

FoCoS

Team2 TRAFEC ENSC 405W PoC Prototype Demonstration

Abhishek Mahajan (CEO)

Avneet Kaur (CTO)

Amitoj Gill (COO)

Introduction

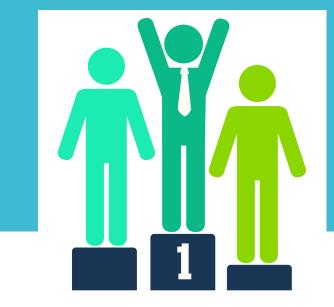
- FoCoS is completely based on the idea of Forward Collision warning system
- Forward collision warning system as an aftermarket solution to the older cars
- FoCoS will provide an audio and visual alert to warn the driver about the risk of collision
- On-board sensor that detects the frontal object and the system that will determines the possibility of the crash

Background

- Forward collision warning systems: An active safety feature that warns drivers in the event of an imminent frontal collision
- Any FCW equipped vehicle is less prone to an accident and makes you and others feel safer on the roads.
- Some common situations:

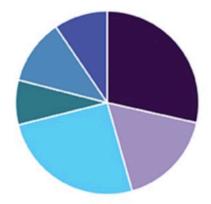
 Car in front of you has stopped at green light
 Distraction from the car's infotainment system
 The vehicle ahead suddenly slows down to turn without giving signal

Motivation


- The statistics from ICBC revealed that in 2013, 29% of the fatal accidents were caused by distracted driving[1]
- Existing after-market options are quite expensive
- Safety and security to the user
- Technology upgrade to an existing car

Business Case

Competition


	FoCoS	Mobileye	Safe Drive Systems
Product	FCW system with object detection	All-In-one camera system with FCW, lane departure warning and speed limit indicator	FCW with lane departure warning
Sensor	Radar + Camera	Camera only	Radar
Feedback	LED + Buzzer	In-Vehicle Display	In-Vehicle Display
Ease-of-Installation	Can be installed by User	Professional Installation required	Professional Installation required
Price	<\$500 (CAD)	\$1000 (USD)	\$1900 (USD)

Market

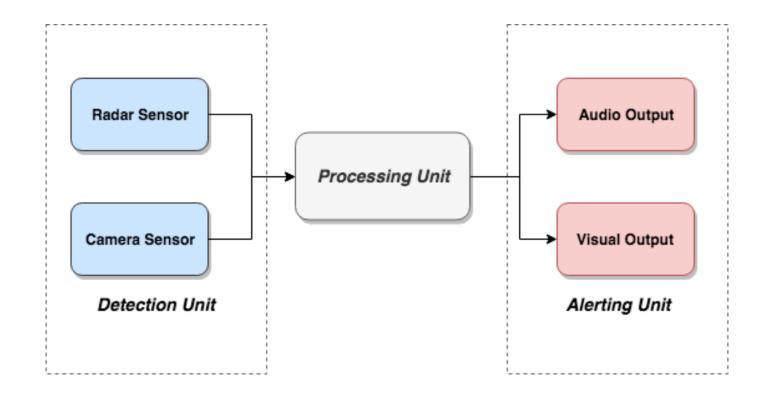
•The target market for FoCoS will be older cars that are not equipped with new tech

•Market to exhibit a compound annual growth rate of 21.2% from 2018 to 2025

•Europe collision avoidance sensor market share, by application, 2017, given by image below

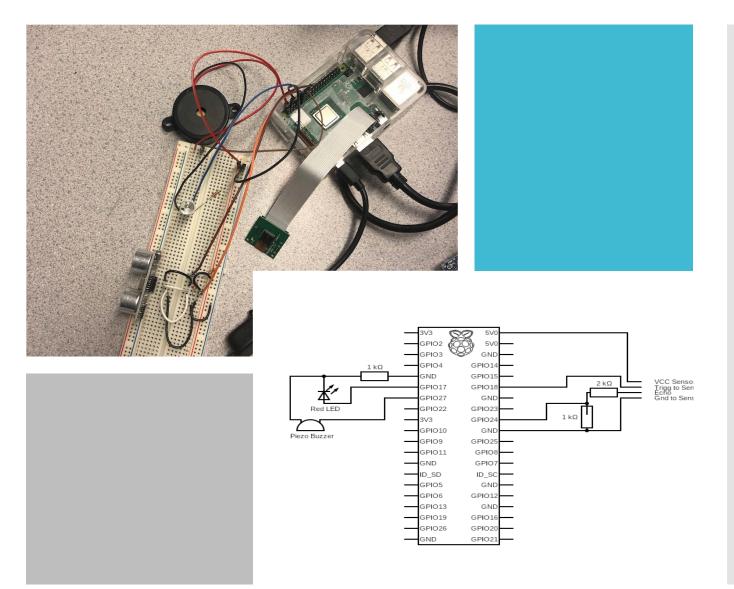
- Adaptive Cruise Control (ACC)
- Blind Spot Detection (BSD)
- Forward Collision Warning System (FCWS)
- Lane Departure Warning System (LDWS)
- Parking Assistance
- Others

