work Queue.

The Work Queue will be responsible for delivering data to the correct Reducer instances.
Thus each PCAP file will be allocated a Work Queue of its own. The Topic is defined to be the
column set of a single PCAP. The Message will contain numerous data objects including row
chunk ID, total chunk number, and the data chunks in the column subset. We leave this queue
unpartitioned, as we do not need these messages to be consumed in parallel. In fact, only one
Reducer should receive all the data pertaining to a Topic.

The Consumer instance publishes its column subset (this is detailed in Section 7.2.3) data to the
Work Queue, and the subscribed Reducer instance will retrieve this data, until it obtains all the
rows, to be able to perform analytical checks (this is detailed in Section 7.2.4).

In the case of a small PCAP file or load-balancing is simply turned off, the Job Queue becomes
unpartitioned (only column subset includes all the columns), and the Work Queue only passes
one message per Topic (the all column subset has a single row chunk, being all the rows in the
PCAP file).

7.2.3 CONSUMER LOAD-BALANCING

DES 7.2.1-EP | The Consumer must split the column into subsets grouped based on the
checks of that group.

DES 7.2.2-EP | The Consumer shall tag each column group for the Reducer, in order to
uniquely identify the PCAP, PCAP chunk, and column subset

DES 7.2.3-EP The order in which the Consumer sends data does not matter

Table 7.3 - Consumer Load-Balancing Specifications

Following the PCAP lifecycle of Section 2.3, after receiving each raw PCAP data, the Producer
module will assign to it a global tag to uniquely identify this raw PCAP data in the event of
multiple PCAP files existing in the pipeline. A new Topic is then added or resetted in the Job
Queue, with a new pairing Work Queue spawned. Next, this data is split into packet chunks,
with each chunk tagged as well, as seen in Figure 7.4 below. As discussed in Section 3.1.2,

© Oakion Systems 2019 27



Y 4 |
[«

y
( 4
i\ AgionN
NS

Design Specification - Distributed Computing Network

Consumer instances may now take advantage of this reduced workload in CSV generating, and

concurrently process a single PCAP file.

Csv
Data 0

pcap 0 >

Y

Csv
Data 1

Splitter pcap 1 —  »

A

Split by rows

2 csv
pcap » Data 2

\

Figure 7.4 - Diagram of Consumer load balancing splitting by row, analyzing each chunk in
parallel before placement in CSV

As discussed before in Section 7.2.1, since the column requirement for each check is
predetermined, the Consumer further splits CSV data into columns subsets pertaining to one or
more checks. The architecture will be smart enough to group which checks go with which
column data for the Reducer to analyze, as demonstrated in Figure 7.4 above. Each column
subset that Consumer generates will be tagged with an identifier (topic), and published to the
Work Queue of this PCAP file.

Thus this column tag, together with the aforementioned PCAP file tag and PCAP chunk tag,
ensures that a Reducer instance will only process specific column data needed by the grouped

checks, without processing any redundant data not needed by the column subset.

724 REDUCER LOAD-BALANCING

DES 7.2.4-EP | Reducer will only listen on data of the specific PCAP topic, column subset
Partition, and corresponding row chunks

© Oakion Systems 2019 28



|

L Agion

Design Specification - Distributed Computing Network

DES 7.2.5-EP | Reducer will gather all row chunks in its lifecycle

DES 7.2.6-EP | Reducer will sort PCAP chunks using their PC tag, to recover the original
CSV order.

DES 7.2.7-EP | Reducer will perform the checks corresponding to the Column set tag on
the ordered CSV column subset.

Table 7.4 - Reducer Load-Balancing Specifications

The CSV data for a single PCAP file is now ready to be subdivided amongst multiple Reducer
instances (see Figure 7.5 below). An idling Reducer 0 for instance, will subscribe to a Topic,
representing a PCAP file currently in the pipeline. Kafka will then assign it a Partition of this
Topic - a column subset. Based on this subset, Reducer now knows to only process the checks

pertaining to these columns - UDP for example.

pcap

——»< Consumer

Reducer performs
different checks

based on data

Tag-PCO
received

UDP

—>

\

TCP

>

\

MSTP

B

Figure 7.5 - Diagram of Reducer load balancing splitting by column analyzing each chunk in
parallel before results stored in CSV

The Packet Chunk tagging mentioned earlier in Section 7.2.3 becomes significant, as the first

packet chunk of each column subset will mark the start of the Reducer’s lifecycle. The Reducer
will persist while listening for additional incoming Packet Chunks, until it receives all rows of
the CSV column subset.

For trivial checks to verify the integrity of packets, such as CRC checksum calculation, the

© Oakion Systems 2019




\ AgioN

Design Specification - Distributed Computing Network

checking may be performed while the wait for all Packet Chunks is underway. For complex
checks that require global awareness, e.g., Round Trip Time, the Reducer will simply wait until
a complete CSV column subset is received before performing the appropriate checks.

As a conclusion, each Reducer will be capable of either doing all the checks, or only a subset of
checks pertaining to the column subset in load-balancing mode. Through this we allow multiple
Reducer instances perform analytics in parallel on each PCAP file, achieving Load-Balancing.
This analytical data is then saved in separate csv files per check and uploaded to kafka.

