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Abstract

Deep learning has increasingly been applied to supervised learning tasks in astronomy, such
as classifying images of galaxies based on their apparent shape (i.e., galaxy morphology
classification) to gain insight regarding the evolution of galaxies. In this work, we examine
the effect of pretraining on the performance of the classical AlexNet convolutional neural
network (CNN) in classifying images of 14,034 galaxies from the Sloan Digital Sky Survey
Data Release 4. Pretraining involves designing and training CNNs on large labeled image
datasets unrelated to astronomy, which takes advantage of the vast amounts of such data
available compared to the relatively small amount of labeled galaxy images. We show a
statistically significant benefit of using pretraining, both in terms of improved overall clas-
sification success and reduced computational cost to achieve such performance.

Keywords: convolutional neural networks, machine learning, galaxy morphology, astro-
statistics
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Chapter 1

Introduction

Convolutional neural networks (CNNs) are a type of deep learning that is particularly well
suited to computer vision tasks (Aggarwal, 2018). Originally inspired by research on the
visual cortex by neurophysiologists Hubel and Wiesel in the mid-20th century (Aggarwal,
2018; Hubel & Wiesel, 1959), CNNs have been successfully applied to a variety of computer
vision tasks, such as image classification (Krizhevsky, Sutskever, & Hinton, 2012), facial
recognition (Taigman, Yang, Ranzato, & Wolf, 2014), and classification of various forms of
interstitial lung disease (Li et al., 2014). CNNs have also been applied to tasks outside of
computer vision, such as forecasting prices in financial stock markets (Tsantekidis et al.,
2017).

As astronomy and astrophysics increasingly rely on large sets of image data, CNNs
have increasingly been used to tackle a variety of interesting astronomical and astrophysi-
cal problems. These include identifying gravitational lenses (Davies, Serjeant, & Bromley,
2019), identifying contamination in astronomical images, e.g., by cosmic rays and diffraction
spikes (Paillassa, M., Bertin, E., & Bouy, H., 2020), and for supernovae detection (Cabrera-
Vives, Reyes, Förster, Estévez, & Maureira, 2016). One particular task for which CNNs
have proved successful, which will be discussed in more depth below, is galaxy morphol-
ogy classification as in (Cavanagh, Bekki, & Groves, 2021). We will therefore use galaxy
morphology classification to explore how pretraining (a type of transfer learning (Ribani &
Marengoni, 2019; Tan et al., 2018)) can potentially benefit many tasks in astronomy and
astrophysics that use CNNs.

When applied to a particular task, CNNs (and neural networks in general) can be trained
from scratch for the given task, or instead we can use a pretrained network. A pretrained
CNN is one which has already been trained on a separate data set prior to its application to
the given task (Aggarwal, 2018). The training of neural networks is, in general, an energy-
intensive activity (Strubell, Ganesh, & McCallum, 2020; Borowiec, Harper, & Garraghan,
2022), and research is ongoing to quantify and reduce energy use (Yang, Chen, Emer,
& Sze, 2017; García-Martín, Rodrigues, Riley, & Grahn, 2019). Training neural networks
from scratch can require more training and therefore greater expense and resource usage
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compared to using a pretrained network. Furthermore, this requirement for a large amount
of training presupposes the availability of a sufficient amount of data within the intended
domain for the desired amount of training. Thus, data availability itself can be a limitation
which may preclude the possibility of a large amount of training being performed from
scratch.

In astronomy, obtaining large, labelled training data sets is expensive, impractical, or
both. As a result of the demands required to train deep learning models from scratch,
pretraining may be an attractive alternative for astronomy. In recent years, transfer learning
has been adopted for classification tasks in astronomy and astrophysics involving galaxy
morphologies (Domínguez Sánchez et al., 2018), variable stars (Kim, Dae-Won, Yeo, Doyeob,
Bailer-Jones, Coryn A. L., & Lee, Giyoung, 2021), and star clusters (Wei et al., 2020).
However, the learning that is “transferred” in these cases is between different astronomical
surveys. That is, a classifier is trained using data from one survey, and deployed, perhaps
with modification, on test data arising from a different survey. For example, a model may
be trained on Sloan Digital Sky Survey images and deployed on Dark Energy Survey images
(Domínguez Sánchez et al., 2018).

