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Abstract

This thesis presents recent advances in the optimal control of stochastic thermody-
namic systems. It covers isothermal stochastic thermodynamics, including the use of
linear response, thermodynamic geometry, and optimal transport. New techniques for
identifying minimum-dissipation protocols for fast and strong control are introduced,
and the thermodynamic-geometry framework is extended to minimizing higher-order
moments of the work distribution. Higher-order corrections beyond linear response
are also derived. These concepts are demonstrated using a model of driven barrier
crossing relevant to DNA-hairpin experiments and applied to free-energy estimation.
Keywords: Optimal control; Thermodynamics; Stochastic; Biophysics
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Chapter 1

Introduction

In this thesis I discuss recent progress in optimal control of stochastic thermodynamic sys-
tems. I study isothermal stochastic thermodynamics describing control by linear response,
thermodynamic geometry, and optimal transport. I derive novel methods for determin-
ing minimum-dissipation protocols for fast and strong control. Additionally, I extend the
thermodynamic-geometry framework to minimizing higher-order moments of the work dis-
tribution and derive higher-order corrections beyond standard linear response. These results
are illustrated with model systems relevant to biophysical experiments and applications to
free-energy estimation: driven barrier crossings, rotary motors, and Ising models. Portions
of the introduction to this thesis have been adapted from my review article published as
Ref. 1.

1.1 Relevant History of Thermodynamics

Thermodynamics as a modern science can be traced back to the 18th century and the inven-
tion of the steam engine (Fig. 1.1). The Newcomen engine (1712, ∼ 10 m) was designed to
exploit vacuum pressure to draw water from flooded mines. Steam engines played a crucial
role in the rise of the industrial revolution. By the 19th century, steam engines were widely
applied in mining but still remained inefficient.2 Mindful of their inefficiency, Sadi Carnot
studied the theoretical aspects and design of maximally efficient engines, published in his
Reflections on the Motive Power of Fire.2 This is widely considered the start of modern
thermodynamics, leading to increases in engine efficiency and ultimately the development
of the modern form of the first and second laws of thermodynamics by Clausius in 1850.2
In 1877, Boltzmann began the development of statistical mechanics with the kinetic theory

1
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Fig 1.1. Relevant history of thermodynamics. Top: time increases from left to
right, from the invention of the Newcomen engine in 1712 to the studies of
molecular machines of the present day. Bottom: as time moves forward the systems
that can be built or studied decreases in size from macroscopic (Newcomen engine,
∼ 101 m), to microscopic (molecular machines, 10−6 m to 10−9 m).

of gases and a microscopically inspired definition of entropy. This led to the modern for-
mulation of entropy and the second law,3 placing fundamental bounds on the efficiency of
thermodynamic machines. At this time the machines and motors were macroscopic, often
the size of an entire building;4 however, over time the systems of interest grew ever smaller,
creating a desire for experimental and theoretical studies of microscopic systems.

Inspired by Boltzmann’s work, Einstein theoretically described Brownian motion (1905),5
a mathematical description of the motion of microscopic particles (∼ 10−6 m) in a fluid.
This was quickly experimentally confirmed by Jean Perrin,6 who tracked the motion of gam-
boge and mastic grains under a microscope by hand on graph paper. With the discovery
of optical tweezers in 1970,7 researchers gained the ability to directly manipulate and drive
microscopic systems. Additionally, optical tweezers can be used to indirectly manipulate
and observe nanoscopic systems such as DNA hairpins8–13 and molecular machines.14–24

Molecular machines are remarkable contraptions that harness free energy at the micro-
scopic scale to perform useful tasks. For example, the rotary motor ATP synthase harnesses
a proton gradient across the mitochondrial membrane to drive a crankshaft to synthesize
ATP, an essential energy storage unit for the cell. This molecular machine has remarkable
similarities to macroscopic thermodynamic machines: it transforms a thermodynamic free
energy into work and heat to perform a task; however, it operates at a much smaller scale
than macroscopic machines.

There are several properties unique to small-scale systems: due to their small scale they

2



are constantly bombarded by fluctuations which are comparable to their operational energy
scale (of order kBT ), and they operate on timescales comparable to their natural relaxation
time implying that they are inherently out of thermodynamic equilibrium. Therefore, the
macroscopic theory of thermodynamics cannot be directly applied to microscopic systems.
This led to a desire for a thermodynamic theory of microscopic systems. The modern theory
of the thermodynamics of small-scale systems goes under the name of stochastic thermody-
namics, which describes the nonequilibrium energetics of fluctuating systems. Despite the
apparent difficulty in describing nonequilibrium and fluctuating systems, stochastic ther-
modynamics has surprisingly general results such as the Crooks fluctuation theorem and
the Jarzynski equality.25,26

Inspired by the study of maximally efficient engines at the macroscopic scale, I take
a similar approach for small-scale systems. Studying efficient motors in stochastic ther-
modynamics leads to not only direct applications to improved experimental studies and
free-energy estimates, but also improves the fundamental understanding of stochastic ther-
modynamic systems.

1.2 Overview of Thermodynamic Control

Historically, modern thermodynamic control began with the study of finite-time thermo-
dynamics of macroscopic systems,27–29 the natural extension beyond quasistatic (infinitely
slow) processes. Any finite-time thermodynamic control will induce some degree of irre-
versibility, manifesting as energy dissipated into the environment. A goal of finite-time
thermodynamics is to quantify and minimize this dissipation through the use of designed
control strategies. For example, Ref. 30 studied the optimal cycle for finite-time operation
of a heat engine and found that instantaneous jumps in control parameters are necessary
to minimize dissipation.

In parallel, a thermodynamic-geometry framework was developed to provide a novel
means to describe thermodynamic processes on a smooth (generally Riemannian) mani-
fold.31–33 Ref. 34 showed the connections between thermodynamic geometry and minimum-
dissipation protocols, opening the door for the development of a geometric description of
minimum-dissipation protocols. Although theoretically compelling, the utility of the frame-
work was not fully realized until the development of stochastic thermodynamics.

The aforementioned descriptions focused on macroscopic systems that equilibrate rapidly
and whose fluctuations are relatively small. The advent of modern experimental techniques,
including single-molecule biophysical experiments, created demand for a theoretical descrip-
tion of the energetics of microscopic systems. To describe these small-scale systems, the field
of stochastic thermodynamics was developed.35,36 Just like its macroscopic counterpart, a

3



Fig 1.2. Schematic illustrating the differences between parametric control and full
control. Parametric control (top) adjusts a finite number of control parameters λ(t)
according to a protocol Λ between specified endpoints, thereby driving the
probability distribution pt(r,Λ). Full control (bottom) assumes complete control of
the probability distribution pt(r) (shaded) which can be optimally driven between
the endpoints by a time-dependent potential V (r, t) (red curves).

central goal of stochastic thermodynamics is the description of optimal control strategies:
methods for performing a given task at minimum energetic cost.37,38

In this thesis I consider two distinct but related types of control: full control (section 4.1)
and parametric control (section 4.2). Full control assumes complete control of the proba-
bility distribution39 (Fig. 1.2, top). Parametric control adjusts a finite number of control
parameters (Fig. 1.2, bottom) to drive the probability distribution. For a more general and
detailed discussion of control theory and its applications to physics see Ref. 40.
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1.2.1 Exact Solution

For either full or parametric control, the exact minimum-dissipation protocol is known if
the probability distribution is Gaussian throughout the protocol.41–43 These exact solutions
provide a glimpse into the properties of optimal control processes. For example, just like the
finite-time thermodynamic control described previously, the minimum-dissipation protocol
has discontinuous changes in control parameters at the start and end of the protocol but
remains continuous between these endpoints.41 These discontinuities are present even for
underdamped dynamics.44 The control-parameter jumps have been observed in a number
of different systems44–46 and are now well understood and have been shown to be a general
feature.47

1.2.2 Full Control

For more general solutions under full control, the study of minimum-dissipation protocols
can be mapped onto optimal-transport theory, a well-developed branch of mathematics for
which there exist numerous algorithms and methods for determining the optimal-transport
map.48,49 The connection between minimum-dissipation protocols and optimal-transport
theory was first shown in Ref. 50 for overdamped dynamics: the protocol that minimizes
dissipation when driving a system obeying overdamped Fokker-Planck dynamics between
specified initial and final distributions is governed by the Wasserstein distance51–54 and
the Benamou-Brenier formula.55 This technique eventually led to new fundamental lower
bounds on the average work required for finite-time information erasure.39,56 Initially only
applicable to overdamped dynamics, the connections between optimal-transport theory and
minimum-dissipation protocols have recently been shown for discrete-state and quantum
systems.53,57–61

1.2.3 Parametric Control

General solutions for parametric control are typically difficult to determine, although re-
cent progress has been made towards exact solutions for general systems building off of
optimal-transport59 or advanced numerical techniques.45,62,63 Although exact solutions are
convenient where possible, the determination of minimum-dissipation protocols can be con-
siderably simplified through approximate methods. Inspired by a diagram presented in Ref.
64, I schematically show in Fig. 1.3 the limits where minimum-dissipation protocols are
known.

Linear-response theory can be used to determine the minimum-dissipation protocol for
weak perturbations and performs relatively well at any driving speed and beyond its strict
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range of validity.64,65 For slow control, the thermodynamic-geometry framework has been
generalized to stochastic thermodynamic systems33,66 and has been used to explore a diverse
set of model systems,66–79 including DNA-pulling experiments80 and free-energy estima-
tion.81 In the opposite limit of fast control, minimum-dissipation protocols are described by
short-time efficient protocols47, which can be combined with the thermodynamic-geometry
framework to design interpolated protocols that perform well at any driving speed.82 Lever-
aging known solutions from optimal-transport theory, strong control can be described by the
strong-trap approximation, yielding explicit solutions for minimum-dissipation protocols.43

1.2.4 Related Work

There are a number of related topics which are not covered in this thesis, such as opti-
mal control of heat engines (including optimal cycles78,79,83–86 and efficiency at maximum
power54,87–100) and optimal control in quantum thermodynamics (including thermodynamic
geometry68,72,101,102 and shortcuts to adiabaticity103–105).

1.3 Organization

This thesis is organized as follows: I begin with examples of both experimental and theo-
retical model systems in chapter 2, followed by a brief introduction to stochastic thermo-
dynamics of heat, work, and entropy production in chapter 3. Chapter 4 reviews recent
progress in the optimal control of stochastic thermodynamics, including full control (sec-
tion 4.1) and parametric control (section 4.2) under weak 4.2.1 or slow 4.2.2 driving. An
introduction to free-energy estimation is presented in chapter 5. Chapter 6 extends the
slow-control approximations to account for higher-order corrections and moments of the
work distribution, chapter 7 derives a novel approximation and method for determining
minimum-dissipation protocols for fast driving, and chapter 8 derives an approximation for
determining minimum-dissipation protocols for strong control, filling out all the sides of the
diagram in Fig. 1.3. Chapter 9 then applies all these techniques to driven barrier crossing,
before chapter 10 concludes with a perspective and outlook.

Chapters 1, 2, 3, 4, and 5 are adapted from my review published as Ref. 1. Chapter 6 is
adapted from Ref. 81, chapter 7 from Ref. 47, chapter 8 from Ref. 43, and chapter 9 from
Ref. 82. In all cases I am the first author and performed the majority of the writing, editing,
and analysis. The Ising-model calculations and analysis in chapter 7 were performed by
coauthor Miranda D. Louwerse, whereas all other numerical calculations were performed
by me as described in appendix A.
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Chapter 2

Model Systems

In this chapter I provide a brief introduction to paradigmatic model systems that moti-
vate and guide the study of optimal control in stochastic thermodynamics. As discussed
in chapter 1, the growth of stochastic thermodynamics coincides with the advent of new
experimental techniques used to manipulate and measure single-molecule biophysical sys-
tems.14–24 First and foremost among these techniques are laser optical tweezers106–108 which
can be used to trap microscopic Brownian systems.

2.1 Quadratic Trap

The simplest experimental apparatus for studying stochastic thermodynamics is that of
a microscopic bead trapped in an optical potential. From a theoretical perspective, this
system is well approximated by continuous overdamped Brownian motion in a quadratic
constraining potential. In these experiments, the center and stiffness of the trapping po-
tential can be dynamically controlled to manipulate the system. With the use of feedback
control, this experimental apparatus can be augmented to realize a virtual constraining
potential of any form109–111 and can, for example, be used to study fundamental bounds
on information processing through bit erasure.112–116

The system is driven by a quadratic trapping potential

Vtrap[r, rc
t ,Kt] = 1

2 [r − rc
t ]
>Kt [r − rc

t ] . (2.1)

r is the position vector of the bead, rc
t is the position of the trap center, K is the symmetric

stiffness matrix, superscript > is the vector transpose, and subscript t denotes a variable at
time t.
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DNA hairpin ATP synthase nanomagnetic bit

Folded

Unfolded

h⃗ θ
⃗m

VtrapVhp Vtot

average position ∼ variance

barrier crossing Ising modelrotary motor

spin state magnetic field

a) b) c)

d) e) f)

Fig 2.1. Model systems typical of stochastic thermodynamic control (top): a) DNA
hairpin driven between folded and unfolded states by laser optical tweezers, b) ATP
synthase driven by a magnetic trapping potential, and c) nanomagnetic bit driven
by an external magnetic field. Simplified theoretical descriptions (bottom) of the
model systems in the top row: d) symmetric barrier-crossing model, e) Brownian
rotary motor model, and f) nine-spin Ising model with independent magnetic fields
applied to each spin.
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2.2 Barrier Crossing

Microscopic beads trapped by laser optical tweezers can be attached to biopolymers to
probe their properties. For example, dual-trap optical tweezers can be used to fold and
unfold DNA or RNA hairpins by modulating the separation between the trapping potentials
(Fig. 2.1 a).8–13 Monitoring the positions of the probe beads provides insight into the
properties of the indirectly observed biopolymers. The simplest model representing this
process is that of a driven barrier crossing,117 where a Brownian system is dynamically
driven over an energy barrier by a time-varying quadratic trapping potential (Fig. 2.1
d).66,82

The total potential Vtot[x, xc(t), k(t)] = Vland[x] + Vtrap[x, xc(t), k(t)] is the sum of
the static energy landscape Vland[x] and time-dependent trap potential Vtrap[x, xc(t), k(t)]
(shown schematically in Fig. 2.1d). For this model the static energy landscape is given by
the hairpin potential Vhp, which is modeled as a static double well (symmetric for simplic-
ity) with the two minima at x = 0 and x = ∆xm respectively representing the folded and
unfolded states,12,13,66,117

Vhp(x) = Eb

[(2x−∆xm
∆xm

)2
− 1

]2

, (2.2)

for position x, barrier height Eb, distance xm from the minimum to barrier, and distance
∆xm = 2xm between the minima. The system is driven by a quadratic trap (2.1) with
time-dependent stiffness and center.

2.3 Rotary Motor

Magnetic traps can be used to probe the F1 component of the rotary motor ATP synthase
(Fig. 2.1 b),14–16 which is driven periodically to synthesize ATP, an essential and portable
energy source for the cell. Once again, microscopic beads are used to probe the properties
of the molecular machine and can be dynamically driven (Fig. 2.1 e); however, the control
differs from driven barrier crossing in that the driving is periodic.

As a simple model rotary motor, consider a one-dimensional energy landscape (Fig. 2.1e),

Vland(x) = Eb
2

(
1− cos 2π

∆xm
x

)
+ ∆E

∆xm
x , (2.3)

consisting of periodic (first term) and linear (second term) contributions to the energy
landscape. The barrier height is Eb, the distance from peak to well is xm, the distance
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between wells is ∆xm = 2xm, and the machine transduces energy ∆E per barrier crossing.
The system is driven by a quadratic trap (2.1) with time-dependent stiffness and center.

2.4 Nanomagnetic Bit

As a final example, consider a nanomagnetic bit characterized by its spin state or average
magnetization (Fig. 2.1 c). By applying an external magnetic field, the system state can be
driven from all spin-down to all spin-up, reversing the magnetization and resulting in a bit
flip.118 This type of system is typically modeled with a discrete state space, e.g., the Ising
model (Fig. 2.1 f), and optimal control of this system has been investigated.75–77 Due to
the discrete state space, the properties of optimal control can differ from those for a system
with a continuous state space.
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Chapter 3

Dynamics and Thermodynamics

Stochastic thermodynamics as presented in this thesis uses dynamical probabilistic mod-
els of microscopic systems to determine nonequilibrium transformations of energy through
work, heat, and entropy production. In relation to classical approaches to thermodynamics
and nonequilibrium thermodynamics, stochastic thermodynamics focuses on microscopic
fluctuating systems. These small-scale systems have relatively large fluctuations which
require a stochastic treatment giving rise to unique thermodynamic properties.35 In this
chapter the dynamical equations of motion for the nonequilibrium probability distribution
of the system are introduced. Definitions of thermodynamic quantities such as energy, heat,
work, entropy, and free energy are given in the context of the first law of thermodynamics.
The Crooks relation and Jarzynski’s equality are presented and give insight into the second
law of thermodynamics. Excess work and entropy production are introduced as measures
of energy dissipation and their applicability to model systems is discussed. This chapter
defines the mathematical framework employed for the remainder of this thesis.

3.1 Dynamics

I focus on thermodynamics at the distribution level, which is described by dynamics of the
form

∂pt(r)
∂t

= L[r, t] pt(r) , (3.1)

governing the time evolution of a nonequilibrium probability distribution pt(r) over position
vector r at time t according to the time-evolution operator L[r, t]. For Fokker-Planck
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dynamics L is the drift/diffusion operator, and for master-equation dynamics it is the
transition-rate matrix.

For either Fokker-Planck or master-equation dynamics, the solution to (3.1) can be
formally expressed as

pt(r) = T exp
{∫ t

0
dt′L[r, t]

}
p0(r) , (3.2)

with T the time-ordering operator; i.e., the solution is the ordered exponential of L[r, t]
(expressed as a sum)

pt(r) =
∞∑
n=0

∫ t

0
dt′n

∫ t′n

0
dt′n−1 · · ·

∫ t′2

0
dt′1 L[r, t′n]L[r, t′n−1] · · ·L[r, t′1] p0(r) . (3.3)

Although typically not exactly solvable, this formal solution gives intuition and helps guide
approximations to exact solutions of (3.1).

Continuous-space stochastic systems are described by the Fokker-Planck equation, which
for overdamped dynamics has the time-evolution operator

L[r, t] = ∇ · v(r, t) + v(r, t) · ∇ , (3.4)

for mean local velocity52

v(r, t) ≡ −D∇ [βVtot(r, t) + ln pt(r)] , (3.5)

total potential Vtot, diffusivity D, and β ≡ (kBT )−1 for temperature T and Boltzmann’s
constant kB. For the example of driven barrier crossing, the total potential includes both
the hairpin and trapping potential, and the time dependence arises from dynamic changes
in the trap center and stiffness which drive the system over the barrier.

For Fokker-Planck dynamics, Eq. (3.1) can be expressed as

∂pt(r)
∂t

= −∇ · [v(r, t)pt(r)] , (3.6)

which has the formal solution119

pt(r) =
∫

dr0 δ[r − ξ(t|r0)]p0(r0) , (3.7)

where ξ(t|r0) solves the auxiliary dynamics

∂ξ(t)
∂t

= v[ξ(t|r0), t] , (3.8)
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with initial condition ξ(0|r0) = r0. This formal solution nicely ties into solutions in optimal
transport through the Benamou-Brenier formula55 as discussed in chapter 4.

3.2 First Law
The first law of thermodynamics is a statement of conservation of energy: any change in
energy is associated with work done on the system and heat dissipated into the environment.

