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Abstract

This thesis is composed of three essays on environmental, labor, and development economics.

The first chapter investigates whether traffic congestion affects time allocation. I use highly granular
smartphone data from Mexico City to empirically study how traffic congestion affects work-time
allocation. I find that traffic increases hours worked. The effect is driven by workers leaving work
later, rather than by changes in arrival time. I show modest evidence that labor income does not
increase despite the increase in total hours worked. These results highlight an avoidance mechanism
(consistent with bottleneck models) that has been previously overlooked when estimating the costs
of congestion.

The second chapter is co-authored with Jerico Fiestas-Flores and Javier Montoya-Zumaeta. It
investigates how pandemics affect nature. We explore the effect of COVID-19 on deforestation in the
Amazon rainforest in Peru. Using an event study design and a difference-in-differences approach,
we find that COVID-19 increased deforestation by 35%. This increased CO2 emissions by more
than 17 million tons, representing a social cost equivalent to 3 times the national budget for forest
management. The main mechanisms behind these findings are the reduction in monitoring efforts
combined with an increase in illegal activities related to coca production and mining.

The third chapter studies whether raising temperatures due to climate change affects labor markets.
This paper studies the effect of temperature on hours worked using panel data for Peru from 2007-
2015. I combine hours worked from household surveys with reanalysis and satellite weather data. I
find evidence that hours worked are negatively affected by hot temperatures. This effect is driven
by informal jobs instead of jobs in industries highly exposed to the weather. These results suggest
that labor market segmentation may play a role in the impacts of climate change on labor market
outcomes in developing countries.

Keywords: traffic congestion; labor supply; temperature; deforestation; big data; remote sensing
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Chapter 1

Traffic Congestion and Labor Supply:
Evidence from Smartphone data

1.1 Introduction

Traffic congestion has become one of the “plagues of modern life” in most cities worldwide, depleting
the benefits that cities offer (Arnott and Small, 1994). Congestion contributes to air pollution,
increases crime, and wastes valuable leisure time spent seated in traffic. However, traffic congestion
may also distort work-time allocation decisions, which would have important welfare implications
if (for example) changes in hours worked are not compensated by changes in income. Likewise,
this may lead to reconsidering the way we measure congestion externalities, a crucial factor in the
calculus of congestion pricing and assessing the benefits of different urban transit policies.

This paper examines the effect of traffic congestion on work-time allocation. Because the rela-
tionship between these two variables is theoretically ambiguous, researchers have sought empirical
methods to identify the causal effects. However, the lack of data directly measuring work time and
traffic has prevented researchers from doing so up to this point, despite the high degree of policy
relevance. The current debates over automobile use in the developed world (e.g., investment in
electric vehicles or autonomous vehicles) and trends in developing countries (e.g., rapid growth in
urban population and private vehicle ownership) indicate that congestion will likely increase over
time.

The main contribution of the paper is to identify and quantify an unintended externality of
traffic congestion previously overlooked when estimating the costs of congestion. Existing estimates
of welfare loss from traffic congestion only consider the time lost on congested roads (Akbar et al.,
2020, Kim, 2019). However, this may underestimate the real costs of congestion in two ways: (i)
by missing the costly avoidance behavior of staying at work longer without receiving additional
compensation, and (ii) as these measures of time lost include commuting times already reduced by
the avoidance behavior.
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To answer this question, I use data for one of the most congested cities in the world, Mexico
City (Akbar et al., 2020, INRIX, 2019). I build a unique longitudinal dataset with individual daily
hours spent at work and daily exposure to district-level traffic congestion for 2019. The smartphone
data allows me to track the daily work-time allocation of individuals and to identify where indi-
viduals work (once combined with geocoded establishment-level data). I exploit the richness of the
smartphone data to recover each individual’s arrival and departure time for work. Traffic conges-
tion is measured using GPS sensors installed in vehicles circulating around the city, and proxied by
the inverse of the average speed. My identification strategy exploits within-district daily variation
in traffic congestion. I complement this approach using road accidents as an exogenous shifter of
traffic congestion.

I find that traffic congestion increases the time workers spend at work. The magnitude is eco-
nomically relevant. In a single day, doubled traffic congestion lengthens the workday by one hour.
This effect is driven by congestion during the afternoon rush hour. I also find that workers adapt
to traffic congestion in the sense that individuals working in more congested areas are less affected
than individuals working in less congested areas.

The positive effect of traffic congestion on hours at work is robust. Replacing hours at work
using smartphone data with self-reported hours worked from household surveys does not affect the
results. This finding is also robust to using road accidents as a measure of exogenous variation in
traffic congestion.

I find that individuals stay longer at work primarily because they delay their departure time.
These results are consistent with the bottleneck model where one may choose when to start their
commute in response to congestion. These results may also suggest the presence of labor market
frictions that prevent workers from arriving late to work or departing earlier. Hence, a potential
mechanism for this effect is that workers respond to traffic congestion by departing later from work,
despite starting at the same time or earlier.

Even though workers stay longer at work, labor income does not seem to increase. I find sugges-
tive evidence that workers are not paid more. One potential explanation may be that workers stay
longer one day at work in response to congestion, but they compensate by leaving earlier another
day, therefore creating minimal change to the total hours of work over a given week or month. How-
ever, I do not find evidence of that compensating behavior in the short run. Alternatively, workers
may be rewarded in the future for their longer hours today. However, this cannot be explored in
this study due to data limitations.

This study contributes to a broader literature analyzing the effects of commuting costs on labor
supply. In these studies, commuting costs are usually measured by changes in distance (Fu and
Viard, 2019, Gutiérrez-i-Puigarnau and van Ommeren, 2010) or changes in commuting time (Black
et al., 2014, Gutiérrez-i-Puigarnau and van Ommeren, 2015). However, we cannot attribute results
from those studies to changes in traffic congestion. This study also contributes to the literature on
environmental outcomes and labor supply. Previous literature indirectly addresses the relationship
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between traffic congestion and work-time allocation, investigating how driving restriction policies
affect leisure time (Viard and Fu, 2015). One contribution of the present study is to add traffic
congestion as a new variable of interest. Second, this paper uses novel “big data” from smartphones
to track individuals’ daily time allocation, particularly, the number of hours at work, and work
arrival and departure times. With these new sources of data, I can directly study the relationship
between traffic congestion and work-time allocation. Finally, this study is related to the literature
about the value of time (Becker, 1965, Bento et al., 2020, Wolff, 2014).

The remainder of the paper is organized as follows. Section 1.2 describes the conceptual frame-
work. Section 1.3 describes the data used to measure hours spent at work and traffic congestion.
Section 1.4 discusses the empirical approach and identification concerns. Section 1.5 describes the
results. Section 1.6 presents the discussion. Finally, section 1.7 concludes.

1.2 Conceptual Framework

There are two main models to understand the relationship between traffic congestion and labor
supply: (i) the bottleneck model, and (ii) the standard neoclassical model of labor-leisure choice
with commuting costs.

The bottleneck model (Arnott et al., 1990, 1993, Noland and Small, 1995, Small, 1982, Vickrey,
1969) allows individuals to choose when to start their commute to respond to congestion. Hence,
individuals may choose to leave earlier from home to avoid the morning rush hour or delay their
departure time from work to avoid the afternoon rush hour. Consequently, congestion may change
the number of hours allocated to work. However, this model has not been yet used to study the
effect of congestion on labor supply. It is focused mainly on the morning commute and on the
“schedule delay” which is the difference between arrival time to work and some ideal time that
usually coincides with the time work starts (e.g. 9 am). The model uses the schedule delay to
measure the social welfare loss due to congestion (Kim, 2019).

On the other hand, traffic congestion can be seen as a shifter of commuting costs. Black et al.
(2014) introduce commuting time costs in the labor supply model. In this model, traffic congestion
increases commuting time costs, and this increases the value of leisure relative to the value of
working. This effect may push some individuals to work fewer hours or to exit the labor force.
However, in a two-person household, if the labor supply of one of the members is negatively affected
by the increase in commuting costs, the household will face a negative income shock. Then the
other member increases the time allocated given that leisure is assumed to be a normal good. The
effect on the overall labor supply is ambiguous, but the negative effect on labor force participation
is unambiguous. In a similar fashion, Gutiérrez-i-Puigarnau and van Ommeren (2010) develop a
labor supply model with both time and monetary commuting costs. These are variable costs when
choosing workdays, but fixed costs when deciding the number of work hours within a day. Given an
increase in commuting costs, workers may respond by working fewer days to avoid extra commuting
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costs but may increase the number of hours worked per day to mitigate a reduction in income. It
is again ambiguous which of these effects dominates.

1.3 Data

This paper aims to estimate the effect of traffic congestion on work-time allocation. This requires
longitudinal information that links individual hours worked with traffic congestion on a daily basis.
Ideally, traffic congestion should be measured on the individual’s commuting route considering their
preferred mode of transport. Data with such granularity is not available yet. I, therefore, construct
a novel longitudinal dataset combining smartphone data that allows me to track the time allocation
of individuals with daily traffic congestion that comes from GPS sensors installed in vehicles. The
unit of observation is the owner of the smartphone device. I restrict the sample to manufacturing
and office workers to reduce measurement error in the outcome variable. In several economic sectors
such as retail and services (e.g., leisure, health, and education), I am unable to distinguish between
workers and clients, whose labor choices and outside options differ considerably. My final dataset
consists of an unbalanced panel of 6,709 observations, representing 1,262 devices for all sixteen
districts in Mexico City (CDMX) in 2019.

Tables 1.1 shows the description of the main variables. I approximate hours worked with the
number of hours spent at work when using the smartphone data. Table 1.2 shows summary statis-
tics. The number of hours spent at work using the smartphone data is higher than self-reported
hours worked using household surveys, on average. The average worker arrives to work around 9 am
and departs from work at approximately 7 pm. This pattern occurs either in high- or low-congested
districts.

Table 1.1: Variable description and data source

Variable Description Data Source
Hours worked Number of hours spent at workplace Quadrant
Hours worked Number of self-reported hours worked ENOE (INEGI)
Arrival time Device’s first time at work (in 24h format) Quadrant
Departure time Device’s last time at work (in 24h format) Quadrant
Traffic congestion Inverse of average speed (h/km) Dat’s why
Accidents Number of confirmed road incidents by CDMX 911 Gobierno CDMX
Temperature Average temperature (in Celsius) CONAGUA
Precipitation Rain (in mm) CONAGUA
Humidity Relative humidity (in %) CONAGUA
Daylight hours Difference between sunshine and sunset times. CONAGUA

Notes: This table presents the description of the main variables and their corresponding source. All variables
are available from January-December 2019.
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Table 1.2: Summary statistics

All High-congestion Low-congestion
districts districts

(1) (2) (3)
Panel A. Labor outcomes
Hours worked (daily, mobile data) 10.47 10.45 10.50
Hour worked (daily, survey data) 8.36 8.36 8.37
Arrival time 8.84 8.89 8.79
Departure time 19.32 19.34 19.29

Panel B. Traffic congestion
Inverse of avg. speed (h/km) .042 .044 .039

Panel C. Weather
Temperature (C) 19.96 19.97 19.94
Humidity (%) 63.02 63.06 62.98
Rain (mm) 0.02 0.02 0.02
Daylight (hours) 12.07 12.05 12.10

No. of Smartphones 1,262 671 591
No. of Observations 6,709 3,723 2,986

Notes: This table presents mean values for the main variables. Arrival and departure
time are in 24 hours format.

Smartphone data. This data is provided by Quadrant, a private organization specializing in
high-quality mobile location-based data. The raw data consists of pings (i.e. the time and location
of a given smartphone) collected from applications installed in deidentified smartphones. A ping is
recorded every time the location of the smartphone is requested by the applications installed on the
device. This data provides representative information on the population in Mexico City. Figure A.1
shows that the total population at the district level according to the Census 2020 is correlated with
the total number of smartphone devices with an R2 of 0.62.

I use this data to build a panel of individuals and identify where they work and live, and the
number of hours they stay at work. I follow individuals for several days within a week, during all
weeks in 2019 except for the first and the last weeks of the year given that patterns in working
hours and congestion may be particularly unusual in these two weeks. I combine this data with
geocoded establishment-level information to identify workplaces, and with residential areas from
census data to identify homes. See the data appendix for details about the algorithm used for this
purpose. The richness of this data allows me to know both the time individuals arrive and depart
from work. Using this information, I estimate the number of hours individuals stay at work which
I use as a proxy of hours worked.

This dataset has three main limitations: (i) It becomes sparse very quickly. The raw semi-
unstructured data contains billions of pings per month. However, most of the devices are observed
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one single day making it difficult to follow them across days. For instance, imposing the structure
described in the data appendix to identify workplaces reduces drastically the number of observa-
tions. Hence, there is a trade-off between the number of observations and the reliability of the
statistics. (ii) This data does not provide information regarding the demographics of the owners of
the devices such as gender, age, etc. Socio-economic characteristics can be inferred from the neigh-
borhood of residence or points of interest (POI) visited regularly. (iii) This data does not provide
work and home locations, which then need to be inferred using supplemental data.

Figure 1.1: Distribution of traffic congestion

Notes: The figure depicts the distribution of traffic congestion per hour using data
from Dat’s Why for Mexico City in 2019. Morning (6 am-10 am) and afternoon (5
pm-8 pm) rush hours are highlighted in yellow.

Traffic congestion data. This data is provided by Dat’s Why, a private company with the
largest real-time Big Data network of smartphones, vehicles, and sensors in Mexico to monitor
traffic congestion. The raw data consists of hourly average speed measures at the street segment
level in Mexico City for every day of 2019. I use this data to build a district-level panel of daily
average speed.

I use the inverse of average speed as a proxy of traffic congestion as in Hanna et al. (2017). In
addition to the daily average traffic congestion, I use this data to calculate the traffic congestion
during the morning (6 am-10 am) and afternoon (5 pm-8 pm) rush hours for Mexico City. Figure 1.1
shows the distribution of congestion per hour using data from Dat’s Why.
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This data is representative of the traffic congestion in Mexico City. Figure A.3 shows the distri-
bution of congestion per hour using aggregated data from Waze reported in Calatayud et al. (2021)
and provided by the corresponding authors. We can observe that both distributions in Figure 1.1
and Figure A.3 show a similar pattern of traffic congestion in the city. Both distributions capture
the morning and afternoon rush hours for similar hours during the day. The correlation between
them is 0.93.

Supplemental data. I complement the smartphone and traffic congestion data with information
for the year 2019 about establishments, residential venues, self-reported income and hours worked,
weather, daylight hours, and road accidents. I use the National Statistical Directory of Economic
Units (DENUE) to obtain the latitude and longitude coordinates for the location of the establish-
ments, the size of the firm, and the economic sector. See the distribution of establishments with
50 workers or more in Figure A.5 in the appendix. I use information from the 2020 Census and
the National Geostatistical Framework (MGN) to identify residential venues in the city. To address
identification concerns regarding omitted variables related to weather I use information about tem-
perature, precipitation, and relative humidity from monitoring stations. Likewise, I include daylight
hours calculated by taking the difference between sunset and sunrise times. I use self-reported hours
worked from household surveys (ENOE) as an alternative outcome variable to the hours worked
built using the smartphone data. Finally, I use road accidents from administrative records as an
exogenous source of variation in traffic congestion to address different identification concerns. The
information on accidents is used to build a district-level panel of daily accidents, and accidents
that occur close to the border of different districts do not receive a particular treatment. See the
appendix for more details about these data sources, and about Dat’s Why and Quadrant.

Location This study uses information from Mexico City (CDMX) in 2019. Mexico City is one of
the most congested cities in the world. It is more congested than cities such as Mumbai and Delhi in
India, and New York in the US (Akbar et al., 2020). For instance, it was the third most congested
city in the world in 2019 (INRIX, 2019). Also in 2019, residents lost more than 600 million hours
due to congestion representing a cost of more than twice the budget assigned for education in the
city (Calatayud et al., 2021). Figure 1.2 displays a map of Mexico City with the average congestion
per district.