Funding


Funding is derived from three sources

- Wighton Engineering Development Fund
- IEEE Canadian Foundation
- ESSS Engineering Science Student Endowment Fund

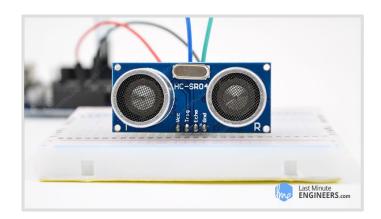
Technical Case

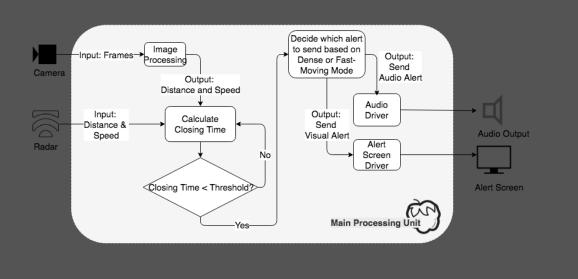

Overview

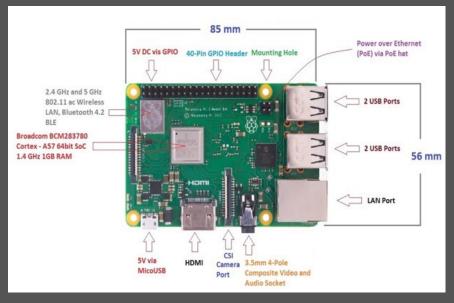
FoCoS is a small device consisting of three main units:

Detection Unit: Radar and Camera Processing Unit: Microcontroller

Alerting Unit: LED and Buzzer

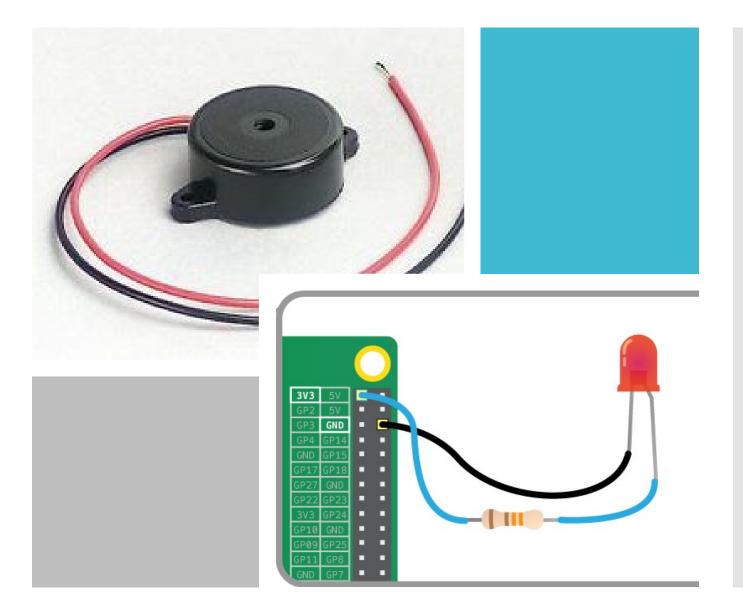

Circuit




Detection Unit

- Attached to front of subject vehicle
- Used to sense the car or pedestrian in front
- Radar (Primary Sensor)
 - Speed of travel and distance from other vehicles will be determined by monitoring changes in the Doppler Shift of the radio wave
- **Camera** (Secondary Sensor)
 - Will continuously monitor changes in distance of the Subject Vehicle from various objects on the road
 - Performing object detection using Tensorflow pre-trained "ssdlite_mobilenet_v2_coco_201 8_05_09" model

