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Abstract

Quantum error-correcting codes (quantum codes) are applied to protect quantum informa-
tion from errors caused by noise (decoherence) on the quantum channel in a way that is
similar to that of classical error-correcting codes. The stabilizer construction is currently
the most successful and widely used technique for constructing binary quantum codes. We
explore new frontiers beyond the stabilizer construction. Our approach enables integration
of a broader class of classical codes into the mathematical framework of quantum stabilizer
codes. Our construction is particularly well-suited to certain families of classical codes,
including duadic codes and additive twisted codes. For duadic codes, we provide various
modifications of our construction and develop new computational strategies to bound the
minimum distance. This enabled us to extend the tables of good duadic codes to much
larger block lengths.

The primary focus of this thesis is on additive twisted codes, which are highly structured
but also technically much more difficult than the more common families of codes. They are
widely referenced but have received relatively little development in previous studies. We
discover new connections between twisted codes and linear cyclic codes and provide novel
lower and upper bounds for the minimum distance of twisted codes. We show that classical
tools such as the Hartmann-Tzeng minimum distance bound are applicable to twisted codes.
This enabled us to discover five new infinite families and many other examples of record-
breaking, and sometimes optimal, binary quantum codes.

Another important contribution is the development of new criteria for code equivalence
within the families of linear cyclic, constacyclic, and twisted codes. We introduce novel
sufficient conditions for code equivalence and classify all equivalent codes of certain lengths.
We prove a recent conjecture on a necessary condition for the formula describing affine
equivalence. For twisted codes, we use algebraic methods, such as group actions, to deter-
mine many codes with the same parameters. These results have practical implications, as
they are useful for pruning the search for new good codes, and they enabled us to discover
many new record-breaking linear and binary quantum codes.

Keywords: quantum code; minimum distance bound; equivalence of codes; cyclic code;
constacyclic code; duadic code; additive code; dual-containing code; self-dual code
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Chapter 1

Background

1.1 Introduction

The theory of error control codes (family of error correcting and error detecting codes) is
a branch of mathematics and engineering that enables us to deliver digital data reliably
over noisy communication channels. A landmark manuscript of Claude Shannon called
“A mathematical theory of communication” [91] signified the beginning of coding theory.
Since then, many families of error control codes and various error correction and detection
schemes have been discovered [50, 75, 84]. One can safely say that the digital revolution
was enabled by coding theory. In particular, it is impossible to remove channel noise from
analogue signals completely. However, error control codes result in a much higher fidelity
of digital signals.

Most digital information channels are not completely reliable because the transmitted
data is frequently distorted in the presence of noise. Error control codes are applied to deal
with this inevitable situation. Error control codes add some redundancy to a message in the
form of extra data to enable the receiver to check the consistency of the delivered message
(error detection) and also to recover the original data if it has been corrupted. Some well-
known examples of digital communication channels that use error control codes are WiFi,
the Internet, cellular telephones, storage devices, computers, satellites, and compact discs.
A simple example of an error detection code used to facilitate our everyday shopping is
illustrated in the next example.

Example 1.1.1 The Universal Product Code (UPC) is a 12-digit number represented
by a bar code on many products. In other words, each UPC is a vector in (Z/10Z)12,
where Z/10Z is the ring of integers modulo 10. The UPC is used to employ a simple error-
detection system to ensure reliability in the scanning of the barcodes. For each product, the
first six digits of UPC determine the manufacturer identification number, the next five digits
determine the product number, and the last digit is called a parity digit. Provided that the
first eleven digits are respectively u1, u2, . . . , u11, then the parity digit u12 is determined in
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the way that

3(u1 + u3 + u5 + u7 + u9 + u11) + (u2 + u4 + u6 + u8 + u10 + u12) ≡ 0 (mod 10). (1.1.1)

For instance, a product with the manufacturer number 036000 and the product num-
ber 29145 has the parity digit 2. When a product with the UPC vector u = (u1, u2, . . . , u12)
is scanned, the scanner computes the value

s = (3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1) · u mod 10. (1.1.2)

If the parity condition s ≡ 0 (mod 10) does not hold, then the object will be re-scanned or
its number will be entered by hand. Transposition errors are common when entering the
numbers by hand. UPC can detect about 89% of transposition errors (when two neighboring
digits are transposed).

The equation (1.1.1) is called a parity check equation. In general, a check equation is a
common approach to verify the validity of a code vector, except that the number of check
equations can be more than one, and the computations are not necessarily modulo 10. If
the difference of two neighboring digits is a multiple of 5, then UPC is unable to detect
the transposition error of these digits. This is because 5 is a zero divisor in Z/10Z. This
is one of the reasons that a majority of error control codes are defined over finite fields.
Moreover, most electronic devices operate in binary. This makes binary codes to be the
most favourable class of error control codes for practical applications.

Two other error control codes with a similar structure are International Standard Book
Number (ISBN) and Social Insurance Number (SIN). In contrast to the previously men-
tioned codes, some error control codes, such as cyclic redundancy check (CRC), quick
response code (QR code), compact disc (CD), and error correcting code memory (ECC
memory) can only be used by electronic devices. In practice, error correction schemes are
especially important for many applications, such as when

• it is not possible to resend the message (for example when a disc is scratched, block
cannot be reread in CD, or memory is damaged),

• there is no return channel to report an error (for example in broadcasting),

• the communication happens over interplanetary distances (for example in deep-space
telecommunications).

It should be noted that error correcting codes are only tools, and a decoding algorithm is
still needed to fix an error. On the other hand, error detection methods are mainly used
when there is a fast return channel to report the occurrence of an error. Main applications
of error detection are in the Internet, mobile phone, and data storage.

2



Linear codes over finite fields are the most studied class of error control codes. The
rich algebraic structure of some linear codes provides a framework under which efficient
encoding and decoding algorithms can be designed for data transmission. Although codes
over rings or non-linear codes are used sparingly for practical applications, they can have
better error control capacity than linear codes over finite fields. For instance, there exists a
non-linear code consisting of 256 binary vectors of length 16, which is capable of detecting
any 5 errors or less [72, Section 2.8, Theorem 32], while the best-known binary linear code
with the same length and number of vectors is capable of detecting at most 4 errors [43].
Among all non-linear codes and codes over rings, the research on additive codes is attracting
more attention due to their connection to quantum codes. We will discuss such codes in
Section 1.7.

In the rest of this chapter, we introduce linear codes over finite fields and their properties,
some well-known families of linear codes, and the connection between classical codes and
binary quantum codes. This chapter is organized as follows. The preliminary concepts of
linear codes are given in Section 1.2. Section 1.3 presents linear cyclic codes. Next, in
Section 1.4, we give several minimum distance bounds for linear cyclic codes, including the
Bose-Chaudhuri-Hocquenghem (BCH), Hartmann-Tzeng (HT), Roos, and a distance lower
bound proposed by van Lint and Wilson. Section 1.5 presents another well-known family of
linear codes, namely constacyclic codes. They are a generalization of linear cyclic codes. In
Section 1.6, we recall the permutation, monomial, and isometric equivalence of linear codes
as well as some known results about them. In Section 1.7, we introduce quantum stabilizer
codes. In particular, we recall the mathematical formulation of binary quantum stabilizer
codes and give several constructions of such codes that appeared in the literature. Finally,
in Section 1.8, we give the summary of our new results and techniques of this thesis.

We facilitate reading the background material in Chapter 1 in shorter pieces for those
readers who prefer that. In particular, the directed graph in Figure 1.1 shows which parts
of Chapter 1 should be read before reading each of Chapters 2, 3, and 4 that contain our
new results.

1.2 Basic concepts of linear codes

Let q be a prime power and n be a positive integer. Throughout this thesis, we will use
the following notations. We denote the finite field of q elements by Fq. An [n, k] linear
code C over Fq is an Fq-linear subspace of Fnq with dimension k. The field Fq is referred
to as the alphabet of the code C. Linear codes over F2, F3, and F4 are called binary,
ternary and quaternary codes, respectively. Let C be a linear code of length n. Each vector
(a1, a2, . . . , an) ∈ C is called a codeword.

The most common way to represent a linear code is using a generator matrix or a
parity check matrix. Let C be an [n, k] linear code over Fq. A k × n matrix whose rows

3



Section 1.2

Section 1.3

Section 1.7

Section 1.8

Chapter 2

Section 1.5

Section 1.4

Chapter 3

Section 1.6

Chapter 4

Figure 1.1: Dependency among background sections and new results.

form a basis for C is called a generator matrix of C. The code C can have many different
generator matrices. A parity check matrix for C is an (n − k) × n matrix H over Fq such
that C = {x ∈ Fnq : HxT = 0}. In particular, we agree that all parity check matrices in this
thesis will be full rank. A check matrix for the linear code C can also be defined over field
extensions of Fq analogously. A matrix H ′ defined over Fqr for some integer r≥2 such that
C = {x ∈ Fnq : H ′xT = 0} is called a generalized parity check matrix. In this thesis, the
generalized parity check matrices will be used to describe the family of linear cyclic codes
and determine minimum distance lower bounds for them.

Let V be a finite-dimensional vector space over Fq. An inner product 〈, 〉 is a function
V × V → Fq satisfying the following properties for each x, y, z ∈ V and a ∈ Fq:

1. 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉.

2. 〈x, y〉 = 〈y, x〉.

The space V together with the inner product 〈, 〉 is called an inner product space. Recall
that the Euclidean inner product of vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is
defined by

x · y =
n∑
i=1

xiyi.

The dual of an [n, k] linear code C over Fq with respect to the Euclidean inner product is
defined by

C⊥ = {x ∈ Fnq : x · c = 0 for all c ∈ C}. (1.2.1)
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It is not difficult to see that C⊥ is an [n, n−k] linear code over Fq. A linear code C is called
self-orthogonal if C ⊆ C⊥, dual-containing if C⊥ ⊆ C , and self-dual provided that C = C⊥.
Obviously, a self-dual linear code has dimension n/2. In general, dual-containing and self-
dual codes are especially important for constructing quantum stabilizer codes. Moreover,
many of the currently best-known linear codes are of these types.

Quaternary linear codes will be one of our main objects in this thesis due to their
connection to binary quantum codes. Let F4 = {0, 1, ω, ω2} be the field of four elements,
where ω2 = ω+ 1. For each a ∈ F4, we define the conjugate of a to be a = a2. For each two
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Fn4 , the Hermitian inner product of x
and y is defined by

〈x, y〉h =
n∑
i=1

xiyi.

In analogy to (1.2.1), we define the Hermitian dual of a linear code C ⊆ Fn4 to be

C⊥h = {x ∈ Fn4 : 〈x, c〉h = 0 for all c ∈ C}. (1.2.2)

A linear code C ⊆ Fn4 is called Hermitian self-orthogonal if C ⊆ C⊥h , Hermitian dual-
containing if C⊥h ⊆ C , and Hermitian self-dual if C = C⊥h . As we will see in Section 1.7,
binary quantum stabilizer codes are constructed using Hermitian dual-containing codes.

Perhaps the most important parameter of a linear code is its minimum distance. The
(Hamming) distance of vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Fnq is defined
by

d(x, y) = |{1 ≤ i ≤ n : xi 6= yi}|.

The distance function d satisfies the following properties for each x, y, z ∈ Fnq .

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ d(x, z) + d(y, z).

Hence d is a metric, and the space Fnq with the metric d is a metric space. The minimum
distance of a linear code C is defined by

d(C) = min{d(x, y) : x 6= y ∈ C}.

The above definition holds for all codes, even non-linear ones. For linear codes, the minimum
distance can be computed alternatively using the weight of vectors. The (Hamming) weight
of a vector x ∈ Fnq is the number of non-zero coordinates of x and is denoted by wt(x).
Let C be a linear code. For each two codewords x and y ∈ C, we have wt(x− y) = d(x, y).
This implies that

d(C) = min{wt(c) : 0 6= c ∈ C}.

5



If the minimum distance d of an [n, k] linear code C is known, we call the code C an [n, k, d]
linear code. One of the main computational challenges of linear codes is computing the exact
minimum distance for general linear codes, which is NP-hard [104]. Therefore, designing
new techniques or algorithms to bound the minimum distance of certain families of linear
codes could be extremely valuable. A straightforward connection between the minimum
distance of a linear code C and its parity check matrix is provided below.

Proposition 1.2.1 [55, Section 1.4] Let C be a linear code over Fq with a parity check
matrix H. The code C has minimum distance d if and only if each set of d − 1 columns
of H is linearly independent over Fq and there exists a set of d linearly dependent columns
of H over Fq.

Example 1.2.2 Let C be a linear code over F3 with the parity check matrix

H =


1 0 0 1 2
0 2 0 0 1
0 0 1 1 0

 .
Note that the first three columns of H are linearly independent over F3 which implies that H
has full rank. Thus C is a [5, 2] linear code over F3. The columns of H are all non-zero,
and no column is a scalar multiple of each other column over F3. Moreover, the first, third,
and fourth columns are linearly dependent over F3. Thus d(C) = 3 by Proposition 1.2.1.
Hence C is a [5, 2, 3] linear code over F3.

Next, we briefly recall an encoding and a decoding scheme for linear codes. Let C be
an [n, k, d] linear code over Fq. The code C has qk codewords, which are in a one-to-one
correspondence with qk different messages. We represent each message by a vector x ∈ Fkq .
The most common encoding approach is to encode the message x to the codeword c = xG,
where G is a generator matrix for the code C. The (information) rate of C is R = k/n, which
measures how much information is being transmitted per codeword. We say that an error
has happened if the received vector is different from the transmitted vector due to noise.
Suppose the vector c ∈ C is transmitted and the vector r is received. The vector e = r − c
is called an error vector. A linear code is called a t-error-correcting code if it is capable
of correcting any error e with wt(e) ≤ t. This happens exactly if the Hamming spheres of
radius t centered at the codewords are disjoint.

In decoding, we have the received vector, and the goal is to decide which codeword was
most likely transmitted. Suppose that r ∈ Fnq and H is a parity check matrix for the code C.
The vector s = HrT is called the syndrome of r. The concept of syndrome is a common
tool for the error correction and detection of linear codes. By the definition of parity check
matrix, the received vector r is a codeword if and only if its syndrome is zero.

Next, we recall a decoding scheme called nearest neighbour decoding for the code C. We
assume that the channel introduces errors uniformly at random and that the probability

6



of an error in one coordinate is independent of errors in all other coordinates. Suppose
that vector r ∈ Fnq is received. Then r is decoded to the codeword c ∈ C such that
d(r, c) < d(r, c′) for each c′ ∈ C such that c′ 6= c. If there is no such c, then the number
of errors exceeds the error-correcting capacity of C. So the error cannot be corrected. Let
u ∈ Fnq and 0 ≤ ` ≤ n. The (Hamming) sphere of radius ` centered at u is defined by

S`(u) = {x ∈ Fnq : d(x, u) ≤ `}.

If t = bd−1
2 c, then the spheres of radius t centered at distinct codewords of C are disjoint.

Thus a received vector r with t or fewer errors is uniquely decoded to the correct codeword
using the nearest neighbour decoding.

Since the errors are introduced uniformly at random, we give a justification for the
nearest neighbour decoding using another scheme called maximum likelihood decoding. We
assume that all codewords have the same probability of being sent. This will happen for
example when the messages are ciphertexts produced by encryption because ciphertexts
look like random strings. Let the probability that an error occurs on a symbol be p. In
practice, p is a positive real number and p� q−1

q . We also assume that in case of an error,
each of the q− 1 symbols aside from the correct symbol is equally likely to be received with
the probability p

q−1 . This type of channel is called q-ary symmetric.
In the maximum likelihood decoding scheme the goal is to decode the received vector r

to the codeword c such that the conditional probability P (r|c) (the probability r is received,
given that c is sent) is maximized over all codewords of C. An easy computation shows
that for each codeword c1 ∈ C such that d = (c1, r), we have

P (r|c1) = (1− p)n−d( p

q − 1)d.

Hence if the spheres of radius t at distinct codewords of C are disjoint and c is the result of
nearest neighbour decoding, then for each codeword c′ ∈ C we have P (r|c′) < P (r|c). Thus
the nearest neighbour decoding and maximum likelihood decoding are equivalent under the
assumption that all codewords have the same probability of being sent. The next three
theorems give the error detection and error correction capacity of linear codes. All of these
results hold also for non-linear codes.

Theorem 1.2.3 [103, Theorem 1.2] Let C be an [n, k, d] linear code over Fq. Then C can
detect any d− 1 errors and can correct any bd−1

2 c errors.

For instance, the code C of Example 1.2.2 can detect any 2 errors and correct any single
error. In general, the algorithms for carrying out the decoding methods for linear codes
have a high complexity. However, for certain families of linear codes there are fast decoding
algorithms (polynomial time), which are essentially based on solving algebraic equations
over finite fields. One of the aims of coding theory is to construct families of linear codes
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which have efficient decoding algorithms. This is because decoding of a random linear code
is NP hard [10].

In this thesis, we mainly concentrate on constructing good codes and we use the following
connection between the decoding and the minimum distance computation. Let C be a linear
code and assume that r = c+ e is a received vector, where c ∈ C and e is the error pattern.
Assuming wt(e) < d(C)/2 implies that e is the lowest weight non-zero codeword in the
linear code spanned by C ∪ {r}.

Another well-known type of noise corruption is an erasure, which happens when in one
of the coordinates of the received vector, a symbol is unreadable. A linear code is said to
correct ` erasures if any vector containing ` or fewer erasures is correctable.

Theorem 1.2.4 [103, Theorem 7.4] Let C be an [n, k, d] linear code over Fq. Then C can
correct any d− 1 erasures.

In some communication channels, both errors and erasures can happen. Fortunately,
there exist algorithms that correct errors and resolve the erasures simultaneously for such
channels.

Theorem 1.2.5 [103, Theorem 7.5] Let C be an [n, k, d] linear code over Fq. If d =
2t+ u+ 1, then C is capable of correcting any t errors and u erasures.

For example, a linear code with minimum distance 5 can correct either

i. 1 error and 2 erasures,

ii. 2 errors and no erasure,

iii. or no error and 4 erasures.

All the above results directly depend on the minimum distance of the code C. One of the
major tasks in coding theory is to design codes with good parameters. In other words, the
main task is either

1. to find codes with the largest possible minimum distance if the length and the number
of codewords of the code are fixed, or

2. to find codes with the largest possible number of codewords if the minimum distance
and length of the code are fixed.

Codes satisfying the above conditions are called optimal. This thesis proposes new con-
structions and many examples of record-breaking additive, quantum, and linear codes.

Many interesting and important codes arise by modifying or combining existing codes.
Such constructions are usually called secondary. Next, we briefly recall a few well-known
secondary constructions of linear codes. Let C be an [n, k, d] linear code over Fq. We
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can puncture the code C, by deleting a fixed coordinate of each codeword. The resulting
punctured code is linear and has length n − 1, dimension at least k − 1, and minimum
distance at least d− 1.

Instead of removing a coordinate, we can add new coordinates to make a longer linear
code. There are many ways to do that; the most common approach is called the extended
code. The extended code of C is defined by

Ĉ = {(x1, x2, . . . , xn, xn+1) ∈ Fn+1
q : (x1, x2, . . . , xn) ∈ C and xn+1 = −(x1 +x2 + · · ·+xn)}.

The extended code Ĉ is again a linear code with length n+ 1, dimension k, and minimum
distance d or d + 1. An interesting application of the extended code happens when C

is binary. In this case, the extended code has only even-weight vectors. Therefore, the
extended code of a binary code with an odd minimum distance do has minimum distance
do + 1.

Let T be a set of t ≤ k coordinates, and C(T ) be the set of codewords of C taking the
value 0 at each coordinate of T . The set C(T ) is a linear code. The punctured code of C(T )
after deleting the coordinates in T is called the shortened code. The shortened code of C
has parameters [n− t, k − t, d1], where d1 ≥ d.

Let D be an [n′, k′, d′] linear code. The direct sum code of C and D is defined by

C ⊕D = {(c1, c2) : c1 ∈ C and c2 ∈ D}.

The direct sum code obviously is linear and has parameters [n+ n′, k + k′,min{d, d′}].

1.3 Linear cyclic codes

Many important families of linear codes, such as Reed-Solomon, Hamming, BCH, etc., are
cyclic codes. Linear cyclic codes have rich algebraic properties that make them ideal for
practical implementations. For instance, there are many computationally efficient encoding
and decoding algorithms for linear cyclic codes.

In some communication channels, such as data storage devices, the Internet, and com-
pact discs the error structure is not very random and errors occur within small intervals of
the codeword. Such errors are called burst errors, and linear cyclic codes are used to correct
these types of errors. We label the coordinate positions of length n vector in Fnq by elements
of Z/nZ which is the set of integers modulo n. This will facilitate the representation and
computations of codewords in linear cyclic codes.

Definition 1.3.1 A linear code C ⊆ Fnq is called a cyclic code over Fq if for every c =
(c0, c1, . . . , cn−1) ∈ C, the vector (cn−1, c0, . . . , cn−2) obtained from a cyclic shift of the
coordinates of c is also in C.
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In studying linear cyclic codes, we often use the polynomial representation for each
vector. The map φ : Fnq → Fq[x]/〈xn − 1〉 defined by

φ
(
(a0, a1, . . . , an−1)

)
= a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1

is an Fq-linear isomorphism of finite groups i.e. of vector spaces. Therefore, each vector
in Fnq can be uniquely represented by a polynomial in Fq[x]/〈xn − 1〉. Hence each length n
linear code over Fq can alternatively be considered as a subspace of polynomials of degree
less than n over Fq. For simplicity, it is customary to identify the codewords with the
polynomial representing it. The following statements are equivalent for a linear code C.

1. The code C is invariant under the cyclic shifts.

2. For each c(x) ∈ φ(C), the polynomial xc(x) mod xn − 1 is also an element of φ(C).

Thus the map φ gives a one-to-one correspondence between length n linear cyclic codes
over Fq and ideals of the ring Fq[x]/〈xn−1〉. The ring Fq[x]/〈xn−1〉 is a principal ideal ring,
and therefore each ideal (or equivalently linear cyclic code) can be generated by a unique
monic polynomial called the generator polynomial. This implies that all codewords of a
linear cyclic code are multiples of the generator polynomial. Since all generator polynomials
are factors of xn − 1, the factorization of xn − 1 over Fq is used to classify all linear cyclic
codes of length n over Fq. To get only distinct factors in the factorization of xn − 1, for
the rest of this thesis, we assume throughout that gcd(n, q) = 1. This is a very common
assumption in both theory and practice. In general, linear cyclic codes are mainly studied
assuming this gcd condition.

For each a ∈ Z/nZ, the set Z(a) = {(aqj) mod n : 0 ≤ j ≤ m − 1}, where m is the
smallest positive integer such that aqm = a (mod n), is called the q-cyclotomic coset of a
modulo n. The smallest member of a q-cyclotomic coset is called the coset leader. All
different q-cyclotomic cosets modulo n partition Z/nZ. Let r = |Z(1)| or equivalently r be
the smallest positive integer such that n | qr − 1. Then the finite field Fqr is the splitting
field of xn − 1. The next theorem presents the connection between factors of xn − 1 and
cyclotomic cosets modulo n.

Theorem 1.3.2 [55, Theorem 4.1.1] Let n be a positive integer such that gcd(n, q) = 1
and α be a primitive n-th root of unity in a finite field extension of Fq. Then

1. For each 0 ≤ s ≤ n− 1, the minimal polynomial of αs over Fq is given by

Mαs =
∏

i∈Z(s)
(x− αi).
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2. Let Z(i1), Z(i2), . . . , Z(ir) be all the different q-cyclotomic cosets modulo n. Then the
irreducible factorization of xn − 1 over Fq is given by

xn − 1 =
r∏
j=1

M
αij
.

Let α be a fixed primitive n-th root of unity in a finite field extension of Fq. If g(x) is
the generator polynomial of a length n linear cyclic code C over Fq, then the roots of g(x)
are in the form {αt : t ∈ A}, where A is a unique union of q-cyclotomic cosets modulo n.
The set A with this property is called the defining set of the code C. The set {αt : t ∈ A}
is also referred to as the zero set of the cyclic code C. This is because, by Theorem 4.4.2
of [55], we have c(x) is a codeword of C if and only if c(αt) = 0 for each t ∈ A.

Remark 1.3.3 In the numerical examples of cyclic, constacyclic, and twisted codes through-
out this thesis, the primitive n-th root of unity α is fixed as follows. Let n | qr − 1 for the
smallest positive integer r with this property, and γ be the primitive element in Fqr chosen
by the PrimitiveElement function in Magma [17], then set α = γ(qr−1)/n. Let us note all
major computer algebra systems such as GAP, Macaulay2, Magma, and SageMath use the
same primitive polynomial (so-called Conway polynomial) to construct Fqr as an algebraic
extension of Fq. Therefore all our examples can exactly be reproduced in all other systems
as well.

Next, we recall some properties of linear cyclic codes.

Theorem 1.3.4 [55, Theorem 4.2.1] Let C be a length n linear cyclic code over Fq with

the generator polynomial g(x) =
n−k∑
i=0

gix
i, where gn−k 6= 0. Then

1. the code C has dimension k = n− deg(g(x)),

2. the matrix

G =


g0 g1 · · · gn−k 0 0 · · · 0
0 g0 g1 · · · gn−k 0 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 g0 g1 · · · gn−k

 (1.3.1)

is a generator matrix for the linear cyclic code C.

Example 1.3.5 The 2-cyclotomic cosets modulo 9 are Z0 = {0}, Z1 = {1, 2, 4, 8, 7, 5}, and
Z3 = {3, 6}. Thus x9 − 1 over F2 has three irreducible factors. Moreover, 9 | 26 − 1 and
therefore F26 contains all the 9-th roots of unity. Let α ∈ F26 be a primitive 9-th root of
unity. Then, by Theorem 1.3.2, we can factorize x9−1 into the product of monic irreducible
factors over F2 as

x9 − 1 = (x+ 1)(x6 + x3 + 1)(x2 + x+ 1),
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where x+ 1, (x− α3)(x− α6) = x2 + x+ 1, and

(x− α)(x− α2)(x− α4)(x− α8)(x− α7)(x− α5) = x6 + x3 + 1

are the minimal polynomials of 1, α, and α3 over F2, respectively. The combination of these
irreducible polynomials gives eight different factors of x9− 1. Thus there are eight different
binary cyclic codes of length 9. As we will see in Section 1.6 and Chapter 4, some of these
codes are equivalent and have the same parameters (dimension and minimum distance). Let
g(x) = (x+ 1)(x2 + x+ 1) be the generator polynomial of a linear cyclic code C. Then C
has the defining set A = {0, 3, 6} and has dimension n− deg(g(x)) = 9− 3 = 6 over F2.

Let f(x) =
s∑
i=0

aix
i be a polynomial of degree s in Fq[x]. The reciprocal polynomial of

f(x) is defined by

f∗(x) = xsf(x−1) =
s∑
i=0

as−ix
i. (1.3.2)

The reciprocal polynomial allows us to easily check the Euclidean and Hermitian orthogo-
nality of vectors in linear cyclic codes. Let a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1)
be two vectors with the polynomial representations a(x) and b(x), respectively. Then a is
orthogonal to b and all of its cyclic shifts with respect to the Euclidean inner product if and
only if a(x)b∗(x) ≡ 0 (mod xn − 1).

Theorem 1.3.6 [55, Theorem 4.4.9] Let C be a linear cyclic code with the generator
polynomial g(x) and the defining set A. Let h(x) = (xn − 1)/g(x). Then C⊥ is a linear
cyclic code and

1. the polynomial h∗(x)/h(0) is the generator polynomial of the code C⊥,

2. the set Z/nZ \
(
(−A) mod n

)
is the defining set of C⊥.

Example 1.3.7 Let n = 7. The 2-cyclotomic cosets modulo 7 are {0}, {1, 2, 4}, and
{3, 5, 6}. Using Theorem 1.3.2, the irreducible polynomials corresponding to such cyclotomic
cosets are x+ 1, x3 + x+ 1, and x3 + x2 + 1, respectively. Let C be a length 7 binary cyclic
code with the generator polynomial g(x) = (x+ 1)(x3 +x+ 1). Then C has the defining set
{0, 1, 2, 4}. By Theorem 1.3.6, the Euclidean dual of C has the generator polynomial and
the defining set f(x) = x3 + x + 1 and {1, 2, 4}, respectively. This shows that the code C
is a Euclidean self-orthogonal cyclic code. This is because f(x) | g(x) which implies that
C ⊆ C⊥.

Let f(x) =
s∑
i=0

aix
i be a polynomial of degree s in F4[x]. The conjugate polynomial

of f(x) is defined by

f(x) =
s∑
i=0

aix
i. (1.3.3)
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Next, we provide an analogous result for the Hermitian dual of linear cyclic codes over F4.

Theorem 1.3.8 [55, Theorem 4.4.15] Let C be a linear cyclic code over F4 with the
generator polynomial g(x) and the defining set A. Let h(x) = (xn − 1)/g(x). Then

1. the conjugate polynomial of h∗(x)/h(0) is the generator polynomial of the code C⊥h,

2. the set Z/nZ \
(
(−2A) mod n

)
is the defining set of C⊥h.

Let C be a linear cyclic code of length n over Fq with the generator polynomial g(x).
The polynomial h(x) = (xn − 1)/g(x) is called the parity check polynomial of the code C.
This is because for each r(x) ∈ Fq[x]/〈xn− 1〉, we have c(x) ∈ C if and only if r(x)h(x) ≡ 0
(mod xn − 1). Thus the parity check polynomial gives us a scheme to check whether the
polynomial r(x) is a codeword of C. Similar to linear codes, we can define the syndrome
of vectors for linear cyclic codes. There are two customary ways to define the syndrome of
a polynomial for linear cyclic codes. First, we define the syndrome of r(x) using the parity
check polynomial to be s(x) =

(
r(x)h(x)

)
mod xn − 1. Alternatively, the syndrome of r(x)

can be defined using the generator polynomial g(x) of C by s(x) which is the remainder of
the division r(x) = q(x)g(x) + s(x). In both cases, we can conclude that r(x) is a codeword
if and only if s(x) = 0.

In certain channels, errors are introduced in short intervals rather than completely at
random. For instance, in storage devices, physical irregularities or structural alteration can
cause errors to be less independent and occur in consecutive locations. Similarly, interference
over short time intervals in serially transmitted radio signals causes errors to occur in bursts.
In general, suppose that a codeword c ∈ C is transmitted, and it is received as c + e. The
error vector e is called a burst error of length ` if the nonzero components of e all appear in
an interval of size `, and ` is the smallest such number. The majority of the tools developed
for burst error correction rely on cyclic codes. So we briefly review the burst error detection
process for linear cyclic codes. A cyclic burst error of length ` ≤ n is a vector in Fnq whose
non-zero coordinates are within a cycle of length `, and ` is the smallest number with this
property. For example,

1. e1 = (0, 0, 1, 1, 0, 1, 0, 0, 0) is a cyclic burst error of length 4 in F9
2.

2. e2 = (0, 1, 1, 0, 1, 0, 0, 1, 0) is a cyclic burst error of length 7 in F9
2.

3. e3 = (0, 1, 0, 0, 0, 0, 0, 0, 1) is a cyclic burst error of length 3 in F9
2.

Let C be an [n, k] cyclic code over Fq with the generator polynomial g(x) = g0 +g1x+ · · ·+
gn−k−1x

n−k−1 + xn−k. It is easy to see that each polynomial r(x) ∈ Fq[x]/〈xn− 1〉 which is
a length n− k burst error can be represented as

r(x) = xi(r0 + r1x+ r2x
2 + · · ·+ rn−k−2x

n−k−2 + rn−k−1x
n−k−1)
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for some 0 ≤ i ≤ k. Since gcd(xi, g(x)) = 1 and deg(g(x)) = n − k, the polynomial r(x)
has a non-zero syndrome. This implies that the code C can detect all burst errors of length
t ≤ n− k.

The cyclic redundancy check, or CRC, is a technique used in digital networks as an error-
detection scheme. It is applied to detect accidental changes to raw data and, in the case
of error, data retransmission is requested. The error-detection protocol in CRC is based
on the syndrome computation of linear cyclic codes. In practice, CRC is popular since it
is simple to implement, easy to analyze mathematically, and particularly good at detecting
many common errors caused by noise in transmission channels. The next example which is
taken from [74, Example 4.26] provides an application of certain CRC in detecting errors.

Example 1.3.9 Let g(x) = x16 + x15 + x2 + 1 = (1 + x)(1 + x+ x15). The smallest integer
n such that g(x) | xn − 1 is 32767. Hence g(x) is the generator polynomial of a length
32767 binary cyclic code. The polynomial g(x) is also called the generator polynomial of
CRC-16-IBM (sometimes CRC-16-ANSI or simply as CRC-16). The main uses of CRC-
16-IBM are in USB hardware, American National Standards Institute (ANSI), and Binary
Synchronous Communications (BSC). For each received polynomial of degree less than
32767, the syndrome error-detection for g(x) can detect

a. any odd number of errors

b. any pattern of two errors

c. all cyclic burst errors of length 16 or less

d. all cyclic burst errors of length 17 with probability 0.99997

e. all cyclic burst errors of length 18 or larger with probability 0.99998.

Some other CRC generator polynomials with various applications in digital communi-
cation are provided in [22,56,78,88].

1.4 Minimum distance bounds for linear cyclic codes

As we mentioned previously, i.e., Theorems 1.2.3, 1.2.4, and 1.2.5, we need the minimum
distance to determine the error-correcting and error-detecting capability of a linear code.
Also, recall that computing the exact minimum distance for a general linear code is NP-
hard [104]. Therefore, it is important to have upper or lower bounds for the minimum
distance of certain linear codes. In this section, we discuss several well-known minimum
distance bounds for linear cyclic codes, namely the Bose-Chaudhuri-Hocquenghem (BCH),
Hartmann-Tzeng (HT), Roos, and a distance lower bound of van Lint and Wilson.

We first recall the result of Proposition 1.2.1 as it will be used very frequently in this
section. A linear code C over Fq with a parity check matrix H has minimum distance d if
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and only if the set of each d − 1 columns of H is linearly independent over Fq and there
exists a set of d linearly dependent columns of H over Fq. In general, applying this result
directly still is computationally very inefficient. In this section, we use the structure of
Vandermonde matrices and provide (minimum distance) lower bounds for the minimum
distance of linear cyclic codes. Let β1, β2, . . . , βs ∈ Fq. The s× s matrix

V =


1 β1 β2

1 · · · βs−1
1

1 β2 β2
2 · · · βs−1

2
...

...
...

...
...

1 βs β2
s · · · βs−1

s

 (1.4.1)

with entries from Fq is called a Vandermonde matrix. The determinant of a Vandermonde
matrix can be computed easily using the formula

∏
1≤i<j≤s

(βj − βi), see for example [55,

Lemma 4.5.1]. In particular, the matrix V is nonsingular if and only if β1, β2, . . . , βs are
distinct elements of Fq.

Throughout the rest of this section, C is a linear cyclic code over Fq of length n such
that gcd(n, q) = 1. Note that the theory of cyclic codes is insensitive to the selection of a
primitive n-th root of unity in the following sense. As we will see in Theorem 1.6.4, changing
the primitive n-th root of unity in the construction of cyclic codes results in a permutation
equivalent linear cyclic code. From now on, we fix α to be a primitive n-th root of unity in
a finite field extension of Fq using the convention of Remark 1.3.3. Let A = {i1, i2, . . . , ik}
be the defining set of the code C. The code C has dimension n− k, and the matrix

H =


1 αi1 α2i1 · · · α(n−1)i1

1 αi2 α2i2 · · · α(n−1)i2

...
...

1 αik α2ik · · · α(n−1)ik

 (1.4.2)

is a generalized parity check matrix for C. This is because first, the matrix H has the
rank k as the first k columns of H form a nonsingular Vandermonde matrix. Second, if
c = (c0, c1, . . . , cn−1) is the vector representation of an arbitrary polynomial c(x) ∈ Fq[x],
then the j-th coordinate of HcT is c(αij ) for each 1 ≤ j ≤ k. Since it is well-known that
c(x) is in correpondence to a codeword of C exactly when it is a multiple of the generator
polynomial g(x) of C, we have HcT = 0 if and only if g(x) | c(x).

Definition 1.4.1 A set {i1, i2, . . . , is} ⊆ Z/nZ is called a consecutive set of length s if there
exists an integer c with gcd(c, n) = 1 such that

{(cit) mod n : 1 ≤ t ≤ s} = {(j + t) mod n : 0 ≤ t ≤ s− 1}

for some j ∈ Z/nZ.
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We now provide the BCH minimum distance bound, which is the oldest and the most
well-known minimum distance lower bound for linear cyclic codes. It was discovered by Bose
and Ray-Chaudhuri (1960) and independently by Hocquenghem (1959). This discovery also
resulted in a new class of linear cyclic codes called BCH codes. In particular, BCH codes
allow us to design the minimum distance of a cyclic code to be at least d by selecting d− 1
consecutive elements to be in the defining set.

Theorem 1.4.2 (BCH bound) [16, 52] Let C be a linear cyclic code of length n over Fq
with the defining set A. If A contains a consecutive subset of length δ − 1, then the code C
has minimum distance d(C) ≥ δ.

By the BCH bound, we can simply find a lower bound for the minimum distance of a
linear cyclic code by finding the length of the longest consecutive set inside the defining set.
Let A and B be two subsets of Z/nZ. We define the sum A+B = {(a+b) mod n : a ∈ A and
b ∈ B}. Hartmann and Tzeng, in 1972, provided a generalization of the BCH bound [51].
They showed that if the defining set of a linear cyclic code contains sum of more than one
consecutive set, then the BCH bound can be improved.

Theorem 1.4.3 (Hartmann-Tzeng bound) [51] Let C be a linear cyclic code of length n
over Fq with the defining set A. If A contains a subset in the form

{(l+ i1c1 + i2c2) mod n : 0 ≤ i1 ≤ t−2, 0 ≤ i2 ≤ m, gcd(c1, n) = gcd(c2, n) = 1}, (1.4.3)

where l, c1, c2 ∈ Z, t ≥ 2, and m is a non-negative integer, then d(C) ≥ t+m.

The set in (1.4.3) can also be expressed as the sum of two consecutive sets M + N ,
where M = {(l+ i1c1) mod n : 0 ≤ i1 ≤ t− 2 and gcd(c1, n) = 1} and N = {(i2c2) mod n :
0 ≤ i2 ≤ m and gcd(c2, n) = 1}.

Example 1.4.4 Let C be a linear cyclic code of length 17 over F2 with the defining set
A = {1, 2, 4, 8, 9, 13, 15, 16}. The set {1, 2} is a consecutive subset of A. Thus by the BCH
bound d(C) ≥ 3. Moreover, {(1 + i1 + 7i2) mod 17 : 0 ≤ i1 ≤ 1 and 0 ≤ i2 ≤ 2} =
{1, 2, 8, 9, 15, 16} ⊆ A. Therefore the code C has minimum distance d(C) ≥ 5 by the HT
bound. By applying the MinimumDistance function in Magma [17], we get d(C) = 5 and
thus C is a [17, 9, 5] binary cyclic code.

Hartmann and Tzeng also provided some other generalizations of their main minimum
distance bound. First, they showed that the result of the HT bound remains valid if the
defining set contains more than two consecutive sets. Second, they proved that the gcd
condition in the HT bound could be relaxed to some extent.

Theorem 1.4.5 [51] Let C be a linear cyclic code of length n over Fq with the defining
set A. If A contains a subset in the form

{(l + i1c1 + i2c2 + · · ·+ imcm) mod n : 0 ≤ ij ≤ sj , gcd(cj , n) = 1},
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where l, cj ∈ Z and sj is a non-negative integer for each 1 ≤ j ≤ m, then d(C) ≥ (
m∑
j=1

sj)+2.

Theorem 1.4.6 [51] Let C be a linear cyclic code of length n over Fq with the defining
set A. If A contains a subset in the form

{(l + iic1 + i2c2) mod n : 0 ≤ i1 ≤ t− 2, 0 ≤ i2 ≤ m, gcd(c1, n) = 1, gcd(c2, n) ≤ t− 1},

where l, c1, c2 ∈ Z, t ≥ 2, and m is a non-negative integer, then d(C) ≥ t+m.

The Roos bound is another well-known lower bound for the minimum distance of linear
cyclic codes. It bounds the minimum distance of a cyclic code when its defining set contains
a subset in the form M + N , where N is a consecutive set, but M is not necessarily a
consecutive set.

Theorem 1.4.7 (Roos bound) [89] Let C be a length n linear cyclic code over Fq with
the defining set A. Let M and N be non-empty subsets of Z/nZ such that N is consecutive
and M + N ⊆ A. If there exists a consecutive set M ⊆ Z/nZ such that M ⊆ M and
|M | ≤ |M |+ |N | − 1, then d(C) ≥ |M |+ |N |.

If the sets M and N in Theorem 1.4.7 are both consecutive, then Roos bound and the
HT bound are the same. Next, we provide an example from [89], where the Roos bound
beats the HT and BCH bounds.

Example 1.4.8 [89, Example 1] The 2-cyclotomic cosets modulo 21 are Z(0) = {0},
Z(1) = {1, 2, 4, 8, 16, 11}, Z(3) = {3, 6, 12}, Z(5) = {5, 10, 20, 19, 17, 13}, Z(7) = {7, 14},
and Z(9) = {9, 18, 15}. Let C be a binary cyclic code of length 21 with the defining set
A = Z(1) ∪ Z(3) ∪ Z(7) ∪ Z(9). Then {1, 2, 3, 4} ⊂ A and by the BCH bound, minimum
distance of C is at least 5. Also, {1, 2, 3, 4} + {0, 5} is a subset of A. Thus the HT bound
implies that d(C) ≥ 6. Finally, let N = {2, 3, 4} and M = {0, 4, 12, 20}. One can easily
see that M + N ⊂ A and M is a subset of the consecutive set M = {0, 4, 8, 12, 16, 20}.
Moreover, |M | = 6 ≤ |M |+ |N | − 1 = 6 and thus the Roos bound implies that d(C) ≥ 7.

Let N = {s1, s2, . . . , st} be a subset of Z/nZ and DN , in the form of (1.4.2), be a
generalized parity check matrix for the linear cyclic code of length n over Fq with the
defining set N . Let M be a matrix with n columns and J ⊆ Z/nZ. We denote by MJ the
submatrix of M consisting of columns of M with indices from the set J . The last minimum
distance lower bound that we mention here is due to a work by van Lint and Wilson in
1986 [102]. This distance bound is a generalization of the Roos bound.

Theorem 1.4.9 [102] Let M and N be non-empty subsets of Z/nZ. Suppose C is a
length n linear cyclic code over Fq with the defining set A such that M + N ⊆ A. If for
every I ⊆ Z/nZ with |I| < s the inequality rank(DN

I) + rank(DM
I) > |I| holds, then

d(C) ≥ s.
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Another well-known technique to produce lower bounds on the minimum distance of
linear cyclic codes is van Lint-Wilson shifting bound. The shifting bound is an algorithmic
method and is more suitable for computational examples. We refer to [102, Section 5] for
more information about the shifting bound.

1.5 Linear constacyclic codes over F4

Constacyclic codes are one of the well-known generalizations of linear cyclic codes. They
were first introduced in [9] with many similar properties as linear cyclic codes. In this thesis,
we only consider constacyclic codes over F4 due to their application in construction of binary
quantum codes. Because of the similarity between the linear cyclic and constacyclic codes,
in this section, we mainly concentrate on the construction and algebraic properties of con-
stacyclic codes. Throughout this section, n is a positive odd integer and F4 = {0, 1, ω, ω2}
is the field of four elements, where ω2 = ω + 1.

Definition 1.5.1 For each 0 6= η ∈ F4, a linear code C ⊆ Fn4 is called η-constacyclic, if for
each codeword (a0, a1, . . . , an−1) ∈ C, the vector (ηan−1, a0, . . . , an−2) is also in C.

When η = 1, η-constacyclic codes are linear cyclic codes. In this thesis, we only con-
sider η-constacyclic codes over F4, where η ∈ {ω, ω2}. Recall that the length n vector
(a0, a1, . . . , an−1) ∈ Fn4 can alternatively be represented using its polynomial form which

is
n−1∑
i=0

aix
i. Similar to linear cyclic codes, there is a one-to-one correspondence between

η-constacyclic codes and ideals of the ring F4[x]/〈xn − η〉. The ring F4[x]/〈xn − η〉 is a
principal ideal ring and hence each ideal (or equivalently η-constacyclic code) is generated
by a unique monic polynomial g(x) over F4 such that g(x) | xn − η. The polynomial g(x)
with this property is called the generator polynomial of the corresponding constacyclic code.
Thus we use the factorization of xn − η to find all the different η-constacyclic codes. There
are no repeated factors in the factorization of xn−η because we assumed that gcd(n, 2) = 1.

Since η ∈ {ω, ω2}, the multiplicative order of η is 3. Let δ be a fixed primitive 3n-th
root of unity in a finite field extension of F4 such that

δn = η.

Let also Ω = {1 + 3j : 0 ≤ j ≤ n − 1}. Then the roots of xn − η are in the form δ1+3a

for each 1 + 3a ∈ Ω. For each 1 + 3a ∈ Ω, the 4-cyclotomic coset Z(1 + 3a) is a subset
of Ω. This is because 4(1 + 3a) = 1 + 3(4a + 1) ≡ 1 + 3a′ (mod 3n) for some integer a′.
Therefore the 4-cyclotomic cosets partition the set Ω. Let Z(a1), Z(a2), . . . , Z(at) be all the

different 4-cyclotomic cosets modulo 3n such that Ω =
t⋃
i=1

Z(ai). Then similar to the result
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of Theorem 1.3.2 for linear cyclic codes, we can factorize xn − η as

xn − η =
t∏

j=1
Mj , (1.5.1)

where Mj =
∏

i∈Z(aj)
(x− δi) for each 1 ≤ j ≤ t is a monic irreducible factor over F4. Hence

if g(x) is the generator polynomial of an η-constacyclic code over F4 of length n, then the
roots of g(x) are {δa : a ∈ A}, where A is a unique union of 4-cyclotomic cosets modulo 3n.
The set A is called the defining set of the η-constacyclic code generated by g(x). Moreover,
the set {δa : g(δa) = 0} is referred to as the zero set of the η-constacyclic code generated
by g(x).

Let C be an η-constacyclic code over F4 of length n with the generator polynomial

g(x) =
n−k∑
i=0

gix
i, where gn−k 6= 0. Similar to the linear cyclic codes, the code C has

dimension k = n− deg
(
g(x)

)
and the matrix

G =


g0 g1 · · · gn−k 0 0 · · · 0
0 g0 g1 · · · gn−k 0 · · · 0
· · · · · · · · · · · · · · · · · ·

0 0 · · · 0 g0 g1 · · · gn−k

 (1.5.2)

is a generator matrix of the code C.