Mexico City is an ideal setting to study the impacts of traffic congestion on our well-being. It is
ideal not only because it is one of the most congested cities in the world (Akbar et al., 2020, INRIX,
2019). Studying the context of a city in a developing country is relevant given current trends in
urban population and motorization rates (Akbar et al., 2020, Calatayud et al., 2021, Kreindler,
2022). First, the urban population is growing rapidly. By 2050, approximately 2.5 billion people
will migrate to cities in developing countries. This may pressure cities in the developing world
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Figure 1.2: Spatial distribution of congestion in Mexico City

Notes: Figure depicts a map of Mexico City with the average annual traffic congestion
per district in 2019. The darker the more congested is the district.

where the transportation infrastructure is already outdated to the current population size. Second,
private vehicle ownership is also growing rapidly. This is because of increasing motorization rates
due to economic growth.

1.4 Empirical Approach

To study the effect of traffic congestion on work-time allocation, ideally, we would like to observe
how many hours a person works where there is and there is no traffic congestion on a given day.
However, we cannot observe the counterfactual for each person. We can only observe the hours
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worked either when there is or there is no traffic congestion, but not the hours worked under both
scenarios. Alternatively, we can design a randomized controlled trial where, ceteris paribus, we
randomly assign traffic congestion to a group of workers (treated group) and no traffic congestion
to another group of workers (control group) on a given day. We can then compare the average hours
worked between groups to find the average treatment effect. However, traffic congestion cannot be
randomly assigned.

Baseline regression To explore the effect of traffic congestion on work-time allocation, I estimate
the following regression model:

yijt = δt + Wjt + β × ln(Traffic Congestion)jt + ϵijt, (1.1)

where the unit of observation is individual i working in district j in day t. yijt represents the
labor outcome variables such as hours worked, and arrival and departure times from work. Traffic
congestion is proxied by the inverse of the average speed as in Hanna et al. (2017). Wjt is a set of
weather variables that include temperature, precipitation, humidity, and daylight hours. δt includes
day of the week and month fixed effects. Once we divide it by 100, β can be interpreted as the unit
change in the outcome variable when traffic congestion increases by 1%. I estimate the model using
OLS and clustering standard errors at the week-district level. Identification comes from assuming
that within-district daily variation in traffic congestion is exogenous conditional on weather and
fixed effects or from quasi-random (temporal) variation in (demean) traffic congestion across days.

Identification concerns I include weather controls and time fixed effects in the baseline panel
regression to reduce concerns regarding omitted variables bias. Traffic Congestion is not randomly
assigned and confounders elements in ϵijt may be correlated with both traffic congestion and our
outcome yijt. For example, rainy days may be positively correlated with both congestion and
hours worked, or darkness of the day may be positively correlated with congestion, and negatively
correlated with hours worked. Alternatively, a higher temperature may be negatively correlated
with congestion and hours worked. Hence, I control for temperature, precipitation, humidity, and
daylight hours in Wjt. Likewise, Fridays may be positively correlated with congestion, but negatively
correlated with hours worked, or a particular month may experience a decline in business activity
that both affect congestion and work-time allocation. Thus, I control for day of the week and month
fixed effects. I also address individual time-invariant unobservables by individual fixed effects as
part of the robustness checks.

It is likely that my measures of hours worked and traffic congestion contain measurement error.
As described in the data section, my measure of traffic congestion seems to represent the patterns
regularly observed on the streets of Mexico City. Regarding hours worked, I use self-reported hours
worked from household surveys (ENOE) as an alternative outcome variable.
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Reverse causality is unlikely in a context where I only follow individuals during a week and esti-
mate short-run effects. Changes in traffic congestion patterns may affect the spatial distribution of
economic activities. In response to these changes, residents may re-optimize their decision of where
to live, work or consume (i.e. sorting). However, changes in the spatial distribution of economic
activities may affect patterns in traffic congestion (?). This can be a problem for the long-run effects
of congestion on work-time allocation, but not for the short run. Given the focus on the short run,
all the analysis is conditional on sorting (i.e. sorting already took place). It is unlikely that we see
people shifting residential areas or workplaces across days during the short period of analysis.

Instrumental variable I complement the baseline identification strategy with an instrumental
variable approach to address concerns regarding additional potential omitted variables, measure-
ment error in traffic congestion, and reverse causality that may persist. For example, there may be
time-variant unobservables that are correlated with congestion and that also affect hours worked.
Hence, I complement the identification strategy in the baseline regression with an instrumental
variable design. I use road accidents as my instrumental variable as in Beland and Brent (2018).
This instrument is relevant and as good as random. Regarding the exclusion restriction, it is likely
that accidents are only affecting hours worked via changes in traffic congestion. In this context,
accidents introduce exogenous variation in traffic congestion to lessen concerns regarding omitted
variable bias, measurement error, and reverse causality.

1.5 Results

1.5.1 Main results

Table 1.3 presents the main results. Column (1) shows the results for the baseline model in equa-
tion 1.1 estimated using OLS. The outcome variable is hours worked, approximated by the daily
number of hours spent at work constructed using smartphone data. Traffic congestion is measured
as the inverse of the daily average speed in the district where individuals work. Column (1) indi-
cates that a ten percent increase in traffic congestion increases time at work by 0.13 hours. The
estimated coefficient is statistically significant at the five percent level. Identification in equation 1.1
may be affected by individual time-invariant unobservables. For this reason, I present a specification
demonstrating robustness to including individual fixed effects (column (2)). The estimated coeffi-
cient is similar in magnitude and statistically significant at the five percent level. The estimates
in columns (1) and (2) are similarly positive, but the larger coefficient in column (2) indicates
that omitting individual fixed effects generates a negative bias on the estimated coefficient. Note,
however, that by including individual fixed effects, the estimates in column (2) exploit the variation
of an unbalanced panel where the number of observations per device is skewed to the left.

Column (3) shows results using a 2SLS approach where road accidents act as an instrumental
variable for traffic congestion. These results reduce concerns regarding omitted variable bias, mea-
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Table 1.3: The effect of traffic congestion on hours worked

Dependent variable: Hours worked
(1) (2) (3)

Traffic Congestion (log) 1.277** 1.744** 1.769**
(0.518) (0.778) (0.894)

Method OLS OLS 2SLS
Individual FE No Yes No

Observations 6,333 6,271 6,307
R-squared 0.087 0.763 0.004

Notes: Standard errors clustered at the week-district level in paren-
theses. Statistical significance at the one, five, and ten percent levels
is indicated by ***, **, and *, respectively. Traffic congestion is mea-
sured as the inverse of the daily average speed at the district level.
All regressions use smartphone data and include control variables for
weather (average daily temperature, precipitation, and humidity) and
number of daylight hours, and day-of-week and month fixed-effects.
The sample considers manufacturing and office workers only. In col-
umn (3), the Kleibergen-Paap rk Wald F-statistic is 157.96, and the
first-stage coefficient is 0.01 and statistically significant at the one
percent level.

surement error in traffic congestion, and reverse causality. The instrumental variable satisfies the
relevance condition. The first-stage estimated coefficient is 0.01 and is statistically significant at the
one percent level. The exclusion restriction is also plausible, as it is unlikely that individuals change
the number of hours worked in response to road accidents for reasons other than to avoid related
traffic congestion. Column (3) indicates that a ten percent increase in traffic congestion increases
time at work by 0.18 hours. The estimated coefficient is statistically significant at the five percent
level. This is higher than the estimated coefficient in column (1), most likely because the instru-
mental variable is correcting for measurement error. I obtain a qualitatively similar result when
including individual fixed effects. While the sign and magnitude of the coefficient stay the same,
the estimates with individual fixed effects do lose a lot of precision (see column (2) in Table A.1).

Previous studies have not always found a positive effect of commuting costs on labor supply.
Commuting costs are usually measured by changes in distance or changes in commuting time.
One study found that increasing commuting distance (Fu and Viard, 2019) reduced labor supply
in China, while another found a negative effect of commuting time (Black et al., 2014) on female
labor force participation in the US. Data from Germany and the UK has been used to show that in-
creasing commuting distance (Gutiérrez-i-Puigarnau and van Ommeren, 2010) or commuting time
(Gutiérrez-i-Puigarnau and van Ommeren, 2015) increases the number of hours worked. Another
study indirectly addresses the relationship between traffic congestion and labor supply by investi-
gating how changes in driving restriction policies affect hours of leisure time (Viard and Fu, 2015).
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Those authors find a positive effect of driving restrictions on leisure time for individuals who are
self-employed and a negative effect for workers making hourly wages.

The magnitudes of the estimated coefficients in Table 1.3 are not small. Gutiérrez-i-Puigarnau
and van Ommeren (2010) find that doubling commuting distance increases labor supply by ap-
proximately 15 minutes per week, which is equivalent to 13 hours per year. However, I find that
doubling traffic congestion increases hours worked by one hour per day, which is equivalent to five
hours per week or 260 hours per year. Further, we cannot attribute results from those previous
studies to changes in congestion (since changes in commuting time can be a result of a less direct
route or changes in the commuting distance without changes in traffic congestion), whereas I am
able to do so in this paper.

Table 1.4: Robustness checks

Dependent variable: Hours worked
(1) (2) (3)

Traffic Congestion (log) 1.375*** 0.120** 1.238***
(0.487) (0.049) (0.425)

Change in specification Week FE Outcome in log All sectors

Observations 6,333 6,333 15,870
R-squared 0.110 0.076 0.082

Notes: Standard errors clustered at week-district level in parentheses. Sta-
tistical significance at the one, five and ten percent levels is indicated by ***,
** and *, respectively. All regressions use the baseline model and smartphone
data.

Robustness checks Table 1.4 displays a robustness analysis of the main results to alternative
specifications. Column (1) replaces month fixed effects with week fixed effects in the baseline spec-
ification. Controlling for seasonality at a finer level in this way yields similar results. Column (2)
replaces the outcome variable (hours worked) in levels from equation 1.1 with a log transformation,
meaning that the coefficient in column (2) represents an elasticity. A one percent increase in con-
gestion increases hours worked by 0.12 percent. If congestion doubles in a day, then hours worked
increase by 12 percent. This is equivalent to a one-hour increase, considering that the average in-
dividual works around ten hours (as reported in table 1.2). Column (3) considers all sectors in the
economy as opposed to only manufacturing and office workers. I restrict the sample to manufactur-
ing and office workers in the baseline model to reduce measurement error in the outcome variable.
In several economic sectors such as retail and services (e.g., leisure, health, and education), I am
unable to distinguish between workers and clients, whose labor choices and outside options differ
considerably. However, column (3) shows that results are robust including all economic sectors.
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Additional robustness analyses are reported in appendix table A.1.

1.5.2 Using labor household surveys

This section presents results using self-reported hours worked from household labor surveys (ENOE)
as the outcome variable of interest. ENOE is the main labor market household survey in Mexico
and provides both monthly and quarterly data. The National Statistics Office (INEGI) collects
information on individuals aged 15 and above on a continuous basis throughout the year. ENOE
has a rotating panel design where one household can be followed for five consecutive quarters. The
quarterly sample size is around 126,000 housing units. ENOE is representative of the country and
cities such as Mexico City.

Figure 1.3: Distribution of daily hours worked: ENOE vs. Smartphone data

Notes: The figure depicts self-reported daily hours worked from the labor household survey
ENOE (in yellow) and daily hours spent at the workplace from the smartphone data (dashed
line). Data are limited to individuals working in manufacturing or as office workers in firms
with more than 50 employees. The first week of January and the last week of December are
excluded, as well as all Saturdays and Sundays.

Figure 1.3 compares the distribution of hours worked between the official household labor survey
(ENOE) and the smartphone data. The sample consists of manufacturing or office workers in firms
with more than 50 employees. Data from the first week of January and the last week of December
are excluded, as well as for Saturdays and Sundays. Both distributions visually represent the same
overarching patterns of work time. However, using a Kolmogorov-Smirnov test I am able to reject
the null of equality of distributions. Hours worked from ENOE are relatively highly concentrated
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around 8 hours compared to the distribution from the smartphone data. ENOE also reports zero
hours worked, which contrasts with the smartphone data where all individuals work a positive
number of hours by design. These differences may suggest the presence of measurement error in
hours worked from the smartphone data. Hence, I present the results using self-reported hours
worked from ENOE as a robustness test.

Table 1.5 shows that results are similar after replacing the smartphone data with self-reported
hours worked from household labor surveys (ENOE). Column (1) contains the baseline results from
table 1.3. Column (2) shows estimated coefficients using daily hours worked reported in ENOE as
the dependent variable of interest. In column (1), traffic congestion is measured in the district where
the individual works. In column (2), it is measured instead at the district where they live. This is
relevant since 41.6% of individuals in Mexico City work in a district other than where they reside
according to the 2015 intercensal survey. The estimated coefficients in both columns are similar in
terms of magnitude and statistical significance, allaying concerns over measurement error in hours
worked using the smartphone data.

Table 1.5: The effect of traffic congestion on hours worked
using smartphone and labor survey data

Dependent variable: Hours worked
(1) (2)

Traffic Congestion (log) 1.277** 1.018***
(0.518) (0.386)

Method OLS OLS
Individual FE No No
Labor data source Phone data ENOE survey
Congestion measured in: Workplace Residence

Observations 6,333 7,219
R-squared 0.087 0.014

Notes: Standard errors clustered at week-district level in parentheses.
Statistical significance at the one, five, and ten percent levels is indi-
cated by ***, ** and *, respectively. All regressions use the baseline
model.

1.5.3 Rush hour and bottleneck model

In this section, I explore whether the main results are consistent with the bottleneck model. In
this model, the departure time decision is endogenous. Individuals may choose when to start their
commute in response to congestion, e.g., they may choose to leave earlier from home or delay their
departure time from work to avoid the morning and afternoon rush hours, respectively. To conduct
this exploration, I estimate the baseline model breaking traffic congestion into congestion in the
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morning and afternoon rush hours. I define the morning rush hour as from 6 am to 10 am, and the
afternoon rush hour as from 5 pm to 8 pm.

Table 1.6 shows that the positive effect of traffic congestion on hours worked is driven by traffic
congestion during the afternoon rush hour. In column (1), the outcome variable is daily number
of hours spent at work (constructed using the smartphone data). There is a positive and statisti-
cally significant effect of traffic congestion during the afternoon rush hour on hours worked, but a
negative and statistically insignificant coefficient for traffic congestion during the morning rush hour.

Table 1.6: The effect of rush hour traffic congestion on hours worked,
arrival time to work, and departure time from work

Dependent variable:
Hours worked Arrival time Departure time

(1) (2) (3)
Traffic congestion (log)

AM rush hour -0.274 -0.189 -0.462
(6-10am) (0.572) (0.297) (0.380)

PM rush hour 1.564*** -0.407 1.157***
(5-8pm) (0.536) (0.254) (0.378)

Observations 6,243 6,243 6,243
R-squared 0.089 0.101 0.041

Notes: Standard errors clustered at week-district level in parentheses. Statistical
significance at the one, five, and ten percent levels is indicated by ***, **, and *,
respectively. All regressions use the baseline model and smartphone data.

Columns (2) and (3) in table 1.6 show that individuals are spending more time at work due to
delayed departure times. Results suggest that traffic congestion has a negative effect on the time
workers arrive to work. However, the estimated coefficients are not statistically significant. Instead,
traffic congestion, particularly during the afternoon rush hour, delays the time that individuals
depart from their jobs. The estimated coefficient is statistically significant at the 1 percent level.

These results are consistent with the bottleneck model. I find evidence that workers are spending
more time at work because they are delaying departure to avoid the afternoon rush hour. These
results may also suggest the presence of labor market frictions that prevent workers from arriving
late to work or departing earlier. Hence, the mitigation strategies available to them result in longer
hours.

1.5.4 Mitigation and adaptation

Table 1.7 shows evidence that workers do not mitigate the effect of traffic congestion via intertem-
poral labor substitution. One way to investigate this is to regress weekly hours worked (using the
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smartphone data) on weekly traffic congestion. Column (1) shows the estimated OLS coefficient
exploiting cross-sectional variation across weeks and districts. Evidence of intertemporal labor sub-
stitution would be supported by an estimated coefficient close to zero, reflecting the idea that
workers compensate for extra time at work one day by working less on another day. However, I
do not find evidence supporting such compensatory behavior. I find a positive and statistically
significant effect of weekly traffic congestion on weekly hours worked. The size of the coefficients
suggests a cumulative effect of the single-day effect across business days. This result also goes in
line with the presence of labor rigidities. In a context where there are frictions preventing workers
from leaving earlier, it is unlikely that we can observe intertemporal substitution of time allocated
to work.