8 CONCLUSION

This document details the modular design process for Oakion Systems’ Distributed Computing
System. It encompasses the implementation of each individual subsystem along with the
reasoning behind their chosen architectures and functionality. The communication between
these subsystems is also justified, pipelining the data analysis process and creating the
optimized middleware microservice system guaranteed by Oakion Systems. Performance
specifications are also provided to support these claims. The following is a brief summary of
each principal section defined throughout this document:

General
Specification
s
scope of Optigo.
Software
Specification e Producer Module:

S

e Splitter Module:

e Consumer Module:

e Reducer Module:

© Oakion Systems 2019

e The system will be scalable and able to process all incoming BACnet data then
integrate with the current Optigo system.
e The system will not disclose any customer or commercial information beyond the

This module will receive raw PCAP data from the Capture
Tool, filter the PCAP for data pertaining only to BACnet
traffic, then send this filtered data to Kafka

This module will receive filtered PCAP data from Kafka, split
the PCAP file into PCs based on size, before sending the PCs
back to Kafka

This module will receive PC data from Kafka, decode the PCs
using Wireshark and configure the data in a CSV format,
before uploading the data back to Kafka.

This module will receive CSV formatted data from Kafka,
process and analyze the data for the network health
information, before sending this health report data back to
Kafka

30



L Agion

Design Specification - Distributed Computing Network

Hardware
Specification
s

Overall
Performance
Specification
S

Kafka:

Grafana:

Kibana:

PostgreSQL DB:

K2V Connector:

M2V Connecter:

Visual BACnet:

This module will act as the centralized queue for the system
living on the cloud and receiving, storing and sending PCAP
data throughout the system wherever applicable

Will visualize the data pertaining to analytics of each module
for performance metrics

Will visualize the application logs pertaining to each module
for internal and external auditing

Will store analytical data (checks) pertaining to formly
processed PCAP files

Will populate the Postgres DB with analytical data from
Kafka and allow data to be pulled from Postgres from Visual
BACnet

Will notify Visual BACnet that data is ready to be pulled

Will visualize the network health report data
processed by the Distributed Computing Network system

Capture tool will match the same specifications as the current model deployed by
Optigo and and communication to the DSMS will be encrypted

The Splitter module enables our system design to support load balancing in the
Reducer and Consumer modules

Load balancing for the system will be accomplished mainly on the Consumer and
Reducer modules as this is where the bulk of computation resides

© Oakion Systems 2019

31



I\ Agion

|

Design Specification - Distributed Computing Network

9 REFERENCES

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

S. Chan, A. Nguyen, J. Singh, T. Tan, and S. Wang, REQUIREMENT SPECIFICATION -
Distributed Computer Network. Oakion Systems, 2019.

“Solutions for Compute-Intensive Environments,” Distributed Computing and Grid
Computing Solutions from Digipede. [Online]. Available: http:/ /www.digipede.net
/solutions/distributed-computing.html. [Accessed: 04-Feb-2019].

N. Peck, “Microservice Principles: Smart Endpoints and Dumb Pipes,”
medium.com, 01-Sep-2017. [Online]. Available: https:/ /medium.com/@nathank
peck/microservice-principles-smart-endpoints-and-dumb-pipes-5691d410700f.
[Accessed: 02-Feb-2019].

M. Rouse, “What is discoverability (in UX design)? - Definition from WhatIs.com,”
Whatls.com. [Online]. Available: https:/ /whatis.techtarget.com/definition/
discoverability-in-UX-design. [Accessed: 28-Feb-2019].

Carneiro Jr, C., & Schmelmer, T. (2016). Microservices From Day One: Build robust and
scalable software from the start. Berkeley, CA: Apress.

M. Fowler, “Microservice Trade-Offs” Martinfowler.com. [Online]. Available: https://
martinfowler.com/articles/microservice-trade-offs.html. [Accessed: 03-Mar-2019].

“Kafka, A distributed streaming platform,” Apache. [Online]. Available:
https:/ /katka.apache.org/intro. [Accessed: 04-Feb-2019]

A. Kharenko, “Monolithic vs. Microservices Architecture — Microservices

Practitioner Articles,” Microservices Practitioner Articles, 09-Oct-2015. [Online].

Available: https:/ /articles.microservices.com/monolithic-vs-microservices-architecture-
5c4848858(59. [Accessed: 06-Feb-2019].

“Technology Dictionary Cloud Storage,” Techopedia. [Online]. Available: https://
www.techopedia.com/definition/26535/cloud-storage. [Accessed: 04-Feb-2019].

“Visual BACnet,” Optigo. [Online]. Available:
http:/ /www.optigo.net/visual-bacnet. [Accessed: 03-Mar-2019].

© Oakion Systems 2019 32



(I dely/‘o N
e Design Specification - Distributed Computing Network

[11]  “Technology Dictionary Microservices,” Techopedia. [Online]. Available:
https:/ /www .techopedia.com/definition /32503 /microservices. [Accessed:
04-Feb-2019].