Example 1.5.2 We find all the ω-constacyclic codes of length 7 over F4. First note that
Ω = {1, 4, 7, 10, 13, 16, 19} and all the roots of x7 − ω are in the form δi, where i ∈ Ω
and δ is a fixed primitive 21-th root of unity in F43 such that δ7 = ω. Moreover, Ω =
Z(1)∪Z(7)∪Z(10). Using (1.5.1), we can decompose x7−ω into the product of irreducible
factors as

x7 − ω = (x− ω)(x3 + ω2x+ 1)(x3 + ωx2 + 1).

There are 8 different combinations of these irreducible factors which give the generator
polynomials of all the ω-constacyclic codes of length 7 over F4. For instance, the ω-
constacyclic code C with the generator polynomial g(x) = (x3 + ω2x+ 1)(x3 + ωx2 + 1) =
x6 + ωx5 + ω2x4 + x3 + ωx2 + ω2x + 1 is one of such codes. The code C has the defin-
ing set {1, 4, 10, 13, 16, 19} and is a one-dimensional subspace of F4. In particular, the set
{(1, ω, ω2, 1, ω, ω2, 1)} forms a basis for C.

Next we give the generator polynomial and the defining set of the Euclidean and the
Hermitian duals of a given η-constacyclic code over F4. Let f(x) ∈ F4[x]. We recall that
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the reciprocal polynomial of f(x) =
k∑
i=0

aix
i is defined by f∗(x) = xkf(x−1) =

k∑
i=0

ak−ix
i,

and the conjugate polynomial of f(x) is f(x) =
k∑
i=0

aix
i. Recall that η ∈ {ω, ω2}.

Theorem 1.5.3 [59, Section II] [105, Lemma 2.1] Let C be an η-constacyclic code of
length n over F4 with the generator polynomial g(x) and the defining set A. Let h(x) =
(xn − η)/g(x). Then the following statements hold.

1. The Euclidean dual of C is an η2-constacyclic code of length n over F4 with the
generator polynomial h∗(x)/h(0). Moreover, the set

A⊥ = Ω′ \
(
(−A) mod 3n

)
is the defining set for C⊥, where Ω′ = {(3k + 2) mod 3n : 0 ≤ k ≤ n− 1}.

2. The Hermitian dual of C is an η-constacyclic code of length n over F4 with the gen-
erator polynomial h∗(x)/h(0) and the defining set

A⊥h = Ω \
(
(−2A) mod 3n

)
.

Similar to the linear cyclic codes, there are various upper and lower bounds for the
minimum distance of constacyclic codes. Let C be an η-constacyclic code over F4 of length
n with the defining set A = {i1, i2, . . . , in−k}. The matrix

H =


1 δi1 δ2i1 · · · δ(n−1)i1

1 δi2 δ2i2 · · · δ(n−1)i2

...
1 δin−k δ2in−k · · · δ(n−1)in−k

 (1.5.3)

is a generalized parity check matrix for the code C. We only state the BCH minimum
distance lower bound for constacyclic codes.

Theorem 1.5.4 [62, Lemma 4] Let C be an η-constacyclic code over F4 of length n. Let
α be a primitive n-th root of unity in a finite field extension of F4 and B = {ηαi : i ∈ A},
where A ⊆ Z/3nZ is a consecutive set of size t − 1. If B is a subset of the zero set of C,
then d(C) ≥ t.

Many other minimum distance bounds for the constacyclic codes are discussed in [85].
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1.6 Equivalence of linear codes

Suppose that C is a linear code over Fq. Let Ai be the number of codewords of weight i
in C. The list [Ai : 0 ≤ i ≤ n] is called the weight distribution of C. In general, computing
the weight distribution of specific codes or families of codes is an active research area.

There are different notions of equivalence for linear codes over Fq. In this section, we
present several such equivalence concepts that preserve the weight distribution when passing
from one linear code to another. We also recall some results on equivalence of linear cyclic
and constacyclic codes.

In general, finding linear codes with good parameters is one of the most challenging
tasks in algebraic coding theory. Several attempts have been made in the literature to
make the computer search for linear codes with good parameters more systematic. However,
the computationally challenging obstacles such as minimum distance computation, which
requires a considerable amount of time, have hindered the search process. One way to speed
up the process of finding good codes is to design more efficient search algorithms using the
properties such as equivalence of codes. For instance, recently, several new linear codes were
discovered by using the equivalence of linear cyclic and constacyclic codes, and designing
efficient algorithms to search for new linear codes, see for example [2, 5–7].

The results of this section are stated for linear codes over finite fields. However, almost
all of them remain valid for non-linear codes and codes over rings. We begin with the
simplest concept of equivalence on codes which is called permutation equivalence of codes.

Definition 1.6.1 [55, Section 1.6] Let C1 and C2 be two linear codes of length n over Fq.
Then C1 and C2 are called permutation equivalent if there exists a permutation of coordi-
nates which sends C1 to C2.

An n×n matrix P is called a permutation matrix if it has exactly one 1 in each row and
each column, and the other entries are zero. Let C1 and C2 be two length n linear codes
over Fq and G be a generator matrix of C1. Then C1 and C2 are permutation equivalent if
there exists an n× n permutation matrix P such that GP is a generator matrix for C2.

Let S be a k×n generator matrix for a linear code C over Fq andM be a k×k invertible
matrix over Fq. It is easy to see that the linear codes generated by MS and S are the same
and the matrix MS is also a generator matrix for the code C. Therefore, if P is an n× n
permutation matrix, then the codes generated by MSP and S are equivalent. We use this
to find a generator matrix in standard form. A generator matrix S of an [n, k] linear code
is said to be in standard form if

S =
[
Ik A

]
,

where Ik is the k × k identity matrix and A is a k × (n− k) matrix. A generator matrix in
standard form is very useful for data transmission. For instance, if we can find a generator
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matrix in the form of S, then the information symbols (messages) will occur in the first k
positions of a codeword.

Another application of permutation equivalence of linear codes is in the security of the
McEliece cryptosystem. Let G be a generator matrix of a binary linear [n, k, d] code C with
n = 2m, k = n − mr, and d = 2r + 1 for some positive integer r. We also assume that
there exists a fast decoding algorithm for the code C. Let S be a non-singular binary k× k
matrix, P be an n × n binary permutation matrix, and G′ = SGP . Then the McEliece
cryptosystem is designed using such a binary code and has the following properties. Public
key is the matrix G′ = SGP which is a generator matrix of an equivalent code to C. The
encryption map E : Fk2 → Fn2 is defined by E(x) = xG′+e, where e is a random error vector
of Hamming weight r. The decryption is done by the following steps. First, y′ = yP−1

is computed from the ciphertext y = E(x). Note that y′ = (xSGP + e)P−1 = xSG + e′,
where e′ is of Hamming weight at most r. Next, we apply a decoding algorithm on y′ to
obtain the vector xS. Finally, the plaintext is recovered after multiplying by S−1.

A generalization of permutation equivalence of linear codes is given by both permuting
the coordinates and scaling each coordinate by a non-zero value. An n × n matrix M is
called a monomial matrix over Fq if M has exactly one non-zero entry from Fq in each
row and each column. It is easy to see that each monomial matrix M can be decomposed
as M = PD, where P is a permutation matrix and D is a non-singular diagonal matrix
over Fq.

Definition 1.6.2 [55, Section 1.7] Let C1 and C2 be two linear codes of length n over Fq
and G be a generator matrix for C1. Linear codes C1 and C2 are called monomially equiv-
alent provided that there exists an n × n monomial matrix M over Fq such that GM is a
generator matrix for C2.

In the binary case, permutation and monomial equivalence of linear codes are the same.
The monomial equivalence of codes can be generalized one more step. If φ is a field auto-
morphism of Fq, then we can apply the following process to get a linear code with the same
weight distribution:

1. permute the coordinates,

2. scale each coordinate by a non-zero factor,

3. apply the map φ to all the coordinates.

This process is usually denoted by Mφ, where M is the monomial matrix corresponding to
the first two steps. This thesis only deals with the permutation and monomial equivalence
of linear codes.

Let C and C ′ be two length n linear codes over Fq and φ be an Fq-linear bijection
from C to C ′ preserving the Hamming weight. Then φ is an isometry of the spaces C
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and C ′ equipped with the Hamming distance function d(x, y) as the metric. This is because
for each x and y ∈ C we have

d(x, y) = wt(x− y) = wt(φ(x− y)) = wt(φ(x)− φ(y)) = d(φ(x), φ(y)).

We call such mapping isometry of linear codes and the codes C and C ′ isometric equivalent.
Although the isometry of linear codes looks different from the previous notions of equivalence
for linear codes, it was proved by MacWilliams in [71] that the isometry and the monomial
equivalence of binary linear codes are identical concepts in the sense of the next theorem.
A generalization of MacWilliams’ result over a general finite field is quoted below.

Theorem 1.6.3 [15, Corollary 1] Let C and C ′ be two linear codes over a finite field.
Then C and C ′ are isometric equivalent if and only if these codes are monomial equivalent.

In spite of the above connection between monomial equivalence and isometry of linear
codes, occasionally using one of these two definitions can be easier than the other. Therefore,
we use both notions in the future sections and keep in mind that they are equivalent
definitions.

1.6.1 Equivalence of linear cyclic codes

In this section, we give restriction of the mentioned equivalence definitions to the family of
linear cyclic codes over Fq and provide several known results from the literature. Throughout
this section, n always is a positive integer such that gcd(n, q) = 1. Let α denote a fixed
primitive n-th root of unity in K which is a finite field extension of Fq.

For each integer a such that gcd(n, a) = 1, the function µa defined on Z/nZ by µa(x) =
(ax) mod n is called a multiplier. Clearly, multipliers are permutations of Z/nZ. Let µa be a
multiplier for some integer a. If Z(b) = {(bqi) mod n : 0 ≤ i ≤ m−1} is a q-cyclotomic coset
modulo n containing b for some b ∈ Z/nZ, then µa(Z(b)) = Z(ab). Therefore multipliers
act on the set of all cyclotomic cosets. Moreover, multipliers preserve the size of cyclotomic
cosets. Note also that µqi acts trivially on the cyclotomic cosets. Hence if A is the defining
set of a length n linear cyclic code and µa is a multiplier on Z/nZ, then µa(A) is also the
defining set for a length n linear cyclic code. The next result shows that multipliers map
the defining set of a linear cyclic code to the defining set of a permutation equivalent cyclic
code.

Theorem 1.6.4 [72, Section 8.5] Let c be an integer such that gcd(c, n) = 1 and A1 and A2

be defining sets of two linear cyclic codes of length n over Fq. If µc(A1) = A2, then linear
cyclic codes with the defining sets A1 and A2 are permutation equivalent.

As an application of the previous theorem, we can easily see that each two linear
cyclic codes with the defining sets A and µ−1(A) = −A are permutation equivalent. Let
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gcd(n, φ(n)) = 1, where φ is Euler’s totient function, and let C be a length n linear cyclic
code over Fq. Palfy, in 1987, characterized all length n linear cyclic codes over Fq that are
permutation equivalent to C using the action of multipliers on the defining set of C [77].

Theorem 1.6.5 [54, Theorem 1.1] Let C and C ′ be two linear cyclic codes of length n

over Fq with defining sets A1 and A2, respectively and gcd(n, φ(n)) = 1. The codes C and C ′

are permutation equivalent if and only if there exists a multiplier µa such that µa(A1) = A2.

This result helps us to find all permutation equivalent linear cyclic codes of certain
lengths.

Example 1.6.6 Let q = 2 and n = 15. Then the 2-cyclotomic cosets modulo n are
A0 = {0}, A1 = {1, 2, 4, 8}, A3 = {3, 6, 9, 12}, A5 = {5, 10}, and A7 = {7, 11, 13, 14}. Since
gcd(15, φ(15)) = gcd(15, 8) = 1, by Theorem 1.6.5, all the permutation equivalent codes
can be determined by multipliers. For example, 7A1 = A7 and therefore the linear cyclic
codes with the defining sets A1 and A7 are permutation equivalent. Moreover, (Z/nZ)∗ =
{1, 2, 4, 7, 8, 11, 13, 14} and all these values map A3 to A3. This implies that the linear cyclic
code with the defining set A3 is not permutation equivalent to the linear cyclic codes with
the defining sets A1 and A7.

Furthermore, let B ⊆ A0 ∪ A3 ∪ A5 be a union of cyclotomic cosets. The sets A1 ∪ B
and A7 ∪ B are again the defining sets of two permutation equivalent linear cyclic codes
since 7(A1 ∪B) = A7 ∪B.

There are other permutations of Z/nZ called generalized multipliers for investigating
permutation equivalent cyclic codes [54]. In particular, there exist examples of permuta-
tion equivalent linear cyclic codes given by the generalized multipliers. Sometimes such
permutation equivalent linear cyclic codes are not permutation equivalent by the action of
multipliers, see for example [54, Examples 3.1-3.3].

Definition 1.6.7 Let n = pm and k ≤ m, where p is an odd prime and k and m ≥ 2 are
positive integers. For each 1 ≤ d < pk such that gcd(d, p) = 1, the mapMd : Z/nZ→ Z/nZ
defined by Md(i+ jpk) = (id mod pk) + jpk is called a generalized multiplier of Z/nZ.

Let µ and M be a multiplier and a generalized multiplier defined on Z/nZ, respec-
tively. The composition map Mµ on Z/nZ is defined by Mµ(x) = µ(M(x)) for each
x ∈ Z/nZ. Let π be a permutation of Z/nZ and v = (v0, . . . , vn−1) ∈ Fnq . Define πv to be
(vπ−1(0), . . . , vπ−1(n−1)) ∈ Fnq . The map v 7→ πv is linear over Fq. The matrix M such that
πv = vM for each v is called the permutation matrix corresponding to π.

Theorem 1.6.8 [54, Theorem 3.1] Let C and C ′ be two linear cyclic codes of length p2

over Fq, where p is an odd prime and gcd(q, p) = 1. If C and C ′ are permutation equivalent,
then they are equivalent by the action of permutation matrices corresponding to µ or Mµ,
where µ is a multiplier and M is a generalized multiplier.
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We call the map ψb on Z/nZ defined by ψb(x) = (x + b) mod n a shift map. The next
theorem shows that certain shift maps send the defining set of a linear cyclic code to the
defining set of a monomially equivalent linear cyclic code.

Theorem 1.6.9 [6] Let n be a positive integer such that gcd(n, q) = 1 and A1 and A2

be defining sets of two length n linear cyclic codes C1 and C2 over Fq, respectively. If b
is a positive integer such that n divides b|A1|(q − 1) and ψb(A1) = A2, where ψb(x) =
(x+ b) mod n, then the codes C1 and C2 are monomially equivalent.

The results of Theorems 1.6.4 and 1.6.9 can be combined to state a more general con-
dition for monomial equivalence of linear cyclic codes.

Corollary 1.6.10 [6] Let A1 and A2 be defining sets of two linear cyclic codes of length n
over Fq. Let θ(x) = (ex+b) mod n, where gcd(e, n) = 1 and n | b|A1|(q−1). If θ(A1) = A2,
then linear cyclic codes with the defining sets A1 and A2 are monomially equivalent.

Two equivalent linear cyclic codes under the action of an affine map θ defined above will
be called affine equivalent. Let m and n be two positive integers such that gcd(nm, q) = 1.
If g(x) ∈ Fq[x] and g(x) | xn−1, then g(x) | xnm−1. Thus generator polynomials of length
n linear cyclic codes remain generator polynomials for linear cyclic codes of length nm. The
following theorem shows that if two cyclic codes of length n are affine equivalent, then the
linear cyclic codes of length nm with the same generator polynomials are affine equivalent.

Theorem 1.6.11 [6] Let n and m be positive integers such that gcd(nm, q) = 1 and g(x)
and h(x) be generator polynomials of two linear cyclic codes of length n over Fq. If the
cyclic codes generated by g(x) and h(x) are affine equivalent, then g(x) and h(x) generate
affine equivalent cyclic codes of length nm.

Note that, in the above theorem, the cyclic codes of length nm generated by g(x) and
h(x) have minimum distance of at most two since g(x), h(x) | xn − 1 and thus xn − 1 is in
correspondence with a weight two codeword.

1.6.2 Equivalence of linear constacyclic codes

This section briefly recalls recent results on isometric, monomial, and permutation equiva-
lence of constacyclic codes. To keep the statements simple and also apply the same results
to prune the search algorithm for binary quantum codes, we restrict our attention to con-
stacyclic codes over F4. Recall that F4 = {0, 1, ω, ω2} is the field of four elements, where
ω2 = ω + 1. Throughout this section, we assume that n is a positive odd integer.

Recall that for each a ∈ F4, the conjugate of a is defined by a = a2. By [105, Theorem
3.2], the conjugation map

Θ : F4[x]/〈xn − ω〉 → F4[x]/〈xn − ω2〉 (1.6.1)
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defined by Θ(
n−1∑
i=0

aix
i) =

n−1∑
i=0

aix
i is an isometry of linear codes between ω- and ω2-

constacyclic codes over F4. Therefore, Θ gives a one-to-one correspondence between the
set of all ω-constacyclic codes of length n and all ω2-constacyclic codes of length n over F4.
Hence, from now on, we restrict our attention only to ω-constacyclic codes over F4. An
isometry between cyclic codes and ω-constacyclic codes of certain lengths over F4 is given
below.

Theorem 1.6.12 [11, Theorem 15] Let n be a positive odd integer. There exists a one-to-
one correspondence, given by an isometry of linear codes, between ω-constacyclic codes and
linear cyclic codes of length n over F4 if and only if gcd(3, n) = 1. In particular,

1. If n ≡ 1 (mod 3), then the map Θ1 : F4[x]/〈xn − ω〉 → F4[x]/〈xn − 1〉 defined by
Θ1(p(x)) = p(ωx) mod (xn − 1) is an isometry of linear codes.

2. If n ≡ 2 (mod 3), then the map Θ2 : F4[x]/〈xn − ω〉 → F4[x]/〈xn − 1〉 defined by
Θ2(p(x)) = p(ω2x) mod (xn − 1) is an isometry of ω-constacyclic codes.

Thus only when 3 | n, we have that ω-constacyclic codes and cyclic codes of length n

over F4 can have different parameters. The following lemma states another useful isometry
of ω-constacyclic codes.

Lemma 1.6.13 [5, Lemma 2.4] Let n and e = 3k + 1 be positive integers such that n
is odd and gcd(n, e) = 1. Then the map ψ : F4[x]/〈xn − ω〉 → F4[x]/〈xn − ω〉 defined by
ψ(f(x)) = f(xe) mod (xn − ω) is an isometry of ω-constacyclic codes.

It is not difficult to see that the isometry ψ defined above permutes the coordinates.
Let A1 and A2 be defining sets of two ω-constacyclic codes of length n over F4. By Lemma
1.6.13, if there exists a multiplier µe defined on Z/3nZ such that µe(A1) = A2, then the
ω-constacyclic codes with the defining sets A1 and A2 are isometrically equivalent.

Example 1.6.14 Let n = 15 and δ be a primitive 45-th root of unity in a finite field exten-
sion of F4 such that δn = ω. Then Z(1) = {1, 4, 16, 19, 31, 34}, Z(7) = {7, 28, 22, 43, 37, 13},
and Z(10) = {10, 40, 25}. The multiplier µ7 gives a bijection between Z(1) and Z(7).
Therefore, the ω-constacyclic codes with the defining sets Z(1) and Z(7) are isometrically
equivalent by Theorem 1.6.13.

Moreover, µ7(Z(10)) = Z(10). Therefore, the ω-constacyclic codes with the defining
sets Z(1) ∪ Z(10) and Z(7) ∪ Z(10) are also isometrically equivalent.

The next result discusses the affine equivalence of constacyclic codes over F4. This is
analogous to the result of Corollary 1.6.10 for cyclic codes. We denote the defining set of
an ω-constacyclic code with the generator polynomial g(x) by Ag.
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Theorem 1.6.15 [2] Let n be a positive odd integer and C1 and C2 be two ω-constacyclic
codes over F4 of length n with the generator polynomials g(x) and h(x), respectively. Let
e = 3k + 1 such that gcd(3n, e) = 1. If there exists a map θ(x) = (ex + 3j) mod (3n) on
Z/3nZ such that n divides 3j deg(g(x)) and θ(Ag) = Ah, then C1 and C2 are monomially
equivalent.

Proof. This is the q = 4 instance of Theorem 3 of [2].

1.7 Quantum error-control codes

Similar to the classical linear codes, quantum error-control codes (QECCs) are used to pro-
tect quantum information against noise. In general, quantum particles are very fragile and
they are easily impacted by noise, waves, and other particles. These unwanted interac-
tions with the environment show up as noise in quantum information processing systems.
Therefore performing large-scale quantum computations is practically impossible unless er-
ror correction and detection methods are applied to protect quantum information from
errors. The most famous quantum algorithm is Shor’s algorithm [93] for integer factoriza-
tion, which is exponentially faster than the most efficient known classical integer factoring
algorithm. If a quantum computer with a sufficient number of qubits (quantum bits) could
gain resistance against quantum noise and other quantum decoherences, then Shor’s algo-
rithm could be used to break some public-key cryptography schemes, such as the widely
used RSA (Rivest–Shamir–Adleman) scheme. Another impact of quantum computing is
on analyzing massive amounts of data. Quantum computing can process large data sets at
much faster speeds than classical computers and also analyze data at a more granular level
to identify patterns and anomalies.

For a long time, it was unknown whether it would be possible to protect quantum
information against noise. The first quantum error-correcting code was discovered by Shor
[94]. This code, which is known as Shor’s 9-qubit-code, encodes one qubit into nine qubits in
such a way that the resulting state can be protected against arbitrary single-qubit error on
each of these nine qubits. The QECCs are mostly developed based on similar principles as
the classical error-control codes. However, there are three main differences between classical
and quantum information which have hindered the adaptation of classical ideas for quantum
information. These challenges are:

1. no-cloning theorem, which states that quantum information cannot be duplicated,

2. errors are continuous, which potentially may require infinite resources to correct a
random error, and

3. the fact that measurement destroys quantum information.
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The second item above can be overcome by choosing a suitable error model. An im-
portant family of QECCs is the class of quantum stabilizer codes. These codes were first
discovered independently by Gottesman [41], and Calderbank, Rains, Shor, and Sloane [20].
The theory of quantum stabilizer codes builds a connection between classical and quantum
codes, allowing us to import certain classical codes for use as quantum codes. This thesis
deals only with quantum stabilizer codes. Shor’s 9-qubit-code, which was mentioned above,
is an example of a quantum stabilizer code.

In the rest of this section, we give the connection between classical and quantum codes.
Moreover, we recall several well-known constructions of quantum codes from binary and
quaternary codes. In the next section, we will provide a brief overview of quantum stabilizer
codes that is sufficient for understanding our new results. For interested readers, a more
detailed description of stabilizer codes from a quantum mechanical point of view is provided
in Appendix A.

1.7.1 Mathematical formalism of stabilizer codes

Recall that F4 = {0, 1, w, w2} is the field of four elements, where w2 = w + 1. An additive
subgroup C ⊆ Fn4 is called an additive quaternary code. We skip the adjective “quaternary”
throughout and abbreviate the name to “additive code.” An additive code C ⊆ Fn4 with
an F2-dimension k will be denoted by (n, 2k). Similar to linear codes, the minimum weight
among all non-zero codewords of an additive code C is called the minimum distance of C,
and it will be represented by d(C).

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) ∈ Fn4 . The trace map Tr : F4 → F2

is defined by Tr(x) = x + x, where x = x2. We define conjugate of the vector u by
u = (u1, u2, . . . , un). The trace inner product of u and v is defined by

u ∗ v = Tr(u · v) = (u · v) + (u · v) =
n∑
i=1

(uivi + uivi). (1.7.1)

If C is an (n, 2k) additive code, its dual with respect to the trace inner product is defined
by

C⊥t = {u ∈ Fn4 : u ∗ v = 0 for all v ∈ C}.

Here we use the notation ∗ for the trace inner product following the approach of [20]. Note
that the inner product ∗ can be equivalently defined using a symplectic inner product (see
(A.1.6) for more details). It is easy to see that ∗ is non-degenerate and C⊥t is an (n, 22n−k)
additive code. The code C is called self-orthogonal (respectively self-dual) with respect to
the trace inner product if C ⊆ C⊥t (respectively if C = C⊥t). Moreover, we call an additive
code C a dual-containing code with respect to the trace inner product if C⊥t ⊆ C. Let C
be an (n, 2k) additive code. A k × n matrix M is called a generator matrix for C, if the
rows of M form a basis for C over F2.
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We are now coming to the mathematical formalism of binary quantum stabilizer codes.
The parameters of a binary quantum stabilizer code that encodes k logical qubits into n
physical qubits and has minimum distance d are denoted by Jn, k, dK. In particular, an
Jn, k, dK quantum code consists of 2k quantum states, and it is capable of correcting each
error of weight at most bd−1

2 c. Quantum codes can similarly be defined over larger alpha-
bets; however, in this thesis, we only deal with binary quantum codes. The mathematical
formalism of the quantum stabilizer code, as described in the next theorem, provides a
sufficient condition for constructing binary quantum codes from additive codes over F4.

Theorem 1.7.1 [20] Let C ⊆ Fn4 be an (n, 2n+k, d) additive code such that C⊥t ⊆ C. Then
an Jn, k, d′K binary quantum stabilizer code can be constructed, where d′ is the minimum
weight in C \ C⊥t if k > 0 and d′ = d otherwise.

Proof. The proof follows from [20, Theorem 2].

From now on, we call a quantum stabilizer code simply a quantum code. If the quantum
code of Theorem 1.7.1 has minimum distance d′ = d, then the code is called a pure quantum
code. Otherwise, it is called impure. Throughout this thesis, we never deal with the actual
states of a binary quantum code (given in Theorem A.1.1), and we mainly apply the sufficient
condition of Theorem 1.7.1 to construct a binary quantum code. The next example deals
with the smallest length binary quantum code that is capable of correcting any arbitrary
error of weight one.

Example 1.7.2 Let n = 5 and C be the trace dual of the additive code generated by

M =


1 0 1 ω ω

ω 0 ω ω2 ω2

0 1 ω ω 1
0 ω ω2 ω2 ω

.

An easy computation shows that C⊥t ⊆ C. Hence by Theorem 1.7.1, we can construct a
quantum code using the code C. Moreover, d(C \ C⊥t) = 3, which implies that such a
quantum code has parameters J5, 1, 3K. Later, in Example A.1.2, we compute the actual
states of such quantum code.

In general, the stabilizer formalism of quantum codes allows many classical codes to
be reused to construct binary quantum codes. In fact many of the best known binary
quantum codes are stabilizer codes. We only consider stabilizer codes in this thesis and, in
the following chapters, we design new constructions and infinite families of good quantum
stabilizer codes from various families of classical codes. We also give many examples of
record-breaking binary quantum codes.
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1.7.2 Constructions of binary quantum codes

Similar to linear codes, we can modify given quantum codes to construct a new quantum
code. Using (known) quantum codes to find new ones can simplify the task of finding
good quantum codes, which can otherwise be quite a difficult problem. Let C and C ′ be
Jn, k, dK and Jn′, k′, d′K quantum codes, respectively. Then the direct sum code, which is
denoted by C ⊕ C ′, is a quantum code with parameters Jn + n′, k + k′,min{d, d′}K. A list
of other important secondary constructions of quantum codes is provided below. These
constructions are based on lengthening, puncturing, or selecting a subcode of the original
code.

Theorem 1.7.3 [20, Theorem 6] Let C be an Jn, k, dK binary quantum code.

1. If k > 0, then there exists an Jn+ 1, k, dK binary quantum code.

2. If k > 1, or if k ≥ 1 and the code C is pure, then there exists an Jn, k − 1, dK binary
quantum code.

3. If n ≥ 2 and C is pure, then there exists an Jn− 1, k+ 1, d− 1K binary quantum code.

4. If n ≥ 2, then there exists an Jn− 1, k, d− 1K binary quantum code.

Example 1.7.4 Let

G =



1 0 ω2 ω 1 0 0 0
ω 0 1 ω2 ω 0 0 0
0 1 1 1 1 0 0 0
0 ω ω ω ω 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


be a generator matrix of an additive code over F4. One can easily see that every two rows
of G are orthogonal with respect to the trace inner product. Let C be the trace dual of the
code generated by G. Then C is an (8, 29) additive code over F4 and C⊥t ⊆ C. Therefore
Theorem 1.7.3 implies the existence of a quantum code Q.

Moreover, d(C) = 1 and min{wt(u) : u ∈ C \C⊥t} = 3 which implies that Q is impure.
Therefore, Q is an J8, 1, 3K binary quantum code. In fact, Q is the best-known quantum
code with the length 8 and dimension 1 as presented in [43]. Now by applying the secondary
constructions given in Theorem 1.7.3 parts (1) and (4) to Q, we get J9, 1, 3K and J7, 1, 2K
quantum codes.

The Calderbank–Shor–Steane (CSS) construction is one of the first and simplest con-
structions of quantum codes in the literature. This construction combines two binary linear
codes to construct a quantum code.
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Theorem 1.7.5 [20, Theorem 9] Let C1 and C2 be two binary linear codes with parameters
[n, k1] and [n, k2] such that C1 ⊆ C2. Then there exists a quantum code with parameters
Jn, k2 − k1, dK, where d = min{d(C2 \ C1), d(C⊥1 \ C⊥2 )}.

Note that the CSS construction is a special case of stabilizer formalism. In particular,
the quantum code of the CSS construction is formed by putting C = ω2C⊥1 + ωC2. Then
C⊥t = ωC1+ω2C⊥2 . An easy observation shows that C⊥t ⊆ C. Thus C is in correspondence
to a binary quantum code by Theorem 1.7.1.

Another important construction of quantum codes is by shortening of the additive
codes [86]. Let C ⊆ Fn4 be an additive code. For each u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) ∈ C, we define

{u, v}S = (u1v1 + u1v1, u2v2 + u2v2, . . . , unvn + unvn). (1.7.2)

The puncture code of C, which is a binary linear code of length n, is defined by

P (C) = (spanF2{{u, v}S : u, v ∈ C})⊥. (1.7.3)

The next result gives a shortening construction of quantum codes.

Theorem 1.7.6 [45, Theorem 11] [86, Theorem 3] Let C be an additive code, not nec-
essarily trace dual-containing, with parameters (n, 22n−k, d). If there exists a codeword of
weight r in P (C⊥t), then there exists a pure Jr, r − k′, d′K binary quantum code for some
k′ ≤ k and d′ ≥ d.

The next theorem provides a useful connection between the Hermitian inner product and
the trace inner product for linear codes over F4. Since Hermitian dual-containing codes have
been extensively studied in the literature, the following theorem allows us to characterize
all the dual-containing linear codes over F4 with respect to the trace inner product.

Theorem 1.7.7 [20, Theorem 3] A linear code C ⊆ Fn4 is dual-containing with respect
to the trace inner product if and only if it is dual-containing with respect to the Hermitian
inner product.

We now rephrase the result of Theorem 1.7.1 for the special case when C is a linear
code over F4 and dual-containing with respect to the Hermitian inner product. The next
theorem is a straightforward consequence of Theorems 1.7.1 and 1.7.7.

Theorem 1.7.8 Let C be a linear [n, k, d] code over F4 such that C⊥h ⊆ C. Then we can
construct an Jn, 2k−n, d′K binary quantum code, where d′ is the minimum weight in C\C⊥h.
If C = C⊥h then d′ = d.

The next construction extends a linear code, which is not necessarily Hermitian dual-
containing, to a Hermitian dual-containing linear code of a larger length over F4. It also
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bounds the minimum distance of the constructed quantum codes using the minimum dis-
tance of certain linear codes.

Theorem 1.7.9 [68]. Let C be an [n, k] linear code over F4 and e = n−k−dim(C∩C⊥h).
Then there exists a quantum code with parameters Jn+ e, 2k − n+ e, dK, where

d ≥ min{d(C), d(C + C⊥h) + 1}.

In Section 3.2, we will generalize the above construction by allowing its ingredient to be
any additive code over F4.

1.8 Summary of our new techniques and results

The most successful and common technique to date for constructing binary quantum codes
is the additive or stabilizer construction, which was introduced in the previous section. One
appealing aspect of this construction is its links to classical coding theory, which facilitate
the construction of good codes. For example, see Theorems 1.7.1 and 1.7.5. In particular,
many of the currently best-known binary quantum codes are constructed using the link to
classical codes [20,43,60]. This thesis exclusively relies on the connections to classical codes
for constructing good quantum codes.

In this thesis, we chose to present our new results in Chapters 2, 3, and 4 in a way that
mostly separates them from the foundational background. These chapters were developed
in parallel with each of them also becoming a basis for a separate journal paper. Two of
the papers are already accepted for publication (results of Chapters 2 and 4) [26, 30] and
we plan to submit the last paper after the defence. This section briefly reviews the main
results obtained, and techniques used, in Chapters 2, 3, and 4.

Techniques. The concept of additive twisted codes was introduced about 25 years ago.
While they have been widely referenced in literature, they have not been developed much
since their invention. We introduce a new perspective on twisted codes by viewing each
code as a subgroup (additive subcode) of a particular linear cyclic code. This new approach
provides a stronger connection between twisted codes and linear cyclic codes, enabling us
to give novel minimum distance lower and upper bounds for twisted codes and show new
similarities between twisted codes and linear cyclic codes.

In particular, we prove that the Hartmann-Tzeng (HT) bound holds for twisted codes.
Our results revitalize the use of the HT bound and reveal new applications of twisted codes.
Specifically, we demonstrate that the HT bound is well-suited for twisted codes. A strategic
utilization of the concept of unsaturated intersection led us to the construction of families
of record-breaking, and sometimes optimal, twisted codes.

The γ value is one of the main ingredients in the construction of twisted codes, yet its
impact on code parameters has not been discussed in literature. We show that different γ
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values can lead to twisted codes with distinct minimum distances, highlighting the need to
examine the conditions for which two γ values yield the same code parameters. To address
this issue, we show that all γ values within the same orbit of certain group action generate
twisted codes with the same parameters.

The literature has placed great emphasis on the importance of the dual-containment
condition in the construction of stabilizer codes, while essentially no attention has been
given to codes that fail this condition. In reality, there exist many classical codes with good
parameters that are not dual-containing but are nearly dual-containing, meaning they con-
tain a large subset of their dual. We quantify this by proving formulas for dual-containment
deficiency of a code. Using this formula, we give a novel construction of binary stabilizer
quantum codes that makes it possible to also use the nearly dual-containing codes as its
ingredients. In particular, we revive interest in duadic codes by demonstrating that ad-
justments to nearly dual-containing constructions are especially suitable for certain duadic
codes and they led us to discovering many record-breaking codes.

We find new sufficient conditions on equivalence of cyclic codes beyond affine equivalence.
Our results can be used to classify all equivalent cyclic codes of specific lengths.

Results. In Chapter 2, the focus is on duadic codes (Definition 2.2.2). These are linear
cyclic codes such that there exists a multiplier that takes the defining set to its complement
(with the exception of 0). As the multiplier −2 also ensures that we get a binary quantum
code, we identified this family as a potentially good source of quantum codes. Indeed we
succeeded in both theoretical and computational aspects (Theorem 2.3.6 and Corollaries
2.3.7 and 2.4.4). Additionally, we give new minimum distance bounds for linear cyclic
codes (Proposition 2.5.2). We applied our constructions in a numerical search for good
binary quantum codes using linear cyclic and duadic codes of length up to 241 over F4.
This led to the discovery of many new record-breaking binary quantum codes, as shown in
Table 2.1.

In Chapter 3, we turn attention to additive codes. We present our new nearly dual-
containing construction of binary quantum stabilizer codes (Theorem 3.2.3). We provide
new lower and upper bounds on minimum distance for twisted codes (Theorems 3.6.3,
3.7.2 and Corollaries 3.6.5, 3.6.6). We also give new infinite families of twisted codes with
minimum distance at least five (Theorem 3.7.5). These families are further developed in
Theorem 3.8.5. In Section 3.8, we present a secondary construction of quantum codes and
give five infinite families of good quantum codes, including record-breaking codes (Theorems
3.8.4, 3.8.5, 3.8.11). We develop computational methods to search for new twisted codes
with good parameters. Many record-breaking binary quantum codes are produced by these
computations. In Section 3.9 we prove that ten of our quantum codes are optimal (have
the highest possible minimum distance). In Section 3.10, we give new algebraic criteria for
twisted codes to have the same parameters (Theorem 3.10.14 and Corollaries 3.10.15 and
3.10.16).
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In Chapter 4, we first present new sufficient conditions for the equivalence of linear cyclic
codes (Theorems 4.2.5, 4.2.11, and 4.2.16). Then we resolve two conjectures regarding
the monomial equivalence of linear cyclic codes (Theorem 4.3.1 and Proposition 4.3.2).
A necessary and sufficient condition for permutation equivalence of constacyclic codes of
certain lengths over F4 is proved (Theorem 4.4.4). We list examples of record-breaking
binary quantum codes and linear codes over F4 after pruning the search for new codes using
the equivalence results. These codes are not of the type discussed in the other chapters.
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Chapter 2

New quantum codes from self-dual
linear codes over F4

In this chapter, we present a construction of binary quantum codes from Hermitian self-
dual quaternary linear codes. Our main ingredients for such construction of quantum codes
are nearly dual-containing cyclic and duadic codes over F4. In particular, we present an
infinite family of 0-dimensional binary quantum codes that is constructed using odd-like
duadic codes over F4. The minimum distance of our quantum codes is lower bounded using
the minimum distance of their ingredient linear codes. We also present new results on the
minimum distance and weights of vectors in linear cyclic codes using their fixed subcodes
by the action of multipliers. Finally, we list many new record-breaking quantum codes that
are obtained from our construction. Our numerical results extend the table of good duadic
codes to much larger lengths.

This chapter is organized as follows. We survey our main contributions of this chapter
in Section 2.1. The required background material is presented in Section 2.2. In Section
2.3, we provide our new constructions of quantum codes using the structure of duadic
codes. In Section 2.4, we generalize our quantum constructions by considering more general
linear codes over F4. In Section 2.5, we provide new minimum distance bounds for cyclic
codes using their fixed subcodes. In Section 2.6, we present our numerical results that
include many new record breaking 0-dimensional binary quantum codes. Many other record
breaking quantum codes will be derived after applying the secondary constructions to our
new codes.

The material in this chapter is a joint work with my senior supervisor Dr. Lisoněk and
a version of it has been accepted for publication in the Springer journal Designs, Codes and
Cryptography (special issue for the 12-th International Workshop on Coding and Cryptog-
raphy), subject to minor revisions [30]. A portion of material in this section was accepted as
a 10-page extended abstract and presented at the 12-th International Workshop on Coding
and Cryptography (WCC 2022, Rostock, Germany) [29].
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2.1 Our main contributions

To differentiate our new results from works in the literature, we summarize our main con-
tributions of this chapter here. In Section 2.3, we first show that if the splitting of a duadic
code over F4 is given by µ−2, then the vectors of corresponding even-like duadic code al-
ways have even weights and the rest of vectors in the odd-like duadic code always have odd
weights (Theorem 2.3.3). Next we present a construction for 0-dimensional quantum codes
using certain odd-like duadic codes. We also give lower bounds for the minimum distance
of such quantum codes (Theorem 2.3.6). This construction leads to an infinite family of
quantum codes with lengths p+ 1, where p ≡ −1 or −3 (mod 8) (Corollary 2.3.7).

In Section 2.4, we first give a generalization of our quantum construction of the previous
section, which is also a construction for self-dual linear codes over F4 (Theorem 2.4.1). A
secondary construction of binary quantum code is also provided (Corollary 2.4.2).

In Section 2.5, we give a lower bound for the minimum distance of linear cyclic codes
over F4 using their fixed subcode by the action of multipliers (Proposition 2.5.2). Next we
prove that many of such fixed subcodes are the same, and also give other complementary
results about the weights of codewords in linear cyclic codes over F4.

In Section 2.6, we support our constructions by providing many record-breaking binary
quantum codes. In particular, we provide a table of 0-dimensional quantum codes with
lengths n ≤ 242 that are obtained from our construction.

2.2 Duadic codes

Duadic codes are regarded as an important family of linear cyclic codes and were extensively
discussed in [55, Chapter 6] and [33, Section 2.7]. This section briefly recalls duadic codes
and important properties of them.

Definition 2.2.1 [33, Section 2.7] Let S1 and S2 be unions of non-zero q-cyclotomic cosets
modulo n such that

1. 0 /∈ S1 ∪ S2

2. S1 ∪ S2 ∪ {0} = Z/nZ and S1 ∩ S2 = ∅,

3. there is a multiplier µb such that µbS1 = S2 and µbS2 = S1.

Then the pair {S1, S2} is called a splitting of Z/nZ given by µb over Fq.

A vector (x1, x2, . . . , xn) ∈ Fnq is called even-like provided that

n∑
i=1

xi = 0
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and it is called odd-like otherwise. A linear code is called even-like if it has only even-
like codewords; a linear code is called odd-like if it is not even-like. In the binary case an
even-like code has only even weights.

Binary duadic codes were first introduced by Leon et al. [65], and later they were
generalized to larger fields by Pless [79,80].

Definition 2.2.2 (Duadic codes) [55, Theorem 6.1.5] [33, Section 2.7] Let {S1, S2} be a
splitting of Z/nZ over Fq. Then the linear cyclic codes with the defining sets S1 ∪ {0} and
S2∪{0} are called a pair of even-like duadic codes. The linear cyclic codes with the defining
sets S1 and S2 are called a pair of odd-like duadic codes.

Let (S1, S2) be a splitting of Z/nZ given by µb over Fq and (C1, C2) and (D1, D2) be
pairs of even-like and odd-like duadic codes with the defining sets (S1 ∪ {0}, S2 ∪ {0}) and
(S1, S2), respectively. Then C1 ⊂ D1 and C2 ⊂ D2. Also, one can easily see that x−1 divides
the generator polynomials of C1 and C2. Thus if a(x) is the polynomial representation of
a vector a ∈ C1 or C2, then a(1), which is the sum of the coordinates of a, is zero. This
explains why the codes C1 and C2 are even-like. A similar argument shows that the codes D1

and D2 are odd-like codes as x−1 does not divide the generator polynomials of these codes.
A comprehensive list of important properties of duadic codes is provided below.

Theorem 2.2.3 [90, Theorem 3.1] [55, Theorems 4.3.17, 6.1.3, 6.4.2, 6.4.3] Let (C1, C2)
and (D1, D2) be pairs of even-like and odd-like duadic codes of length n over Fq, respectively,
such that C1 ⊆ D1 and C2 ⊆ D2. Then

1. C1 and C2 (respectively D1 and D2) are permutation equivalent codes by Theorem
1.6.4.

2. C1 ∩ C2 = {0} and C1 + C2 is the cyclic code generated by x− 1.

3. D1 ∩D2 = H and D1 +D2 = Fnq , where H is the subspace of Fnq with all ones vector
as a basis.

4. dimC1 = dimC2 = (n− 1)/2 and dimD1 = dimD2 = (n+ 1)/2.

5. C1 is the subcode of D1 consisting of its even-like vectors. The same holds for C2 as
the subcode of D2.

6. D1 = C1 ⊕H and D2 = C2 ⊕H.

7. If C1 is Hermitian self-orthogonal, then C⊥h1 = D1 and C⊥h2 = D2. Otherwise,
C⊥h1 = D2 and C⊥h2 = D1.

8. If C1 is Euclidean self-orthogonal, then C⊥1 = D1 and C⊥2 = D2. Otherwise, C⊥1 = D2

and C⊥2 = D1.
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The next natural question arising in this context is to see for what values of n duadic
codes exist over Fq. The answer to this problem, which depends on both n and q, is provided
below.

Theorem 2.2.4 [55, Theorem 6.3.2] The duadic codes of length n over Fq exist if and
only if q is a square modulo n.

Next, we present some results about self-orthogonal duadic codes with respect to both
Euclidean and Hermitian inner products. Both proofs use the fact that if A is the defining
set of a (Euclidean or Hermitian) self-orthogonal code, then 0 ∈ A. The rest is applying
Theorem 1.3.6 for the Euclidean inner product and Theorem 1.3.8 for the Hermitian inner
product.

Theorem 2.2.5 [55, Theorem 6.4.1] Let C be a linear cyclic code over Fq with parameters
[n, n−1

2 ]. Then C is Euclidean self-orthogonal if and only if C is an even-like duadic code
with the multiplier µ−1.

We deal only with Hermitian self-orthogonal duadic codes over F4 in this chapter. The
Hermitian self-orthogonality condition for duadic codes over F4 is given below. A general-
ization of this result over an arbitrary field can be seen in [90, Theorem 4.4].

Theorem 2.2.6 [55, Theorem 6.4.4] Let C be a linear cyclic code over F4 with parameters
[n, n−1

2 ]. Then C is Hermitian self-orthogonal if and only if C is an even-like duadic code
with the multiplier µ−2.

Example 2.2.7 Let n = 9. The 4-cyclotomic cosets modulo 9 are {0}, {1, 4, 7}, {2, 5, 8},
{3}, and {6}. One can easily verify that the pair (S1, S2), where S1 = {1, 3, 4, 7} and
S2 = {2, 5, 6, 8} is a splitting of Z/9Z given by µ−1. Let D1 and D2 be odd-like duadic
codes with the defining sets S1 and S2, respectively, and C1 and C2 with the defining sets
S′1 = {0, 1, 3, 4, 7} and S′2 = {0, 2, 5, 6, 8}, respectively, be even-like duadic codes. The pairs
(C1, C2) and (D1, D2) are permutation equivalent by Theorem 2.2.3 part 1.

By Theorems 2.2.5 and 2.2.6, C1 and C2 are Euclidean self-orthogonal but not Hermitian
self-orthogonal, and have parameters [9, 4]. Moreover, by Theorem 2.2.3, we have the
following properties.

• C⊥1 = D1 and C⊥2 = D2.

• C⊥h1 = D2 and C⊥h2 = D1.

Now we briefly recall the class of quadratic residue codes which are special cases of
duadic codes. Let p be an odd prime number. Let Qp be the set of non-zero squares
(quadratic residues) modulo p and Np be the set of nonsquares (quadratic nonresidues)
modulo p. The sets Qp and Np satisfy the following properties:
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1. |Qp| = |Np| = p−1
2 .

2. aQp = Qp and aNp = Np for each a ∈ Qp. Also, bQp = Np and bNp = Qp for each
b ∈ Np.

