

Luminotes

ENSC 405W Capstone A
Team 14, Simple Instruments
PoC Presentation/Demonstration

Presentation Outline

- 1. Introduction
 - Meet the Team, Background, Motivation
- 2. Business Case
 - Ideal Customer, Market, Financing, Cost,Competition
- 3. Technical Case
 - High-level Description, Cradle-to-Craddle
 Design, Schedule Update, Major Changes
- 4. Risk Analysis and Management
 - Product Safety, Business Risk

- 4. Adherence to Standards
 - Engineering Standards, Requirements
- 5. Self-reflection
- 6. ENSC 440 Capstone B Plan
- 7. Conclusion
 - Summary, References,
 Acknowledgements
- 8. Demonstration
- 9. Questions

Introduction

Meet the Team

- Shahira A. Azhar (COO)
 - Firmware
- Caitlin Finnigan (CTO)
 - Firmware
- Hsiao Chen Eldon Lin (CIO)
 - Hardware

- Dayton Pukanich (CEO)
 - Structural and planning
- Adnan Syed (CFO)
 - Software & Jack of All Trades
- (Mike) Wei Hao Xu (CCO)
 - Hardware

Background

- Learning the piano requires focus and discipline
- Instructors teach music theory, history, and harmony
- Practice requires constant repetition of songs and scales

Our Product

Luminotes projector and app

- Teaches user to play songs on acoustic piano
- User inputs a MIDI file of any song onto phone app
- App communicates with projector device
- Device projects light onto the keys
- User can play along in real time
- Eliminates the need to read sheet music

And in future versions...

Records audio and scores user

Figure 1: Piano laser projection

Motivation

- Personal experience with playing the piano
- Satisfaction of making something that friends and family can understand
- Research fields of interest that we did not have the time to do as part of our degree
- We wanted to make a really expensive cat toy

Business Case

Market

Anyone with an interest in playing piano

Beginners, casual hobbyists, children, and students

Market size

 More than 12 million households own an acoustic piano based on data from China and the U.S. [2] [6]

Ideal Customer

- Wealthy or well-educated middle class family [1]
- A customer with an acoustic piano
- Motivated to learn songs on their own
- Doesn't want to pay for lessons

Considerations

- Doesn't interfere with normal playing
- Feels natural to use

Price

Proof of Concept

- Galvanometer scanner cost the most at \$130
- Total cost of \$230

Final Prototype

- 3D printing will cost upwards of \$100 due to trial and error
- Total cost of \$450

Mass Production

- 20% off on \$30 per unit gooseneck arms
- Creation of a custom chip to minimize product cost and size
- Replacement of 3D printing with moulds
- Expected cost of \$80-110

Financing

Engineering Science Student Endowment Fund

 Can receive initial funding for parts during ENSC 440

Family Funding

Friends and family may buy our product

Personal Funding

We have access to money

"Angel" Investing

 After Capstone, we could pursue mass production with overhauled documentation and mass production product

Competition

Electronic Keyboards - physical keys light up in response to MIDI

Synthesia - software that indicates what notes to play [5]

Other piano teaching apps - indicate where to play along with sheet music [4]

Figure 2: keyboard
https://i.pinimg.com/736x/51/6f/60/516f60e46d64c1d
b939ba115725207f1--sound-speaker-the-piano.jpg

Figure 3: Synthesia https://i.ytimg.com/vi/m5RmYEd1N9I/maxresdefault.jpg

Figure 4: Flow Key
https://imag.malavida.com/mvimgbig/download-fs/flowkey-19607-10.jpg

	Luminotes	Flowkey	Synthesia
Track progress	×	<	✓
Displays sheet music	×	✓	×
Select speed	✓	×	✓
Display finger numbers	✓	×	✓
Projects onto acoustic piano	✓	×	×
Plays any MIDI file	✓	×	✓
Can practice hands separately	×	×	✓
Note name displayed	✓	×	✓
Processes audio feedback	✓	✓	×
Gives feedback to user	✓	✓	✓
Can use without screen	✓	×	×
One time cost	✓	×	✓ _

Table 1: Competitor comparisons

Technical Case

High-level Description of PoC

- Application provides interface to select song and use the projector
- Firmware receives song and controls the projector accordingly
- Galvanometer scanner allows laser to shine on correct keys

Figure 5: High level POC

Materials

- Galvanometer
- Galvo driver board
- Wood
- Laser
- Arduino
- Power supply
- Wires

Cradle-to-Cradle Design

Hardware

Electronic scraps can be recycled

Structure

- PLA is eco-friendly and biodegradable, but not strong enough for our needs [https://www.aidic.it/cet/15/45/279.pdf]
- 3D filament labeled as Class 7 and cannot be recycled by municipal garbage collection [https://all3dp.com/2/3d-printer-recycled-plastic-tips-for-your-waste-plastic/]
- The gooseneck is made from spring steel and can be recycled [http://www.ever-roll.com/how-environmentally-friendly-and-recyclable-is-steel/]

Schedule Changes

- Initially we wanted to have the mobile application and digital signal processing in this version
 - Has been moved ahead to 440

Major Changes

- Structural changes
- We are only able to achieve 4 notes
- We used an Arduino instead of a Raspberry Pi
 - MIDI processing was done externally in Python
- Laser cannot be turned off