[12]  “Mobile endpoint security: What enterprise infosec pros must know now”, IoT
Agenda, n.d. [Online]. Available: https:/ /internetofthingsagenda.techtarget.com/
definition/Internet-of-Things-IoT. [Accessed: 06-Feb-2019]

[13]  “Introduction to Apache Kafka Security,” Medium. [Online]. Available:
https:/ /medium.com/@stephane.maarek /introduction-to-apache-kafka-security-c8
951d410adf. [Accessed: 03-Mar-2019]

[14] IEEE Guide: Adoption of ISO/IEC TR 24748-3:2011, Systems and software
engineering-Life cycle management-Part 3: Guide to the application of ISO/IEC
12207 (Software life cycle processes)," in IEEE Std 24748-3:2012 , vol., no., pp.1-130, 20
April 2012 doi: 10.1109/IEEESTD.2012.6189321

[15] M. Fowler, “Continuous Delivery” Martinfowler.com. [Online]. Available:
https:/ /martinfowler.com /bliki/ContinuousDelivery.html. [Accessed: 03-Mar-2019].

[16]  “Open Source Time Series Platform,” InfluxData. [Online]. Available:
https:/ /www.influxdata.com/time-series-platform/. [Accessed: 08-Mar-2019].

[17]  M.Rouse, “Discoverability (in UX design)”, Whatis. [Online]. Available:
https:/ /whatis.techtarget.com/definition/discoverability-in-UX-design [Accessed:
08-Mar-2019]

[18]  IEEE Guide: Adoption of ISO/IEC 14756:1999, Information technology — Measurement
and rating of performance of computer-based software systems, ISO/IEC JTC 1/5C 7,
vol., no., pp.1-130, 3. [Accessed: 08-Mar-2019]

[19]  IEEE Guide: Adoption of ISO 9241-161:2016, Ergonomics of human-system interaction --
Part 161: Guidance on visual user-interface elements, ISO/TC 159/SC 4, vol., no.,
pp-1-130, 14. [Accessed: 08-Mar-2019]

[20]  “First Impressions”, Psychology Today, n.d. [Online]. Available:
https:/ /www.psychology
today.com/ca/basics/first-impressions [Accessed: 13-Mar-2019]

[21]  A.Watt, “Database Design - 2nd Edition” BC Open Textbooks. [Online]. Available:
https:/ /opentextbc.ca/dbdesign01 [Accessed: 13-Mar-2019]

© Oakion Systems 2019 33



/ |

r /

‘{\\ A t{/l/ ON

= Design Specification - Distributed Computing Network

[22]  “PostgreSQL vs MySQL”., 2nd Quadrant, n.d. [Online]. Available: https://www.2nd
quadrant.com/en/postgresql/postgresql-vs-mysql [Accessed: 13-Mar-2019]

[23] “Whatis Amazon Web Services (AWS)? - Definition from Whatls.com,” SearchAWS.
[Online]. Available: https://searchaws.techtarget.com/definition/ Amazon-Web-
Services. [Accessed: 14-Mar-2019].

[24] K. Trapani, “What is Agile/Scrum,” cPrime, 07-Jan-2019. [Online]. Available:
https:/ /www.cprime.com/resources/what-is-agile-what-is-scrum/. [Accessed:
14-Mar-2019].

[25]  “Kafka in a Nutshell,” Kevin Sookocheff. [Online]. Available:
https:/ /sookocheff.com/post/kafka/kafka-in-a-nutshell /. [Accessed: 13-Mar-2019]

[26]  “Technology Dictionary Graphical User Interface (GUI)” Techopedia. [Online]. Available:
https:/ /www.techopedia.com/definition/5435/ graphical-user-interface-gui. [Accessed:
13-Mar-2019].

[27]  “Grafana Docs” Grafana Labs. [Online]. Available:
http://docs.grafana.org/v4.3/. [Accessed: 08-Mar-2019].

[28]  “Prometheus vs. Grafana vs. Graphite - A Feature Comparison”, Loom Systems. [Online].
Available:https:/ /www.loomsystems.com /blog/single-post/2017 /06 /07 /prometheus-
vs-grafana-vs-graphite-a-feature-comparison.[Accessed: 13-Mar-2019].

[29]  “Enterprise Application Container Platform,” Docker. [Online]. Available:

https:/ /www.docker.com/. [Accessed: 15-Mar-2019].

© Oakion Systems 2019 34



| Agion
o Design Specification - Distributed Computing Network

APPENDIX A: SUPPORTING TEST PLANS

It is noted that the following supporting test plans encompass the testing of components and
functionality initially present in the Engineering prototype (EP) stage of design. For this
reasoning, validation of expected output is only certified for the EP and final design stages of
this product.

A.l FUNCTIONAL TESTS

The purpose of functional tests is to determine the basic functionality of each individual module
in the Distributed Computing Network. The modules are designed to have the capability to
work individually without depending on other modules. The feature of this functionality allows
the modules to be more robust, and less prone to error during integration. The following
modules compromise the Functional Test Suite:

The Producer

The Splitter

The Consumer

The Reducer

The Connector #1 (K2V Connector)
The Connector #2 (M2K Connector)

A M

Oakion Systems and those interested will be able to validate all Functional Test cases through
Table A.1.1.

Notice that Kafka has not been tested for functionally as it is not created by Oakion Systems.
Kafka will be tested with integration testing.

Functional Test Suite

Module Function Description Input/Expected Outcome | Validation | Comments
. Date:
. The Producer can Input: Binary PCAP

Producer 1. Receive receive a binar Initials:

Binary PCAP . y Expected output: The =

PCAP file. same Binary PCAP
y Pass/Fail
2.Send Binary | The Producer can | Input: Binary PCAP Date:
PCAP send a binary

© Oakion Systems 2019 35




Design Specification - Distributed Computing Network

PCAP file.