If q ∈ Qp then each q-cyclotomic coset modulo p different from {0} either is a subset
of Qp or is a subset of Np. Thus Qp and Np give a splitting of Z/pZ given by µb for each
b ∈ Np. The duadic codes corresponding to such a splitting are called quadratic residue
codes, abbreviated QR codes, of length p over Fq.

The following theorem discusses the existence and orthogonality conditions for the bi-
nary and quaternary QR codes.

Theorem 2.2.8 [55, Theorem 6.6.6 and Exercise 365] Let p be a prime number. Then

1. Binary QR codes of length p exist if and only if p ≡ ±1 (mod 8).

2. QR codes of length p over F4 exist for any p.

3. If p ≡ 1 (mod 8), then the QR codes of length p over F4 and F2 have the same
parameters.

4. Even-like QR codes of length p over F4 are Hermitian self-orthogonal if and only if
p ≡ −1 (mod 8) or p ≡ −3 (mod 8).

Let p ≡ ±1 (mod 8) and (C1, C2) and (D1, D2) be pairs of binary even-like and odd-like QR
codes of length p, respectively, such that C1 ⊆ D1 and C2 ⊆ D2.

a. If p ≡ −1 (mod 8), then C⊥1 = D1 and C⊥2 = D2.

b. If p ≡ 1 (mod 8), then C⊥1 = D2 and C⊥2 = D1.

Other useful information about the QR codes is provided in Section 6.6 of [55].
Let D be an odd-like duadic code with the even-like subcode C over Fq. The minimum

odd-like weight of D is defined by

do = min{wt(v) : v ∈ D \ C}.

Several minimum distance conditions for duadic and QR codes are provided below. Let d(C)
denote the minimum distance of a code C.

Theorem 2.2.9 [55, Theorems 6.5.2 and 6.6.22] Let D be an odd-like duadic code of length
n over Fq. Let do be the minimum odd-like weight of D. Then

1. d2
o ≥ n.

2. If the splitting is given by µ−1, then d2
o − do + 1 ≥ n.

39



3. Furthermore, if n is a prime number and D is a QR code, then

a. d(D) = do.

b. If q = 2 and n ≡ −1 (mod 8), then d(D) ≡ 3 (mod 4).

An extended version of this result is provided in [55, Theorems 6.5.2, 6.6.22]. In general,
although the square root bound is a nice theoretical result, our computations given in
Table 2.1 show that it does not provide a tight bound for the minimum distance.

We conclude this section with some useful information regarding when a splitting over F4

is given by µ−2, or in other words when a duadic code over F4 is Hermitian self-orthogonal
by Theorem 2.2.6.

Theorem 2.2.10 [55, Theorems 6.4.9 and 6.4.10] Let p be an odd prime number.

1. If p ≡ −1 (mod 8) or p ≡ −3 (mod 8), then every splitting of Z/pZ over F4 is given
by µ−2.

2. If p ≡ 3 (mod 8), then there is no splitting of Z/pZ given by µ−2 over F4.

3. If p ≡ 1 (mod 8), then µ−2 may or may not give a splitting of Z/pZ over F4,

Moreover, if µ−2 and µ−1 give the same splitting of Z/pZ over F4, then p ≡ ±1 (mod 8).
If p ≡ −1 (mod 8), then µ−2 and µ−1 give the same splitting of Z/pZ over F4.

2.3 A new class of 0-dimensional binary quantum codes

A 0-dimensional quantum code with length n has parameters Jn, 0, dK. Such a quantum
code represents a single quantum state capable of correcting any (d − 1)/2 errors. In
practice, 0-dimensional quantum codes can be useful for example in testing whether certain
storage locations for qubits are decohering faster than they should [20]. Moreover, higher-
dimensional quantum codes can be constructed by applying Theorem 1.7.3 part 1 to a
0-dimensional quantum code.

Hermitian self-dual codes over F4 can be viewed as a family of 0-dimensional binary
quantum codes. In general, self-dual codes are an important subclass of codes, both for
practical purposes (some best-known codes are of this type), and theoretically, in view of
their connections with other mathematical objects [4,24,76]. Classical self-dual codes have
been studied a lot in the literature [18, 53, 83, 87]. Among all linear cyclic codes, quadratic
residue (QR) codes have received the most attention for constructing self-dual codes. In
this chapter, we go beyond only QR codes and systematically construct Hermitian self-dual
codes from cyclic and duadic codes over F4 by adding certain coordinates to create longer
codes. This observation opens up new applications for duadic codes, as they can be utilized
to construct good Hermitian self-dual codes. Our novel constructions are likely to be of
interest to classical coding theorists.
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In this section, we provide a new infinite family of 0-dimensional quantum codes, which
are also Hermitian self-dual linear codes over F4, using duadic codes over F4. Our construc-
tion targets nearly dual-containing duadic codes and also bounds the minimum distance
of the constructed quantum code using minimum distances of an odd-like and an even-like
duadic code. Throughout this section, n always is a positive odd integer. For each integer
a such that gcd(a, n) = 1, we denote the multiplicative order of a modulo n by ordn(a).

Constructions of 1-dimensional quantum codes from duadic codes can be found in the
literature. One such construction is provided below which is obtained by applying the CSS
construction to binary duadic codes.

Theorem 2.3.1 [3, Theorems 4 and 10] Let n be a positive odd integer. Then there exists a
quantum code with parameters Jn, 1, dK, where d2 ≥ n. If ordn(2) is odd, then d2−d+1 ≥ n.

Moreover, Guenda in [46] proved that the distance bound d2−d+1 ≥ n in Theorem 2.3.1
is still valid when ordn(4) is odd. She also found the following new family of quantum codes
when ordn(4) is even.

Theorem 2.3.2 [46, Theorem 16] Let n = pm be an odd prime power and ordn(4) be even.
Then there exists an Jn, 1, dK quantum code with d2 ≥ n.

For u, v ∈ Fn4 let 〈u, v〉h denote their Hermitian inner product. Let also ‖u‖ = 〈u, u〉h.
One can easily see that ‖u‖ ≡ wt(u) (mod 2). The next theorem gives some useful infor-
mation about the weights in certain even-like and odd-like quaternary duadic codes.

Lemma 2.3.3 Let n be a positive odd integer and Co be an odd-like duadic code of length n
with a multiplier µ−2 over F4. Let Ce be the Hermitian dual of the code Co. Then all vectors
in Ce have even weights and all vectors in Co \ Ce have odd weights.

Proof. First note that since the multiplier is µ−2, we have Ce ⊆ Co. So Ce is Hermitian
self-orthogonal and for each v ∈ Ce, we have ‖v‖ = 0. This proves the first part.

Let j be the all-ones vector of length n and H be the subspace spanned by j over F4.
By Theorem 2.2.3 part 6, Co = Ce ⊕ H. Let u + αj be an arbitrary element of Co \ Ce,
where u ∈ Ce and 0 6= α ∈ F4. Then

‖u+ αj‖ = ‖u‖+ ‖αj‖+ 〈u, αj〉h + 〈αj, u〉h = 1.

Hence u+ αj has an odd weight.

Motivated by the construction of binary quantum codes given in Theorem 1.7.9, we
define the dual-containment deficiency of linear codes below.

Definition 2.3.4 The dual-containment deficiency of a linear code C with respect to the
Hermitian inner product is defined by e = dim(C⊥h)− dim(C ∩ C⊥h).
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In particular, we have C⊥h ⊆ C if and only if e = 0. Next, we classify all the odd-like
duadic codes having the dual-containment deficiency e = 1 with respect to the Hermitian
inner product.

Theorem 2.3.5 Let C be an odd-like duadic code. Then C⊥h has the dual-containment
deficiency e = 1 if and only if C has multiplier µ−2.

Proof. First suppose that µ−2 is a multiplier of C. Thus there exists a splitting of Z/nZ
given by µ−2 in the form (S1, S2) such that S1 is the defining set of C. The code C⊥h has
the defining set Z/nZ \ (−2S1) = Z/nZ \ S2 = S1 ∪ {0}. Hence C⊥h is the even-like duadic
subcode of C. Moreover, C⊥h has the dual-containment deficiency

e = dim(C)− dim(C ∩ C⊥h) = 1.

Conversely let (S′1, S′2) be a splitting of Z/nZ given by µa and C be an odd-like duadic
code with the defining set S′1. Assume that C⊥h has the dual-containment deficiency e = 1.
Then

e = dim(C)− dim(C ∩ C⊥h) = n− |S′1| −
(
n− |S′1 ∪

(
Z/nZ \ (−2S′1)

)
|
)

= |S′1 ∪
(
Z/nZ \ (−2S′1)

)
| − |S′1| = 1.

(2.3.1)

Now if −2S′1 6= S′2, then {0, s} ⊆ Z/nZ \ (−2S′1) for some s ∈ S′2. Thus (2.3.1) implies
that e ≥ 2 which is a contradiction. Therefore, −2S′1 = S′2 and µ−2 is a multiplier of C.

Next, we use the quantum code construction stated in Theorem 1.7.9 to construct a
new family of 0-dimensional quantum codes. In particular, the quantum codes that we
are constructing in this section are extended odd-like duadic codes. Later, in Section 2.4,
we provide a generalization of our construction to each linear codes over F4. In spite
of the known theoretical results on duadic codes and their extended codes, they are not
computationally discussed much in the literature. For instance, in [55], the parameters of
length n duadic codes over F4 are only stated for n ≤ 41. Hence we take advantage of this
opportunity and compute the parameters of good extended duadic codes for much larger
lengths (n ≤ 241).

Now, we state our main result of this section.

Theorem 2.3.6 Let n be a positive odd integer and Co be an odd-like duadic code of length n
with the multiplier µ−2 over F4. Then there exists a binary quantum code with parameters
Jn+ 1, 0, dK, where

1. d ≥ min{d(Ce), d(Co) + 1}, where Ce is the even-like subcode of Co.

2. d is even.
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3. If d(Co) is odd, then d ≥
√
n + 1. Moreover, if also µ−1 is a multiplier for Co, then

d2 − 3(d− 1) ≥ n.

Proof. Let (S1, S2) be a splitting of Z/nZ given by µ−2 over F4 and Co and Ce be the
odd-like and even-like duadic code with the defining sets S1 and S1 ∪ {0}, respectively. By
Theorem 2.3.5, the code Ce has the dual-containment deficiency e = 1.

The code Ce has parameters [n, n− n+1
2 ]. Now applying the quantum construction given

in Theorem 1.7.9 to Ce results in an Hermitian self-dual linear code Q over F4 which is also
a quantum code with parameters Jn+ 1, 0, dK, where d ≥ min{d(Ce), d(Co) + 1}. The facts
that Q is linear and Hermitian self-dual imply that all weights in Q are even, as was shown
in the proof of Lemma 2.3.3.

Note that Lemma 2.3.3 implies that if d(Co) = do is odd, then do < d(Ce). Thus do
satisfies the square root bound provided in Theorem 2.2.9. The facts that d ≥ do + 1 and
do ≥

√
n show that d ≥

√
n+ 1.

Finally, if the same splitting is given by µ−1 and d(Co) = do is odd, then by Theorem
2.2.9, d2

o − do + 1 ≥ n. Now combining d − 1 ≥ do with the previous inequality gives the
result.

The lower bound that we provided in Part (1) of Theorem 2.3.6 appears to be very
good and almost all of our computational results rely on this lower bound. Restricting the
code lengths to prime numbers in the form p ≡ −1 (mod 8) or p ≡ −3 (mod 8) leads to an
infinite family of 0-dimensional quantum codes of length p+ 1.

Corollary 2.3.7 Let p be a prime number such that p ≡ −1 (mod 8) or p ≡ −3 (mod 8).
Then there exists a Jp+ 1, 0, dK quantum code with an even minimum distance d and

d ≥ min{d(Ce), d(Co) + 1},

where Co is an odd-like duadic code of length p and Ce is the even-like subcode of Co. If
Co is a QR code then d ≥ d(Co) + 1. Finally, if Co is a QR code, p ≡ −1 (mod 8), and
d = d(Co) + 1, then d ≡ 0 (mod 4).

Proof. The first part follows from Theorems 2.3.6 and Theorem 2.2.10 part 1. If Co is a QR
code, then Theorem 2.2.9 part 3a implies that d(Co) = do. Moreover, Theorem 2.3.3 implies
that d(Co) is odd and d(Ce) is even. Thus do < d(Ce) and d ≥ min{d(Ce), d(Co) + 1}. This
implies that d ≥ do + 1. The last fact about the minimum distance follows from Theorem
2.2.9 part 3b which implies that d(Co) ≡ 3 (mod 4).

Some of our record-breaking quantum codes presented in Table 2.1 are computed using
the above construction.

Recall that the multiplicative order of a modulo n is denoted by ordn(a). For each
positive odd integer n, we have ordn(4) | ordn(2) and if ordn(2) is odd, then ordn(4) =
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ordn(2). In the latter case, the binary and quaternary cyclotomic cosets modulo n are the
same. Thus the binary and quaternary duadic codes have the same defining sets. In this
special case, the following result helps compute the minimum distance of quaternary duadic
codes much faster by only using the binary duadic code with the same defining set.

Theorem 2.3.8 [79, Theorem 4] Let C be a quaternary linear code of minimum distance d
which is generated by a set of binary vectors. Then the binary linear code generated by the
same set of generators has minimum distance d.

Although Theorem 2.3.8 is stated for linear codes over F4, in general it holds for linear
codes over each finite field extension of the binary field; see Theorem 3.8.8 of [55]. Next, we
give a restriction of Theorem 1.7.9 to binary cyclic codes that satisfy Theorem 2.3.8. We
denote the Euclidean dual of a binary code C by C⊥.

Corollary 2.3.9 Let n be a positive odd integer such that ordn(4) = ordn(2). If C is
an [n, k] binary cyclic code and e is the dual-containment deficiency of C, then there exists
a binary quantum code with parameters Jn+ e, 2k − n+ e, dK, where d ≥ min{d(C), d(C +
C⊥) + 1}.

Proof. First note that e = n − k − dim(C ∩ C⊥). Moreover, since ordn(4) = ordn(2), the
2-cyclotomic and 4-cyclotomic cosets are the same modulo n. Hence binary and quaternary
cyclic codes of length n with a fixed defining set have the same dimension over F2 and
F4, respectively. Let A be the defining set of C, and D be the linear cyclic code over
F4 with the defining set A. Thus D is an [n, k] linear code over F4. The defining set of
D⊥h is Z/nZ \ ((−2A) mod n) = Z/nZ \ ((−A) mod n), where the last equality follows
from the fact that 2A ≡ A (mod n). Hence D⊥h and C⊥ have the same defining sets. A
similar argument shows that C ∩ C⊥ (respectively C + C⊥) and D ∩ D⊥h (respectively
D +D⊥h) have the same defining sets. Therefore, dim(C ∩C⊥) = dim(D ∩D⊥h) as linear
codes over F2 and F4, respectively. Finally, Theorem 2.3.8 implies that d(C⊥) = d(D⊥h)
and d(C + C⊥) = d(D + D⊥h). Now the result follows by applying Theorem 1.7.9 to the
code D.

Another advantage of the above result is that binary duadic codes have been studied
extensively in the literature. For instance, the exact or probable minimum distance of all
binary duadic codes of length n ≤ 241 is determined in [81,95], and [55, Section 6.5].

2.4 A more general family of 0-dimensional quantum codes

In this section, we present a construction of binary quantum codes which is also a method
of constructing Hermitian self-dual codes over F4. Our construction mainly targets linear
codes C such that C ( C⊥h as the main ingredients for the construction of Theorem
1.7.9. Note that duadic codes are a special class of algebraic codes that satisfy the previous
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condition. Therefore, the results regarding the minimum distance in Theorem 2.3.6 are
stronger than those in the next theorem. We will provide three examples of record-breaking
quantum codes obtained from nearly dual-containing linear codes over F4 with e = 3.

Theorem 2.4.1 Let C be an [n, k] linear code over F4 such that C ⊆ C⊥h. Then there exists
a quantum code with parameters J2(n−k), 0, dK, where d is even and d ≥ min{d(C), d(C⊥h)+
1}.

Proof. We apply the result of Theorem 1.7.9 to the code C. First note that the code C has
the dual-containment deficiency e = n− k − dim(C ∩ C⊥h) = n− 2k. Now, Theorem 1.7.9
implies the existence of J2(n−k), 0, dK quantum code which satisfies d ≥ min{d(C), d(C⊥h)+
1}. Such quantum code is also a Hermitian self-dual code over F4. Since Hermitian self-dual
codes over F4 only have even weights, d is even.

Note that although we only stated the result of Theorem 2.4.1 for quantum codes,
this result also gives a construction for Hermitian self-dual codes over F4. In particular,
the quantum code of Theorem 2.4.1 is also a [2(n − k), n − k, d] Hermitian self-dual code
over F4, where d is even and d ≥ min{d(C), d(C⊥h)+1}. Theorem 2.4.1 implies the following
secondary construction of quantum codes.

Corollary 2.4.2 Let C be a linear code over F4 that gives rise to an Jn, 2k − nK quantum
code, where 2k > n. Then there exists a quantum code with parameters J2k, 0, dK, where d
is even and d ≥ min{d(C⊥h), d(C) + 1}.

Proof. First note that by Theorem 1.7.1 C is an [n, k] linear code over F4 and C⊥h ( C.
Now applying Theorem 2.4.1 to the code C⊥h implies the existence of a J2k, 0, dK quantum
code such that d is even and d ≥ min{d(C⊥h), d(C) + 1}.

Example 2.4.3 The best-known quantum code with parameters J93, 3, 21K is in correspon-
dence with a Hermitian dual-containing linear code C over F4. Then Corollary 2.4.2 implies
the existence of a J96, 0K quantum code. Moreover, d(C) = 21 < d(C⊥h) since C⊥h ( C,
and C⊥h has an even weight. Hence there exists a new quantum code with parameters
J96, 0, 22K. The previous quantum codes with the same length and dimension had minimum
distance 20.

Next, we apply Theorem 2.4.1 to the family of linear cyclic codes over F4.

Corollary 2.4.4 Let n be a positive odd integer and C be a length n linear cyclic code
over F4 with the defining set A. If A ∩ −2A = ∅, then there exists a J2(n − |A|), 0, dK
quantum code (respectively a [2(n− |A|), n− |A|, d] Hermitian self-dual linear code over F4)
such that d is even and d ≥ min{d(C⊥h), d(C) + 1}.

Proof. The condition A ∩ −2A = ∅ implies that C⊥h ⊆ C. Moreover, dim(C⊥h) = |A|.
Now the result follows from applying Theorem 2.4.1 to the code C⊥h .
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Next, we provide two new binary quantum codes that were obtained from two linear
cyclic codes with e = 3.

Example 2.4.5 Let n = 141 and A = Z(2) ∪ Z(3) ∪ Z(10). Note that −2A = Z(1) ∪
Z(5) ∪ Z(15) and therefore A ∩ −2A = ∅. Moreover, |A| = 69. Thus Corollary 2.4.4
implies the existence of a quantum code with parameters J144, 0, dK, where d is even and
d ≥ min{d(C⊥h), d(C) + 1}. Moreover, the minimum distance computation in Magma [17]
shows that d(C⊥h) ≥ 20 and d(C) + 1 ≥ 19. Hence there exists a new quantum code
with parameters J144, 0, d ≥ 20K. The previous best binary quantum code with the same
parameters had minimum distance 18.

Example 2.4.6 Let n = 123 and A = Z(1) ∪ Z(2) ∪ Z(6) ∪ Z(7) ∪ Z(9) ∪ Z(11). Note
that −2A = Z(43) ∪ Z(23) ∪ Z(3) ∪ Z(19) ∪ Z(18) ∪ Z(14) and A ∩ −2A = ∅. Moreover,
|A| = 60. Thus by Corollary 2.4.4 there exists a quantum code with parameters J126, 0, dK,
where d is even and d ≥ min{d(C⊥h), d(C) + 1}. Moreover, our Magma [17] computation
shows that d(C⊥h) ≥ 22 and d(C) + 1 ≥ 21. The fact that d is even and d ≥ 21 implies
that this quantum code has parameters J126, 0, d ≥ 22K which is a new quantum code. The
previous best quantum code with the same parameters had minimum distance 21.

2.5 Minimum distance bounds for cyclic codes using their
fixed subcodes

In general, computing the true minimum distance for linear codes is NP-hard [104] and very
difficult for linear codes with large lengths and dimensions. In [58], the authors used fixed
subcode by the action of multipliers to find an upper bound (or even the exact value) for
the minimum distance of certain linear cyclic codes. In this section, we develop the theory
of fixed subcodes by the action of multipliers and determine a new minimum distance lower
bound for linear cyclic codes over F4. Almost all the results of this section remain valid for
linear cyclic codes over an arbitrary finite field. However, as our main goal is to construct
new binary quantum codes in the next sections, we only state our results for linear cyclic
codes over F4.

In the rest of this section, we assume that n is a positive odd integer. Let a be a positive
integer such that gcd(n, a) = 1. Then the multiplier µa acts naturally as a permutation
on Fn4 . In particular, let {ei : 0 ≤ i ≤ n− 1} be the standard basis of Fn4 . Then µa(ei) = eai

for each 0 ≤ i ≤ n− 1, where ai is computed modulo n. For each x = (x0, x1, . . . , xn−1) ∈
Fn4 , we define µa(x) accordingly as µa(x) = (y0, y1, . . . , yn−1), where yi = xa−1i for each
0 ≤ i ≤ n − 1. We denote the matrix representation of µa by Ta. Let C be a length n

linear cyclic code over F4 with the defining set A. The code µa(C) is also a linear cyclic
code over F4 and it has defining set a−1A.

Now we formally define fixed subcodes by the action of multipliers.
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Definition 2.5.1 Let C be a length n linear cyclic code over F4. The space of all vectors
v ∈ C such that µa(v) = v is called the fixed subcode of C under the action of µa.

We denote the fixed subcode of a linear cyclic code C under the action of µa by Ca.
The code Ca is a subcode of C ∩ µa(C) and can be easily computed as

Ca = C ∩ {x ∈ Fn4 : (Ta − I)xT = 0}.

Fixed subcodes of linear cyclic codes under the action of multipliers are especially important
to bound the minimum distance of cyclic codes. First note that for each integer a such
that gcd(n, a) = 1, we have Ca ⊆ C. Therefore, d(C) ≤ d(Ca) which gives an upper bound
for d(C). Several of our minimum distance upper bounds in Table 2.1 are obtained using the
minimum distance of fixed subcodes. Moreover, in the next proposition, we provide a lower
bound for the minimum distance of linear cyclic codes over F4 using their fixed subcodes.
A modification of this proof technique can be employed to demonstrate that the minimum
distance bounds also hold for additive cyclic codes. Note also that in the reformulation for
additive cyclic codes the assumptions have to change as there is no defining set for them.

Proposition 2.5.2 Let C ⊆ Fn4 be a linear cyclic code of length n with the defining set A
and a be a positive integer such that aA = A.

1. If ordn(a) = 2, then d(Ca)/2 + 1 ≤ d(C).

2. If ordn(a) = i, where i > 1 is an odd integer, then (d(Ca)− 1)/i+ 1 ≤ d(C).

Proof. Let v = (v0, v1, . . . , vn−1) be a minimum weight vector in C. Since C is cyclic,
without loss of generality, we assume that v0 is non-zero. If µa(v) = v, then d(C) = d(Ca)
which completes the proof.

1. Suppose that ordn(a) = 2 and v+ µa(v) 6= 0. From aA = A, we get that µa(C) = C.
Then µa(v + µa(v)) = v + µa(v) which implies that v + µa(v) is a non-zero element of Ca.
Since both v and µa(v) have the same coordinates in the 0-th position we have d(Ca) ≤
wt(v + µa(v)) ≤ 2d(C)− 2. Hence d(Ca)/2 + 1 ≤ d(C).

2. Let ordn(a) = i, where i > 1 is an odd integer and w =
i−1∑
j=0

µaj (v). Since i is odd, w is

a non-zero vector (we have w0 = v0 6= 0). Then µa(w) = w and therefore w ∈ Ca. Note also
that wt(w) ≤ iwt(v)−(i−1) = i(wt(v)−1)+1 since each µaj (v) has v0 in the 0-th position.
Thus, d(Ca) ≤ wt(w) ≤ i(d(C)− 1) + 1 which implies that (d(Ca)− 1)/i+ 1 ≤ d(C).

Our computations in Magma [17] show that many linear cyclic codes satisfying the
conditions of Proposition 2.5.2 part 1 have the same minimum distance as their fixed subcode
by an order two multiplier. In particular, for each a ∈ Z/nZ such that ordn(a) = 2,
we computed the minimum distance of all non-trivial length n linear cyclic codes with
9 < n < 85 over F4 satisfying the conditions of Proposition 2.5.2 part 1. Among 72417

47



non-trivial such linear cyclic codes, 70256 of them had the same minimum distance as their
corresponding fixed subcode by the action of µa. The equality rate is about 97% for all
these codes. In general, determining when a linear cyclic code and its fixed subcode by µ−1

have the same minimum distance looks an interesting and presumably a difficult question.
One application of Proposition 2.5.2 part 1 is provided below. In both of the following

examples, the minimum distance of the fixed subcode was computed much faster, while
the minimum distance computation for the original code required a much longer time. In
particular, we found two new quantum codes after applying the minimum distance lower
bound of Proposition 2.5.2. These codes will be explained in detail below.

Example 2.5.3 Let n = 157 and Co be the odd-like QR code over F4 with the defining
set Z(1)∪Z(3)∪Z(9). By Corollary 2.3.7 there exists a quantum code Q with parameters
J158, 0, dK, where d is even and d ≥ d(Co) + 1.

The BCH and square root bounds give 7 and 12 as the minimum distance lower bounds
for Co. Next we use the result of Proposition 2.5.2 to find a sharper lower bound for d(Co).
Note that ordn(4) = 26 and 413 ≡ −1 (mod 157), and we use the inequality d((Co)−1)/2 +
1 ≤ d(Co), where (Co)−1 is the fixed subcode of Co by the action of multiplier µ−1. Our
computation done in Magma [17] shows that d((Co)−1) = 36. Hence d(Co) ≥ 19 and the
fact that d is even shows that Q has parameters J158, 0, d ≥ 20K. Thus Q is a new quantum
code with a better minimum distance in comparison with the previous best-known code
with the same length and dimension in [43] which had minimum distance 19.

Example 2.5.4 Let n = 181 and Co be the odd-like QR code of length n over F4 with
the defining set Z(1). Corollary 2.3.7 implies the existence of a quantum code Q with
parameters J182, 0, dK, where d is even and d ≥ d(Co) + 1.

The BCH and square root bounds give 7 and 14 as the minimum distance lower bounds
for Co. Note that µ−1(Co) = Co and our computations in Magma [17] shows that the fixed
subcode of Co under the action of multiplier µ−1 has the minimum distance 37. Hence
d(Co) ≥ 19.5 by Proposition 2.5.2 and the inequality d ≥ d(Co) + 1 implies that d ≥ 20.5.
The fact that d is even shows that Q has parameters J182, 0, d ≥ 22K. Thus Q is a new
quantum code with a better minimum distance in comparison with the previous best-known
code, which had minimum distance 21 in the code table [43].

Next we provide a connection between different fixed subcodes which also helps to relate
the number of certain weight codewords in the original code and its fixed subcode.

Theorem 2.5.5 Let C ⊆ Fn4 be a linear cyclic code of length n and a be a positive integer
such that ordn(a) = p is prime. Let At be the number of weight t codewords in C for each
0 ≤ t ≤ n. Then the following statements hold.

1. Ca = Caj for each 1 ≤ j ≤ p− 1.

48



2. Assume µa(C) = C and 0 ≤ t ≤ n. Then either Ca has a weight t codeword or p | At.
In particular, either d(C) = d(Ca) or p | Ad(C).

Proof. 1. Let 1 ≤ j ≤ p − 1. First note that if v ∈ Ca then µaj (v) = v and therefore
v ∈ Caj . Hence Ca ⊆ Caj . Next since gcd(p, j) = 1, we can find integers b and c such that
bp+ cj = 1. If u ∈ Caj , then

µa(u) = (µa)bp+cj(u) = (µa)bp(µa)cj(u) = (µaj )c(u) = u.

Thus Caj ⊆ Ca which implies that Ca = Caj for each 1 ≤ j ≤ p− 1.
2. If At = 0 then the conclusion holds trivially. Otherwise, let v be a weight t vector in

C. Then

• either µaj (v) = v for all 1 ≤ j ≤ p− 1

• or v, µa(v), . . . , µap−1(v) are all different weight t codewords of C.

If the former happens for a weight t codeword of C, then Ca also has a weight t vector.
Otherwise, we can partition all the weight t codewords of C into sets of size p in the form
{v, µa(v), . . . , µap−1(v)}. Thus p | At.

The last part follows by choosing t = d(C).

This result allows us to compute only certain fixed subcodes in order to find a tighter
bound for the minimum distance of linear cyclic codes over F4. Next, we give a generalization
of the result of Theorem 2.5.5 part 1.

Proposition 2.5.6 Let C be a linear cyclic code of length n over F4 and a ∈ Z/nZ such
that gcd(n, a) = 1 and ordn(a) = t. Then for each 1 ≤ s ≤ t− 1 such that gcd(s, t) = 1 we
have Ca = Cas.

Proof. Assume x ∈ Ca. Then µas(x) = (µa)s(x) = x. Thus Ca ⊆ Cas . Conversely, let
x ∈ Cas . Since gcd(s, t) = 1, we can find an integer s′ such that ss′ ≡ 1 (mod t). Hence

µa(x) = µass′ = (µas)s
′(x) = x.

This implies that Cas ⊆ Ca. Therefore Ca = Cas .

Let C be a linear cyclic code of length n over F4. In general, if the group (Z/nZ)∗ is
cyclic and p | |(Z/nZ)∗|, then the code Ca for each order p element a ∈ (Z/nZ)∗ is the same.
Otherwise, there may exist a, b ∈ Z∗n of the same order such that Ca 6= Cb.

Example 2.5.7 Let n = 35 and C be a length 35 cyclic code over F4 with the defining set
Z(0) ∪ Z(6). Then
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• ord35(6) = ord35(29) = ord35(34) = 2 and C6, C29, and C34 are pairwise different
codes.

• ord35(4) = ord35(19) = ord35(26) = 6 and C4, C19, and C26 are pairwise different
codes.

The following proposition gives a decomposition for certain fixed subcodes.

Proposition 2.5.8 Let C be a linear cyclic code of length n over F4 and ai ∈ Z/nZ for 1 ≤

i ≤ r such that gcd(ordn(ai), ordn(aj)) = 1 for each 1 ≤ i 6= j ≤ r. Let a =
r∏
i=1

ai mod n.

Then Ca =
r⋂
i=1

Cai.

Proof. For each i let ordn(ai) = αi. Assume that x ∈ Ca and 1 ≤ l ≤ r. By the definition

of a, we can find an integer 1 ≤ s ≤
r∏
i=1

αi such that as ≡ al (mod n). Hence we have

x = µa(x) = (µa)s(x) = µas(x) = µal(x) ∈ Cal .

This implies that Ca ⊆
r⋂
i=1

Cai . Conversely, let x ∈
r⋂
i=1

Cai . Then we have

µa(x) = µ∏r

i=1 ai
(x) = µarµar−1 · · ·µa2µa1(x) = x.

Therefore, we have
r⋂
i=1

Cai ⊆ Ca. This completes the proof.

Next we provide another result that gives information about the possible weights of
codewords in the fixed subcodes by the action of multipliers.

Proposition 2.5.9 Let C be a linear cyclic code of length n over F4 and a be a positive
integer such that gcd(n, a) = 1. Let µa = σ1σ2 · · ·σr be the decomposition of µa as a
product of disjoint cycles. Then for each v ∈ Ca, wt(v) = ∑r

j=1 aj |σj |, where aj ∈ {0, 1}
for 1 ≤ j ≤ r.

Proof. Let 1 ≤ j ≤ r and σj = (t1t2 · · · tm). Then for each v = (v0, v1, . . . , vn−1) ∈ Ca, we
have vt1 = vt2 = · · · = vtm . Thus wt(v) = ∑r

j=1 aj |σj |, where aj ∈ {0, 1}.

For instance, let n = 13 and C be a cyclic code of length n over F4. Then

µ4 = (0)(1 4 3 12 9 10)(2 8 6 11 5 7)

and therefore the possible non-zero weights for codewords of C4 are {1, 6, 7, 12, 13}.

50



2.6 Numerical results

The constructions given in Sections 2.3 and 2.4 lead to many new quantum codes with
minimum distances much higher than the previously best-known codes. In some cases the
increase is by as much as 10. Overall, the computation is easiest when the dual-containment
deficiency parameter is e = 1. In fact, in this case we arrive at the extended duadic codes.
However, we also get three record-breaking quantum codes when e = 3. So our construction
goes beyond only the extended duadic codes.

Table 2.1 shows parameters of some good quantum codes. In the table, the first two
columns show the length and the coset leaders (minimum elements of cyclotomic cosets
contained in the defining set) of the cyclic code. The convention for the choice of the
primitive n-th root of unity for construction of cyclic codes was explained in Remark 1.3.3.
The third column records whether the original code is a QR code, duadic code, or some
general cyclic code. This is indicated with QR, D, and C respectively.

In Table 2.1, we included the probable minimum distances (computed using probabilistic
methods) provided in [55, Section 6.5] for duadic codes of lengths 217, 233, and 239. Note
that the binary and quaternary generator polynomials remain the same for all these three
codes. The probable minimum distance d for each of these values is denoted by dap in the
table. All the other minimum distances given in the table are the true minimum distance
obtained from the minimum distance lower bound of the related construction. Moreover,
such minimum distances are either computed by the built-in minimum distance function
in computer algebra system Magma [17] or a reference for them is provided in the source
column.

When the exact value of the minimum distance is not known, its lower and upper bounds
are separated by a dash. Some of the minimum distance upper bounds presented in Table
2.1 are computed using Magma [17] functions for attacking the McEliece cryptosystem.
While these functions have not been widely utilized in the literature for this purpose, our
example in Appendix B demonstrates their effectiveness in computation. Specifically, our
computations indicate that these Magma functions can significantly reduce the computation
of minimum distance upper bounds.

The “source” column in the table provides information about the result used to construct
such a quantum code. We denote theorems, propositions, and corollaries by their first letter
in this column.

Finally, the PMD column shows the minimum distance of previous best known quantum
code of the same length and dimension as shown in [43]. In cases where our code listed in
Table 2.1 has a strictly higher minimum distance than the previous best known quantum
code, we list the distance of our code in boldface in the parameters column.
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It should be noted that we can apply the secondary construction given in Theorem 1.7.3
part 3 to the codes listed in Table 2.1 and produce many more record-breaking codes. For
instance:

• the quantum code J224, 0, 32K generates 9 new quantum codes with parameters J224−
i, 0, 32− iK for each 1 ≤ i ≤ 9.

• the quantum code J200, 0, 32K generates 7 new quantum codes with parameters J200−
i, 0, 32− iK for each 1 ≤ i ≤ 7.

• the quantum code J240, 0, 32K generates 6 new quantum codes with parameters J240−
i, 0, 32− iK for each 1 ≤ i ≤ 6.

• the quantum code J192, 0, 28K generates 5 new quantum codes with parameters J192−
i, 0, 28− iK for each 1 ≤ i ≤ 5.

The codes obtained from secondary constructions are not listed in Table 2.1.
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Length Coset Leaders Type Parameters Source PMD
n = 5 1 QR J6, 0, 4K T2.3.8 4
n = 7 1 QR J8, 0, 4K T2.3.8 4
n = 13 1 QR J14, 0, 6K T2.3.8 6
n = 17 1, 3 D J18, 0, 8K T2.3.8 8
n = 23 1 QR J24, 0, 8K T2.3.8 8
n = 29 1 QR J30, 0, 12K T2.3.8 12
n = 31 1, 5, 7 QR J32, 0, 8K T2.3.8 10
n = 37 1 QR J38, 0, 12K T2.3.8 12
n = 41 1, 3 D J42, 0, 12K T2.3.8 12
n = 47 1 QR J48, 0, 12K T2.3.8 14
n = 53 1 QR J54, 0, 16K T2.3.8 16
n = 61 1 QR J62, 0, 18K T2.3.8 18
n = 71 1 QR J72, 0, 12K T2.3.8 18
n = 79 1 QR J80, 0, 16K T2.3.8 20
n = 89 1, 3, 5, 13 D J90, 0, 12K T2.3.8 20
n = 93 1, 5, 9, 13, 17, 23, C J96, 0,22K C2.4.4 (e=3) 20

33, 34, 45
n = 97 1, 5 D J98, 0, 18K T2.3.8 22
n = 101 1 QR J102, 0, 22K T2.3.8 22
n = 103 1 QR J104, 0, 20K [55] & T2.3.8 20
n = 109 1, 3, 9 QR J110, 0, 22K T2.3.8 26
n = 113 1, 3, 9, 10 D J114, 0,24K T2.3.8 18
n = 119 1, 2, 3, 6, 7, 21, 51 D J120, 0,20K T2.3.8 18
n = 123 1, 2, 6, 7, 9, 11 C J126, 0,22− 24K C2.4.4 (e=3) 21
n = 127 1, 9, 11, 13, 15, QR J128, 0, 20K [95] & T2.3.8 22

19, 21, 31, 47
n = 137 1, 3 D J138, 0,20− 32K T2.3.8 18
n = 141 2, 3, 10 C J144, 0,20K C2.4.4 (e=3) 18
n = 145 1, 3, 5, 7, 11, 29 D J146, 0, 18− 32K T2.3.8 18
n = 149 1 QR J150, 0, 18− 30K T2.3.8 18
n = 151 1, 3, 7, 11, 15 D J152, 0,24K [38] & T2.3.8 18
n = 155 1, 2, 3, 5, 6, 9, 11, D J156, 0, 18− 20K T2.3.8 18

15, 25, 31
n = 157 1, 3, 9 QR J158, 0,20− 36K T2.3.8 & P2.5.2 19
n = 161 5, 11, 35, 69 D J162, 0, 16K T2.3.8 20
n = 167 1 QR J168, 0,24K [101] & T2.3.8 20
n = 173 1 QR J174, 0, 20− 36K T2.3.8 & P2.5.2 21
n = 181 1 QR J182, 0,22− 38K T2.3.8 & P2.5.2 21
n = 185 2, 6, 10, 17, 19, 74 D J186, 0, 18− 26K T2.3.8 22
n = 191 1 QR J192, 0,28K [97] & T2.3.8 22
n = 193 1, 5 D J194, 0, 20− 42K T2.3.8 22
n = 197 1 QR J198, 0, 22− 40K T2.3.8 & P2.5.2 22
n = 199 1 QR J200, 0,32K [97] & T2.3.8 22
n = 203 2, 3, 7, 29 D J204, 0, 14− 24K T2.3.8 22
n = 205 1, 3, 5, 7, 9, 11, 15, D J206, 0, 20− 36K T2.3.8 & P2.5.2 20

17, 21, 31, 41
n = 217 Many codes D J218, 0,24apK [55] & T2.3.8 21
n = 221 1, 2, 3, 5, 6, 9, 10, D J222, 0, 14− 36K T2.3.8 20

13, 17, 18, 39
n = 223 1, 9, 19 QR J224, 0,32K [57] & T2.3.8 21
n = 229 1, 3, 5 QR J230, 0, 14− 48K T2.3.8 22
n = 233 1, 3, 7, 27 D J234, 0,30apK [55] & T 2.3.8 20
n = 235 1, 2, 5, 47 D J236, 0, 14− 24K T2.3.8 20
n = 239 1 QR J240, 0,32apK [55] & T2.3.8 20
n = 241 1, 3, 5, 7, 9, 11, D J242, 0, 14− 56K T2.3.8 20

13, 21, 25, 35

Table 2.1: Parameters of good 0-dimensional quantum codes.
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Chapter 3

Additive twisted codes and new
families of quantum codes

Let F4 be the finite field of four elements. Recall that each F2-linear subspace C ⊆ Fn4 is
called an additive code over F4. Additive codes over F4 are especially important due to
their application in the construction of quantum codes. The class of additive twisted codes
is possibly the most developed family of additive codes. Many algebraic characteristics of
twisted codes are analogous to those of linear cyclic codes. They were first introduced as a
subclass of additive cyclic codes by Jürgen Bierbrauer and Yves Edel [36]. Twisted codes,
like linear cyclic codes, are defined and constructed using (unique) defining sets, and the
BCH minimum distance bound holds for them [36]. Moreover, several families and examples
of good quantum codes are constructed using dual-containing twisted codes [13].

In spite of the mentioned remarkable properties of twisted codes, several questions
regarding the structure of twisted codes still need to be answered. Let n be a positive
integer such that n | 2r − 1 for some positive integer r, and F2r be the field of 2r elements.
We define the surjective F2-linear map φγ : F2r → F2 × F2 by

φγ(x) = (Trr1(x),Trr1(γx)),

where γ ∈ F2r \ F2. Twisted codes are constructed by applying the projection map φγ to
linear cyclic codes over F2r . In this chapter, we greatly improve the theory of twisted codes
and construct new families and many examples of record-breaking, and sometimes optimal,
binary quantum codes. We provide new theoretical results regarding the minimum distance
and equivalence of twisted codes. We also study twisted codes constructed using different
values of γ by changing the projection map φγ . In particular, we show that changing the
value of γ may produce twisted codes with better minimum distance.

The main condition of stabilizer formalism (Theorem 1.7.1) to constructing a binary
quantum code is its dual-containing condition. In this chapter, we also give a novel con-
struction of binary quantum codes by relaxing the dual-containing condition of stabilizer
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formalism. This approach expands the scope of available classical codes for constructing
good quantum codes and demonstrates the value of considering codes beyond those that
meet the dual-containment condition. This generalizes the quantum construction of The-
orem 1.7.9 by allowing additive codes over F4 to be used in order to construct quantum
codes. We also provide a lower bound for the minimum distance of a binary quantum
code constructed using this new approach. Many of our new quantum codes rely on this
construction.

This chapter is organized as follows. Section 3.1 summarizes our main contributions
in this chapter. In Section 3.2, we give our new construction of binary quantum codes.
Section 3.3 recalls a method of presenting linear cyclic codes, called the trace representation,
which is different from the approach used in Section 1.3. Twisted codes and their properties
are recalled in Section 3.4. In Section 3.5, by viewing each twisted code as a subgroup of a
linear cyclic code, we present a novel perspective on twisted codes. We also introduce the
dual-containment deficiency of twisted codes and give a construction of binary quantum
codes using the family of nearly dual-containing twisted codes. New minimum distance
bounds for twisted codes are provided in Section 3.6. Next, in Section 3.7, we construct
infinite families of twisted codes with minimum distance at least five. In Section 3.8, we
give new infinite families and several examples of record-breaking binary quantum codes.
In Section 3.9, we prove that ten of our quantum codes are optimal. In Section 3.10, we
give new results on twisted codes constructed using different γ values.

The material in this chapter is a joint work with my senior supervisor Dr. Lisoněk.
A portion of materials in this section was also presented at the Mathematical Congress
of the Americas (MCA 2021, Buenos Aires, Argentina) [28], and at the 3rd International
Workshop on Boolean Functions and their Applications (BFA 2018, Loen, Norway) [67].

3.1 Our main contributions

To distinguish our novel results from the earlier works in the literature, we briefly outline
our major contributions in this section. In Section 3.2, we give a new construction of
binary quantum codes from an arbitrary given additive code over F4. Our construction
(Theorem 3.2.3) relaxes the dual-containment condition required in stabilizer construction
of quantum codes. Throughout this chapter, this construction will be applied to produce
many record-breaking binary quantum codes.

In Section 3.5, we provide sufficient conditions for a twisted code to be a linear cyclic
code over F4 (Theorem 3.5.1). We give a connection between codewords of a twisted code
and vectors in a certain linear cyclic code (Theorem 3.5.3). This new approach provides a
stronger connection between twisted codes and linear cyclic codes, enabling us to show that
the sum and intersection of twisted codes follow the same rule as cyclic codes (Proposition
3.5.4). For each twisted code, we compute its dual-containment deficiency (Theorem 3.5.5).
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As a result, we generate binary quantum codes from nearly dual-containing twisted codes
(Theorem 3.5.7).

In Section 3.6, we provide a general minimum distance lower bound for twisted codes
using minimum distance of linear cyclic codes (Corollary 3.6.3). We show that the well-
known minimum distance lower bounds for linear cyclic codes such as Hartmann-Tzeng and
Roos bound remain valid for twisted codes (Corollaries 3.6.5 and 3.6.6).

In Section 3.7, we first give a new sufficient condition for twisted codes to have minimum
distance at least five (Theorem 3.7.2). The proof strategy for this result is independent of
the conventional methods for the minimum distance bounds, such as the result presented in
Section 3.6. Next, we construct two infinite families of additive twisted codes with minimum
distance at least five.

In Section 3.8, we introduce a secondary construction of quantum codes (new code
from a given quantum code) using the structure of twisted codes (Theorem 3.8.2). Five
new infinite families of quantum codes are given (Theorems 3.8.4, 3.8.5, 3.8.9, and 3.8.11).
We show that our constructions are capable of generating record-breaking and ten optimal
binary quantum codes.

Surprisingly, the influence of γ value on the parameters of twisted codes has not been
discussed in the literature. In Section 3.10, we first provide necessary and sufficient con-
ditions for two values of γ to form twisted codes with the same length and dimension
(Theorem 3.10.2). Next, we give a necessary condition for two values of γ to construct
twisted codes with the same parameters (Theorem 3.10.5). We show that each twisted code
has the same parameters as at least five other twisted codes by changing the value of γ
(Theorem 3.10.6). Finally, through an example, we show that the minimum distance of
twisted codes can be improved by varying the value of γ (Example 3.10.9).

In Section 3.10.1, we give a sufficient condition for two twisted codes with different values
of γ and different complete defining sets to have the same parameters (Theorem 3.10.14).
Combining this result with a result of Section 3.10 significantly decreases the bound on the
number of twisted codes constructed using different values of γ (Corollary 3.10.16). Finally,
a search algorithm for binary quantum codes from nearly dual-containing twisted codes is
outlined.

3.2 New construction of binary quantum codes from nearly
dual-containing additive codes over F4

Throughout this section, to avoid confusion, we denote the dimension of an additive code
C ⊆ Fn4 by dimF2(C). Recall that the trace inner product of u and v ∈ Fn4 is defined by

u ∗ v = Tr(u · v) = (u · v) + (u · v) =
n∑
i=1

(uivi + uivi),
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where a is the conjugate of a. The dual of C with respect to the trace inner product is
defined by

C⊥t = {u ∈ Fn4 : u ∗ v = 0 for all v ∈ C}.