Table 1.7: Mitigation and adaptation to traffic congestion

Hours worked (daily)
Hours worked High-congestion Low-congestion

(weekly) districts districts
(1) (2) (3)

Traffic congestion (weekly, log) 6.446***
(1.778)

Traffic congestion (daily, log) -0.525 2.804***
(1.382) (0.650)

Observations 2,671 3,508 2,825
R-squared 0.074 0.058 0.150

Notes: Standard errors clustered at week-district level in parentheses. Statistical significance at the
one, five, and ten percent levels is indicated by ***, **, and *, respectively. All regressions use
the baseline model and smartphone data. High-congested districts have traffic congestion above the
median for all of Mexico City.

Table 1.7 also shows that workers adapt to traffic congestion. Columns (2) and (3) present
estimates for the baseline model where I separate districts by the intensity of traffic congestion.
In column (2), I consider only the sub-sample of individuals working in high-congestion districts.
In column (3), I include only individuals working in low-congestion districts. I define a district as
highly congested if its congestion is above the median traffic congestion for the entirety of Mexico
City. Results indicate that traffic congestion has no effect on hours worked for individuals work-
ing in high-congestion areas. On the other hand, traffic congestion has a positive and statistically
significant effect on hours worked for individuals working in low-congestion areas. I interpret these
results as evidence of adaptation. Individuals working in high-congestion areas are less sensitive to
shocks in traffic congestion. Instead, individuals working in low-congestion areas are more affected
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by shocks in traffic congestion in terms of increased work time.

1.5.5 Labor income

If individuals are staying longer hours at work, are they getting paid more as well? Table A.4 reports
the effect of traffic congestion on labor income. The outcome variable, monthly self-reported labor
income, is measured in logs and it comes from ENOE household surveys. Traffic congestion is
aggregated at the monthly level and is also measured in logs. Estimated coefficients are therefore
elasticities. The number of observations decreases due to the monthly aggregation, as well as because
a large proportion of respondents do not provide income information in the survey. Column (1)
shows OLS estimates pooling all individuals and including month fixed effects. Column (2) exploits
the fact that some individuals were interviewed in multiple months by adding individual fixed
effects. Column (3) presents results using 2SLS instrumenting for traffic congestion with monthly
road accidents.

I do not find evidence of increased income as a result of increased hours at work. The results
from table A.4 suggest that traffic congestion is not increasing labor income. Hence, individuals are
staying longer at work without earning more income. Note that one potential explanation is that
workers are rewarded in the future. However, this cannot be explored in this study due to data
limitations.

1.6 Discussion

Road accidents Figure A.7 in the appendix suggests that workers react to shifters of congestion,
namely road accidents, that happen before the afternoon rush hour. It displays the coefficient
estimates and 90% confidence intervals of reduced form regressions. Estimated coefficients are
reported in Table A.3. Panel (a) in Figure A.7 shows the results of regressing the number of accidents
on the number of hours spent at work. I split the number of accidents into three categories: (i)
before the morning rush hour, (ii) during the morning rush hour and before the afternoon rush hour,
and (iii) during and after the afternoon rush hour. Panel (b) shows similar results using departure
time as the outcome variable instead. We can observe that the estimated coefficient associated with
the number of accidents between 6 am and 5 pm is not statistically significant. This suggests that
workers react to accidents that happen before the afternoon rush hour. However, the magnitude of
all coefficients is similar. Nonetheless, another piece of evidence suggests that workers can react to
accidents during the day. In 2019, the navigation company Waze was already operating in the city
and had two million active users monthly.

Labor supply To what extent the time spent at work measured with smartphone data is cap-
turing labor supply? Time at work does not always equal work time. For example, individuals may
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stay one hour longer at work, but they may be partially working that hour or not working at all.
Moreover, individuals may leave work and continue working at home. Hence, in principle, it seems
that “hours spent at the workplace” is far from capturing labor supply. Moreover, we observe only
an equilibrium outcome of the supply and demand in the labor market.

Table 1.5 suggests the “hours spent at the workplace” are not far from capturing hours worked.
Columns (1) and (2) present the main results using smartphone data and ENOE household surveys.
We can observe that both estimated coefficients are similar in magnitude, and the coefficient using
ENOE is slightly lower. We can take this as evidence that hours stay at work slightly overestimates
hours worked. Workers may be staying extra time at work, and part of that time is allocated to
work. Figure A.6 may also indicate that hours spent at work are related to hours worked. If output
per labor hour is increasing with congestion, and hours worked are increasing with congestion, this
means that output should also be increasing in congestion. If people were only shirking at work,
then we would not observe an increase in output. If the extra hours at work were artificial, then
we should not see an increase in productivity.

In our short-run setting, it is unlikely that labor demand factors play a role. Therefore, we could
use changes in hours worked to approximate shifts in labor supply. However, differences between
the number of hours spent at work and hours worked reported above suggest being cautious and
interpreting the results as changes in work-time allocation instead of labor supply.

Labor productivity If individuals are staying longer hours at work, are they producing more
output per labor hour? Figure A.6 presents suggestive evidence that this may be the case. It displays
the correlation between monthly traffic congestion and monthly labor productivity. Labor produc-
tivity is calculated as total output value divided by total hours worked using information from
manufacturing firm surveys (EMIM) in 2019. However, this evidence should be taken with caution
given that we cannot find a causal relationship between traffic congestion and labor productivity
from Figure A.6. Moreover, this relationship may seem counterintuitive as one may expect that if
traffic is inducing individuals to work more hours, workers are not as productive during these extra
hours as they were during earlier hours. Hence, the positive correlation may be explained by other
factors such as seasonality. Labor productivity and traffic congestion may be higher in particular
months of the year (e.g. December). EMIM collects more granular firm-level data. Unfortunately,
only aggregate numbers used in Figure A.6 are publicly available. This exercise can be replicated
in the future when access to the fully EMIM microdata is provided.

Welfare and Inequality I find evidence that workers are staying more hours at work due to
congestion. However, suggestive evidence implies that workers are not earning more for this extra
hour. Regardless of whether individuals are conducting actual work or shirking during that extra
hour, there is evidence that this time is not being remunerated. This extra hour represents 10
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percent of the average shift reported in Table 1.2. Hence, traffic congestion may be reducing the
welfare that individuals obtain from participating in the labor market by 10 percent. However, we
first need to test whether this extra hour at work is not rewarded in the medium or long term. On
the other hand, traffic congestion may be a shifter of inequality. Workers are staying more time at
work without being compensated for it, but firms are enjoying more labor productivity.

1.7 Conclusion

Traffic congestion is a major and yet unsolved concern in most cities in the world. This paper stud-
ies the effect of traffic congestion on work-time allocation, a previously unquantified externality. I
exploit highly granular smartphone data to measure daily work-time allocation, including arrival
and departure times from work. I combine these data with daily exposure to traffic congestion mea-
sured using GPS sensors installed in circulating vehicles in Mexico City in 2019. My identification
strategy exploits within-district daily variation in traffic congestion. I complement this approach
using road accidents as an exogenous shifter of traffic congestion.

The results suggest that traffic congestion increases time allocated to work. Facing twice as much
traffic congestion leads to an additional hour spent at work. This finding is robust to using self-
reported hours worked from household surveys, as well as to using road accidents as an instrumental
variable for congestion. I find that workers stay longer largely because they delay their departure
time from work to avoid traffic congestion during the afternoon rush hour. Moreover, workers
seem to respond to congestion shifters (i.e, accidents) that occur before the afternoon rush hour.
I do not find evidence that workers mitigate the effect of traffic congestion through intertemporal
labor substitution; for example, a worker who stays longer today does not compensate by leaving
work early tomorrow. I do find evidence of adaptation in the sense that individuals working in
high-congestion areas are less affected than individuals working in low-congestion areas. I also find
suggestive evidence that workers are not earning more even though they are staying longer hours at
work, but labor productivity is increasing. However, this study has some limitations. It is focused
only on the short-run effects of traffic congestion on work-time allocation. The findings are also
silent on modes of transportation, which may be another channel that individuals use to avoid
traffic congestion.

Staying longer hours at work has detrimental effects on well-being, with wide implications for
human health, productivity, and the quality of leisure time (e.g., time spent on hobbies and with
those we love). By prompting people to stay longer at work, traffic congestion may be mitigating
the substantial benefits that cities offer to workers. In addition, rescheduling the timing of activities
has important welfare effects (Small, 1982). Time is the ultimate finite resource, which puts time
allocation at the heart of the human experience. In our setting, doubled traffic congestion may
reduce the welfare that individuals obtain from participating in the labor market by 10 percent.
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Hence, the externality of traffic congestion on work-time allocation likely has major impacts on
broader well-being.

This study is an example of the use of smartphone data to study human behavior. Smartphone
data have huge potential. More research is needed to investigate the representativeness of these
data to the whole population, their statistical reliability, and possible synergies with household-
and firm-level surveys to learn more and better our behavioral patterns and new developments in
the labor markets, such as the great resignation. Further research is also needed to understand long-
term effects and to explore the role of modes of transportation. Likewise, future research should
address the effect of traffic congestion on productivity across all sectors of the economy.
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Chapter 2

Nodody’s Watching: COVID-19
impacts on the Amazon Rainforest

2.1 Introduction

Reducing deforestation has the potential to mitigate around one-third of global human-caused car-
bon emissions (Shukla et al., 2019). Deforestation is most prevalent in developing countries’ tropical
forests (Burgess et al., 2012, Jayachandran, 2013), however, its effects will be felt globally through
climate change and biodiversity loss. Therefore, understanding the factors facilitating deforestation
is crucial to curb its effects.

This paper examines the effect of the COVID-19 pandemic on Amazon deforestation, using
data from Peru. It provides insights into how a developing country’s capacity for environmental
monitoring and enforcement was constrained by the pandemic, and how these constraints damaged
environmental outcomes such as forest conservation. We provide new evidence of the impact of
COVID-19 on deforestation and shed light on the underlying mechanisms driving the estimated
causal impact. Peru is an ideal context for such study because is one of the countries hardest hit by
the pandemic and places fourth worldwide among countries with the largest extension of tropical
forests.

In our empirical setting, we build a rich district-level panel dataset with information about
annual deforestation covering the period 2015-2020. Deforestation is derived from high-resolution
Landsat satellite imagery. We then exploit two sources of variation. We first exploit the time
variation in deforestation before and after the pandemic in an event study design as our baseline
specification. Next, we complement this approach with a difference-in-difference design that exploits
the inter-district variation in COVID-19 cases and deaths.

The empirical analysis yields several significant findings. First, we observe a substantial increase
in deforestation during the COVID-19 pandemic. Compared to pre-pandemic levels, deforestation
in Peru rose by approximately 35%, resulting in a national forest loss of 54 thousand hectares. This
finding holds true across various identification strategies, providing robust evidence of the impact.
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Second, this surge in deforestation carries significant costs. In 2020 alone, COVID-19-induced
deforestation led to emissions exceeding 17 million tCO2 − eq at the national level. This amounts
to an additional social cost of US$131.38 million, three times the budget allocated for forest man-
agement in Peru in 2019.

Third, we document a potential mechanism that explains the pandemic’s impact on deforesta-
tion, namely a decrease in forest monitoring efforts coupled with an increase in illegal deforestation
activities. Investments in forest monitoring declined in 2020 at both national and regional levels.
Moreover, we observe a spike in illegal activities related to coca leaf production and mining during
the same period. Our analysis of heterogeneous effects reveals that districts engaged in coca produc-
tion or characterized by informal or illegal mining experienced exacerbated levels of deforestation.
Moreover, the variation in our deforestation outcome seems to be driven by illegal deforestation,
since legal logging activities actually decreased in 2020.

This study contributes to the literature on COVID-19 and environmental outcomes. Previous
studies have analyzed the pandemic’s impacts on air quality (Blackman et al., 2023, Brodeur et al.,
2021, Dang and Trinh, 2021), wildlife (Madhok and Gulati, 2022), and environmental regulation
(Vale et al., 2021). Regarding the impacts of COVID-19 on deforestation, most studies trace poten-
tial impacts based on theoretical models (Wunder et al., 2021) or descriptive analysis (Brancalion
et al., 2020, Lopez-Feldman et al., 2020). The closest in spirit to our study is Saavedra (2020).
It uses a difference-in-difference approach to study the effect of national-level lockdowns on de-
forestation using 70 countries, and it finds no statistically significant effects overall. However, the
outcome variable in this study (“vegetation cover change alerts” instead of deforestation) is prone
to measurement error that may be attenuating the statistical significance. Moreover, the outcome
was measured between January 1, 2019 and July 12, 2020. This disregards a great part of the dry
season in the Amazon region (usually between June and November) when slash-and-burn practices
are intensified, given the higher prevalence of environmental conditions favoring the flammability
of fallen forests (Aragao et al., 2008).

The rest of the paper is organized as follows. Section 2.2 describes the background. Section 2.3
describes the data and the empirical approach. Section 2.4 presents the main results, robustness
checks, and heterogeneous effects. Section 2.5 presents a discussion about the mechanisms and the
social cost of deforestation. Section 2.6 concludes.

2.2 Background

We use the context of Peru, one of the countries hardest hit by COVID-19 (Higa et al., 2022)
and one with the largest extension of tropical forests (Keenan et al., 2015). Peru holds one of the
highest COVID-19 mortality rates worldwide, even above countries such as Brazil and India. As
of July 2021, there were 2 million COVID-19 cases and more than 600 COVID-19-related deaths
per 100,000 inhabitants. Peru implemented stay-at-home orders and social distancing at the start
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of the pandemic in March 2020. Similar to other countries, the scope of the social restrictions has
fluctuated in response to demands to open the economy and based on the number of COVID-19
cases. On the other hand, more than half of Peru’s territory (53%) is covered by rainforests. However,
on average, more than 128 thousand hectares were annually deforested nationwide between 2001
and 2019, which is equivalent to losing more than 20 soccer fields every hour. Forests in Peru are
threatened by activities related to commercial agriculture, gold mining, coca production, and cattle
ranching, among others (Finer and Novoa, 2017, Piotrowski, 2019). Figure 2.1 displays the location
of rainforests in the territory.

Figure 2.1: Forest cover in Peru, 2020

Source: MINAM, 2022

In Peru, the Law of Forestry and Wildlife (FWL) constitutes the main policy oriented to guar-
antee the sustainable provision of the benefits generated by the forests. In the last two decades,
two FWLs have been introduced in the country. The first one was enacted in 2000 and started to
be enforced in 2001. Nevertheless, its numerous reforms were found to be insufficient to effectively
halt deforestation across the country (Sears and Pinedo-Vasquez, 2011). As a consequence, a second
FWL was introduced in 2011 and enforced since 2015, after a long process of consultation with
several groups, including indigenous communities and other stakeholders involved in the forestry
sector (e.g., mestizo farmers and small- and medium-sized companies). One of the main reforms
introduced by the new law was the creation of SERFOR (Forestry and Wildlife National Service)
as the national ruling agency of the forestry sector, which operates jointly with regional forestry
authorities. This has boosted the country’s capacity to regulate forestry activities across the terri-
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tory and track forest-related faults. Given the institutional landmark that the SERFOR creation
represents in terms of the country’s capacity for monitoring deforestation, we focus our analysis on
the period after the new FWL, that is from 2015 onwards.