Expected output: Binary
PCAP in folder

Initials:

Pass/Fail

. Date:
. The Splitter can Input: Binary PCAP
Splitter 1. Receive receive a binar Initials:
P Binary PCAP . y Expected output: The =
PCAP file. me Binary PCAP
same bnaty Pass/Fail
The Splitter can Input: Binary PCAP Date:
. split the binary file
f).cslggtfgznary by size into smaller | Expected Output: Smaller | Initials:
Packet Chucks. PCAPs
Pass/Fail
Date:
The Producer can | Input: Packet Chunk
3. Send Binary | send a binary Initials:
PCs Packet Chunk. Expected output: Binary | =
Packet Chuck in folder .
Pass/Fail

The Consumer can | Input: Binary PCs Date:
1. Receive receive a binary
Consumer | _. PCs file. Expected output: The Initials:
Binary PCs . -
same Binary PCs
Pass/Fail
The Consumer can Date:
2. Convert convert PCAP Input: The PC file =
Binary PCAP | binary into CSV Initials:
to CSV Format | Formatted Data. Expected output: A file =
Data that contains the CSV. .
Pass/Fail
The Consumer can ]I;z;t: CSV formatted Date:
3. Send C5V send a C5V Expected output: CSV ..
Formatted formatted Data ] Initials:
formatted Data into a I
Data folder
Pass/Fail

© Oakion Systems 2019




Design Specification - Distributed Computing Network

Input: CSV formatted

The K2V

The Reducer can Data Date:
1. Receive CSV | receive CSV
Reducer FDc;I;?atted Formatted Data Expected output: The Initials:
same CSV formatted Data .
Pass/Fail
> Perform This w111.be
Checks covered in Table
A.1.2
The Reducer can Input: Analytical Data Date:
3. Send send Analytical
Analytical Data Expected Output: The Initials:
Data same Analytical Data
stored in the database Pass/Fail

M2K

1. Receive

M2K Connector is

Input: Notification

1 Insert the Connector is Input: Analytical Data Date:
K2V databage with | required to 1nse.:rt Expected output: Initials:
Connector | Analytical the database with -
Populated Database of
Data all types of Analytical Data Pass/Fail
Analytical Data y
The K2V
Connector is Input: Populated Date:
2. Query the required to query | Database :
Database for the database for all Initials:
Analytical types of Analytical | Expected output: All data |~
Data Data from the database .
Pass/Fail
K2V Connector is | Input: Notification Date:
3. Send .
e required to send Message
Notifications e .
notifications Initials:
to M2K
Connector Expected Output: Send
notification Pass/Fail

© Oakion Systems 2019




| Agion
o Design Specification - Distributed Computing Network

Connector | notifications required to receive | Message
notifications Initials:
Expected Output:
Message awareness Pass/Fail
M2K Connector is | Input: Notification Date:
2 Send req}n‘red' to send Message N
notifications notifications Initials:
Expected Output: Send
notification Pass/Fail

Table A.1.1 - Functional Test Suite

Each analytical check is systematically designed to encapsulate the logic inside the Reducer
module. Therefore, Oakion Systems’ Quality Assurance team can test the functionality of these
checks independently of the system. Oakion Systems can then compare these results with
Optigo’s current Visual BACnet System for verification. Table A.1.2 discloses the current checks
implemented and being tested in the system.

Note that Table A.1.2 is subject to change based on time constraints and limited resources.

BACnet Analytical Checks
Check Description Validation
Date:
Indicates: The percentage of packets with checksum
errors in the capture.
Initials:
Reasons
1. Packet is malformed (it’s gibberish).
Checksum 2. On MS/TP, it typically means the pack'eF Pass/Fail
Error was clobbered by the network (poor wiring).
3. OnIP, it can be bad wiring or electrical Comments:
influence on the wire.
4. Not a BACnet router problem, it’s a physical
router problem. The actual router itself is
failing, or perhaps you have loose cable, or
power fluctuations.
Detect Date:

© Oakion Systems 2019 38



|

L Agion

Design Specification - Distributed Computing Network

Circular Indicates : The number of routers that are
Networks potentially in a circular network in the BACnet
system. Initials:
Reasons
1. Circular networks happen when you have Pass/Fail
two or more routes to the same controller.
2. Look at the Hop Count value of every Comments:
packet. Would need to be BACnet IP.
3. If the Hop Count drops below 10, it gets
flagged as a Circular Network.
4. Will always also trigger the Low Hop Count
check.
5. Could happen with BACnet MS/TP, but it is
rarer.
6. Typically, the routes are BACnet/IP and
BACnet/Ethernet and both are
communicating on both networks.
Indicates: The number of device ids with more than | Date
one SNET-SADR pair, which is an indication of
device ID conflict in an internetwork.
Initials:
Reasons
1. More than one device on the same BACnet
Network with the same BACnet Device Pass/Fail
Duplicate Instance (aka Device ID).
Device ID 2. Does not distinguish between different UDP | Comments:
ports, so if they are on different ports, it
could be a false fail (have to drill down into
frame info).
3. Still recommended to give them all unique
IDs in case you need to change your
applications or reconfigure the site in the
future.
Date
Dupli Indicates: The number of SNET-SADR pairs with
uplicate .. o L
Source IP more than one device id, which is an indication of
SADR conflicts in a network. Initials:
Address

Reasons

© Oakion Systems 2019

39




L agfon
e Design Specification - Distributed Computing Network

1. Similar to Duplicate Device ID, but instead Pass/Fail
looks at the SNET and SADR.

2. This fails if more than one device sends an Comments:
[-Am with the same Source Network and
Source Address.

3. In Duplicate Device ID, the DIP switch
settings between two devices are different,
but the Device IDs are the same. In Duplicate
Source Address, you have different Device
IDs, but the DIP switch settings are the same.