The dual-containment deficiency of additive code C is defined by

dimF2(C⊥t)− dimF2(C ∩ C⊥t).

It measures how close additive code C is from being dual-containing with respect to the
trace inner product. For instance, we have C⊥t ⊆ C if and only if the dual-containment
deficiency of C is zero. Recall that, as we mentioned in Theorem 1.7.1, a binary quantum
code can be constructed if there exists an additive code C over F4 such that C⊥t ⊆ C.

In this section, we propose a new method of constructing binary quantum codes from
an arbitrary given additive code. Our construction targets additive codes which are not
necessarily dual-containing with respect to the trace inner product. This allows a greater
number of classical codes to be incorporated into the mathematical formalism of stabilizer
codes. The length and dimension of the resulting binary quantum code are computed
exactly in terms of the length and dimension of the initial additive code. Another interesting
advantage of our construction is that it provides a minimum distance lower bound for the
output quantum code using the minimum distances of the input additive code and a modified
code of it. Theorem 1.7.9 outlines a technique for constructing quantum codes from linear
codes over F4, which is similar to our approach. However, our method extends beyond this
class of codes. As we will see in the rest of this chapter, our construction is capable of
constructing many new record-breaking quantum codes from additive codes over F4.

Let C ⊆ Fn4 be an additive code and dimF2(C ∩C⊥t) = r. In the next theorem, we show
that the dual-containment deficiency of C is always an even number. Furthermore, we find
a basis for C⊥t such that the first r vectors form a basis for C ∩ C⊥t and the rest of the
vectors are paired in a way that non-orthogonal vectors occur only as the elements of a pair.
The following lemma and its proof follow from the properties of symplectic bilinear forms.
For more information about symplectic bilinear forms, one can see, for example, [12, pp.
284–285].

Lemma 3.2.1 Let C ⊆ Fn4 be an additive code. Then s = dimF2(C⊥t) − dimF2(C ∩ C⊥t)
is even. Moreover, if dimF2(C ∩ C⊥t) = r and s = 2e, then we can find a basis for C⊥t in
the form {V1, V2, . . . , Vr,M1,M2, . . . ,M2e} such that

1. The set {V1, V2, . . . , Vr} forms a basis for C ∩ C⊥t .

2. For all 1 ≤ i, j ≤ 2e we have Mi ∗Mj = 1 if and only if (i, j) = (2t− 1, 2t) for some
1 ≤ t ≤ e.

Proof. First note that for each vector v ∈ Fn4 we have v ∗ v = 0. Let dimF2(C ∩ C⊥t) = r,
dimF2(C⊥t) − dimF2(C ∩ C⊥t) = s, and {V1, V2, . . . , Vr} be a basis for C ∩ C⊥t . We can
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extend this to a basis for C⊥t over F2 in the form

B = {V1, V2, . . . , Vr,m1,m2, . . . ,ms},

where m1,m2, . . . ,ms are in C⊥t \ C ∩ C⊥t . Since m1 /∈ C ∩ C⊥t , there exists a vector mi

for some 2 ≤ i ≤ s such that m1 ∗ mi = 1. Without loss of generality, we assume that
m1 ∗ m2 = 1. If there exists another mj , where 3 ≤ j ≤ s and m1 ∗ mj = 1, then we
replace mj with mj + m2. Also, if there exists a vector mz for some 3 ≤ z ≤ s such that
m2 ∗mz = 1, then we replace mz with mz +m1. Now, after considering these changes, we
replace the vectors m3,m4, . . . ,ms with m′3,m′4, . . . ,m′s, where for each 3 ≤ j ≤ s we have

m′j =



mj if mj ∗m1 = 0 and mj ∗m2 = 0

mj +m1 if mj ∗m1 = 0 and mj ∗m2 = 1

mj +m2 if mj ∗m1 = 1 and mj ∗m2 = 0

mj +m1 +m2 if mj ∗m1 = 1 and mj ∗m2 = 1.

The new vectors have the property that m1 ∗m2 = 1, m1 and m2 are orthogonal to any
other vector m′j for each 3 ≤ j ≤ s, and the set {V1, V2, . . . , Vr,m1,m2,m

′
3, . . . ,m

′
s} forms

a basis for C⊥t . Next, we apply the same procedure to the vectors m′3,m′4, . . . ,m′s. By
repeating this process, we find vectors M1,M2, . . . ,Ms, where for each 1 ≤ i ≤ s/2

a. M2i−1 ∗M2i = 1

b. M2i−1 and M2i are orthogonal to each other vector of M1,M2, . . . ,Ms, and

c. {V1, V2, . . . , Vr,M1,M2, . . . ,Ms} is a basis for C⊥t .

Now, toward a contradiction, let s be an odd integer. Then, according to the conditions
(a) and (b) above, we have Ms ∗ Mi = 0 for each 1 ≤ i ≤ s − 1. This implies that
Ms ∈ C∩C⊥t , which is a contradiction. Therefore, s is an even integer, say s = 2e for some
positive integer e. Finally, one can easily see that the set {V1, V2, . . . , Vr,M1,M2, . . . ,M2e}
forms a basis for C⊥t and satisfies the conditions (1) and (2) of this lemma.

We present our quantum construction in two steps. We first apply a lengthening method
to transform a given additive code into a trace self-orthogonal additive code. Then, in the
following theorem, we explain more details of our construction and compute the parameters
of the output quantum code. The proofs provide an explicit construction for such quantum
codes.

Lemma 3.2.2 Let C be an additive code of length n over F4 such that dimF2(C⊥t) = k

and dimF2(C⊥t) − dimF2(C ∩ C⊥t) = 2e. Then there exists an additive code D such that
D⊥t ⊆ D and D⊥t has parameters (n+ e, 2k).

58



Proof. Let S be a generator matrix for C⊥t . We choose the rows of S to be the vectors
V1, V2, . . . , Vr,M1,M2, . . . ,M2e, where they satisfy the conditions of Lemma 3.2.1. Let T be
a 2e× e matrix with the entries T2j−1,j = 1, T2j,j = ω for 1 ≤ j ≤ e, and the other entries
of T be all zero. Let G be a k × (n+ e) matrix defined by

G =
[
Vr×n 0r×e
M2e×n T2e×e

]
,

where the matrix V has the rows V1, V2, . . . , Vr, the rows of M are M1,M2, . . . ,M2e, and
0 is the zero matrix. Since rows of the matrix V form a basis for C ∩ C⊥t , one can easily
verify that each of the first r rows of G is orthogonal to all rows of G.

Moreover, both of the matrices M and T have the property that all pairs of rows in
each of these matrices are orthogonal except pairs consisting of two consecutive rows in the
positions 2i− 1 and 2i for each 1 ≤ i ≤ e. This implies that each two rows from the last 2e
rows of the matrix G are orthogonal. Therefore, the matrix G is a generator matrix for an
(n+ e, 2k) trace self-orthogonal additive code. In particular, if D is the additive code that
is trace orthogonal to the code generated by G, then we have D⊥t ⊆ D.

In Lemma 3.2.2, we constructed a quantum code by lengthening a given additive code.
The next theorem, which is our main result of this section, states the parameters of such
binary quantum code using the initial additive code. For a given matrix M , we denote the
rows of M by r(M).

Theorem 3.2.3 Let C be an (n, 2n+k) additive code over F4 and dimF2(C⊥t)− dimF2(C ∩
C⊥t) = 2e. Then we can construct an Jn+ e, k + e, dK binary quantum code, where

d ≥ min{d(C), d(C + C⊥t) + 1}.

Moreover, if d = min{d(C), d(C + C⊥t) + 1}, then the quantum code is pure.

Proof. Let C be an (n, 2n+k) additive code and dimF2(C ∩C⊥t) = r. Then an easy compu-
tation shows that 2e = n− k − r. Consider the matrix

G =


Vr×n 0r×e
M2e×n T2e×e

An+k−r×n 0n+k−r×e

,
where r(V ) is a basis for C ∩C⊥t , r(M)∪ r(V ) is a basis for C⊥t , and r(A)∪ r(V ) is a basis
for C. The matrix T has entries T2j−1,j = 1, T2j,j = ω for 1 ≤ j ≤ e, and the other entries
of T are zero. By Lemma 3.2.1, we can assume that rows of M are vectors M1,M2, . . . ,M2e

such that the only non-orthogonal pairs of vectors of M are in the from (M2i−1,M2i) for
each 1 ≤ i ≤ e. Let E be the additive code generated by the matrix
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S =
[
Vr×n 0r×e
M2e×n T2e×e

]
.

By the proof of Lemma 3.2.2, the additive code E is self-orthogonal. Also, it is easy to see
that each row of S is orthogonal to each row of G. Moreover, dimF2(E) = (n+e)−(k+e) and
the row space of G has dimension (n+e)+(k+e). Therefore G is a generator matrix for the
code E⊥t and E ⊆ E⊥t . Hence E⊥t is an (n + e, 2(n+e)+(k+e)) trace dual-containing code.
According to Theorem 1.7.1, it follows that E⊥t can be extended to form an Jn+ e, k + eK
binary quantum code.

It only remains to prove the minimum distance bound for the quantum code E⊥t . Let
x = (x1, x2) ∈ E⊥t be an F2-linear combination of the rows of G, where x1 ∈ Fn4 and
x2 ∈ Fe4. If no rows of M appear in the combination, then wt(x) ≥ d(C). If some of the
rows of M join the linear combination, then wt(x) ≥ d(C +C⊥t) + 1. Hence, the quantum
code E⊥t has minimum distance d ≥ d(E⊥t) ≥ min{d(C), d(C + C⊥t) + 1}. Finally, if
d = d(E⊥t) = min{d(C), d(C + C⊥t) + 1}, then E⊥t is a pure quantum code by the
definition of purity.

If an additive code C has the dual-containment deficiency 2e = 0, then the above con-
struction reproduces the result of Theorem 1.7.1. Our construction will be used frequently
in the next sections, and many new record-breaking quantum codes will be provided as its
application. The next example shows how to use this result.

Example 3.2.4 Let C be an (5, 27) additive code over F4 for which

G =


ω 0 ω ω 0
1 ω ω ω2 0
0 1 ω2 1 ω2


is a generator matrix for C⊥t . Our computation shows that the first row forms a basis for
the code C ∩ C⊥t . Hence dimF2(C⊥t) − dimF2(C ∩ C⊥t) = 2e = 2. By the construction
explained in the proof of Theorem 3.2.3, if we add the new column vector [0, 1, ω]T to G,
then the new matrix, namely

G′ =


ω 0 ω ω 0 0
1 ω ω ω2 0 1
0 1 ω2 1 ω2 ω

,
is a generator matrix of a trace self-orthogonal additive code E. Then E⊥t is a quantum code
with parameters J6, 3K. Moreover, our computation shows that d(C) = 3 and d(C+C⊥t) =
1. Therefore, E⊥t is a J6, 3, 2K quantum code.
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3.3 Trace representation of linear cyclic codes

In this section, we briefly recall a different method for the presentation of linear cyclic codes.
This construction, which is known as the trace representation of linear cyclic codes in the
literature, will help us to

• describe the construction of twisted codes in a very similar fashion, and

• depict the similarities between the twisted codes and linear cyclic codes.

Throughout this section, q is a prime power. Let Fqr be the field of qr elements for
some positive integer r, and s | r. Then Fqs ⊆ Fqr . The map Trrs : Fqr → Fqs defined by

Trrs(x) =
r
s
−1∑
i=0

xq
is is called the trace map to the intermediate field Fqs . In Section 1.2, we

recalled several secondary constructions of linear codes. The subfield code and trace code
are two other secondary constructions of linear codes.

Definition 3.3.1 [12, Definition 12.10] Let C be a length n linear code over Fqr . The set

Trr1(C) = {(Trr1(x1),Trr1(x2), . . . ,Trr1(xn)) : (x1, x2, . . . , xn) ∈ C}

is called the trace code of C which is a length n linear code over Fq.

Definition 3.3.2 [12, Definition 12.12] Let C be a length n linear code over Fqr . The
subfield code of C over Fq, denoted by CFq , is the length n linear code over Fq defined by

CFq = {(x1, x2, . . . , xn) ∈ C : xi ∈ Fq for all 1 ≤ i ≤ n}.

The following theorem of Delsarte [32] gives a dual relation between subfield subcodes
and trace codes. This connection is independent of the choice of the inner product; however,
to achieve our purpose, which is the construction of linear cyclic codes using the trace
representation, we state this result using the Euclidean inner product. Recall that C⊥ is
the Euclidean dual of the linear code C.

Theorem 3.3.3 [32] Let C be a length n linear code over Fqr . Then

(
Trr1(C)

)⊥ = (C⊥)Fq .

In other words, if A and B are the families of linear codes over Fqr and over Fq, respec-
tively, then the following diagram commutes

A A

B B

⊥

Trr1 ( )Fq

⊥

, (3.3.1)

61



where Trr1, ( )Fq , and ⊥ are the trace, subfield, and dual operations on linear codes, respec-
tively.

Another important family of linear codes, which plays a central role in this presentation
of linear cyclic codes, is the family of Galois closed codes. Recall that the map σq : Fqr → Fqr
defined by σq(x) = xq is a field automorphism of Fqr known as the Frobenius automorphism
of Fqr . It is well-known that the Galois group of Fqr over Fq is the cyclic group generated
by σq, for example see [12, Definition 12.6]. For a length n linear code C over Fqr , we define

σq(C) = {
(
σq(x1), σq(x2), . . . , σq(xn)

)
: (x1, x2, . . . , xn) ∈ C}.

It is not difficult to see that the codes C and σq(C) are both linear codes with the same
length, dimension, and minimum distance.

Definition 3.3.4 [12, Definition 12.15] Let C be a linear code of length n over Fqr . The
code C is called Galois closed over Fq if C = σq(C).

Note that if C is a linear code defined over Fqr , which is Galois closed over Fq, then C⊥

is also Galois closed over Fq. In general, Galois closed codes are very useful in the design
and analysis of linear codes. The Fq-Galois closure of linear code C, denoted by C, is the
smallest linear code containing C that is Galois closed over Fq. The Fq-Galois closure of C

can be constructed using the vector space sum C =
r−1∑
i=0

σiq(C). A short list of properties of

Galois closed codes is presented below.

Theorem 3.3.5 [12, Theorem 12.17] Let C be a linear code over Fqr of length n that is
Galois closed over Fq. Then the following statements hold.

1. Trr1(C) = CFq .

2. The codes C and Trr1(C) have the same dimension (as codes over Fqr and Fq, respec-
tively).

3. The codes C and Trr1(C) have the same minimum distance.

For the rest of this section, we assume that n is a positive integer such that n | qr−1. In
other words, Fqr contains all the n-th roots of unity. Hence the set of all the qr-cyclotomic
cosets modulo n is in the form of

{{a} : a ∈ Z/nZ}.

This implies that each subset of Z/nZ is in fact the defining set for a length n linear cyclic
code over Fqr . The latter does not necessarily hold for the length n linear cyclic code over Fq
as the defining sets of such codes are unions of q-cyclotomic cosets modulo n.
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Definition 3.3.6 Let α ∈ Fqr be a primitive n-th root of unity and A ⊆ Z/nZ. We
define B(A) to be a matrix over Fqr such that for each i ∈ A and 0 ≤ j ≤ n− 1 the entry
in the row i and column j is defined by αij .

For instance, if A = {i1, i2, . . . , ik} ⊆ Z/nZ, then

B(A) =


1 αi1 α2i1 · · · α(n−1)i1

1 αi2 α2i2 · · · α(n−1)i2

...
...

...
...

...
1 αik α2ik · · · α(n−1)ik

 . (3.3.2)

One can easily see that the matrix B(A) has rank equal to |A|. Recall that, as we stated in
(1.4.2), matrices of this type are (generalized) parity check matrices for linear cyclic codes.
In particular, the matrix B(A) is a parity check matrix for the length n linear cyclic code
over Fqr with the defining set A. Next, we need the following definition to connect the
linear cyclic codes over Fqr that are Galois closed over Fq and linear cyclic codes over Fq.

Definition 3.3.7 [12, Definition 13.2] Let A ⊆ Z/nZ. The Fq-Galois closure of the set A is
defined to be the union of all the q-cyclotomic cosets modulo n that intersect A nontrivially.

Let A ⊆ Z/nZ. We denote the Fq-Galois closure of A by Ã. Recall that G is the Galois
group of Fqr/Fq, and σq is a generator of G. Next, we briefly justify the above definition
using the action of G on Z/nZ. The group G acts on Z/nZ naturally by mapping (σiq, a)
to aqi mod n. One can easily see that under this action Orb(a) = Z(a) (the q-cyclotomic
coset of a modulo n) and Ã =

⋃
a∈A

Orb(a).

In the rest of this chapter, we denote the linear cyclic code of length n over Fqr with
the defining set A by C(A). The definition of B(A) implies that C(A)⊥ is the linear cyclic
code generated by the matrix B(A). Next, we show that C(Ã)⊥ is the Fq-Galois closure of
the code C(A)⊥. For each a ∈ A, we define va = (1, αa, α2a, . . . , α(n−1)a). Then

σq(va) = (σq(1), σq(αa), σq(α2a), . . . , σq(α(n−1)a)) = vaq.

This implies that C(A)⊥ ⊆ C(Ã)⊥ ⊆ C(A)⊥. Next, we show that C(Ã)⊥ is Galois closed
over Fq. Let c =

∑
a∈Ã

cav
a ∈ C(Ã)⊥, where ca ∈ Fqr . Then

σq(c) =
∑
a∈Ã

σq(ca)σq(va) =
∑
a∈Ã

cqav
qa ∈ C(Ã)⊥.

Hence C(Ã)⊥ is Galois closed over Fq. This shows that C(Ã)⊥ is the Fq-Galois closure of
the code C(A)⊥.
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Now we have all the necessary information to recall the trace representation of linear
cyclic codes over Fq. The following theorem and its proof are taken from Chapters 12 and
13 of [12], and we just summarize the important parts here.

Theorem 3.3.8 [12] Let n | qr − 1, A ⊆ Z/nZ, and C be linear cyclic code of length n
over Fq with the defining set Ã. Then C =

(
Trr1

(
C(Ã)⊥

))⊥ =
(
C(Ã)

)
Fq .

Proof. As we mentioned in (1.4.2), the matrix B(Ã) is a generalized parity check matrix
for C. Moreover, B(Ã) is also a generator matrix of C(Ã)⊥, which is a Galois closed code
over Fq. Hence the following diagram of Theorem 3.3.3 commutes.

C(Ã)⊥ C(Ã)

Trr1
(
C(Ã)⊥

) (
C(Ã)

)
Fq

⊥

Trr1 ( )Fq

⊥

. (3.3.3)

Finally, the definition of generalized parity check matrices and the fact that C(Ã) is Galois
closed over Fq imply that C =

(
C(Ã)

)
Fq .

Example 3.3.9 Let n = 15. Then F24 contains α, which is a primitive 15-th root of
unity. Let A = {0, 1} ⊂ Z/15Z. The 2-cyclotomic cosets modulo 15 are {0}, {1, 2, 4, 8},
{3, 6, 9, 12}, {5, 10}, and {7, 11, 13, 14}. The Fq-Galois closure of A is Ã = {0, 1, 2, 4, 8} and

B(Ã) =



1 α0 α0 · · · α0

1 α1 α2 · · · α14

1 α2 α4 · · · α13

1 α4 α8 · · · α11

1 α8 α · · · α7


is the generator matrix of C(Ã)⊥. By Theorem 3.3.8,

(
Trr1

(
C(Ã)⊥

))⊥ is the length 15 binary
linear cyclic code with the defining set Ã.

3.4 Additive twisted codes

This section recalls the construction and several properties of additive twisted codes. In
this section, we mostly follow the approach developed in [13] and [12, Section 17.2]. Both
of the mentioned references have a very dense representation of the results. Therefore, in
the following pages, we add extra details by expanding the explanations. Another aim of
this section is to separate the background from our new results about twisted codes that
will appear in Sections 3.5–3.10. For the rest of this chapter, as our main objective is to
construct good binary quantum codes, we only consider twisted codes over F2×F2. Almost
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all the results of this chapter remain valid for additive twisted codes over a more general
finite field. At the end of this section, in Table 3.1, we give a list of notations that are
used to describe the family of twisted codes. Understanding the table makes it easier to
understand the results provided in the following sections.

Let n be a positive integer such that n | 2r − 1 for some positive integer r, and F2r be
the field of 2r elements. Recall that the surjective F2-linear map φγ : F2r → F2 × F2 is
defined by

φγ(x) = (Trr1(x),Trr1(γx)), (3.4.1)

where γ ∈ F2r \ F2. Since n | 2r − 1, the multiplicative group F∗2r contains all the n-th
roots of unity, namely W = {1, α1, α2, . . . , αn−1}, where α is a primitive n-th root of unity
in F∗2r . Let A ⊆ Z/nZ. Similar as previous section, we define B(A) to be a matrix over F2r ,
where its rows and columns are labelled by elements of A and W , respectively. In other
words, the entry in the row j and the column αi is defined by αij . Let C(A) be the length n
linear cyclic code over F2r with the defining set A. Then B(A) is a generator matrix for
the code C(A)⊥. We define φγ(C(A)⊥) to be the additive code

φγ(C(A)⊥) = {φγ(c) : c ∈ C(A)⊥}.

Let v = (v1, v2, . . . , vn) be a vector in C(A)⊥. We denote φγ(v) =
(
(v11, v12), . . . , (vn1, vn2)

)
,

where vi1 = Trr1(vi) and vi2 = Trr1(γvi) for each 1 ≤ i ≤ n.

Definition 3.4.1 Let 〈, 〉s : F2n
2 × F2n

2 → F2 be the nondegenerate symplectic F2-bilinear
form defined by

〈
(
(a11, a12), . . . , (an1, an2)

)
,
(
(b11, b12), . . . , (bn1, bn2)

)
〉s =

n∑
i=1

ai1bi2 − ai2bi1. (3.4.2)

Later, in Remark 3.4.3, we show that the above symplectic inner product is equivalent
to the trace inner product defined in (1.7.1). Now we formally define twisted codes.

Definition 3.4.2 Let n | 2r − 1 for some integer r and A be a subset of Z/nZ. The dual
of the code φγ(C(A)⊥) with respect to the symplectic inner product 〈, 〉s is called a twisted
code of length n over F2 × F2. Such a twisted code will be denoted by Cγ(A). In other
words,

Cγ(A) =
(
φγ(C(A)⊥)

)⊥s .
We will be able to simplify the above representation of Cγ(A) later in (3.4.8). In general,

the set A in the above definition is not unique, that is, a twisted code can be constructed
using different subsets of Z/nZ. We call the set A an incomplete defining set of Cγ(A), if
there exists A′ ⊆ Z/nZ such that Cγ(A) = Cγ(A′) and A ( A′. On the other hand, if for
each A′ ⊆ Z/nZ such that Cγ(A) = Cγ(A′) we have A′ ⊆ A, then the set A will be called the
complete defining set of Cγ(A). Later, in Definition 3.4.7, we give a unique complete defining
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set for each twisted code. In general, a linear cyclic code can be completely determined and
also constructed only by knowing its defining set based on a fixed primitive root of unity.
To construct a twisted code, beside fixing a primitive n-th root of unity, we need to know
an (incomplete) defining set and also the value of γ. Hence to avoid representing different
twisted codes by the same notation, we use both the set A and the value of γ in the notation
of twisted codes.

In the literature, only twisted codes with various (incomplete) defining sets were investi-
gated, and the fact that various values of γ can yield twisted codes with different minimum
distances was disregarded. This was because the previous research was mainly based on
lower bounds on the code’s distance which are insensitive to the selection of γ. In Sec-
tion 3.10, we study twisted codes constructed using various values of γ. We find example
of twisted codes which are highly sensitive to the selection of γ.

In the next remark, we connect the twisted codes with additive code over F4.

Remark 3.4.3 Let F4 = {0, 1, ω, ω2} be the field of four elements and Cγ(A) be a length n
twisted code over F4. The F2-linear map ψ : F2n

2 → Fn4 defined by

ψ
(
(a11, a12), . . . , (an1, an2)

)
= (a11ω + a12ω

2, a21ω + a22ω
2, . . . , an1ω + an2ω

2) (3.4.3)

is a vector space isomorphism. So we can consider each twisted code of length n over F4

as an F2-linear subspace of Fn4 (an additive code over F4). Moreover, one can easily verify
that for each u =

(
(a11, a12), . . . , (an1, an2)

)
and v =

(
(b11, b12), . . . , (bn1, bn2)

)
∈ F2n

2 × F2n
2 ,

we have
〈u, v〉s =

n∑
i=1

ai1bi2 − ai2bi1 = ψ(u) ∗ ψ(v), (3.4.4)

where ∗ is the trace inner product defined in (1.7.1). Therefore, there is an F2-linear
isomorphism between F2n

2 and Fn4 that preserves the mentioned inner products. Hence the
construction of quantum codes provided in Theorem 3.2.3 remains valid for twisted codes.

Hence twisted codes can be viewed as F2-linear codes over F4 using the above connection.
However, we mostly consider them as additive codes over F2 × F2. Both of the inner
products ∗ and 〈, 〉s are used in the literature for the construction of quantum codes, and
the above remark explains the explicit relation between them.

Unlike in the case of linear cyclic codes, the ordering of the 2-cyclotomic cosets mod-
ulo n is important in the construction of twisted codes. As we will see, the definition of
saturated and unsaturated intersections is sensitive to the ordering of cyclotomic cosets.
Moreover, many of our theoretical results and key properties of twisted codes rely on these
two concepts. Throughout this chapter, we always consider the 2-cyclotomic cosets of a
modulo n with the following ordering

Z(a) = {a, (2a) mod n, (22a) mod n, . . . , (2s−1a) mod n},
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for each 0 ≤ a ≤ n− 1, where s is the smallest positive integer such that 2sa ≡ a (mod n).
Recall that γ ∈ F2r \ F2 is a fixed value. We denote κ = [F2(γ) : F2], which is an integer
larger than one.

Definition 3.4.4 Let A ⊆ Z/nZ and a ∈ A. If κ | |Z(a)| and κ | i − j for each 2ia, 2ja ∈
Z(a) ∩A, then Z(a) ∩A is called unsaturated. Otherwise, Z(a) ∩A is called saturated.

Note that in the above definition, we do not compute the actual intersection Z(a) ∩A,
and we just use it as a notation for saturated and unsaturated intersections. As we will see
in the following example, Z(a) ∩ A can be both saturated and unsaturated depending on
the value of κ.

Example 3.4.5 Let n = 15. The 2-cyclotomic cosets modulo 15 are Z(0) = {0}, Z(1) =
{1, 2, 4, 8}, Z(3) = {3, 6, 12, 9}, Z(5) = {5, 10}, and Z(7) = {7, 14, 13, 11}. Note that
γ ∈ F16 \ F2. Hence, κ ∈ {2, 4}.

• Let A = {5} and κ = 4. Then Z(5) ∩A is saturated.

• Let A = {5} and κ = 2. Then Z(5) ∩A is unsaturated.

• Let A = {1, 4} and κ = 4. Then Z(1) ∩A is saturated.

• Let A = {1, 4} and κ = 2. Then Z(1) ∩A is unsaturated.

The intersection of the defining set of a binary linear cyclic code of length n with a
2-cyclotomic coset Z modulo n is either ∅ or Z. However, in the case of twisted codes,
there is a third option, namely unsaturated intersection. Later, in Theorem 3.5.1, we will
see that Cγ(A) is a linear cyclic code over F4 if there is no unsaturated intersection of
cyclotomic cosets with A. Another important fact to remember is that the saturated and
unsaturated intersections both depend on the value of κ, and therefore changing γ can turn
an unsaturated intersection into a saturated intersection and vice versa.

3.4.1 Quantum codes from twisted codes

In the previous section, we introduced the family of twisted codes as images of certain
linear cyclic codes under the map φγ . In this subsection, we give more information about
the structure of twisted codes. In particular, we find the complete defining set for a twisted
code and its symplectic dual. Then a formula for computing the dimension of twisted codes
is provided. We also will see the application of twisted codes in the construction of binary
quantum codes.

First, we discuss how to find the complete defining set of a twisted code and its symplec-
tic dual. Recall that γ ∈ F2r \ F2 is a fixed value, F2 ( F2(γ) ⊆ F2r , and κ = [F2(γ) : F2].
Moreover, after Definition 3.3.7, we defined the action of G, the Galois group of F2r/F2,
on Z/nZ by

(σi2, a)→ aqi mod n
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for each a ∈ Z/nZ, where σ2 is the Frobenius automorphism of F2r/F2. Let H be the sub-
group of G generated by σκ2 and δ be the restriction of the above action to the subgroup H.
We denote the orbit of a ∈ Z/nZ under the action δ by Orbδ(a). An easy computation
shows that Orbδ(a) = {a2κi : 0 ≤ i ≤ r

κ − 1} if κ | Z(a), which is an unsaturated intersec-
tion. The intersection Orbδ(a) ∩ Z(a) is maximal among unsaturated intersections as the
value of κ is fixed. This implies that if A ⊆ Z/nZ and Z is a 2-cyclotomic coset modulo n
such that Z ∩A is unsaturated and a ∈ Z ∩A, then A ⊆ Orbδ(a). In this case, we define

(Z ∩A)H = Orbδ(a)

and we call it the H-orbit of Z ∩ A. A natural generalization of this observation can be
applied to maximize an incomplete defining set of a twisted code. In particular, for an
arbitrary A ⊆ Z/nZ, we define

Ã =
⋃

Z∩A sat

Z
⋃

Z∩A unsat

(Z ∩A)H , (3.4.5)

where the unions run over all different 2-cyclotomic cosets modulo n, and sat and unsat
stand for saturated and unsaturated intersection, respectively. It is consistent with the
notation used after Definition 3.3.7 for the linear cyclic codes. The next lemma shows that
the set Ã is the maximum cardinality (complete) defining set of a twisted code with an
incomplete defining set A. This lemma also gives the complete defining set of φγ(C(A)⊥)
which is the symplectic dual of Cγ(A).

Lemma 3.4.6 [13] Let n | 2r−1 be a positive integer and A ⊆ Z/nZ. Then Cγ(A) = Cγ(Ã).
Moreover,

Cγ(A)⊥s = φγ(C(A)⊥) = Cγ(Ad),

where
Ad =

⋃
Z∩A=∅

−Z
⋃

Z∩A unsat

−((Z ∩A)H). (3.4.6)

Finally, the set Ã is the maximal cardinality subset of Z/nZ such that Cγ(A) = Cγ(Ã).

Proof. The result follows from Lemma 3 of [13].

Let A ⊆ Z/nZ. The above result implies that the following diagram commutes:

C(A)⊥ C(Ad)⊥

Cγ(Ad) Cγ(A)

( )d

φγ φγ

⊥s

. (3.4.7)
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This result, specifically the equality

Cγ(A) = φγ(C(Ad)⊥), (3.4.8)

will be used very frequently in the rest of this chapter because it is simpler than the form
provided in its original definition (Definition 3.4.2). The uniqueness of Ã in the above
lemma motivates us to define the complete defining set of a twisted code as follows.

Definition 3.4.7 Let A ⊆ Z/nZ. The set Ã defined in (3.4.5) is called the complete defining
set of twisted code Cγ(A).

The set Ad defined above is also the complete defining set of the code Cγ(A)⊥s . From now
on, we reserve the symbol Ad for the complete defining set of Cγ(A)⊥s . By Lemma 3.4.6,
the twisted code Cγ(A) has the complete defining set Ã, and its symplectic dual is the
code Cγ(Ad). The following theorem computes the dimension of twisted codes.

Theorem 3.4.8 [13, Theorem 5] Let n | 2r − 1 be a positive integer and A ⊆ Z/nZ. Then
the F2-dimension of Cγ(A) is

∑
Z

cZ(A), where the sum runs over all 2-cyclotomic cosets

modulo n and

cZ(A) =


2|Z| if Z ∩A = ∅

|Z| if Z ∩A is unsaturated

0 if Z ∩A is saturated.

So far, we have discussed many similarities between twisted codes and linear cyclic codes.
Next, we show that twisted codes are closed under cyclic shifts. Let Cγ(A) be a twisted
code with the complete defining set A ⊆ Z/nZ. By (3.4.7), we have

Cγ(A) = φγ(C(Ad)⊥) = {
(
Trr1(x),Trr1(γx)

)
: x ∈ C(Ad)⊥}. (3.4.9)

Recall that C(Ad)⊥ is a linear cyclic code over F2r . Thus (3.4.9) implies that that Cγ(A) is
a cyclic code.

Next, we discuss a necessary and sufficient condition for the dual-containment of twisted
codes. Here we first introduce a concept that improves the representation of dual-containing
twisted codes.

Definition 3.4.9 Let A ⊆ Z/nZ be the complete defining set of a length n twisted code.
For each 2-cyclotomic coset Z modulo n, we call the intersection Z ∩A purely unsaturated
if (−Z) ∩A and Z ∩A are both unsaturated and Z ∩A = −((−Z) ∩A).

Note that if Z ∩A is purely unsaturated, then (−Z) ∩A is also purely unsaturated.

Example 3.4.10 Let n = 63 and γ ∈ F4 \ F2. Then κ = [F2(γ) : F2] = 2. The ordered
2-cyclotomic cosets of 1 and −1 modulo 63 are Z(1) = {1, 2, 4, 8, 16, 32} and Z(−1) =
{62, 61, 59, 55, 47, 31}, respectively.
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1. Let A = {1, 4, 16, 47, 59, 62}. Obviously, A is a complete defining set and

Z(1) ∩A = {1, 4, 16} = −{62, 59, 47} = −(−Z(1) ∩A).

Therefore, Z(1) ∩A is purely unsaturated.

2. Let B = {1, 4, 16, 61, 55, 31}, which is the complete defining set of a twisted code.
Then Z(1) ∩B and −Z(1) ∩B are both unsaturated. However,

{1, 4, 16} = Z(1) ∩B 6= −(−Z(1) ∩B) = ∅.

Thus Z(1) ∩B is not purely unsaturated.

The next theorem gives a necessary and sufficient condition for the dual-containment of
twisted codes using purely unsaturated intersections.

Theorem 3.4.11 [13] Let A be the complete defining set of a twisted code Cγ(A) of length n
over F2 × F2. Then Cγ(A)⊥s ⊆ Cγ(A) if and only if every 2-cyclotomic coset Z modulo n
such that A ∩ Z 6= ∅ satisfies exactly one of the following conditions.

i. Z ∩A is purely unsaturated.

ii. (−Z) ∩A = ∅.

Proof. The proof follows from [13, Theorem 6].

The above result was first stated in Theorem 6 of [13] with a small error in its reformu-
lation, which was acknowledged in the pdf file provided at Yves Edel’s home page [35]. The
error caused certain dual-containing twisted codes to not be detected by the given criteria.
In particular, the last line of Theorem 6 of [13] should be: (equivalently: (−Z) ∩ A = ∅ or
(Z ∩A)H = −(((−Z) ∩A)H) ).

Let A1 and A2 be the complete defining sets of two additive twisted codes. Then the
definition of twisted codes, Definition 3.4.2, implies that Cγ(A2) ⊆ Cγ(A1) if and only if
A1 ⊆ A2. This observation now implies that Cγ(Ad) ⊆ Cγ(A) if and only if A ⊆ Ad. The
following theorem gives the connection between binary quantum codes and dual-containing
twisted codes.

Theorem 3.4.12 Let A be the complete defining set of a twisted code Cγ(A) of length n
over F2 × F2 such that A ⊆ Ad. Then there exists a binary quantum code with parameters
Jn, k, dK, where dim(Cγ(A)) = n+ k and d(Cγ(A)) = d.

Proof. First note that the condition A ⊆ Ad implies that Cγ(Ad) ⊆ Cγ(A). Now the proof
follows from applying Theorem 1.7.1 to the code Cγ(A).
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We finish this section by giving a connection between twisted codes and certain Galois
closed codes. Many of our results in Section 3.5 rely on the details provided below. Let
A ⊆ Z/nZ. Recall that C(A) is the linear cyclic code of length n over F2r with the defining
set A.

Definition 3.4.13 Let A ⊆ Z/nZ. We define D(A) ⊆ F2n
2r to be the F2-Galois closure of

the F2r -linear code

(C(A)⊥, γC(A)⊥) = {
(
(x1, γx1), (x2, γx2), . . . , (xn, γxn)

)
: (x1, x2, . . . , xn) ∈ C(A)⊥}.

(3.4.10)

The fact that D(A) is Galois closed over F2 implies that

Cγ(Ad) = Cγ(A)⊥s = φγ(C(A)⊥) = Trr1
(
(C(A)⊥, γC(A)⊥)

)
= Trr1(D(A)). (3.4.11)

Let Pn = F2r [x]/〈xn − 1〉. For each 2-cyclotomic coset Z modulo n, we define

ρ(Z) = {
∑
i∈Z

aix
i : ai ∈ F2r}.

The F2r -linear vector space Pn × Pn can be decomposed as

Pn × Pn =
⊕
Z

(Pn × Pn)Z , (3.4.12)

where the direct sum runs over all different 2-cyclotomic cosets modulo n and

(Pn × Pn)Z = {(p(x), q(x)) : p(x), q(x) ∈ ρ(Z)}. (3.4.13)

The set (Pn × Pn)Z is a subspace of Pn × Pn and has dimension 2|Z| over F2r . Recall
that α is a primitive n-th root of unity in F2r . The map θ : Pn → Fn2r defined by θ(p(x)) =
(p(α0), p(α1), . . . , p(αn−1)) is an F2r -linear isomorphism. Hence the map θ′ : Pn × Pn →
Fn2r × Fn2r defined by θ′(p(x), q(x)) =

(
θ(p(x)), θ(q(x))

)
is also an F2r -linear isomorphism.

Let
DZ(A) = θ′−1(D(A)) ∩ (Pn × Pn)Z . (3.4.14)

The set DZ(A) gives the polynomial representation of vectors of a twisted code inside each
(Pn×Pn)Z . One can obtain the polynomial representation of a twisted code by computing

⊕
Z

DZ(A),

where the sum runs over all the cyclotomic cosets. The next proposition computes DZ(A)
for each cyclotomic coset Z. This result will be applied later in Section 3.5 to classify nearly
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dual-containing twisted codes. The reason for stating this result early is to separate our
new results in the upcoming sections from the works done in the literature.

Proposition 3.4.14 [13] Let n be a positive integer such that n | 2r − 1, and A ⊆ Z/nZ.
Let Z be a 2-cyclotomic coset modulo n and |Z| = s. Then the following results hold.

i. Z ∩A = ∅ if and only if DZ(A) = {(0, 0)}.

ii. Z ∩A is saturated if and only if DZ(A) = (Pn × Pn)Z .

iii. Z ∩A is unsaturated and a ∈ Z ∩A if and only if {(x2ia, γ2ix2ia) : i = 0, 1, . . . , s− 1}
forms a basis for DZ(A) over F2r .

Proof. The result follows from the proof of Lemma 1 and 2 of [13], and we only give the
main idea below. Let a ∈ Z ∩ A. Then (xa, γxa) ∈ DZ(A). Since DZ(A) is Galois
closed over F2, DZ(A) contains all the vectors in the form (xa, γxa)2i = (x2ia, γ2ix2ia) for
i = 0, 1, . . . , s − 1. Finding all such vectors allows us to form a basis for DZ(A) over F2r .
For instance, if κ - s, then (xa, γxa)2s = (xa, γ2sxa) and (xa, γxa) ∈ DZ(A). Since γ 6= γ2s ,
we have (xa, 0) and (0, xa) are two linear combination of the mentioned vectors. Now, it is
easy to see that DZ(A) = (Pn × Pn)Z . The proof for the other cases follows similarly.

In summary, D(A) is a Galois closed code over F2 such that Trr1(D(A)) = Cγ(A)⊥s . A
basis for the code D(A) can be computed using the Proposition 3.4.14 and the fact that
D(A) =

⊕
Z

θ′
(
DZ(A)

)
. One application of the above information about the code D(A) is

that it helps to compute the dual-containment deficiency of twisted codes, which is discussed
in Proposition 3.5.5.

In this section, we used various notations to introduce the twisted codes and their
properties. Table 3.1 below summarizes the important notations that will be used frequently
in the rest of this chapter. Understanding the table facilitates the understanding of our
upcoming results.

3.5 Nearly dual-containing twisted codes

In the previous section, we recalled the preliminary results about twisted codes. Throughout
the remaining sections of this chapter, we present our new results on twisted codes. In this
section, we identify nearly dual-containing twisted codes, which are the main ingredients
for applying the quantum construction of Theorem 3.2.3. In Theorem 3.5.3, we give a
connection between the weight of vectors in the codes Cγ(A) and C(A). By employing
this new approach, we establish a more powerful connection between twisted codes and
linear cyclic codes. This allows us to compute the complete defining set of the sum and
intersection of two twisted codes. We also give sufficient conditions for a twisted code to
be linear over F4.
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Indices Description
F2r finite field of 2r elements
n a positive integer such that n | 2r − 1
α a primitive n-th root of unity in F2r

γ γ ∈ F2r \ F2
κ degree of the field extension [F2(γ) : F2]
φγ F2-linear map φγ : F2r → F2 × F2 is defined by φγ(x) =

(Trr1(x),Trr1(γx))
C(A) linear cyclic code over F2r with the defining set A
Cγ(A) twisted code over F2 × F2 with an (incomplete) defining set A defined

by Cγ(A) =
(
φγ(C(A)⊥)

)⊥s = φγ(C(Ad)⊥)
Ã the complete defining set of twisted code Cγ(A) over F2×F2 (see (3.4.5))
Ad the complete defining set of twisted code Cγ(A)⊥s over F2 × F2 (see

(3.4.6))
Pn Pn = F2r [x]/〈xn − 1〉
ρ(Z) ρ(Z) = {

∑
i∈Z

aix
i : ai ∈ F2r} for each 2-cyclotomic coset Z modulo n

θ θ : Pn → Fn2r is defined by θ(p(x)) = (p(α0), p(α1), . . . , p(αn−1))
θ′ θ′ : Pn × Pn → Fn2r × Fn2r defined by θ′(p(x), q(x)) =

(
θ(p(x)), θ(q(x))

)
D(A) F2-Galois closure of the F2r -linear code (C(A)⊥, γC(A)⊥) (see (3.4.10))
(Pn × Pn)Z (Pn × Pn)Z = {(p(x), q(x)) : p(x), q(x) ∈ ρ(Z)}
DZ(A) DZ(A) = θ′−1(D(A)) ∩ (Pn × Pn)Z for each cyclotomic coset Z

Table 3.1: Notations of twisted codes.

Throughout this section, n is a positive integer such that n | 2r − 1 for some positive
integer r and γ ∈ F2r \ F2. Recall that the F2-linear map ψ : F2n

2 → Fn4 defined by

ψ
(
(a11, a12), . . . , (an1, an2)

)
= (a11ω + a12ω

2, a21ω + a22ω
2, . . . , an1ω + an2ω

2)

is a vector space isomorphism. Using the map ψ, one can see that a twisted code Cγ(A)
is linear over F4, if for each vector a =

(
(a11, a12), . . . , (an1, an2)

)
∈ Cγ(A), the vector

a′ =
(
(a12, a11 + a12), . . . , (an2, an1 + an2)

)
∈ Cγ(A). This is because ψ(a′) = ωψ(a). Next,

we use this property and identify some twisted codes that are also linear cyclic codes over F4.
This allows us to discard twisted codes that are linear cyclic codes in our search for good
codes, as linear cyclic codes over F4 have been extensively studied in the literature.

Theorem 3.5.1 Let A ⊆ Z/nZ be the complete defining set of a twisted code of length n
over F2 × F2. If for each 2-cyclotomic coset Z modulo n either A ∩ Z = ∅ or Z ⊆ A,
then Cγ(A) is a linear cyclic code over F4.

Proof. As we mentioned earlier, twisted codes are cyclic. So we only show that Cγ(A) is a
linear code over F4 assuming that either A ∩ Z = ∅ or Z ⊆ A for each cyclotomic coset Z.
Recall that the set Ad defined in (3.4.6) is the complete defining set of Cγ(A)⊥s . Let Z
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be a 2-cyclotomic coset modulo n. Clearly, Ad ∩ Z = ∅ or Z ⊆ Ad. By (3.4.11), we have
Cγ(A) = Trr1(D(Ad)). Moreover, using Corollary 3.4.14 part (ii), we get

D(Ad) =
⊕
Z

θ′(DZ(Ad)) =
⊕
Z

θ′
(
(Pn × Pn)Z

)
,

where the direct sum runs over all different 2-cyclotomic cosets such that Ad∩Z is saturated.
So it is enough to show that Trr1

(
θ′
(
(Pn × Pn)Z

))
is F4-linear for each such cyclotomic

coset Z. Let (p(x), q(x)) ∈ (Pn × Pn)Z , where Z ∩Ad is saturated. Then

u = Trr1
((

(p(1), q(1)), (p(α), q(α)), . . . , (p(αn−1), q(αn−1))
))
∈ Cγ(A).

Since (q(x), p(x) + q(x)) ∈ (Pn × Pn)Z , we have

v = Trr1
((

(q(1), p(1)+q(1)), (q(α), p(α)+q(α)), . . . , (q(αn−1), p(αn−1)+q(αn−1))
))
∈ Cγ(A).

Now u and v satisfy the linearity test mentioned above this theorem. Hence Cγ(A) is a
linear subspace of Fn4 .

Example 3.5.2 In this example, we show that the unsaturated intersection of the defining
set of a twisted code with cyclotomic cosets can result in linear and non-linear twisted codes
over F4.

(1) Let κ = 2 (κ | r = 8) and A = {1, 4, 16, 13} be the complete defining set of a twisted
code of length 17 over F4. Then A ( Z(1) and our computation in Magma [17] shows
that Cγ(A) is a linear code over F4.

(2) Let κ = 11 (κ | r = 11) and A = {1} be the complete defining set of a twisted code
of length 23 over F4. Then A ( Z(1) and our computation in Magma [17] shows that Cγ(A)
is a non-linear code over F4.

Recall that the Euclidean inner product of two vectors x and y ∈ Fn2r is denoted by x ·y.
Now, we give a connection between the structure of vectors in Cγ(A) and C(A). This
connection allows us to compute the defining set of the sum and intersection of twisted
codes. As we will see in Corollary 3.6.3, this result also enables us to give a general minimum
distance lower bound for twisted codes using the minimum distance of linear cyclic codes.

Theorem 3.5.3 Let A ⊆ Z/nZ be the complete defining set of a twisted code Cγ(A) of
length n over F2 × F2. Then the following statements are equivalent.