2.3 Data and Methods

This paper explores the effects of COVID-19 on deforestation. We rely on the official annual forest
cover loss data collected by the Ministry of Environment in Peru, which has been available since 2001
(MINAM, 2022). This data is derived from interpreting Landsat satellite imagery with high spatial
resolution of up to 30 meters. This fine resolution allows the detection of small-scale deforestation
and the distinction between clearing and forest degradation due to natural events (Potapov et al.,
2014, Vargas et al., 2021). This data mainly accounts for forest loss due to anthropogenic factors,
given the efforts of the Ministry of Environment to exclude natural forest degradation. Likewise,
potential forest-cover confusions (e.g., plantations) and false positives as a consequence of prediction
errors are taken into account in this data. The Ministry of Environment conducts several validation
exercises to reduce systematic measurement error in the forest cover loss measurement. These
validation exercises include the use of RapidEye imagery with 5 meters resolution. The information
is available only for the 400 districts with tropical forest coverage, about 20% of the 1896 districts
in the country. Figure 2.2, Panel (a), displays the number of deforested hectares by year and
highlights that 2020 was the year with the largest deforestation on record. On the other hand, we
use COVID-19 data collected by the Ministry of Health in Peru (MINSA, 2022). This data contains
information about the number of COVID-19 cases and deaths caused by COVID-19 in each district
in the country. A description of the main variables used in the analysis and summary statistics are
provided in Tables 1.1 and 1.2, respectively, in the Appendix.

Baseline approach Figure 2.2, Panel (b), shows a positive correlation between the number of
COVID-19 cases and the deforestation in each district, indicating a possible effect of the pandemic
on deforestation. To study this potential effect, we use an event study and estimate the following
model:

yit =
1∑

Q=0
βQDQ + γi + ϵit (2.1)

where the unit of observation is district i in year t. yit represents the deforestation outcome
variable. DQ is an indicator variable that equals one when the year is 2020 and zero otherwise. The
omitted category is the pre-pandemic year 2019. γi includes district fixed effects. Standard errors
are clustered at the district level. Our identification strategy exploits time variation across years:
we compare changes in deforestation before (2019) and after (2020) the pandemic. We also conduct
robustness checks by extending the pre-pandemic period to 2015-2019.
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Figure 2.2: Deforestation and COVID-19

(a) Annual country-level deforestation, 2001-2021

(b) Correlation between COVID-19 and deforestation

Notes: Panel (a) depicts the annual deforestation (’000 ha) from 2001-2021. Panel
(b) depicts a binscatter with deforestation (ha) on the vertical axis and COVID-19
infections (in logs) on the horizontal axis. Information comes from MINAM (2022),
MINSA (2022).
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Difference-in-Difference design We complement our baseline regression using a difference-in-
difference approach. Specifically, we estimate the following model using our panel of districts:

yit = aftert + COVID-19i + β(COVID-19i ∗ aftert) + ϵit (2.2)

where the unit of observation is district i in year t. yit is the deforestation outcome variable.
aftert is a dummy variable that equals one if the period corresponds to 2020 or zero if the period
encompasses the years 2015-2019. COVID-19i is our treatment indicator variable that equals one
if the district had COVID-19 cases above the national median in 2020 (i.e., 28 cases). Hence, we
exploit the district-level variation in exposure to COVID-19 to identify the effects of the pandemic
on deforestation.

2.4 Results

Table 2.1 shows our main results. Column 1 presents estimates from our event study in Equation 2.1.
Columns 2 and 3 present difference-in-difference (DiD) estimates from Equation 2.2.

Our main results suggest that deforestation in Peru increased significantly due to the pandemic.
The average deforestation per district increased by approximately 35% in 2020 compared to pre-
pandemic levels. This corresponds to an additional reduction in forest cover of 54 thousand hectares
at the national level, which is equivalent to the surface of more than 77 thousand soccer fields. We
can identify the combined effect of shocks associated with COVID-19 on deforestation, but we
cannot single out a particular policy. Reverse causality is less worrisome in our context given the
evidence that forest loss does not affect the incidence of respiratory diseases (Berazneva and Byker,
2017).

Identification concerns Results in Column (1) may be biased under the presence of unobserved
time-varying confounders. For example, we cannot disentangle annual trends or other non-COVID-
19 related shocks in Equation 2.1. To attenuate this concern, in Column (3), we complement
our baseline approach with a difference-in-difference design that controls for district-specific time
trends. The stability of our outcome variable before the pandemic also helps mitigate the concern
(see Panel (b) in Fig 2.3).

There may be some identification concerns regarding our DiD complementary approach. First,
it relies on the assumption that the treatment and control groups have a common trend over
time in deforestation. Figure 2.3 presents evidence that both groups may have been experiencing
similar trends in the outcome variable prior to treatment. Panel (a) depicts the estimates from
an event study that assesses whether there are differences in deforestation between treated and
control districts every year. A district is treated if the number of COVID-19 cases (in 2020) in
their jurisdiction was above the national median. Circles represent point estimates from regressing
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Table 2.1: Main results

Dependent variable: Deforestation (ha)
(1) (2) (3)

Year 2020 137.12***
(17.589)

DiD 153.54*** 140.11***
(35.68) (31.62)

Design Event study DiD DiD
District-specific time trends No No Yes

Pre-pandemic period 2019 2015-2019 2015-2019

Mean outcome 371.1 390.1 390.1
(pre-pandemic)

N 800 2,394 2,394
R-squared 0.966 0.04 0.04

Notes: Estimated standard errors, reported in parentheses, are clustered at the district
level. Significance at the one, five, and ten percent levels is indicated by ***, **, and
*, respectively. See Table B.3 in the Appendix for similar results using our event study
design but expanding the pre-pandemic period to 2015-2019, and using our difference-
in-difference approach but restricting the pre-pandemic period to 2019.

deforestation on dummy variables corresponding to the interaction between the year and treatment
dummies, controlling for year and district-fixed effects. The omitted category is the year 2019.
Vertical lines show 95 percent confidence intervals, calculated using standard errors clustered at the
district level. Except for 2020, the differences in deforestation between the treatment and control
groups are not statistically significant at a five percent level of significance. Likewise, Panel (b)
provides more graphical evidence of parallel trends over time. We also use recent developments to
test violations of parallel trends, following Rambachan and Roth (2023). We find that our result is
robust to allowing for violations of post-treatment parallel trends up to 1.5x as big as the maximum
violation in the pre-treatment period (see Figure B.3 in the Appendix).

Second, our treatment may be correlated with unobserved events that differently affected the
treatment and control groups. To address this concern, we include district-specific time trends
to allow the treatment and control districts to follow different trends (see Column (3) in Table
2.1). Finally, the composition of the treatment and control groups may have changed between
the pre-treatment and post-treatment periods. Given that our unit of observation is a district, it is
unlikely that its composition and characteristics changed dramatically before vs. after the pandemic.
However, in order to mitigate this potential concern, we combine our difference-in-difference design
with propensity score matching (PSM).
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Figure 2.3: Evidence of parallel trends

(a) Event study

(b) Average deforestation 2015-2020

Notes: Panel (a) depicts the estimates from an event study that assesses whether
there are differences in deforestation between treated and control districts every year.
Panel (b) depicts the average deforestation for treated and control districts during
2015-2020. A district is treated if the number of COVID-19 cases (in 2020) in their
jurisdiction was above the median in the country.

28



Additional robustness checks Table 2.2 shows that our main results are robust across different
specifications. Column (1) displays estimated coefficients from Equation 2.2 after restricting the
sample to districts with forests that covered 20% or more of their territories in 2015. We use this
threshold to avoid potential biases by including districts with substantially different environmental
features in the sample. Results suggest that the higher the coverage percentage in the district, the
higher the magnitude of the effect. To address concerns regarding measurement error in our treat-
ment variable, in Column (2), we use COVID-19 deaths instead of COVID-19 infection cases as
an alternative measurement of our treatment. Here, a district is treated if it registered deaths due
to COVID-19. Columns (4) and (5) display the results from applying the difference-in-difference
approach to samples matched by their corresponding propensity score. Columns (4) and (5) use
COVID-19 infection cases and deaths as the measures of treatment, respectively. We construct
control groups based on the conditional probability of districts to be assigned to the treated group,
given proxies for biophysical, geographical, and socioeconomic drivers that could exert some in-
fluences on deforestation (Busch and Ferretti-Gallon, 2017). We find larger coefficients than those
in Table 1 as potential confounders are controlled. We use information from 2019 or earlier on
district-level total surface area (IGN, 2022); river area, road number, and distance to the capital
city (MTC, 2022); altitude (ECLAC, 2022); slopes (Farr et al., 2007); forest cover (MINAM, 2022);
population density (ECLAC, 2022); and human development index scores (ECLAC, 2022). Post-
matching covariate balance shows that the procedure achieves important bias reductions in the
resulting samples (see Figure B.1 in the appendix).

Table 2.2: Robustness Checks

Dependent variable: Deforestation (ha)
(1) (2) (3) (4)

DiD 193.93*** 149.50***
(46.64) (27.77)

DiD-PSM 171.44* 220.43***
(91.60) (44.84)

Measure of COVID-19 Cases Death Cases Death

N 1,728 2,394 1,710 1,705
R-squared 0.05 0.04 0.04 0.06

Notes: All regressions control for district fixed-effects and consider the years 2015-
2019 as the pre-pandemic period. Estimated standard errors, reported in parentheses,
are clustered at the district level. Significance at the one, five, and ten percent levels
is indicated by ***, **, and *, respectively.
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Heterogeneous effects We also explore the heterogeneous effects of COVID-19 on deforestation
based on the incidence of coca production, illegal or informal mining, and protected areas in the
districts. We focus our analysis on coca production and mining due to their notorious potential
to trigger short-term land use changes across the Peruvian Amazon (Swenson et al., 2011, Young,
1996). We also analyze the role of protected areas because this is the most frequent policy applied to
deter deforestation processes in the country. Instead of being a single command-and-control instru-
ment, it encompasses a wide range of governance regimes with different levels of national agencies
participation. One-quarter of the Peruvian Amazon region is under some protected area regime
(SERNANP, 2022). Aside from these two drivers, commercial agriculture and cattle ranching have
also been identified as relevant deforestation drivers across the Peruvian Amazon. However, both
these activities follow complex dynamics that delay by several years the transition from forests to
temporary land uses (Armas et al., 2009). Therefore, they are less likely to play a role in the impact
of the pandemic on deforestation.

Table 2.3: Heterogeneous effects

Dependent variable:
Annual rate of forest change, 2019-2020

(1) (2)
Year 2020 2.19*** 2.17***

(0.21) (0.21)
Mining 0.17* 0.18*

(0.09) (0.09)
Coca 0.21** 0.19*

(0.10) (0.10)
Protected areas -0.34*** -0.44***

(0.08) (0.08)

N 394 394
R-squared 0.53 0.54

Notes: Estimated standard errors, reported in parentheses, are clustered
at the district level. Significance at the one, five, and ten percent levels
is indicated by ***, **, and *, respectively. Regressions include other
district characteristics such as population density, river area, altitude,
number of roads, distance to the capital city, and slope (see Table B.4
in the Appendix).

Table 2.3 displays our results. We find that deforestation is exacerbated in districts with coca
production, or with informal or illegal mining. On the other hand, the presence of protected areas
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mitigated the effects of deforestation in the district, with increasing efficacy as the areas under
protection get larger. This result is in line with previous findings that highlight the role of decen-
tralized management models of protected areas in successfully mitigating deforestation (Schleicher
et al., 2017). Our outcome variable is the annual rate of forest change between 2020 and 2019.
Given that deforestation was higher in 2020 compared to 2019, the annual rate of forest change
is a negative number. To ease the interpretation of results, we multiply the estimated rate by −1.
We then regress our modified outcome variable on dummy variables that capture whether the year
is 2020, whether coca production was recorded in the district in 2017 (using data from UNODC
(2017)), and on whether there was illegal or informal mining activity in the district (using data
provided by MINAM (2016)). All the regressions control for the average district slope, the total
district area, and the extension of rivers and national roads. Columns (1) and (2) present the esti-
mates from the regression. The only difference between the columns is the treatment of the variable
protected areas. It equals one if there are protected areas in the district in Column (1), while in
Column (2) it equals one if protected areas represent 10% or more of the territory in the district.
We made this differentiation to assess the extensive margin and the intensity of the protected areas
policy in mitigating the COVID-19 deforestation effects.

In summary, we identify the weakened institutional capacity of the country to conduct moni-
toring and enforcement activities as a mechanism through which COVID-19 emergence enabled an
increase in deforestation. This institutional weakening led to an exacerbation of illegal and informal
activities driving forest loss.

2.5 Discussion

2.5.1 CO2 emissions and social cost

We estimate the impact of the deforestation caused by the pandemic in terms of carbon (CO)
emissions and the corresponding social costs. We use the following equation to calculate the released
tonnes of equivalent CO:

tCO2-eq = (Def2020 × n × E) ∗ 3.67 (2.3)

Where tonnes of tCO2-eq are estimated using the increase in deforestation observed in 2020
(Def2020) and captured by our estimates from Equation 2.1 (Column 1 of Table 2.1). We multiplied
this by the number of districts in our data (n = 400), and by a parameter representing a fixed
amount of tonnes of CO released per deforested hectare (E = 84.54 tCO/ha) that was previously
estimated by the Ministry of the Environment in Peru, considering the different types of forest in
the country (Malaga et al., 2014). This is then transformed to tCO2-eq by multiplying by 3.67 (i.e.,
the factor to transform carbon to carbon dioxide).
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Our result shows that COVID-19 could have contributed to the release of 12.7 to 21.3 million
tCO2-eq in 2020. Using the social cost of carbon of 7.72 USD/tCO2-eq estimated for Peru (MEF,
2021), we calculate the associated economic losses to be around USD 98.2 million and 164.5 million
(see Table B.5 in the Appendix). This cost represents almost three times the national annual budget
allocated to forest protection in the country.

2.5.2 Mechanisms

A potential mechanism explaining the impact of the pandemic on deforestation is a decrease in forest
monitoring efforts, paired with an increase in illegal deforestation activities. Figure 2.4 shows that
the investment in activities related to forest monitoring between 2019 and 2020, at the national and
regional levels, experienced a reduction of 13 and 37 percentage points, respectively. Likewise, we
have anecdotal evidence from journalistic reports that monetary resources allocated to enforcement
were redirected to provide economic support to the population. In addition, personnel in charge
of enforcement were reassigned to enforce social restrictions and lockdowns. This reallocation of
resources and personnel also varied with the intensity of the pandemic since during the second half
of 2020, three regions (Huanuco, San Martin, and Madre de Dios) out of the five that explain 80%
of the forest loss in the country (Potapov et al., 2014) remain under quarantine while others had
the restrictions lifted. In addition, data from OSINFOR (Monitoring Agency of Forest Resources
and Wildlife), reports that the number of supervision conducted by them decreased by 57% in 2020
compared to pre-pandemic levels. We interpret all this information as evidence that monitoring
activities may have decreased, making it more difficult to detect illegal activities in forested areas
in the Amazon.

Illegal coca production and illegal mining are also related to higher deforestation during the
pandemic. Results from the heterogeneity section show that deforestation was exacerbated in dis-
tricts with coca production or with informal or illegal mining. In addition, Panel (a) in Figure 2.5
shows that illegal coca production reached a peak in 2020, possibly caused by the reduction of
eradication efforts during the pandemic, as shown in Panel (b). Likewise, journalistic reports (e.g.,
Vera (2020)) attest to the intensification of artisanal mining in highly forested areas in 2020.

The variation in our deforestation outcome seems to be driven by illegal deforestation. Our
outcome accounts for both legal (concession logging, agriculture, etc.) and illegal deforestation
(mining, coca). However, legal logging activities decreased in 2020, as shown in Figure 2.6, which
displays information regarding round wood production in the last decade. This suggests that our
findings are mostly linked to deforestation related to the illegal activities described earlier.