4. If they are on the same network and have the
same MAC, this will fail (these are used to
derive the Source Address).

5. More likely to occur in MS/TP, unlikely in
IP and Ethernet (possible, but very unlikely).

Indicates: The number of devices sending packets
with low hop count values.

Date:
Reasons
1. Look at the Hop Count, more to identify
incorrectly initialized Hop Count values. Initials:
2. Hop Count allows the packet to travel
through as many routers as the Hop Count
value. Pass/Fail
Low Hop 3. Device should be configured to send a first
Count packet with 255 hops. Each time it passes Comments:
through a router, one “hop” is docked. It
rarely goes below 250.
4. Some manufacturers configure using only
four bits, so it starts at 15. This violates the
BACnet standard.
5. Circular Network will always trigger a Low
Hop Count.
6. Low Hop Count is always a warning, it
never fails.
Date
Token Round Indicates: The average round-trip time for the token
Trip Tim throughout the capture.
p e -
Initials:
Reasons

© Oakion Systems 2019 40




L agfon
e Design Specification - Distributed Computing Network

1. Amount of time it takes for a token to

complete one full trip. Pass/Fail

2. Shows the path the token took.

3. Time is measured from when a master Comments:
receives the token to when it receives it
again.

4. Average of all the token round trips for
every master in the capture.

5. Long average round-trip time shows
problems that may be consistent every trip.

6. Fails if Average Token Round-Trip time is
more than 2000ms (2 seconds).

7. Warning if Average Token Round-Trip time
is more than 85ms (0.085 seconds).

Date:
Indicates: The number of BACnet networks that
have at least one Who-Is-Router-To-Network o
: : : Initials:

unconfirmed service request associated but do not

have any corresponding I-Am-Router-To-Network

unconfirmed service requests. Pass/Fail
Unresponsive Reasons
Router Comments:

1. Similar to unresponsive devices, but the
router that is responsible for a network
doesn’t reply with I-Am router to network
(with network specified).

2. Does not take into account Global Who-Is
Router to Network (there is no network
specified, so can’t tell if one is missing).

Table A.1.2 - BACnet Analytical Checks

© Oakion Systems 2019 41




AKION
Design Specification - Distributed Computing Network

A.2 INTEGRATION TESTS

The purpose of Integration Test is to determine if a system can work in parts and expose faults
in the interaction between the modules. The test suite shown in Table A.2.1 is done based on the
module and the communication it performs between its neighbours.

For example, earlier in Figure 3.3, for the Splitter, it receives PCAP data from Kafka and sends

out PCs to Kafka.

Integration Test Suite

Module Integration Description Validation
Capture Tool = Producer = Kafka Test the Producer if it can receive Date:
PCAP from the Capture Tool and
send the same PCAP to Kafka. Initials:
Input: PCAP from Capture Tool Pass/Fail
Expected Output: PCAP to Kafka Comments:
Kafka — Splitter — Kafka Test the Splitter if it can receive Date:
PCAP from Kafka and send PCs to
Kafka, Initials:
Input: PCAP from Kafka Pass/Fail
Expected Output: PCs to Kafka Comments:
Kafka = Consumer — Kafka Test the Consumer can receive PCs | Date:
from Kafka and send the CSV
formatted data to Kafka. Initials:
Input: PCs from Kafka Pass/Fail
Expected Output: CSV Formatted Comments:
Data to Kafka

© Oakion Systems 2019

42




AWION

Design Specification - Distributed Computing Network

Kafka — Reducer — Kafka Test the Reducer if it can receive Date:
CSV formatted data from Kafka
and send Analytical Data to Kafka. | Initials:
Input: CSV Formatted Data from Pass/Fail
Kafka
Comments:
Expected Output: Analytical Data
to Kafka
Kafka — K2V Connector — Database | Test if the K2V Connector can Date:
receive Analytical Data from Kafka
and send Analytical Data to the Initials:
Database.
Pass/Fail
Input: Analytical Data from Kafka
Comments:
Expected Output: Populated
Database
Database — K2V Connector = M2K Test if the K2V Connector can send | Date:
Connector notifications to M2K Connector.
Initials:
Input: Notification message
Pass/Fail
Expected Output: Sent notification
message Comments:
K2V Connector = M2K Connector— | Test if the M2K Connector can Date:
Visual BACnet receive notifications from K2V Initials:
Connector send notifications to
Visual BACnet Pass/Fail
Input: Notification message Comments:

Expected Output: Sent notification
message

Table A.2.1 - Integration Tests

© Oakion Systems 2019

43




\ agfon
Design Specification - Distributed Computing Network

A.3 SYSTEM TESTS

The purpose of System Test is to evaluate a system’s compliance with many PCAP files,
End-To-End and requirements. The Distributed Computing Network should also report the
performance of the modules through Grafana. The inputs of the system will be controlled
through Oakion Systems where PCAP files are chosen to test the system for robustness. The
test suite shown in Table A.3.1 shows a summary of tests being performed.