1. The vector y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) ∈ Cγ(A).

2. The vector x = (γb11 + b12, γb21 + b22, . . . , γbn1 + bn2) ∈ C(A).
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Proof. Let y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) and x = (γb11 +b12, γb21 +b22, . . . , γbn1 +
bn2) for arbitrary bi1 and bi2 ∈ F2, where 1 ≤ i ≤ n. Let z = (z1, z2, . . . , zn) be an arbitrary
element of C(A)⊥. Since Trr1 is linear over F2, one can easily verify that

〈φγ(z), y〉s =
n∑
i=1

(bi1Trr1(γzi) + bi2Trr1(zi)) = Trr1(
n∑
i=1

zi(γbi1 + bi2)) = Trr1(z · x). (3.5.1)

1⇒ 2 : Suppose that y ∈ Cγ(A). Equation (3.5.1) implies that 〈φγ(z), y〉s = Trr1(z ·x) =
0 holds for any arbitrary z in C(A)⊥. Hence z · x = 0 as otherwise we can find z′ ∈ C(A)⊥

such that 0 = 〈φγ(z′), y〉s = Trr1(z′ · x) = 1, which is a contradiction. Hence x ∈ C(A).
2 ⇒ 1 : Suppose that x ∈ C(A). Then for each z in C(A)⊥, we have z · x = 0. Now,

equation (3.5.1) implies that 〈φγ(z), y〉s = Trr1(z · x) = 0 for each z in C(A)⊥. Hence
y ∈ Cγ(A).

Recall that if C(A) and C(A′) are two linear cyclic codes over F2r with the defining
sets A and A′, respectively, then C(A)∩C(A′) = C(A∪A′) and C(A)+C(A′) = C(A∩A′).
Next, we show that the complete defining sets of the sum and intersection of two twisted
codes follow the same rule.

Proposition 3.5.4 Let A,A′ ⊆ Z/nZ be the complete defining sets of two twisted codes of
length n over F2 × F2. Then

1. Cγ(A) ∩ Cγ(A′) = Cγ(A ∪A′).

2. Cγ(A) + Cγ(A′) = Cγ(A ∩A′).

Proof. (1): Let y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) ∈ F2n
2 and x = (γb11 + b12, γb21 +

b22, . . . , γbn1 + bn2). Using the result of Theorem 3.5.3, we have y ∈ Cγ(A) ∩ Cγ(A′) if and
only if x ∈ C(A) ∩ C(A′) if and only if x ∈ C(A ∪A′) if and only if y ∈ Cγ(A ∪A′).

(2): Let
y1 = ((b11, b12), (b21, b22), . . . , (bn1, bn2))

and
y2 = ((b′11, b

′
12), (b′21, b

′
22), . . . , (b′n1, b

′
n2))

be elements of F2n
2 . Moreover, suppose that

x1 = (γb11 + b12, γb21 + b22, . . . , γbn1 + bn2)

and
x2 = (γb′11 + b′12, γb

′
21 + b′22, . . . , γb

′
n1 + b′n2).

Then, by Theorem 3.5.3, we have if y1+y2 ∈ Cγ(A)+Cγ(A′), then x1+x2 ∈ C(A)+C(A′) =
C(A ∩ A′). This implies that y1 + y2 ∈ Cγ(A ∩ A′). Thus Cγ(A) + Cγ(A′) ⊆ Cγ(A ∩ A′).
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Next we show that dimF2(Cγ(A∩A′)) = dimF2(Cγ(A)+Cγ(A′)), which proves that Cγ(A)+
Cγ(A′) = Cγ(A∩A′). By Theorem 3.4.8, we have dimF2(Cγ(A∩A′)) =

∑
Z

cZ(A∩A′), where

the sum runs over all different cyclotomic cosets. Using a similar argument we get

dimF2(Cγ(A) + Cγ(A′)) = dimF2(Cγ(A)) + dimF2(Cγ(A′))− dimF2(Cγ(A) ∩ Cγ(A′))

= dimF2(Cγ(A)) + dimF2(Cγ(A′))− dimF2(Cγ(A ∪A′))

=
∑
Z

(
cZ(A) + cZ(A′)− cZ(A ∪A′)

)
.

Let Z be a 2-cyclotomic coset modulo n. To prove that dimF2(Cγ(A∩A′)) = dimF2(Cγ(A)+
Cγ(A′)), it is sufficient to show that

kZ = cZ(A) + cZ(A′)− cZ(A ∪A′)− cZ(A ∩A′) = 0.

This is true because

kZ =

cZ(A) + cZ(A′)− cZ(A)− cZ(A′) = 0 if A = Z or A′ = ∅

cZ(A) + cZ(A′)− cZ(A′)− cZ(A) = 0 if A′ = Z or A = ∅

cZ(A) + cZ(A)− cZ(A)− cZ(A) = 0 if A′ = A

|Z|+ |Z| − 0− 2|Z| = 0 if A 6= A′ and A ∩ Z,A′ ∩ Z are unsaturated.

3.5.1 Quantum codes from nearly dual-containing twisted codes

Let A ⊆ Z/nZ be the complete defining set of a twisted code Cγ(A). Recall that, by The-
orem 1.7.1, one can construct a quantum code from the twisted code Cγ(A), if Cγ(Ad) ⊆
Cγ(A) or equivalently when Cγ(A) is symplectic dual-containing. A criterion for self-
orthogonality, or equivalently dual-containment, of twisted codes was provided in Theorem
3.4.11. Next, we define the dual-containment deficiency of Cγ(A) by

e =
dimF2

(
Cγ(Ad)

)
− dimF2

(
Cγ(Ad) ∩ Cγ(A)

)
2 =

dimF2

(
Cγ(Ad)

)
− dimF2

(
Cγ(A ∪Ad)

)
2 .

This helps to apply the quantum construction of Theorem 3.2.3 to additive twisted codes
which are not necessarily symplectic dual-containing. Note that Cγ(A) has the dual-
containment deficiency e = 0 if and only if Cγ(Ad) ⊆ Cγ(A). In general, we target twisted
codes with a small value of e, since the result of Theorem 3.2.3 is more likely to produce a
good quantum code for such e values. This is because dimension of the code Cγ(A)+Cγ(Ad)
is large (hence it probably has a small minimum distance) when the value of e is closer to
dimF2(Cγ(Ad)).
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Let Z1, Z2, . . . , Zr, Z1
′,−Z1

′, Z2
′,−Z2

′, . . . , Zt
′,−Zt′ be all the different 2-cyclotomic

cosets modulo n, where Zi = −Zi for all 1 ≤ i ≤ r.

Theorem 3.5.5 Let A be the complete defining set of a twisted code Cγ(A) of length n over
F2 × F2. Then

2e = dimF2

(
Cγ(Ad)

)
− dimF2

(
Cγ(A ∪Ad)

)
=

∑
Z∩A sat

2|Z| +
∑

Z∩A unsat
(Z∩A)H 6=−((Z∩A)H)

|Z|

+
∑

Z′∩A sat
−Z′∩A sat

4|Z ′| +
∑

Z′∩A sat
−Z′∩A unsat

2|Z ′| +
∑

Z′∩A unsat
−Z′∩A unsat

(Z′∩A)H 6=−((−Z′∩A)H)

2|Z ′| (3.5.2)

where the first two sums run over all cyclotomic cosets Z with Z = −Z and the other
sums run over all the cyclotomic cosets pairs (Z ′,−Z ′) with Z ′ 6= −Z ′. Also, in the above
notation, sat and unsat stand for saturated and unsaturated, respectively.

Proof. First note that by (3.4.11), we have Cγ(Ad) = Trr1(D(A)) and since D(A) is Galois
close over F2

dimF2

(
Cγ(Ad)

)
= dimF2r (D(A)) =

∑
Z

dimF2r (DZ(A)),

where the sums run over all different 2-cyclotomic cosets modulo n. Moreover, the fact that

(
Cγ(A) ∩ Cγ(Ad)

)⊥s = Cγ(A ∪Ad)⊥s = Cγ(A) + Cγ(Ad) = Cγ(A ∩Ad)

implies that

dimF2

(
Cγ(Ad)

)
− dimF2

(
Cγ(A ∪Ad)

)
=
∑
Z

(
dimF2r (DZ(A))− dimF2r (DZ(A ∩Ad))

)
.

Let N = A ∩ Ad. Next we compute dimF2r (DZ(A)) − dimF2r (DZ(N)) for each cyclotomic
coset Z using the result of Proposition 3.4.14.

Case (I): Let Z = Zi for some 1 ≤ i ≤ r.

1. If Z ∩A = ∅, then Z ∩N = ∅. Thus dimF2r (DZ(A))− dimF2r (DZ(N)) = 0.

2. If Z ∩ A is saturated, then Z ∩ Ad = ∅. Thus Z ∩ N = ∅ and dimF2r (DZ(A)) −
dimF2r (DZ(N)) = 2|Z|.

3. Let Z ∩A be unsaturated.

(a) If Z ∩ A is purely unsaturated, then Z ∩ N = Z ∩ A and dimF2r (DZ(A)) −
dimF2r (DZ(N)) = 0.

(b) If Z ∩ A is not purely unsaturated, then Z ∩ N = ∅ and dimF2r (DZ(A)) −
dimF2r (DZ(N)) = |Z|.
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Case (II): Let Z = Zi
′ for some 1 ≤ i ≤ t.

1. If Z ∩A = −Z ∩A = ∅. Thus Z ∩N = ∅ and −Z ∩N = ∅. Hence dimF2r (DZ(A))−
dimF2r (DZ(N)) = 0.

2. If Z ∩ A = ∅ and −Z ∩ A is saturated, then Z ∩ Ad = ∅ and −Z ∩ Ad = −Z. Thus
Z ∩N = ∅ and −Z ∩N = −Z. Hence dimF2r (DZ(A))− dimF2r (DZ(N)) = 0.

3. If Z∩A = ∅ and −Z∩A is unsaturated, then Z∩Ad is unsaturated and −Z∩Ad = −Z.
Thus Z∩N = ∅ and −Z∩N = −Z∩A. Hence dimF2r (DZ(A))−dimF2r (DZ(N)) = 0.

4. If Z ∩ A and −Z ∩ A are both saturated, then Z ∩ Ad = ∅ and −Z ∩ Ad = ∅. Thus
Z ∩N = ∅ and −Z ∩N = ∅. Hence dimF2r (DZ(A))− dimF2r (DZ(N)) = 4|Z|.

5. If Z ∩ A is saturated and −Z ∩ A is unsaturated, then Z ∩ Ad is unsaturated and
−Z ∩ Ad = ∅. Thus Z ∩ N = Z ∩ Ad and −Z ∩ N = ∅. Hence dimF2r (DZ(A)) −
dimF2r (DZ(N)) = 2|Z|.

6. Let Z ∩A and −Z ∩A be unsaturated.

(a) If (Z∩A)H = −((−Z∩A)H), then Z∩Ad = Z∩A and −Z∩Ad = −Z∩A. Thus
Z∩N = Z∩A and −Z∩N = −Z∩A. Hence dimF2r (DZ(A))−dimF2r (DZ(N)) =
0.

(b) Otherwise, Z ∩ Ad 6= Z ∩ A and −Z ∩ Ad 6= −Z ∩ A. Thus Z ∩ N = ∅ and
−Z ∩N = ∅. Hence dimF2r (DZ(A))− dimF2r (DZ(N)) = 2|Z|.

Now (3.5.2) follows from putting the above cases together.

The formula given in (3.5.2) provides a practical approach for designing twisted codes
with a small value of e more systematically. For instance, when Z = −Z, the saturated
intersection Z ∩ A implies a larger e value than an unsaturated intersection of Z ∩ A.
Moreover, when Z ′ 6= −Z ′, the e value is non-decreasing when there are more saturated
intersections between Z ′ ∩ A and −Z ′ ∩ A. Hence having smaller numbers of saturated
intersections of the complete defining set with Z ′ and −Z ′ can produce twisted codes with
a smaller value of e. Motivated by this observation, some of our record-breaking quantum
codes are obtained from twisted codes with the complete defining set A such that A = −A
and A∩Z is either empty or unsaturated for each cyclotomic coset Z. Next, we characterize
all the twisted codes with the dual-containment deficiency e = 1.

Corollary 3.5.6 Let A ⊆ Z/nZ be the complete defining set of a twisted code of length n
over F2 × F2. The code Cγ(A) has the dual-containment deficiency e = 1 if and only if
all the cyclotomic cosets intersecting A satisfy the condition (i) or (ii) of Theorem 3.4.11
except one cyclotomic coset, which is in the form
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1. Z = {0},

2. or Z = {n3 ,
2n
3 }, when 3 | n, κ = 2, and |Z ∩A| = 1.

Proof. First, note that the only singleton 2-cyclotomic coset modulo n is {0} as n is an
odd integer. Moreover, one can easily verify that 2-cyclotomic cosets of size 2 exist only
when 3 | n and are in the form of Z = {n3 ,

2n
3 }.

⇒: If all the 2-cyclotomic cosets modulo n satisfy condition (i) or (ii) of Theorem 3.4.11,
then the code Cγ(Ad) is self-orthogonal and e = 0. So there is at least one 2-cyclotomic
coset Z such that Z ∩ A 6= ∅ and Z does not satisfy the conditions of Theorem 3.4.11.
Moreover, the formula provided in Theorem 3.5.5 verifies that Cases (1) and (2) above
give e = 1. Next, if Z is not in the form of Case (1) or Case (2) above, then |Z| > 2
or Z has size two and Z ∩ A = Z. Therefore, the dual-containment deficiency formula of
Theorem 3.5.5 implies that e > 1.
⇐: It follows immediately from Theorem 3.5.5.

Now we present a restriction of quantum construction of Theorem 3.2.3 to nearly dual-
containing twisted codes. This result is very important as it allows us to construct quantum
codes from the twisted codes which are not symplectic dual-containing.

Theorem 3.5.7 Let Cγ(A) be an (n, 2n+k) twisted code over F2 × F2 with the defining set
A ⊆ Z/nZ and e be the dual-containment deficiency of the code Cγ(A). Then there exists a
binary quantum code with parameters Jn+ e, k + e, dK, where

d ≥ min{d(Cγ(A)), d
(
Cγ(A ∩Ad)

)
+ 1}.

Proof. First note that Cγ(A) + Cγ(Ad) = Cγ(A ∩ Ad). Now, the proof follows by applying
Theorem 3.2.3 to the twisted code Cγ(A) considered as an additive code over F4.

Many new record-breaking binary quantum codes were obtained after applying the above
theorem to nearly dual-containing twisted codes. The parameters of such codes are pre-
sented in Section 3.8.

3.6 New minimum distance bounds for twisted codes

Similar to linear cyclic codes, the minimum distance of twisted codes can be bounded using
the BCH bound [13]. This is because twisted codes are constructed by applying the map φγ
to linear cyclic codes. Currently, this is the only known minimum distance bound for the
entire family of additive cyclic codes. Recall that n is a positive integer such that n | 2r− 1
for some positive integer r and γ ∈ F2r \ F2. Let A ⊆ Z/nZ be a complete defining set
of a twisted code Cγ(A) of length n over F2 × F2. Recall that C(A) is the length n linear
cyclic code over F2r with the defining set A. In this section, we provide a minimum distance
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lower bound for twisted code using the minimum distance of the code C(A). We show that
the other well-known minimum distance lower bounds, such as Hartmann-Tzeng and Roos
bounds, introduced in Section 1.4, remain valid for twisted codes. Moreover, we prove that
any minimum distance lower bound for C(A) is also a minimum distance lower bound for
the twisted code Cγ(A).

Recall that L ⊆ Z/nZ is called a consecutive set of length s if there exists an integer c
with gcd(c, n) = 1 such that

{(cl) mod n : l ∈ L} = {(j + t) mod n : 0 ≤ j ≤ s− 1}

for some t ∈ Z/nZ. The next proposition gives the BCH minimum distance bound for
twisted codes. This result was proved using a technical argument on the structure of
Vandermonde matrices and then applying a modification of Theorem 1.2.1.

Proposition 3.6.1 [13] Let A be the complete defining set of a twisted code Cγ(A) such
that A contains a consecutive set of size t− 1. Then d(Cγ(A)) ≥ t.

Recall that κ = [F2(γ) : F2]. Let A ⊆ Z/nZ be the complete defining set of a twisted
code. The definition of the complete defining set, given in Definition 3.4.7, implies that for
each a ∈ A, the value 2κa ∈ A. The result of Theorem 3.3.8 and the discussion right before
it imply that the codes

(
C(A)

)
F2κ

, which is the linear cyclic code of length n over F2κ with
the defining set A , and C(A) are both Galois closed over F2κ . Hence Theorem 3.3.5 implies
that the codes

(
C(A)

)
F2κ

and C(A) both have the same parameters (length, dimension, and
minimum distance). This motivates us to state the following remark.

Remark 3.6.2 In this section and Section 3.7, we provide minimum distance bounds for
the minimum distance of twisted codes using the linear cyclic codes C(A). Moreover, as
we showed above, the codes C(A) and the linear cyclic code

(
C(A)

)
F2κ

both have the same
parameters. Hence it will be more efficient to compute the minimum distance of

(
C(A)

)
F2κ

instead of C(A). However, to avoid using many different notations and linear cyclic codes
in our statements, we only state our minimum distance computations using the code C(A).
In other words, all of the results of this section remain valid if we replace C(A) with the
code

(
C(A)

)
F2κ

.

Let A ⊆ Z/nZ be the complete defining set of a twisted code Cγ(A) of length n over F2×
F2. In Theorem 3.5.3, we showed that the vector y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) ∈
Cγ(A) if and only if the vector x = (γb11 + b12, γb21 + b22, . . . , γbn1 + bn2) ∈ C(A). This
connection allows us to provide a general minimum distance lower bound for twisted codes
using the minimum distance of linear cyclic codes. Our proof here is shorter than that of
the BCH bound for the twisted codes. Moreover, it provides a better insight about the
structure of vectors in a twisted code.
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Corollary 3.6.3 Let A ⊆ Z/nZ be the complete defining set of a twisted code Cγ(A) of
length n over F2×F2. If Cγ(A) has a weight t vector, then C(A) also has a weight t vector.
In particular, d(Cγ(A)) ≥ d(C(A)).

Proof. Note that the vectors x and y in the statement of Theorem 3.5.3 have the same
weight. Let y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) ∈ Cγ(A). Then x = (γb11 + b12, γb21 +
b22, . . . , γbn1 + bn2) ∈ C(A) which proves the first part of the statement. Moreover, assume
that wt(y) = d(Cγ(A)). Then

d(Cγ(A)) = wt(y) = wt(x) ≥ d(C(A)).

In other words, any minimum distance lower bound for the minimum distance of linear
cyclic code C(A) remains a minimum distance lower bound for the code Cγ(A). Note that
the converse of the above corollary is not necessarily true. In other words, the code C(A)
can contain vectors which are not of the form (γb11 + b12, γb21 + b22, . . . , γbn1 + bn2) for
arbitrary bi1 and bi2 ∈ F2, where 1 ≤ i ≤ n. The following example shows that minimum
weight vectors in a linear cyclic code C(A) are not of the above form. Later, in Section 3.7,
we develop this example into an infinite family of twisted codes with minimum distance at
least five.

Example 3.6.4 Let n = 73 and r = 9. Then 73 | 29−1 and F29 contains all the 73-rd roots
of unity. Let κ = 3, γ ∈ F8 \ F2, and A = {1, 8, 9, 64, 65, 72} be the complete defining set of
a twisted code Cγ(A) of length n over F2×F2. Our computation in Magma [17] shows that
d(C(A)) = 4 and all such weight four vectors have pairwise different non-zero coordinates.
Hence, these weight four vectors are not of type x = (γb11 + b12, γb21 + b22, . . . , γbn1 + bn2)
with bi1 and bi2 ∈ F2, where 1 ≤ i ≤ n. This is because every four non-zero coordinates
of x must have an identical pair. So by Theorem 3.5.3, we have d(Cγ(A)) ≥ 5. Indeed our
minimum distance computation in Magma verifies that d(Cγ(A)) = 5.

Next, we provide minimum distance bounds for twisted codes analogous to the known
bounds for linear cyclic codes provided in Section 1.4. We first state a minimum distance
bound for twisted codes analogous to the Hartmann-Tzeng minimum distance lower bound
of Theorem 1.4.5 for cyclic codes.

Corollary 3.6.5 Let A be the complete defining set of a twisted code Cγ(A) of length n

over F2 × F2 such that A contains a subset in the form

B = {(l + i1c1 + i2c2 + · · ·+ ikck) mod n : 0 ≤ ij ≤ sj , gcd(cj , n) = 1},

where l, cj ∈ Z/nZ and sj is a non-negative integer for 1 ≤ j ≤ k. Then d(Cγ(A)) ≥

(
k∑
j=1

sj) + 2.
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Proof. By the generalized Hartmann-Tzeng bound for linear cyclic codes, Theorem 1.4.5,

we have d(C(A)) ≥ (
k∑
j=1

sj) + 2. Now, the result follows from Corollary 3.6.3.

The next corollary is another lower bound for twisted codes analogous to the Roos
bound for linear cyclic code provided in Theorem 1.4.7. This bound relaxes the consecutive
condition in the original Hartmann-Tzeng bound and allows one of the two consecutive sets
in the Hartmann-Tzeng bound to be non-consecutive.

Corollary 3.6.6 Let M and N be non-empty subsets of Z/nZ such that N is consecutive
and M + N ⊆ A. If there exists a consecutive set M̄ ⊆ Z/nZ such that M ⊆ M̄ and
|M̄ | ≤ |M |+ |N | − 1, then d(Cγ(M +N)) ≥ |M |+ |N |.

Proof. By the Roos bound for linear cyclic codes, Theorem 1.4.7, we have d(C(A)) ≥
|M |+ |N |. Now, the result follows from Corollary 3.6.3.

3.7 New infinite families of twisted codes with minimum dis-
tance at least five

Linear and additive codes with the minimum distance three and five are single and double
error-correcting codes. These codes can only detect and correct errors when the error
rate is low. In particular, single and double error-correcting codes are widely used in
computer memory (usually RAM), where bit errors are extremely rare. Most of the double
error correcting codes have complicated decoding procedures that can result in a significant
increase in power and delay [69]. This motivates us to design a class of double error-
correcting codes from twisted codes. Twisted codes, and more generally additive cyclic
codes, can be viewed as quasi-cyclic codes [48]. Many efficient encoding and decoding
algorithms for quasi-cyclic codes have been designed in the literature [1, 23, 39, 49, 106].
Hence our new double error-correcting twisted codes, along with other good twisted codes
discovered in this thesis, can be useful for practical applications.

Recall that in Corollary 3.6.3, we proved that for each complete defining set A ⊆ Z/nZ,
the inequality d(Cγ(A)) ≥ d(C(A)) holds, where C(A) is the linear cyclic code of length n
with the defining set A over F2r . Moreover, in Example 3.6.4, we showed that this inequal-
ity can be strict. In this section, we develop this example into an infinite family of twisted
codes. In particular, we first provide a sufficient condition for twisted codes to have mini-
mum distance at least five. Our sufficient condition does not rely on conventional methods
for bounding the minimum distance of linear cyclic codes, such as the structure of the Van-
dermonde matrix. Next, we apply this result to identify a general class and two infinite
families of twisted codes with minimum distance at least five. These infinite families will
be used later in Section 3.8 to construct infinite classes of record-breaking binary quantum
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codes. Moreover, applying the secondary constructions provided at the end of Section 1.2
results in more additive codes with minimum distance five.

For A ⊆ Z/nZ, we define A0 = A∪{0}. Recall that using the properties of linear cyclic
codes, we have

C(A)⊥ + C({0})⊥ = C(Z/nZ \ −A) + C(Z/nZ \ {0}) = C((Z/nZ \ −A) ∩ (Z/nZ \ {0}))

= C(Z/nZ \ −(A ∪ {0})) = C(A0)⊥.

Thus each vector x ∈ C(A0)⊥ can be written as x = x1 + x2, where x1 ∈ C(A)⊥ and
x2 = (c, c, . . . , c) ∈ C({0})⊥ for some constant c ∈ F2r . The next lemma gives a connection
between the twisted codes Cγ(A) and Cγ(A0).

Lemma 3.7.1 Let A be the complete defining set of a twisted code Cγ(A) of length n over
F2 × F2 such that 0 6∈ A. If d

(
Cγ(A0)

)
≥ k, then there is no codeword in the form y =

((b11, b12), (b21, b22), . . . , (bn1, bn2)) ∈ Cγ(A) such that wt(y) < k and
n∑
i=1

(bi1, bi2) = (0, 0).

Proof. Toward a contradiction, let y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) ∈ Cγ(A) such

that wt(y) < k and
n∑
i=1

(bi1, bi2) = (0, 0). Thus y 6∈ C (A0) and there exists x ∈ C(A0)⊥ such

that 〈φγ(x), y〉s 6= 0. As we mentioned above, we can write x = x1 + x2, where x1 ∈ C(A)⊥

and x2 = (c, c, . . . , c) for some c ∈ F2r . Since y ∈ Cγ(A) and x1 ∈ C(A)⊥, we conclude that

〈φγ(x), y〉s = 〈φγ(x1), y〉s + 〈φγ(x2), y〉s = 〈φγ(x2), y〉s.

Moreover, by using the equation provided in (3.5.1), we have

〈φγ(x), y〉s = 〈φγ(x2), y〉s = Trr1
(
c

n∑
i=1

(γbi1 + bi2)
)

= 0,

where the last equality follows from the fact that
n∑
i=1

(bi1, bi2) = (0, 0). However, this is a

contradiction with the fact that 〈φγ(x), y〉s 6= 0.

We call a non-empty defining set A of a twisted code symmetric if A = −A. The
next theorem provides a sufficient condition for the twisted code Cγ(A) to have minimum
distance at least five.

Theorem 3.7.2 Let A ⊆ Z/nZ be a symmetric complete defining set of a twisted code of
length n over F2 × F2 such that 0 /∈ A. If d

(
Cγ(A0)

)
≥ 5, then Cγ(A) has no codeword of

weight 4. If in addition gcd(n, 3) = 1, then d
(
Cγ(A)

)
≥ 5.

Proof. Since A is non-empty, by Proposition 3.6.1, the code Cγ(A) has minimum distance
at least two. We prove the result in two steps. First, we show that there is no codeword of
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weight four in Cγ(A). Second, we prove that if gcd(n, 3) = 1, then there is no vector with
weight two or three in Cγ(A).

Step 1: Toward a contradiction, assume that y ∈ Cγ(A) is a weight four codeword.
Since Cγ(A) is a cyclic code, without loss of generality, we can assume that the first coordi-
nate of y is non-zero. Each non-zero coordinate of y has only one of the forms (1, 1), (1, 0),
or (0, 1), which implies that at least two of the non-zero coordinates of y are equal. So, we
assume that

1. the four non-zero coordinates of y have indices 0 ≤ 0, i, j, k ≤ n−1 and, for simplicity,
we discard the zero coordinates of y in its representation and also in all computations,

2. y has the same non-zero values in the positions 0 and i.

In other words, y =
(
(b01, b02), (b01, b02), (bj1, bj2), (bk1, bk2)

)
. Moreover, Lemma 3.7.1 im-

plies that (bj1, bj2) 6= (bk1, bk2). By Theorem 3.5.3, there exists a weight four vector
x = (x0, x0, xj , xk) = (γb01 + b02, γb01 + b02, γbj1 + bj2, γbk1 + bk2) ∈ C(A). Let t be an
arbitrary element of A and α ∈ F2r be a primitive n-th root of unity. Since A is symmetric,
we have

x · (1, αit, αjt, αkt) = x · (1, α−it, α−jt, α−kt) = 0.

This implies
x0 + x0α

it + xjα
jt + xkα

kt = 0 (3.7.1)

and
x0 + x0α

−it + xjα
−jt + xkα

−kt = 0. (3.7.2)

Multiplying (3.7.1) by α−it and adding it to (3.7.2) gives

xjα
(j−i)t + xkα

(k−i)t + xjα
−jt + xkα

−kt = (xj , xk, xj , xk) · (α(j−i)t, α(k−i)t, α−jt, α−kt) = 0.
(3.7.3)

Let x′ = (xj , xk, xj , xk), where x′ has values xj , xk, xj , and xk in the positions j − i, k − i,
−j, and −k, respectively, and the other coordinates of x′ are zero. If any of these indices is
negative, we substitute it with its corresponding non-negative value modulo n. Note also
that some of the indices may overlap (wt(x′) ≤ 4). Since (3.7.3) is valid for each t ∈ A,
we have x′ in C(A). Also, the fact that xj 6= xk implies that x′ is not identically zero
(x′ = 0 implies that 2j ≡ 2k ≡ i mod n or equivalently j ≡ k mod n). So x′ is a non-zero
vector with a weight of at most four (some of the indices may overlap), and the sum of the
coordinates is equal to zero. Thus, by Lemma 3.5.3, Cγ(A) has a codeword with weight at
most four and the sum of the coordinates equal to (0, 0). However, by Lemma 3.7.1, Cγ(A)
cannot have such a codeword. This contradiction completes the proof of Step 1.

Step 2: Toward a contradiction, let y ∈ Cγ(A) be a weight three codeword. By
Lemma 3.7.1, all there coordinates of y cannot be different. So, without loss of generality,
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let y =
(
(b01, b02), (bi1, bi2), (bj1, bj2)

)
and (b01, b02) = (bi1, bi2). Similar to the previous step,

there exists a weight three vector x = (x0, x0, xj) = (γb01 +b02, γb01 +b02, γbj1 +bj2) ∈ C(A)
such that for each t ∈ A,

x0 + x0α
it + xjα

jt = 0 and x0 + x0α
−it + xjα

−jt = 0. (3.7.4)

If j − i 6≡ −j (mod n), then by multiplying the first equation of (3.7.4) by α−it and adding
it to the other equation we get

xjα
(j−i)t + xjα

−jt = (xj , xj) · (α(j−i)t, α−jt) = 0.

This implies the existence of a weight two vector in C(A) containing xj in the positions
j − i and −j (since j − i 6≡ −j (mod n), this codeword is non-zero and has weight two).

In the case j − i ≡ −j (mod n), by adding both equations of (3.7.4), we get

xiα
it + xjα

jt + xiα
−it + xjα

−jt = (xi, xj , xi, xj) · (αit, αjt, α−it, α−jt) = 0.

Note that −j 6≡ i (mod n) as otherwise 3 | n, which is a contradiction. So there exists a
weight four vector in C(A) with non-zero values xi, xj , xi, and xj in the positions i, j, −i,
and −j (all indices are different), respectively.

So, in any case, after applying Theorem 3.5.3, we obtain a non-zero codeword of Cγ(A)
with weight less than five and the sum of its coordinates is equal to zero. However, this
contradicts Lemma 3.7.1. Thus, there is no weight three codeword in Cγ(A).

Finally, if Cγ(A) has a weight two codeword y =
(
(b01, b02), (bi1, bi2)

)
, then there exists

x = (x0, xi) ∈ C(A). Thus for each t ∈ A, we have x0 +xiα
it = 0 and x0 +xiα

−it = 0. Now
adding these two equations implies the existence of a weight two vector in Cγ(A) with the
sum of the coordinates zero. However, this contradicts Lemma 3.7.1. Therefore, Cγ(A) has
no codeword of weighs two, three, and four.

Note that if we drop the condition gcd(n, 3) = 1 in Theorem 3.7.2, then its result does
not necessarily hold. We show this fact in the next example.

Example 3.7.3 Let n = 15 and A = {1, 2, 4, 7, 8, 11, 13, 14} be a symmetric subset of Z/nZ.
Our computation in Magma [17] shows that d(Cγ(A0)) = 6 and d(Cγ(A)) = 3, where Cγ(A0)
and Cγ(A) are the twisted codes of length n over F2×F2 with the complete defining set A0

and A, respectively. Thus the result of Theorem 3.7.2 does not hold for Cγ(A).

The HT bound has not been used much in the literature to design codes with good
properties. An interesting feature of twisted codes is the unsaturated intersection with the
cyclotomic cosets, which allows us to select a portion of a cyclotomic coset in the defining
set of a twisted code. This property makes the HT bound well-suited for twisted codes,
and smart selection of the defining set can result in codes with good parameters. In fact
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we revive the HT bound by showing that proper selection of the defining set using the HT
bound leads to the construction of new infinite families of twisted and quantum codes.

For an integer t, the notation ±t is used to present t and −t, and a set consisting of ±t
contains both t and −t.

Corollary 3.7.4 Let A be the complete defining set of a twisted code Cγ(A) of length n

over F2×F2, where gcd(n, 3) = 1. If {±1,±k,±(k+1)} ⊆ A for some integer 1 ≤ k ≤ n−2
and gcd(n, k) = gcd(n, k + 1) = 1, then Cγ(A) has minimum distance at least five.

Proof. Let P = {±1,±k,±(k + 1)}. First note that Cγ(A) ⊆ Cγ(P ) and Cγ(A0) ⊆ C (P0).
Moreover, P0 = {0+ i1 +ki2− (k+1)i3 : 0 ≤ i1, i2, i3 ≤ 1}. If gcd(n, k) = gcd(n, k+1) = 1,
then the Hartmann-Tzeng bound given in Corollary 3.6.5 implies that Cγ(P0) has minimum
distance at least five. Thus Theorem 3.7.2 implies that Cγ(P ) has minimum distance at
least five. Since Cγ(A) ⊆ Cγ(P ) the code Cγ(A) has minimum distance at least five too.

Table 3.2 represents the parameters of twisted codes obtained from the above corollary.
We present parameters of such additive codes by (n, 2k, d), where n, k, d denote the length,
dimension, and minimum distance of the code, respectively. In the table, for each length,
among the codes with the same dimension, we only present the code with the largest
minimum distance. Similarly, among the codes with the same length and minimum distance,
we only give the code with the maximum dimension. Recall that we only consider the values
of n such that gcd(n, 6) = 1, and 17 ≤ n ≤ 89.

In the following theorem, as an application of Corollary 3.7.4, we present two new infinite
families of twisted codes with minimum distance at least five. These families will be used
later in Theorem 3.8.5 to construct two new infinite families of binary quantum codes.

Theorem 3.7.5 The following statements hold.

1. Let t = 22k+1 and n = t2 + t+ 1 for each k ≥ 1. Then there exists a twisted code with
parameters

(
n, 22n−6(2k+1), d ≥ 5

)
.

2. Let t = 22k and n = t2 − t + 1 for each k ≥ 1. Then there exists a twisted code with
parameters

(
n, 22n−12k, d ≥ 5

)
.

Proof. (1) First we show that the cyclotomic coset of 1 has size |Z(1)| = 3(2k + 1). Note
that 23(2k+1) = t3 ≡ −t2 − t ≡ 1 (mod n). If 2s ≡ 1 (mod n) for some 0 < s < 3(2k + 1),
then s ≤ 2k + 1 and thus 2s ≤ t < n which is impossible. Hence |Z(1)| = 3(2k + 1). This
implies that r = 3(2k + 1) and n | 2r − 1.

Let κ = 2k + 1 and A = {±1,±t,±(t + 1)}. The fact that |Z(1)| is an odd number
implies that Z(1) 6= Z(−1). Note that 1 = 20, t = 2(2k+1), and −(t + 1) = 22(2k+1) which
shows that A ∩ Z(1) is unsaturated and −(A ∩ Z(1)) = A ∩ Z(−1). Hence both A ∩ Z(1)
and A ∩ Z(−1) are unsaturated, and, by Theorem 3.4.8, the code Cγ(A) has dimension
2n− (|Z(1)|+ |Z(−1)|) = 2n− 6(2k + 1).
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n k κ parameters n k κ parameters
17 2 2 (17, 218, 5) 47 1 23 (47, 22, 47)
17 3 2 (17, 210, 9) 49 18 7 (49, 256, 7)
17 3 8 (17, 22, 17) 53 1 2 (53, 22, 53)
19 2 3 (19, 22, 19) 53 6 2 (53, 254, 15)
19 8 3 (19, 220, 7) 55 1 2 (55, 230, 5)
23 1 11 (23, 22, 23) 59 1 2 (59, 22, 59)
25 1 2 (25, 210, 5) 61 1 2 (61, 22, 61)
29 1 2 (29, 22, 29) 61 3 2 (61, 262, 17)
29 4 2 (29, 230, 11) 65 1 2 (65, 2106, 5)
31 1 5 (31, 242, 5) 67 1 2 (67, 22, 67)
31 2 5 (31, 232, 9) 67 8 3 (67, 268, 17)
35 1 2 (35, 222, 5) 71 1 5 (71, 22, 71)
37 1 2 (37, 22, 37) 73 2 3 (73, 292, 12)
37 3 2 (37, 238, 11) 73 7 3 (73, 2110, 7)
41 2 2 (41, 222, 20) 73 8 3 (73, 2128, 5)
41 3 2 (41, 242, 11) 77 9 2 (77, 294, 7)
41 2 4 (41, 22, 41) 79 1 3 (79, 22, 79)
43 1 2 (43, 258, 6) 79 23 13 (79, 280, 17)
43 2 2 (43, 230, 13) 83 1 2 (83, 22, 83)
43 6 2 (43, 22, 43) 85 1 2 (85, 2138, 5)
43 6 7 (43, 244, 11) 89 3 11 (89, 2106, 14)

Table 3.2: Twisted codes satisfying Corollary 3.7.4.

One can easily see that gcd(n, t) = 1 and gcd(n, t + 1) = gcd(n, t2) = 1. Moreover,
t ≡ 2 (mod 3), which implies that gcd(n, 3) = 1. So the code Cγ(A) satisfies the conditions
of Corollary 3.7.4 and we have d(Cγ(A)) ≥ 5. Therefore, the code Cγ(A) has parameters(
n, 22n−6(2k+1), d ≥ 5

)
.

(2) We first show that Z(1) = Z(−1) and |Z(1)| = 12k. Note that 23(2k) = t3 ≡ −1
(mod n). Thus −1 ∈ Z(1) which implies that |Z(1)| is an even number and |Z(1)| | 12k.
If |Z(1)| = 2s < 12k, then 2s ≡ −1 (mod n). But we have 2s ≤ 23k < n − 1, which is a
contradiction. Hence |Z(1)| = 12k. This implies that r = 12k and n | 2r − 1.

Let κ = 2k and A = {±1,±(t− 1),±t} = {2κi : 0 ≤ i ≤ 5}. This shows that A∩Z(1) is
unsaturated and −(A∩Z(1)) = A∩Z(−1). Thus, the intersection A∩Z(1) is unsaturated
and, by Theorem 3.4.8, the code Cγ(A) has dimension 2n− |Z(1)| = 2n− 12k.

It is easy to see that gcd(n, t) = 1 and gcd(n, t − 1) = gcd(n, t2) = 1. Moreover,
t ≡ 1 (mod 3), which implies that gcd(n, 3) = 1. So Corollary 3.7.4 implies that the code
d(Cγ(A)) ≥ 5. Therefore, the code Cγ(A) has parameters

(
n, 22n−12k, d ≥ 5

)
.

Note that in the proof of Case (2), the selections κ = 2 and κ = k both imply the same
result. Choosing k = 1 in Cases (1) and (2) of Theorem 3.7.5 gives additive codes with
parameters (73, 2128, 5) and (13, 214, 5), respectively.
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We finish this section by presenting a general upper bound for the minimum distance of
twisted codes. Such minimum distance upper bound is useful for computational purposes.
Recall that by (3.4.7), we have Cγ(A) = φγ(C(Ad)⊥), where Ad is the complete defining set
of the twisted code Cγ(A)⊥s .

Theorem 3.7.6 Let A and Ad be the complete defining sets of non-zero twisted codes Cγ(A)
and Cγ(Ad) of length n over F2 × F2, respectively. Then d

(
C(Ad)⊥

)
≥ d

(
Cγ(A)

)
.

Proof. By the definition of twisted codes, we have Cγ(A) = {(Trr1(x),Trr1(γx)) : x ∈
C(Ad)⊥}. Let x = (x0, x1, . . . , xn−1) ∈ C(Ad)⊥ be a minimum weight vector with wt(x) = s.
Without loss of generality, we can assume that y =

(
Trr1(x),Trr1(γx)

)
is not zero, as other-

wise, we can find a non-zero scalar a ∈ F2r such that
(
Trr1(ax),Trr1(γax)

)
is not the zero

vector. The vector x has exactly n − s coordinates with entry zero. Since the trace map
preserves the zero coordinates, y is non-zero and has at least n− s zero coordinates. Hence,
d
(
C(Ad)⊥

)
= wt(x) ≥ wt(y) ≥ d

(
Cγ(A)

)
.

Next, we squeeze the minimum distance of a twisted code between the minimum dis-
tances of two linear cyclic codes over F2r .

Corollary 3.7.7 Let A ⊆ Z/nZ be the complete defining set of a twisted code. Then

d
(
C(Ad)⊥

)
≥ d

(
Cγ(A)

)
≥ d(C(A)). (3.7.5)

Proof. The upper and lower distance bounds on Cγ(A) follow from Theorem 3.7.6 and
Corollary 3.6.3, respectively.

3.8 New infinite families of quantum codes

In this section, we first provide a secondary construction for binary quantum codes that
are also dual-containing twisted codes. In particular, this construction produces a quantum
code with a larger length and an improved minimum distance provided certain conditions
are satisfied. Next, we give several new infinite families of binary quantum codes. One of
the main features of these new families is that they can be constructed easily and their
parameters can be computed computer-free. For each of these families, we provide a nu-
merical example of a good (optimal or record-breaking) binary quantum code. Moreover,
we present more record-breaking quantum codes after applying secondary constructions of
Theorems 1.7.3 and 1.7.6 to our new binary quantum codes.

Recall that n is a positive integer such that n | 2r − 1 for some positive integer r and
γ ∈ F2r \F2. Moreover, κ = [F2(γ) : F2]. We first state a result from the literature, which is
a secondary construction for binary quantum code constructed using twisted codes. Let A
be the complete defining set of a twisted code Cγ(A) of length n over F2×F2. Recall that, as
we stated in Theorem 3.4.12, if Cγ(A)⊥s ⊆ Cγ(A), then there exists a binary quantum code
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with parameters Jn, k, dK, where dim(Cγ(A)) = n + k and d(Cγ(A)) = d. In this section,
the code Cγ(A), with the above properties, will be called an Jn, k, dK quantum code.

Theorem 3.8.1 [13, Theorem 8] Let A ⊆ Z/nZ and Cγ(A) be a binary quantum code
with parameters Jn, k, tK. If A contains the interval [1, t − 1], then the extended code of
Cγ(A ∪ {0}) is a binary quantum code with parameters Jn+ 1, k − 1, t+ 1K.

In the next theorem, we give another secondary construction for the binary quantum
codes that are constructed from twisted codes. It also generalizes the result of Theorem 3.8.1
above. In general, the lengthening construction of the above theorem only relies on the
BCH bound. However, our construction considers the general case even if the BCH bound
does not provide a minimum distance improvement. As we will see in Example 3.8.3, our
secondary construction goes beyond the result of Theorem 3.8.1. Moreover, Case (ii) of our
construction has another potential for one unit lengthening of quantum codes.

Theorem 3.8.2 Let A ⊆ Z/nZ and Cγ(A) be a pure binary quantum code with parameters
Jn, k, tK. Then the following results hold.

(i) If d(Cγ(Ā)) = t + 1, where Ā = A ∪ {0}, then there exists an Jn + 1, k − 1, t + 1K
quantum code.

(ii) If κ = 2 and {a, n − a} is a 2-cyclotomic coset such that d(Cγ(Ā)) = t + 1 for
Ā = A ∪ {a}, then there exists an Jn+ 1, k − 1, t+ 1K quantum code.

Proof. We prove both cases simultaneously. Since Cγ(Ad) ⊆ Cγ(A), Corollary 3.5.6 implies
that code Cγ(Ā) has the dual-containment deficiency e = 1 in both Case (i) and (ii).
Moreover, dim(Cγ(A)) = n+k and dim(Cγ(Ā)) = n+k−2. Next by applying the quantum
construction given in Theorem 3.5.7 to Cγ(Ā), we obtain a quantum code with parameters
Jn+ 1, k− 1, dK, where d ≥ min{d(Cγ(Ā)), d

(
Cγ(Ā) + Cγ(Ād)

)
+ 1}. Next Proposition 3.5.4

implies that
Cγ(Ā) + Cγ(Ād) = Cγ(Ā ∩ Ād) = Cγ(A).

By the assumption d(Cγ(Ā)) = t + 1 and d(Cγ(A)) = t. Therefore, d ≥ t + 1 and this
completes the proof.

In the next example, we construct a new binary quantum code using the above result.

Example 3.8.3 Let n = 63, κ = 3, and A = {27, 38, 52} be the complete defining set of
the length n twisted code Cγ(A). The 2-cyclotomic cosets modulo 63 which intersect A
are Z(13) = {13, 26, 52, 41, 19, 38} and Z(27) = {27, 54, 45}. One can easily see that the
intersections A∩Z(13) and A∩Z(27) are both unsaturated and A∩Z(−13) = A∩Z(−27) =
∅. Thus by Theorem 3.4.11, Cγ(A) is dual-containing and has dimension 126 − (|Z(13)| +
|Z(27)|) = 117 over F2. Since gcd(63, 11) = 1, the set {27, 38} = {27 + 11i : 0 ≤ i ≤
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1} ⊂ A is a consecutive set. Hence Theorem 3.6.1 implies that d(Cγ(A)) ≥ 3. Therefore,
Theorem 3.5.7 implies that Cγ(A) is a J63, 54, 3K binary quantum code.

Let Ā = A∪{0} = {27 + 25i1 + 11i2 : 0 ≤ i1, i2 ≤ 1}. By Corollary 3.6.5, d(C (Ā)) ≥ 4.
Thus, part (i) of Theorem 3.8.2 implies a new quantum code with parameters J64, 53, 4K.
This code is pure and has minimum distance better than the previously best-known quantum
code with the same length and dimension. Note that by applying the BCH bound to the
code Cγ(Ā), we get the minimum distance lower bound of three. Hence the argument given
in Theorem 3.8.1 cannot directly produce a distance four binary quantum code.

Recall that we defined the shortening construction of quantum codes as in Theorem 1.7.6.
Let C be the J64, 53, 4K binary quantum code of Example 3.8.3. After applying Theo-
rem 1.7.6 to the code C, we get the following new pure quantum codes

J38, 27, 4K, J44, 33, 4K, J46, 35, 4K, J48, 37, 4K, J50, 39, 4K, J56, 45, 4K, (3.8.1)

where all have better minimum distance than the previously best-known quantum codes
with the same length and dimension. In the next section, we show that all these codes are
optimal. Next, we construct an infinite family of quantum codes with minimum distance
at least four.

Theorem 3.8.4 Let r > 5 be an even integer. Then there exists a binary quantum code
with parameters

J2r, 2r − 3
2r − 2, d ≥ 4K.