An alternative type of transfer learning, which we refer to specifically as pretraining
hereafter, involves the practice of training a neural network on another unrelated data set
before applying the neural network to the particular data set of interest. This means that
pretraining, using our definition, can exploit the vast effort undertaken to design CNNs
for classifying large volumes of natural (everyday) images. Specifically, we will use a CNN
trained on millions of non-astronomical images that comprise the ImageNet database (Deng
et al., 2009); this CNN is known as AlexNet (Krizhevsky et al., 2012). We will demonstrate,
through a series of numerical experiments, that for the task of galaxy morphology classifi-
cation, a pretrained AlexNet outperforms an architecturally identical CNN that is trained
from scratch using only galaxy morphology images. Transfer learning using training on a
large data set of natural images has been explored in the context of analysis of data from
the Laser Interferometer Gravitational-Wave Observatory (George, Shen, & Huerta, 2018)
and in galaxy merger detection (Ackermann, Schawinski, Zhang, Weigel, & Turp, 2018).
However, as far as we are aware, such transfer learning has not been explored in the context
of galaxy morphology classification, which is the focus of this project.

The rest of this manuscript explores the utility of pretraining in the application of a
CNN to galaxy morphology image classification. This domain represents a potential use
case for a pretrained network due to the expense and difficulty of gathering and labeling
images of galaxies (Cavanagh et al., 2021). We begin in Chapter 2 with an overview of
galaxy morphology classification and the data we will use for our experiments. In Chapter
3 we describe CNNs, including the particular CNN used in this project, as well as data
preparation procedures and tooling. Our numerical experiments and results are detailed
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in Chapter 4. We discuss and summarize our contributions in Chapter 5, and also discuss
directions for future research.

All code and materials necessary to reproduce our work can be found at:
https://github.com/jsa378/01_masters.
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Chapter 2

Galaxy Morphology Classification
and Data

Images of galaxies are captured using either earthbound equipment or spacecraft. Tradition-
ally, the images are classified by groups of experts who examine each image and come to a
consensus regarding its classification (Cavanagh et al., 2021). In order to speed up the clas-
sification of images, other strategies have been used, such as the recruitment of enthusiastic
amateurs (Lintott et al., 2010), and various automated classification techniques (Cheng et
al., 2020).

In the near future, an expected deluge of data obtained by new spacecraft such as the
European Space Agency’s Euclid will overwhelm available resources for classification by
humans (Silva, Cao, & Hayes, 2018). This adds urgency to the search for accurate, rapid,
and automated classification techniques. However, the galaxy image data currently available
for training deep learning models remains relatively small. For this work, we used 14,034
(labelled) galaxy images from the Sloan Digital Sky Survey Data Release 4 (Stoughton et
al., 2002; York et al., 2000; Adelman-McCarthy et al., 2006); the data are described in detail
in (Nair & Abraham, 2010). Each galaxy is labelled according to its morphology, or shape,
as belonging to the class of:

1) elliptical galaxies, having a smooth, diffuse, and elliptical shape;

2) spiral galaxies, disk-like in appearance and with spiral arms;

3) lenticular galaxies, an intermediate class of galaxies between the elliptical and spiral
categories; or

4) irregular+miscellaneous (Irr+Misc) galaxies, not meeting the membership criteria for
any of the above three categories.

An example of each type of galaxy, taken from the set of 14,034, is presented in Figure
2.1. The 14,034 galaxy morphology images varied in size, but were often quite small—around
100× 100 pixels, or 0.01 megapixel. The class breakdown of the images is as follows:
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1) 2,738 images of elliptical galaxies (19.4% of the total),

2) 7,708 images of spiral galaxies (54.9% of the total),

3) 3,215 images of lenticular galaxies (22.9% of the total), and

4) 373 images of Irr+Misc galaxies (2.7% of the total).