The economic crisis generated by the pandemic offers two additional mechanisms: (i) the trade-
off between livelihoods and the forests, and (ii) migration. The economic crisis and the lack of
employment could have led to people clearing more forests. Individuals participating in forest-
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Figure 2.4: Budget expenditures (%) in forest monitoring, 2017-2021

Notes: Figure depicts the budget expenditures (%) at the national and regional
level for activities related to forest monitoring by the end of each year, from
2017 to 2021.
Source: MEF (2022)

clearing activities could have intensified their efforts (intensive margin) or individuals could have
switched from other activities to clearing forests (extensive margin). However, there is evidence
that tropical forests have a key role in rural contexts in providing wild food (fish, bushmeat, fruits,
etc.) to the community (Van Vliet et al., 2017). Moreover, we observe that deforestation and a food
vulnerability index are negatively correlated (see Figure B.2 in the Appendix). Overall, although
this could have explained some of the deforestation, it would be unlikely to explain the huge
increase we observe. In terms of migration, the economic downturn pushed migrants located in
cities to move back to their home rural areas. This increase in population could have put pressure
on forests through residents’ participation in economic activities driving deforestation. Fort et al.
(2021) explore this hypothesis and find a weak correlation (0.086) between deforestation in 2019-
2020 and the number of people returning to their cities of origin due to the pandemic. While this
figure considers only returning migrants and not all migrants, due to a lack of data we cannot
explore further this channel.

Other mechanisms that may explain the increase in deforestation are: (i) the possibility that
individuals may have been incentivized to do selective logging due to increasing prices of roundwood.
Second, the economic crisis generated by the pandemic which was more pronounced in the service
sector (where in-person interactions are more intrinsic), might have generated a reallocation of the
labor force from the service sector towards agriculture pressing the demand for land, and therefore
inducing deforestation.
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Figure 2.5: Coca production and eradication

(a) Legal and illegal coca production, 2010-2020

(b) Hectares of Coca produced and eradicated, 2017-2021

Notes: Panel (a) depicts the production of coca leaves in metric tonnes for legal and
illegal markets. Panel (b) depicts the hectares of coca leaves produced and eradicated.
Data is from DEVIDA (2022).
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Figure 2.6: Roundwood production, 2010-2020

Notes: This figure depicts the roundwood production for 2010-2021 recorded
by the national government.
Source: SINIA, 2022

2.6 Concluding remarks

This paper provides evidence that COVID-19 increased deforestation in the Amazon. This surge in
deforestation might have had a considerable negative net impact on Peru’s climate commitments.
Our findings also unveil the role that illegal and informal activities, such as coca leaf production
and mining, have had on tropical forest loss during the COVID-19 pandemic in the country, and
highlight the importance of protected areas in significantly mitigating the deforestation triggered
by the pandemic across the Peruvian Amazon.

Further research should be done to better understand the role of governance regimes in prevent-
ing forest loss during the COVID-19 pandemic, and to evaluate the consequences of the pandemic
on biodiversity loss due to the increase in deforestation.
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Chapter 3

Is it Too Hot to Work? Evidence from
Peru

3.1 Introduction

Time is central to humans’ well-being as well as the consequences of climate change. Evidence from
the US suggests that rising temperatures may reduce the time allocated to work in industries highly
exposed to weather. However, the damages at a global scale might be significant. For instance, the
International Labour Organization (ILO) projects that due to global warming, the world will lose
2.2% of total working hours (equivalent to 80 million full-time jobs) by 2030, leading to a reduction
of the world’s GDP in US$2,400 billion.

However, the evidence of the effects of climate change on time use is still sparse, particularly in
developing countries. Understanding this labor-temperature relationship is particularly relevant for
developing countries since they concentrate 80% of the world’s labor force (Behrman, 1999), they
are located in tropical areas where changes in climate will occur faster and with more intensity
(Aragon et al., 2020), they are expected to face higher associated costs of climate change (Dell
et al., 2014, Jessoe et al., 2016), and they have a high incidence of asset-poor households with lack
of access to adaptation strategies or avoidance behavior (Jessoe et al., 2016).

This paper seeks to answer the question: what is the effect of temperature on working hours?
The main contribution of the paper is to highlight the relevance of segmented labor markets when
assessing the impacts of climate change on labor market outcomes. To answer this question, I com-
bine worker longitudinal microdata from household surveys with meteorological reanalysis data for
Peru covering the period 2007-2015. I exploit presumably random year-to-year variation in tem-
perature within residential localities to estimate whether weekly working hours for a particular
individual are higher or lower in years that are warmer. Although this setting minimizes the omit-
ted variable bias problem (Deschenes and Greenstone, 2007), I control for rainfall, humidity, and
daylight hours which are correlated with temperature and could potentially affect the number of
working hours.
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This paper documents three main findings. First, I find a negative effect of high temperatures
on overall working hours. In general, individuals reduce weekly work time when experiencing an
additional day with a temperature above 27°C compared to a day with ’comfort zone’ temperatures
for human beings (i.e. between 18-21°C). This finding is consistent with ILO (2019) that states that
temperatures above 26°C are associated with negative impacts on an individual’s work capacity.

I also find that the negative effect of high temperatures on work time is driven by informal jobs
instead of jobs in industries highly exposed to weather. Previous studies for developed countries
have found that high temperatures may reduce hours worked in industries where jobs are primarily
performed outdoors. However, the type of industry loses relevance once we consider a labor market
that is highly segmented between formal and informal jobs as observed in developing countries. In
a highly segmented labor market, informal workers are negatively affected by high temperatures
regardless of whether they have outdoor or indoor jobs.

The last main result is that labor market segmentation can lead to misleading conclusions
regarding intertemporal labor supply. Workers seem to substitute work time across weeks due to
high temperatures in the aggregated labor market. However, the aggregate intertemporal labor
substitution is masking two opposite effects from the segmented labor market. It combines the
positive effect of high temperatures on formal workers with the negative effect on informal workers.

This paper contributes to a growing literature on the impact of temperature on labor market
outcomes such as work time (Connolly, 2008, Garg et al., 2020, Kruger and Neugart, 2018, Schwarz,
2018, Zivin and Neidell, 2014); wages (Schwarz, 2018); productivity (Dell et al., 2014, LoPalo, 2020,
?); and labor reallocation (Colmer, 2020, Jessoe et al., 2016). However, none of them have explored
the role of highly segmented labor and the implications for understanding the future impact of
climate change on the labor market. This study also contributes to the literature on weather and
intertemporal labor supply, most of which is focused on developed countries such as the US and
Germany (Connolly, 2008, Kruger and Neugart, 2018, Zivin and Neidell, 2014) with one exception
for China (Garg et al., 2020) that did not exploit the high labor market segmentation feature
observed in developing countries.

The remainder of the paper is organized as follows. Section 3.2 describes the data used to
measure weather and working hours. Section 3.3 discusses the empirical approach. Section 3.4
presents the results. Section 3.5 presents the main robustness checks. Finally, Section 3.6 presents
the limitations and conclusions.

3.2 Data

To study the temperature-labor supply relationship, I require variables capturing information at
the individual-, household-, and location-level. I combine worker-level data from household surveys
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with meteorological data for Peru.1 The Peruvian case is relevant given that the country satisfies
seven out of the nine requirements defined by the United Nations to consider a nation particularly
vulnerable to climate change.2 In addition, Peru also has a large variation in weather since it has
more than 70% of all the types of climates in the world.3

3.2.1 Labor Data

I use two sets of panel data from the Peruvian Living Standard Survey (ENAHO, Spanish acronym)
covering the period 2007-2015. This survey is nationally representative and collects information
along the year at the household- and individual levels. It also keeps a record of the date of the
interview and provides the residential geographic coordinates (i.e. longitude and latitude) for all
participating households.4

In particular, I use the module about employment to calculate the outcome of interest: working
hours. In this module, working-age individuals report their time allocated to work for each of the
days during the reference week (i.e. the last week previous to the interview date), their economic
sector (e.g. agricultural or non-agricultural), their occupations, and whether they are wage workers
or self-employees. Importantly, every worker on the panel is interviewed during the same month
across different years. The sample consists of 117,430 person-year-observations.

3.2.2 Weather Data

Temperature and Humidity. I use data from ERA5 which is the latest reanalysis data produced
by the European Center for Medium-Range Weather Forecasting (Munoz Sabater, 2019). It has a
much higher spatial and temporal resolution and supersedes the ERA-Interim archive which is one
of the most commonly used reanalysis products (Auffhammer et al., 2013).5 ERA5 provides hourly

1Table C.1 in the appendix shows summary statistics for the main variables. Temperature is measured in degree
Celsius and precipitation in mm.

2According to MINAM (2015), the seven requirements are: low-lying coastal area; arid and semi-arid lands; areas
liable to flood, drought, and desertification; fragile mountain ecosystems; disaster-prone areas; areas with high urban
atmospheric pollution; and economies highly dependent on income generated from the production and use of fossil
fuels.

3See Figure C.1 in the appendix for the temperature distribution in Peru.
4We exclude from our sample a few households because they did not have information about geographic coordi-

nates. The number of households is 6, 5, 3, and 4 households for 2007, 2008, 2011, and 2013, respectively.
5More strengths of ERA5 compared to Era-Interim can be found here: https://confluence.ecmwf.int//pages/

viewpage.action?pageId=74764925
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data for surface air temperature, humidity,6 and precipitation on a 0.25 × 0.25 degree latitude-
longitude grid.

Precipitation. I use data from the Peruvian Interpolated data of SENAMHI’s Climatological
and Hydrological Observations (SENAMHI PISCOp) and from Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS). SENAMHI PISCOp developed by Aybar et al. (2019)
provides monthly precipitation on a 0.1 × 0.1 degree latitude-longitude grid, but their estimation
combines information from monitoring stations and CHIRPS. Note that these precipitation esti-
mates achieve their highest performance for the Pacific coast and the western flank of the Andes
in Peru. On the other hand, I use monthly precipitation on a 0.05 × 0.05 degree latitude-longitude
grid from CHIRPS for robustness check.

Daylight. I calculate daylight hours for each day of the working week by taking the difference
between the sunset and sunshine time at each household location. Sunset and sunshine times were
calculated using astronomical algorithms taking as input the date each individual worked and the
residential geographic coordinates reported in the ENAHO.7

For each household location, I calculate the daily average, maximum, and minimum temper-
ature, daily humidity, and daily precipitation.8 Note that temperature is available either at the
hourly or daily level. Hence, I aggregate population-weighted temperatures at the weekly level to
match the periodicity of our labor outcome as in Carleton et al. (2020). Likewise, monthly precip-
itation is divided by the number of days in the corresponding month to calculate daily rainfall.9

Importantly, as reported by Aragon et al. (2020), satellite data do not perform very well for the
jungle in Peru. Therefore, I will exclude this region from all the analysis.10

3.3 Empirical Approach

3.3.1 Residual Variation

To identify the effect of climate change on working hours I rely on weather variation. However,
my empirical approach considers some form of fixed effects that may absorb substantial variation

6We use the dewpoint temperature to proxy relative humidity. Note that the formula to calculate relative humidity
take only as inputs temperature and the dewpoint temperature.

7I use the package suncalc in R to calculate daylight hours.
8In case temperature is missing for a particular day and residential location, I use the temperature data for the

same day from other households located in the same district to impute the average temperature across all these
households to the residential location with missing temperature.

9There are very few cases where the reference week does not correspond to the year of analysis. For instance, if we
are analyzing 2007, the reference week in January 2007 may correspond to December 2006. In those cases, we assign
the rain information from January 2007.

10Note that the jungle represents approximately only 13% of the labor market in Peru.
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in weather. How much variation in weather is left after controlling for fixed effects? This section
provides the answer to this question.

How can I measure the remaining variation in weather? I follow the literature on this (Fisher
et al., 2012, Guiteras, 2009, Jessoe et al., 2016, Schwarz, 2018) and regress temperature on differ-
ent fixed effects specifications and time trends. The residual from these regressions measures the
remaining variation in weather. Ideally, to identify the effect of climate change on working hours,
I would like the remaining variation in weather to be as large as the predicted changes in weather
by climate change models. Table C.2 reports the R2 of the regression of average and maximum
temperature on fixed effects, the standard deviation of the residuals, and the fraction of the obser-
vations that have a residual with an absolute value larger than the predicted change in weather (in
our case 1°C).

The remaining variation in weather is larger when using maximum temperature and models
without individual fixed effects. For instance, I can observe rows 7, 21, 23, and 24 that use fixed
effects as in Zivin and Neidell (2014), Schwarz (2018), and Garg et al. (2020). There, the fraction
of residuals larger than 1°C is between 5 to 9 percentage points higher when using maximum
temperature instead of average temperature. On the other hand, this fraction is around 40% for
models in rows 7 and 21, while it is around 25% for models in rows 23 and 24. As mentioned above,
the larger this fraction the better for identification. Hence, the data for Peru seems more suitable
for models using fixed effects as rows 7 and 21.11 In fact, our preferred specification described in
the next section will use a model as in row 7 similar to Zivin and Neidell (2014). Nonetheless, I will
use a model with individual fixed effects as a robustness check.

Finally, our empirical strategy relies on variation in working hours within individuals. To show
how much variation there is in our main outcome variable, I follow Kruger and Neugart (2018)
and report in Table C.4 a between and within decomposition of the standard deviation of working
hours. I can observe that between variation in working hours is higher than the within variation.
Thus, Table C.4 shows that there is variation in the observed labor data.

3.3.2 Empirical Model

My main specification is described in Equation 3.1. It uses a panel of individuals with district
and time fixed effects for reasons described in the previous section. I exploit presumably random
year-to-year variation in temperature within localities to estimate whether working hours for a
particular individual living in a given locality are higher or lower in years that are warmer.

11Table C.3 in the appendix shows that I obtain similar conclusions if I regress each temperature bin on the different
fixed effects models and time trends.

40



laboridt = f(β, wdt) + αd + λt + δZdt + θXidt + εidt (3.1)

In Equation 3.1 the outcome variable is total working time. It is constructed as the summation
of all hours worked during all days of the reference week in all jobs for a given year.12 Note that
individuals, localities, and years are indexed by i, d, and t, respectively. Location and time fixed
effects are represented by αd and λt, respectively. Time fixed effects include year-month and weekly
dummies to account for seasonality. The error term εidt is clustered at the region-month level to
address temporal and spatial correlation in temperature as in Zivin and Neidell (2014).13

Our parameters of interest are the β in the nonlinear function of daily maximum temperature
f(β, wdt). Temperature is divided into 7 bins of 3°C increments.14 The bin 18-21°C is taken as the
reference group for interpretation because it overlaps with the “comfort zone” temperature band
for human beings (i.e. between 18-22°C) according to Heal and Park (2016).15 Hence, β can be
interpreted as the effect on the hour worked of shifting a day from the reference bin to bin j during
the working week.

Although the setting in equation 3.1 minimizes the omitted variable bias problem (Deschenes
and Greenstone, 2007), I include rainfall, humidity, and daylight hours in Zdt to control for other
locality-level weather variables that are correlated with temperature and could potentially affect
the number of working hours. Finally, I include individual-level demographics in Xidt such as age,
gender, education (high school dropout, high school graduate, some college), employment status (on
vacation, full-time employee), and other labor information (whether the job is informal, whether
the contract is permanent, size of the company). I also include dummies for economic activity,
household income, whether they live with a partner, information about dependents (number of
children and percentage of family members over 65), and whether they live in rural or urban areas.

3.4 Results

I find evidence of a negative effect of high temperatures on hours worked for the overall labor
market. Figure 3.1 shows the estimates for β in equation 3.1 and their confidence interval at 95%

12In our sample 26% have a secondary job and 1% reported zero hours of work.
13In section 5, I implement Conley (1999, 2010) standard errors using the algorithm developed by Colella et al.

(2019).
14The number of bins was selected so that each bin contains information for at least 15% of the sample. As a result,

on average, each bin contains at least 3/4 of a day out of the seven days of the reference week. Note that in section
5 we present results with 9 bins of 3°C increments and also with bins of 2°C increments, and results remain.

15Note that the average maximum temperature in our sample lies also in the 18-21°C bin. In addition, ILO (2019)
states that temperatures above 24°C are not comfortable for workers.
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significant level.16 These results are in line with findings from other developing countries such as
China. For instance, Garg et al. (2020) find that extreme low and high temperatures reduce working
hours. However, this is not compatible with findings in the US (Zivin and Neidell, 2014) and in
Mexico (Schwarz, 2018). For instance, in the US there seems to be no effect of temperatures on
working hours in the entire labor market while in Mexico only low temperatures reduce hours
worked.

Figure 3.1: Effect of Temperature on Work Time.