System Test Suite
System Test Description Validation
End - End System - Small sized All modules are required to Date:
PCAP work together from the
beginning (Capture Tool) to Initials:
the end (Visual BACnet), for a
small (under 1GB) PCAP file. Pass/Fail
Input: PCAP File 1 under 1GB | Comments:
Expected Output: Analytical
Data on Visual BACnet
End - End System - Max sized PCAP | All modules are required to Date:
work together from the
beginning (Capture Tool) to Initials:
the end (Visual BACnet), for
the max sized PCAP file (1GB) | Pass/Fail
Input: PCAP File at 1GB Comments:
Expected Output: Analytical
Data on Visual BACnet
End - End System - Over Max size The System shall not be able to | Date:
PCAP take PCAP files over 1GB.
Initials:
Input: PCAP File over 1GB
Pass/Fail
Expected Output: Error
Comments:

© Oakion Systems 2019

44




| Agion
o Design Specification - Distributed Computing Network

Performance Measurements The system should display all | Date:
performance and timings
through Grafana. Initials:
Input: Run System Pass/Fail
Expected Output: Comments:

1. Memory over time
2. Time to process &
analyze a PCAP

Table A.3.1 - System Tests

A4 ACCEPTANCE TESTS

The purpose of Acceptance Test is to evaluate the system’s compliance with Optigo’s
requirements and assess whether the system is acceptable for delivery. The Test Suite has been
determined and documented in Oakion Systems’ Requirement Documents.!"

© Oakion Systems 2019 45



|\ Agion

Design Specification - Distributed Computing Network

APPENDIX B: USER INTERFACE DESIGN

B.I INTRODUCTION

Oakion Systems endeavours to provide a feasible and affordable solution to manage the
inundation of data that companies like Optigo face. Our User Interface (UI) will be simple and
straightforward, allowing users to easily integrate it into their system. In the Engineering
Prototype (EP), we are building on top of the embedded system device that is already deployed
on the client side, which is Optigo.

The Distributed Computing Network created by Oakion Systems will contain the following core
UI components:

1. Management
The management UI will be used for deployment, scaling, and controlling the amount of
modules running on resources.

a.

Deployment: Nomad

A deployment tool that allows users to manage the different modules in the
Distributed Computing Network system, allowing the user to handle hundreds
of devices in one unified headquarter.

2. Resources

Resources is the physical hardware that is running Oakion Systems” Distributed
Computing Network.

a.

Capture Tool - Embedded Systems

Deploying modules on the Capture Tool allows us to take advantage of unused
computational power from these embedded devices, while still keeping the
initial specification of Optigo’s capture tool design. Modules will be deployed to
Capture Tools under Nomad’s control.

Amazon Web Service (AWS) - Virtual Machine

In alternative to Capture Tool, we will leverage AWS for computation. AWS will
handle heavy workloads that requires large amounts of CPU and memory, while
the Capture Tool will focus on lower computation jobs that are less resource
intensive. Modules will be deployed to AWS under Nomad’s control.

© Oakion Systems 2019 46



(I dely/‘o N
e Design Specification - Distributed Computing Network

3. Application Performance Management (APM)
APM is the interface where Optigo” users can check the status of the Distributed
Computing Network, such as the health of the system, how fast the system is running,
whether there is enough resources allocated, if more machines are required, and errors.

a. Kibana
During data processing, the web GUI (Kibana), a log management tool, provides
immediate updates on the different modules and captures the logs.

b. Grafana
The web GUI provides performance measurements to users such as timing
analysis and the amount of data that has been processed.

4. Visual BACnet
The web application provided by Optigo which presents BACnet analytical checks to
clients. Oakion Systems’ Distributed Computing Network will compute and provide the
analytical data for Visual BACnet through APIs.

B.I.I  PURPOSE

This appendix aims to provide an overview of the main Ul features of the Distributed
Computing Network for Oakion System Inc. employees, stakeholders and potential clients.

B.1.2 SCOPE

The Proof of Concept (PoC) and Engineering Prototype (EP) iterations will be prioritized in this
appendix, as the Distributed Computing Network is still in preliminary design and follows the
agile development methodology.”*!! Future iterations of this document will be updated and
versioning will reflect this.

B.2 USER ANALYSIS

Oakion Systems’ solutions are marketed toward companies that deal with the transfer of
network data, whether through deployed infrastructure, the cloud or a combination of both.
These companies seek optimization of their current systems and how to deal with their data, no
matter their size (ie: Optigo Networks). Our primary intended users will have a software and
networking background, knowledge of embedded design, communication protocol and system
design and integration; conceivably a companies IT Systems or Development Operations team.

Given this target user’s background, our UI design will be simple and straightforward, utilizing

the interfaces that Grafana, Kibana and Nomad provide to visualize information pertaining to
optimization and application monitoring of the companies data.

© Oakion Systems 2019 47



Design Specification - Distributed Computing Network

B.3 TECHNICAL ANALYSIS

Oakion Systems’ Distributed Computing Network Ul design is inspired by Don Norman'’s
“Seven Elements of UI Interaction”, which are the following principles: discoverability,
teedback, conceptual models, affordances, signifiers, mappings, and constraints.

B.3.1 DISCOVERABILITY

Discoverability, the extent of ease with which a user can find all the UI elements the first time
encountering with the product."” Oakion Systems aims to provide high discoverability by
providing a clean interface with only essential UI elements. In other words, minimizing the
amount of Ul elements required.