The average energy of the system is

〈Vtot〉 =
∫

dr Vtot(r, t)pt(r) , (3.9)

with rate of change

d〈Vtot〉
dt =

∫
dr
[
∂Vtot(r, t)

∂t
pt(r) + ∂pt(r)

∂t
Vtot(r, t)

]
. (3.10)

The first righthand-side term quantifies the rate of change in work 〈Ẇ 〉 done on the system
by an external agent controlling the potential Vtot(r, t) (e.g., an experimentalist dynamically
driving a trapping potential), and the second quantifies the rate of change of heat 〈Q̇〉 into
the system from changes in the system distribution pt(r) (e.g., the system responding and
relaxing towards a new equilibrium distribution in response to movement of the center and
stiffness of the trapping potential):

˙〈W 〉 ≡
∫

dr ∂Vtot(r, t)
∂t

pt(r) , (3.11)

˙〈Q〉 ≡
∫

dr ∂pt(r)
∂t

Vtot(r, t) . (3.12)

Within this chapter a dot above a variable denotes the rate of change with respect to time
of a path-dependent quantity. Substituting (3.11) and (3.12) into (3.10) and integrating
over time gives the first law of thermodynamics: any change in system energy equals work
and heat flows into the system

〈∆Vtot〉 = 〈W 〉+ 〈Q〉 . (3.13)

I define the nonequilibrium free energy

Fneq ≡ 〈Vtot〉 − β−1S (3.14a)

=
∫

dr
[
Vtot(r, t) pt(r) + β−1 pt(r) ln pt(r)

]
(3.14b)
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and dimensionless entropy

S ≡ −
∫

dr pt(r) ln pt(r) . (3.15)

If the probabilities in (3.14a) are equilibrium distributions, then the nonequilibrium free
energy reduces to the equilibrium free energy Feq, and the first law (3.13) is expressed as

∆Feq = 〈W 〉+ 〈Q〉 − β−1∆S (3.16a)
∆Feq = 〈W 〉 − β−1∆Sprod , (3.16b)

for entropy production ∆Sprod = ∆S − β〈Q〉. Any change in equilibrium free energy is
associated with work and entropy production.

3.3 Fluctuation Theorems and the Second Law
Some of the earliest and greatest achievements of stochastic thermodynamics are fluctuation
theorems. Many fluctuation theorems can be thought of as the modern form of the second
law of thermodynamics, but they contain much richer and more detailed information than
the classical second law.

Foremost among them is the Crooks relation,26,120 which constrains the probability of
forward (subscript F) and reverse (subscript R) work measurements as

pF(W )e−β(W−∆Feq) = pR(−W ) . (3.17)

The reverse work measurement is taken during the reverse protocol, namely the time-
reversal of the forward protocol, starting at equilibrium in the end state of the forward pro-
tocol (the distribution over microstates it would reach after equilibrating after the forward
protocol completes). Although this equation appears simple, it yields profound insights
about thermodynamics: it relates nonequilibrium work measurements and probabilities to
the equilibrium free energy. Equation (3.17) is of practical use in free-energy estimation as
discussed in chapter 5.

To gain further theoretical insight, I integrate (3.17) over W , producing Jarzynski’s
equality25 〈

e−β(W−∆Feq)
〉

= 1 , (3.18)

from which the equilibrium free energy can be directly computed through the exponentially
averaged nonequilibrium work. I have dropped any dependence on forward or reverse pro-
tocols, under the assumption that the free-energy change is measured in the same direction
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as the protocol. Applying Jensen’s inequality gives

〈W 〉 ≥ ∆Feq , (3.19)

which is a statement of the second law: the average work performed on a system is always
greater than or equal to the equilibrium free-energy change. Substituting the definition of
the equilibrium free energy (3.14a) and the first law (3.13), the second law can be expressed
as

β−1∆S − 〈Q〉 ≥ 0 . (3.20)

The Crooks relation and Jarzynski equality imply the second law of thermodynamics,
but whereas the second law is an inequality, the Crooks and Jarzynski equations are equali-
ties which hold arbitrarily far from equilibrium and contain more detailed information about
the thermodynamics of the system. This detailed information will prove extremely useful
for applications to free-energy estimation (chapter 5) and for uncovering novel properties
of nonequilibrium work statistics (chapter 6). A detailed discussion of fluctuation theorems
can be found in Refs. 35 and 36.

3.4 Work and Entropy Production

For an isothermal process the rate of change in free energy (3.14a) is

dFneq
dt = d〈Vtot〉

dt − β−1 dS
dt , (3.21a)

= ˙〈W 〉+ ˙〈Q〉 − β−1 dS
dt , (3.21b)

= ˙〈W 〉 − β−1Ṡprod . (3.21c)

The dimensionless entropy production is

Ṡprod ≡
dS
dt + dSenv

dt (3.22a)

= dS
dt − β

˙〈Q〉 (3.22b)

≥ 0 , (3.22c)

for environmental entropy Senv. Equation (3.22a) states that the rate of entropy production
is the sum of the rates of entropy production of both the system and environment. Equa-
tion (3.22b) equates the change in entropy of the environment with the heat flow into the
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environment, dSenv/dt = −β ˙〈Q〉, and (3.22c) follows from the second law of thermodynam-
ics (3.20). Importantly, this definition of entropy production only accounts for dissipation
during the protocol; if the system is not in equilibrium at the end of the protocol, additional
energy may be dissipated into the environment during subsequent relaxation.

A measure of energy dissipation which accounts for relaxation to equilibrium even after
the protocol terminates is the excess work Wex ≡ W −∆Feq, the amount of work done in
excess of the equilibrium free-energy difference. The excess work and entropy production
are related by

〈Wex〉 = ∆Fneq −∆Feq + β−1∆Sprod , (3.23)

for entropy production ∆Sprod ≡
∫∆t

0 dt Ṡprod, nonequilibrium free-energy difference ∆Fneq
between the initial p0(r) and final p∆t(r) distributions, and equilibrium free-energy differ-
ence ∆Feq between the initial and final equilibrium distributions.

Equation (3.23) clarifies the distinction between entropy production and excess work: if
both the initial and final states of the system are at equilibrium, the two quantities are equal,
otherwise the difference between the two equals the difference between the nonequilibrium
and equilibrium free-energy changes. If the system is allowed to relax to equilibrium, then
this excess energy is dissipated into the environment, resulting in additional entropy produc-
tion not accounted for in the present definition (3.22a), so that the total entropy production
for such a process is (3.22a) plus the entropy production from the subsequent relaxation. In
contrast, the excess work always includes the energy dissipated into the environment from
the system relaxing towards equilibrium after the protocol terminates. Quantifying dissipa-
tion by the entropy production in (3.22a) assumes one can harness the nonequilibrium free
energy at the conclusion of the protocol to perform a useful task (generally true for peri-
odically driven systems like ATP synthase), while excess work quantifies dissipation when
all the excess free energy is dissipated into the environment after the protocol terminates
(generally true for two-state barrier crossings like hairpin experiments).

Optimal control in thermodynamics is often discussed in terms of minimizing either
entropy production or excess work incurred during the protocol. Since periodically driven
systems (e.g., ATP synthase) do not have the opportunity to relax to equilibrium, their
dissipation is quantified by entropy production (3.22a). Additionally, for full control the
final distribution can be constrained and dissipation is also determined by the entropy
production (section 4.1). Excess work is used for parametric control (section 4.2) which is
relevant to model systems such as DNA hairpins and nanomagnetic bits which are driven
between control-parameter endpoints rather than periodically. Systems driven between
control-parameter endpoints are allowed to equilibrate after each driving protocol, so excess
work is the relevant measure of dissipation.
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Chapter 4

Optimal Control

In this chapter I provide an introduction to optimal control in stochastic thermodynamics,
from full to parametric control. Full control assumes complete control over the probability
distribution, which is leveraged to determine minimum-dissipation protocols based on op-
timal transport theory. The exact solution for the minimum-dissipation protocols is known
for one-dimensional and Gaussian systems. For parametric control, a finite number of con-
trol parameters are dynamically varied to drive a system between specified initial and final
control-parameter values. Using linear-response theory, approximate solutions can be deter-
mined for weak and slow control. The results discussed in this chapter form the background
which will be built upon in Chapters 6-8.

4.1 Full Control

Assuming full control over the probability distribution pt(r) (e.g., from complete control
over the shape of the potential Vtot(r, t) for one-dimensional continuous-state systems) con-
siderably simplifies the optimization process by making connections with known results from
optimal-transport theory.50,52,121 Optimal transport originally described the most efficient
methods to move mass (e.g., a pile of sand) from one location to another; this is useful for
describing methods that minimize dissipation in transporting probability from an initial to
a final distribution.48

Since the final distribution is constrained, the energy dissipated into the environment
throughout the protocol is determined by the average entropy produced in driving from
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initial probability distribution p0(r) to final probability distribution p∆t(r) as52

∆Sprod = 1
D

∫ ∆t

0
dt 〈v(r, t) · v(r, t)〉 . (4.1)

Angle brackets 〈· · · 〉 denote an average over pt(r).

Expressing the entropy production in this form makes precise the connections between
optimal-transport and minimum-dissipation protocols. In optimal transport a common
measure of the distance between two distributions is the squared L2-Wasserstein distance,
defined in the Benamou and Brenier dual representation as55

W(p0, p∆t)2 ≡ min
v

∆t
∫ ∆t

0
dt 〈v(r, t) · v(r, t)〉 . (4.2)

Therefore, the entropy production is bounded by the squared L2-Wasserstein distance be-
tween initial (p0) and final (p∆t) probability distributions:52

∆Sprod ≥
W (p0, p∆t)2

D∆t . (4.3)

Existing procedures from optimal transport can therefore be used to determine protocols
that minimize entropy production.48,49 Notably, the exact solution is known in two situa-
tions: one-dimensional systems and Gaussian probability distributions (section 4.1.1).

Extending minimum-dissipation full control and the connections to optimal-transport
theory to more general forms of dynamics (e.g., discrete state spaces) is a rapidly advancing
area of active research.53,57–61

4.1.1 Exact solutions

For a one-dimensional system r = x, the entropy production (4.1) of the optimal-transport
process can be simplified considerably as39,50,51,56,84,122

∆Sprod ≥
1

D∆t

∫ 1

0
dy [Qf(y)−Qi(y)]2 , (4.4)

where Qf and Qi are respectively the final and initial quantile functions (inverse cumulative
distribution functions).82 The entropy production is minimized if the quantiles are driven so
as to change linearly in time between their fixed initial and final values;39,51,56,84 from this
the time-dependent probability distribution can be computed, and then the Fokker-Planck
equation inverted to determine the potential Vtot(x, t) to be applied to achieve the control
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that minimizes the entropy production:

Vtot(x, t) = −β−1 ln pt(x) + (βD)−1
∫ x

∞
dx′ 1

pt(x′)

∫ x′

−∞
dx′′ ∂pt(x

′′)
∂t

. (4.5)

Although this calculation is often analytically intractable, it is straightforward to compute
numerically for any time-dependent probability distribution.

If the initial and final distributions are Gaussian, pt(r) = N (µt,Σt) for time-dependent
mean µt and covariance Σt, the entropy-production bound (4.3) is42,123,124

∆Sprod ≥
1

D∆t

{
∆µ2 + Tr

[
Σ0 + Σ∆t − 2(Σ

1
2
∆tΣ0Σ

1
2
∆t)

1
2

]}
, (4.6)

with subscripts 0, t, and ∆t respectively denoting the initial, time-dependent, and final
values of the corresponding variable. Equality is achieved and the entropy production is
minimized when following the optimal-transport map between the initial and final distribu-
tions, which for Gaussian distributions is completely specified by the mean and covariance:

µt = µ0 + ∆µ
∆t t (4.7a)

Σt =
[(

1− t

∆t

)
I + t

∆tC
]

Σ0

[(
1− t

∆t

)
I + t

∆tC
]
. (4.7b)

Here ∆µ ≡ µ∆t−µ0 is the total change in mean position, I is the identity matrix, and C ≡
Σ

1
2
∆t(Σ

1
2
∆tΣ0Σ

1
2
∆t)
− 1

2 Σ
1
2
∆t reduces in one dimension to the ratio of final and initial standard

deviations. If the covariance matrix Σ is diagonal, then (4.7b) implies

Σ
1
2
t = Σ

1
2
0 + ∆Σ

1
2

∆t t , (4.8)

with ∆Σ
1
2 ≡ Σ

1
2
∆t−Σ

1
2
0 . Thus for diagonal covariance the optimal-transport process linearly

drives the standard deviation between its endpoint values. For a detailed description of
minimum-dissipation protocols for general multidimensional Gaussian distributions see Ref.
42.

In both analytically solvable cases (one dimension and Gaussian) the general design
principle is that the minimum-dissipation protocol linearly drives the quantiles between
specified initial and final values. Linearly driving the quantiles of the probability distribution
can be used as a guiding principle for designing more general minimum-dissipation protocols
and arises independently for parametric control.82
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4.2 Parametric Control

While full-control solutions are convenient when possible, many applications do not per-
mit sufficient control to fully constrain the probability distribution throughout the entire
protocol. In such cases the controller is constrained by a finite set of control parameters
λ(t) which can be used to drive the system. Since there are insufficient control parameters
to fully control the probability distribution, the endpoints of the protocol are constrained
by the control-parameter values rather than the distribution. Therefore, I focus on opti-
mizing the excess work, which is an accurate measure of dissipation provided the system
equilibrates after the protocol terminates.

In this section I assume the control is the result of time-dependent control parameters
λ(t), in which case the excess work (3.11) is

〈Wex〉Λ = −
∫ ∆t

0
dt 〈δf>(t)〉Λλ̇(t) , (4.9)

where I have defined the conjugate force f ≡ −∂Vtot/∂λ to express the work explicitly in
terms of the control parameters, and δ denotes a difference from the equilibrium average.
For parametric control, I denote a nonequilibrium average (dependent on the entire protocol
history) as 〈·〉Λ and an equilibrium average (at the current control parameter value λ(t))
as 〈·〉λ(t). Since the control-parameter protocol is externally specified, the only unknown
is 〈δf>(t)〉Λ. This quantity is particularly difficult to deal with since the nonequilibrium
average depends on the entire protocol history.

For example, Ref. 41 showed that—even in one dimension—optimization requires solv-
ing the nonlocal Euler-Lagrange equation. Therefore, there are very few cases where the
minimum-work protocol can be determined analytically. Promising approaches for obtain-
ing general solutions include optimal-transport theory with limited control59 and advanced
numerical techniques.45,62,63

The minimum-work protocol can be determined exactly for a Brownian particle in a
harmonic trap, where the optimal protocol, originally derived in one dimension41, is iden-
tical to the full-control solution for Gaussian distributions described in section 4.1. This
exact solution serves as a window into the properties of minimum-dissipation protocols and
gives considerable insight into what to heuristically expect from optimized protocols: e.g.,
the minimum-dissipation protocols have control-parameter jumps at the start and end but
remain continuous in between.

Although exact solutions are nice when possible, since general solutions are intractable
I turn to approximate methods to gain insight into the general properties of minimum-
dissipation protocols. The first approximation to consider is linear response, which is valid
for weak or slow perturbations, and in the slow limit simplifies to a geometric framework
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for determining minimum-dissipation protocols from a Riemannian metric.

4.2.1 Weak Control

Linear-response theory can be used to determine the minimum-dissipation protocol for
weak perturbations and performs relatively well at any driving speed, well beyond its strict
range of validity.64,65 For fast driving, the minimum-dissipation protocols determined from
linear-response theory have jumps at the start and end of the protocol.

As mentioned in section 4.2, the central quantity that needs to be determined to perform
any optimization of the excess work is the nonequilibrium average force. In linear response,
the deviation of the nonequilibrium average force from equilibrium is approximated by the
integrated equilibrium force covariance

〈δfj(t)〉Λ ≈ −
∫ t

0
dt′ 〈δfj(t− t′) δf`(0)〉λ(t) λ̇`(t′) . (4.10)

Throughout the remainder of this thesis I use the Einstein summation convention of implied
summation over all repeated indices; e.g., AjBj represents

∑
j AjBj . The linear-response

approximation greatly simplifies the optimization procedure, since the equilibrium average
depends only on the current control-parameter value and not on the entire history of control.
Substituting this into the excess work (4.9) gives

〈Wex〉Λ ≈
∫ ∆t

0
dt
∫ t

0
dt′ λ̇j(t) 〈δfj(t− t′) δf`(0)〉λ(t) λ̇`(t′) , (4.11)

which can be optimized directly by numerical methods and can perform well at any driving
speed.64,65

4.2.2 Slow Control

The next approximation to consider is valid for slow near-equilibrium processes. This ap-
proach generalizes the paradigm of thermodynamic geometry to stochastic thermodynam-
ics.33,125 The generalized friction tensor endows the space of thermodynamic states with
a Riemannian metric where minimum-dissipation protocols correspond to geodesics of the
friction tensor. This method is widely applicable, yields a relatively simple prescription for
determining minimum-dissipation protocols, and has been extended to more general settings
and different forms of control.73,126–128 The protocols determined from this method are con-
tinuous; however, it is known from exact solutions that minimum-dissipation protocols can
have jump discontinuities,41 which are never optimal within the geometric framework of
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slow control. This arises from the slow near-equilibrium approximation used; indeed, in the
limit of a slow protocol the jumps in the exact optimal protocol become negligible.

In addition to the linear-response approximation, I assume the control parameters are
driven slowly compared to the system’s natural relaxation timescale, so the approximation
for the nonequilibrium average force (4.10) simplifies to

〈δfj(t)〉Λ ≈ −λ̇`(t)
∫ ∞

0
dt′ 〈δfj(t′) δf`(0)〉λ(t) . (4.12)

Substituting into (4.9) yields the leading-order contribution to the excess work:125

〈Wex〉Λ ≈
∫ ∆t

0
dt dλ>

dt ζ[λ(t)] dλ
dt , (4.13)

in terms of the generalized friction tensor with elements

ζj`(λ) ≡ β
∫ ∞

0
dt 〈δfj(t)δf`(0)〉λ . (4.14)

In analogy with fluid dynamics, this rank-two tensor is the Stokes’ friction, since it produces
a drag force that depends linearly on velocity.

ζj` is the Hadamard product β〈δfjδf`〉λ ◦τj` of the conjugate-force covariance (the force
fluctuations) and the integral relaxation time

τj` ≡
∫ ∞

0
dt 〈δfj(t)δf`(0)〉λ

〈δfjδf`〉λ
, (4.15)

the characteristic time for these fluctuations to die out.

For overdamped dynamics, the friction can be calculated directly from the total energy
as71

ζj`(λ) =
∫ ∞
−∞

dx
∂λj

Πeq(x,λ)∂λ`
Πeq(x,λ)

πeq(x,λ) , (4.16)

where Πeq(x,λ) ≡
∫ x
−∞ dx′πeq(x′,λ) is the equilibrium cumulative distribution function,

∂λj
is the partial derivative with respect to λj , and

πeq(x′,λ) = exp[−βVtot(x,λ)] /
∫

dx exp[−βVtot(x,λ)] is the equilibrium probability dis-
tribution.

Within the slow-protocol approximation, the excess work is minimized by a protocol
with constant excess power.125 This is due to the geometric structure of (4.13), the friction
acts as a Riemannian metric so protocols that minimize the excess work are those with
constant excess power just as paths that minimize the arc length in a Riemannian metric
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(geodesics) have constant speed. For a single control parameter, this amounts to proceeding
with velocity dλLR/dt ∝ ζ(λ)−1/2, which when normalized to complete the protocol in a
fixed allotted time ∆t gives

dλLR

dt =
∫ λf
λi

dλ′
√
ζ(λ′)

∆t
√
ζ(λ)

. (4.17)

For multi-parameter control, the minimum-dissipation protocol solves the Euler-Lagrange
equation

ζj`
d2λ`
dt2 + ∂ζj`

∂λm

dλ`
dt

dλm
dt = 1

2
∂ζ`m
∂λj

dλ`
dt

dλm
dt . (4.18)

This can be solved to determine geodesics that minimize excess work within the slow control
approximation, as demonstrated in chapter 9.

A useful quantity for gauging the performance of designed protocols is the ratio of naive
(constant velocity protocol) to designed excess work. For one-parameter control in the
slow-control approximation this ratio is given by

〈Wex〉naive
〈Wex〉des

≈
∆λ

∫ λf
λi

dλ ζ(λ)[∫ λf
λi

dλ
√
ζ(λ)

]2 . (4.19)

For a friction coefficient that is independent of the control parameter, i.e., a flat friction
landscape, the naive and designed protocols are equivalent and this ratio is equal to one.
For control parameter dependent friction the designed protocol will outperform the naive
and the ratio will be larger than one.