Processing Unit

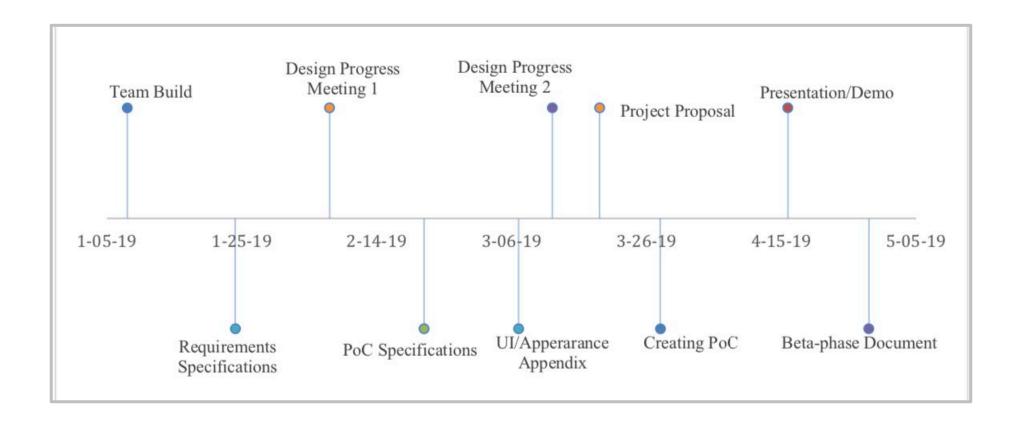

- Using Raspberry Pi B+ as main processing unit
- Main Processing Tasks:
 - Accept data from Detection Unit
 - Calculate closing time
 - Get type of object detected
 - Signal Alerting Unit if object is a vehicle

Alerting Unit

Warns driver of impending collision

> LED Alerts given at Warning Stage
> Buzzer Beeps at STOP Stage

If the driver presses the brake in the span of 3 seconds after the warning has been sent out, the car should stop without colliding with the object.


Materials & Costs

Prototype Production Cost			
Component	Description	Price (CAD)	
Raspberry Pi 3 B+ package for research and final prototype	Microprocessor with SD card, HMDI cable	\$90	
Ultrasonic Sensor	Smaller radar with 2m range	\$10	
Mini External USB 2.0 speaker	Speaker for audio alert	\$20	
LED	Single red LED for visual alert	\$2	
Resistors, wires etc.	Various components needed for audio and other module connections	\$15	
Camera	Keyestudio Camera Module 5MP REV 1.3 compatible with Raspberry Pi 3 Model B+	\$15	
Other	Taxes, Shipping and Handling etc.	\$45	
Total:		\$197	

Major Changes in Scope & Design

Changes

- Sensor:
 - We are using ultrasonic sensor in PoC instead of Radar as originally planned
 - Short-Range Radar that we were planning on using on PoC did not give reliable reading
 - Still planning on using long-range Radar for Final Product
- Camera:
 - As per Dr. Rawicz's suggestion at 2nd Progress Review Meeting, we decided against using Camera to get object distance for PoC
 - Currently, camera used to confirm if obstacle detected by Sensor is a CAR
 - Will try to incorporate object distance calculation in Final Product

Schedule

Risk Analysis

Risks

- Environmental conditions
 - Sensor exposed to the outside environment
 - $\,\circ\,$ Dust and Moisture
 - $\,\circ\,$ Hot and cold temperatures

Installation

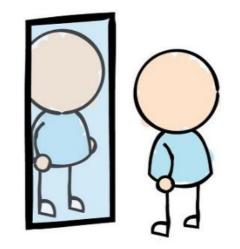
- Placement of the sensor and the camera
- Precise readings and accurate data
- \circ Not blocked by any material

Risk Management

Management

- Sensor enclosed in the proper cover
- Installation guide with proper instructions

Adherence to Engineering Standards


Standard ID	Description
CAN/CSA-C22.2 NO. 61508- 1:17	Functional safety of electrical/electronic/programmable electronic safety related systems - Part 1: General requirements [2]
CAN/CSA-C22.2 NO. 0-10	General requirements - Canadian electrical code, part II [2]
CAN/CSA-C22.2 NO. 60065:16	Audio, video and similar electronic apparatus - Safety requirements (Adopted IEC 60065:2014, eighth edition, 2014-06, with Canadian deviations) [2]
CAN/CSA-ISO/TR 14062-03 (R2013)	Environmental Management - Integrating Environmental Aspects into Product Design and Development (Adopted ISO/TR 14062:2002, first edition, 2002-11- 01) [3]