Steps to start the Distributed Computing Network:

Allocate machine on AWS (see Figure B.1 below)

Start DSMS (Kafka) service

Deploy modules on Nomad

Monitor system health and metrics from Grafana and Kibana

=W N

Services v Resource Groups v

2] 1to130f13

Instance Type - Availability Zone - instance Stale - Status Checks -  Alarm Stafus PUDIiCDNS (IPVS) = IPw4 Public 1P

i
2 B

Kafka Machine 1
8 Machine2
Worker Machine 1

e e OO

e0 00

Instance: Public DNS LR R}

@ Feedback @ English (US)

Figure B.1 - AWS Interface

© Oakion Systems 2019 48



Design Specification - Distributed Computing Network

B.3.2 FEEDBACK

Feedback, the information that is sent back to the user of what has been done. Our Distributed
Computing Network will have a yellow LED light on the Capture Tool indicating that the
Capture Tool is powered on and the system is connected to the network, as shown in Figure

B.2.

-

Inactive State: Capture Tool is off and disconnected to network system

Figure B.2 - LED indicating active and inactive state of Capture Tool

After the analytics have been processed, timing performance and memory usage will be
uploaded to Grafana providing immediate feedback for users as shown in Figure B.3 below.

© Oakion Systems 2019 49



Design Specification - Distributed Computing Network

Consumer Dissect Timing Reducer Process Timing

1118 2 11:10

== cap19-virtual-machine

Consumer Process Alloc Reducer Process Alloc

24 MiB

11:10

— cap19-virtual-machine 16.2 MiB
11:10

= capl9-virtual-machine

Consumer Pcap Received Size

11:12 11:13 11:14

Figure B.3 - Grafana Web Interface

11:15 11:16

Kibana provides logs and the health of our Distributed Network System, as shown in Figure B.4
below.

© Oakion Systems 2019 50



Design Specification - Distributed Computing Network

>
T g ag ey R e LR i e e g g ersnage
o
-
(L aa
(L]
(0
—
-
>
(a) List of error logs on Kibana

(b) Log on a specific error

Figure B.4 - Kibana Web Interface

© Oakion Systems 2019 51



Design Specification - Distributed Computing Network

B.3.3 CONCEPTUAL MODELS

Conceptual model, a representation of a system where the composition of concept is intuitive
for stakeholders to understand the Distributed Computing Network.

Distributed Computing Netowrk

A,

Analytical Data__|

j' Deploy

- Visual
R Send BACnet BACnet g
& Data Clients
Optige Deplo Performance
WS ploy | Metrics
Mangement Application
Logs
ormilo J
Capture % :l_ _ |
Tool Kibana Grafana
Optigo Optigo Optigo
User User User
Resources Application
Performance
Managerment

Figure B.5 - Conceptual Model of the Distributed Computing Network

B34 AFFORDANCES

Affordances, attributes that allow users know how it’s used. Oakion Systems focuses mainly on
the perceived affordances with the following key attributes:

1. Limited Interaction with Capture Tool
The whole application will be launched with one script, simplifying the setup process
and affording users (network administrators) the ability to process data with one click.

2. Charts on Grafana
The timing performance and memory usage will be properly displayed and labelled,
affording users to quickly identify the results.

3. Modules on Nomad

© Oakion Systems 2019 52



Design Specification - Distributed Computing Network

The modules are displayed separately on Nomad, affording the user to quickly locate
and manage the different modules, see Figure B.6 below.

[ Nomad
Jobs
Clants
Sorvens Coovemer o< - 0 T r—
Reducer oD Verwce S P P—
Sphitter <D rarvce
Prodecer [hcwers ) vonvce s -~ < SC AT R S FEERoR

(a) All modules displayed

SLIGENS

(b) Management for one module

Figure B.6 - Nomad Web Interface

© Oakion Systems 2019 53



Design Specification - Distributed Computing Network

B.3.5 SIGNIFIERS

Signifiers, signs to indicate affordances to users. Integrated in Grafana are signifiers such as
“Refresh every 5s” and “Save” (see Figure B.7 below). Oakion Systems’ services include
backend integration that utilize the signifers seen on Grafana so that users can easily navigate
the interface.

Figure B.7 - Signifers integrated in Grafana

In addition to the LED light (Figure B.2), Oakion Systems will label the operative features on
the Capture Tool, such as the network and power slot.

B3.6 MAPPINGS

Mapping, the relationship between controls and their results. The layouts for Nomad, Kibana,
AWS and Grafana follow the same convention as other modern performance monitoring
websites, making them user friendly and straightforward for users that are not familiar with
them.

B.3.7 CONSTRAINTS

Constraints, restricting the possible actions that can be performed to minimize error. The
Capture Tool does not contain any buttons besides the power switch, forcing the user to
manage the modules on Nomad and AWS. Currently, Oakion Systems’ Distributed Computing
Network only supports BACnet protocol traffic, making the timing and performance analytics
integrated on Grafana’s backend solely supporting this protocol for now.