Notes: Figure depicts the estimates of the effect on hours worked of shifting a day from
the reference bin (18-21°C) to a given bin during the working week for all workers.
Circles represent point estimates from regressing total working hours on temperature
bins, controlling for precipitation, humidity, daylight hours, sociodemographics, and
location and time fixed-effects (see Table C.5 for the regression output). Vertical lines
show 95 percent confidence intervals calculated using standard errors clustered at the
region-month level. The figure uses maximum temperature, ERA5 data, and excludes
the jungle.

The magnitude of the effects of temperature on hours worked is not large in general. Figure 3.1
shows that shifting a day with ’comfort zone’ temperatures (i.e. 18-21°C) to a day above 27°C
reduces 18 minutes of work time during a week. This is below the weekly reduction of 1.2 hours
reported for China for the same temperature range in Garg et al. (2020). This may be explained

16See Table C.5 in the appendix for the regression output.
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by the differences in the rate of self-employment which is higher in Peru, and therefore the labor
market has more flexibility to adapt to changes in temperature, leading to lower estimates.

The negative effect of temperature on hours worked seems to be driven by workers with informal
jobs.17 Figure 3.1 shows separate regressions for each group of workers (i.e. informal vs. formal)
instead of adding interaction terms between each temperature bin and an indicator variable for
labor informality.18 There we can see that all the negative effect of temperature is mainly driven by
workers with informal jobs. However, 67.5% of informal workers in the sample have outdoor jobs.19

To disentangle whether the effect is driven by outdoor or informal jobs, I explore within outdoor
and indoor jobs whether the effect is driven by informal workers. I run separate regressions for each
group of workers (e.g. outdoor-informal or outdoor-formal workers), and I find that all the effect
is driven by informal jobs.20 Hence, informal workers are negatively affected by high temperatures
regardless of whether they have outdoor or indoor jobs. This might not be surprising since more
than 75% of outdoor and indoor jobs are informal. This reflects the high labor market segmentation
between informal and formal jobs observed in developing countries that are not present in the US
where Zivin and Neidell (2014) found that only outdoor workers are responsive to high temperatures.
Note that in this country setting, 87% of government agencies do not use AC, and most firms in
the private sector do not use AC except firms in the mining sector where only 44% of them use
AC (MINEM, 2013). Therefore, this information suggests that both informal and formal jobs lack
access to AC. On the other hand, a large share of informal jobs are associated with self-employees
who may have more flexibility to allocate hours to work. Thus, informality may be confounded with
the degree of flexibility in the job to change hour worked. Likewise, informal jobs may be more
exposed to demand shocks (e.g., on hot days people may spend less time outdoors, and therefore
informal workers do not have customers, and in response to this they change their allocation of
hours to work) that affect hours worked in combination with the supply shock associated to high
temperatures.

17The ENAHO survey provides a variable to identify workers with formal or informal jobs. A job is informal if the
production unit is not registered for tax purposes or the worker is not covered by social security.

18I performed a test to evaluate whether the effects of the other control variables are the same across groups. I
found that those effects are statistically different between subgroups. Hence assuming that those effects are equal
between subgroups, as we do when we use interactions, does not seem reasonable in this context.

19Individuals with outdoor jobs work in high-exposure industries to changes in weather such as agriculture, fishing,
mining, manufacturing, transportation, and utilities. This corresponds to the “high-risk industries" categorization in
Zivin and Neidell (2014) that is based on definitions from the National Institute for Occupational Safety and Health
(NIOSH). Note that high-risk industries are those where the work is primarily performed outdoors.

20See results reported in Figure C.1. Table C.6 reports results from a model with interactions and I reach the same
conclusion.
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3.4.1 Intertemporal Substitution

In this section, I explore the possibility that workers may substitute working hours across adjacent
weeks due to unpleasant temperatures. Zivin and Neidell (2014) and Kruger and Neugart (2018)
suggest that time allocation may depend more on the weekly weather instead of the daily weather,
making the analysis across weeks more relevant in this study.

I find evidence of intertemporal substitution of work time due to changes in temperature for
the overall labor market. Figure 3.2, panel (a), shows that temperatures above 27°C decrease
working hours for the same week of exposure (solid line). In contrast, hot temperatures from the
previous week increase working hours in the current week (dashed line), albeit the coefficient is not
statistically significant.21 In addition, the effect of hot temperatures on work time across the two
adjacent weeks is not statistically significant as shown in Panel (b) at the 95% level.22 This may
suggest that workers are substituting work hours across weeks so that their work time is not affected
by high temperatures. Moreover, this also may suggest that intertemporal labor substitution mutes
the effects reported in figure 3.1 which then might be only capturing temporary or non-persistent
effects.

However, the intertemporal labor substitution for the overall labor market is masking two op-
posite patterns from the high segmentation between informal and formal jobs. Figure 3.3, panel
(a), shows point estimates of the effect across the two adjacent weeks for formal workers. The es-
timates for temperatures below 12°C and above 27°C are both positive and statistically significant
at the 95% and 90% levels, respectively. This results from having the current week’s temperature
not affecting the current week’s work time, and from having the previous week’s low and high tem-
peratures increasing the current week’s work time. For instance, the previous week’s temperature
below 12°C makes them work one extra hour during the current week. Likewise, high temperatures
above 27°C make them work approximately 40 minutes more during the current week, albeit the
estimate is statistically significant at the 90% level.23 Thus, there is no evidence of intertemporal
labor substitution for formal workers. Instead, there is evidence of a cumulative positive effect of
extreme temperatures on hours worked. Regarding informal workers, the pattern described above
is almost reversed. Figure 3.3, panel (b), shows that the cumulative effect across adjacent weeks is
negative for high temperatures suggesting as well the absence of intertemporal labor substitution.
In fact, there is no statistically significant effect of the previous week’s extreme temperature on
hours worked during the current week. However, the current week’s temperatures above 27°C make
individuals work 30 minutes less during the same week.

21Note that the point estimate for the bin <12°C is positive as well and significant at the 90% level.
22Table C.7 in the appendix reports the regression output for figure 3.2. The effect for bin >27°C is negative and

statistically significant at the 90% level.
23See the estimates in Figure C.4 in the appendix.
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Figure 3.2: Intertemporal Labor Substitution.

(a) Current and lagged effects of temperature

(b) Summation of current and lagged effects of temperature

Notes: Figure depicts the estimated coefficients from regressing working hours on temperature bins for
the current and previous week for all workers. Panel (a) plots the effect of contemporaneous and one-
week-lagged temperature bins on working hours. Panel (b) plots the summation of the effect across the
contemporaneous and lagged weeks. All regressions control for precipitation, humidity, daylight hours,
sociodemographics, and location and time fixed-effects. Vertical lines show 95 percent confidence intervals
calculated using standard errors clustered at the region-month level. The figure uses daily maximum
temperature, ERA5 data, and excludes the jungle.
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Figure 3.3: Intertemporal Labor Substitution: Informal vs. Formal

(a) Formal workers

(b) Informal workers

Notes: Figure depicts the summation of the effect of temperature on working hours across the contempora-
neous and (one-week) lagged weeks for formal and informal workers. All regressions control for precipitation,
humidity, daylight hours, sociodemographics, and location and time fixed effects. Vertical lines show 95
percent confidence intervals calculated using standard errors clustered at the region-month level (see Fig-
ure C.4 in the appendix for a similar figure showing 90 percent confidence intervals). The figure uses daily
maximum temperature, ERA5 data, and excludes the jungle.46



In summary, the aggregated intertemporal labor substitution found in Figure 3.2 combines
the positive effect of high temperatures on formal workers and the negative effect on informal
workers. Hence, the aggregate intertemporal labor substitution is masking two opposite effects
from a segmented labor market.

3.5 Robustness

Table 3.1 presents the robustness checks to our baseline specification. Column (1) shows our baseline
model from equation 3.1. In column (2), I try to address the concern that our results may be driven
by changes in labor demand instead of labor supply given that weather potentially affects both labor
demand and supply. Following Kruger and Neugart (2018), I exclude from our sample workers in
areas where the demand for labor is more affected by changes in temperature such as agriculture,
forestry, fishing, and construction. Our main results are almost identical in magnitude and sign;
however, they are no longer statistically significant. More conceptually, I could claim that I am
focusing on short-run year-to-year variations, where it is less likely to see changes in wages, changes
in employer, or changes in the contract as in Connolly (2008).

In column (3), I implement Conley (1999, 2010) standard errors to correct for spatial and
temporal correlation using the algorithm developed by Colella et al. (2019). The results are identical
to the ones in column (1). Alternatively, in column (4), I clustered the standard error at the district
level since this is the cross-sectional level of exogenous variation in temperature as in Schwarz (2018)
and Garg et al. (2020). Results are also very similar to the baseline model.

In column (5), I deal with residential sorting. I exclude individuals who are not currently living
in the same district they were born. This assumes that individuals who were born and currently live
in the same district never moved out during our period of analysis. Results from the main model
still hold.

In columns (6), I use alternative sources for precipitation. The main findings are invariant to
instead using rainfall data from CHIRPS. I also replicate as close as possible other specifications
used in the literature of temperature and working hours. In column (7), I estimate a model with
individual fixed effects instead of district fixed effects as in Garg et al. (2020) to minimize potential
biases due to omitted variables. Even though we lose statistical significance, the coefficient for
temperatures above 27°C has the same sign and it is similar in magnitude to the baseline model
in column (1). I reach a similar conclusion in column (8) where I estimate a model with individual
effects but without controlling for key potential omitted variables such as precipitation, humidity,
and daylight hours following Schwarz (2018). In column (9), I also follow Schwarz (2018) and
estimate a model that only controls for time fixed effects and demographics. Results are still similar
to the baseline model.

Finally, I explore alternative measures of temperature. In Table C.8, I present results using 9
bins of 3°C increments and I get comparable results. In Table C.9, I present results using narrow
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bins of temperature that increase at 2°C. Even though we lose statistical significance, results are
still comparable to those from the baseline model in sign and magnitude. In Table C.10, only one
parametric measure of temperature seems to capture the non-parametric relationship estimated in
figures 3.1.
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Table 3.1: Robustness Checks.

Baseline Demand Conley
S.E.

District
S.E.

Sorting Chirps Model I Model II Model
III

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Temperature (Â°C)
< 12 0.02 -0.20 0.02 0.02 0.13 0.03 -0.11 -0.08 0.01

(0.10) (0.18) (0.12) (0.13) (0.13) (0.10) (0.27) (0.27) (0.20)
12-15 0.00 0.19 0.00 0.00 0.07 0.01 -0.05 -0.01 0.02

(0.08) (0.15) (0.10) (0.10) (0.11) (0.08) (0.25) (0.24) (0.19)
15-18 0.08 0.16* 0.08 0.08 0.06 0.09 0.02 0.04 -0.04

(0.06) (0.09) (0.08) (0.08) (0.10) (0.06) (0.21) (0.22) (0.14)
21-24 -0.03 -0.03 -0.03 -0.03 -0.11 -0.04 -0.02 -0.02 -0.08

(0.04) (0.06) (0.04) (0.05) (0.08) (0.04) (0.12) (0.12) (0.07)
24-27 -0.06 -0.07 -0.06 -0.06 -0.08 -0.06 -0.01 0.04 -0.06

(0.07) (0.08) (0.05) (0.06) (0.10) (0.07) (0.21) (0.19) (0.08)
> 27 -0.26** -0.24 -0.26** -0.26** -0.33** -0.25** -0.25 -0.15 -0.40***

(0.11) (0.15) (0.10) (0.11) (0.16) (0.11) (0.27) (0.25) (0.12)

Precipitation Yes Yes Yes Yes Yes Yes Yes No No
Humidity Yes Yes Yes Yes Yes Yes Yes No No
Daylight Yes Yes Yes Yes Yes Yes Yes No No
Demographics Yes Yes Yes Yes Yes Yes Yes No Yes
District FE Yes Yes Yes Yes Yes Yes No No No
Individual FE No No No No No No Yes Yes No
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 117,428 54,828 117,428 117,428 67,110 117,428 104,997 104,997 117,428
Notes: This table presents estimated coefficients and standard errors from regressing total working hours for all workers on temperature bins. Column (1) considers

our baseline model. Column (2) excludes agriculture, forestry, fishing, and construction from the sample. Column (3) considers a model with Conley standard
errors correcting for spatial and temporal correlation. Column (4) considers a model with standard errors clustered at the district level. Column (5) considers only
individuals who are currently living in the same district they were born. Column (6) considers our baseline model using CHIRPS precipitation data. Column (7)
replicates the empirical model in Garg et al. (2020). Columns (8) and (9) replicate the empirical model in Schwarz (2018). Estimated standard errors, reported in
parentheses, are clustered at the region-month level, except for Columns (3), (4), (7), (8) and (9) where errors are clustered at the district level. Significance at the
one, five, and ten percent levels is indicated by ***, **, and *, respectively.
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3.6 Conclusion

In this study, I investigate the effect of temperature on working hours in Peru for the period
2007-2015. Using worker and meteorological data for Peru, I find evidence that in general working
hours are negatively affected by hot temperatures. I also document that the negative effect of high
temperatures on work time is driven by informal jobs instead of jobs in industries highly exposed
to the weather. Lastly, labor market segmentation can lead to misleading conclusions regarding
intertemporal labor supply. Aggregate intertemporal labor substitution is masking the positive
effect of high temperatures on formal workers with the negative effect on informal workers. Given
the differential impact of temperature on working time between informal and formal jobs there
is room for public policies to compensate the former for the hours of work lost due to heat. In
addition, policies should promote mechanisms that encourage work time substitution across weeks,
in particular for those with formal jobs.

There are some caveats in this study that would need to be addressed in further research. For
instance, behavioral explanations should be taken into account (e.g. individuals not changing their
working hours due to changes in temperature because they are following deadlines or are reluctant
to look like shirking in the workplace). Second, a key assumption in the study is that individuals
work and live in the same district. Hence, a measure of the geographic location of individuals’
workplaces would improve the study. Third, given the nature of the data, I also cannot rule out an
intra-day substitution of working time. Fourth, (out/in) migration could change the composition
of the labor market over time. Fifth, given the correlation between informal jobs and jobs in
”outdoor" industries, there is a need for new methods to better identify who is working outdoors.
It is essential to thoroughly pin down this group to understand the impacts of temperature on
labor supply. Finally, this is a short-run analysis that does not fully capture the gradual long-term
changes in temperature due to climate change and behavioral responses. Therefore, understanding
long-term dynamics in the labor market due to weather shocks is necessary to identify better the
effects of climate change.
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Appendix A

Chapter 1

A.1 Additional figures

Figure A.1: Correlation of population size from smartphone and census data

Notes: The figure depicts a comparison of the total population in Mexico City accord-
ing to the Census 2020 (vertical axis) with the total number of smartphone devices
in 2019. Each dot is one of the 16 districts. Linear regression line in blue.
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Figure A.2: Distribution of daily hours worked: ENOE vs. Smartphone

(a) Labor survey (ENOE)

(b) Smartphone
Notes: The figure depicts self-reported daily hours worked from the labor household survey ENOE (panel a) and daily
hours spent at the workplace from the smartphone data (panel b) both conditional on being manufacturing or office
workers in firms with 50 or more employees. The first week of January and the last week of December are excluded, as
well as Saturdays and Sundays.
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Figure A.3: Distribution of traffic congestion using data from Waze

Notes: The figure depicts the distribution of traffic congestion per hour using data
from Waze for Mexico City in 2019. Data provided by Calatayud et al. (2021). Morn-
ing (6 am-10 am) and afternoon (5 pm-8 pm) rush hours are highlighted in yellow.
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Figure A.4: Map of Mexico City

Notes: Figure depicts the map of Mexico City. Each color represents one of the 16 districts.
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Figure A.5: Distribution of establishments

Notes: Figure depicts the distribution of establishments with more than 50 workers in Mexico City.
The location of establishments is provided by the National Statistical Directory of Economic Units
(DENUE) 2019.
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Figure A.6: Correlation between traffic congestion and labor productivity

Notes: Figure depicts the correlation between monthly traffic congestion and monthly
labor productivity (total output value divided by total hours worked). Each dot
represents information for a month in 2019. Labor productivity comes from monthly
manufacturing firm surveys (EMIM). Linear regression line in red.
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Figure A.7: The effect of road accidents on hours worked and departure time from work

(a) Hours worked

(b) Departure time

Notes: The figure depicts see OLS estimates and 90% confidence intervals. See regressions output in Table A.3.
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A.2 Additional tables

Table A.1: Additional robustness analysis for main results

Dependent variable: Hours worked
(1) (2)

Traffic Congestion (log) 0.756* 3.483
(0.435) (6.579)

Change in specification Distance >4km 2SLS + individual FE

Observations 1,159 6,242
R-squared 0.035 0.022

Notes: Standard errors clustered at week-district level in parentheses. Statistical
significance at the one, five, and ten percent levels is indicated by ***, **, and *,
respectively. All regressions use the baseline model and smartphone data.