Extensions to the slow-control approximation

The slow-control approximation has been generalized and extended to transitions between
nonequilibrium steady states,126,127 discrete control,73 and stochastic control.128

Section 4.2 assumed that the system starts in equilibrium; however, this is not always
the case in applications. Periodically driven machines such as ATP synthase are often
driven for a sufficiently long time as to reach a nonequilibrium steady state, breaking the
initial-equilibrium and near-equilibrium assumptions. Such systems may need to transition
between steady states in order to increase or decrease their output in response to variable
conditions (e.g., increasing/decreasing rate of ATP production). Although determining the
correct definition of dissipation is more subtle for nonequilibrium steady states (see Refs.
129–136 for detailed discussion), the slow-protocol approximation has been generalized to
slow transitions between nonequilibrium steady states making use of a near-steady-state ap-
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proximation.126,127 This approximation has an analogous form to the friction-tensor approx-
imation and can be used to determine minimum-dissipation protocols for slow transitions
between nonequilibrium steady states.

So far it has been assumed that the protocol is continuous; however, many biological and
chemical systems convert free energy stored in nonequilibrium chemical-potential differences
into useful work through a series of reactions involving binding/unbinding or catalysis of
small molecules. These chemical reactions typically occur on timescales much faster than
the protein conformational rearrangements they couple to. Therefore, these changes are
effectively instantaneous, leading to discrete control protocols. Building off of quasistatic
results,137 it has been shown that the linear-response approximation can be applied to
discretely driven systems to yield an approximation analogous to the friction tensor, which
can be used to determine minimum-dissipation protocols.73
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Chapter 5

Free-Energy Estimation

Computational and experimental measurements of free-energy differences are essential to
the determination of stable equilibrium phases of matter, relative reaction rates, and binding
affinities of chemical species,138 and the identification and design of novel protein-binding
ligands for drug discovery.139–142 Current methods for determining free-energy differences
rely on costly experimentation, which can be reduced through screening with efficient com-
putational techniques.138–145 It has been shown that the precision and accuracy of standard
free-energy estimators are reduced when estimated from a protocol inducing large dissi-
pation,81,146,147 and that thermodynamic geometry can be applied to improve free-energy
estimates.81,147–151

Free-energy differences are often estimated by measuring the work incurred during a
parametric control protocol that drives the system between control-parameter endpoints
corresponding to target states. Unidirectional estimators determine the free-energy differ-
ence from the work done by a forward protocol driving from initial to final control-parameter
values, while bidirectional (forward and reverse) estimators additionally use reverse proto-
cols that drive from final to initial control-parameter values. The simplest estimator is the
mean-work estimator,146

∆̂FMW = 1
N

N∑
j=1

W (j), (5.1)

which estimates the free-energy difference by the average work and for any non-quasistatic
(finite-speed) protocol yields a biased estimate. For an unbiased estimate, the Jarzynski
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estimator (derived from the Jarzynski equality25)

∆̂F Jar = − 1
β

ln 1
N

N∑
j=1

e−βW
(j)
, (5.2)

estimates the free-energy difference from the exponentially averaged work. The mean-work
and Jarzynski estimators can be used as either uni- or bidirectional estimators; however, if
bidirectional data is available the maximum log-likelihood estimator is Bennett’s acceptance
ratio (BAR)152

NF∑
j=1

{
1 + exp

[
β
(
W (j) − ∆̂FBAR

)]}−1
=

NR∑
`=1

{
1 + exp

[
−β

(
W (`) − ∆̂FBAR

)]}−1
, (5.3)

with W (j) the jth measurement of work from driving the system, N the total number of
samples, and in (5.3) I have assumed an equal number of samples in the forward NF and
reverse NR directions with N = NF + NR. Equation (5.3) must be solved numerically for
∆̂FBAR. For a large number of samples, Bennett’s acceptance ratio yields the minimum
variance of any unbiased estimator.153,154

There have been a number of hints towards connections between the amount of excess
work (work done above and beyond the free-energy difference) and error in both equilibrium
and nonequilibrium estimates of free-energy differences. Most obviously, the bias in ther-
modynamic integration is exactly the excess work; however, the connection is deeper than
that. Near equilibrium it can be shown that both the bias and variance of the mean-work,
and Jarzynski estimators increase with increased dissipation. For the Jarzynski estimator,
the number of trajectories necessary to obtain a given level of accuracy increases expo-
nentially with the amount of excess work.146 The bias from excess work can be alleviated
somewhat through the use of a bidirectional estimator, the bias in BAR instead depends
on the difference between forward and reverse excess works.155

Ref. 153 has shown that, in the limit of a large number of samples, the minimum variance
of any asymptotically unbiased estimator ∆̂F is,〈(

∆̂F −
〈

∆̂F
〉)2

〉
≥ 1
N

{
2〈[1 + cosh(W −∆F )]−1〉−1 − 4

}
, (5.4)

where for simplicity I have once again assumed an equal number of samples in the forward
NF and reverse NR directions, and the average 〈· · · 〉 is over a total of N = NF + NR
work measurements. This form demonstrates an explicit connection between the minimum
variance of a free-energy estimator and the excess work Wex ≡ W − ∆F . Evidently the
variance is minimized at 0 when Wex = 0, in which case only a single measurement would
be required. For any finite-time protocol the excess work will in general be non-zero. How
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large it is will significantly effect the scaling of the variance with excess work.

There is currently no simple bound on the bias of free-energy estimates; however, Ref.
156 provides a detailed comparison of the biases from the mean-work, Jarzynski, and BAR
estimators.

There many reviews discussing best practices for both equilibrium and nonequilibrium
free-energy estimates; e.g., Ref. 144 gives a review specific to drug discovery while Refs.
157,158 give more general reviews. Best practices specifically for nonequilibrium free-energy
estimations are described in Ref. 145. In order to obtain accurate error estimates, the
amount of excess work must be small (∼ 1−2kBT ) and BAR should be used when possible.
In the following sections I explore in more detail the connection between excess work, bias,
and variance for both unidirectional and bidirectional free-energy estimators.

5.1 Small Dissipation

To leading order when dissipation is small (βWex � 1), or only a single sample is taken (N =
1), the estimators are all equivalent to the mean-work estimator, which for unidirectional
estimates has bias and variance 〈

∆̂F
〉
−∆Feq ≈

1
N
〈Wex〉 (5.5a)〈(

∆̂F −
〈

∆̂F
〉)2

〉
≈ 2
βN
〈Wex〉 . (5.5b)

For bidirectional estimates in the forward (subscript F) and reverse (subscript R) direc-
tions, the bias and variance can similarly be approximated by〈

∆̂F
〉
−∆Feq ≈

1
N

(〈Wex〉F − 〈Wex〉R) (5.6a)〈(
∆̂F −

〈
∆̂F

〉)2
〉
≈ 2
βN

(〈Wex〉F + 〈Wex〉R) . (5.6b)

The bias of a bidirectional estimate depends on the difference of dissipation between the
forward and reverse directions; i.e., a process with equal dissipation from forward and
reverse protocols is unbiased even for finite samples. Furthermore, (5.6b) is the leading-
order correction to (5.4) for small dissipation, and therefore also serves as an estimate of
the minimum variance possible.

To demonstrate the variance of BAR and the validity of (5.4) and (5.5b), Fig. 5.1 shows
the variance of BAR from Gaussian work measurements as a function of dissipation for
variable N . When there is only a single sample in each forward and reverse direction (N =
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Fig 5.1. Variance of Bennett’s acceptance ratio from a Gaussian work distribution.
Large-N estimate of the variance (5.4) (solid) and approximation (5.5b) (dashed).
The variance is shown in (a) and N times the variance in (b) for N = 1, 102, and
104 (black circles, red squares, and blue triangles, respectively). Calculations
assume a Gaussian distribution with mean 〈Wex〉 and variance 2β−1〈Wex〉.
Bootstrap-resampled 95% confidence intervals are smaller than the data points.

2), the approximation of (5.5b) is exact. For more samples, (5.5b) is a good approximation
when dissipation is small. As the number of samples becomes very large, the variance of
BAR approaches (5.4) from below. Since for finite N BAR has lower variance than the
large N bound, it may be best used as a large-N estimate of the variance rather than as a
lower bound. For a Gaussian work distribution, the bias of BAR is exactly zero, even for a
finite number of samples, since the distribution is symmetric about W = ∆F .
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Chapter 6

Skewed Thermodynamic Geometry

Free-energy differences determine the equilibrium phases of thermodynamic systems as well
as the relative reaction rates and binding affinities of chemical species.138 Computational
and experimental techniques which accurately and precisely predict free-energy differences
are therefore highly desirable. One important application is in pharmaceutical drug discov-
ery, where computation of free-energy differences can aid in the identification and design of
ligands for targeted protein binding.139–142

Regardless of the estimator, non-quasistatic control-parameter protocols result in excess
work (work in excess of the free-energy difference), which increases the bias and variance
(decreases the accuracy and precision, respectively) of free-energy estimates. This excess
work (equaling the dissipation), and hence the error, can be reduced by following a differ-
ent path through control-parameter space and varying the velocity along the path while
keeping the protocol duration fixed.159–161 Near equilibrium, this can be mapped onto the
thermodynamic-geometry framework: for the mean-work estimator, the bias and variance
from finite-time protocols is improved by following geodesics of a thermodynamic metric,
the force-variance (FV) metric, a Riemannian metric defined by the covariance matrix of
conjugate-force fluctuations;31,33,34,162,163 similarly, for Bennett’s acceptance ratio (BAR),
the variance (but not the bias) is minimized if the protocol follows geodesics of the FV
metric.147 This has been used to improve the precision of calculated binding potentials of
mean force.148–151

The FV metric only minimizes the variance of the mean-work estimator and BAR if
the relaxation time is independent of the control parameters. The friction-tensor met-
ric,68,125 the product of the covariance and integral relaxation time of conjugate-force fluc-
tuations (6.19), is more general than the FV and provides a relatively simple prescrip-
tion for reducing excess work in more general near-equilibrium processes, where minimum-
dissipation protocols follow geodesics of the Riemannian metric induced by the friction
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tensor. For common unidirectional estimators near equilibrium, the bias and variance are
proportional to the first moment (mean) of the excess work, and hence minimum-dissipation
protocols defined by the friction tensor minimize both the bias and variance.

For bidirectional estimators, the variance is proportional to the sum of the second
moments of the excess work from forward and reverse protocols (5.6b), while the bias
is proportional to the difference of the first moments (5.6a).155 This chapter extends the
thermodynamic-geometry framework beyond the leading-order friction-tensor approxima-
tion, to higher-order moments of the excess work. For bidirectional estimators near equi-
librium, minimum-variance protocols follow geodesics of the Riemannian metric induced by
the friction tensor, while minimum-bias protocols follow geodesics of a cubic Finsler metric.
For the simple model system of a Brownian particle in a quadratic trap with time-dependent
stiffness (a breathing harmonic trap), the minimum-variance and minimum-bias protocols
can improve variance by a factor of 3 − 4 and bias by over a factor of 10 (Fig. 6.3). This
chapter is adapted from the article published in Ref. 81.

6.1 Derivation

Chapter 4 introduced a geometric framework based on linear-response and slow-control
approximations for determining protocols that minimize the average excess work (4.9),
and chapter 5 discussed the relationship between the accuracy of free-energy estimates
with excess work. Building on these results, the slow-control approximation is extended to
account for both higher-order moments and higher-order corrections to excess work. This
is then applied to improve the bias and variance of free-energy estimates.

The time derivative of the second moment of the excess-work distribution is81

d〈W 2
ex〉Λ

dt = 2λ̇j(t)
∫ t

0
dt′

〈
δfj(t)δf`(t′)

〉
Λ λ̇`(t

′) . (6.1)

For a sufficiently slow protocol, the nonequilibrium average 〈· · · 〉Λ is replaced with the
equilibrium average 〈· · · 〉λ(t) at fixed control parameters λ(t):

d〈W 2
ex〉Λ

dt ≈ 2λ̇j(t)λ̇`(t)
∫ t

0
dt′′

〈
δfj(0)δf`(t′′)

〉
λ(t) , (6.2)

where I used the stationarity of the equilibrium average, defined t′′ ≡ t′ − t, and assumed
smooth protocols to expand the control-parameter velocity to zeroth order, λ̇(t − t′′) ≈
λ̇(t). Finally, assuming correlations in the conjugate forces relax quickly relative to the
protocol duration, the integration bound t is replaced with ∞ (Appendix B.2) simplifying
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the approximation to

d〈W 2
ex〉Λ

dt ≈ 2
β
ζ

(1)
j` [λ(t)]λ̇j(t)λ̇`(t) , (6.3)

for the friction tensor

ζ
(1)
j` [λ(t)] ≡ β

∫ ∞
0

dt′′
〈
δfj(0)δf`(t′′)

〉
λ(t) . (6.4)

In analogy with fluid dynamics, this rank-two tensor is the Stokes’ friction, since it produces
a drag force that depends linearly on velocity. In this chapter the Stokes’ friction is denoted
by a superscript (1) since it is the leading-order contribution to dissipation.125 The Stokes’
friction was previously presented in chapter 4 in (4.14) without a superscript.

Following parallel arguments, the third moment of the excess-work distribution is ap-
proximated as

d〈W 3
ex〉Λ

dt ≈ 3
β2 ζ

(2)
j`m[λ(t)]λ̇j(t)λ̇`(t)λ̇m(t) , (6.5)

for the rank-three tensor

ζ
(2)
j`m[λ(t)] ≡ −β2

∫ ∞
0

dt′′
∫ ∞

0
dt′′′

〈
δfj(0)δf`(t′′)δfm(t′′′)

〉
λ(t) . (6.6)

(The factor of three in (6.5) results from grouping the index permutations
{j`m, `jm,mj`} into one term, making use of the invariance of the sum under exchange
of indices, e.g., ζ(2)

j`mλ̇j λ̇`λ̇m = ζ
(2)
`jmλ̇j λ̇`λ̇m.) I call the rank-three tensor (Eq. (6.6)) the

supra-Stokes’ tensor and index it by superscript (2), as it corresponds to the leading-order
correction to dissipation beyond the Stokes’ friction (6.12).

For fourth and higher moments, Appendix B.2 shows that the integration bounds must
remain finite since the n-time covariance functions do not decay to zero at long time, so there
is no clear analogy to frictional drag forces. Nevertheless, they can still be approximated
by

d〈Wn
ex〉Λ

dt ≈ nC(n−1)
ν1···νn [λ(t), t]

n∏
i=1

λ̇νj (t) , (6.7)

with index notation ν1, ν2, ν3 · · · instead of j, `,m, and integral n-time covariance functions

C(n−1)
ν1···νn [λ(t), t] ≡ (−β)n

n∏
i=2

∫ t

0
dtj

〈
n∏
j=2

δfν1(0)δfν`
(t`)

〉
λ(t)

. (6.8)
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This implies that higher-order moments of the excess work are higher order in control-
parameter velocity and are therefore smaller for slow protocols. The approximations of
(6.3), (6.5), and (6.7) are the leading-order contributions to each respective moment of the
excess work.

To derive the next-order contribution, I exploit the connection between time-reversed
protocols through the Crooks relation (3.17),26,120 which constrains the probability of for-
ward and reverse work measurements. Integrating (3.17) over Wex produces Jarzynski’s
equality (3.18),25 while first multiplying by Wex then integrating leads to

〈Wexe
−βWex〉Λ = −〈Wex〉Λ† . (6.9)

In this chapter, the forward protocol is denoted by Λ and the reverse protocol (starting at
equilibrium in the end state of the forward protocol) by Λ†.

Taylor expanding the exponential in (3.18) and (6.9) to third order in excess work gives

〈Wex〉Λ ≈ 1
2β〈W

2
ex〉Λ − 1

6β
2〈W 3

ex〉Λ (6.10a)
〈Wex〉Λ† ≈ −〈Wex〉Λ + β〈W 2

ex〉Λ − 1
2β

2〈W 3
ex〉Λ . (6.10b)

According to (6.7), near equilibrium the higher-order moments of the excess work are higher
order in control-parameter velocity and therefore can be neglected for slow protocols. The
leading-order contributions to the sum and difference of the excess work are

〈Wex〉Λ + 〈Wex〉Λ† ≈ β〈W 2
ex〉Λ (6.11a)

〈Wex〉Λ − 〈Wex〉Λ† ≈ 1
6β

2〈W 3
ex〉Λ . (6.11b)

Differentiating (6.11a) and (6.11b) with respect to time, substituting in (6.3) and (6.5)
respectively, then adding the two equations gives

d〈Wex〉Λ
dt ≈

{
ζ

(1)
j` [λ(t)] + 1

4ζ
(2)
j`m[λ(t)] λ̇m(t)

}
λ̇j(t)λ̇`(t) . (6.12)

Differentiating (6.10a) and substituting (6.12) and (6.5) gives

d〈W 2
ex〉Λ

dt ≈ 2
β

{
ζ

(1)
j` [λ(t)] + 3

4ζ
(2)
j`m[λ(t)] λ̇m(t)

}
λ̇j(t)λ̇`(t) . (6.13)

Approximations for higher-order moments are derived by following parallel arguments.
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Multiplying (3.17) by Wn
ex and integrating over Wex gives

〈(−Wex)n〉Λ† = 〈Wn
ex〉Λ − β〈Wn+1

ex 〉Λ + β2

2 〈W
n+2
ex 〉Λ + · · · . (6.14)

Adding 〈(−Wex)n〉Λ† and rearranging leads to

〈Wn
ex〉Λ + 〈(−Wex)n〉Λ† = 2〈(−Wex)n〉Λ† + β〈Wn+1

ex 〉Λ −
β2

2 〈W
n+2
ex 〉Λ + · · · , (6.15)

while subtracting 〈(−Wex)n〉Λ† yields

〈Wn
ex〉Λ − 〈(−Wex)n〉Λ† = β〈Wn+1

ex 〉Λ −
β2

2 〈W
n+2
ex 〉Λ + · · · . (6.16)

For n > 2, the higher-order powers of the excess work are also higher order in control-
parameter velocity (n = 1 (6.12) and n = 2 (6.13) are the same order in control-parameter
velocity); therefore, the leading-order contributions to the sum (6.15) and difference (6.16)
for n > 2 are

〈Wn
ex〉Λ + 〈(−Wex)n〉Λ† ≈ 2〈(−Wex)n〉Λ (6.17a)

〈Wn
ex〉Λ − 〈(−Wex)n〉Λ† ≈ β〈Wn+1

ex 〉Λ , (6.17b)

which implies

βn−1 d〈Wn
ex〉Λ

dt ≈
{
n C(n−1)

ν1···νn [λ(t), t] + n+ 1
2 C(n)

ν1···νn+1 [λ(t), t] λ̇νn+1(t)
} n∏
i=1

λ̇νj (t) . (6.18)

Equations (6.12), (6.13), and (6.18) are the central results of this chapter, which have
applications to designing minimum-dissipation and optimal free energy estimation protocols.

6.2 Next-order contribution to excess work

The approximation of (6.12) can improve near-equilibrium estimates of the excess work.
The leading-order term is the usual linear-response approximation (4.14) and is positive for
all protocols. The Stokes’ friction (6.4) is an autocovariance function,

ζ
(1)
j` [λ(t)] = 〈δfjδf`〉λ(t) ◦ τ

(1)
j` [λ(t)] , (6.19)
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the Hadamard (entry-by-entry) product, ◦, of the conjugate-force covariance 〈δfjδf`〉λ(t)
and integral relaxation time

τ
(1)
j` [λ(t)] ≡

∫ ∞
0

dt′′
〈δfj(0)δf`(t′′)〉λ(t)
〈δfjδf`〉λ(t)

. (6.20)

The Stokes’ friction is largest when the conjugate-force fluctuations are largest (large covari-
ance) and most persistent (long relaxation time). In contrast to the positive contribution
from the Stokes’ friction, the contribution from the supra-Stokes’ tensor (second term in
(6.12)) changes sign under time reversal because it is cubic in control-parameter velocity.
The supra-Stokes’ tensor (6.6)

ζ
(2)
j`m[λ(t)] = −〈δfjδf`δfm〉λ(t) ◦ τ

(2)
j`m[λ(t)] (6.21)

is not positive semidefinite, and is the Hadamard product of the unnormalized coskewness
〈δfjδf`δfm〉λ(t) (related to skewness as covariance is related to variance) and the integral
double relaxation time

τ
(2)
j`m[λ(t)] ≡

∫ ∞
0

dt′′
∫ ∞

0
dt′′′
〈δfj(0)δf`(t′′)δfm(t′′′)〉λ(t)

〈δfjδf`δfm〉λ(t)
. (6.22)

For a protocol with positive velocity, the contribution to dissipation from the supra-Stokes’
tensor quantifies the increase (decrease) in excess work from negatively (positively) skewed
conjugate-force fluctuation.