Adherence to Engineering Standards (continued)

Standard ID	Description
CAN/CSA-ISO 14040- 06 (R2016)	Environmental Management - Life Cycle Assessment - Principles and Framework (Adopted ISO 14040:2006, second edition, 2006-07-01) [3]
CAN/CSA-ISO 14044- 06 (R2016)	Environmental Management - Life Cycle Assessment - Requirements and Guidelines [3]
IEC 62471	LED Lighting Products [4]
IEEE Std 1789	IEEE Recommended Practices for Modulating Current in High- Brightness LEDs for Mitigating Health Risks to Viewers [5]

Self-Reflection

- Communicate clearly
 - Meet more frequently
 - Team building activities
- Project improvements
 - Research more on electronics parts and components
 - Order parts timely
 - Give more time to testing

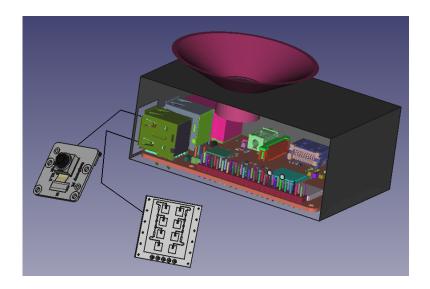
Plan for ENSC 440

- Work on Beta Phase Planning Appendix
- Design PCB
- 3D printing the casing
- Incorporate the long range sensor
- Implement the other mentioned features (dense traffic mode and fast traffic mode)
- Increase the frequency of the feedback

Conclusion

- FoCoS is a small and intelligent device designed to help user in navigating the roads more safely
- Add an extra layer of security in the car
- Also adds to the protection of the people around the car
- FoCoS will always be looking at the front of the car and without any distraction it's constantly working when the car is running
- FoCoS will bring a technology upgrade to an existing car

Questions



Appearance Modelled

- Psychology of the shape:
 - Board and sensor covered
 - Not a packed product
- Specifications
 - LED: Red
 - Speaker: 600 Hz
 - Sensor Range: 25m

Feedback Considered

- NXP board Dr. Scratchley's feedback
 - NXP board doesn't have GPU, might be slower than Raspberry Pi
- Distance calculation using camera Dr. Rawicz's feedback
 - Raspberry pi already takes a while for object detection.
 - Distance calculations through camera might be more slow
- FM transmitter Ashley's feedback
 - Might not be user friendly in our case

Questions

Thank you for your patience

References & Acknowledgments

- 1. ICBC, "QuickStatistics,"122018.[Online]. Available: https://www.ic bc.com/about- icbc/newsroom/Documents/quick-statistics.pdf.
- 2. "CAN/CSA-C22.2 No. 61508-1:17," 01 02 2017. [Online]. Available: https://www.scc.ca/en/standardsdb/standards/28870.
- 3. C. Group, "CAN/CSA-ISO/TR 14062-03 (R2013) Environmental Management - Integrating Environmental Aspects into Product Design and Development (Adopted ISO/TR 14062:2002, first edition, 2002-11-01)," CSA, Mississauga, 2013.
- 4. "IEC 62471:2006," Internation Electronical Commision, 267 2006. [Online]. Available: <u>https://webstore.iec.ch/publication/7076</u>.
- 5. "IEEE 1789-2015 IEEE Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating Health Risks to Viewers," IEEE Standards Association, 26 3 2015. [Online]. Available: https://standards.ieee.org/standard/1789-2015.html.

References & Acknowledgments (continued) 5. <u>http://logodesignfx.com/introduction-logo-2/</u>

6. <u>https://www.vectorstock.com/royalty-free-vector/motivation-</u> <u>concept-flag-on-mountain-top-icon-vector-13454593</u>

7. https://bilderbeste.com/foto/business-marketing-5b.html

8. <u>https://zspace.com/funding/</u>

9. <u>https://lastminuteengineers.com/arduino-sro4-ultrasonic-sensor-tutorial/</u>

10. <u>https://projects.raspberrypi.org/en/projects/physical-</u> computing/4

11. <u>https://www.ebay.co.uk/itm/Piezo-Buzzer-Sounder-3-12V-DC-85Db-BUY-TWO-GET-A-THIRD-FREE-/122726129259</u>

12. <u>https://www.ecosia.org/images?c=en&q=self+reflection+graphic</u>

<u>S</u>