Table A.2: Additional robustness analysis for mitigation and adaptation

Hours worked (weekly) Arrival time Departure time
High Low High Low High Low
(1) (2) (3) (4) (5) (6)

Congestion (weekly, log) -3.694 10.296***
(5.685) (2.258)

Congestion (log) 0.977 -1.740*** 0.452 1.065***
(0.676) (0.344) (0.899) (0.406)

Observations 1,474 1,197 3,508 2,825 3,508 2,825
R-squared 0.059 0.108 0.070 0.167 0.026 0.077

Notes: Standard errors clustered at week-district level in parentheses. Statistical significance at the one,
five, and ten percent levels is indicated by ***, **, and *, respectively. All regressions use the baseline
model and smartphone data.

64



Table A.3: The effect of road accidents on hours worked and departure time from work

Hours worked Arrival Time Departure time Congestion (log)
(1) (2) (3) (4)

No. of accidents
before AM rush hour 0.021 -0.001 0.020 0.010***

(before 6am) (0.053) (0.029) (0.032) (0.003)

during and after AM rush hour 0.023* -0.006 0.017** 0.010***
(6am-5pm) (0.012) (0.006) (0.008) (0.001)

during and after PM rush hour 0.015 -0.008 0.006 0.008***
(5pm-midnight) (0.016) (0.009) (0.010) (0.001)

Observations 6,709 6,709 6,709 6,333
R-squared 0.088 0.104 0.038 0.433

Notes: Standard errors clustered at week-district level in parentheses. Statistical significance at the one, five,
and ten percent levels is indicated by ***, **, and *, respectively. All regressions use the baseline model and
smartphone data.

Table A.4: The effect of traffic congestion on labor income (ENOE)

Labor income (monthly, log)
(1) (2) (3)

Traffic congestion (monthly, log) -0.506** -1.689 -1.389**
-0.217 -1.85 -0.688

Method OLS OLS 2SLS
Fixed effects Month Month, individual Month

Observations 684 684 684
R-squared 0.035 0.982 -0.015

Notes: Standard errors clustered at month-district level in parentheses. Statistical
significance at the one, five, and ten percent levels is indicated by ***, **, and *,
respectively. Traffic congestion is measured as the inverse of the daily average speed at
the district level. All regressions include monthly weather (temperature, precipitation,
humidity), monthly daylight hours, and month fixed-effects, and exclude income from
the top 1% of earners. In column (3), the Kleibergen-Paap rk Wald F-statistic is 10.77,
and the first-stage coefficient is 0.0001 and statistically significant at the one percent
level.
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A.3 Data appendix

A.3.1 Supplemental Data

Weather data I use hourly data about temperature, precipitation, and relative humidity recorded
by ground stations in Mexico City. The data was provided by the national meteorological agency
(CONAGUA).

Daylight hours I calculate daylight hours for each day of the working week by taking the dif-
ference between the sunset and sunshine time at each district location. Sunset and sunshine times
were calculated using astronomical algorithms taking as input the date each individual worked and
the geographic coordinates of the districts where they work. I use the package suncalc in R to
perform these calculations.

ENOE It is the main labor market household survey in Mexico providing monthly and quarterly
information. It is conducted by the National Statistics Office (INEGI) and it collects information
from individuals aged 15 years or more continuously every week from Monday to Sunday throughout
the year. It has a rotating panel design where every five quarters 20% of the sample is replaced.
The quarterly sample size is around 126,000 housing units. It is representative at the national level,
and also at the level of cities such as Mexico City.

Accidents I use administrative records about road accidents collected by the centralized emer-
gency center in Mexico City under the supervision of the local government in Mexico City. The
administrative records contain information about the location (latitude and longitude coordinates),
the date, and the time of the road accident. It also provides information about the type of accidents
and whether the accident involved victims among other details.

EMIM It is a monthly establishment-level survey representative of the manufacturing sector in
Mexico. All establishments report information about the number of employees, earnings, output
value, and sales among other economic characteristics. They report this information every month
of the year. The sample size for 2019 is 10,447.

A.3.2 Smartphone and Traffic Congestion Data Providers

Quadrant It is a global leader in mobile location data, POI data, and corresponding compliance
services. Quadrant provides anonymized location data solutions that are fit for purpose, authentic,
easy to use, and simple to organize. They offer data for almost all countries in the world, with
hundreds of millions of unique devices and tens of billions of events per month, allowing our clients
to perform location analyses, derive location-based intelligence, and make well-informed business
decisions. Their data is gathered directly from first-party opt-in mobile devices through a server-to-
server integration with trusted publisher partners, delivering genuine and reliable raw GPS data,
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unlike other location data sources. Their consent management platform, QCMP, ensures that their
data is compliant with applicable consent and opt-out provisions of data privacy laws governing
the collection and use of location data. More information about the company can be found here:
https://www.quadrant.io/

Dat’s Why It is a leading mobility intelligence platform with +70M smartphones, vehicles, and
sensors collecting in real-time +40B data points annually in Latin America. Using its real-time
Big Data network of Geobehavior, the largest in Mexico, monitors various traffic parameters and
creates smart mobility solutions and analytics. More information about the company can be found
here: https://datswhy.com/

A.3.3 Identify Work Location

• Step 1: Initial sample selection

– Using SQL in Amazon AWS, select those devices with error in location accuracy < 50m,
which is approximately half of a street block.

– Select those devices observed more than seven days in a month to avoid tourists or
sporadic users.

– Select those devices observed at least twice a day to potentially know the arrival and
departure time from a location (e.g. home or work).

• Step 2: Location of establishments

– Use geocoded establishment-level data from DENUE that provides the latitude and
longitude coordinates for each establishment. Use the location of the establishment as a
point of interest (POI).

– Using Python, draw a circular geofence of radius 50m around the POI.
– Using Python, convert the POI with circular geofence into geohash grids (precision 8,

+- 20m).

• Step 3: Combine the smartphone data with the establishment-level data using the geohash
grids.

• Step 4: Use algorithm inspired in Couture et al. (2022)

– Use pings observed from Monday to Friday and between 9 am and 5 pm. These are the
days and times for regular daytime work. Note that the sample here is restricted only for
the purposes of finding the work location. For the statistical analysis, we use all pings
observed during the entire day.

– Calculate how much time each device spends at workplaces (i.e circular geofences around
the POI). As a result, one device may have more than one candidate as a potential work
location given that individuals move around.

– Assign the device to the workplace venue with the longest duration.
– If the duration is 0, then the workplace is the work location with the most daytime visits.
– Finally, the device needs to visit this workplace venue at least 3 times a week.
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A.3.4 Identify Home Location

• Step 1: Initial sample selection

– Using SQL in Amazon AWS, select those devices with error in location accuracy < 50m,
which is approximately half of a street block.

– Select those devices observed more than seven days in a month to avoid tourists or
sporadic users.

– Select those devices observed at least twice a day to potentially know the arrival and
departure time from a location (e.g. home or work).

• Step 2: Location of residential areas

– Using Python, convert the block from the National Geostatistical Framework (MGN)
into polygon geofences.

– Use Census to identify which blocks contain residential places.
– Using Python, convert the polygon geofence into geohash grids (precision 8, +- 20m).

• Step 3: Combine the smartphone data with the residential data using the geohash grids.

• Step 4: Use algorithm inspired in Couture et al. (2022)

– Select blocks with inhabited private homes regardless of whether there are establishments
as well in the block.

– Use pings observed between 9 pm and 5 am. Presumably, these are the times when
daytime workers are at home. Note that the sample here is restricted only for the purposes
of finding the work location. For the statistical analysis, we use all pings observed during
the entire day.

– Calculate how much time each device spends at potential home locations. As a result,
one device may have more than one candidate as a potential home location given that
individuals move around.

– Assign the device to the residential venue with the longest duration.
– If the duration is 0, then the residential place is the home location with the most daytime

visits.
– Finally, the device needs to visit this residential venue at least 3 times a week.
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Appendix B

Chapter 2

B.1 Additional figures

Figure B.1: Balance plot - COVID-19 Cases

Notes: Sample balance before (left panel) and after (right panel) applying the
propensity score matching procedure, using COVID-19 cases number per dis-
trict as treatment variable (1 = above the country median).
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Figure B.2: Deforestation and Food Vulnerability Index

Notes: Figure depicts a binscatter with deforestation (ha) in the vertical axis
and food vulnerability index in the horizontal axis. Both are for the year 2018.
Source: CEPLAN, 2022, MINAM, 2022
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Figure B.3: Sensitivity analysis of violations of parallel trends

Notes: Figure depicts a sensitivity analysis of post-treatment violations of paral-
lel trends. It displays in red the confidence interval for the estimated coefficient
associated with the year 2020 in the original event study in Figure 3.1. It dis-
plays in blue robust confidence intervals that allow for post-treatment violation
of parallel trends to be no more than some constant (e.g. 0.2, 0.4, etc.) larger
than the maximum violation of parallel trends in the pre-treatment period.
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B.2 Additional tables

Table B.1: Variables description and data sources

Variable Description Availability Data Source
Panel A. Forest
Deforestation Forest cover reduction (hectares) in districts 2015-2020 MINAM, 2022

Panel B. Covid
Cases Number of people that tested positive to COVID-19 per district 2020 MINSA, 2022
Deaths Number of people that died due to COVID-19 per district 2020 MINSA, 2022

Panel C. District characteristics
Coca Hectares of coca leaf production per district 2017 COVIDA, 2017
Mining Districts with presence of illegal or informal mining 2016 MINAM, 2016
ANP Districts with presence of a Natural Protected Area 2017 SERNAP, 2017
Roads Number of national roads in the district 2017 MTC, 2022
Rivers River’s area in the district (km2) 2017 MTC, 2022
Population Population in the district 2017 & 2020 CEPLAN, 2020
Area District’s area (km2) 2019 CEPLAN, 2020
HDI Human development index 2015 & 2019 CEPLAN, 2020
Slope Average slope of district 2007 Farr et al, 2007
Altitud Average altitude of district (masl) 2020 CEPLAN, 2022

Notes: Table displays the description, availability, and source for the main variables. All variables are at the annual level.
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Table B.2: Summary statistics by treated and control districts

Treated districts Control districts
(1) (2)

Panel A. Forest
Deforestation 555.61 96.26

(875.58) (333.92)
Panel B. Covid
Cases 503.26 8.88

(1045.34) (7.38)
Deaths 32.99 2.6

(99.03) (14.62)
Panel C. District characteristics
Coca 540.58 323.64

(842.53) (647.61)
Mining 0.15 0.04

(0.36) (0.20)
ANP 0.17 0.06

(4.69) (0.24)
Roads 1.38 1.06

(0.38) (2.44)
Rivers 32.21 5.6

(63.54) (17.82)
Population (2020) 18796.32 3970.17

(25626.16) (6892.91)
Area 2732.18 956.52

(4259.16) (2330.02)
HDI (2019) 0.39 0.34

(0.10) (0.08)
Indigenous populations 2370.08 939.14

(3923.48) (2033.48)

Observations 257 142
Notes: Table displays summary statistics of the main variables. Column (1) shows the mean

values for districts with COVID-19 cases above the median. Column (2) shows the mean
values for districts with COVID-19 cases below the median. In Panel A, deforestation corre-
sponds to 2015.
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Table B.3: Main results with different periods

Dependent variable: Deforestation (ha)
(1) (2)

Year 2020 118.1***
(22.284)

DiD 176.54***
(27.76)

Design Event study Difference-in-Difference

Pre-pandemic period 2015-2019 2019

N 800 798
R-squared 0.940 0.18

Notes: Estimated standard errors, reported in parentheses, are clustered at
the district level. Significance at the one, five and ten percent levels is indicated
by ***, ** and *, respectively. Column (1) and Column(2) present the results
of estimating Equation 2.1 and Equation 2.2, respectively.
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Table B.4: Heterogeneous effects with all regressors

Dependent variable:
Annual rate of forest change, 2019-2020

(1) (2)
Year 2020 2.19*** 2.17***

(0.21) (0.21)
Mining 0.17* 0.18*

(0.09) (0.09)
Coca 0.21** 0.19*

(0.10) (0.10)
Protected areas -0.34*** -0.44***

(0.08) (0.08)
Population density -0.00 -0.00

(0.00) (0.00)
River area (m2) -0.00*** -0.00***

(0.00) (0.00)
Altitud (m) -0.00*** -0.00***

(0.00) (0.00)
Number of vias -0.01 -0.01

(0.01) (0.01)
Distance to Lima -0.00*** -0.00***

(0.00) (0.00)
Slope -0.02*** -0.03***

(0.01) (0.01)

N 394 394
R-squared 0.53 0.54

Notes: Estimated standard errors, reported in parentheses, are clustered
at the district level. Significance at the one, five, and ten percent levels is
indicated by ***, **, and *, respectively.
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Table B.5: CO2 emission and economic loss

tCO2(millions) Economic loss (millions USD)
Lower bound 12.7 98.25
Average 17 131.38
Upper bound 21.3 164.53

Notes: Table displays the estimates of tCO2-eq and economic losses (million
USD) caused by the deforestation originated by COVID-19. We use the estimate
from column 1 of Table ??, as well as the confidence interval to obtain the lower
and upper bound.
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Appendix C

Chapter 3

C.1 Additional figures
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Figure C.1: Temperature Distribution in Peru.

(a) Avg. Max Temperature (°C) in 2015 (district level)

(b) Coast vs. Highlands

Notes: Figure depicts the temperature distribution for Peru. Panel (a) shows the average temperature
for each district for the year 2015. Panel (b) shows the distribution of temperature on the coast and the
highlands for the period 2007-2015. The figure uses maximum temperature and ERA5 data.
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Figure C.2: Effect of Temperature on Work Time: Outdoor vs. Informal.

Notes: Figure depicts the estimates of the effect on hours worked of shifting a day from the reference bin
(18-21°C) to a given bin during the working week. Outdoor jobs consider only workers in high-risk indus-
tries such as agriculture, fishing, mining, manufacturing, transportation, and utilities. Jobs are informal
if the production unit is not registered for tax purposes or the worker is not covered by social security.
Circles represent point estimates from regressing total working hours on temperature bins, controlling for
precipitation, humidity, daylight hours, sociodemographics, and location and time fixed-effects. Vertical
lines show 95 percent confidence intervals calculated using standard errors clustered at the region-month
level. The figure uses maximum temperature, ERA5 data, and excludes the jungle.
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Figure C.3: Intertemporal Labor Substitution: Informal vs. Formal

(a) Formal workers

(b) Informal workers

Notes: Figure depicts the cumulative effect of temperature on working hours across the contemporaneous
and (one-week) lagged weeks for formal and informal workers. All regressions control for precipitation,
humidity, daylight hours, sociodemographics, and location and time fixed-effects. Vertical lines show 90
percent confidence intervals calculated using standard errors clustered at the region-month level. The figure
uses daily maximum temperature, ERA5 data, and excludes the jungle.
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Figure C.4: Intertemporal Substitution of Working Hours: Informal vs. Formal.

Notes: Figure depicts the effects of contemporaneous (solid line) and one-week lagged (dashed line) tem-
perature bins on working hours for workers with informal and formal jobs. The regression includes pre-
cipitation, humidity, daylight hours, sociodemographics, and location and time fixed-effects. Vertical lines
show 95 percent confidence intervals calculated using standard errors clustered at the region-month level.
The figure uses daily maximum temperature, ERA5 data, and excludes the jungle.
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C.2 Additional tables

Table C.1: Summary Statistics.