Proof. Let n = 2r − 1, κ = r
2 , and A = {1, a, b}, where a = 2 r2 + 1 and b = 2 r2 . Note that

Z(1) = {1, 2, 22, . . . , 2r−1} is a size r cyclotomic coset and Z(1) 6= Z(−1) since −1 ≡ 2r − 2
(mod n) and 2r−2 6∈ Z(1) (2r−1 < 2r−2). Also, Z(a) = {2 r2 +1, 2(2 r2 +1), . . . , 2 r2−1(2 r2 +1)}
and therefore |Z(a)| = r

2 .
The intersections Z(1)∩A and Z(a)∩A are both unsaturated and Theorem 3.4.11 implies

that the twisted code Cγ(A) of length n over F2 × F2 is dual-containing with dimension
2n−(|Z(1)|+ |Z(a)|) = 2r+1− 3r

2 −2 over F2. Moreover, {a, b} = {2 r2 + i : 0 ≤ i ≤ 1} ⊂ A is
a consecutive set. Thus d(Cγ(A)) ≥ 3 and the quantum construction given in Theorem 3.5.7
implies that Cγ(A) is a J2r − 1, 2r − 3

2r − 1, 3K pure quantum code. Let Ā = {0, 1, a, b} =
{0, 1}+{0, b}. Corollary 3.6.6 implies that d(Cγ(A)) ≥ 4 and therefore Theorem 3.8.2 gives
a J2r, 2r − 3

2r − 2, d ≥ 4K quantum code.

For instance, if r = 6, the above construction gives a J64, 53, 4K quantum code which
has the same parameters as the result of Example 3.8.3 and is a new quantum code. Next,
we present two new infinite families of quantum codes with minimum distance at least five.

Theorem 3.8.5 (i) Let t = 22k+1 for some integer k ≥ 1 and n = t2 + t + 1. Then there
exists an Jn, n− 12k − 6, d ≥ 5K binary quantum code.
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(ii) Let t = 22k for some integer k ≥ 1 and n = t2 − t + 1. Then there exists an
Jn, n− 12k, d ≥ 5K binary quantum code.

Proof. Let κ = 2k + 1 and A = {±1,±t,±(t + 1)}. As we showed in the proof of The-
orem 3.7.5 part (1), we have r = 3(2k + 1) which implies that κ | r. Moreover, the
code Cγ(A) has parameters

(
n, 22n−6(2k+1), d ≥ 5

)
and the intersection A ∩ Z(1) is purely

unsaturated. So by Theorem 3.4.11 the code Cγ(A) is dual-containing. Now the quan-
tum construction given in Theorem 3.5.7 implies a binary quantum code with parameters
Jn, n− 12k − 6, d ≥ 5K.

(ii) : Let κ = 2k and A = {±1,±t,±(t − 1)} = {2κi : 0 ≤ i ≤ 5}. As we showed in
the proof of Theorem 3.7.5 part (2), we have r = 12k which implies that κ | r. Moreover,
the code Cγ(A) has parameters

(
n, 22n−12k, d ≥ 5

)
and the intersection A ∩ Z(1) is purely

unsaturated. So by Theorem 3.4.11 the code Cγ(A) is dual-containing. Now the quantum
construction given in Theorem 3.5.7 gives a quantum code with parameters Jn, n−12k, d ≥
5K.

This construction can be used to produce good binary quantum codes. For instance,
we construct two new record-breaking quantum codes with minimum distance of five using
this result.

Example 3.8.6 (i) Let t = 23, n = t2 + t + 1 = 73, and A = {±1,±8,±9}. Then
Theorem 3.8.5 part (i) gives a quantum code with parameters J73, 55, 5K. This code is a
record-breaking quantum code.

(ii) Let t = 24, n = t2 − t + 1 = 241, and A = {±1 ± 15,±16}. The construction
given in part (ii) of Theorem 3.8.5 implies a record-breaking quantum code with parameters
J241, 217, 5K.

Note that modifying the codes provided in parts (i) and (ii) of the above example can
produce more record-breaking quantum codes. One example of such new codes is provided
below.

Example 3.8.7 (i) Let n = 73, κ = 3, and A = {±1,±8,±9, 20, 14, 39}. Then one can
easily verify that Cγ(Ad) ⊆ Cγ(A). Moreover, the code Cγ(A) has dimension 119 and
minimum distance 7. Hence the quantum construction given in Theorem 3.5.7 implies
a binary quantum code with parameters J73, 46, 7K. This is a new quantum code with
better minimum distance than the previous best quantum codes with the same length and
dimension.
(ii) Let n = 241, κ = 2, andA = {±1,±3,±4,±12,±15,±16,±45,±48,±49,±60,±61,±64}.
An easy computation shows that A ∩ Z(1) and A ∩ Z(3) are purely unsaturated. Thus
Cγ(Ad) ⊆ Cγ(A). Moreover, |Z(1)| = |Z(3)| = 24. Thus the code Cγ(A) has dimension 434
and minimum distance 8. Now, the quantum construction given in Theorem 3.5.7 implies
a binary quantum code with parameters J241, 193, 8K. This is a new binary quantum code
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with better minimum distance than the previous best quantum codes with the same length
and dimension. Applying the secondary constructions given in Theorem 1.7.3 gives 27 other
record-breaking binary quantum codes. Moreover, this codes can be used to reconstruct 58
other binary quantum code with missing constructions (represented in red in [43]).

In Definition 2.2.1, we recalled the concept of splitting of Z/nZ given by certain multi-
pliers. This identified the class of duadic linear codes. Moreover, as we showed in Chapter 2,
many new record-breaking quantum codes were constructed using duadic codes. A general-
ization of duadic codes, called polyadic or m-adic codes, is defined similarly by considering
a splitting of Z/nZ that consists of more than two disjoint subsets of Z/nZ [19, 66, 82].
Analogously, we define the m-splitting for twisted codes.

Definition 3.8.8 Let m ≥ 2 be a positive integer and X∞ ⊆ Z/nZ be a non-empty subset.
An m-splitting of Z/nZ is the m+ 1-tuple (X∞, X0, . . . , Xm−1) such that

• ∅ 6= Xi ⊆ Z/nZ for 0 ≤ i ≤ m− 1,

• (X∞, X0, . . . , Xm−1) is a partition of Z/nZ,

• all the elements of (X∞, X0, . . . , Xm−1) are complete defining sets,

• there exists a multiplier µb such that µb(X∞) = X∞ and µb(Xj) = Xj+1 for 0 ≤ j ≤
m− 1, where the subscripts are taken modulo m.

Recall that γ ∈ F2r \ F2 and κ = [F2(γ) : F2]. Let Z be a 2-cyclotomic coset modulo n
with the coset leader a and |Z| = s. Recall that if κ | s, then there are κ different possible
unsaturated intersections with the set Z. Such unsaturated intersections can be represented
explicitly as

Z(j) = {(2κi+ja) mod n : 0 ≤ i ≤ s

κ
− 1}

for all 0 ≤ j ≤ κ − 1. In the next theorem, we provide an m-splitting for twisted codes,
which leads to a class of good binary quantum codes. As we will see later, this class is
capable of producing record-breaking binary quantum codes.

Theorem 3.8.9 Let n be a positive integer such that n | 2κs+1 for some positive integer s.
Then the tuple (X∞, X0, . . . , Xκ−1) is a twisted κ-splitting of Z/nZ, where

• X∞ =
⋃
κ-|Z|

Z,

• Xj =
⋃
κ||Z|

Z(j), for 0 ≤ j ≤ κ− 1,

and the unions run over all 2-cyclotomic cosets modulo n satisfying the given condition.
Moreover, the twisted code Cγ(Xj) of length n over F2 × F2 is a binary quantum code with
parameters Jn, |X∞|, d(Cγ(Xj))K for each 0 ≤ j ≤ κ− 1.
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Proof. Obviously, all the elements of the tuple (X∞, X0, . . . , Xκ−1) are complete defining

sets, disjoint, and Z/nZ = X∞ ∪
κ−1⋃
i=0

Xi. Moreover, µ2(X∞) = X∞ and µ2(Xj) = Xj+1 for

all 0 ≤ j ≤ m− 1. Hence (X∞, X0, . . . , Xκ−1) is a κ-splitting of Z/nZ.
Next, we show that Cγ(X0) is a binary quantum code with the mentioned parameters.

The proof for any other Xj follows similarly. First, note that 2κs ≡ −1 (mod n) and
therefore we have a ∈ X0 if and only if −a ∈ X0. Thus, by Definition 3.4.9, we have

X0 ∩ Z =

purely unsaturated if κ | |Z|

∅ otherwise

for all different 2-cyclotomic cosets Z modulo n. Thus Theorem 3.4.11 implies that Cγ(X0)
is symplectic dual-containing. Moreover,

dimF2(Cγ(X0)) =
∑
κ||Z|
|Z|+

∑
κ-|Z|

2|Z| = n+ |X∞|.

Now Theorem 3.5.7 implies that Cγ(X0) is a binary quantum code and it has the parameters
Jn, |X∞|, d(Cγ(X0))K.

Note that, as we will show in Corollary 3.10.15, all the quantum codes Cγ(Xj) are
permutation equivalent for each 0 ≤ j ≤ κ − 1. Hence it is sufficient to consider only one
of them in our computations. Next, we give an application of this result by producing a
record-breaking binary quantum code.

Example 3.8.10 Let n = 57 and γ ∈ F8 \ F2. An easy computation shows that n | 29 + 1.
Since κ = 3 | 9, all the requirements of Theorem 3.8.9 are satisfied. The following are
different 2-cyclotomic cosets modulo n

Z(1) = {1, 2, 4, 8, 16, 32, 7, 14, 28, 56, 55, 53, 49, 41, 25, 50, 43, 29},

Z(6) = {6, 12, 24, 48, 39, 21, 42, 27, 54, 51, 45, 33, 9, 18, 36, 15, 30, 3},

Z(11) = {11, 22, 44, 31, 5, 10, 20, 40, 23, 46, 35, 13, 26, 52, 47, 37, 17, 34},

Z(19) = {19, 38}, Z(0) = {0}.

Since κ only does not divide |Z(0)| and |Z(19)|, after applying Theorem 3.8.9, we get X∞ =
Z(0) ∪ Z(19) and Xi = Z(1)(i) ∪ Z(6)(i) ∪ Z(11)(i) for 0 ≤ i ≤ 2. Hence (X∞, X0, X1, X2)
forms a twisted 3-splitting of Z/nZ. Moreover, our minimum distance computation in
Magma [17] gives d(Cγ(X0)) = 14. Hence Cγ(X0) is a binary quantum code with the
parameters J57, 3, 14K. This code is a record-breaking binary quantum code with a better
minimum distance than the previously best-known quantum code, namely J57, 3, 13K.
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Next, we determine two other classes of quantum codes. These classes are capable of
producing quantum codes that have the same minimum distance as the currently best-known
quantum codes with the same length and dimension. As we mentioned at the beginning of
Section 3.7, the algebraic structure of such twisted codes could be extremely beneficial for
the practical implementation of such quantum codes.

Theorem 3.8.11 (i) Let t ≥ 4 be an even integer and n = 2t + 1. Then there exists a pure
quantum code with parameters

J2t + 1, 2t − 2t+ 1, d ≥ 4K.

(ii) Let t ≥ 3 be an odd integer and n = 2t + 1. Then there exists a pure quantum code
with parameters

J2t + 2, 2t − 2t, d ≥ 4K.

Proof. In both cases (i) and (ii), the cyclotomic coset of 1 modulo n is

Z(1) = {1, 2, 22, . . . , 2t−1,−1,−2, . . . ,−2t−1} = Z(−1).

Thus |Z(1)| = 2t.
(i) Let A = {1, 2 t

2 ,−1,−2 t
2 } and κ = t

2 (κ | r = 2t). Then Z(1) ∩ A is purely unsatu-
rated. So by Theorem 3.4.11, we have Cγ(Ad) ⊆ Cγ(A). Hence the quantum construction
given in Theorem 3.5.7 implies a binary quantum code with parameters J2t+ 1, 2t+ 1−2tK.
Also, we can write A as A = {1,−2 t

2 } + {0, 2 t
2 − 1}. Hence by Theorem 3.6.5, we have

d(Cγ(A)) ≥ 4. Therefore, there exists a J2t + 1, 2t + 1− 2t, d ≥ 4K pure quantum code.
(ii) Let A = {−1, 1} and κ = t (κ | r). Then Z(1) ∩ A is purely unsaturated. So

by Theorem 3.4.11, we have Cγ(Ad) ⊆ Cγ(A). Since {−1, 1} is consecutive, the quantum
construction given in Theorem 3.5.7 implies a binary pure quantum code with parameters
J2t + 1, 2t − 2t + 1, 3K. Let A′ = A ∪ {0}. Then A′ is a consecutive set of length 3,
so by the Theorem 3.8.2 part (i), we obtain a pure quantum code with the parameters
J2t + 2, 2t − 2t, d ≥ 4K.

The following codes are all obtained from the above construction, and all have the same
minimum distance as the currently best-known binary quantum codes with the same length
and dimension:

J10, 2, 4K, J17, 9, 4K, J34, 22, 4K, J65, 53, 4K, J130, 114, 4K. (3.8.2)

3.9 Quantum bounds and optimal codes

In this section, we recall the Singleton and Hamming bounds for quantum codes and show
that ten of our binary quantum codes in the previous section are optimal. The quantum
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Singleton bound, which was first given in [61], states that an Jn, k, dK binary quantum code
with k > 0 satisfies

n− k ≥ 2(d− 1).

Another simple bound relating the length, dimension, and minimum distance of a quantum
code is the quantum Hamming bound, which is also known as the Sphere-packing bound [42].
This bound states that a pure Jn, k, dK binary quantum code with e = bd−1

2 c satisfies

e∑
j=0

(
n

j

)
3j ≤ 2n−k. (3.9.1)

Let Q be an Jn, k, dK binary pure quantum code. Then Q will be called an optimal pure
code, if there is no Jn, k, d′K binary pure quantum code, where d′ > d. Next, we prove that
ten of our quantum codes are optimal pure.

Theorem 3.9.1 The quantum code J130, 114, 4K in (3.8.2) is not optimal pure and all
the other quantum codes in Example 3.8.3 and lists (3.8.1) and (3.8.2) are optimal pure
quantum codes.

Proof. We only give a proof for one of these codes, and a similar argument shows that the
other codes are optimal. In Example 3.8.3, we showed the existence of a J64, 53, 4K binary
pure quantum code. Now we prove that this code is optimal. It is enough to show that
there is no pure binary quantum code Q with parameters J64, 53, d ≥ 5K. Let e = bd−1

2 c.
Then e ≥ 2 and applying the Hamming bound to Q gives

e∑
j=0

(
n

j

)
3j ≥

2∑
j=0

(
n

j

)
3j = 18337 > 264−53 = 2048.

Hence there is no binary pure quantum code with parameters J64, 53, d ≥ 5K. This proves
that the quantum code of Example 3.8.3 is an optimal pure quantum code.

3.10 Selection of γ value in twisted codes

Throughout this section, n is a positive integer such that n | 2r − 1 for some positive
integer r. As we mentioned in Definition 3.4.2, the main ingredients in the construction
of a length n twisted code over F2 × F2 are γ ∈ F2r \ F2 and the complete defining set
A ⊆ Z/nZ. Moreover, by Definition 3.4.7, the complete defining set of a twisted code is
influenced using the degree of the field extension [F2(γ) : F2]. Therefore, the choice of γ is
a critical factor in the construction of twisted codes. Interestingly, the literature appears
to have ignored the impacts of γ on the parameters of twisted codes.

In this section, we introduce various new insights into how the parameters of twisted
codes are influenced by the selection of γ. Let A ⊆ Z/nZ be a defining set, not necessarily
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complete, of a length n twisted code over F2 × F2 and let γ1 and γ2 ∈ F2r \ F2. We first
show that if [F2(γ1) : F2] = [F2(γ2) : F2], then the twisted codes constructed using γ1

and γ2 always have the same complete defining set and hence the same dimension. Next,
we show that if [F2(γ1) : F2] = [F2(γ2) : F2] ≤ 3, then the parameters of twisted codes are
independent of the choice of γ1 and γ2. We also prove that for every κ > 3 if

sκ = |{γ ∈ F2r : [F2(γ) : F2] = κ}|,

then there are at most sκ/6 many different twisted codes constructed using different values
of γ and the same complete defining set. Finally, through an example, we show the existence
of A, γ1, and γ2 satisfying [F2(γ1) : F2] = [F2(γ2) : F2] such that the twisted codes with
the complete defining set A constructed using γ1 and γ2 have different minimum distances.
Hence the choice of γ can change the parameters of twisted codes.

The next example shows that if we start with an incomplete defining set A, then dif-
ferent selections of γ values imply twisted codes with different complete defining sets and
dimensions.

Example 3.10.1 Let n = 15. Note that n | 24 − 1 and therefore γ can be any element of
F16 \ F2. The 2-cyclotomic coset of 1 modulo 15 is Z(1) = {1, 2, 4, 8}.

Case 1: Let γ1 ∈ F4 \ F2 and A = {1, 4}. Since κ1 = [F2(γ1) : F2] = 2, the set A is the
complete defining set and A ∩ Z(1) is unsaturated. Therefore the twisted code Cγ1(A) has
dimension 26 over F2.

Case 2: Let γ2 ∈ F16 \ F4 and A = {1, 4}. Then κ2 = [F2(γ2) : F2] = 4. In this case, A
is an incomplete defining set, and we apply Definition 3.4.7 to form the complete defining
set of A. Since 1, 4 ∈ A, it follows that A ∩ Z(1) is saturated. Thus the complete defining
set containing A is Ã = Z(1). The twisted code Cγ2(A) has dimension 22 over F2.

In the above cases, we started with the same (incomplete) defining set A and found
different complete defining sets. Moreover, we obtained different dimensions for the corre-
sponding twisted codes.

Let A ⊆ Z/nZ and γ1, γ2 ∈ F2r \ F2. In the rest of this section, to avoid confusion, we
denote the complete defining sets corresponding to the set A and the values γ1 and γ2 by
Aγ1 and Aγ2 , respectively. The next theorem provides necessary and sufficient conditions
for the values γ1 and γ2 to have the same complete defining sets, i.e., Aγ1 = Aγ2 .

Theorem 3.10.2 Let A ⊆ Z/nZ and γ1, γ2 ∈ F2r \ F2. Then Aγ1 = Aγ2 if and only if at
least one of the following conditions hold:

1. The elements γ1 and γ2 satisfy [F2(γ1) : F2] = [F2(γ2) : F2].

2. For each 2-cyclotomic coset Z modulo n that intersects A, the intersections Aγ1 ∩ Z
and Aγ2 ∩ Z are both saturated.
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Proof. We first show that each of conditions (1) and (2) above implies Aγ1 = Aγ2 . Let γ1

and γ2 ∈ F2r \ F2 such that κ = [F2(γ1) : F2] = [F2(γ2) : F2]. By Definition 3.4.4, the
saturated and unsaturated intersections both only depend on the set A and the value of κ.
Thus for each 2-cyclotomic coset Z modulo n intersecting A, we have Aγ1 ∩Z and Aγ2 ∩Z
both are saturated or both are unsaturated. This implies Aγ1 = Aγ2 . If Aγ1∩Z and Aγ2∩Z
are saturated for each 2-cyclotomic coset Z that intersects A, then obviously Aγ1 = Aγ2 .

Now we show that if both of the conditions (1) and (2) are not satisfied, then Aγ1 6= Aγ2 .
Let κ1 = [F2(γ1) : F2] 6= [F2(γ2) : F2] = κ2, and Z = {a, 2a, · · · , 2s−1a} be an ordered 2-
cyclotomic coset modulo n of size s such that a ∈ A ∩ Z and Aγ1 ∩ Z is unsaturated.
If Aγ2 ∩ Z is saturated, then obviously Aγ1 6= Aγ2 . So we assume that Aγ2 ∩ Z is also
unsaturated. If κ1 < κ2, then a2κ1 ∈ Aγ1 and a2κ1 6∈ Aγ2 . If κ1 > κ2, then a2κ2 ∈ Aγ2 and
a2κ2 6∈ Aγ1 . So, in any case, Aγ1 6= Aγ2 .

Next, we give a consequence of this result on the dimension of twisted codes constructed
using different values of γ.

Corollary 3.10.3 Let A ⊆ Z/nZ and γ1, γ2 ∈ F2r \ F2. If the condition (1) or (2) of
Theorem 3.10.2 is satisfied, then the twisted codes Cγ1(Aγ1) and Cγ2(Aγ2) have the same
dimension over F2.

Proof. Theorem 3.10.2 implies that Aγ1 = Aγ2 . Thus for each 2-cyclotomic coset Z modulo
n we have Aγ1 ∩ Z = Aγ2 ∩ Z. Hence Aγ1 ∩ Z = Aγ2 ∩ Z have the same status as empty,
saturated, or unsaturated. Hence, by Theorem 3.4.8, the codes Cγ1(Aγ1) and Cγ2(Aγ2) have
the same dimension.

Recall that, as we mentioned in Theorem 3.5.1, the twisted codes satisfying part (2)
of Theorem 3.10.2 are linear cyclic codes over F4. Since, in this chapter, we are more
interested in twisted codes that are different from linear cyclic codes, from now on, we only
consider the twisted codes that satisfy part (1) of Theorem 3.10.2. In particular, we are
interested to see when two such values of γ1 and γ2 generate twisted codes with the same
minimum distance. Recall that for each γ ∈ F2r \F2, the map φγ : F2r → F2

2 is the F2-linear
transformation defined by φγ(x) = (Trr1(x),Trr1(γx)).

Definition 3.10.4 For each γ ∈ F2r \ F2 with κ = [F2(γ) : F2], we denote kernel of the
map φγ restricted to the field F2κ by Φγ .

Let γ ∈ F2s such that F2 ( F2s ⊆ F2r . For each x ∈ F2r , the following equality holds:

φγ(x) = (Trr1(x),Trr1(γx)) = Trs1
(
Trrs(x),Trrs(γx)

)
= Trs1

(
Trrs(x), γTrrs(x)

)
= φγ

(
Trrs(x)

)
.

(3.10.1)
This property will be used in the proof of the following theorem. Next, we give a sufficient
condition for two twisted codes constructed using different values of γ to have the same
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parameters (length, dimension, and minimum distance). Recall that, as we mentioned in
(3.4.7), the equality Cγ(A) = φγ(C(Ad)⊥) holds for any twisted code, where C(Ad) is the
linear cyclic code over F2r with the defining set Ad.

Theorem 3.10.5 Let γ1, γ2 ∈ F2r \ F2 such that κ = [F2(γ1) : F2] = [F2(γ2) : F2] and
n | 2r − 1. If there exists a bijective map from Φγ1 to Φγ2 in the form f(x) = βx for some
β ∈ F∗2κ, then the twisted codes Cγ1(A) and Cγ2(A) of length n have the same parameters
for any complete defining set A ⊆ Z/nZ.

Proof. As we showed in Corollary 3.10.3, the twisted codes Cγ1(A) and Cγ2(A) have the
same dimension over F2. Since Cγ1(A) = φγ1(C(Ad)⊥) and Cγ2(A) = φγ2(C(Ad)⊥), it only
remains to show that φγ1(C(Ad)⊥) and φγ2(C(Ad)⊥) have the same minimum distances.

Let F2κ = {0, 1, α, . . . , α2κ−2}, where α is a primitive element of the field F2κ . Let
a = (a1, a2, . . . , an) ∈ C(Ad)⊥. By (3.10.1), we have φγ1(a) = φγ1(b), where b = Trrκ(a) =
(b1, b2, . . . , bn). The definition of Φγ1 implies that

wt(φγ1(a)) = wt(φγ1(b)) = wt(b)−# of non-zero coordinates of b with elements in Φγ1 .

Since β ∈ F2r , we have βa ∈ C(Ad)⊥. Now φγ2(βa) = φγ2(βb) and we have

wt(φγ2(βa)) = wt(φγ2(βb)) = wt(βb)−# of non-zero coordinates of βb with

elements in Φγ2 = wt(b)−# of non-zero coordinates of b with elements in Φγ1 ,

where the last equality follows from the fact that f(x) is a bijection. This relation implies
that d

(
φγ2(C(Ad)⊥)

)
≤ d

(
φγ1(C(Ad)⊥)

)
. Since f−1(x) = β−1x, the other inequality, namely

d
(
φγ2(C(Ad)⊥)

)
≥ d

(
φγ1(C(Ad)⊥)

)
, follows very similarly. Thus, the codes φγ1(C(Ad)⊥)

and φγ2(C(Ad)⊥) have the same minimum distance.

Let γ1 and γ2 ∈ F2r \ F2 such that κ = [F2(γ1) : F2] = [F2(γ2) : F2]. Next we use the
above result and show that if κ ≤ 3 then Cγ1(A) and Cγ2(A) have the same parameters for
any complete defining set A. Moreover, we show that for every κ > 3 if

sκ = |{γ ∈ F2r : [F2(γ) : F2] = κ}|,

then there are at most sκ/6 different twisted codes constructed using different values of γ
and the same complete defining set. Before stating our results, we need the following
observation. Let f1(x) = x+ 1 and f2(x) = 1

x be two rational functions on F2r \ F2. These
functions generate the following group under the composition of functions

S3 = {f0(x) = x, f1(x) = x+ 1, f2(x) = 1
x
, f3(x) = 1

x+ 1 , f4(x) = x

x+ 1 , f5(x) = x+ 1
x
}.

(3.10.2)
The reason we represent this group by S3 is that it is isomorphic to the symmetric group
of degree 3. One can easily verify that the group S3 acts naturally on the set F2r \ F2. For
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each γ ∈ F2r \ F2, the orbit of γ under this action is defined by

Orb(γ) = {f(γ) : f ∈ S3}.

Note that an easy arithmetic computation shows that for each γ1, γ2 ∈ Orb(γ), we have
[F2(γ1) : F2] = [F2(γ2) : F2]. Moreover, we have |Orb(γ)| < 6 if and only if [F2(γ) : F2] = 2.
In the next theorem, we show that for any two such values of γ1 and γ2 and any complete
defining set A, the codes Cγ1(A) and Cγ2(A) have the same parameters.

Theorem 3.10.6 Let γ1 ∈ F2r \ F2 and γ2 ∈ Orb(γ1). Then the twisted codes Cγ1(A) and
Cγ2(A) of length n have the same parameters for any complete defining set A ⊆ Z/nZ.

Proof. One can easily show that the following maps are bijections

1. g1(x) = x from Φγ1 to Φγ1+1

2. g2(x) = γ1x from Φγ1 to Φ 1
γ1

3. g3(x) = (γ1 + 1)x from Φγ1 to Φ 1
γ1+1

4. g4(x) = (γ1 + 1)x from Φγ1 to Φ γ1
γ1+1

5. g5(x) = γ1x from Φγ1 to Φ γ1+1
γ1

.

Hence the result follows from Theorem 3.10.5. We only show the bijection of Case (3)
above as a sample. Suppose that a ∈ Φγ1 . Then Trr1(a) = Trr1(γ1a) = 0. Next we show that
(γ1+1)a ∈ Φ 1

γ1+1
. In other words, we need to show that Trr1((γ1+1)a) = Trr1((γ1+1) a

γ1+1) =
0. This is trivial as

Trr1((γ1 + 1)a) = Trr1(a) + Trr1(γ1a) = 0

and
Trr1((γ1 + 1) a

γ1 + 1) = Trr1(a) = 0.

Next let b ∈ Φ 1
γ1+1

. This implies that Trr1(b) = Trr1( b
γ1+1) = 0. Note that g3( b

γ1+1) = b.
Hence it is sufficient to show that b

γ1+1 ∈ Φγ1 . This holds since

Trr1( b

γ1 + 1) = 0

and
Trr1( γ1b

γ1 + 1) = Trr1( b

γ1 + 1 + b) = Trr1( b

γ1 + 1) + Trr1(b) = 0.

In general, the result of Theorem 3.10.6 reduces the computation time of parameters
of twisted codes by a factor of 6. As the computation of minimum distance can be time-
consuming, this result improves the efficiency of such computations. In fact, even identifying
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a single code with the same parameters can save months of computation time. The next
example shows that when κ = 2, 3, for each complete defining set A ⊆ Z/nZ, the parameters
of twisted codes are independent of the choice of γ.

Example 3.10.7 (1) Let κ = 2 and F4 = {0, 1, ω, ω+1}, where ω is a root of the irreducible
polynomial x2 + x + 1 over F2. Then Orb(ω) = {ω, ω + 1}. Now Theorem 3.10.6 implies
that Cω(A) and Cω+1(A) have the same parameters for any complete defining set A.

(2) Let κ = 3 and F8 = {0, 1, α, α2, . . . , α6}, where α is a root of the irreducible polyno-
mial x3 + x+ 1 over F2. Then

Orb(α) = {α, α2, . . . , α6}.

Now Theorem 3.10.6 implies that Cγ1(A) and Cγ2(A) have the same parameters for any
complete defining set A and each γ1, γ2 ∈ F8 \ F2.

Next, we show that when κ = 4, then there are exactly two different orbits and pos-
sibly two non-isomorphic twisted codes by selecting different values of γ. Later, in Corol-
lary 3.10.16, we show that these two orbits always generate twisted codes with the same
parameters.

Example 3.10.8 In this example, we provide more details and compute the sets Φγ for all
the values γ ∈ F16 \ F4. Let κ = 4 and F16 = {0, 1, α, . . . , α14}, where α is a root of the
irreducible polynomial x4 + x+ 1 over F2. Then

F16 \ F4 = {α, α2, α3, α4, α6, α7, α8, α9, α11, α12, α13, α14}.

An easy computation shows that Φα = Φα4 = {0, 1, α, α4}, Φα2 = Φα8 = {0, 1, α2, α8},
Φα3 = Φα14 = {0, α, α2, α5}, Φα6 = Φα13 = {0, α2, α4, α10}, Φα7 = Φα9 = {0, α, α8, α10},
and Φα11 = Φα12 = {0, α4, α5, α8}. The following results hold.

• The map f1(x) defined by f1(x) = x gives the trivial bijections of (3.10.3) and (3.10.4).

• The map f2 : Φα → Φα3 defined by f2(x) = αx is a bijection.

• The map f3 : Φα → Φα11 defined by f3(x) = α4x is a bijection.

• The map f4 : Φα2 → Φα7 defined by f4(x) = α8x is a bijection.

• The map f5 : Φα2 → Φα6 defined by f5(x) = α2x is a bijection.
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In other words, the following diagrams of bijections exist.

Φα = Φα4 Φα11 = Φα12

Φα3 = Φα14

f1

f2

f1
f3

f1

(3.10.3)

Φα2 = Φα8 Φα6 = Φα13

Φα7 = Φα9

f1

f4

f1
f5

f1

(3.10.4)

Moreover, note that
Orb(α) = {α, α3, α4, α11, α12, α14}

and
Orb(α2) = {α2, α6, α7, α8, α9, α13}.

Hence the result of Theorem 3.10.6 implies that there are at most two non-isomorphic
twisted codes for a fixed complete defining set and different selections of γ.

In the next section, we will use the permutation equivalence of twisted codes and pro-
vide more complementary results about twisted codes with the same parameters that are
constructed using different values of γ.

So far, we have talked about when the values γ1 and γ2 ∈ F2r \ F2 satisfying [F2(γ1) :
F2] = [F2(γ2) : F2] produce twisted codes with the same parameters. In the next example,
we provide an example of two such gamma values such that the corresponding twisted
codes have different minimum distances. In particular, one of the twisted codes produces
a record-breaking binary quantum code, while the other has the same parameters as a
currently best-known binary quantum code.

Example 3.10.9 Let n = 69 and κ = 22. The ordered 2-cyclotomic cosets modulo 69 are

Z(0) = {0}

Z(1) = {1, 2, 4, 8, 16, 32, 64, 59, 49, 29, 58, 47, 25, 50, 31, 62, 55, 41, 13, 26, 52, 35}

Z(68) = {68, 67, 65, 61, 53, 37, 5, 10, 20, 40, 11, 22, 44, 19, 38, 7, 14, 28, 56, 43, 17, 34}

Z(3) = {3, 6, 12, 24, 48, 27, 54, 39, 9, 18, 36}

Z(66) = {66, 63, 57, 45, 21, 42, 15, 30, 60, 51, 33}.

Let A = {1,−1}∪Z(−3). We first construct the field F222 by using the command GF(2,22)

in Magma [17] and select the elements γ1 = α and γ2 = α89, where α is a primitive
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element of F222 defined by the PrimitiveElement function in Magma (hence also in GAP,
Macaulay2 and SageMath by Remark 1.3.3). Note that F2(γ1) = F2(γ2) = F222 . Because
89 divides 222 − 1, γ2 is not a primitive element of F222 . By Theorem 3.4.11, both Cγ1(A)
and Cγ2(A) are dual-containing twisted codes with dimension 72 over F2. Thus by Theorem
3.5.7, both of these codes are J69, 3K binary quantum codes. Moreover, by computing their
minimum distance using MinimumDistance function in Magma, we see that Cγ1(A) and
Cγ2(A) have the minimum distances 15 and 16, respectively. Thus the code Cγ2(A) is a new
record-breaking binary quantum code with parameters J69, 3, 16K and the code Cγ1(A) has
the same parameters as a previously best-known quantum code.

By doing more computations, we find that the observation from the previous paragraph
generalizes as follows. The minimum distance 16 is attainable by some elements γ with the
algebraic degree 22 over F2 (both primitive and non-primitive). On the other hand, if the
algebraic degree of γ is 11 over F2, then the minimum distance appears to be at most 11
with sporadically reaching 12. When γ ∈ F4 \ F2, then the minimum distance is 11.

3.10.1 Selection of γ value and equivalence of twisted codes

In general, determining when two twisted codes have the same parameters is an interesting
task, and it was partially discussed in the previous section. In this section, we provide more
complementary results by considering the permutation equivalence and equality of twisted
codes. Note that, in general, the numeric search for twisted codes with good parameters
is computationally very expensive in terms of both time and memory. This is because (1)
the γ value in the construction of twisted codes can change, and (2) the defining set of a
twisted code can contain unsaturated intersections of cyclotomic cosets. These possibilities
hold only for the twisted codes and do not occur in the case of linear cyclic codes. Hence
the results of this section, along with Section 3.10, will help to reduce the time complexity
of the search algorithm for twisted codes with good parameters. At the end of this section,
we also briefly describe a search algorithm for new binary quantum codes. Our algorithm
targets only dual-containing and nearly dual-containing twisted codes.

Recall that in Section 1.6, we formally defined that two codes C1 and C2 are permutation
equivalent if there exists a permutation matrix P such that C2 = C1P . Throughout this
section, n is a positive integer such that n | 2r−1 for some positive integer r and γ ∈ F2r \F2.

Definition 3.10.10 Let Cγ(A1) and Cγ(A2) be two twisted codes of length n over F2×F2.
The codes Cγ(A1) and Cγ(A2) are called permutation equivalent if there exists a permutation
of coordinates which maps Cγ(A1) to Cγ(A2).

Let A ⊆ Z/nZ. We denote the group of all permutations of Z/nZ by Sn. Recall that,
as we mentioned in (3.4.9), the equality Cγ(A) = φγ(C(Ad)⊥) holds for any twisted code,
where C(Ad) is the linear cyclic code over F2r with the defining set Ad. The following result
is an easy consequence of Proposition 9.4.16 of [14]. Since in [14] the general family of
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additive cyclic codes is studied using a slightly different notation, here we provide a short
proof for this result using the theory of additive twisted codes developed in this thesis.

Theorem 3.10.11 [14] Let A,A′ ⊆ Z/nZ be the complete defining sets of two twisted
codes of length n. If there exists σ ∈ Sn such that σ(C(Ad)⊥) = C(A′d)⊥, then the twisted
codes Cγ(A) and Cγ(A′) are permutation equivalent.

Proof. We show that σ
(
Cγ(A)

)
= Cγ(A′). The fact that φγ

(
σ(C(Ad)⊥)

)
= σ

(
φγ(C(Ad)⊥)

)
implies

σ
(
Cγ(A)

)
= σ

(
φγ(C(Ad)⊥)

)
= φγ

(
σ(C(Ad)⊥)

)
= φγ

(
C(A′d)⊥

)
= Cγ(A′).

The above theorem allows us to apply the results on permutation equivalence of linear
cyclic codes and determine permutation equivalent twisted codes. Recall that the map
µe : Z/nZ→ Z/nZ defined by µe(x) = ex mod n is called a multiplier, where e is a positive
integer such that gcd(n, e) = 1. The next theorem allows us to check the equivalence of
twisted codes using the multipliers.

Corollary 3.10.12 Let A,A′ ⊆ Z/nZ be the complete defining sets of two length n twisted
codes, and e be a positive integer such that gcd(e, n) = 1. If µe(A) = A′, then the twisted
codes Cγ(A) and Cγ(A′) are permutation equivalent.

Proof. First, note that by Theorem 1.6.4, the codes C(A) and C(A′) are permutation equiva-
lent. Hence the codes C(A)⊥ and C(A′)⊥ are permutation equivalent. Now Theorem 3.10.11
implies that Cγ(Ad) = Cγ(A)⊥s and Cγ(A′d) = Cγ(A′)⊥s are permutation equivalent. Hence
their symplectic duals, namely Cγ(A) and Cγ(A′), are permutation equivalent.

Recall that, so far, we have discussed two scenarios under which two twisted codes
have the same parameters. First, in Theorem 3.10.5, we showed that twisted codes with
the same complete defining sets but different values of γ have the same parameters under
certain conditions. Second, in Theorem 3.10.11, we provided sufficient conditions for two
twisted codes with different complete defining sets but the same value of γ to have the
same parameters. Next, we combine these results and provide sufficient conditions for two
twisted codes with different complete defining sets and different γ values to have the same
parameters. Let A be the complete defining set of a length n twisted code. For each
0 ≤ i ≤ ordn(2)− 1, we define

2iA = {(2ia) mod n : a ∈ A}.

Example 3.10.13 Let n = 21. The ordered 2-cyclotomic cosets modulo 21 are Z(0) = {0},
Z(1) = {1, 2, 4, 8, 16, 11}, Z(3) = {3, 6, 12}, Z(5) = {5, 10, 20, 19, 17, 13}, Z(7) = {7, 14},
and Z(9) = {9, 18, 15}.
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(1) Let A = {1, 8} and κ = 3. Note that A ∩ Z(1) is unsaturated and 2A = {2, 16}.
In other words, there are three possible unsaturated intersections with Z(1), namely {1, 8},
{2, 16}, and {4, 11}. Moreover, 2iA for 0 ≤ i ≤ 2 give all the possible unsaturated intersec-
tions with Z(1).

(2) Let A = {3, 6, 12}. In this case, A∩Z(3) is saturated. It is easy to see that 2iA = A

for each i ≥ 0.

The above example shows that for any complete defining set A, the set 2iA remains a
complete defining set of a twisted code for each i ≥ 0. The next result shows that certain
twisted codes with complete defining sets and different γ values are the same. Recall that
κ = [F2(γ) : F2].

Theorem 3.10.14 Let A be the complete defining set of a twisted code of length n over
F2 × F2. Then the twisted codes C

γ2i (2iA) are the same for all 0 ≤ i ≤ κ− 1.

Proof. Recall from (3.4.7) that Cγ(A) = φγ(C(Ad)⊥). Let α ∈ F2r be a primitive n-
th root of unity and a ∈ C(Ad)⊥. Recall that the vector vs ∈ Fn2r is defined by vs =
(1 αsα2s · · · α(n−1)s) for each 0 ≤ s ≤ n − 1. The matrix B(Ad) defined in (3.3.2) is a
generator matrix for the code C(Ad)⊥. Then a =

∑
t∈Ad

btv
t for some bt ∈ F2r . Next we show

that for each 0 ≤ i ≤ κ− 1, the codes φγ(C(Ad)⊥) and φ
γ2i (C(2iAd)⊥) are the same. First,

note that
Trr1

(
(a, γa)

)
= Trr1

(
(a2i , γ2ia2i)

)
∈ φ

γ2i (C(2iAd)⊥), (3.10.5)

where a2i =
∑
t∈Ad

b2
i

t v
2it =

∑
t∈2iAd

b2
i

t v
t ∈ C(2iAd)⊥. Therefore, the equation (3.10.5) implies

that φγ(C(Ad)⊥) ⊆ φ
γ2i (C(2iAd)⊥). Now we prove the other inclusion. Let c =

∑
t∈2iAd

dtv
t

for some dt ∈ F2r . Then

Trr1
(
(c, γ2ic)

)
= Trr1

(
(c2κ−i , γc2κ−i)

)
∈ φγ(C(Ad)⊥), (3.10.6)

where c2κ−i =
∑

t∈2iAd

d2κ−i
t v2κ−it =

∑
t∈Ad

d2κ−i
t vt ∈ C(Ad)⊥. Thus the equation (3.10.6)

implies that φ
γ2i (C(2iAd)⊥) ⊆ φγ(C(Ad)⊥), and consequently Cγ(A) = C

γ2i (2iA). Since
0 ≤ i ≤ κ− 1 was arbitrary, we conclude that the twisted codes C

γ2i (2iA) are the same for
all 0 ≤ i ≤ κ− 1.

The next result is a direct consequence of the above theorem.

Corollary 3.10.15 Let A be the complete defining set of a twisted code of length n. Then
the twisted codes C

γ2i (2jA) all are permutation equivalent for each 0 ≤ i, j ≤ κ− 1.

Proof. We show that for each 0 ≤ i, j ≤ κ − 1, the two twisted codes φγ(C(Ad)⊥) and
φ
γ2i (C(2jAd)⊥) are permutation equivalent. By Theorem 3.10.14, the codes φγ(C(Ad)⊥)
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and φ
γ2i (C(2iAd)⊥) are the same. Moreover, since gcd(2, n) = 1, Corollary 3.10.12 implies

that φγ(C(Ad)⊥) and φ
γ2i (C(2jAd)⊥) are permutation equivalent. Therefore, the codes

φγ(CB(A)) and φ
γ2i (CB(2jA)) are permutation equivalent.

Next, we use the result of Theorem 3.10.6 and give a generalization of the above result.
Recall that for each γ ∈ F2r \ F2, we have Orb(γ) = {f(γ) : f ∈ S3}, where S3 is the group
of rational functions defined in (3.10.2).

Corollary 3.10.16 Let A be the complete defining set of a twisted code of length n, γ1 ∈
F2r \F2, and γ2 ∈ Orb(γ1). Then the twisted codes C

γ2i
1

(2jA) and C
γ2i′

2
(2j′A) have the same

parameters for each 0 ≤ i, j, i′, j′ ≤ κ− 1.

Proof. By Corollary 3.10.15, the twisted codes C
γ2i

1
(2jA) are permutation equivalent for

all 0 ≤ i, j ≤ κ − 1. The same holds for the twisted codes C
γ2i′

2
(2j′A) for all 0 ≤ i′, j′ ≤

κ− 1. Moreover, Theorem 3.10.6 implies that the codes Cγ1(A) and Cγ2(A) have the same
parameters. This completes the proof.

Next, we provide an application for the above corollary. Recall that in Theorem 3.10.6
we showed that the twisted codes Cγ1(A) and Cγ2(A) have the same parameters when
[F2(γ1) : F2] = [F2(γ2) : F2] ≤ 3. Moreover, in Example 3.10.8, we showed that different
selections of γ values in F16 \ F4 may result in at most two twisted codes with different
parameters. Next, we improve this result and show that different selections of γ values do
not change the parameters of twisted codes when [F2(γ) : F2] = 4.

Example 3.10.17 Let κ = 4 and F16 = {0, 1, β, . . . , β14}, where β is a root of the ir-
reducible polynomial x4 + x + 1 over F2. As we showed in Example 3.10.8, for each
γ ∈ F4 \F2, the code Cγ(A) has the same parameters as either Cβ(A) or Cβ2(A). Moreover,
the codes Cβ(A) and Cβ2(A) have the same parameters by Corollary 3.10.16. Therefore, for
all γ ∈ F4 \ F2, the codes Cγ(A) all have the same parameters.

The criteria developed in this section help to identify many twisted codes with the same
parameters. In the next example, we identify many twisted codes with the same parameters
constructed using different complete defining sets.

Example 3.10.18 Let n = 15 and κ = 4. The ordered 2-cyclotomic cosets modulo 15
are Z(0) = {0}, Z(1) = {1, 2, 4, 8}, Z(3) = {3, 6, 12, 9}, Z(5) = {5, 10}, and Z(7) =
{7, 14, 13, 11}. Let A = {0, 1, 3}. There are 12 different elements γ ∈ F16 \ F4, and by the
above example, the parameters of the twisted codes Cγ(A) are independent of the choice
of γ. Moreover, Corollary 3.10.12 gives many more twisted codes which are permutation
equivalent. For instance, the twisted codes Cγ(A) and Cγ(A′) are permutation equivalent
for each

A′ ∈ {{0, 2, 6}, {0, 4, 12}, {0, 8, 9}, {0, 7, 6}, {0, 11, 3}, {0, 13, 9}, {0, 14, 12}}.
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Next, we take advantage of the result of Corollary 3.10.16 and list all the values of γ in
different field extensions of F2 that may produce twisted codes with different parameters.
This restricts the search for good twisted codes to only a small number of γ values. Table 3.3
presents all such gamma values. In the table, α is the primitive element of the corresponding
finite field constructed using the PrimitiveElement function in Magma [17]. The third
column of the table gives the total number of γ ∈ F2r such that [F2(γ) : F2] = κ. Finally,
the last column of Table 3.3 presents all the possible candidates for γ that may produce
twisted codes with different parameters. Clearly, as it is evident from the values in the
third and fourth columns of the table, the result of Corollary 3.10.16 significantly reduces
the computational time to search for good twisted codes. This is particularly valuable
considering that the minimum distance computation is a time-consuming process, and even
saving a single computation can be highly beneficial. For instance, in the case where
[F2(γ) : F2] = 9, the result from Table 3.3 shows a significant time reduction by a factor
of 50.4.

Field Extension κ # of all γ values γ candidates
F22 2 2 α
F23 3 6 α
F24 4 12 α
F25 5 30 α
F26 6 54 α, α3

F27 7 126 α, α5, α9

F28 8 240 α, α5, α7, α9, α13, α23

F29 9 504 α, α3, α7, α13, α17, α19, α21, α23, α27, α35

Table 3.3: The values of γ that may produce twisted codes with different parameters.

We finish this section by briefly describing a search algorithm for new quantum codes
that targets dual-containing and nearly dual-containing twisted codes with a small dual-
containment deficiency value. Recall that for a complete defining set A, the dual-containment
deficiency of the code Cγ(A) is defined by

eA =
dimF2

(
Cγ(Ad)

)
− dimF2

(
Cγ(Ad) ∩ Cγ(A)

)
2 =

dimF2

(
Cγ(Ad)

)
− dimF2

(
Cγ(A ∪Ad)

)
2 .