The leading-order friction-tensor approximation (first term in (6.12)) endows the control-
parameter space with a Riemannian metric, such that minimum-work protocols follow
geodesics of the Stokes’ friction tensor. With the addition of the next-order contribu-
tion (6.6), the excess work can be expressed as

〈Wex〉Λ ≈
∫ ∆t

0
dt ζtot

j` [λ(t), λ̇(t)] λ̇j(t)λ̇`(t) , (6.23)

for total friction tensor

ζtot
j` [λ(t), λ̇(t)] ≡ ζ(1)

j` [λ(t)] + 1
4ζ

(2)
j`m[λ(t)] λ̇m(t) (6.24)

that explicitly depends on the protocol velocity. Minimum-dissipation protocols follow
geodesics of the generalized cubic Finsler metric ζtot

j` [λ(t), λ̇(t)], an extension of the Rie-
mannian metric ζ

(1)
j` [λ(t)]. A Finsler metric defines a space where distances depend

not only on positions (points) but also on directions (tangent vectors). Nevertheless, the
usual concepts of length, curvature, and geodesics from Riemannian geometry generalize,
and there are standard procedures for calculating geodesics164 (Appendix B.3). For small
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control-parameter velocities, the total friction is positive semi-definite; however, for large
control-parameter velocities the approximation breaks down and no longer guarantees pos-
itive semidefiniteness, leading to the unphysical possibility of negative excess work.

To illustrate some general properties of the friction, Fig. 6.1 shows, for the model system
of a breathing harmonic trap (Brownian particle in a harmonic trap where the control
parameter is the time-dependent stiffness, Appendix B.1), the (a) force variance, (b) Stokes’
friction, (c) supra-Stokes’ contribution, and (d) total friction. The force variance and Stokes’
friction are independent of control-parameter velocity. In general, the force variance differs
from the Stokes’ friction by a factor of the integral relaxation time, which varies with the
control-parameter value (trap stiffness) for the breathing harmonic trap. The contribution
from the supra-Stokes’ tensor (c) is antisymmetric in control-parameter velocity, becoming
negative for negative velocity. This antisymmetric contribution skews the total friction
(d), which depends on the control-parameter velocity and lacks any symmetry under time
reversal.

Geodesics (solid curves in Fig. 6.1) are protocols that minimize the contribution from
the corresponding metric to the excess work. For relatively fast protocols (average scaled
velocities of λ̇∗ = k̇/ki & 0.5 or . −0.5, for initial stiffness ki), the velocity is significantly
smaller in regions of high friction and larger in regions of low friction (or force variance).

6.3 Precision and accuracy of free-energy estimates

In this thesis, the precision of a free-energy estimator is quantified by its variance. In the
limit of many samples, the expected variance of any unbiased estimator ∆̂F is bounded
by a nonequilibrium average over a total of N = NF + NR forward and reverse work
measurements (5.4).153

Assuming small excess work, the variance is expanded as〈(
∆̂F −∆Feq

)2
〉
≈ 〈W

2
ex〉Λ + 〈W 2

ex〉Λ†

2N (6.25a)

≈ 2
βN

∫ ∆t

0
dt ζ(1)

j` [λ(t)] λ̇j(t)λ̇`(t) , (6.25b)

where the second line assumes the slow-control approximation for the variance (6.13). Equa-
tion (6.25a) also holds for very few samples, since then BAR is equivalent to the average of
the sum of the forward and reverse work measurements.155 The protocol designed to reduce
the variance follows geodesics of ζ(1)

j` , and for one-dimensional control proceeds at velocity

λ̇ ∝
(
ζ(1)

)−1/2
.
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Fig 6.1. Friction as a function of control-parameter velocity λ̇∗ and control
parameter λ∗ for the breathing harmonic trap. Scaled (a) force variance
〈δf 2〉∗ ≡ β2k2

i 〈δf 2〉, (b) Stokes’ friction ζ(1)∗ ≡ β3Dk3
i ζ

(1), (c) supra-Stokes’
contribution 1

4 λ̇
∗ζ(2)∗ ≡ 1

4β
3Dk3

i k̇ζ
(2), and (d) total friction ζtot∗ ≡ β3Dk3

i ζ
tot, for

initial trap stiffness ki and diffusivity D. The control parameter is the trap stiffness,
given in dimensionless form as λ∗ ≡ k/ki with velocity λ̇∗ = k̇/(βDk2

i ). Geodesics
(solid curves) minimize the magnitude of the corresponding metric’s contribution to
the excess work, with distinct curves representing different average protocol
velocities.
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Unlike the protocol that minimizes the variance, the protocol that maximizes the accu-
racy (minimum-bias) is different for unidirectional and bidirectional estimators. For unidi-
rectional Jarzynski and mean-work estimators, near equilibrium the minimum-bias protocol
is simply the minimum-dissipation protocol (protocol that minimizes (6.12)) and therefore
to leading order is optimized by the same protocol that minimizes (6.25b). For BAR, for
small excess work (or few samples), the bias instead is proportional to the difference between
the forward and reverse excess work:155〈

∆̂F
〉
−∆Feq ≈

1
2N (〈Wex〉Λ − 〈Wex〉Λ†) (6.26a)

≈ 1
4N

∫ ∆t

0
dt ζ(2)

j`m[λ(t)] λ̇j(t)λ̇`(t)λ̇m(t) , (6.26b)

where the second line follows from the supra-Stokes’ approximation for the mean work (6.12).
The protocol designed to reduce the (magnitude of) bias thus follows geodesics of the cubic
Finsler metric ζ(2)

j`m, simplifying for one-dimensional control to λ̇ ∝
(
ζ(2)

)−1/3
. Figure 6.2

plots these protocols for the model system of a breathing harmonic trap (Appendix B.1)
alongside the naive (constant-velocity) protocol.

To illustrate the potential benefit of protocols designed to reduce variance and bias,
Fig. 6.3 shows approximations for the variance (6.25a) and bias (6.26a) of designed and naive
protocols, as well as their ratio, as a function of protocol duration, for the model system of
a breathing harmonic trap (Appendix B.1). For a slow protocol (protocol duration longer
than the slowest relaxation time, ∆t/τ (1)

f & 1), the designed protocols reduce the variance
by a factor of 3 − 4 (Fig. 6.3c), with the precise protocol (designed to reduce variance)
performing the best (smallest ratio). For the bias, the accurate protocol (designed to reduce
bias) performs the best (smallest ratio), with reductions by an order of magnitude for the
slowest protocols shown (Fig. 6.3d). For fast protocols (protocol duration shorter than
the slowest relaxation time, ∆t/τ (1)

f . 1), the approximations break down, and the naive
protocol can outperform the designed in both bias and variance (ratio larger than one). For
this system the minimum-variance and minimum-bias protocols achieve similar amounts of
bias and variance in all cases, likely due to their similar functional form (Fig. 6.2).

6.4 Discussion
This chapter has developed near-equilibrium approximations for moments of the excess
work, (6.12), (6.13), and (6.18), that incorporate time-reversal symmetric and antisym-
metric contributions. The antisymmetric contribution to the first moment (6.12) yields
the next-order contribution beyond linear response, which asymmetrically skews the Rie-
mannian metric (6.4) into a generalized cubic Finsler metric (6.24). The Stokes’ friction
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Fig 6.2. The control parameter (trap stiffness k) as a function of time for three
different protocols in the model system of a breathing harmonic trap. The
control-parameter protocol drives the system between relatively strongly and weakly
confined states (kf/ki = 1/16). “Naive” denotes the constant-velocity protocol,
“Force Variance” the force-variance-optimized protocol proceeding according to
k̇ ∝ k, “Accurate” the minimum-variance protocol with k̇ ∝ k3/2, and “Precise” the
minimum-bias protocol with k̇ ∝ k5/3.
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tensor (6.4) controls the leading-order contribution to the variance of both unidirectional
and bidirectional free-energy estimators (6.13), such that minimum-variance protocols fol-
low geodesics of the Stokes’ friction. For unidirectional estimators, these same protocols also
minimize the bias; however, for bidirectional estimators such as BAR the leading-order con-
tribution to the bias is from the supra-Stokes’ tensor (6.26b), and therefore minimum-bias
protocols instead follow geodesics of the supra-Stokes’ tensor. From these near-equilibrium
approximations, protocols are designed that increase the precision and accuracy of standard
nonequilibrium free-energy estimators (Fig. 6.3).

The addition of the supra-Stokes’ tensor has several physical implications. Notably, it
accounts for time-reversal asymmetric dissipation, which arises from skewed conjugate-force
fluctuations. Since the supra-Stokes’ contribution is antisymmetric, it cancels out for equal
numbers of forward and reverse protocols, which has implications for the design principles of
molecular machines: many molecular machines (e.g., kinesin walking toward a microtubule’s
plus end165 or ATP synthase synthesizing ATP166) achieve directed behavior; the supra-
Stokes’ tensor quantifies the leading-order energetic cost of directed operation compared to
a coequal forward and reverse process.

In some cases the minimum-work protocols can be calculated exactly,41,44 or minimum-
variance protocols solved numerically,167,168 which would yield more accurate and precise
estimators; however, to date these optimizations are limited to simple systems and do
not permit straightforward generalization. The present formalism can be applied to more
general settings than exact calculations and makes fewer approximations than Ref. 147,
which only examines the force-variance metric and does not consider minimizing bias.

This chapter considered continuous protocols, but free energies are often estimated
from sampling discrete states.169–172 Additionally, for discrete-state sampling in replica-
exchange173 or parallel-tempering174 simulations it is important to consider the acceptance
probability between states.175–183 The force-variance metric has been applied in this con-
text,147 and the linear-response framework of Ref. 125 has been generalized to discrete
control.73 As Ref. 147 has shown, spacing the states along geodesics of the force variance
not only reduces the variance of the free-energy estimator but also increases the acceptance
probability. Analogous principles may hold for designing minimum-variance and minimum-
bias protocols for discrete-state sampling using the milder approximations derived in this
chapter.
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Chapter 7

Fast Control

While minimum-dissipation protocols for slowly driven systems are relatively well under-
stood, comparatively little is known about rapidly driven systems. In this chapter I focus
on fast protocols and find a universal design principle: the minimum-dissipation protocol
consists of jumps at the beginning and end of the protocol, spending the entire dura-
tion at the control-parameter value that optimally balances the initial force-relaxation rate
(IFRR) (7.5b) with the jump size (7.11). The results in this chapter are physically intu-
itive, apply to a wide range of stochastic systems, and generalize easily to multiparameter
control. To illustrate this, minimum-dissipation protocols are calculated for a diverse set
of systems described by Fokker-Planck or master-equation dynamics with single- (Fig. 7.1)
or multiparameter control (Fig. 7.4). Combining results with known minimum-dissipation
protocols in the slow limit,125 it is demonstrated that a simple interpolation scheme pro-
duces protocols that reduce dissipation at all speeds (Fig. 7.3). This chapter is adapted
from the published article in Ref. 47.

7.1 Derivation

Consider a stochastic thermodynamic system described by dynamics of the form (3.1); e.g.,
Fokker-Planck or Master-equation dynamics. If the total duration ∆t is short compared to
the system’s natural relaxation time τ (a fast protocol), expanding the probability distri-
bution in ∆t/τ around an initial equilibrium distribution πi(r) gives

ps(r,Λ) = πi(r) + p(1)
s (r,Λ)∆t

τ
+O

[(∆t
τ

)2]
, (7.1)
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for s ≡ t/∆t and first-order coefficient p(1)
s (r,Λ). Plugging (7.1) up to O(∆t/τ) into (3.1)

gives

∂p
(1)
s (r,Λ)
∂s

≈ L[x,λ(s)]πi(r) , (7.2)

with L ≡ τL the dimensionless time-evolution operator. Solving for p(1)
s (r,Λ) and substi-

tuting into (7.1) yields

ps(r,Λ) ≈ πi(r) + ∆t
τ

∫ s

0
ds′L[x,λ(s′)]πi(r) . (7.3)

Multiplying by conjugate forces f , integrating over microstates x, and changing the time
variable back to t gives

〈f(t)〉Λ ≈ 〈f〉λi +
∫ t

0
dt′Rλi [λ(t′)] , (7.4)

for the initial force-relaxation rate (IFRR)

Rλi [λ(t)] ≡
∫

dr f(r)L[x,λ(t)]πi(r) (7.5a)

= d〈f〉λi

dt

∣∣∣∣
λ(t)

, (7.5b)

the rate of change of the conjugate forces at the current control-parameter values (averaged
over the initial equilibrium distribution).

Within this approximation, the average excess work (4.9) is

〈Wex〉Λ ≈ 〈Wex〉λi −
∫ ∆t

0
dt dλT

dt

∫ t

0
dt′Rλi [λ(t′)] . (7.6)

The first RHS term is the excess work during an instantaneous jump between the ini-
tial and final control-parameter values, which equals the relative entropy kBTD(πi||πf) ≡
kBT

∫
dx πi ln[πi/πf ] between the initial πi and final πf equilibrium probability distribu-

tions.73 Integrating (7.6) by parts gives this chapter’s main theoretical result: for sufficiently
short duration, the excess work is

〈Wex〉Λ ≈ kBTD(πi||πf)−
∫ ∆t

0
dtRT

λi [λ(t)] [λf − λ(t)] . (7.7)

The second RHS term is the first-order correction in ∆t, an approximation for the saved
workWsave ≡ kBTD(πi||πf)−Wex compared to an instantaneous protocol. I emphasize that
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these results stem from the short-time approximation of (7.1) and do not involve any linear-
response approximation. Rather than the small-force and long-duration approximations
typical of linear-response and steady-state frameworks,184–186 I make no direct assumptions
on the strength of driving and instead assume a short duration so that the probability
distribution remains near the initial equilibrium distribution.

7.2 Initial Force-Relaxation Rate
The IFRR can be intuitively understood by considering one-parameter exponential relax-
ation. For a discrete jump from initial control-parameter value λi to an intermediate value
λ, an exponentially relaxing mean conjugate force obeys

〈f(t)〉Λ = 〈f〉λi + (〈f〉λ − 〈f〉λi) e−t/τ(λ) , (7.8)

where τ(λ) is the relaxation time of the conjugate force. The IFRR is the initial slope of
the mean conjugate force as it relaxes towards equilibrium (7.5b), which for exponential
relaxation is

Rλi(λ) = 〈f〉λi − 〈f〉λ
τ(λ) . (7.9)

Under simple exponential relaxation, τ(λ) is the same relaxation time defined in Ref. 125
for slow protocols, thereby connecting short- and long-duration control.

For a small control-parameter jump λ−λi, static linear-response theory, 〈f〉λi −〈f〉λ ≈
β(λ− λi)〈δf2〉λi , implies that the IFRR further simplifies to

Rλi(λ) ≈ 〈δf
2〉λi(λ− λi)
τ(λ) . (7.10)

The relaxation rate is zero at the initial control-parameter value and increases with larger
control-parameter jumps which drive the system further from equilibrium.

7.3 Minimum-dissipation protocols
Equation (7.7) allows for relatively straightforward optimization to determine the short-time
efficient protocol (STEP), satisfying the Euler-Lagrange equation

∂

∂λ

[
RT

λi (λ)
(
λf − λSTEP

)] ∣∣∣∣
λSTEP

= Rλi

(
λSTEP

)
. (7.11)
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As an algebraic equation, the solution is a point in control-parameter space, thus the STEP
consists of two jumps: a jump at the start from its initial value to the optimal value
λSTEP, and at the end from the optimal value to the final value. The STEP is a jump
protocol provided the time-evolution operator L is independent of time derivatives of the
control parameters. For Fokker-Planck dynamics this is satisfied if the system is driven by
a (generally time-dependent) scalar potential.

To illustrate the two-step minimum-dissipation protocol the STEP has been calculated
for diverse model systems (Fig. 7.1). In the translating- and breathing-trap systems de-
scribed by Fokker-Planck dynamics (Appendix C.1), the STEP jumps halfway between the
two endpoints, consistent with the results of Ref. 41. The single-spin-flip and two-state
binding/unbinding reaction systems are described by master-equation dynamics (Appen-
dices C.2 and C.3), with STEPs that jump to points that are respectively more and less
than halfway between the initial and final control-parameter values. Specific jump sizes
for the STEP depend on the functional form of the IFRR, but the minimum-dissipation
protocol always consists of jumps to and from an intermediate control-parameter value.

The STEP jumps to the point in control-parameter space that maximizes the short-time
power savings

P st
save(λ) ≡ RT

λi(λ)(λf − λ) (7.12)

due to relaxation at intermediate λ. The STEP balances fast relaxation rate Rλi with
large final jump λf −λ. The STEP spends the duration ∆t relaxing at λSTEP, so for short
duration P st

save(λSTEP)∆t is the work saved relative to an instantaneous protocol.

To demonstrate the energetics of the STEP, consider the thermodynamic cycle consist-
ing of tightening and loosening a harmonic trap (Fig. 7.2). For a quasistatic (infinitely slow)
protocol, work equals the free-energy difference, which exactly cancels for a cyclic process.
An instantaneous protocol has an additional contribution, which for tightening (loosening)
the trap equals the relative entropy between the open (closed) and closed (open) states. The
relative entropy is dissipated as heat during equilibration between tightening and loosening
the trap (outer vertical arrows). The STEP spends the duration relaxing at an intermediate
control-parameter value, resulting in saved work approximated by the area of the rectangle
with width given by the final jump size λf − λSTEP and height by Rλi(λSTEP)∆t. To maxi-
mize the saved work (rectangle area) the STEP optimally balances the IFRR (determining
the height) with final jump size (width). The saved work and IFRR at the STEP value are
larger when tightening the trap compared to loosening since the relaxation rate is limited
by diffusion when loosening the trap while the relaxation when tightening is sped up by the
force applied by the trap.

For a single control parameter, if the duration is sufficiently short the gain Gsave ≡
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the STEP value is always halfway between the control-parameter endpoints.
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λi/λf = 1/2, with duration ∆t/τ = 2/5 for fastest relaxation time τ = 1/(2βDλf).
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〈Wsave〉des
Λ /〈Wsave〉naive

Λ in saved work by the STEP is

GSTEP
save ≈ maxλ[P st

save(λ)]
P st

save(λ)
, (7.13)

where an overbar denotes the spatial average P st
save(λ) ≡ (∆λ)−1 ∫ λf

λi
dλ P st

save(λ), “naive”
the constant-velocity protocol, and “des” a designed protocol. The gain from a STEP is
greatest when the power savings P st

save(λ) is sharply peaked.

7.4 Interpolated Protocols

In order to design a protocol that performs well for any duration, the STEP (optimal for fast
protocols) is combined with the minimum-dissipation protocol from linear-response theory
(optimal for slow protocols) to create an interpolated protocol. The linear-response protocol
is continuous and when driven by a single control parameter proceeds at velocity dλ/dt ∝
[ζ(λ)]−1/2, where ζ(λ) is the generalized friction coefficient.125 For the interpolated protocol,
the shape of the protocol from linear-response theory is maintained (i.e., dλ/dt ∝ [ζ(λ)]−1/2)
but with added initial jump (λSTEP − λi)/(1 + ∆t/τ)α and final jump (λf − λSTEP)/(1 +
∆t/τ)α, where the constant α controls the crossover from slow to fast approximations. For
the simple systems considered in this chapter it was empirically determined that α = 1
performs relatively well.