All Informal Formal Outdoor Indoor
(1) (2) (3) (4) (5)

Hours (weekly)
Main job 39.71 37.60 49.05 38.48 41.32
Secondary job 15.82 16.17 13.32 16.63 14.67
All jobs 43.46 41.73 51.13 42.56 44.64

Weather (average)
Max Temperature (°C) 19.79 19.47 21.24 18.90 20.97
Min Temperature (°C) 12.21 11.65 14.70 10.85 13.99
Precipitation (mm) 30.94 35.25 11.85 39.99 19.10
Humidity (°C) 10.97 10.46 13.25 9.70 12.63
Daylight (hours) 12.10 12.10 12.08 12.10 12.10

Sociodemographics
Income (logs) 9.84 9.71 10.40 9.61 10.13
Education (years) 8.94 8.23 12.10 7.90 10.30
Age (years) 38.87 38.87 38.89 39.62 37.90
Married 0.32 0.31 0.37 0.35 0.29
Female 0.45 0.47 0.35 0.32 0.62
Spouse at home 0.80 0.80 0.78 0.84 0.74
Number of children 0.43 0.47 0.29 0.47 0.39
Percent over age 65 0.08 0.08 0.06 0.09 0.07
Permanent 0.04 0.00 0.18 0.03 0.04
Full-time 0.54 0.47 0.81 0.51 0.57
On Vacation 0.01 0.01 0.03 0.02 0.01
Rural 0.29 0.35 0.04 0.46 0.08

N 117,430 101,901 15,529 75,665 41,765
Notes: This table presents the mean of the main outcomes and covariates for different samples. Column (1)
considers all workers. Column (2) considers only workers with informal jobs. Jobs are informal if the production
unit is not registered for tax purposes or the worker is not covered by social security. Column (3) considers
only workers with formal jobs. Column (4) considers only workers in high-risk industries such as agriculture,
fishing, mining, manufacturing, transportation, and utilities. Column (5) considers individuals working in all
the other industries not cataloged as high risk. Hours are reported for the reference week which is the last week
previous to the interview week. All weather variables are daily averages, except precipitation which is measured
at the monthly level. Income is proxied by household expenditure. Education and age are reported in years. All
columns use ERA5 data and exclude the jungle.
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Table C.2: Temperature Variation under different Fixed Effects and Trends.

Average Temperature (°C) Maximum Temperature (°C)
R2 σe |e| > 1 R2 σe |e| > 1
(1) (2) (3) (4) (5) (6)

1 Constant 6.13 93.4% 0 5.90 89.9%
2 District FE 0.94 1.49 41.1% 0.93 1.56 44.1%
3 District FE, Linear Year 0.94 1.48 41.3% 0.93 1.56 44.2%
4 District FE, Quadratic Year 0.94 1.48 41.1% 0.93 1.56 44.1%
5 District FE, Cubic Year 0.94 1.47 40.8% 0.93 1.55 44.1%
6 Distict and Year FEs 0.94 1.46 40.5% 0.93 1.54 43.6%
7 District, Year and Month FEs 0.97 1.09 33.6% 0.95 1.33 42.9%
8 District, Year and Week FEs 0.97 1.08 33.0% 0.95 1.32 42.2%
9 Distict and Province*Year FEs 0.95 1.39 36.0% 0.94 1.46 38.9%
10 Distict, Province*Year and Province*Month FEs 0.99 0.62 10.0% 0.98 0.77 17.4%
11 Distict, Province*Year and Province*Week FEs 0.99 0.50 6.0% 0.99 0.64 11.2%
12 Distict, Year*Month and Province*Month Fes 0.99 0.64 10.9% 0.98 0.80 19.0%
13 Distict and Region*Year FEs 0.94 1.44 39.3% 0.93 1.51 42.1%
14 Distict, Region*Year and Region*Month FEs 0.98 0.80 17.0% 0.97 0.98 25.9%
15 Distict, Region*Year and Region*Week FEs 0.99 0.74 13.7% 0.98 0.92 22.4%
16 Distict, Year*Month and Region*Month FEs 0.98 0.78 16.0% 0.97 0.96 24.8%
17 Distict, Year and Region*Month FEs 0.98 0.84 19.7% 0.97 1.02 28.8%
18 Distict, Region*Year and Month FEs 0.97 1.05 32.0% 0.95 1.30 41.1%
19 Distict, Region*Year and Week FEs 0.97 1.04 31.5% 0.95 1.29 41.3%
20 Distict, Year*Month and Month FEs 0.97 1.04 32.1% 0.95 1.28 40.6%
21 Distict, Year*Month and Week FEs 0.97 1.03 31.1% 0.95 1.28 40.1%
22 Individual FE 0.98 0.62 19.5% 0.97 0.75 25.4%
23 Individual and Year and Month FEs 0.99 0.58 17.8% 0.98 0.72 23.9%
24 Individual and Region*Month and Year*Month FEs 0.99 0.51 15.4% 0.98 0.64 20.5%

Notes: This table presents the temperature variation remaining after controlling for different location and time fixed
effects, and time trends. Columns (1) and (4) report the R2 for the regression of temperature on the corresponding
location and time fixed effects, and time trends. Columns (2) and (5) report the standard deviation of the residuals
(remaining temperature variation). Columns (3) and (6) report what fraction of the observations have a residual that
is larger than 1°C. Columns (1), (2) and (3) use average temperature, while Columns (4), (5) and (6) uses maximum
temperature.

83



Table C.3: Temperature Bins Variation under different Fixed Effects and Trends.

Maximum Temperature Bins (°C)
< 12 12-15 15-18 18-21 21-24 24-27 > 27

1 Constant 1.23 1.83 1.49 1.55 1.51 1.23 1.37
2 District FE 0.36 0.55 0.62 0.83 0.80 0.74 0.30
3 District FE, Linear Year 0.38 0.55 0.63 0.86 0.82 0.75 0.31
4 District FE, Quadratic Year 0.38 0.55 0.63 0.86 0.82 0.75 0.32
5 District FE, Cubic Year 0.40 0.56 0.63 0.85 0.82 0.75 0.33
6 Distict and Year FEs 0.42 0.56 0.64 0.87 0.84 0.76 0.34
7 District, Year and Month FEs 0.43 0.58 0.66 0.94 0.89 0.83 0.42
8 District, Year and Week FEs 0.44 0.59 0.66 0.94 0.90 0.84 0.43
9 Distict and Province*Year FEs 0.32 0.49 0.57 0.79 0.76 0.71 0.29
10 Distict, Province*Year and Province*Month FEs 0.29 0.43 0.49 0.51 0.51 0.40 0.17
11 Distict, Province*Year and Province*Week FEs 0.21 0.31 0.37 0.41 0.43 0.34 0.14
12 Distict, Year*Month and Province*Month Fes 0.40 0.52 0.56 0.57 0.60 0.45 0.23
13 Distict and Region*Year FEs 0.38 0.56 0.64 0.85 0.81 0.75 0.31
14 Distict, Region*Year and Region*Month FEs 0.37 0.55 0.61 0.64 0.66 0.52 0.24
15 Distict, Region*Year and Region*Week FEs 0.36 0.53 0.59 0.62 0.64 0.51 0.23
16 Distict, Year*Month and Region*Month FEs 0.43 0.57 0.62 0.67 0.72 0.56 0.28
17 Distict, Year and Region*Month FEs 0.41 0.55 0.61 0.66 0.69 0.54 0.26
18 Distict, Region*Year and Month FEs 0.41 0.58 0.65 0.93 0.88 0.83 0.41
19 Distict, Region*Year and Week FEs 0.42 0.59 0.66 0.93 0.89 0.84 0.42
20 Distict, Year*Month and Month FEs 0.46 0.59 0.66 0.94 0.91 0.84 0.43
21 Distict, Year*Month and Week FEs 0.46 0.60 0.66 0.94 0.91 0.84 0.43
22 Individual FE 0.27 0.41 0.41 0.38 0.37 0.27 0.12
23 Individual and Year and Month FEs 0.32 0.43 0.44 0.43 0.41 0.31 0.15
24 Individual and Region*Month and Year*Month FEs 0.35 0.45 0.45 0.43 0.44 0.31 0.17

Notes: This table presents residual variation available after removing district fixed effects and other controls for each
bin. The number of days in each bin is regressed on different location and time fixed effects. The absolute value of the
residual is then averaged over all observations.
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Table C.4: Working Hours Variation.

All Informal Formal Outdoor Indoor
(1) (2) (3) (4) (5)

Between 18.49 18.55 18.60 17.32 21.58
Within 11.47 11.09 9.95 10.27 11.24

Notes: This table presents the between and within decomposition of the
standard deviation for the main outcome variable in our regressions (i.e.
total weekly working hours).
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Table C.5: Effect of Temperature on Work Time.

All Informal Formal Outdoor Indoor
(1) (2) (3) (4) (5)

Temperature (Â°C)
< 12 0.02 -0.07 0.77* 0.00 -0.07

(0.10) (0.11) (0.45) (0.12) (0.19)
12-15 0.00 -0.08 0.46* -0.14 0.29*

(0.08) (0.09) (0.25) (0.10) (0.15)
15-18 0.08 0.02 0.35** 0.01 0.26***

(0.06) (0.07) (0.17) (0.08) (0.09)
21-24 -0.03 -0.08 0.15 -0.05 0.02

(0.04) (0.05) (0.10) (0.06) (0.07)
24-27 -0.06 -0.12 0.16 -0.15* 0.05

(0.07) (0.08) (0.14) (0.08) (0.09)
> 27 -0.26** -0.42*** 0.38 -0.30** -0.20

(0.11) (0.12) (0.27) (0.13) (0.16)

N 117,428 101,899 15,457 75,663 41,723
Notes: This table presents estimated coefficients and standard errors from regressing total working hours
on temperature bins. Each column represents a separate regression. Column (1) considers all workers. Col-
umn (2) considers workers with informal jobs (i.e. jobs where the production unit is not registered for tax
purposes or the worker is not covered by social security). Column (3) considers workers with formal jobs.
Column (4) considers only workers in high-risk industries such as agriculture, fishing, mining, manufactur-
ing, transportation, and utilities. Column (5) considers individuals working in all the other industries not
cataloged as high risk. All regressions control for precipitation, humidity, daylight hours, sociodemographics,
and location and time fixed-effects. All columns use maximum temperature, ERA5 data, and exclude the
jungle. Estimated standard errors, reported in parentheses, are clustered at the region-month level. Signifi-
cance at the one, five, and ten percent levels is indicated by ***, **, and *, respectively.
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Table C.6: Effect of Temperature on Work Time: Informal vs.
Outdoor.

Bins Bins*Outdoor Bins*Informal
(1) (2) (5)

Temperature (°C)
< 12 -0.09 -0.01 0.61***

(0.12) (0.09) (0.15)
12-15 0.06 -0.19*** 0.30**

(0.09) (0.07) (0.12)
15-18 0.16* -0.22** 0.20

(0.09) (0.08) (0.15)
21-24 -0.06 -0.03 0.15

(0.05) (0.07) (0.10)
24-27 -0.02 -0.12* 0.03

(0.07) (0.07) (0.09)
> 27 -0.44*** 0.15* 0.45***

(0.11) (0.08) (0.10)

N 117,428
Notes: This table presents estimated coefficients and standard errors from re-
gressing total working hours on temperature bins, temperature bins interacted
with an indicator variable for outdoor jobs, and temperature bins interacted
with an indicator variable for informal jobs. Column (1) shows the estimates
for the temperature bins. Column (2) shows the estimates for the interaction
between temperature bins and the indicator variable for outdoor jobs. Column
(3) shows the estimates for the interaction between temperature bins and the
indicator variable for informal jobs. A job is informal if the production unit is
not registered for tax purposes or the worker is not covered by social security.
Individuals with outdoor jobs work in high-risk industries such as agriculture,
fishing, mining, manufacturing, transportation, and utilities. The regression
controls for precipitation, humidity, daylight hours, sociodemographics, and
location and time fixed-effects. All columns use maximum temperature, ERA5
data, and exclude the jungle. Estimated standard errors, reported in paren-
theses, are clustered at the region-month level. Significance at the one, five,
and ten percent levels is indicated by ***, **, and *, respectively.
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Table C.7: Effect of Current and Lagged Temperature on Working Hours.

Weeks
t t-1 t + t-1

(1) (2) (3)

Temperature (°C)
< 12 -0.06 0.19* 0.13

(0.12) (0.11) (0.12)
12-15 -0.02 0.04 0.01

(0.09) (0.09) (0.10)
15-18 0.10 -0.02 0.07

(0.07) (0.07) (0.07)
21-24 0.04 -0.09 -0.05

(0.06) (0.06) (0.05)
24-27 -0.05 -0.01 -0.06

(0.11) (0.11) (0.07)
> 27 -0.43*** 0.19 -0.24*

(0.15) (0.14) (0.12)

N 117,428
Notes: This table presents estimated coefficients and standard errors from regressing working hours on
temperature bins. Column (1) shows estimates for the contemporaneous (t) temperature bins. Column
2 shows estimates for the one-week lagged (t-1) temperature bins. Column (3) shows the summation
of the effects across weeks t and t-1. All regressions control for precipitation, humidity, daylight hours,
sociodemographics, and location and time fixed-effects. All columns use daily maximum temperature,
ERA5 data, and exclude the jungle. Estimated standard errors, reported in parentheses, are clustered at
the region-month level. Significance at the one, five, and ten percent levels is indicated by ***, **, and *,
respectively.
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Table C.8: Effect of Temperature on Working Hours.

All
(1)

Temperature (°C)
< 9 -0.36**

(0.17)
9-12 0.01

(0.11)
12-15 -0.02

(0.08)
15-18 0.07

(0.06)
21-24 -0.01

(0.04)
24-27 -0.01

(0.06)
27-30 -0.24**

(0.11)
> 30 -0.05

(0.14)

N 117,428
Notes: This table presents estimated coefficients and stan-
dard errors from regressing total working hours on temper-
ature bins for all workers. Regression controls for precipi-
tation, humidity, daylight hours, sociodemographics, and
location and time fixed-effects. Estimation uses daily max-
imum temperature, ERA5 data, and excludes the jungle.
Estimated standard errors, reported in parentheses, are
clustered at the region-month level. Significance at the
one, five, and ten percent levels is indicated by ***, **,
and *, respectively.
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Table C.9: Effect of Temperature on Working Hours - Narrow Bins.

All
Temperature (°C)
< 12 -0.05

(0.11)
12-14 0.02

(0.09)
14-16 -0.09

(0.08)
16-18 0.11

(0.07)
20-22 -0.00

(0.05)
22-24 0.06

(0.06)
24-26 0.03

(0.07)
26-28 -0.02

(0.11)
28-30 -0.14

(0.12)
> 30 0.09

(0.14)

N 117,428
Notes: This table presents estimated coefficients and stan-
dard errors from regressing total working hours for all work-
ers on narrower temperature bins. Regression controls for
precipitation, humidity, daylight hours, sociodemographics,
and location and time fixed-effects. Estimation uses daily
maximum temperature, ERA5 data, and excludes the jun-
gle. Estimated standard errors, reported in parentheses, are
clustered at the region-month level. Significance at the one,
five, and ten percent levels is indicated by ***, **, and *,
respectively.
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Table C.10: Alternative Measures of Tempera-
ture.

All

Panel A
Sin(temperature) -0.28***

(0.09)
Panel B
Temperature 0.01

(0.06)
Panel C
Temperature 0.03

(0.19)
Temperature2 -0.00

(0.00)
Panel D
DD ( 7 days) -0.00

(0.01)
HDD (7 days) 0.01

(0.02)

N 117,428
Notes: This table presents estimated coefficients and
standard errors from regressing working hours on dif-
ferent measures of temperature. All regressions control
for precipitation, humidity, daylight hours, and sociode-
mographics. All columns use daily maximum tempera-
ture, ERA5 data, and exclude the jungle. Estimated
standard errors, reported in parentheses, are clustered
at the region-month level. Significance at the one, five,
and ten percent levels is indicated by ***, **, and *,
respectively.
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