In particular, we have Cγ(Ad) ⊆ Cγ(A) if and only if eA = 0.
Search algorithm. Step 1. Let n be a positive odd integer. Then we can find a

positive integer r such that n | 2r − 1 and r is the smallest with this property. Hence the
2-cyclotomic coset of 1 modulo n has size r. This allows us to find all the possible values
of κ simply by finding all the factors of r.

Step 2. We fix one value of κ and partition each cyclotomic coset into unsaturated
subsets. In other words, for each 2-cyclotomic coset Z = {a2i : 0 ≤ i ≤ κm − 1} with the

106



coset leader a modulo n, there are κ unsaturated subsets in the forms

Z(j) = {a2κi+j : 0 ≤ i ≤ m− 1}, (3.10.7)

where 0 ≤ j ≤ κ− 1. Therefore, the complete defining set of a twisted code intersects Z in
only one of the following forms:

• The intersection is empty.

• The intersection is Z.

• The intersection is Z(j) for some 0 ≤ j ≤ κ− 1.

If κ - |Z|, then the third case above cannot happen.
Step 3. We select a γ ∈ F2r \ F2 such that κ = [F2(γ) : F2]. In particular, we only

choose the values from Table 3.3 when κ < 10, and use the result of Corollary 3.10.16 for
κ ≥ 10. This allows us to consider only a small number of γ values in our computations,
and reduces the computation time.

Step 4. The defining set of a twisted code is defined to be a unique union of the
intersections defined in Step 2. Let A1 and A2 be the complete defining sets of two additive
twisted codes. An easy observation on the dual-containment deficiency formula of Theorem
3.5.5 shows that if (A1)d ⊆ (A2)d, then eA1 ≤ eA2 . Therefore, we can design a backtracking
algorithm to enumerate all twisted codes of length n with a given upper bound on the eA
value.

Step 5. For each complete defining set A satisfying Step 3, we apply the quantum
construction of Theorem 3.5.7 to Cγ(A) and compute the parameters of the corresponding
quantum code.

Note that, as previously explained before Table 3.3, the results presented in this section
help to eliminate the need for redundant consideration of different twisted codes with the
same parameters in the search algorithm. This pruning of the search algorithm leads to a
significant improvement in its efficiency for finding codes with good parameters.
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Chapter 4

Equivalence of codes and
applications

Despite the long history and extensive study of linear cyclic codes, several questions re-
garding their equivalence remain unsolved and presumably are very difficult [54]. There
have been several works toward the classification of equivalent cyclic and constacyclic codes
using algebraic properties of these codes; for examples see [5–7,11,34,46,54].

We skip the adjective “linear” throughout this chapter and abbreviate the names of
linear cyclic and linear constacyclic codes to “cyclic” and “constacyclic” codes, respectively.
In this chapter, we develop new tools for permutation and monomial equivalence of linear
cyclic and constacyclic codes. Our new results help to determine permutation or monomially
equivalent cyclic codes, which are not necessarily detectable using the previous methods,
such as the action of affine maps on defining sets or the generalized multipliers. We also
resolve two questions raised in the literature regarding the isometric equivalence of cyclic
codes induced by the action of affine maps on their defining sets. Recall that φ is Eu-
ler’s totient function. Moreover, we prove that two constacyclic codes over F4 of an odd
length n such that gcd(3n, φ(3n)) = 1 are permutation equivalent if and only if there exists
a multiplier that maps the defining set of one code to the defining set of the other.

In general, finding linear codes with good parameters is one of the most challenging
tasks in algebraic coding theory. A lot of work has been done in the literature to make
the computer search for linear codes with good parameters more systematic. However,
the computationally challenging obstacles, such as minimum distance computation, which
requires a considerable amount of time, have slowed down the search process considerably.
Recently, several new linear codes were discovered by designing a more efficient search
algorithm for new linear codes using equivalence of cyclic and constacyclic codes, see for
example [2, 5, 6].

The results of this chapter can be applied to make the search for new linear codes and
also binary quantum codes with good parameters more systematic. In particular, we discuss
the nearly dual-containment of cyclic and constacyclic codes with respect to the Hermitian
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inner product. This helps to find suitable ingredients for the quantum construction of
Theorem 1.7.9. Moreover, we outline a search algorithm for new quantum codes from
nearly dual-containing cyclic and constacyclic codes. Finally, we present examples of record-
breaking binary quantum codes and linear codes. These codes were obtained after pruning
the search algorithm for new linear and quantum codes using the results of this chapter and
Section 1.6.

This chapter is organized as follows. Our main contributions are discussed in Sec-
tion 4.1. In Section 4.2, we introduce novel sufficient conditions for permutation and mono-
mial equivalence of cyclic codes over various finite fields. Next, in Section 4.3, we resolve
two conjectures of Aydin, Lambrinos, and VandenBerg proposed in [6]. In Section 4.4, we
present new results on the equivalence of constacyclic codes over F4. Finally, Section 4.5
outlines a search algorithm for good quantum codes from nearly dual-containing cyclic
and constacyclic codes. We also present record-breaking binary quantum codes and linear
codes over F4. Applying secondary constructions to our new codes produces many more
record-breaking codes.

The material in this chapter is a joint work with my senior supervisor Dr. Lisoněk, and
it has been published in Discrete Mathematics journal [26]. A portion of materials in this
section was presented at the 25th International Conference on Applications of Computer
Algebra (ACA 2019, Montreal, Canada) [27] and the 2022 Joint Mathematics Meetings
(JMM 2022, Seattle, USA) [31].

4.1 Our main contributions

Significant literature exists on the equivalence of linear codes, particularly cyclic codes and
their generalizations. Therefore, in order to separate the previous results from our new
results in this chapter, we take the liberty to briefly summarize our new results in this
section.

In Section 4.2, we introduce novel sufficient conditions for the permutation and monomial
equivalence of cyclic codes (Theorems 4.2.5, 4.2.11, and 4.2.16). We also provide a list of
code lengths and finite fields containing at least a pair of cyclic codes which are monomially
equivalent but not affine equivalent. Many such pairs can be explained using our new
results.

Throughout this chapter, the “defining set” of a cyclic or constacyclic code is a unique
union of cyclotomic cosets. In Section 4.3, Theorem 4.3.1 resolves two conjectures and
strengthens a result of [6]. Let C1 and C2 be two cyclic codes of length n over Fq with
the defining sets A and B, and ψb(x) = (x + b) mod n be the shift map on Z/nZ. We
prove that C1 and C2 are monomially equivalent through the shift map ψb if and only if
ψb(A) = B and n divides |A|b(q − 1). Next, we prove that the generator polynomials of
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two monomially equivalent cyclic codes of length n over Fq generate monomially equivalent
cyclic codes of lengths nm, where gcd(m, q) = 1.

Recall that Theorem 1.6.5 states that for a positive integer n such that gcd(n, φ(n)) = 1,
two cyclic codes of length n with the defining sets A1 and A2 are permutation equivalent
if and only if there exists a multiplier µa such that µa(A1) = A2. In Section 4.4, we give
a result analogous to the result of Theorem 1.6.5 for constacyclic codes. In particular,
we prove that two constacyclic codes of length n over F4 such that gcd(3n, φ(3n)) = 1
are permutation equivalent if and only if they are permutation equivalent by the action of
multipliers on their defining sets.

In Section 4.5.1, we first compute the dual-containment deficiency of constacyclic code
over F4 (Theorem 4.5.4 and Corollary 4.5.5). Next, we classify constacyclic codes with the
dual-containment deficiency e = 1 and e = 2 (Theorem 4.5.7). Finally, we present a search
algorithm for binary quantum codes with good parameters from nearly dual-containing
constacyclic codes over F4, and give new record-breaking binary quantum codes and linear
codes over F4.

4.2 Novel sufficient conditions for equivalence of cyclic codes

This section studies sufficient conditions for monomial and permutation equivalence of cyclic
codes over various finite fields. Our conditions are easy to check, and they help to classify
all monomially equivalent cyclic codes of certain lengths. Moreover, our new conditions
enable us to prove monomial or permutation equivalence of pairs of codes in some cases
that can not be resolved by previously known results.

In this chapter, vectors are indexed starting at zero. Throughout this chapter, we fix α
to be a primitive n-th root of unity in the field K = Fq(α). For v = (1, α, α2, . . . , αn−1),
we define the vector vs ∈ Kn to be vs = (1, αs, α2s, . . . , α(n−1)s) for each 0 ≤ s ≤ n − 1.
Let C be an [n, k] linear code over Fq and H be an (n− k)× n matrix defined over a field
extension of Fq. Recall that the matrix H is called a generalized parity check matrix for
the code C if for each c ∈ Fnq we have HcT = 0 if and only if c ∈ C.

The monomial and permutation equivalence of linear codes can also be defined in terms
of the generalized parity check matrices. The following lemma is elementary but we record
it for further use in this chapter.

Lemma 4.2.1 Let C1 and C2 be two linear codes of length n over Fq, and H be a generalized
parity check matrix for C1. Let P be a permutation matrix and D be a non-singular diagonal
matrix defined over Fq. Then C2 = C1PD if and only if HPD−1 is a generalized parity
check matrix for C2.

Remark 4.2.2 In Sections 4.2.1, 4.2.2, and 4.2.3, we provide some intermediate lemmas
before stating our main result. There might be easier proofs for the equivalence of codes in
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these lemmas by applying the results of Section 1.6.1. However, our main goal is to prove
these lemmas using the action of specific permutation or monomial matrices. After proving
our main results, namely Theorems 4.2.5, 4.2.11, and 4.2.16, we provide evidence showing
that they are not of the types of results discussed in Section 1.6.1.

Before stating our new results, we first recall affine equivalence and permutation equiv-
alence under the action of generalized multipliers for cyclic codes introduced in Corollary
1.6.10 and Definition 1.6.7, respectively. Let A1 and A2 be defining sets of two linear cyclic
codes of length n over Fq, and θ(x) = (ex + b) mod n, where gcd(e, n) = 1. Later we
show that the condition n | b|A1|(q − 1) is required for the existence of such affine maps.
Recall that if θ(A1) = A2, then cyclic codes with the defining sets A1 and A2 are called
affine equivalent. In the following three sections we give monomially equivalent cyclic codes
which are not, in general, affine equivalent.

Let n = pm and k ≤ m be positive integers, where p is an odd prime and m ≥ 2. Recall
that for 1 ≤ d < pk such that gcd(d, pk) = 1, the map Md : Z/nZ → Z/nZ defined by
Md(i+ jpk) = (id mod pk) + jpk is called a generalized multiplier of Z/nZ. Two codes that
are monomially equivalent, as implied by our new results in the next three sections, are not
necessarily permutation equivalent under the action of generalized multipliers.

4.2.1 New sufficient condition for monomial equivalence of cyclic codes

Let n be a positive integer divisible by 8 and Fq be a finite field of odd characteristic. We
define the permutation σ on Z/nZ by

σ(i) =

i if i ≡ 0 or 1 (mod 4)

(i+ n
2 ) mod n otherwise.

Let Pσ be the permutation matrix corresponding to the action of σ and D be the diagonal
matrix defined by

Dii =

−1 if i ≡ 1 or 2 (mod 4)

1 otherwise

for each 0 ≤ i ≤ n− 1. Let {si : 0 ≤ i ≤ n− 1} be the standard basis of Fnq . Then

si(PσD) =



si if i ≡ 0 (mod 4)

−si if i ≡ 1 (mod 4)

−si+n
2

if i ≡ 2 (mod 4)

si+n
2

if i ≡ 3 (mod 4).

Since the generalized multipliers are not defined over Z/nZ for an even integer n, the action
of PσD cannot be of a generalized multiplier type. Later we also show that if two cyclic
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codes are monomially equivalent under the action of PσD, then they are not necessarily
affine equivalent. Before stating our main result, we have two intermediate lemmas. Recall
that Z(a) denotes the q-cyclotomic coset modulo n containing a.

Lemma 4.2.3 Suppose that q is odd. Let n = 8k for some positive integer k and 0 < a ≤
n − 1 be an odd integer. Then cyclic codes over Fq of length n with the defining sets Z(a)
and Z(n2 + a) are monomially equivalent under the action of PσD.

Proof. Let C1 and C2 be the cyclic codes of length n over Fq with the defining sets Z(a) and
Z(n2 + a), respectively. First, note that since q is odd, we have q(n2 + a) ≡ n

2 + qa (mod n).
Thus there is a one-to-one correspondence between the elements of Z(a) and Z(n2 +a) given
by the shift map ψn

2
. Moreover, both Z(a) and Z(n2 + a) consist of only odd values.

Let H1 be a generalized parity check matrix for C1 in the form of (1.4.2) and b be an
arbitrary element of Z(a). The vector vb is a row of H1 and we show that vbPσD = vb

′ ,
where b′ = (n2 + b) mod n is an element of Z(n2 + a). Since both H1 and H1PσD are
generalized parity check matrices of linear codes over Fq with the same dimension, showing
that vbPσD = vb

′ implies that H1PσD is a generalized parity check matrix for C2. In our
computations, we use the fact that αn

2 = −1.
Let 0 ≤ i ≤ n− 1. If i ≡ 1 (mod 4), then (vbPσD)i = αib+

n
2 = αi(

n
2 +b) = αib

′ . If i ≡ 3
(mod 4), then (vbPσD)i = α(i+n

2 )b = αi(
n
2 +b) = αib

′ . If i ≡ 0 (mod 4), then (vbPσD)i =
αib = αi(

n
2 +b) = αib

′ . If i ≡ 2 (mod 4), then (vbPσD)i = α(i+n
2 )b+n

2 = αib = αi(
n
2 +b) = αib

′ .
Hence, for each i, we get (vbPσD)i = (vb′)i.

Thus H1PσD is a generalized parity check matrix for C2. Therefore, by Lemma 4.2.1,
the codes C1 and C2 are monomially equivalent under the action of PσD.

The above result can be easily extended to monomially equivalent cyclic codes with
union of more than one cyclotomic coset as their defining set. Since 8 | n, the q-cyclotomic
cosets of 0 and n

2 are both singletons. Let q ≡ 1 (mod 4). Then the sets {n4 } and {3n
4 }

are two other singleton q-cyclotomic cosets. If q ≡ 3 (mod 4), then the set {n4 ,
3n
4 } is a

q-cyclotomic coset.

Lemma 4.2.4 Let n = 8k for some positive integer k and A1 = {0, n2 } and A2 = {n4 ,
3n
4 }

be the defining sets of C1 and C2, which are cyclic codes of length n over Fq, respectively.
Then C1 and C2 are monomially equivalent under the action of PσD.

Proof. Since αn
2 = −1, the code C1 has a parity check matrix in the form

H1 =
[
1 1 1 1 · · · 1
1 −1 1 −1 · · · −1

]
.

Let

H2 =
[
1 α

n
4 α

2n
4 α

3n
4 1 · · · α

3n
4

1 α
3n
4 α

2n
4 α

n
4 1 · · · α

n
4

]
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be a generalized parity check matrix of C2. Next we show that H2PσD and H1 generate
the same row space over K. First, a straightforward computation shows that

H2PσD =
[
1 α

3n
4 1 α

3n
4 1 · · · α

3n
4

1 α
n
4 1 α

n
4 1 · · · α

n
4

]
=
[
1 −α

n
4 1 −α

n
4 1 · · · −α

n
4

1 α
n
4 1 α

n
4 1 · · · α

n
4

]
.

Next by adding and subtracting the rows of H2PσD we find a basis for the row space
of H2PσD in the form B = {(1, 0, 1, 0, . . . , 0), (0, 1, 0, 1, . . . , 1)}. One can easily see that the
set B is also a basis for the row space of H1. Thus H2PσD is also a generalized parity
check matrix for C1. Now Lemma 4.2.1 implies that the codes C1 and C2 are monomially
equivalent under the action of PσD.

Next, we combine the results of Lemmas 4.2.3 and 4.2.4 and state the main result of
Section 4.2.1.

Theorem 4.2.5 Let Fq be a finite field of odd characteristic and n = 8k for some positive
integer k such that gcd(k, q) = 1. Let A be a union of q-cyclotomic cosets modulo n with
odd coset leaders. Then the cyclic codes of length n with the defining sets A1 = A∪ {n4 ,

3n
4 }

and A2 = {(a + n
2 ) mod n : a ∈ A} ∪ {0, n2 } over Fq are monomially equivalent under the

action of PσD.

Proof. Let C1 and C2 be the cyclic codes of length n with the defining set A1 and A2

over Fq, respectively. Let H1 be a generalized parity check matrix for C1, in the form of
(1.4.2). Then Lemmas 4.2.3 and 4.2.4 imply that H1PσD is a generalized parity check
matrix for C2. Thus by Lemma 4.2.1 the codes C1 and C2 are monomially equivalent.

Now we present some applications of Theorem 4.2.5. First let us note that if two cyclic
codes are monomially equivalent by Theorem 4.2.5, then they are not necessarily affine
equivalent or permutation equivalent by the action of a generalized multiplier.

Example 4.2.6 Let A1 = {0, 1, 3, 4} and A2 = {2, 5, 6, 7} be the defining sets of cyclic codes
C1 and C2 over F3 of length 8. One can easily verify that there is no bijective affine map
between A1 and A2. Hence C1 and C2 are not affine equivalent. Note also that A1 = {1, 3}∪
{0, 4} and A2 = {5, 7} ∪ {2, 6} satisfy the conditions of Theorem 4.2.5 and therefore C1

and C2 are monomially equivalent over F3. Moreover, generalized multipliers are only
defined on integers modulo an odd prime power. Hence C1 and C2 are not permutation
equivalent by the action of generalized multipliers.

Example 4.2.7 Our computation in Magma [17] shows that all the monomially equiva-
lent cyclic codes of length 8 over F3, F7, and F11 are either affine equivalent, monomially
equivalent by the action of PσD, or a combination of both. Overall, there are 32 different
cyclic codes of length 8 over any of these fields, many of which are monomially equivalent.
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In order to keep this example reasonably concise, we only show the equivalence of cyclic
codes over F3 with dimension four, and the monomial equivalence of the remaining codes
can be proved similarly. An easy computation shows that a cyclic code of length 8 over F3

with dimension four has one of the following defining sets:

A1 = {0, 1, 3, 4}, A2 = {0, 2, 4, 6}, A3 = {0, 4, 5, 7}, A4 = {1, 2, 3, 6},

A5 = {1, 3, 5, 7}, A6 = {2, 5, 6, 7}.

Let C1, . . . , C6 be cyclic codes of length 8 over F3 with the defining sets A1, . . . , A6, re-
spectively. Our Magma computation shows that C1, C3, C4, and C6 are all monomially
equivalent. The same holds for the codes C2 and C5. Moreover, C1 and C2 are not mono-
mially equivalent as d(C1) = 4 and d(C2) = 2, where d denotes the minimum distance.
Then

C1 C6

C3 C4

PσD

ψ4 ψ4 (4.2.1)

and
C2 C5

ψ1
, (4.2.2)

where the arrows describe the actions under which the corresponding cyclic codes are mono-
mially equivalent. In particular, in (4.2.1), the map ψ4 is the shift by 4, and PσD is the
monomial action of Theorem 4.2.5. Moreover, in (4.2.2), the map ψ1 is the shift by 1.
Since ψ4 and PσD are involutions, two-sided arrows show their actions. Now the monomial
equivalence of the mentioned cyclic codes can easily be verified using Theorems 4.2.5, 1.6.9,
and 1.6.10.

Another application of Theorem 4.2.5 is to check whether two cyclic codes are isodual.
A linear code is called isodual if it is monomially equivalent to its Euclidean dual. Isodual
codes could also be defined similarly in terms of other inner products; however, in this thesis,
we only consider Euclidean isodual codes. Next, by applying the result of Theorem 4.2.5,
we show the existence of isodual cyclic codes of length 8 over F3.

Example 4.2.8 The 3-cyclotomic cosets modulo 8 are {0}, {1, 3}, {2, 6}, {4}, and {5, 7}.
Let C be a cyclic code over F3 of length 8 with the defining set A = {0, 1, 3, 4}. Its
Euclidean dual C⊥ has the defining set A′ = (Z/nZ)\(−A) = {1, 2, 3, 6}. Let b = 4. Then b
satisfies the conditions of Theorem 1.6.9 and ψ4(A′) = {2, 5, 6, 7}. Thus C⊥ is isometrically
equivalent to the cyclic code D with the defining set {2, 5, 6, 7} over F3. Moreover, as we
showed in Example 4.2.6, the cyclic codes C and D are monomially equivalent. Therefore, C
and C⊥ are monomially equivalent. This makes C and C⊥ a pair of isodual codes over F3

of length 8.
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4.2.2 Permutation equivalence of cyclic codes over fields of odd charac-
teristic

Let n be a positive integer divisible by 8. We define the permutation γ on Z/nZ by

γ(i) =

i if i is even

(i− 2) mod n if i is odd.

We denote the permutation matrix corresponding to γ by Pγ . Let {si : 0 ≤ i ≤ n − 1} be
the standard basis of Fnq . Then

siPγ =

si if i is even

si−2 if i is odd.

Since the generalized multipliers are not defined over Z/nZ for an even integer n, the action
of Pγ cannot be of a generalized multiplier type. Our main result of this section relies on
the following intermediate lemmas.

Lemma 4.2.9 Let Fq be a finite field of odd characteristic and n = 8k for some positive
integer k such that gcd(k, q) = 1.

1. Let A = {0} or A = {n2 } and C be the cyclic code of length n over Fq with the defining
set A. Then C = CPγ.

2. Let q ≡ 1 (mod 4) and C1 and C2 be the cyclic codes of length n over Fq with the
defining sets {n4 } and {

3n
4 }, respectively. Then C2 = C1Pγ.

Proof. If A = {0}, then the all-ones vector v0 = (1, 1, . . . , 1) is a parity check matrix
for C. If A = {n2 }, then v

n
2 = (1,−1, 1,−1, . . . ,−1) is a parity check matrix for C. A

straightforward computation shows that v0Pγ = v0 and v n2 Pγ = v
n
2 . Hence C = CPγ .

If q ≡ 1 (mod 4), then {n4 } and {
3n
4 } are singleton q-cyclotomic cosets modulo n. The

code C1 has a parity check matrix in the form v
n
4 = (1, αn

4 , α
n
2 , α

3n
4 , 1, αn

4 , . . . , α
3n
4 ). More-

over, v n4 Pγ = v
3n
4 . Therefore, by Lemma 4.2.1, we have C2 = C1Pγ .

Lemma 4.2.10 Let Fq be a finite field of odd characteristic and n = 8k for some positive
integer k such that gcd(k, q) = 1. Let C be a cyclic code of length n over Fq with the defining
set A = Z(a) ∪ Z(a+ n

2 ) for some a ∈ Z/nZ. Then C = CPγ.

Proof. If a = 0 or a = n
2 , then the proof follows from Lemma 4.2.9. So we assume that

a 6= 0, n2 . Note also that since q is odd we have ψn
2
(Z(a)) = Z(a+ n

2 ). So Z(a) and Z(a+ n
2 )

have the same size. Let Z(a) = {a1, a2, . . . , ar}. Next we show that the sets {vai , v(ai+n
2 )}

and {vaiPγ , v(ai+n
2 )Pγ} generate the same vector space over K for each 1 ≤ i ≤ r. This

shows that if H is a generalized parity check matrix for C, in the form of (1.4.2), then HPγ
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and H generate the same row space over K. Hence Lemma 4.2.1 implies that C = CPγ .
Note that αn

2 = −1, and

vai = (1, αai , α2ai , α3ai , . . . , α(n−1)ai)

and
v(ai+n

2 ) = (1, αai+
n
2 , α2ai , α3ai+n

2 , . . . , α(n−1)ai+n
2 ).

By adding and subtracting the vectors vai and v(ai+n
2 ) we get

vai + v(ai+n
2 ) = (2, 0, 2α2ai , 0, 2α4ai , . . . , 0)

and
vai − v(ai+n

2 ) = (0, 2αai , 0, 2α3ai , 0, 2α5ai , . . . , 2α(n−1)ai).

Clearly the vectors vai+v(ai+n
2 ) and vai−v(ai+n

2 ) are linearly independent overK. Moreover,

vaiPγ = (1, α3ai , α2ai , α5ai , . . . , αai)

and
v(ai+n

2 )Pγ = (1, α3ai+n
2 , α2ai , α5ai+n

2 , . . . αai+
n
2 ).

Since Pγ does not change the entries in even number columns, vai + v(ai+n
2 ) = vaiPγ +

v(ai+n
2 )Pγ . Moreover,

vaiPγ − v(ai+n
2 )Pγ = (0, 2α3ai , 0, 2α5ai , 0, 2α7ai , . . . 2αai) = α2ai(vai − v(ai+n

2 )).

This completes the proof by showing that {vai , v(ai+n
2 )} and {vaiPγ , v(ai+n

2 )Pγ} generate
the same vector space over K for each 1 ≤ i ≤ r.

Next, we combine the results of the above lemmas and state a sufficient condition for
permutation equivalence of cyclic codes. This is the main result of this section.

Theorem 4.2.11 Let n be a positive integer divisible by 8 and q be a prime power such
that q ≡ 1 (mod 4) and gcd(n, q) = 1. Let A ⊆ Z/nZ be a union of q-cyclotomic cosets
modulo n such that for each a ∈ A either a ∈ {0, n2 }, or (a + n

2 ) mod n is also an element
of A. Then cyclic codes of length n over Fq with the defining sets A ∪ {n4 } and A ∪ {3n

4 }
are permutation equivalent under the action of Pγ.

Proof. Let C1 and C2 be cyclic codes of length n over Fq with the defining sets A ∪ {n4 }
and A∪{3n

4 }, respectively. Suppose that the matrix H is a generalized parity check matrix
for C1, in the form of (1.4.2). The proof follows from Lemmas 4.2.9 and 4.2.10 as the
matrix HPγ is a generalized parity check matrix of C2. Therefore, by Lemma 4.2.1, C1

and C2 are permutation equivalent under the action of Pγ .
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The next example shows that permutation equivalent cyclic codes of Theorem 4.2.11
are not necessarily affine equivalent. Moreover, as we mentioned earlier, Pγ is not of a
generalized multiplier type.

Example 4.2.12 Let n = 8 and A = {0, 1, 5}. By Theorem 4.2.11, cyclic codes of length 8
with the defining sets A1 = A ∪ {2} and A2 = A ∪ {6} over F5 are permutation equivalent.
One can easily verify that there is no affine map between the sets A1 and A2. Moreover,
our computation in Magma [17] shows that all monomially equivalent cyclic codes of length
8 over F5 are either affine equivalent, permutation equivalent under the action of Pγ , or
a combination of both. A similar process as in Example 4.2.7 can justify such monomial
equivalences. This classifies all the monomially equivalent cyclic codes of length 8 over F5.

4.2.3 New conditions for permutation equivalence of cyclic codes over F4

Let n be a positive odd integer divisible by 27 and F4 = {0, 1, ω, ω2} be the field of four
elements, where ω2 = ω + 1. For the rest of this section, α denotes a fixed primitive n-th
root of unity in F4(α), such that αn

3 = ω. We define the permutation χ on Z/nZ by

χ(i) =


i+ 3 if i ≡ 0 or 4 or 5 (mod 9)

i− 3 if i ≡ 3 or 7 or 8 (mod 9)

i otherwise.

(4.2.3)

Note that since χ(0) 6= 0 the permutation χ is not of multiplier or generalized multiplier
type. We denote the permutation matrix corresponding to χ by Pχ. Let {si : 0 ≤ i ≤ n−1}
be the standard basis of Fn4 . Then

siPχ =


si+3 if i ≡ 0 or 4 or 5 (mod 9)

si−3 if i ≡ 3 or 7 or 8 (mod 9)

i otherwise.

Since 3 | n there are always three singleton 4-cyclotomic cosets modulo n namely {0},
{n3 }, and {

2n
3 }. Before stating our main result of Section 4.2.3, we have three intermediate

lemmas.

Lemma 4.2.13 Let n be a positive odd integer divisible by 27 and C be a cyclic code of
length n over F4 with the defining set {a}, where a ∈ {0, n3 ,

2n
3 }. Then C = CPχ.
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Proof. Note that va = (1, αa, α2a, . . . , α(n−1)a) is a parity check matrix for C. Moreover,
the entry in j-th column of va is

(va)j =


1 if a = 0

ωj if a = n
3

ω2j if a = 2n
3 .

One can easily see that the j-th column of va remains unchanged under the action of Pχ.
Thus va = vaPχ. Therefore, by Lemma 4.2.1, we have C = CPχ.

Lemma 4.2.14 Let n be a positive odd integer divisible by 27, and C1 and C2 be cyclic
codes of length n over F4 with defining sets Z(n9 ) and Z(2n

9 ), respectively. Then C2 = C1Pχ.

Proof. First, note that Z(n9 ) = {n9 ,
4n
9 ,

7n
9 } and Z(2n

9 ) = {2n
9 ,

5n
9 ,

8n
9 }. Let u = v

n
9 + v

4n
9 +

v
7n
9 . Then for each 0 ≤ j ≤ n− 1, we have

uj = αj
n
9 + αj

4n
9 + αj

7n
9 = αj

n
9 (1 + αj

n
3 + αj

2n
3 ).

Thus

uj =

α
j n9 if 3 | j

0 otherwise
=



1 if j ≡ 0 (mod 9)

ω if j ≡ 3 (mod 9)

ω2 if j ≡ 6 (mod 9)

0 otherwise

for each 0 ≤ j ≤ n− 1. A similar computation shows that if x = v
2n
9 + v

5n
9 + v

8n
9 , then

xj =



1 if j ≡ 0 (mod 9)

ω2 if j ≡ 3 (mod 9)

ω if j ≡ 6 (mod 9)

0 otherwise

for each 0 ≤ j ≤ n− 1. Let u′ and u′′ be the cyclic shifts of u by one and two positions to
the right, respectively. The set S = {u, u′, u′′} is linearly independent over K and matrix H
consisting of elements of S as its rows is a parity check matrix for C1. Next, we show that
if x′ and x′′ are the cyclic shifts of x by one and two positions to the right, respectively, then
{uPχ, u′Pχ, u′′Pχ} = {ωx, ωx′, ωx′′}. Since H and HPγ are parity check matrices of linear
codes with the same dimension, this implies that HPγ is a parity check matrix for C2. A
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straightforward computation shows that

(uPχ)j =



ω if j ≡ 0 (mod 9)

1 if j ≡ 3 (mod 9)

ω2 if j ≡ 6 (mod 9)

0 otherwise

for each 0 ≤ j ≤ n− 1. Thus uPχ = ωx. The equalities u′Pχ = ωx′ and u′′Pχ = ωx′′ follow
accordingly. Hence, HPγ is a parity check matrix for C2 and by Lemma 4.2.1, and we have
C2 = C1Pχ.

Lemma 4.2.15 Let n = 3tk, where k and t ≥ 3 are positive integers such that gcd(k, 3) = 1.
Let 1 ≤ e ≤ n− 1. Then the following statements hold.

1. The set Ae = {(ek+ i n
3t−1 ) mod n : 0 ≤ i ≤ 3t−1−1} is a union of 4-cyclotomic cosets

modulo n.

2. Suppose that C is the cyclic code of length n over F4 with defining set Ae. Then
C = CPχ.

Proof. To prove (1) we show that Ae =
3t−1−1⋃
i=0

Z(ek+ i
n

3t−1 ), where some of the cyclotomic

cosets are repeating in the union. Obviously, Ae ⊆
3t−1−1⋃
i=0

Z(ek+i n

3t−1 ). Let 0 ≤ s ≤ 3t−1−1

and j ≥ 0 be an arbitrary integer. We have 4j = 3l + 1 for some positive integer l and

4j(ek + s
n

3t−1 ) = ek + s
n

3t−1 + 3lek + 3ls n

3t−1 = ek + (s+ le+ 3ls) n

3t−1 ∈ Ae,

where the last equality follows from the fact that 3k = n
3t−1 . Hence Z(ek + s n

3t−1 ) ⊆ Ae for

each 0 ≤ s ≤ 3t−1 − 1. This implies that Ae =
3t−1−1⋃
i=0

Z(ek + i
n

3t−1 ).

Now we prove (2). Let H be a generalized parity check matrix for C consisting of the
row vectors

v(ek+i n
3t−1 ) = (1, αek+i n

3t−1 , α2(ek+i n
3t−1 ), . . . , α(n−1)(ek+i n

3t−1 ))

for 0 ≤ i ≤ 3t−1 − 1. Next, we produce a new generalized parity check matrix H ′ for C
using linear combinations of rows of H. We also show that the rows of H ′Pχ are the same
as the rows of H ′. This implies that C = CPχ.
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Let u =
3t−1−1∑
i=0

v(ek+i n
3t−1 ) be the sum of all rows of H. For each 0 ≤ l ≤ n − 1, we can

compute the entry of the l-th column of u as

ul =
3t−1−1∑
i=0

αl(ek+i n
3t−1 ) = αekl(

3t−1−1∑
i=0

α
iln

3t−1 ) =

α
ekl if 3t−1 | l

0 otherwise.
(4.2.4)

Let u[m] be cyclic shift of the vector u by m positions to the right for each 0 ≤ m ≤ 3t−1−1.
Then (4.2.4) implies that the set B = {u[m] : 0 ≤ m ≤ 3t−1 − 1} is linearly independent
over K. Let H ′ be a 3t−1 × n matrix over K consisting of elements of B as its rows.
Then H ′ is a generalized parity check matrix for C. Moreover, for each 0 ≤ m ≤ 3t−1 − 1
and 0 ≤ l ≤ n− 1 we have

(u[m])l =

α
ekl if 3t−1 | l −m

0 otherwise.

Since 9 | 3t−1,

u[m]Pχ =


u[m+3] if m ≡ 0 or 4 or 5 (mod 9)

u[m−3] if m ≡ 3 or 7 or 8 (mod 9)

u[m] otherwise.

Hence H ′Pχ and H ′ have the same set of rows. Therefore C = CPχ.

Now we combine all the above results and state a sufficient condition for the permutation
equivalence of cyclic codes over F4. Let n = 3tk, where k and t ≥ 3 are positive integers
such that gcd(k, 3) = 1. The next theorem is the main result of this section.

Theorem 4.2.16 Let n = 3tk, where k and t ≥ 3 are positive integers such that gcd(k, 3) =
1. Suppose that B ⊆ {0, n3 ,

2n
3 } and 1 ≤ ej ≤ n − 1 for 1 ≤ j ≤ r, where r is a positive

integer. Then cyclic codes of length n with the defining sets T1 = Z(n9 ) ∪ B ∪
r⋃
j=1

Aej

and T2 = Z(2n
9 ) ∪ B ∪

r⋃
j=1

Aej are permutation equivalent over F4 under the action of Pχ,

where Ae is defined as in part (1) of Lemma 4.2.15 for each 1 ≤ e ≤ n− 1.

Proof. Let C1 and C2 be cyclic codes of length n over F4 with the defining sets T1 and T2,
respectively. By Lemmas 4.2.13, 4.2.14, and 4.2.15 the matrix Pχ maps a generalized parity
check matrix of C1 to a generalized parity check matrix of C2. Therefore, the result follows
from Lemma 4.2.1.

Next, we present an application of the above result.
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Example 4.2.17 Let n = 27. An easy computation shows that Z(1) = {1 + 3i : 0 ≤ i ≤ 8}
and Z(2) = {2 + 3i : 0 ≤ i ≤ 8}. Now by Theorem 4.2.16, the cyclic codes of length 27
over F4 with the following pairs of defining sets are permutation equivalent:

• Z(0) ∪ Z(1) ∪ Z(3) and Z(0) ∪ Z(1) ∪ Z(6).

• Z(0) ∪ Z(2) ∪ Z(3) and Z(0) ∪ Z(2) ∪ Z(6).

• Z(0) ∪ Z(1) ∪ Z(3) ∪ Z(9) and Z(0) ∪ Z(1) ∪ Z(6) ∪ Z(9).

• Z(0) ∪ Z(1) ∪ Z(3) ∪ Z(9) ∪ Z(18) and Z(0) ∪ Z(1) ∪ Z(6) ∪ Z(9) ∪ Z(18).

Our computation in Magma [17] shows that the above pairs of codes are not permutation
equivalent under the action of multipliers, generalized multipliers, or a combination of
both. This is because multipliers and generalized multipliers always map 0 to 0. However,
by (4.2.3), we have χ(0) = 3. Moreover, the above pairs of codes are not affine equivalent.
There are many more such pairs of permutation equivalent cyclic codes over F4 of length 27.
To the best of our knowledge, the permutation equivalence of the above pairs of codes can
not be proved by earlier results in the literature.

Example 4.2.18 This example presents some other values of n and q such that there exist
at least a pair of monomially equivalent cyclic codes over Fq of length n which are not affine
equivalent.

• For q = 2, lengths n = 45, 49.

• For q = 3, lengths n = 8∗, 16∗∗, 32∗∗, 40∗, 48∗∗, 56∗.

• For q = 4, lengths n = 25, 27�, 49.

• For q = 5, lengths n = 8, 16, 24∗.

• For q = 7, lengths n = 8∗, 16∗, 18, 24∗, 32∗∗, 40∗.

• For q = 11, lengths n = 8∗, 16∗∗, 24∗.

In the above list:

• The symbol ∗ shows the code lengths for which there exists a pair of monomially
equivalent codes obtained by Theorem 4.2.5.

• The underline shows the code lengths for which there exists a pair of permutation
equivalent codes obtained by Theorem 4.2.11.

• The symbol � shows the code lengths for which there exists a pair of permutation
equivalent codes obtained by Theorem 4.2.16.
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• The symbol ∗∗ shows the code lengths for which there exists a pair of monomially
equivalent codes obtained by the action of the monomial matrix

PσD · · · 0
... . . . ...
0 · · · PσD


consisting of more than one block of the matrix PσD of Theorem 4.2.5 on the main
diagonal.

The sufficient conditions of Theorems 4.2.5, 4.2.11, and 4.2.16 along with the mono-
mial and permutation equivalence criteria given in Section 1.6 detect many monomially
equivalent cyclic codes over various finite fields. Therefore, it is extremely beneficial and
computationally inexpensive to use such conditions, and make the search for new cyclic
codes with good parameters faster.

4.3 More results on the equivalence of cyclic codes

Let n be a positive integer such that gcd(n, q) = 1 and A1 and A2 be defining sets of two
length n linear cyclic codes C1 and C2 over Fq, respectively. Recall from Theorem 1.6.9
that if b is a positive integer such that n | |A1|(q − 1)b and ψb(A1) = A2, where ψb(x) =
(x + b) mod n, then the codes C1 and C2 are isometrically equivalent. Conjecture 2 of [6]
proposes that the condition “n divides |A1|(q−1)b” is a necessary condition for the isometric
equivalence of cyclic codes by a shift map. The next theorem proves this fact and also
strengthens the result of Theorem 1.6.9. Recall that α is a fixed primitive n-th root of
unity in the field K = Fq(α).

Theorem 4.3.1 Let C1 and C2 be two cyclic codes over Fq of length n with defining sets A1

and A2, respectively, and b be a positive integer. The codes C1 and C2 are isometrically
equivalent through the shift map ψb on their defining sets if and only if ψb is a bijection
between A1 and A2 and n divides |A1|(q − 1)b.

Proof. Without loss of generality assume ψb(A1) = A2. We only prove the forward direction
as the reverse direction follows from Theorem 1.6.9. Let g1(x) and g2(x) be the generator
polynomials of C1 and C2, respectively. Then g1(x) =

∏
i∈A1

(x− αi) and

g2(x) =
∏
i∈A2

(x− αi) =
∏
i∈A1

(x− αi+b) = αb|A1|
∏
i∈A1

(α−bx− αi) = αb|A1|g1(α−bx). (4.3.1)
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Since g2(x) is defined over Fq, the equality
(
g2(0)

)q = g2(0) holds. By combining this fact
with (4.3.1), we get

0 =
(
g2(0)

)q − g2(0) = αb|A1|q(g1(0)
)q − αb|A1|g1(0). (4.3.2)

The generator polynomial of a non-empty cyclic code always has a non-zero constant term.
Let the non-zero constant term of g1(x) be g1(0) = c ∈ Fq. Now (4.3.2) implies that

αb|A1|qcq − αb|A1|c = cαb|A1|(αb|A1|(q−1) − 1) = 0. (4.3.3)

Since c and αb|A1| are both non-zero, (4.3.3) implies that αb|A1|(q−1) = 1 or equivalently
n | b|A1|(q − 1).

Let g1(x) and g2(x) be generator polynomials of two monomially equivalent cyclic codes
of length n over Fq. Conjecture 1 of [6] proposes that for each integer m ≥ 1 coprime
to q, the length nm cyclic codes generated by g1(x) and g2(x) are monomially equivalent.
Next we prove this statement. Note also that the cyclic codes of length nm generated by
g1(x), g2(x) have minimum distance of at most two since xn − 1 is in correspondence with
a weight two codeword.

Proposition 4.3.2 Let g1(x) and g2(x) be generator polynomials of two monomially (re-
spectively permutation) equivalent cyclic codes over Fq of length n. For each integer m ≥ 1
coprime to q, the cyclic codes of length nm over Fq generated by g1(x) and g2(x) are also
monomially (respectively permutation) equivalent.

Proof. Let C1 and C2 be the cyclic codes of length n generated by g1(x) and g2(x), respec-
tively. First we assume that C1 and C2 are monomially equivalent.

Let β be a primitive nm-th root of unity in a finite field extension of Fq. Then α = βm is a
primitive n-th root of unity. Let Ag1 = {t : 0 ≤ t ≤ n−1 and g1(αt) = 0} = {a1, a2, . . . , ak}
be the defining set of C1. By (1.4.2), the matrix

H1 =


1 αa1 α2a1 · · · αa1(n−1)

1 αa2 α2a2 · · · αa2(n−1)

...
...

... · · ·
...

1 αak α2ak · · · αak(n−1)


is a generalized parity check matrix for the code C1. Since the cyclic codes C1 and C2 are
monomial equivalent, by Lemma 4.2.1 there exists a monomial matrix M such that H1M

is a generalized parity check matrix for the code C2. The length nm cyclic code generated
by g1(x) has defining set A′g1 = {ma1,ma2, . . . ,mak}. Therefore, the cyclic code of length

123



nm generated by g1(x) has a generalized parity check matrix in the form

H =


1 βma1 β2ma1 · · · β(nm−1)ma1

...
...

... · · ·
...

1 βmak β2mak · · · β(nm−1)mak

 =
[
H1 H1 · · · H1

]
,

where the right side matrix contains m blocks of H1, and the last equality is due to the fact
that βm = α. Let

M ′ =


M · · · 0
... . . . ...
0 · · · M

 (4.3.4)

be the nm×nm monomial matrix over Fq containing m copies of M on the main diagonal.
Next, we show thatHM ′ is a generalized parity check matrix for the cyclic code of length nm
generated by g2(x).

To avoid confusion, we show the length n and nm column vectors corresponding to a
polynomial f(x) ∈ Fq[x] by [f(x)]n and [f(x)]nm, respectively. Since M ′ is a monomial
matrix over Fq, the linear codes over Fq with the generalized parity check matrices H
and HM ′ are monomially equivalent by Lemma 4.2.1. Therefore, it is enough to show

(HM ′)
[
xig2(x)

]
nm

= 0

for each 0 ≤ i ≤ nm− 1 and this implies that HM ′ is a generalized parity check matrix for
the cyclic code of length nm generated by g2(x). Note that

H(M ′) =
[
H1M H1M · · · H1M

]
,

where the right hand side matrix contains m blocks of H1M . Let g2(x) =
k∑
i=0

bix
i. The

vector
[
xig2(x)

]
nm has at most n non-zero coordinates for each 0 ≤ i ≤ nm− 1 and

HM ′
[
xig2(x)

]
nm

=
[
H1M H1M · · · H1M

] [
xig2(x)

]
nm

= H1M
[
x(i mod n)g2(x)

]
n

= 0.
(4.3.5)

The last equality of (4.3.5) follows from the fact that H1M is a generalized parity check
matrix for C2. This proves that g1(x) and g2(x) generate monomial equivalent cyclic codes
of length nm.

Note that if C1 and C2 are permutation equivalent, then the matrixM ′ defined in (4.3.4)
is a permutation matrix and therefore g1(x) and g2(x) generate permutation equivalent
cyclic codes of length nm over Fq.
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4.4 New results on equivalence of constacyclic codes over F4

Recall that F4 = {0, 1, ω, ω2} is the field of four elements, where ω2 = ω + 1. Throughout
this section, we assume that n is a positive odd integer and L = F4(δ), where δ is a
primitive 3n-th root of unity such that δn = ω. Let r = [L : F4] and

Ω = {1 + 3j : 0 ≤ j ≤ n− 1}.

Then the roots of xn − ω are in the form δa for each a ∈ Ω. Let C1 and C2 be two
ω-constacyclic codes over F4 of length n with the defining sets A1 and A2, respectively.
Recall that if there exists a map ψ3j(x) = (x+ 3j) mod (3n) on Z/3nZ such that n divides
3j deg(g(x)), and ψ3j(A1) = A2, then C1 and C2 are monomially equivalent. Next we show
that the condition “n divides 3j deg(g(x))” is a necessary condition for the existence of a
shift bijection between the defining sets of two ω-constacyclic codes over F4.

Theorem 4.4.1 Let A1 and A2 be defining sets of two ω-constacyclic codes of length n

over F4 and b be a positive integer. If the shift map ψb(x) defined on Z/3nZ satisfies
ψb(A1) = A2, then 3 divides b and n divides b|A1|.

Proof. As we mentioned earlier, roots of xn−ω are δ3k+1 for 0 ≤ k ≤ n−1. Thus, 3 divides b
as otherwise for each s ∈ ψb(A1), δs is not a root of xn−ω. Moreover, xn−ω | x3n− 1 and
therefore defining set of each ω-constacyclic code over F4 of length n is also defining set of
a cyclic code of length 3n over F4. Now Theorem 4.3.1 implies that 3n | 3b|A1| which is
equivalent to n | b|A1|.

The next example presents several pairs of monomially equivalent constacyclic code
obtained by the action of affine maps on their defining sets. After this example, we give an
infinite family of pairs of monomially equivalent constacyclic codes using the observation of
this example.