Figure 7.3 shows the improvement from designed protocols relative to naive (constant-
velocity) for the model system of a breathing harmonic trap. The difference between naive
and designed work (Fig. 7.3a) shows the expected asymptotic behavior in the short- and
long-duration limits: scaling as ∆t (slope of one) for small ∆t/τ and (∆t)−1 (slope of
negative one) for large ∆t/τ . Both the fast and slow designed protocols perform worse than
naive (the difference is negative) for large and small ∆t/τ , respectively. The fast-protocol
approximation (7.7) breaks down for long duration because the conjugate-force relaxation
rate decreases as the system approaches equilibrium at λ, whereas (7.7) assumes a constant
relaxation time. However, the interpolated protocol performs well for any duration, and the
largest work saved compared to naive is for intermediate duration. The gain Gsave quantifies
the percent increase in saved work from designed protocols relative to naive, where a gain
greater than one indicates the designed does less work than the naive. For this system, the
largest gain in saved work occurs in the fast limit (small ∆t/τ) for the STEP, interpolated,
and exact optimal protocols.
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Fig 7.3. Benefit in the breathing harmonic trap from designed protocols relative to
the naive (constant-velocity) protocol, as a function of the duration ∆t scaled by
the fastest integral relaxation time τ . The different designed (“des”) protocols
include the exact optimal41 (“opt”, solid black), linear-response optimized (“slow
opt”, dashed blue), STEP (“fast opt”, red dots), and interpolated optimal protocol
(“inter opt”, dash-dotted green). (a) Difference between the work done by the naive
(constant-velocity) and designed protocols. (b) Gain Gsave ≡ 〈Wsave〉des

Λ /〈Wsave〉naive
Λ

in saved work. Solid red line in (b) denotes the short-duration limit (7.13).
Control-parameter endpoints satisfy λi/λf = 16, and the interpolated protocol uses
α = 1 and fastest integral relaxation time τ = 1/(2βDλi)81.
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7.5 Multiparameter Control
Optimization of multiparameter control protocols has seen a recent surge in interest, pri-
marily driven by possible improvements to nonequilibrium free-energy estimates in fast-
switching simulations.187,188 Previous calculations of minimum-dissipation protocols which
observed jumps were limited to one-parameter optimization. A significant advantage of the
present approximation is that it permits simple multiparameter control-protocol optimiza-
tion. Equation (7.11) implies that for multiparameter control the STEP consists of jumps
to and from the control-parameter point λSTEP.

To illustrate, consider a nine-spin Ising model with frustrated boundary conditions
(Fig. 7.4).76,189 There are two control parameters: magnetic fields h = (hb, hg) applied
to the mid-edge spins (Fig. 7.4a) which initially hold the system in the spin-down state and
reverse during the protocol, driving the system to invert its magnetization. Appendix C.4
gives model details.

The power saving (7.12) vanishes at initial and final control-parameter values, respec-
tively corresponding to zero relaxation rate and zero final jump size (Fig. 7.4b). By jumping
past control-parameter regions with small power saving, the STEP outperforms the naive
protocol for short duration, as quantified by the difference between naive and designed work
(Fig. 7.4c) and the gain in saved work (Fig. 7.4d). Indeed, for short duration the STEP
more than doubles the work saved by the naive protocol (i.e., has gain greater than two).

7.6 Discussion
I have developed an approximation for work in the fast-protocol limit (7.7) that permits
straightforward optimization (7.11) simply from the initial force-relaxation rate (IFRR),
Eq. (7.5b). It is shown that jumps are a universal feature of minimum-dissipation protocols
in this fast limit, which is illustrated with several model systems under single- (Fig. 7.1) or
multiparameter control (Fig. 7.4). Jumps minimize dissipation for fast protocols because
the relaxation rate is approximately constant, with no diminishing returns from spending
the entire duration at a single control-parameter value. Therefore, the STEP jumps between
the fixed control-parameter endpoints to spend the entire duration at the control-parameter
value that maximizes the product of the IFRR and the subsequent jump size (7.12). This
breaks down for slow protocols since with sufficient time at a single control-parameter value,
the relaxation rate decreases over time; indeed, in the slow limit the minimum-dissipation
protocol is continuous.125 These two seemingly disparate limits are combined with a simple
interpolation scheme, producing protocols that perform well for any duration (Fig. 7.3).

Since the present derivation is valid for overdamped and Master-equation dynamics, it
would be interesting to apply a similar approach to study the optimal control of under-
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Fig 7.4. a) Nine-spin ferromagnetic Ising model (internal black spins) with fixed
boundary conditions (external gray spins). The multiparameter control parameter is
two external magnetic fields, hb (blue) applied to horizontal-edge spins and hg
(green) applied to vertical-edge spins. b) Short-time power savings (7.12) as
function of control parameters (hb,hg). Red line: naive protocol; red star:
hSTEP (7.11). c) Work difference between designed and naive protocols (dotted red),
and its short-duration approximation (7.7) (solid red). d) Gain
Gsave ≡ 〈Wsave〉des

Λ /〈Wsave〉naive
Λ in saved work for multiparameter STEP relative to

naive (dotted red), and its short-duration limit (7.13) (solid red). Control-parameter
endpoints are hi = (−2,−2) and hf = (2, 2), with duration ∆t and fastest relaxation
time τ = N/kflip, for N = 9 spins and single-spin flip attempt rate kflip.
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damped Langevin dynamics. For quadratic trapping potentials, it has been shown that the
optimal protocol has not only jumps but also delta-function peaks in the control param-
eters at the start and end of the protocol; therefore, it would be interesting to see if the
short-time approximation can be generalized to underdamped dynamics.44

One important application of minimum-dissipation protocols is to free-energy estima-
tion, which aids the design of novel ligands for targeted protein binding.138–144 Quite gen-
erally, the accuracy of free-energy estimates decreases with increasing
dissipation.81,146,147,155,167,190 Based on the results of Ref. 41, jump protocols have been
used to reduce dissipation and improve free-energy estimates,167 but previously it was un-
known whether jumps would always reduce dissipation in these more complex systems,
and there was no simple procedure to find the optimal jump size. The present formalism
demonstrates that jumps are a general feature and gives a simple optimization procedure
applicable to multiparameter control. This makes protocol optimization tractable for a
considerably expanded range of systems.

Although this chapter focused on systems with known equations of motion, the IFRR
(7.5b) and short-time power savings (7.12) are easily estimated without detailed dynamical
information: the system only needs to be equilibrated at a single control-parameter value;
the protocol can be very short; the average converges with few samples; and the STEP is
found using standard optimization techniques applied to (7.12). The STEP can thus be
computed relatively inexpensively, easing determination of minimum-dissipation protocols
in rapidly driven complex chemical and biological systems. This opens the door to improve
the energetic efficiency in thermodynamic computing39,191 and the accuracy of nonequilib-
rium free-energy estimates in simulations and single-molecule experiments.80,81,147,190
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Chapter 8

Strong-trap approximation

Quadratic trapping potentials are widely used to experimentally probe biopolymers, molec-
ular machines, and drive transitions in steered molecular-dynamics simulations. Approx-
imating energy landscapes as locally quadratic, multidimensional trapping protocols that
minimize dissipation are designed. The designed protocols are easily solvable and appli-
cable to a wide range of systems. The approximation does not rely on either fast or slow
limits and is valid for any duration provided the trapping potential is sufficiently strong.
The utility of the designed protocols is demonstrated with a simple model of a periodically
driven rotary motor. These results elucidate principles of effective single-molecule manip-
ulation and efficient nonequilibrium free-energy estimation. This chapter is adapted from
the published version in Ref. 43.

In this chapter I consider two types of protocols: constrained-final-distribution (CFD)
protocols and constrained-final-control-parameter (CFCP) protocols. CFD protocols as-
sume complete control over the dynamics and drive the system to a specified final probabil-
ity distribution, guaranteeing that at any driving speed the system will reach its destination.
This can be used to model rotary motors like ATP synthase by setting the final state to
be identical to the initial but shifted by one period, resulting in one cycle of free-energy
transduction in a specified duration.

CFCP protocols drive a finite set of control parameters to specified final control-parameter
values. For such protocols, the system does not necessarily keep up with rapid changes in
control parameters, and for fast driving the system state remains largely unchanged.47 For
nonequilibrium free-energy estimation, the free-energy change is estimated from work mea-
surements between control-parameter endpoints, so CFCP protocols are the natural choice.

Within the strong-trap approximation, for equal initial and final covariance, the minimum-
dissipation CFD protocols are given by explicit equations for the trap center (8.4a) and
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stiffness (8.6) that linearly drive the mean between the specified endpoints while main-
taining constant covariance. A second optimization (8.10) is performed to achieve CFCP
minimum-dissipation protocols. Since the designed CFD protocols can be solved analyt-
ically and calculating CFCP protocols only requires performing a minimization over the
final mean and covariance (which in some cases is analytic (8.11)), these designed protocols
are considerably simpler to determine than previous methods.47,50,125 For a model rotary
motor (Fig. 8.1), the designed protocol tightens the trap as it crosses energy barriers, achiev-
ing minimal entropy production (8.7) and maximum efficiency (8.9), provided the trap is
sufficiently strong to confine the system within a single well (Fig. 8.2).

8.1 Minimum-Dissipation Quadratic Control

Consider the overdamped motion of a system with diffusivity D driven by a time-dependent
potential Vtot(r, t), satisfying the Fokker-Planck equation (3.4). The total potential

Vtot(r, t) = Vland(r) + Vtrap(r, t) (8.1)

is separated into a time-independent component Vland (the underlying energy landscape) and
a quadratic trapping potential (2.1). For a strong trapping potential, the time-independent
component can be expanded up to second order about the mean position µ

Vland(r) ≈ Vland(µ) + (r − µ)>∇Vland(µ) + 1
2(r − µ)>∇∇>Vland(µ)(r − µ) , (8.2)

with ∇∇> the Hessian matrix. Under these assumptions, the probability distribution can
be approximated as Gaussian, pt(r) ≈ N (µt,Σt), with µt the average position vector and
Σt the covariance matrix at time t.

Since the probability is approximately Gaussian, the known exact solution for the
minimum-dissipation protocol presented in section 4.1.1 is applied: the entropy produc-
tion is bounded by the squared Wasserstein distance (4.6),42,123 and is minimized by a
linearly varying mean and covariance satisfy (4.7a) and (4.7b) respectively.

The minimum-dissipation protocol is expressed in terms of the trap center and stiff-
ness by solving the dynamical equations of motion (3.4) for the time-dependent mean and
covariance

1
βD

dµt
dt =Kt(rc

t − µt)−∇Vland(µt) (8.3a)

1
βD

dΣt

dt =2β−1 −
[
Kt +∇∇>Vland(µt)

]
Σt − Σt

[
Kt +∇∇>Vland(µt)

]
(8.3b)
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and substituting their optima (4.7a) and (4.7b). The trap center and stiffness must respec-
tively satisfy (for a detailed derivation in the absence of an energy landscape see Ref. 42)

rc
t =µt +K−1

t

[ ∆µ
βD∆t +∇Vland(µt)

]
, (8.4a)

Kt = 1
β

Σ−1
t −

1
βD

∫ ∞
0

dν e−νΣt
dΣt

dt e
−νΣt −∇∇>Vland(µt) , (8.4b)

where µt is given by (4.7a), and Σt by (4.7b). If Σ is diagonal, then Σt is given by (4.8),
the integral in (8.4b) can be evaluated, and the trap stiffness obeys

Kt = ∇∇>Vland(µt) +
(

1
β
I − ∆Σ

1
2

2βD∆t

)
Σ−1
t . (8.5)

These explicit protocol equations (8.4) are considerably easier to compute than previous
methods for determining minimum-dissipation protocols for CFDs, which require solving
differential equations or inverting the Fokker-Planck equation.39,50 By constraining the final
covariance matrix after one period (during which the mean completes one rotation) to equal
the initial, the driving is periodic: the first two moments are periodic in time. Therefore,
to minimize dissipation of a periodic system the covariance remains unchanged throughout
the protocol (4.7b). This is achieved when the effective stiffness is constant, i.e.,

Kt = K0 +∇∇>Vland(µ0)−∇∇>Vland(µt) . (8.6)

If in each rotation the mean travels a distance ∆µrot in time ∆trot, the resultant entropy
production is

∆Sprod = ∆µ2
rot

D∆trot
, (8.7)

that of an overdamped system moving at constant velocity against viscous Stokes drag; i.e.,
the minimum-dissipation protocol has perfect Stokes efficiency.192

For a machine transducing free energy ∆Fneq (i.e., converting input work into output
free energy) between the initial and final distributions with equal covariance, the efficiency
is the ratio of output free energy to input work,

η ≡ β∆Fneq
β∆Fneq + ∆Sprod

, (8.8)

55



with the minimum-dissipation protocol achieving the upper bound,

ηmax =
[
1 + (∆µrot)2

βD∆trot∆Fneq

]−1

. (8.9)

Since the entropy production is independent of the free-energy change, a system that travels
the same distance but transduces more free energy is more efficient.

8.2 Free-Energy Estimation

Free-energy differences between two equilibrium states of a system can be estimated from
nonequilibrium work measurements using the Jarzynski equality or the Crooks fluctuation
theorem (chapter 5).25,26,36 The Jarzynski estimator of the free-energy difference ∆Feq ≡
Feq[λ∆t,K∆t]−Feq[λ0,K0] between equilibrium distributions corresponding to constrained
initial and final control parameters is (5.2). In general, the statistical error of the free-energy
estimate based on Jarzynski’s equality increases with dissipation. The connection between
statistical error and dissipation is clearest when dissipation is small, where the expected
bias and variance are approximately (5.5a) and (5.5b) respectively.81,146 If dissipation is
small, minimizing work also minimizes the bias and variance of free energies estimated from
Jarzynski’s equality. Similar connections can be made for other free-energy estimators such
as Bennett’s acceptance ratio (5.3).81,152,153

The average work (3.23) for the minimum-dissipation protocol is

〈W 〉 =1
2Tr

{
K
[
Σ + (µ− λ)(µ− λ)>

]}∆t

0
+ Vland(µ)

∣∣∆t
0 + 1

2Tr
[
∇∇>Vland(µ)Σ

]∆t
0

+ 1
β

∆Smin
prod , (8.10)

with Tr the trace and ∆Smin
prod the lower bound in (4.6). To find the protocol that minimizes

work for CFCPs (8.10) is minimized with respect to the final mean µ∆t and covariance Σ∆t,
for fixed final trap center λ∆t and stiffness K∆t.

For equal initial and final covariance and a flat energy landscape, the final mean is

µ∆t = µ0 +
(

2K−1

βD∆t + I

)−1

(λ∆t − µ0) . (8.11)

In some more general cases (e.g., energy landscapes represented by low-order polynomials),
(8.10) can also be minimized analytically, and in general can be solved numerically with
relative ease. Performing this minimization is a considerably simpler task than finding
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the minimum-dissipation protocols based on thermodynamic-geometry frameworks, which
typically require calculating metric tensors and solving geodesic equations.77,82 Another
benefit of the present method is that it does not rely on either slow-protocol125 or fast-
protocol47 approximations and is valid at any duration provided the trapping potential is
sufficiently strong.

8.3 Rotary Motor

The applicability of the approximation presented within this chapter is demonstrated with a
model of a rotary motor inspired by ATP synthase (chapter 2). Consider a one-dimensional
periodic energy landscape (2.3) (Fig. 8.1). The protocol is periodic with equal initial and
final variances, Σ0 = Σ∆t, starting with the mean position at the center of a well, µ0 = 0,
and terminating after three barrier crossings so that µ∆t = 3∆xm. For the model’s pe-
riodic energy landscape (2.3) and initial and final means, substituting the optimal (lin-
early varying) mean (4.7a) and variance (4.8) into (8.4a) and (8.6) respectively, gives the
minimum-dissipation protocol

rc
t = 1

kt

(3∆xm
βD∆t + ∆E

∆xm
+ πEb

∆xm
sin 6π

∆t t
)

+ 3∆xm
∆t t , (8.12a)

kt =k0 + 2π2Eb
∆x2

m
− 2π2Eb

∆x2
m

cos 6π
∆t t . (8.12b)

Figure 8.1 shows the designed intermediate-duration protocol for driving the system
over three barriers, numerically estimated from Langevin dynamics integrated with the
Euler–Maruyama method193 with sufficiently small time steps and numerous samples such
that numerical inaccuracies are negligible (Appendix A). To maintain constant variance,
the designed protocol tightens the trap as it crosses the barriers; to linearly drive the
mean between the two wells, the trap center initially jumps ahead of the mean position µ0,
remaining ahead throughout the protocol. For a Gaussian distribution, the 9%, 25%, 75%,
and 91% quantiles are evenly spaced, consistent with the linear translation of the quantiles
between the two wells, shown in Fig. 8.1 for k0 = 2Eb/x

2
m. For a weak trap (k0 = Eb/(2x2

m)),
the quantiles are not evenly spaced and exhibit significant deviations from linear temporal
evolution, implying that the Gaussian approximation is no longer valid. The crossover from
strong to weak trap occurs when k0 ∼ Eb/x

2
m, since a weaker trap (k0 . Eb/x

2
m) is not

sufficient to confine the system within a single well and the distribution can become bimodal,
resulting in widely separated quantiles as the system crosses the barriers (Fig. 8.1).

The quadratic approximation is accurate when the initial stiffness is large (k0 � Eb/x
2
m).

When this condition holds, the entropy production and efficiency are well approximated by
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Fig 8.1. Designed protocol for a model rotary motor. Time-dependent protocol for
a weak initial stiffness k0/(Eb/x

2
m) = 1/2 (red, left) and intermediate initial stiffness

k0/(Eb/x
2
m) = 2 (blue, right) depicting the static potential (dotted/gray), trap

potential (dashed), median position (solid), and 9%, 25%, 75%, and 91% quantiles
(shaded). The two protocols are offset vertically and horizontally for clarity. The
energy offset is ∆E = β−1, the barrier height is Eb = 4β−1, and the protocol
duration is ∆t = τD for diffusion time τD ≡ ∆x2

m/D between adjacent wells.
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barrier height is Eb = 4β−1. Error bars representing bootstrap-resampled 95%
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(8.7) and (8.9) at any protocol duration (Fig. 8.2 a/b). Additionally, for a fast protocol
whose duration is shorter than the diffusion time between adjacent wells (∆t � τD ≡
∆x2

m/D), the entropy production and efficiency agree with (8.7) and (8.9) even for a rela-
tively weak initial stiffness. Large forces are required to rapidly drive the system, which can
only be achieved by the trap potential (since the energy landscape is not dynamically con-
trolled), resulting in the dominant contribution to the force arising from the trap potential.
Therefore, the approximation is valid when either the protocol duration is short (∆t� τD)
or the initial stiffness is large (k0 � Eb/x

2
m).

Despite the quadratic approximation breaking down when both ∆t & τD and k0 .
Eb/x

2
m, the final position’s mean and standard deviation remain within 20% of their re-

spective targets, relative to the distance between the wells (Fig. 8.2 c/d). Even when the
approximations break down, the designed protocols successfully drive the system to the
final desired distribution.

8.4 Discussion

By approximating static energy landscapes as locally quadratic, minimum-dissipation proto-
cols for quadratic trapping potentials have been derived. This approximation does not rely
on either slow or fast limits and therefore offers a complementary result to previous work
on designing minimum-dissipation protocols in the fast and slow limits.47,125 Designed pro-
tocols based on the present approximation are considerably simpler than previous methods
for determining the minimum-dissipation protocols, which require estimating correlation
functions and solving geodesic equations. The trap center linearly drives the mean between
the specified endpoints (8.4a); if the initial and final covariances are equal, then the stiffness
adjusts to maintain constant covariance throughout the protocol (8.6).

The applicability of the approximation is demonstrated with a simple model of a driven
rotary motor (Fig. 8.2). When either the initial stiffness is large (k0 � Eb/x

2
m) or the

duration is short (∆t � τD), the motor achieves the maximum efficiency (8.9). When the
initial stiffness is small (k0 . Eb/x

2
m) and the duration is large (∆t & τD) the motor achieves

significantly lower efficiency (difference in efficiency of ∼ 0.25) but the designed protocols
still drive the system to within 20% of the target endpoints relative to the inter-well distance
∆xm.