B.4 ENGINEERING STANDARDS

B.4.1 ISO 9241-161 ERGONOMICS OF HUMAN-SYSTEM INTERACTION --
PART 161: GUIDANCE ON VISUAL USER-INTERFACE ELEMENTS

This ISO gives a guideline on visual user-interface elements presented by software and provides
requirements and recommendations on when and how to use them. It is intended for use by
those planning and managing platform specific aspects of user interface screen design. It also

© Oakion Systems 2019 54



Design Specification - Distributed Computing Network

provides guidance for human factors/ergonomics and usability professionals involved in
human-centred design. Figure B.8 summarizes how Oakion Systems will follow ISO 9241
1. Interactive Properties - How a user interacts with User Interface
2. Informative Properties - What a user views from the User Interface
3. Decorative Properties - How aesthetically pleasing the User Interface is

User Interface Design

\

Informative \ Decorative
\

Properties Properties
N

Figure B.8 - User Interface Design

Interactive
Properties

7

B.4.2 1SO 14756 MEASUREMENT AND RATING OF PERFORMANCE OF
COMPUTER-BASED SOFTWARE SYSTEMS

This ISO defines how user oriented performance of computer-based software systems may be
measured and rated. Software System is data processing system as it is seen by its users, e.g. by
users at various terminals, or as it is seen by operational users and business users at the data
processing center.

This ISO outlines the main aspects of user oriented performance terms and specifies a method
of measuring and rating these performance values which is described as:

1. Execution Time
2. Throughput
3. Timeliness

Oakion Systems will follow as closely as possible with:

e Section 2 Principles of measurement and rating
e Section 3 Detailed procedure for measure and rating

© Oakion Systems 2019 55



(I dely/‘o N
e Design Specification - Distributed Computing Network

B.5 USABILITY TESTING

Performing usability test allows designers to check that clients can use the product and that
they like it. The goal is to improve usability and diagnose real usability problems with real
users. Oakion Systems will perform usability testing in two different ways: analytically and
empirically.

B51 ANALYTICAL

In the analytical testing stage, Oakion Systems will perform a series of tests to identify any
overlooked errors or flaws that could be present in our Ul After all of the new issues have been
discovered, reviewed, and documented, we will discuss potential solutions to improve our
design and enhance the user experience.

Logs and auditing
1. Events of failures and errors on modules are clearly identified via Kibana
2. Audit logs are available for trace backs on system activities
3. Custom log queries can be made to form trendlines, identifying periodic events

Reboot of System
1. User can reboot the modules and services via Nomad
2. The system will be rebooted within 5 minutes
3. Kibana will identify a reboot event

Grafana
1. Timing performance is uploaded and displayed on Grafana within 60 seconds after the
PCAP file has finished processing
Graphs are labelled appropriately
Graphs can be moved and resized according to user’s preference
Additional graphs can be added in real time
Graphs will help identify resource consumption and bottlenecks

O PN

Resource Pool
1. All the modules that are deployed on the Capture Tool and AWS are displayed
2. When one of the modules go offline (i.e. user has powered off the Capture Tool), Nomad
and AWS console can detect the error
3. Resources(Capture Tool, AWS) will report to Nomad, identifying themselves as
available resources for deployment

© Oakion Systems 2019 56



Design Specification - Distributed Computing Network

B.5.2 EMPIRICAL

In the empirical testing stage, Oakion Systems will reach out to networking companies that deal
with data processing as we aim for our product to be deployed to other potential companies
besides Optigo Networks. These potential clients will be asked to perform a series of simple
tasks regarding our Distributed Computing Network functionality.

Task 1
Power on the Capture Tool and connect the network cable

Questions
1. Was the switch visible and easy to locate?
2. Were you able to recognize the LED is turned on?
3. Was there sufficient feedback indicating that the Capture Tool was powered on?

Task 2
Managing the system through AWS console

Questions
1. Was the system reboot process intuitive?
2. Was the rebooting time acceptable?
3. Is allocating additional AWS resources intuitive?

Task 3
Readability of data generated on Grafana

Questions
1. Were the results displayed on monitor easy to read?
2. Were there sufficient information displayed?
3. Were the results labelled correctly?

Task 4
Error recovering through Kibana

Questions
1. Was it easy to locate the log containing the error?
2. Was the error message(s) clear and precise?
3. Was the time it took for error message(s) to appear acceptable?

© Oakion Systems 2019 57



(I dely/‘o N
e Design Specification - Distributed Computing Network

Oakion Systems will make adjustments or modifications to our Distributed Computing
Network after reviewing the feedback received to increase usability and satisfaction of our
clients.

B.6. SUMMARY

First impressions are shown to be hard to change as they form a mental image in our heads'™".
The Ul design of a product is very crucial as it gives a first impression to users and/or potential
clients. Providing a design that is easy to use and learn will allow clientele to have an enjoyable
experience with the product.

For Oakion Systems’ Distributed Computing Network proof of concept iteration, the UI design
will consist of the Capture Tool, AWS (Figure B.1), and Grafana. Users can deploy our system
to Capture Tool and AWS, and visualize the performance measurements on Grafana as shown
in Figure B.3 after a PCAP file is uploaded and analyzed.

The Engineering Prototype of the Distributed Computing Network will incorporate Kibana, a
log management tool, and Nomad into the system. Users can manage the modules that are
deployed on the Capture Tool through Nomad (Figure B.6) and visualize the logs for each
module as shown in Figure B.4.

Oakion Systems aims to achieve a minimalistic UI design for our Distributed Computing

Network solution. Based on the feedback from our clientele, we will continue to make
improvements to our UI design to provide an efficient and effective to use product.

© Oakion Systems 2019 58