Product Safety

Concerns

- Laser hazards
- Falling-object hazards
- Tripping hazards

Solutions

- Low-powered red less than class 3A laser with a protective shield
- Lightweight product with a weighted base
- Thin and aptly sized cord

Business Risks

Concerns

- Niche audience
- Disinterest from target audience
- Expensive product

Solutions

- Coordinating with piano teachers, communities
- Additional cost-effective features
- Improve software and feedback

Adherence to Standards

Engineering Standards

ISO 11553-2:2007

 Safety of machinery -- Laser processing machines -- Part 2: Safety requirements for hand-held laser processing devices [1]

ISO 11252:2013

- Lasers and laser-related equipment -- Laser device -- Minimum requirements for documentation [2]
- CAN/CSA-C22.2 NO. 61508-1:17
- Functional safety of electrical/electronic/programmable electronic safety-related systems Part 1: General requirements [3]

CAN/CSA-C22.2 NO. 0-10

- General Requirements Canadian Electrical Code, Part II
- UL 60950-1
- Information Technology Equipment Safety Part 1: General Requirements

IEEE 1003.13-2003

 IEEE Standard for Information Technology - Standardized Application Environment Profile (AEP) - POSIX(R) Realtime and Embedded Application Support

IEEE 802.15.1-2002

 IEEE Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN - Specific Requirements - Part 15: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs)

CAN/CSA-ISO 14040-06 (R2016)

• Environmental Management - Life Cycle Assessment - Principles and Framework

Requirements

[Req10.1.1 - a] The lasers will be recyclable.

[Req10.1.2 - b] Scanner recognize if it has been idle for more than five minutes. If so scanner will turn of the laser and turn itself off.

[Req10.2.1 - a] The app will not share the user's information with third-party.

[Req10.2.2 - a] The laser will be the color RED [3].

[Req10.2.3 - a] The lasers used must be less than class 3A [3].

[Req10.2.4 - a] The chassey must be made sturdy and robust to prevent the scanner from falling on the user.

Reflection

- Integration requires a lot of time
 - Allocate more time in 440
- Physically working together is more effective than individually
- Don't have meetings too frequently, and stick to the agenda
- Allocate more time for testing

Self-reflection

- It takes time to choose and integrate a functional component
 - Ordering for time, cost, convenience
 - Understanding how everything works without a manual
- Working together is time-efficient for productivity, provided we don't encounter bottlenecking
 - We can't all work with our hardware at the same time, but we can with software and firmware through GitHub
- Ask for help earlier on rather later on

ENSC 440 Capstone B Plan

- Nicer, more compact structure
- Ability to change height of projector
- Ability for projector to reach multiple octaves
- Phone application to control the board
- Raspberry Pi
- More precise DAC
- Ability for device to process sound, and score the user's playing through the app

Figure 6: High level ENSC 440

UI for 440 Prototype

- Covers 4 octaves
- Display key names, finger numbers

Conclusion

Conclusion

Luminotes Projector and App

- Teaches user to play a song on the piano, by shining a light onto keys
- No need for sheet music
- Good for user prefers acoustic piano over electric keyboard

What We Learned

- Mike: How to work with a power supply (safety and wiring)
- Caitlin: Integration is the most difficult part of the design process
- Syed: Don't order parts if they have no documentation
- Dayton: It is very difficult to design and build a functional structure
- Eldon: Learning and getting everyone to use gitlab to manage deadlines
- Shahira: Debugging is a lot easier when you read the open source code comments

References

- [1] "Social history of the piano," *Wikipedia*, 25-Mar-2019. [Online]. Available: https://en.wikipedia.org/wiki/Social_history_of_the_piano. [Accessed: 28-Mar-2019]
- [2] Al Jazeera, "China's piano craze fuels production boom," *News* | *Al Jazeera*, 08-Apr-2015. [Online]. Available: https://www.aljazeera.com/news/2015/04/china-piano-craze-fuels-production-boom-150408053222031.html. [Accessed: 28-Mar-2019]
- [3] G. Chapman, Class Lecture, Topic: "Laser Safety." ENSC470/894, Faculty of Applied Science, Simon Fraser University, Burnaby, Jun., 14, 2018.
- [4] "Flowkey, learn piano with the songs you love" flowkey. [Online] Available: https://www.flowkey.com/en. [Accessed: 28-Mar-2019]
- [5] "Synthesia, Piano for Everyone," *Synthesia, Piano for Everyone*. [Online]. Available: https://www.synthesiagame.com/. [Accessed: 28-Mar-2019]
- [6] "Piano U.S. unit sales 2017 | Statistic," Statista. [Online]. Available: https://www.statista.com/statistics/452772/number-of-pianos-sold-in-the-us/. [Accessed: 28-Mar-2019]
- [7] ESSEF. [Online]. Available: http://www.esss.ca/essef. [Accessed: 28-Mar-2019]
- [8] [Online] Available: https://github.com/mido/mido [Accessed: 30-Mar-2019]

Acknowledgements

- Professor Craig Scratchley
- Professor Andrew Rawicz
- Dr. Glenn Chapman
- Ms. Ashley Francke
- Mr. Vijay Parameswaren
- Mr. Isaac Tan

- Dr. Bonnie Gray
- Dr. Rodney Vaughan
- Professor Michael Sjoerdsma
- Dr. Marinko Sarunic
- Mr. Amar Masalmeh
- Lab Technicians

Demonstration and Questions