The formalism presented in this chapter gives insight into the design principles of ef-
ficient motors. Achieving maximum efficiency requires full control of the system, which
in general would require an infinite number of control parameters; however, full control
of Gaussian probability distributions can be achieved with a finite number of parameters.
Within the strong-trap approximation, for a d-dimensional system the number of control
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parameters required for an arbitrary energy landscape is d(d+ 3)/2: d trap center compo-
nents (controlling the means) and d(d + 1)/2 stiffness matrix components (controlling the
covariances).

I emphasize that the intermediate states remaining Gaussian in the optimal-transport
process is the result of an optimization over all possible distributions connecting Gaussian
end-states and not an imposed constraint on the intermediate distributions. This is in
contrast to parametric methods for determining the minimum-dissipation protocols, where
the intermediate states are constrained to those accessible by the small number of control
parameters.34,125 In general, the minimum-dissipation protocols determined from paramet-
ric control will coincide with optimal transport when there are sufficiently many control
parameters to access the intermediate distributions of the optimal-transport process; e.g.,
d(d+3)/2 control parameters for a d-dimensional system with a flat energy landscape and a
quadratic trapping potential. Otherwise, the full control afforded by the optimal-transport
process will achieve less dissipation.

Several of the results presented in this chapter are directly applicable to physical systems.
Single-control-parameter (typically the trap center) designed pulling protocols for unfolding
DNA hairpins can reduce dissipation.80 My recent theoretical study82 (Chapter 9) suggests
that dissipation in DNA-hairpin experiments can be significantly further reduced by adding
one additional control parameter (trap stiffness), but further control (beyond trap center
and stiffness) would do very little to reduce dissipation. Within the present framework this
is easily understood. Control over the trap center drives the system over the energy barrier
between the folded and unfolded state, but cannot prevent the increase in variance as it
crosses the barrier. By tightening the trap as it traverses the barrier, the system’s variance
remains constant and the barrier is effectively eliminated. If the trap is reasonably stiff, then
the distribution is approximately Gaussian, and two control parameters are sufficient for
full control of this one-dimensional system. Application of the strong-trap approximation
to a barrier-crossing model for parameters relevant to DNA hairpin experiments is given in
Chapter 9.

The minimum-dissipation protocols described in the Free-energy estimation section can
be directly applied to improve estimates of free-energy differences. In steered molecular-
dynamics simulations, strong-trap approximations are commonly employed when estimating
free-energy differences;194,195 therefore, the method presented in this chapter is well situ-
ated to improve these estimates. More generally, several enhanced-sampling techniques for
free-energy estimation add quadratic potentials to smooth potential-energy surfaces196,197
or trap intermediate states in umbrella sampling.151 There could be connections between
minimum-dissipation protocols and the improved performance from smoothing potential-
energy surfaces and optimally spacing intermediate states.147–151,198,199

A benefit of the present formalism is that it allows specification of the final distribution
by its mean and covariance while using a finite number of control parameters. Previous
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methods that specified the final distribution using optimal-transport theory required full
control over the potential, in principle requiring infinite control parameters. General de-
signs for parametric control typically constrain final control-parameter values but do not
actually achieve a specific target distribution. Being able to specify the final distribution
is particularly useful for modeling periodic motors like ATP synthase. Fixing equal initial
and final covariance periodically drives the motor with a high degree of precision (Fig. 8.2
c/d) and gives insight into the maximum efficiency of such driving.

Finally, the ease of determining multidimensional designed protocols opens up the pos-
sibility to explore a host of new systems, from coupled transport motors pulling cargo200
to steered molecular-dynamics simulations of complex condensed-matter systems.
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Chapter 9

Barrier Crossing

Modern advances in single-molecule biophysics make possible the precise spatial and tempo-
ral control of biological systems. Optical tweezers can be used to probe the conformational
and energetic properties of biopolymers (DNA and RNA molecules)8–13 and molecular ma-
chines (ATP synthase,14–16 kinesin,17–20 and myosin21–24). Additionally, computer simula-
tions such as steered molecular dynamics have the freedom to fully control the molecular
and trapping potentials. Despite the relative freedom of control, experiments and simula-
tions rarely exploit the possibility of optimized control protocols, and the few that do are
generally limited to optimization of a single control parameter.167,188,201 Using the meth-
ods for determining minimum-dissipation protocols for slow (Chapter 4), fast (Chapter 7),
and strong (Chapter 8) control, I design minimum-dissipation protocols for driven barrier
crossing under two-parameter control of trap center and stiffness.

Two-parameter control allows specification of both the time-dependent mean and vari-
ance of the position distribution, and results in qualitatively distinct designed protocols
(Fig. 9.5). Such a designed protocol has jumps at the start and end that decrease in size as
the duration increases, and slows down and tightens as it crosses the barrier, approximately
linearly driving the mean and maintaining roughly constant variance throughout the pro-
tocol. For any duration, the designed protocols significantly improve performance in terms
of both dissipation and flux compared to naive and one-parameter control (Fig. 9.4). This
chapter is adapted from the article published in Ref. 82.

9.1 Thermodynamics

Consider a model system relevant to DNA-hairpin experiments: a Brownian bead driven by
a time-dependent quadratic trapping potential with center and stiffness modulated by the

63



focus and intensity of the laser. This model is also typical of steered molecular-dynamics
simulations, which use a time-dependent quadratic potential to drive reactions.188 The
total potential Vtot = Vland + Vtrap is the sum of the static hairpin potential (2.2) and
time-dependent trap potential (2.1) (shown schematically in Fig. 9.5).

The total work (4.9) can be separated into two components, W = Wc +Ws, one for each
control parameter. The trap-center component

〈Wc〉Λ =
∫ ∆t

0
dt k(t) [xc(t)− 〈x〉Λ] dxc(t)

dt (9.1)

is analogous to “force-distance” work. The stiffness component

〈Ws〉Λ = 1
2

∫ ∆t

0
dt
〈

[xc(t)− x]2
〉
Λ

dk(t)
dt (9.2)

resembles “pressure-volume” work, i.e., the stiffness controls the effective volume available
to the system, and the variance contributes to an effective pressure resisting changes in trap
stiffness.

9.2 Designed protocols

9.2.1 One-Parameter Control

For one-parameter control, in order to gain additional insight into minimum-dissipation
protocols, an energy offset and sinusoidal oscillations are added to the double-well potential
discussed in Chapter 2:

Vland(x) =
[
Eb +A cos

(2πx
xo

)] [(2x−∆xm
∆xm

)2
− 1

]2

+ ∆Em

(
x

xm

)3
. (9.3)

The barrier height is Eb (Fig. 9.1), the energy offset between the two minima at 0 and
∆xm = 2xm is ∆Em, and the amplitude of the oscillations is A with wavelength xo (Fig. 9.2).

Slow Limit

For a symmetric double-well potential with a trap stiffness comparable to the barrier height
(k ∼ Eb/x

2
m), the friction is strongly peaked at the center of the barrier (Fig. 9.1b). For

stiffness significantly smaller (k � Eb/x
2
m) or larger (k � Eb/x

2
m) than the barrier height,
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friction-optimized protocol (4.17), and “fast opt.” the STEP (7.11). Throughout, the
barrier height is Eb = 8β−1, there is no energy offset ∆Em = 0 or oscillations A = 0,
and trap stiffness is k = Eb/(4x2

m) (green), 2Eb/x
2
m (blue), or 24Eb/x

2
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the friction landscape is relatively flat. For k � Eb/x
2
m, the total potential (3.4) is dom-

inated by the underlying landscape potential (independent of the trap potential), so the
friction (4.14) is independent of the trap center. For k � Eb/x

2
m, the total potential (3.4) is

dominated by the trap potential (independent of the underlying landscape), and the friction
approaches that of a harmonic trap on a flat landscape which is independent of the trap
center.

The excess-work ratio (4.19) has a peak at an intermediate trap stiffness (Fig. 9.1c),
since the friction for k � Eb/x

2
m or k � Eb/x

2
m is relatively flat resulting in a linear LR

protocol (4.17) similar to the naive. For a trap stiffness k ∼ Eb/x
2
m, the LR protocol is

significantly different from the naive (Fig. 9.1d) resulting in a significant reduction in excess
work compared to the naive and hence a large excess-work ratio.

For a double-well potential (9.3) with an energy offset and modulated by sinusoidal
oscillations, and a trap stiffness comparable to the barrier height k ∼ Eb/x

2
m, the maximum

of the friction is offset from the center of the barrier (Fig. 9.2b) due to the energy offset
∆Eb. For a trap stiffness comparable to the size of oscillation (k ∼ A/x2

o), the friction has
corresponding oscillations. For a trap stiffness significantly larger than any of the features
of the energy landscape (k � A/x2

o and k � Eb/x
2
m), the friction is relatively flat. These

features are reflected in the ratio of excess work in Fig. 9.2c as peaks at k ∼ Eb/x
2
m and

k ∼ A/x2
o = 18Eb/x

2
m ∼ 24Eb/x

2
m. The largest excess-work ratio occurs when the trap

stiffness is comparable to the barrier height (k ∼ Eb/x
2
m) which is the largest feature of the

energy landscape. There is a third peak in the excess-work ratio for a trap stiffness less
than the barrier height (k < Eb/x

2
m) caused by the energy offset ∆Em. The oscillations in

the friction for k ∼ A/x2
o are reflected in the slow optimal protocol in Fig. 9.2d.

Fast Limit

In the fast limit, provided the trapping potential is quadratic, the IFRR (7.5b), short-time
power saving (7.12), STEP (7.11), and ratio of saved work (7.13) are independent of the
underlying energy landscape.

For the model system of a translating harmonic trap, the IFRR (7.5b) is

Rλi [xc(t)] = βDk2[xc(0)− xc(t)] , (9.4)

leading to the short-time power saving

P st
save(λ) = βDk2[xc

i − xc(t)][xc
f − xc(t)] , (9.5)
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which is maximized at the STEP value

xSTEP = xc
i + xc

f
2 , (9.6)

halfway between the control-parameter endpoints. The STEP therefore jumps to and from
the control-parameter endpoints to spend the entire duration at xSTEP. This results in a
ratio of saved work

〈Wsave〉STEP
Λ

〈Wsave〉naive
Λ

≈ 3
2 . (9.7)

These results are independent of the underlying energy landscape and are valid provided the
trap potential is quadratic. For higher-order trapping potentials (e.g., quartic) the IFRR
will depend on the underlying energy landscape.

For applications to free-energy estimation resulting from quadratic trapping, for example
as realized by optical tweezers or steered molecular dynamics, the minimum-dissipation
protocol is given by the STEP that spends the entire duration at the control-parameter value
halfway between the endpoints. This STEP will result in a factor of ∼ 1.5 improvement in
saved work compared to the naive (constant-velocity) protocol.

9.2.2 Two-Parameter Control

The symmetric barrier crossing described by (2.2) with quadratic trapping potential (2.1)
is studied for two-parameter control. The protocols considered drive the system between
the two minima xc

i = 0 and xc
f = ∆xm with equal initial and final stiffness (ki = kf). With

these protocols, control over only trap center can be directly compared to control over both
trap center and stiffness.

Slow Limit

This section describes the designed protocols (geodesics) based on the friction matrix for
driven barrier crossing under control of both trap center and stiffness (two-parameter con-
trol). The two-parameter linear-response (2P LR) protocol changes stiffness most when
the initial stiffness is comparable to the scaled barrier height (ki ∼ Eb/x

2
m), and leaves

stiffness virtually unchanged when the initial stiffness is either large (ki � Eb/x
2
m) or small

(ki � Eb/x
2
m). Physically, large (small) initial stiffness ensures that the initial equilibrium

distribution is unimodal (bimodal). Throughout, the stiffness is compared to the scaled
barrier height Eb/x

2
m, essentially comparing the initial energy at the barrier of the trap and

the hairpin potential.
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For slow driving, the excess work is described by (4.13), where the friction can be
directly calculated from (4.16) to yield the friction matrix shown in Fig. 9.3. The geodesics
are found by numerically solving (4.18) with specified initial and final trap center and
stiffness, as described in Refs. 76,77.

All components of the friction have the largest variation in magnitude across the protocol
when the trap stiffness is comparable to the scaled barrier height (k ∼ Eb/x

2
m). If the

stiffness is small (k � Eb/x
2
m) or large (k � Eb/x

2
m), then all components of the friction are

independent of the trap center. For k � Eb/x
2
m, the total potential (3.4) is dominated by the

hairpin potential (independent of the trap potential), so the friction (4.14) is independent
of the trap center and stiffness. For k � Eb/x

2
m, the total potential is dominated by the

trap potential (independent of the hairpin potential), and the friction approaches that of a
harmonic trap on a flat landscape, which is also independent of the trap center.

The center-center component ζc,c of the friction matrix is strongly peaked at the barrier
(Fig. 9.3). This component is proportional to the force variance 〈(δfxc)2〉λ = k〈(δx)2〉λ,
which is largest in magnitude at the barrier. The barrier reduces the effective stiffness of the
total potential, thereby increasing the position variance. Physically, a distribution sharply
peaked at the trap center requires less work to translate than a wider distribution.

The stiffness-stiffness component ζs,s of the friction is proportional to the fourth moment
of the position distribution, 〈(δfk)2〉λ = 〈[δ(x − xc)2]2〉λ/4, which is largest when the
distribution has appreciable probability of extreme values. Therefore, this component of
the friction is largest when the total potential is a double well with two widely separated
wells. For k . Eb/x

2
m, there is significant probability in the well opposite the trap (i.e.,

the distribution is bimodal), and pulling the trap closer to the center reduces the friction
by reducing the distance between the two minima of the total potential. For k & Eb/x

2
m,

the total potential only has one minimum, and therefore this component of the friction is
largest when the (unimodal) position distribution is widest, which occurs at the barrier.
Physically, it takes more work to tighten the trap when the system is far from the trap
center, scaling as (x− xc)4.

The off-diagonal component ζc,s has both positive contributions, ζ+
c,s ≡ max(ζc,s, 0),

and negative contributions, ζ−c,s ≡ max(−ζc,s, 0). The off-diagonal components result from
cross-correlations between the conjugate forces, and can either increase or decrease the
work compared to treating the conjugate forces as uncorrelated (ignoring off-diagonal com-
ponents).

First consider a weak trap, k . Eb/x
2
m. For xc < ∆xm/2, ζc,s is negative so increasing

or decreasing both the trap center and stiffness together results in negative contribution to
the total work from this component. Tightening the trap as the system is driven over the
barrier causes this contribution to reduce the total work. For xc > ∆xm/2, ζc,s is positive so
the contribution to the total work is negative if the trap center is increased as the stiffness is
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Fig 9.3. Geodesics and components of the friction matrix used to design
two-parameter linear-response protocols. Grayscale heatmap: components of the
friction as a function of the (dimensionless) trap center∗ xc/∆xm and stiffness∗
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m/Eb. Colored curves: geodesics of the friction for equal initial and final trap
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decreased. Loosening the trap as it is driven away from the barrier causes this contribution
to decrease the total work.

For a strong trap (k & Eb/x
2
m), the situation is reversed: tightening the trap as the

system is driven up the energy landscape and loosening the trap as it is driven down result
in a positive total-work contribution from the off-diagonal component. Since the trap is stiff
compared to the hairpin potential, tightening no longer helps pull the system up the energy
landscape and instead more tightly confines the system, attenuating thermal fluctuations
which would otherwise help kick the system over the barrier.

In the slow limit, the two-parameter linear-response (2P LR) protocol minimizes dis-
sipation by tightening the trap and slowing down as it traverses the barrier (Fig. 9.4).
Tightening the trap when approaching the barrier (Fig. 9.4b) helps the system maintain
roughly constant variance throughout the protocol and approximately linearly changes the
quantiles of the position distribution (Fig. 9.5), which is a generic property for minimum-
dissipation protocols in optimal transport under full control (section 4.1). When the trap
doesn’t tighten (e.g., naive and 1P LR protocols in Fig. 9.5), the variance increases as
the system crosses the barrier and the quantiles do not change linearly. Slowing down
while crossing the barrier (previously observed for one-parameter (constant-stiffness) bar-
rier crossing66) allows time for thermal fluctuations to kick the system over the barrier
(Fig. 9.4a).

Fast Limit

For a rapidly driven system, the minimum-dissipation protocol consists of two discrete
jumps, spending the entire duration at fixed control-parameter values. This type of discrete
protocol requires work

〈W 〉Λ =
〈
Vtot(x,λf)− Vtot(x,λ)

〉
Λ

+
〈
Vtot(x,λ)− Vtot(x,λi)

〉
λi
. (9.8)

The first term is the change in energy due to a jump from λ to λf , averaged over the
distribution at the end of the protocol Λ, and the second term is the change in energy due
to a jump from λi to λ, averaged over the initial equilibrium distribution at λi.

For short duration ∆t, the probability distribution at the conclusion of the protocol is
approximated as (chapter 7)47

p∆t(x,Λ) ≈ πi(x) + ∆t L(x,λ)πi(x) (9.9a)
≈ πi(x) + ∆t [L(x,λ)− L(x,λi)]πi(x) , (9.9b)

where L(x,λ) is the time-evolution operator for the probability distribution at fixed control
parameter λ, and the second line used the fact that the initial equilibrium distribution
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72



0

Δt
2

Δt

tim
e

Δxm

Eb

naive 2P LR1P LR interpolated

jump

Fig 9.5. Time-dependent protocols for driven barrier crossing at intermediate
protocol duration. Naive (black), one-parameter linear response (1P LR, red),
two-parameter linear response (2P LR, blue), and interpolated (green). Snapshots of
the total (solid), static hairpin (dotted), and time-dependent trap (dashed) potential
are shown for t = 0, ∆t/2, and ∆t. The hairpin, initial, and final potentials are the
same across protocols (purple). Dash-dotted curves: median positions during
corresponding protocol. Shading: 9%, 25%, 75%, and 91% quantiles, which are
approximately evenly spaced for a Gaussian distribution. Barrier height is
Eb = 4β−1, initial and final trap stiffnesses are ki = kf = 4/(βx2

m), and protocol
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satisfies L(x,λi)πi(x) = 0. For Fokker-Planck dynamics this gives

p∆t(x,Λ) ≈ πi(x) + βD∆t ∂
∂x

{[
fx(x,λ)− fx(x,λi)

]
πi(x)

}
, (9.10)

for force fx(x,λ) ≡ −∂Vtot(x,λ)/∂x. Substituting into (9.8) and rearranging gives

〈Wsave〉Λ ≡
〈
Vtot(x,λf)− Vtot(x,λi)

〉
λi
− 〈W 〉Λ (9.11a)

= βD∆t
∫

dx
[
Vtot(λ)− Vtot(λf)

] ∂
∂x

{[
fx(x,λ)− fx(x,λi)

]
πi(x)

}
, (9.11b)

Integrating by parts leads to

〈Wsave〉Λ = βD∆t
〈[
fx(x,λf)− fx(x,λ)

] [
fx(x,λ)− fx(x,λi)

]〉
λi
. (9.12)

The short-time power saving is

P st
save(λ) = 〈Wsave〉Λ

∆t (9.13a)

= βD
〈[
fx(x,λf)− fx(x,λ)

][
fx(x,λ)− fx(x,λi)

]〉
λi
, (9.13b)

and is maximized if〈
∂fx(x,λ)

∂λ

[
fx(x,λ)− fx(x,λi) + fx(x,λf)

2

]〉
λi

= 0 . (9.14)

This can be achieved by control parameters which for all x satisfy ∂fx(x,λ)/∂λ = 0 or
fx(x,λ) = [fx(x,λi) + fx(x,λf)]/2.

The minimum-dissipation protocol in the fast limit (the STEP) maximizes the short-
time power saving (9.13b) by jumping from and to the control-parameter endpoints to spend
the entire duration at control-parameter values xSTEP = (xc

i + xc
f )/2, and kSTEP = ki. This

result is independent of the hairpin potential since Vtot(x,λ) = [Vtot(x,λi) + Vtot(x,λf)]/2
maximizes the short-time power saving (9.14) for all x independent of Vland(x) (note kf = ki).