Example 4.4.2 Let n = 21. The defining set of an ω-constacyclic code of length n

over F4 is a union of the following 4-cyclotomic cosets modulo 3n: Z(1) = {1, 4, 16},
Z(7) = {7, 28, 49}, Z(10) = {10, 34, 40}, Z(13) = {13, 19, 52}, Z(22) = {22, 25, 37},
Z(31) = {31, 55, 61}, and Z(43) = {43, 46, 58}. We show that all the ω-constacyclic codes
with a single cyclotomic coset as its defining set are monomially equivalent. We first use the
shift map ψ21(x) = (x+ 21) mod 63 which satisfies the conditions of Theorem 1.6.15 (affine
equivalence for constacyclic codes). Note that the map ψ21 gives the following bijections

Z(1)→ Z(22), Z(22)→ Z(43), Z(13)→ Z(10), and Z(10)→ Z(31). (4.4.1)

Therefore, each pair of the ω-constacyclic codes with the defining sets Z(1), Z(22), Z(43),
or with the defining sets Z(13), Z(10), Z(31) are monomially equivalent by Theorem 1.6.15.
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Moreover, the multipliers µ13 : Z(1)→ Z(13) and µ7 : Z(1)→ Z(7) are both bijections.
Therefore, by Theorem 1.6.13, the constacyclic codes with the defining sets Z(1), Z(7),
and Z(13) are permutation equivalent. Now, by combining these results, we see that each
pair of ω-constacyclic codes of length n over F4 with the defining sets Z(i) and Z(j), where
i, j ∈ {1, 7, 10, 13, 22, 31, 43} are monomially equivalent. There are many more monomially
equivalent ω-constacyclic codes of length 21 over F4.

Example 4.4.3 Let n = 3(2k + 1) for some integer k > 1. We show that each pair
of ω-constacyclic codes of length n over F4 with the defining sets Z(i) and Z(j), where
i, j ∈ {1, n + 1, 2n + 1} are monomially equivalent. To prove this fact we show that the
shift maps ψn(x) = (x + n) mod 3n and ψ2n(x) = (x + 2n) mod 3n are bijection from
Z(1) to Z(n+ 1) and from Z(1) to Z(2n+ 1), respectively. Since both these maps satisfy
the conditions of Theorem 1.6.15, ω-constacyclic codes with the defining sets in {Z(1),
Z(n+ 1), Z(2n+ 1)} are monomially equivalent.

First note that 4i(n + 1) ≡ n + 4i (mod 3n) and 4i(2n + 1) ≡ 2n + 4i (mod 3n) for
each integer i. Therefore, the 4-cyclotomic cosets Z(1), Z(n+ 1), and Z(2n+ 1) all have
the same size. Moreover, let Z(1) = {4i : 0 ≤ i ≤ r − 1}, where r = [F4(δ) : F4]. Then
Z(n+ 1) = {n + 4i : 0 ≤ i ≤ r − 1} and Z(2n+ 1) = {2n + 4i : 0 ≤ i ≤ r − 1}. Now, one
can easily verify that the maps ψn(x) and ψ2n(x) are bijections.

Recall that φ is the Euler’s totient function. Our next goal of this section is to
show that all permutation equivalent ω-constacyclic codes of length n over F4 such that
gcd(3n, φ(3n)) = 1 are given by the action of multipliers on their defining sets. This result
is analogous to the result of Theorem 1.6.5 for cyclic codes.

Theorem 4.4.4 Let C1 and C2 be two non-trivial ω-constacyclic codes over F4 of length n
with defining sets A1 and A2 such that gcd(3n, φ(3n)) = 1. Then C1 and C2 are permutation
equivalent if and only if there exists a multiplier µe defined on Z/3nZ such that µe(A1) = A2

for some positive integer e ≡ 1 (mod 3).

Proof. We only prove the forward direction as the reverse follows from Lemma 1.6.13.
Since xn − ω | x3n − 1, the sets A1 and A2 are also defining sets of two cyclic codes D1

and D2 of length 3n over F4, respectively. It is enough to show that D1 and D2 are
permutation equivalent, and since gcd(3n, φ(3n)) = 1, Theorem 1.6.5 implies the existence
of a multiplier µe defined on Z/3nZ such that µe(A1) = A2. Moreover, the fact that
A1, A2 ⊂ {3`+ 1 : 0 ≤ ` ≤ n− 1} implies e ≡ 1 (mod 3).

Let A1 = {a1, a2, . . . , ak} and the matrix

H1 =


1 δa1 · · · δa1(n−1)

...
... · · ·

...
1 δak · · · δak(n−1)


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be a generalized parity check matrix for the code C1. Since δn = ω the matrix

H =


1 δa1 · · · δa1(3n−1)

...
... · · ·

...
1 δak · · · δak(3n−1)

 =
[
H1 ωH1 ω2H1

]
(4.4.2)

is a generalized parity check matrix for D1. The rest of the proof follows from the proof of
Proposition 4.3.2 by choosing the matrices H1 and H as above, and M ′ to be the permuta-
tion matrix

M ′ =


P 0 0
0 P 0
0 0 P

 ,
where P is a permutation matrix and H1P is a generalized parity check matrix for C2.

The above result helps to classify all permutation equivalent ω-constacyclic codes of
certain lengths.

4.5 Nearly dual-containing cyclic and constacyclic codes and
new quantum codes

In this section, we only consider cyclic and constacyclic codes over F4. The family of nearly
dual-containing cyclic codes over F4 with respect to the Hermitian inner product was studied
in [68]. We first recall some known results about nearly dual-containing cyclic codes. Then
we extend the idea to the family of constacyclic codes over F4. We also briefly describe
search algorithms for new binary quantum codes from nearly dual-containing cyclic and
constacyclic codes over F4. Throughout the rest of this section, n is a positive odd integer.

Let C be a cyclic code of length n over F4 with the defining set A. The Hermitian dual
of C has the defining set Z/nZ \ (−2A mod n). The next proposition determines when a
cyclic code is dual-containing over F4 with respect to the Hermitian inner product.

Proposition 4.5.1 [55, Theorem 4.4.16] Let n be a positive odd integer, and C be a cyclic
code of length n over F4 with the defining set A. Then C⊥h ⊆ C if and only if A∩−2A = ∅.

Recall that, as we defined in Definition 2.3.4, for each linear code C the value e =
dim(C⊥h) − dim(C ∩ C⊥h) is called the dual-containment deficiency of C. The following
proposition calculates the dual-containment deficiency of a cyclic code.

Proposition 4.5.2 [68] Let C ⊆ Fn4 be a cyclic code with the defining set A. Then

e = dim(C⊥h)− dim(C ∩ C⊥h) = |A ∩ −2A|.

To apply the quantum construction of Theorem 1.7.9 to a cyclic code, it is more rea-
sonable to only target a code with a small e value. This is because dimension of the
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code C+C⊥h is large (hence it probably has a small minimum distance) when the value of e
is closer to dim(C⊥h). Thus we only target cyclic codes over F4 with the dual-containment
deficiency e ≤ 3. We consider the following observations in our search algorithm for new
binary quantum codes from nearly dual-containing cyclic codes.

Search algorithm. Step 1. Fix n to be a given positive odd integer. If gcd(n, 3) = 1,
then, by Theorem 1.6.12, cyclic and ω-constacyclic codes of length n over F4 are monomially
equivalent. We store this information to avoid duplicating the computation of such codes.

Step 2. We design a backtracking algorithm to enumerate all cyclic codes of length n with
a small value of e. Note that Proposition 4.5.2 allows us to fix an upper bound for the dual-
containment deficiency e in the backtracking algorithm. In particular, we start with the
defining set A = ∅ and add a 4-cyclotomic coset to A at each step. An easy observation on
the definition of the dual-containment deficiency parameter shows that for the defining sets
A1 ⊆ A2, eA1 ≤ eA2 , where eA1 and eA2 are the corresponding dual-containment deficiency
parameters. Therefore this allows us to enforce an upper bound on the dual-containment
deficiency parameter e in the backtracking algorithm.

Step 3. We apply the results of Sections 1.6.1, 4.2, and 4.3 to consider only one of each
two monomially equivalent cyclic codes.

Step 4. Finally, we apply the quantum construction of Theorem 1.7.9 to the codes
satisfying the above steps. Note that we bound the minimum distance d using the lower
bound d ≥ min{d(C), d(C+C⊥h)+1} with the aid of Magma computer algebra system [17].

In Section 4.5.2, we present new record-breaking binary quantum and linear codes that
were obtained from our search.

4.5.1 Nearly dual-containing constacyclic codes over F4

In this section, we target nearly dual-containing constacyclic codes with respect to the
Hermitian inner product to construct new binary quantum codes. We first give a formula
that computes the dual-containment deficiency of each constacyclic code. Next, we classify
all the constacyclic codes with small dual-containment deficiency values. Finally, we briefly
describe our search algorithm for new binary quantum codes from nearly dual-containing
constacyclic codes.

As we mentioned in (1.6.1), there exists an isometry between ω- and ω2-constacyclic
codes of length n over F4. So it is sufficient to study one of these two families, and our
results remain valid for the other family. The following theorem gives a criterion for dual-
containment of constacyclic codes over F4.

Theorem 4.5.3 [59] Let C ⊆ Fn4 be an ω-constacyclic code with the defining set A. Then
C⊥h ⊆ C if and only if A ∩ −2A = ∅.

Proof. This is the case q = 4 of [59, Lemma 2.2].
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In practice, there are many ω-constacyclic codes which are not Hermitian dual-containing
but are nearly dual-containing. The next theorem computes the dual-containment deficiency
parameter using the defining sets of a given ω-constacyclic code. This result and its proof
are similar to those of Proposition 4.5.2. Recall that Ω = {1 + 3j : 0 ≤ j ≤ n− 1} for each
positive odd integer n.

Theorem 4.5.4 Let C be an ω-constacyclic code of length n over F4 with the defining set A.
Then e = |A ∩ −2A|.

Proof. In this proof, the arithmetics of defining sets are done modulo 3n. Let δ be a
primitive 3n-th root of unity in a finite field extension of F4 such that δn = ω. Then the
generator polynomials of C⊥h and C ∩ C⊥h are, respectively,

∏
k∈Ω\−2A

(x− δk) and
∏

k∈A∪(Ω\−2A)
(x− δk).

So dim(C⊥h)− dim(C ∩ C⊥h) can be computed as

e = n− |Ω \ −2A| − (n− |A ∪ (Ω \ −2A)|) = |A ∪ (Ω \ −2A)| − |Ω \ −2A| = |A ∩ −2A|.
(4.5.1)

The set Ω = {1 + 3j : 0 ≤ j ≤ n − 1} can be partitioned using 4-cyclotomic cosets
modulo 3n in the form Z1, . . . , Zr, Z

′
1,−2Z ′1, . . . , Z ′s,−2Z ′s, where −2Zi = Zi for each 1 ≤

i ≤ r and Z ′j 6= −2Z ′j for all 1 ≤ j ≤ s.

Corollary 4.5.5 Let C be an ω-constacyclic code of length n over F4 with the defining
set A. Then

1. C is Hermitian dual-containing if and only if Zi 6⊆ A for all 1 ≤ i ≤ r and A contains
at most one of Z ′j and −2Z ′j for each 1 ≤ j ≤ s.

2. C has the dual-containment deficiency parameters

e =
r∑
i=1
|A ∩ Zi|+

s∑
j=1

2
√
|A ∩ Z ′j ||A ∩ −2Z ′j |. (4.5.2)

Proof. The proof of part 1 follows immediately from part 2 since C is Hermitian dual-
containing if and only if e = 0. Note that by Theorem 4.5.4 we have e = |A ∩ −2A| =∑
Z

|(A ∩ −2A) ∩ Z|, where the sum runs over all the different 4-cyclotomic cosets Z such

that Z ⊆ Ω. For each 1 ≤ i ≤ r, if Zi ⊆ A, then Zi ⊆ −2A. Therefore Zi ⊆ A ∩ −2A.
Hence, |(A ∩ −2A) ∩ Zi| = |A ∩ Zi|.
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For each 1 ≤ j ≤ s, the j-th term of the second sum in (4.5.2) is non-zero if and only if
Z ′j ,−2Z ′j ⊆ A. Moreover, Z ′j ,−2Z ′j ⊆ A is equivalent to Z ′j ,−2Z ′j ⊆ −2A. Therefore, the
j-th term of the second sum is 2|Z ′j | if and only if Z ′j ,−2Z ′j ⊆ (A ∩ −2A) or equivalently
(Z ′j ∪ −2Z ′j) ⊆ A ∩ −2A.

Example 4.5.6 Let n = 7. Then Ω = {1, 4, 7, 10, 13, 16, 19} and all the ordered 4-
cyclotomic cosets modulo 21 intersecting Ω are Z(1) = {1, 4, 16}, Z(7) = {7}, and Z(10) =
{10, 19, 13}. Note also that −2Z(1) = Z(10) and −2Z(7) = Z(7). Therefore, if Z(1) is the
defining set of an ω-constacyclic code C of length n over F4, then the code C is Hermitian
dual-containing by Corollary 4.5.5 part 1.

Moreover, if Z(1) ∪ Z(10) is the defining set for an ω-constacyclic code C ′ of length n
over F4, then the code C ′ is not Hermitian dual-containing by Corollary 4.5.5. This con-
stacyclic code has e = 2|Z(1)| = 6 by the formula (4.5.2).

Now, we classify all the nearly dual-containing constacyclic codes with e = 1 and e = 2.

Theorem 4.5.7 Let C be an ω-constacyclic code of an odd length n over F4 and the defining
set A ⊆ Ω. Then

I. The code C has the dual-containment deficiency parameter e = 1 if and only if one of
the following happens.

(a) n ≡ 1 (mod 3), the set A contains the singleton cyclotomic coset {n}, and the
other cyclotomic cosets intersecting A satisfy the orthogonality conditions given
in Corollary 4.5.5 part 1.

(b) n ≡ 2 (mod 3), the set A contains the singleton cyclotomic coset {2n}, and the
other cyclotomic cosets intersecting A satisfy the orthogonality conditions given
in Corollary 4.5.5 part 1.

II. The case e = 2 never happens for C.

Proof. I. By the dual-containment deficiency formula given in (4.5.2), we have e = 1 if and
only if A contains a singleton 4-cyclotomic coset modulo 3n in the form {1 + 3j}, where
4(1+3j) ≡ 1+3j (mod 3n) for some 0 ≤ j ≤ n−1 and other 4-cyclotomic cosets modulo 3n
intersecting A satisfy the condition (1) of Corollary 4.5.5. This implies that

3(1 + 3j) ≡ 0 (mod 3n) (4.5.3)

and therefore n | 1+3j. If n ≡ 1 (mod 3), the only cyclotomic coset satisfying the previous
equation is {n} and the case (a) happens. If n ≡ 2 (mod 3), the cyclotomic coset {2n}
satisfies the equation (4.5.3) and therefore the case (b) above happens. Finally, for the
values of n in the form n ≡ 0 (mod 3), there is no singleton cyclotomic coset.
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II. Since there is at most one singleton cyclotomic coset for each value of n, the formula
(4.5.2) implies that the case e = 2 happens if and only if there exists a size two 4-cyclotomic
coset modulo 3n in the form Z = {(1+3j), 4(1+3j)} ⊆ A for some 0 ≤ j ≤ n−1 such that
−2Z = Z. Next, we show that there is no such cyclotomic coset. The condition −2Z = Z

implies that 3(1 + 3j) ≡ 0 (mod 3n) or 6(1 + 3j) ≡ 0 (mod 3n). Since gcd(n, 2) = 1,
these equations are the same. However, as we discussed in the previous case, the condition
3(1 + 3j) ≡ 0 (mod 3n) implies that Z is a singleton cyclotomic coset. Therefore, there is
no cyclotomic coset Z in the above form, and the case e = 2 never happens.

Next, we briefly sketch the main observations in our search algorithm for new binary
quantum codes from nearly dual-containing constacyclic codes.

Search algorithm. Step 1. Let n be a given positive odd integer. As we mentioned
earlier, we only consider ω-constacyclic codes in our search for new quantum codes. This is
because ω- and ω2-constacyclic codes are monomially equivalent.

Step 2. If gcd(n, 3) = 1, then, by Theorem 1.6.12, cyclic codes and ω-constacyclic codes
of length n over F4 are monomially equivalent. So we do not duplicate the computation for
cyclic and ω-constacyclic codes of such lengths.

Step 3. We design a backtracking algorithm to enumerate all ω-constacyclic codes of
length n with a small value of e similar to that of cyclic codes introduced earlier on page 128.

Step 4. We apply the results of Sections 1.6.2 and 4.4 to only consider inequivalent
ω-constacyclic codes in our search.

Step 5. Finally, we apply the quantum construction of Theorem 1.7.9.

4.5.2 Numerical results

This section presents new record-breaking binary quantum codes and linear codes over F4

that were obtained from our search for new codes. Results about equivalence of linear codes
can be used to prune branches of the search algorithms for new codes with good properties.
In practice, the parameters of quantum codes are known much less than classical linear
codes in the literature, as can be seen in the code tables [43]. In the following examples,
we give new record-breaking linear and quantum codes that were obtained from cyclic and
constacyclic codes over F4. Applying the secondary construction to our new codes produces
many more record-breaking linear codes and binary quantum codes. The validity of our
new codes is already verified in the “Updates” section of [45].

Example 4.5.8 Let n = 51 and A be the defining set of a cyclic code C of length n over F4

with the coset leaders {0, 2, 7, 17, 34}. The code C is affine equivalent to 24 cyclic codes
of the same length over F4, of which only one needs to be considered, thus reducing the
running time by a factor of 24. Moreover, C is a [51, 40] cyclic code and min{d(C), d(C +
C⊥h) + 1} = 4. After applying the construction of Theorem 1.7.9, we get e = 3 which
implies the existence of a J54, 32K binary quantum code D. Note that the dual-containing
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code D was constructed using the proof of Theorem 1.7.9 provided in [68]. The minimum
weight in D\D⊥h is 6. Hence we get a J54, 32, 6K code which has a better minimum distance
than the currently best-known binary quantum code with the same length and dimension.

Example 4.5.9 Let n = 111 and A be the defining set of an ω-constacyclic code C of
length n over F4 with the coset leaders {19, 37}. The code C has the same parameters as
five other ω-constacyclic codes of the same length over F4 through an affine bijection on their
defining sets. The code C is a [111, 90] linear code, e = 3, and min{d(C), d(C+C⊥h)+1} =
9. After applying the construction of Theorem 1.7.9 to the code C, we constructed a new
binary quantum code with parameters J114, 72, 9K which has a better minimum distance than
the current best known binary quantum code. Moreover, the linear code C is a [111, 90, 9]
linear code over F4, which has a better minimum distance than the currently best-known
linear code over F4 with the same length and dimension.

In a private communication with Markus Grassl, it was brought to our attention that the
code C has a supercode C ′ with parameters [111, 91, 9]. Applying secondary constructions
to C ′ produces 38 other record-breaking linear codes over F4. Moreover, applying the
quantum construction of Theorem 1.7.9 to C ′ produces another record-breaking binary
quantum code with parameters J113, 73, 9K. The latter quantum code produces 35 other
new record-breaking binary quantum codes after applying the secondary constructions to
it.

The results on equivalence of codes allowed us to compute parameters of cyclic and
constacyclic codes of certain lengths very fast. In particular, we first reduced the total
number of cyclic and constacyclic codes to a smaller number of codes that contain no pairs
of monomially equivalent codes under the results presented in this thesis. Then we computed
the parameters of these remaining codes. This helped us to examine the parameters of cyclic
and constacyclic codes of various lengths. Note also that determining even a small number
of equivalent codes can significantly reduce the computation time of code parameters. The
following example shows an instance of this observation.

Example 4.5.10 Let n = 111 and A be the defining set of an ω-constacyclic code C of
length n over F4 with the coset leaders {19, 37, 49}. Our computation in Magma [17] shows
that the code C has parameters [111, 72, 16]. The minimum distance computation time
of C in Magma was about 53 days (1290 hours). The code C is permutation equivalent to
two other ω-constacyclic codes of length n over F4 with the coset leaders {1, 13, 37} and
{7, 31, 37}. Hence, in this case, the computation time reduction given by the permutation
equivalence of constacyclic codes is about 106 days. The time reduction can be even more
significant when the code’s length is larger, or its dimension is closer to n/2. The previously
best-known linear code over F4 with the length 111 and dimension 72 had the minimum
distance 15. Hence C is a new record-breaking linear code over F4. Shortening of the code C
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produces five other record-breaking linear codes over F4 with the parameters [111− i, 72−
i, 16] for each 1 ≤ i ≤ 5.
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Chapter 5

Future directions

In this thesis, we developed new methods of constructing binary quantum stabilizer codes
using classical linear and additive codes. This led to the discovery of many record-breaking
and optimal binary quantum codes. New theoretical results for the equivalence of additive
and linear codes were provided. Moreover, we gave several new minimum distance bounds.
More details about our main contributions of this thesis were given in Section 1.8.

In the final chapter we discuss several questions and potential lines of work opened up
by this thesis. These research problems are directly related to classical algebraic codes and
can be applied to generate good quantum stabilizer codes more systematically.

5.1 Linear cyclic, constacyclic, and duadic codes

The quantum constructions presented in Chapter 2 were designed mainly based on the
structure of duadic, QR, and linear cyclic codes over F4. One of our future plans is to apply
the CSS construction (Theorem 1.7.5) to the binary duadic, QR, and linear cyclic codes and
give other constructions for 0-dimensional quantum codes. The quantum CSS construction
builds binary quantum codes by only considering linear binary codes satisfying an inclusion
condition. In general, applying the CSS construction to linear binary codes C1 and C2 such
that C1 6⊆ C2 produces nearly dual-containing additive codes over F4. Such nearly dual-
containing codes could be good ingredients for the quantum construction of Theorem 3.2.3.
In particular, my computations suggest that record-breaking binary quantum codes can be
constructed this way.

In this thesis, we classified all nearly dual-containing linear cyclic and constacyclic codes
with respect to the Hermitian inner product. The family of quasi-cyclic (QC) codes, which
is a generalization of linear cyclic codes, could be another promising candidate for applying
the quantum construction of Theorem 1.7.9. In the literature, there are numeric examples
of good quantum codes from Hermitian dual-containing QC codes that are obtained from an
exhaustive search [37]. Therefore, another research idea is to classify nearly dual-containing
QC codes.
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In Section 2.5 (Proposition 2.5.2) we provided bounds for the minimum distance of linear
cyclic codes. Our distance bounds were designed using the action of multipliers on cyclic
codes. The following are some remaining questions to be answered.

1. Our numeric computation showed that about 97% of cyclic codes with length 9 ≤
n ≤ 85 have the same minimum distance as their fixed subcode by the action of a
multiplier. An interesting question is to classify linear cyclic codes that have the same
minimum distance as their fixed subcodes.

2. Is it possible to make the minimum distance lower bound of Proposition 2.5.2 tighter?
One idea for this problem is to obtain more information about the minimum distance
of the original linear cyclic code by examining the weight distribution of its fixed
subcode.

3. To provide a similar lower bound for the minimum distance of other families of linear
or additive codes such as linear constacyclic codes.

Another interesting problem is designing families of constacyclic BCH codes with good
properties. In general, constacyclic BCH codes have been studied relatively less than other
families of BCH codes, and good classes of linear codes have been constructed this way
[98]. Constacyclic BCH codes can also be used to produce quantum codes with good
parameters [70].

5.2 Modifications of our quantum code construction

In Section 3.2, we gave a construction for binary quantum codes from given additive codes
over F4 (Theorem 3.2.3). In particular, we showed that if C is an (n, 2n+k) additive code
over F4 and

e = dimF2(C⊥t)− dimF2(C ∩ C⊥t)
2 ,

then there exists a binary quantum code with parameters Jn+ e, k + e, dK, where

d ≥ min{d(C⊥t), d(C + C⊥t) + 1}. (5.2.1)

We propose two ideas that could be applied to improve the minimum distance bound
of (5.2.1). First, in the proof of this result, we used a fixed 2e× e matrix T to construct a
dual-containing additive code. The matrix T generates an additive code with the minimum
distance of one over F4. That is the reason we have d(C +C⊥t) + 1 in the above bound. In
general, there are many alternatives for the matrix T above, and different selections of such
a matrix could improve the minimum distance lower bound of (5.2.1). This improvement
can happen when e ≥ 4.
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Second, in Example 4.5.8, we constructed a quantum code with the minimum distance
of 6. In the same example, we showed that the lower bound in (5.2.1) gives d ≥ 4. The
next natural question is to see under what condition such minimum distance improvement
happens and systematically attack such cases. This question was raised in a private com-
munication with Markus Grassl.

5.3 Additive twisted codes

We studied additive twisted codes in Chapter 3. Although we answered several questions
about the structure of twisted codes, there are still some remaining questions. Answering
such questions would help the development of this family as one of the most structured
classes of additive codes as suggested below.

In general, twisted codes form only a strict subclass of additive cyclic codes. Perhaps
the first interesting problem is to modify the construction of twisted codes in order to
produce all additive cyclic codes in a similar fashion. Such approach possibly provides a
more detailed connection between additive cyclic codes and linear cyclic codes. This could
help to compute the dimension and bound the minimum distance of additive cyclic codes
more easily. An idea for this generalization is to apply different projection maps φγ to
θ′(DZ(A)) in the composition (3.4.14) for different cyclotomic cosets.

In Theorem 3.6.3, we gave a minimum distance lower bound for twisted codes using the
minimum distance of corresponding linear cyclic code over a larger alphabet. Moreover, in
Example 3.6.4, we showed that for certain twisted codes, this lower bound is not tight. Hence
one can design twisted codes with a better minimum distance than their corresponding linear
cyclic codes. The next natural question is to see under what conditions such minimum
distance improvement happens and form infinite classes of such codes.

Let ∅ ( A ( Z be the complete defining set of a twisted code Cγ(A) of length n for
some 2-cyclotmic coset Z modulo n. In Example 3.5.2, we showed that different choices
of A can result in linear and non-linear Cγ(A) over F4. Thus an interesting question is to
classify all defining sets A such that Cγ(A) is a linear code over F4.

Recently, a family of Galois closed linear codes was introduced to construct new linear
codes with good parameters [47]. The family of twisted codes was also constructed by
applying the map φγ to linear cyclic codes that are Galois closed. Applying the map φγ

to the family of Galois closed codes introduced in [47] could also produce additive codes
with good properties. Record-breaking binary quantum codes also could be constructed
this way.

The covering radius of a code C of length n over Fq is the smallest integer r such that the
Hamming balls of radius r centered at the codewords of C cover Fnq . A code with minimum
distance d and covering radius r such that r = bd−1

2 c is called perfect. Moreover, if the
covering radius satisfies r = bd−1

2 c + 1, then the code is called quasi-perfect [72, Section
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1.5]. A complete classification of the parameters for which perfect codes over Galois fields
exist was completed in the early 1970s [99, 100, 107]. However, the classification of the
sets of possible parameters for quasi-perfect codes is much more complicated [25], and
research on computing the covering radius of a code and constructing quasi-perfect codes is
ongoing [8,40,92]. In Section 3.8, we presented some families of additive codes over F4 with
minimum distances of four and five. As another line of work, we would like to compute the
covering radius of such codes as they can potentially be quasi-perfect additive codes.
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Appendix A

Quantum stabilizer codes

A.1 Stabilizer formalism of binary quantum codes

This section describes quantum stabilizer codes from a quantum mechanical point of view.
In a classical computer, the bit, which is the contraction of “binary digit”, is the basic
unit of information. The bit represents a state using the binary values. A general state
of a classical computer is represented using a binary vector. Similarly, the basic unit of
quantum information is called qubit, which is the contraction of “quantum bit”. In quantum
mechanics, it is customary to use Dirac notation, sometimes called bra-ket notation, to
present row and column vectors. A bra is denoted by 〈v|, where v is a row vector. Similarly,
a ket is denoted by |u〉, where u is a column vector. A complex Hilbert space H is associated
to every quantum mechanical system. In this section, H = C is the complex Hilbert space
with the inner product

〈u, v〉 =
n∑
i=1

uivi,

where v, u ∈ Hn and ui is the complex conjugate. Let {|0〉 , |1〉} be a basis for H2 (they

are usually selected as |0〉 =
[
0
1

]
and |1〉 =

[
1
0

]
). An arbitrary state of a closed 1-qubit

quantum system is defined by
|φ〉 = α |0〉+ β |1〉 ,

where α, β ∈ H and |α|2 + |β|2 = 1. The main difference between a qubit and a classical bit
is that a qubit can be in a superposition of the states. This happens when α and β are both
non-zero. Hence there are infinitely many different quantum states for a qubit, whereas in
the classic case, the states of a single bit can only be zero or one. In general, the state of a
closed n-qubit quantum system can be described as

|φ〉 =
∑
i∈Fn2

αi |i〉 ,

where αi ∈ H,
∑
i∈Fn2

|αi|2 = 1 and the set of vectors {|i〉 : i ∈ Fn2} forms a basis for H2n .
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Let A be an m× n and B be a p× q matrix. We define the tensor product of A and B to
be

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
... · · ·

...
Am1B Am2B · · · AmnB

 .
Let |φ〉 and |ψ〉 be quantum states of an n-qubit and an m-qubit system, respectively. The
composition of these systems is an nm-qubit system with the state |φ〉⊗ |ψ〉. Any nm-qubit
system can be represented as a sum of products of n-qubit and an m-qubit systems. For
example, a two qubits system can be described as a linear combination of the composite
states |00〉 = |0〉 ⊗ |0〉, |01〉 = |0〉 ⊗ |1〉, |10〉 = |1〉 ⊗ |0〉, and |11〉 = |1〉 ⊗ |1〉.

Note that if |φ1〉 and |φ2〉 are two states of an n-qubit and an m-qubit systems, respectively,
then |φ1φ2〉 = |φ1〉 ⊗ |φ2〉 is a valid state for an nm-qubit system. However, a general state
of an nm-qubit system cannot necessarily be described as a tensor product of an n-qubit
and an m-qubit system. For instance, the two qubit state |φ〉 = 1√

2(|00〉 + |11〉) cannot
be decomposed into a tensor product of two one qubit states. A state of a composite
system which cannot be decomposed as a tensor product of states of its component systems
is called an entangled state. The entanglement phenomenon has various applications in
quantum cryptography, superdense coding, and models of quantum teleportation.

The matrices defined by

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]

are called the Pauli matrices. It is not difficult to show that the Pauli matrices satisfy the
following properties.

1. X, Y , and Z are all hermitian (self-adjoint) and unitary.

2. X2 = Y 2 = Z2 = I.

3. The eigenvalues of Pauli matrices are ±1.

4. XZ = −iY and XaZb = (−1)(a·b)ZbXa for each a, b ∈ F2.

5. The set P1 = {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ} is a multiplicative group and is
called a 1-dimensional Pauli group.

Note also that by the first equation in Case (4) above, we can express Y = iXZ. Moreover,
by the second equation of (4), we can write each operator in a normal form.

Next, we consider the actions of the Pauli matrices X and Z on a 1-qubit state. Let
|a〉 = α |0〉+ β |1〉 be the quantum state of a 1-qubit system for some values α and β ∈ H.
ThenX |a〉 = β |0〉+α |1〉 and thusX flips the coefficients of |0〉 and |1〉. The Pauli matrix X
is usually referred to as the bit flip quantum operator on a single qubit state.
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Let |+〉 = 1√
2(|0〉 + |1〉) and |−〉 = 1√

2(|0〉 − |1〉). It is easy to see that |+〉 and |−〉 form
a basis for H2. For any state in the form |b〉 = α′ |+〉 + β′ |−〉 where α′ and β′ ∈ H, we
have Z |b〉 = β′ |+〉 + α′ |−〉. Therefore, Z flips the signs, and it is referred to as the sign
flip quantum operator on a single qubit state. In this setting, when qubit |φ〉 is sent and
XZ |φ〉 or ZX |φ〉 is received, then both a bit flip and a sign flip error have occurred.

Recall that an n× n matrix U over H is called a unitary matrix if

U∗U = UU∗ = I,

where U∗ is the conjugate transpose of U . Suppose that the state |φ〉 is transmitted over a
quantum channel and the state |φ′〉 is received. Then there exists a unitary matrix E such
that E |φ〉 = |φ′〉. In this case we say the error E has happened. The matrices I,X,Z,XZ
form a basis for all 2×2 matrices overH. Hence an arbitrary one qubit error operator (a 2×2
unitary matrix) can be represented as a linear combination of the mentioned matrices.

Next, we can consider the action of tensor products of the Pauli matrices on more than one
qubit. An n-dimensional generalized Pauli matrix is represented by

XuZv = Xu1Zv1 ⊗Xu2Zv2 ⊗ · · · ⊗XunZvn ,

where u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn2 . In particular, the matrix XuZv acts
on the i-th qubit as XuiZvi for each 1 ≤ i ≤ n. For example, X(1,0,1,0)Z(0,0,1,1) is equivalent
to the generalized Pauli operator

X ⊗ I ⊗XZ ⊗ Z.

The generalized Pauli operators are the error models, for the error correction and error
detection, of most n-qubit systems, and any error operator on an n-qubit system can be
expressed as a linear combination of them. We define the n-dimensional Pauli group as

Pn =
n⊗
i=1

P1.

Now, we connect the length n generalized Pauli matrices and vectors over F4. For each c =
(c1, c2, . . . , cn) ∈ Fn4 , we can alternatively represent c as

(
(c11, c12), (c21, c22), . . . , (cn1, cn2)

)
,

where ci1, ci2 ∈ F2 and
ci = ωci1 + ω2ci2 (A.1.1)

for each 1 ≤ i ≤ n. Let
Pn = {XuZv : u, v ∈ Fn2}

be the set of all n-dimensional generalized Pauli matrices. Then Pn consists of all different
representatives of the group Pn/{±I,±iI}. Therefore, there is a group isomorphism Φ
between Fn4 and Pn/{±I,±iI} defined by

Φ(
(
(c11, c12), (c21, c22), . . . , (cn1, cn2)

)
) = X(c11,c21,...,cn1)Z(c12,c22,...,cn2)

= Xc11Zc12 ⊗Xc21Zc22 ⊗ · · · ⊗Xcn1Zcn2 .

147



For each XaZb ∈ Pn, we define

wgt(XaZb) = |{1 ≤ i ≤ n : (ai, bi) 6= (0, 0)}|. (A.1.2)

This definition is consistent with the definition of weight for vectors over F4. In particular,
for each u ∈ Fn4 , we have wt(u) = wgt(Φ(u)).

Let E1 = XuZv and E2 = Xu′Zv
′ be two elements of Pn. Then E1 and E2 commute in Pn

if and only if
E1E2 = XuZvXu′Zv

′ = (−1)u′·vXuXu′ZvZv
′ (A.1.3)

and
E2E1 = Xu′Zv

′
XuZv = (−1)u.v′Xu′XuZv

′
Zv (A.1.4)

are the same. In other words, E1 and E2 commute in Pn if and only if (−1)u·v′−v·u′ = 1.
Recall that 〈, 〉s : F2n

2 × F2n
2 → F2 is the nondegenerate symplectic F2-bilinear form defined

by

〈
(
(a11, a12), . . . , (an1, an2)

)
,
(
(b11, b12), . . . , (bn1, bn2)

)
〉s =

n∑
i=1

ai1bi2 − ai2bi1. (A.1.5)

A straightforward computation shows that

(ωu+ ω2v) ∗ (ωu′ + ω2v′) = u · v′ − v · u′ = 〈(u, v), (u′, v′)〉. (A.1.6)

This shows the connection between the symplectic inner product and the trace inner prod-
uct. Both of the inner products ∗ and 〈, 〉s are used in the literature for the construction
of quantum codes. The definition of quantum codes provided in Theorem 1.7.1 is based on
the trace inner product.

The computations of (A.1.3) and (A.1.4) show that E1 and E2 commute in Pn if and only
if (ωu + ω2v) and (ωu′ + ω2v′) are trace orthogonal. This implies that if C is an additive
code over F4 such that C⊥t ⊆ C, then the set

GC⊥t = {XuZv : (ωu+ ω2v) ∈ C⊥t}

is a commutative subgroup of Pn. Let

N(GC⊥t ) = {XuZv : (ωu+ ω2v) ∈ C}.

Then, the normalizer of GC⊥t in Pn is

(±I)N(GC⊥t ) ∪ (±iI)N(GC⊥t ).

This observation allows us to distinguish the error vectors in Pn \N(GC⊥t ) from the errors
in N(GC⊥t ). In particular, for any operator E1 = XuZv 6∈ N(GC⊥t ) we can find another
error operator E2 = Xu′Zv

′ ∈ GC⊥t such that E1 and E2 do not commute. The error
correction and error detection schemes of quantum stabilizer codes are designed based on
this property.

We are now coming to the definition of binary quantum stabilizer codes. We give the def-
inition in two steps. First, we recall the sufficient condition of mathematical formalism
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of quantum stabilizer codes given in Theorem 1.7.1. Next, we explain how the states of
a quantum stabilizer code are constructed. Recall that an Jn, k, dK quantum code con-
sists of 2k number of n-qubit states, and it is capable of correcting each error E ∈ Pn if
wgt(E) ≤ bd−1

2 c. In Theorem 1.7.1, we showed that if C ⊆ Fn4 is an (n, 2n+k, d) additive
code such that C⊥t ⊆ C, then an Jn, k, d′K binary quantum stabilizer code can be con-
structed, where d′ is the minimum weight in C \ C⊥t if C ( C⊥t , and d′ = d otherwise.
The following theorem describes how the states of a quantum code can be constructed.

Theorem A.1.1 Let C ⊆ Fn4 be an (n, 2n+k, d) additive code such that C⊥t ⊆ C. Then the
common eigenspace with eigenvalue 1 of matrices in GC⊥t is an Jn, k, d′K binary quantum
code, where d′ is the minimum weight in C \ C⊥t if k > 0 and d′ = d if k = 0.

Proof. The proof follows from the discussion in Section 3 of [44].

Therefore each quantum code consists of precisely the states stabilized by each matrix
from GC⊥t . This gives the name stabilizer codes to this family of quantum codes. The next
example constructs the smallest length binary quantum code that is capable of correcting
any arbitrary error of weight one.

Example A.1.2 Let n = 5 and C be the trace dual of the additive code generated by

M =


1 0 1 ω ω
ω 0 ω ω2 ω2

0 1 ω ω 1
0 ω ω2 ω2 ω

.

Recall that in Example 1.7.2, we showed that C is in correspondence to a J5, 1, 3K binary
quantum code. Next, we use Theorem A.1.1 to construct this quantum code. Applying the
map Φ to the rows of M gives the following error vectors in P5 which form a basis for GC⊥t :

E1 = XZ ⊗ I ⊗XZ ⊗X ⊗X

E2 = X ⊗ I ⊗X ⊗ Z ⊗ Z

E3 = I ⊗XZ ⊗X ⊗X ⊗XZ

E4 = I ⊗X ⊗ Z ⊗ Z ⊗X.

The common eigenvectors with eigenvalue 1 of the errors E1 to E4 are

|c1〉 =1
4(|00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉 − |00110〉 − |11000〉−

|11101〉 − |00011〉 − |11110〉 − |01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉)

and

|c2〉 =1
4(|11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉 − |11001〉 − |00111〉−

|00010〉 − |11100〉 − |00001〉 − |10000〉 − |01110〉 − |10011〉 − |01000〉+ |11010〉).
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These states are stabilized by the matrix M ′ consisting of E1 to E4 as it rows. In other
words, M ′ |c1〉 = |c1〉 and M ′ |c2〉 = |c2〉. Hence the corresponding quantum code is Q =
{|c1〉 , |c2〉}, which is capable of correcting an arbitrary error on one of the qubits.
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Appendix B

Magma code for Chapter 2

The following Magma code produces a linear cyclic code over F4 with given odd length
and coset leaders. As an example, we use the result of Corollary 2.3.7 and produce the
best-known binary quantum code with parameters [[38, 0, 12]].

> F4<z>:=GF(4);
> p<x>:=PolynomialRing(F4);
> n:=37;
> F<v>:=SplittingField(x^n-1);
> a:=PrimitiveElement(F);
> b:=(#F-1)/n;
> Z:=Integers();
> an:=a^(Z!b);
> Omega:={i: i in [0..n-1]};
> conjclass:=function(pa)
function> return { ((an^pa))^(4^i) : i in [ 0 .. n-1 ] };
function> end function;
> conjcla:=function(pa)
function> return { pa *(4^i) mod n : i in [ 0 .. n-1 ] };
function> end function;
> classes1:= SetToSequence( { conjcla(j) : j in Omega } );
> printf "conjugacy classes = %o\n",classes1;
conjugacy classes = [
{ 0 },
{ 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36 },
{ 2, 5, 6, 8, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 29, 31, 32, 35 }
]
> printf "number of classes = %o\n",#classes1;
number of classes = 3
> printf "class sizes = %o\n",[ #c : c in classes1];
class sizes = [ 1, 18, 18 ]
> orderconjcla:=function(pa)
function> return [ pa *(4^i) mod n : i in [ 0 .. n-1 ] ];
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function> end function;
> /////////////////// Cyclic Code Over F4 of lengh n./////////////
> R<XX>:=PolynomialRing(F,1);
> code:= function(class)
function> cs:=SetToSequence(class);
function> I:=&*[&*[XX-((SetToSequence(conjclass(cs[i]))[j])): j in
[1..#SetToSequence(conjclass(cs[i]))]] : i in [1..#class] ];
function> II:=p!I;
function> Code:=CyclicCode(n, II);
function> return(Code);
function> end function;
> Leaders:={1};
> C:=code(Leaders);
> printf "code parameters are %o\n",[Length(C),Dimension(C),
MinimumDistance(C)];
code parameters are [ 37, 19, 11 ]

Now applying the result of Corollary 2.3.7 to the code C above results a binary quantum
code with parameters [[38, 0, 12]]. This is the currently best-known 0-dimensional binary
quantum code of length 38.

For some of the codes in Table 2.1, the minimum distance upper bounds were computed
using certain attacks on the McEliece cryptosystem [21,63,64,73,96]. This is based on the
following observation. Let C be a linear code and r = c + e where c ∈ C and e is the
error pattern. Assuming that wt(e) < d(C)

2 implies that e is the lowest weight codeword in
the linear code spanned by C ∪ {r}. This observation connects decoding and computing
the minimum weight. Several probabilistic algorithms for finding a fixed-weight vector in a
coset of a general (random) linear code have been implemented in Magma. An example of
one of such computation is provided below. In the example, the code C has length n = 157,
coset leaders {1, 3, 9}, and it is constructed using the above Magma code. Moreover, we
decompose C as C = C1⊕Span{r}, where r is a random vector in C and C1 is constructed
using CodeComplement function.

> F4<z>:=GF(4);
> p<x>:=PolynomialRing(F4);
> n:=157;

...
> Leaders:={1,3,9};
> C:=code(Leaders);
> r:=Random(C);
> E:=LinearCode<F4,n|r>;
> C1:=CodeComplement(C,E);
> w:=McEliecesAttack(C1,r,35);
> Weight(w);
35
> w in C;
true
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The above computation shows that d(C) ≤ 35. This computation was done in 4.67 seconds,
however, the minimum distance upper bound of 35 was obtained, using MinimumDistance
function, after 466.32 seconds.
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Appendix C

Magma code for Chapter 3

The following is Magma code for Example 3.8.6 Part (i).

> F2:=GF(2);
> F4:=GF(4);
> w:=PrimitiveElement(F4);
> n:=73;
> r:=1;
> while (2^r mod n) ne 1 do r:=r+1; end while;
> printf "r is %o\n",r;
r is 9
> Allkappa:=[i: i in [2..r]| r mod i eq 0];
> printf "all possible kappa values are = %o\n",Allkappa;
all possible kappa values are = [ 3, 9 ]
> kappa:=Allkappa[1];
> printf "kappa is %o\n",kappa;
kappa is 3
> A:={1,-1,8,-8,9,-9};
> Acom:={ (a*2^(kappa*j)) mod n : j in [ 0 .. r-1 ], a in A };
> printf "the complete defining set is %o\n",Acom;
the complete defining set is { 1, 8, 9, 64, 65, 72 }
> F:=GF(2,r);
> eta:=PrimitiveElement(F);
> u:=eta^( Integers()!((2^r-1)/n) );
> gamma:=eta^( Integers()!((2^r-1)/(2^kappa -1)) );
> tF:=Generator(F);
> assert Order(u) eq n;
> Gbin:=Matrix(F2, r*(#A), 2*n, [
> &cat[ [Trace(tF^i*u^(m*j)) ,Trace(gamma*tF^i*u^(m*j)) ]
> : j in [ 1 .. n ] ]
> : i in [ 0 .. r-1 ] , m in A ]);
> Cbin:=LinearCode(Gbin);
> dim:=Dimension(Cbin);
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> GM:=GeneratorMatrix(Cbin);
> G:=Matrix(F4,dim,n,[]);
> for i:=1 to dim do
for> for j:=1 to n do
for|for> G[i,j]:=GM[i,2*j-1]*w+GM[i,2*j]*w^2;
for|for> end for;
for> end for;
> C := SymplecticDual(AdditiveCode(G));
> IsSymplecticSelfOrthogonal(AdditiveCode(G));
true
> d:=MinimumWeight(C);
> printf "quantum parameters = %o\n",
printf> [[Length(C),2*Dimension(C)-Length(C),d]];
quantum parameters = [[ 73, 55, 5 ]]
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Appendix D

Magma code for Chapter 4

The following is the Magma code for Example 4.5.9.

> F4<z>:=GF(4);
> p<x>:=PolynomialRing(F4);
> n:=111;
> L:=Factorization(x^n-z);
> F<v>:=SplittingField(x^n-z);
> a:=PrimitiveElement(F);
> b:=(#F-1)/(3*n);
> Z:=Integers();
> an:=a^(Z! b);
> Omega:={(3*i+1) mod (3*n): i in [0..n-1]};
> conjclass:=function(pa)
function> return { ((an^pa))^(4^i) : i in [ 0 .. n-1 ] };
function> end function;
> R<XX>:=PolynomialRing(F,1);
> code:= function(class)
function> cs:=SetToSequence(class);
function> I:=&*[&*[XX-((SetToSequence(conjclass(cs[i]))[j])): j in
[1..#SetToSequence(conjclass(cs[i]))]] : i in [1..#class] ];
function> II:=p!I;
function> Code:=ConstaCyclicCode(n, II,z);
function> return(Code);
function> end function;
> Leaders:={19,37};
> C:=code(Leaders);
> K:=Dimension(C);
> [n,Dimension(C)];
> e:=n-K-Dimension(C meet LinearCode(SymplecticDual(C)));
> printf "e=%o\n",e;
e=3
> d:=Minimum({MinimumDistance(C+LinearCode(SymplecticDual(C)))+1,
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MinimumDistance(C)});
> printf "Quantum parameters are %o\n",[[n+e,2*K-n+e,d]];
Quantum parameters are [[ 114, 72, 9 ]]
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