Interpolated Protocols

Given theory describing minimum-dissipation control in both the slow and fast limits, a
simple interpolation scheme is developed to design protocols that reduce dissipation at all
driving speeds. Similar to the one-parameter case (chapter 7),47 the interpolated protocol
has an initial jump (λSTEP − λi)/(1 + ∆t/τ) and a final jump (λf − λSTEP)/(1 + ∆t/τ),
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and follows the linear-response path between them,

λinterp(t) = 1
1 + ∆t

τ

λSTEP +
(

1− 1
1 + ∆t

τ

)
λLR(t) , (9.15)

with τ the crossover duration. This guarantees that the protocol approaches the minimum-
dissipation protocol in both the fast and slow limits. For system timescale, the diffusion
time τD ≡ ∆x2

m/(2D) between wells is used (primarily for its simplicity).

Figure 9.4 shows the interpolated protocol for symmetric barrier crossing at intermediate
protocol duration. The interpolated protocol has jumps in the trap center at the start and
end of the protocol, and tightens the trap as it crosses the barrier. Figure 9.5 shows the
quantiles of the position distribution throughout the interpolated protocol. Since the trap
is not as stiff as the 2P LR protocol, as it crosses the barrier it does not drive the quantiles
as linearly as the 2P LR protocol does; however, as discussed in the following section, the
interpolated protocol nevertheless outperforms the 2P LR in terms of dissipation.

9.2.3 Performance

For comparison to an ideal process, the performance of optimal-transport under full control
is evaluated.39,50,122 Optimal transport (Chapter 4) is used to calculate the minimum work
required—assuming complete control over the potential—to move probability from an initial
to final distribution within a fixed duration as

WOT = ∆Feq + 1
D∆t

∫ 1

0
dy [Qf(y)−Qi(y)]2 , (9.16)

where Qf and Qi are the final and initial quantile functions (inverse cumulative distribution
functions). A second optimization over the final probability distribution is performed, sub-
ject to constrained initial and final control-parameter endpoints. This yields the minimum
work to drive the trap between the two endpoints assuming full control over the potential
(rather than just one- or two-parameter parametric control).

Figure 9.4 compares naive, one-parameter linear-response (1P LR), two-parameter linear-
response (2P LR), and interpolated protocols. Performance is measured by the average work
(the direct target of the protocol design) and the probability pΛ(x < xm) that the system
remains in its initial well (related to the average flux), which was not directly considered
in the design. The barrier height Eb = 4β−1 is intermediate in the context of DNA hair-
pins,12,13 and the initial and final stiffness are comparable to the scaled barrier height,
ki = kf = Eb/x

2
m. For a 1-µm bead in water at standard temperature and pressure, with

inter-well distance ∆xm ≈ 20 nm, the initial and final stiffness correspond to ki = kf ≈ 0.16
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pN/nm, the 2P LR protocol reaches a maximum stiffness of kmax ≈ 1.12 pN/nm, and the
diffusion time between wells is τD ≈ 0.4 s.

For long duration (∆t � τD), the 1P LR protocol requires (∼1.6×) less work than
the naive; however, the 2P LR and interpolated protocols most significantly reduce work
(Fig. 9.4c; ∼5.6× less than naive, ∼3.5× less than 1P LR, and within 1% of full con-
trol). Intermediate-duration designed protocols give the largest-magnitude work reduction
〈W 〉des − 〈W 〉naive: 2P LR and interpolated protocols save ∼2.7β−1, whereas 1P LR only
saves ∼0.4β−1 (Fig. 9.4e).

1P LR protocols often reduce dissipation but as a side effect also decrease flux, as seen in
Fig. 9.4d. 2P LR and interpolated protocols have the opposite effect, decreasing dissipation
while increasing flux. For intermediate duration, the 2P LR protocol drives up to 78% and
the interpolated up to 17% more probability to the destination well, compared to naive; the
1P LR drives 19% less.

For long duration (∆t � τD), two-parameter control provides significant advantages
over one-parameter control for both average work and flux; however, for short duration the
2P LR protocol can perform worse than 1P LR and naive (Fig. 9.4c and e; similar behavior
has been observed for multiparameter control of the Ising model77). For short duration,
the system cannot keep up with the rapid changes in the trap potential, and the linear-
response approximation breaks down. Although the increased stiffness of the 2P LR protocol
results in the strongest driving and hence the greatest flux of the protocols considered here
(Fig. 9.4d/f), it does so at the cost of increased dissipation for short duration. Indeed, the
minimum-dissipation protocol for short duration (∆t � τD, the STEP) is monotonic and
discrete. The interpolated protocol asymptotes to the STEP in the short-duration limit,
resulting in reduced dissipation and increased flux at any duration. In terms of dissipation,
the interpolated protocol achieves within 1% of the minimum work under full control for
short and long duration and remains within 30% of full control at intermediate duration
(Fig. 9.4c).

9.2.4 Comparison Between Control Strategies

This section compares naive (constant velocity) and designed protocols based on the meth-
ods described in the previous chapters: interpolated protocols combining STEP and slow-
protocol approximations (Chapter 7), strong-trap approximation (Chapter 8), and full con-
trol (Chapter 4). The naive protocol serves as a baseline which the designed protocols
should outperform, and full control as a bound on what parametric control could possibly
achieve.

Fig. 9.6 shows the naive and designed protocols for intermediate driving speed, inter-
mediate trap stiffness, and for fixed final control parameters. Every designed protocol has
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m/(2D) between the two wells.

discontinuous jumps at the start and end of the protocol, and slows down and tightens the
trap as it crosses the barrier. The behavior of the designed protocols can be understood
in terms of the full-control solution. In one dimension the minimum-dissipation protocol
linearly drives the quantiles of the probability distribution between the initial and final dis-
tributions. In the naive protocol, since it has constant stiffness, the probability distribution
spreads out as it crosses the barrier, due to the negative curvature of the energy landscape
at the barrier. To compensate for this, the designed protocols tighten as they cross the
barrier; additionally, to compensate for the changes in the gradient of the energy landscape,
the designed protocols slow down as they cross the barrier.

Fig. 9.7 shows the excess work of the designed protocols compared to the naive protocol.
For long duration (slow protocol) all of the designed protocols significantly outperform
the naive, with the difference between the minimum dissipation possible from full control
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Fig 9.7. Performance of the naive (black circles), interpolated (green squares),
strong-trap (red triangles), and full-control (blue dashed) protocols. (a) Excess work
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protocols, all as functions of protocol duration ∆t/τD scaled by diffusion time τD.
Error bars representing bootstrap-resampled 95% confidence intervals are smaller
than the markers.

indistinguishable from the dissipation from the interpolated protocol in this limit. While
the approximations made in the interpolated protocol become exact in the long-duration
limit, the same is not true for the strong-trap approximation. As a result, the strong-
trap protocol has slightly higher dissipation in the long-duration limit, but would achieve
the minimal dissipation in the limit of high trap stiffness. Furthermore, for intermediate
protocol duration (∆t ∼ τD), the strong control performs the best of the approximations
since the approximation does not explicitly depend on the protocol duration. For short
duration (fast protocols), all the designed protocols perform similarly well.

In summary, the designed protocols perform similarly well, so it seems reasonable
to choose the control strategy which is simplest to determine, provided the approxima-
tions/assumptions required are satisfied. Since the strong-trap approximation has explicit
solutions for the designed protocol, it will generally be the simplest to determine; however,
it is not as widely applicable as the interpolated protocols.

9.3 Discussion

Multiparameter control protocols can significantly outperform their one-parameter coun-
terparts, improving both work and flux. For a system undergoing driven barrier crossing,
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one-parameter control of only the trap center limits the control over the position distribu-
tion, with a large increase in variance as the protocol crosses the barrier (Fig. 9.6). Control
over both the trap center and stiffness makes possible approximately linear driving of the
position mean and variance between specified endpoints, consistent with optimal-transport
protocols that minimize work under full control (Chapter 4).39,50,122 This significantly re-
duces the work required to drive the system between the two wells and increases the flux
compared to naive and one-parameter control protocols (Fig. 9.4). The main shortcoming
of the multiparameter linear-response protocols is that they can perform worse than naive
for short duration; however, this issue is remedied by combining linear-response and STEP
frameworks to give interpolated protocols that reduce dissipation at any duration. For the
model system and parameters explored, the largest reduction in dissipation occurs from one-
to two-parameter control, and the dissipation in the two-parameter interpolated protocol
is within 30% of full control for intermediate duration and within 1% for short and long
duration.

The model system closely resembles DNA-hairpin experiments, with experimentally rel-
evant parameters.12,13 The results of this chapter reveal general design principles for driven
barrier crossing that can be readily implemented experimentally: the designed protocols 1)
slow down and tighten the trap as it crosses the energy barrier, thereby driving the mean
position between the two wells at constant rate while maintaining constant variance; and
2) jump at the beginning and end of the protocol, with larger jumps for faster protocols.
Recent experimental protocols implement one-parameter control and demonstrate signifi-
cant work reductions from designed protocols.80 Adding an additional control parameter
(trap stiffness) can dramatically improve the performance over the one-parameter counter-
part (up to 3.5× less work and ∼80% increased probability of reaching the target well).
Although multiparameter control is more difficult to implement, the performance gains can
be significant.
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Chapter 10

Perspective and Outlook

I have analyzed optimal control in stochastic thermodynamics, including both full con-
trol and parametric control (chapter 4). I demonstrate general methods for determining
minimum-dissipation protocols for parametric control ranging from weak to strong (chap-
ter 8) and slow to fast (chapter 7). These approximations fill out the four limits of para-
metric control (Fig. 1.3) and can be combined to design protocols that reduce dissipation
at any driving speed. These designed protocols reproduce key features determined by exact
solutions for Gaussian distributions and quadratic trapping potentials, such as control-
parameter jumps at the start and end of the protocol and linear driving of the distribution
quantiles between specified endpoints (chapter 9).

For the model system of driven barrier crossing (chapter 2), interpolated, strong-control,
and full-control solutions were compared (chapter 9). The designed protocols significantly
outperform the naive (linear) protocol. Strong control has explicit solutions for the minimum-
dissipation protocol, making it the simplest approximation to use; however, it is only ap-
plicable to overdamped dynamics with strong trapping potentials.

Figure 1.3 shows the limits in which solutions for the minimum-dissipation protocol for
parametric control are known. The linear-response and slow-driving approximations have
been applied to several different types of systems and control (chapter 4). A promising area
of future study would be to explore if extensions and generalizations can be made to strong
and fast control. Indeed, it has recently been shown that the fast-protocol approximation
can be extended to quantum systems, classical Hamiltonian dynamics, and optimization of
the variance of the work distribution.202

Another extension to consider is to allow for position-dependent diffusivity, which gener-
ically arises when a high-dimensional system is represented in a lower-dimensional space.203
For example, DNA-hairpin experiments and molecular-dynamics simulations take place
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in three spatial dimensions but are often represented as one-dimensional diffusive pro-
cesses.13,204,205 This requires averaging out the behavior in the other two dimensions, and
any inhomogeneity in these dimensions will result in position-dependent effective diffusivity
in the one-dimensional representation. Measured diffusivities in molecular-dynamics simula-
tions often vary with position204, and although accurate measurements remain a technical
challenge, some hairpin experiments report a position-dependent diffusivity.206 Position-
dependent diffusivity can alter the kinetic transition state of protein folding,207 which will
impact the design of minimum-dissipation protocols. Therefore, position-dependent diffu-
sivity may be an important consideration in some applications. The minimum-dissipation
protocol under full control in inhomogeneous environments (e.g., position-dependent diffu-
sivity) has been treated in detail in Ref. 119.

An important aspect of designing protocols to minimize dissipation in both experiments
and theory is the choice of control parameters and number of control parameters. For the
model system of driven barrier crossing, designed protocols with control over both trap
center and stiffness (two-parameter control) significantly reduces dissipation compared to
designed protocols that can only adjust the trap center (single-parameter control).82 How-
ever, adding even more control parameters does not significantly reduce dissipation any
further, because this system is well approximated as a one-dimensional Gaussian, for which
the full-control solution only requires two parameters to adjust the mean and variance (sec-
tion 4.1.1). Although this phenomenon is well explained for one-dimensional overdamped
systems, considerably less is known more generally. For example, Ref. 77 compared one-,
two-, and four-parameter control of the Ising model and found significant qualitative and
quantitative differences between the designed protocols. Since the full-control solution for
this system is not yet known, this phenomenon cannot be explained in the same way as
for driven barrier crossings. Beyond simply the number of control parameters, it remains
an open question as to which control parameters are the most important when designing
protocols to minimize dissipation. The choice of control parameters and number of con-
trol parameters will be important for experimental and computational applications, such as
free-energy estimation.

Leveraging optimal-transport theory appears to be a promising approach towards a
deeper understanding of optimal control in stochastic thermodynamics. Full-control solu-
tions based on optimal-transport theory were initially only applicable to continuous classical
systems with overdamped dynamics;50,52 however, recent studies have begun to expand their
range of applicability to discrete-state and quantum systems.53,57–61

The full-control solutions give an idealized view of optimal control and will always out-
perform parametric control, but can be used as the ideal solution that parametric control
can strive towards and draw insight from. For example, linearly driving the quantiles
between the initial and final endpoints is the minimum-dissipation protocol for a one-
dimensional system under full control; this is reasonably well reproduced by parametric
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control of driven barrier crossing (chapter 9). Furthermore, it has recently been shown that
optimal-transport theory can be leveraged to design minimum-dissipation protocols under
parametric control,59 which is a promising new technique for determining exact minimum-
dissipation protocols at any driving speed or strength of driving.

The focus of this thesis has been on protocols which reduce the average work or entropy
production; however, higher-order moments (e.g., variance or skewness), or individual tra-
jectory optimization208 may also be of interest for strongly fluctuating systems. Ref. 168
compared for a breathing harmonic trap the protocols that minimize work variance with
those that minimize average work, finding that minimum-average-work and minimum-work-
variance protocols qualitatively differ for intermediate-to-fast driving speeds. In contrast,
for slow near-equilibrium control, the same protocols minimize average work and work vari-
ance 6, so a more complete description of minimum-variance protocols far from equilibrium
is desirable.

This thesis has focused on systems driven by external control parameters, which is
adequate for describing the experimental systems discussed in section 2; however, this does
not accurately describe autonomous machines. For example, ATP synthase in vivo is driven
by a proton gradient across the mitochondrial membrane which drives the coupled Fo and
F1 components. In this system, coupling between the components means that none of
the components can be treated as external, and thus it is not obvious how the present
discussion of optimal control applies to such autonomous machines. Some first steps towards
the description of autonomous molecular machines are discussed in section 4.2.2; however,
more work is required towards a full description of efficient autonomous machines.209

The majority of the studies on optimal control in stochastic thermodynamics have fo-
cused on theoretical understanding and simple toy models. There is a deep understanding
of minimum-dissipation protocols at both slow and fast driving speed and both weak and
strong driving strength (Fig. 1.3). It would be interesting to see how these results apply to
real physical systems and if they are able to achieve the promising results predicted by the-
ory. The two most straightforward applications are to relatively simple experimental model
systems (chapter 2)+ in an analogous fashion to Ref. 80, and to free-energy estimation as
discussed in chapter 5, in a similar fashion to Refs. 148–151.
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Appendix A

Numerical Methods

A.1 Overdamped Dynamics
Brownian dynamics simulations in chapters 6-9 are of one-dimensional overdamped dynam-
ics where the system position x obeys

dx(t)
dt = −βD∂Vtot(x, t)

∂x
+
√

2Dη , (A.1)

for standard Gaussian white noise η. This is then solved numerically according to the
Euler–Maruyama method193 where the time steps are discretized as x(t) → xj and t → tj
for the position and time respectively.

For an equilibrium initial condition, the initial position x0 is randomly drawn from the
equilibrium distribution
π0(x) = exp[−βVtot(x, 0)]/Z0 with Z0 =

∫∞
−∞ dx exp[−βVtot(x, 0)]. For Gaussian distribu-

tions this is easily achieved from using built-in random number generators.193

For non-Gaussian distributions (chapter 9), a random sample from the initial distri-
bution is found by inverse transform sampling: given a cumulative distribution function
Π(x) ≡

∫ x
−∞ dx π(x), quantile function Q = Π−1, and a uniform random variable Y1 ∈ [0, 1],

the random variable X = Q(Y1) has the cumulative distribution Π(x). The cumulative
distribution and quantile functions can be computed, a random number drawn from the
uniform distribution, and the initial sample generated by numerically solving X = Q(Y1)
for initial sample X.

Once the initial sample is drawn, the solution is propagated forward as

Xj+1 = Xj + a (Xj , tj) dt+ b (Xj , τj) ηj , (A.2)
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where a(x, t) = −βD∂Vtot(x, t)/∂x, b(x, t) =
√

2D, and ηj is an identically distributed
random variable with 0 mean and covariance 〈ηjηk〉 = δjkdt. This is iterated for n1 steps
until the total time elapsed is n1dt = ∆t. This procedure yields a single trajectory and is
performed n2 times to estimate averages of quantities. The n2 trajectories are independent
and therefore can be efficiently computed in parallel. The time step dt is chosen to be
sufficiently small that further decreasing it changes the curves/markers by less than the size
of the markers and curves on final figures. The number n2 of trajectories is chosen to be
sufficiently large such that bootstrap-resampled 95% confidence bounds are smaller than
the markers or curves on final figures.

Typical run times on a single computer are on the order of minutes to generate figures
shown in this thesis, and seconds or less to compute individual averages.

A.2 Full Control

The time-dependent probability distributions under full control in chapter 9 are computed
by linearly interpolating between the initial and final quantile functions for one-dimensional
systems. The quantile functions are computed by first integrating the initial and final distri-
butions to determine the cumulative distribution P (x) =

∫ x
−∞ dx p(x) which is then numer-

ically inverted to determine the corresponding quantile function Q = P−1. Once the initial
Qi and final Qf quantile functions are known, the intermediate quantiles Qt are determined
by linear interpolation between the initial and final quantiles. This yields the optimal-
transport solution for the time-dependent quantile function. The time-dependent quantile
function is then numerically inverted, Pt = Q−1

t , and differentiated, pt(x) = ∂Pt(x)/∂x, to
determine the optimal-transport solution for the time-dependent probability distribution.
Finally, the total potential can be computed according to (4.5), the entropy production
by (4.4), and work from (9.16).

For constrained final distributions (CFDs) this is sufficient for determining the optimal-
transport solution; however, to compute the optimal transport solution for constrained final
control parameters (CFCP), an optimization over the final distribution must be performed.
To do this I perform stochastic gradient descent similar to the method described in Ref. 168
for computing minimum-work-variance protocols. I compute the CFD protocol as described
above and compute the work from (9.16) before adding a small point perturbation ε to the
final distribution pf,new(x) = c[pf(x) + εδ(x − Y2)], where c maintains normalization and
Y2 ∈ [a, b] is a uniform random variable with [a, b] spanning the available space in x. Equa-
tion (9.16) is then computed for the new distribution and the change to the final distribution
is accepted if work has decreased. For numerical calculations, all continuous distributions
are approximated by discrete grids of points and delta functions as perturbation to a single
grid point.
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This method is iterated until work has converged to within an amount smaller than the
size of markers in the final figure. The perturbation size ε and discretization of the distribu-
tion are chosen such that estimated errors in the work are smaller than the markers. This
method is most efficient when starting from a good initial guess for the final distribution,
which is achieved by starting from known solutions in the slow limit (where the optimal
final distribution is the final equilibrium distribution) to find the solution for long duration
and slowly decreasing the duration until the fast limit is reached. At each duration, the
optimal final distribution is found, this is then used as the initial guess for the next shorter
protocol duration. This is compared with the solutions found starting from the fast limit
(where the optimal final distribution is the initial equilibrium distribution) and increasing
duration to the slow limit. The difference between the two is smaller than the markers and
curves shown in all final figures. To check for robustness, a subset of the solutions were
compared with solutions starting from uniform distributions, which gave consistent results.

Typical run times on a single computer are on the order of minutes to generate figures
shown in this thesis, and seconds or less to compute CFCP protocols.
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Appendix B

Skewed Thermodynamic Geometry

This appendix presents supporting information for chapter 6, including explicit expressing
for the frictions (B.4a), analysis of finite integration bounds, and a discussion on Finsler
geometry.

B.1 Breathing Harmonic Trap

A simple non-trivial system for designing and testing minimum-variance and minimum-bias
protocols is the breathing harmonic trap, since its correlation functions can be calculated
analytically and it has a non-Gaussian work distribution. Consider a colloidal particle in
a harmonic trap with variable stiffness. The particle position x obeys the overdamped
Langevin equation,

dx
dt = −βDk(t)x+

√
2Dη, (B.1)

in a trap of time-dependent strength k(t). The control parameter is the trap strength λ = k,
so the conjugate force is f ≡ −∂U/∂k = −1

2x
2. The joint probability distribution of the

particle position and work obeys168,210

∂p(x,w, t)
∂t

= −1
2

dk(t)
dt x2∂p(x,w, t)

∂w
+D

∂

∂x

[
βk(t)xp(x,w, t) + ∂p(x,w, t)

∂x

]
. (B.2)
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From this, any moment of either the work or position distribution can be calculated, subject
to an initial equilibrium condition

p(x,w, t = 0) = π(x|ki)δ(w) (B.3a)
= [2π/(βki)]−1/2 exp{−βkix

2/2}δ(w) (B.3b)

with δ(w) the Dirac delta function.

The force variance (6.19), the Stokes’ (6.4) and the supra-Stokes’ coefficients (6.6), and
the third integral covariance function (6.8) are

〈δf2〉k(t) = 1
2k2 (B.4a)

ζ[k(t)] = 1
4Dk3 (B.4b)

ζ(2)[k(t)] = 1
2D2k5 (B.4c)

C(3)[k(t), t] ≈ 3βt
16Dk6 + 51

32D2k7 , (B.4d)

respectively. In (B.4d), terms of order t−n for n ≥ 1 are neglected. For one-dimensional
control, the minimum-variance (precise) and minimum-bias (accurate) protocols that min-
imize Eq. (6.25b) and (6.26b), respectively can be found analytically. The force-variance-
optimized protocol proceeds at velocity k̇ ∝ k, minimum-variance protocol at k̇ ∝ k3/2, and
minimum-bias protocol at k̇ ∝ k5/3.

As a simple test of the approximations of Eqs. (6.12), (6.13), and (6.18), Fig. B.1 plots
the sum and difference of the first three moments of the excess work from forward and
reverse protocols. The forward protocol is chosen to be a decrease in the control parameter
(decreasing k), and therefore the reverse increases the control parameter (increasing k).
In all cases the exact calculations agree with the approximation for slow protocols (large
∆t/τ (1)

f for slowest relaxation time τ (1)
f = γ/(2kf)), and overestimate for fast protocols

(small ∆t/τ (1)
f ). For large ∆t/τ (1)

f , the first and second moments are approximated by
(6.12) and (6.13) so the sums (n = 1 and 2, (+) in figure) are both approximated by the
Stokes’ friction (6.4) and decrease as 1/∆t, while the differences (n = 1 and 2, (−) in
figure) are proportional to the supra-Stokes’ tensor (6.6) and decrease as 1/(∆t)2. The
third moment is approximated by (6.18), so the sum (n = 3, (+) in figure) is approximated
by the third integral covariance (6.8) and decays as 1/(∆t)2 (due to the term linear in t
in (B.4d)) while the difference (n = 3, (−) in figure) is proportional to the supra-Stokes
tensor and decays as 1/(∆t)2.
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Fig B.1. The sum (black, +) and the difference (red, −) of the moments of excess
work for forward and reverse protocols of the breathing harmonic trap, as a function
of protocol duration ∆t (scaled by the slowest relaxation time τ (1)

f = (2βDkf)−1).
Solid lines are the near-equilibrium approximations, given respectively by
Eqs. (6.12), (6.13), and (6.18). Dashed (n = 1), dotted (n = 2), and dash-dotted
(n = 3) curves show exact results. The protocol k(t) is linear with kf/ki = 1/2. The
coefficients α+

1 = 1/2, α−1 = 2, α+
2 = 1/4, α−2 = 1/3, α+

3 = 1/2, and α−3 = 1/4 are
chosen such that any moment approximated by the same friction coefficient
collapses onto a single curve. In all cases the exact calculations agree with the
approximation for large ∆t/τ (1)

f .
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B.2 Finite Integration Bounds

The infinite integration bound on the friction assumes that correlations relax quickly relative
to the protocol duration. For the first two moments, despite the finite integration bound
generally yielding a more accurate approximation, the infinite bound considerably simplifies
the approximation and allows for straightforward protocol optimization.

The effect of finite integration bounds is significant for two calculations: approximation
of fourth- and higher-order moments of the excess work, and next-order approximations
(including both leading- and next-to-leading-order contributions) for the moments. In the
former, one must treat the bound as finite since the n-time covariance functions do not
decay to zero for some subspace of large time arguments.

In more detail, consider the four-time covariance (kurtosis)
〈δfi(0)δfj(t2)δfk(t3)δf`(t4)〉λ(t). When any one of the four times {0, t2, t3, t4} significantly
differs from the others, the conjugate forces decorrelate, and the kurtosis decays to zero;
however, when t3 ∼ t4 � t2 ∼ 0, any variables separated by significant time decorrelate,
and the kurtosis approaches 〈δfi(0)δfj(t2)〉λ(t)〈δfk(t3)δf`(t4)〉λ(t). This limit represents a
plane in the (t2, t3, t4) parameter space where the kurtosis asymptotes to a finite value even
for large time arguments. Substituting the above into (6.8) for n = 4 yields the integral
four-time covariance in the limit t3 ∼ t4 � t2 ∼ 0,

C(3)
ijk`[λ(t), t] = 3t C(1)

ij [λ(t), t]C(1)
k` [λ(t), t] (B.5a)

= 3t ζ(1)
ij [λ(t)]ζ(1)

k` [λ(t)] , t→∞ . (B.5b)

Since this is the only case that remains finite as t→∞, the second line is the approximation
(to highest order in t) for the integral four-time covariance. Parallel arguments hold for the
higher-order moments.

When approximating the average excess work (6.23) with both the Stokes’ and supra-
Stokes’ tensors (6.24), finite integration bounds on the Stokes’ friction may be necessary.
For finite integration bounds on the Stokes’ friction (6.24) is replaced with

Cij [λ(t), λ̇(t), t] ≡ C(1)
ij [λ(t), t] + 1

4ζ
(2)
ijk [λ(t)]λ̇k(t) . (B.6)

For systems with weakly skewed conjugate-force fluctuation, the contribution from the finite
bound on the first term can be comparable in magnitude to the contribution from the supra-
Stokes’ tensor.

Figures B.2 shows the first and second moments of the excess work for forward and
reverse protocols, compared to different approximations. For the mean excess work, the
supra-Stokes’ tensor contributes with opposite sign from the Stokes’ friction for forward
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(decreasing k) protocols and with same sign for reverse (increasing k). Since the Stokes’-
friction approximation overestimates the excess work in both cases (a,c), adding the supra-
Stokes’ tensor reduces the accuracy of the approximation for the reverse excess work. This
effect is an artifact of the infinite integral bound; indeed, if the bound is kept finite (C(1)

rather than ζ(1)), the first integral autocovariance overestimates excess work for forward
protocols and underestimates excess work for reverse protocols, and adding the supra-
Stokes’ tensor improves the approximation in both cases. Finally, the Stokes’ friction does
not always overestimate excess work for both forward and reverse protocols. For the second
moment in (b,d), the Stokes’ friction overestimates excess work for forward protocols and
underestimates excess work for reverse protocols, and the supra-Stokes’ tensor improves the
approximation when either the Stokes’ friction or first integral covariance are used.

B.3 Finsler Geometry

The addition of the supra-Stokes’ tensor (6.6) comes at the cost of a more complex geo-
metric structure. In contrast to Riemannian geometry, Finsler geometry is not restricted
to a quadratic norm. In general, the inner products are not characterized solely by points,
but rather by points and directions. Despite this, several useful concepts from Riemannian
geometry (notably curvature, length, and geodesics) generalize. There are therefore stan-
dard procedures to find the geodesics despite the more complex landscapes induced by the
generalized cubic Finsler metric (6.24).164

Finsler geometry has several applications in both physics and biology.164 In the ther-
modynamic context, the flexion tensor211

Fijk[λ(t)] ≡
〈
∂3 ln π(x|λ)
∂λi∂λj∂λk

〉
λ(t)

(B.7)

is a Finsler metric arising as the third-order contribution to the near-equilibrium expansion
of the relative entropy (Kullback-Leibler divergence) of a probability distribution relative
to the equilibrium distribution:164

D(π(x|λ)||π(x′|λ)|) ≡
∫ ∞
−∞

dx π(x|λ) ln π(x′|λ)
π(x|λ) (B.8a)

≈ Iij∆λi∆λj + Fijk∆λi∆λj∆λk . (B.8b)
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Fig B.2. The first (a/c) and second (b/d) moments of excess works for forward
(a,b) and reverse (c,d) protocols of the breathing harmonic trap as a function of
protocol time ∆t (scaled by the slowest relaxation time τ (1)

f = (2βDkf)−1). The
dashed, dotted, and dash-dotted curves are different forms of the near-equilibrium
approximation. The protocol k(t) is linear with kf/ki = 1/2.
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The coskewness tensor (6.21) is related to the flexion tensor by

Fijk[λ(t)] =〈δfiδfjδfk〉λ(t) +
∑
σijk

〈
∂2 ln π(x|λ)
∂λi∂λj

∂ ln π(x|λ)
∂λk

〉
λ(t)

,

where the sum is over permutations of the indices which yield distinct covariance functions
σijk = {123, 132, 321}. In weak gravitational lensing212,213 the flexion tensor is the third-
order correction to the shapes of images, which is described as flexing the shape of images
from an ellipse towards a banana shape. Similarly, the supra-Stokes’ tensor (product of
coskewness tensor and integral double relaxation time (6.21)) skews the thermodynamic
geometry of minimum-dissipation protocols, as demonstrated in Fig. 6.1.
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Appendix C

Fast-Control Model Systems

To support the results of chapter 7, this appendix describes theoretical and numerical
calculations for several diverse model systems: translating and breathing harmonic traps,
binding and unbinding reactions, and the Ising model.

C.1 Harmonic Trap

Consider a colloidal particle in a harmonic trap with energy V = 1
2k(t)[x−xc(t)]2, for vari-

able trap center xc(t) and trap stiffness k(t). The particle position x obeys the overdamped
Langevin equation,

dx
dt = −βDk(t)[x− xc(t)] +

√
2Dη , (C.1)

The corresponding Fokker-Planck equation (3.1) is

∂pΛ(x, t)
∂t

= L[x, {k(t), xc(t)}] pΛ(x, t) , (C.2)

with time-evolution operator (3.4)

L[x, {k(t), xc(t)}] ≡ D ∂

∂x

{
βk(t) [x− xc(t)] + ∂

∂x

}
. (C.3)

For this system, the two control parameters xc(t) and k(t) can be treated independently
as “translating-trap” and “breathing-trap” models respectively. For the remainder of this
appendix I set β = D = 1.
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C.1.1 Translating Trap

In a translating trap, the trap stiffness k is held fixed and the trap center xc(t) is varied as
the control parameter. The conjugate force is therefore f ≡ −∂V/∂xc = k[x − xc(t)], and
the IFRR (7.5b) is

Rxc
i
[xc(t)] = k2[xc

i − xc(t)] , (C.4)

for initial trap center xc
i . Solving (7.11) gives the STEP value

xc, STEP = xc
i + xc

f
2 , (C.5)

for final trap center xc
f . The STEP jumps the trap center halfway between its initial and

final positions, independent of any other system parameters. This is consistent with the
exact minimum-dissipation protocol in the fast (short-duration) limit.41

C.1.2 Breathing Trap

The breathing trap has fixed trap center (u = 0), and time-dependent trap stiffness k(t) as
the control parameter. Here the conjugate force is f ≡ −∂U/∂k = −1

2x
2, so the IFRR (7.5b)

is

Rki [k(t)] = 2
[
1− k(t)

ki

]
, (C.6)

for initial stiffness ki. Solving (7.11) gives the STEP value

kSTEP = ki + kf
2 , (C.7)

where kf is the final trap stiffness. Identical to the translating trap, the STEP jumps to
the control-parameter value halfway between the endpoints, independent of other system
parameters, consistent with the exact result in the fast (short-duration) limit41. The ap-
proximate gain (7.13) from the STEP is 3/2, independent of system parameters.

For a slow (long-duration) protocol, the minimum-dissipation protocol is continuous,
and can be calculated from the friction coefficient125

ζ(k) = 1
4k3 , (C.8)

as dk/dt ∝ [ζ(k)]−1/2, where the proportionality is set by the control-parameter endpoints.
For the interpolated protocol, jumps are added at the beginning and end of respective sizes
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(kSTEP − ki)/(1 + ∆t/τ)α and (kf − kSTEP)/(1 + ∆t/τ)α.

C.2 Binding and Unbinding Reaction
I examine a two-state binding/unbinding reaction with binding rate kUB→B and unbind-
ing rate kB→UB.67 I assume the binding rate kUB→B = k0 depends only on the dynamic
encounter rate and not on the strength of the chemical potential, and the unbinding rate
kB→UB depends on how tightly the molecule is bound, and hence on the chemical-potential
difference µchem between unbound and bound states, as (with β = 1)

kB→UB = k0e
−µchem

. (C.9)

µchem = 0 gives equal binding and unbinding rates, kUB→B = kB→UB.
I additionally assume a fixed total number Ntot = NUB +NB of molecules, with variable

numbers of unbound (NUB) and bound (NB) molecules. The transition-rate matrix is

K(µchem) =
[

k0e
−µchem −k0

−k0e
−µchem

k0

]
. (C.10)

The excess work for this two-state system driven by a chemical-potential protocol can be
solved by numerically integrating

d〈NB〉Λ
dt = k0

[
Ntot − 〈NB〉Λ(e−µchem(t) + 1)

]
, (C.11)

subject to an equilibrium initial condition

〈NB〉µchem = Ntot

1 + e−µchem . (C.12)

Using (C.11) gives the IFRR (7.5b)

Rµchem
i

[µchem(t)] = −k0
[
Ntot − 〈NB〉µchem

i
(e−µchem(t) + 1)

]
. (C.13)

Solving (7.11) gives the STEP value

µchem,STEP =W
[(

1− Ntot
〈NB〉µchem

i

)
e(µchem

f −1)
]

+ µchem
f − 1 , (C.14)

where W is the product log function (Lambert W function), defined as the solution to
W(z) exp[W(z)] = z. For the special case of 〈NB〉µchem

i
≈ Ntot (satisfied as µchem

i → ∞),
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the STEP value simplifies to µchem,STEP ≈ µchem
f − 1. Figure 7.1 shows the STEP for

µchem
i = −3 + ln 2 and µchem

f = 3 + ln 2.
In Ref. 67, I derived a simple expressions for the friction

ζ(µchem) = Ntot
k0

e−µ
chem

(1 + e−µchem)3 , (C.15)

and minimum-dissipation protocol in the slow limit,

dµchem(t)
dt =

e−µ
chem(t)

(
eµ

chem
f − eµchem

i
)

∆t . (C.16)

Equation (C.14) is used to determine an interpolated protocol which satisfies (C.16) with
initial jump (µchem,STEP−µchem

i )/(1+∆t/τ)α and final jump (µf−µchem,STEP)/(1+∆t/τ)α.
Figure C.1 shows the benefit from designed protocols compared to naive (constant-

velocity) protocols. Consistent with the breathing trap (Fig. 7.3), the difference between
the naive and designed work in Fig. C.1 demonstrates the expected (∆t)−1 scaling of work
in the slow (long-duration) limit, (∆t) scaling in the fast (short-duration) limit, and the
largest work reduction from designed protocols in the intermediate (∆t/τ ∼ 10) regime,
achieved by the interpolated protocol. Unlike the breathing trap, for any duration the
protocol designed from slow approximations performs better than the naive protocol (seen
as a positive difference in Fig. C.1a), but can still be significantly outperformed by a protocol
incorporating the fast approximation, as shown by the larger gain from “fast opt” compared
to “slow opt” for short protocol duration in Fig. C.1b.

C.3 Single-Spin Ising Model
Consider a single-spin Ising model under the control of an external magnetic field h with
Hamiltonian H(σ|h) = −hσ, where σ ∈ {−1, 1}. The system dynamically evolves according
to a master equation with transition-rate matrix

K(h) =
[
−k1(h) k−1(h)
k1(h) −k−1(h) ,

]
(C.17)

for rates

k1(h) = kflip
1

1 + e−2βh (C.18a)

k−1(h) = kflip
1

1 + e2βh , (C.18b)
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Fig C.1. Benefit in the two-state binding/unbinding reaction system from designed
protocols relative to naive (constant-velocity), as a function of total duration ∆t
scaled by the fastest integral relaxation time τ . The different designed (“des”)
protocols include the linear-response optimized (“slow opt”, dashed blue), STEP
(“fast opt”, red dots), and interpolated optimal protocol with α = 1 (“inter opt”,
dash-dotted green). (a) Difference between the work in naive (constant-velocity)
and designed protocols. (b) Gain Gsave ≡ 〈Wsave〉des

Λ /〈Wsave〉naive
Λ in saved work, with

a solid red line denoting the short-duration limit (7.13). Control-parameter
endpoints are µchem

i = −3 + ln 2 and µchem
f = 3 + ln 2, and the fastest integral

relaxation time is τ = 1/[k0(1 + e−µ
chem
i )]67.
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where kflip is the rate of spin-flip attempts, and the second RHS factor is the Glauber
acceptance probability214. The IFRR (7.5b) is

Rhi [h(t)] =
∑

σ∈{−1,1}
σK(h(t))πi (C.19a)

= kflip sech βh sech βhi sinh β(h− hi) , (C.19b)

where hi is the initial magnetic field. The STEP value (7.11) is found by solving the
transcendental equation[

coth β(hSTEP − hi)− tanh βhSTEP
] (
hf − hSTEP

)
= 1 . (C.20)

From Ref. 125, the generalized friction coefficient ζ(h) is the product of the equilibrium
conjugate-force variance 〈δσ2〉h and integral relaxation time τ(h) = [k1(h) + k−1(h)]−1 =
k−1

flip, giving
ζ(h) = βk−1

flip sech2 βh . (C.21)

(The relaxation time is derived from the second eigenvalue of the transition-rate ma-
trix (C.17).) In the long-duration limit, this yields the minimum-dissipation protocol

dh
dt = 2kBT

∆t
[
g
(

1
2βhf

)
− g

(
1
2βhi

)]
cosh βh , (C.22)

where g(x) ≡ tan−1[tanh x].
Figure C.2 shows the benefit from designed protocols compared to naive protocols. The

results are qualitatively similar to the binding/unbinding reaction system; both are two-
state systems with a control parameter that biases the transition rate between the two
states, but the rate matrices have different analytical forms.

C.4 Multiparameter Control of Nine-Spin Ising
Model

Consider the nine-spin ferromagnetic Ising model depicted in Fig. 7.4. Adjacent spins
interact with coupling strength βJ = 0.5, both to the fluctuating spins and fixed-spin
boundary conditions. The forces f = (mb,mg) conjugate to the external magnetic fields
h = (hb, hg) are the mean magnetizations of the spins controlled by each field. The spins
dynamically evolve according to Glauber dynamics214.

The IFRR (7.5b) is calculated over the control-parameter space, and the short-time
power savings in Fig. 7.4b is obtained from (7.12). Mean works for the naive and de-
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Fig C.2. Benefit in the single-spin Ising model from designed protocols relative to
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work, with a solid red line denoting the short-duration limit (7.13).
Control-parameter endpoints are βhi = −2 and βhf = 2.
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signed protocols (Fig. 7.4c/d) were calculated by propagating the master equation for
protocol durations ∆t/τ ranging between 10−3 and 103, with simulation time-step dt ∈
(2× 10−4, 2× 10−1), using a fine temporal discretization for short protocol durations and a
coarse discretization for long protocol durations.
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