While this is clearly a highly imbalanced data set as governed by the distribution of
galaxies in the regions imaged, we did not attempt to correct for these imbalances because
for this work we are only concerned with demonstrating the benefit of pretraining. Further
discussion of class differences is in Subsection 4.1.1

1We note that (Cavanagh et al., 2021) applied CNNs to the same data set used in the present project.
Methods and tools used in the present work are similar although not identical to those used in (Cavanagh
et al., 2021), so while the peak accuracy results obtained in the present project are similar to those obtained
in (Cavanagh et al., 2021), the results are not directly comparable and we therefore do not make such a
comparison.
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Figure 2.1: Examples of the four categories of galaxy from the Sloan Digital Sky Survey
Data Release 4 (Nair & Abraham, 2010). Clockwise from top left: 1) Elliptical galaxy. 2)
Lenticular galaxy. 3) Irregular+Miscellaneous galaxy. 4) Spiral galaxy.
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Chapter 3

Methods and Data Preparation

The chapter provides a concise introduction to neural networks. We introduce the feedfor-
ward neural network in Section 3.1.1, followed by an overview of CNNs in Section 3.1.2.
In Section 3.1.3 we introduce AlexNet (Krizhevsky et al., 2012), a particular CNN that we
exploit for the current work. We conclude this chapter by detailing data preparation and
computational tooling in Section 3.2.

Figures 3.1–3.4 were created in LATEX.

3.1 Neural Networks: Exposition1

In this section (excluding the section title), “neural network” refers to a feedforward neural
network, while CNN refers to a convolutional neural network.

3.1.1 Feedforward Neural Networks

Neural networks share fundamental similarities with CNNs. Indeed, the former are often a
component of the latter. This section will discuss the basic components and operation of a
neural network, many parts of which are directly applicable to CNNs.

Architecture

Example 1: Single-Layer Neural Network Figure 3.1 presents a simple, single-layer
neural network for pedagogical purposes. The circles are referred to as nodes; the sym-
bols x1, x2, x3, x4 are real valued and represent the components of an input vector X =
(x1, x2, x3, x4). The symbols w1, w2, w3, w4 are referred to as weights and are real valued.
The symbol y1 is real valued and represents the output of the network.2 Thus, the neural

1The presentation in this section is a synthesis of material read in (Aggarwal, 2018) and the present
author’s thoughts on the material.

2In practice the number of input and output nodes can be tailored to the problem at hand.
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x1
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x4

Input
layer

y1

Output
layer

w1
w2
w3
w4

Figure 3.1: A single-layer neural network. In practice neural networks are rarely if ever this
simple, but this architecture facilitates understanding of the basic operation of a neural
network.
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x2

x3

x4

Input
layer

h1

h2

h3

h4

h5

Hidden
layer

y1

y2

y3

Output
layer

Figure 3.2: A fully connected feedforward neural network with one hidden layer.

network shown in Figure 3.1 is a function g : R4 × R4 → R. Its definition is

(x1, x2, x3, x4), (w1, w2, w3, w4) 7→ Φ
( 4∑

i=1
wixi

)
,

where Φ: R → R is referred to as an activation function. Various choices for Φ exist, but a
common one is the Rectified Linear Unit or ReLU:

z 7→

0 if z ≤ 0

z if z > 0.

Example 2: Fully connected neural network with one hidden layer Figure 3.2
shows a neural network whose main complication compared to that shown in Figure 3.1 is
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the presence of a hidden layer. Hidden layers add extra function compositions to the neural
network and increase the network’s flexibility. The weights are not shown in the figure to
avoid clutter.

In order to describe the operation of the neural network shown in Figure 3.2 in a clean
manner, matrix notation will be employed. Let X be a four-dimensional input vector as
before. Let W be a 5 × 4 matrix whose i, j entry is the weight wi,j from hidden node i to
input node j, and letW ′ be a 3×5matrix whose k, l entry is the weight w′

k,l from output node
k to hidden node l.3 Assume that the hidden nodes share the common activation function
Φh and that the output nodes share the common activation function Φy.4 Then, we can
consider the neural network shown in Figure 3.2 to be a function g : R4×R5×4×R3×5 → R3

with definition

(X,W,W ′) 7→ Φy
(
W ′Φh(WX)︸ ︷︷ ︸

5×1 vector

)
︸ ︷︷ ︸

3×1 vector

.

Neural networks can be of essentially arbitrary size. It is not uncommon to encounter
neural networks with thousands of nodes in a given layer, and dozens or possibly hundreds of
hidden layers. The main practical constraints on a neural network’s size are the problem at
hand, the amount of data available, and certain computational and numerical considerations
that are beyond the scope of this project.

Main Components of Neural Networks

Thus far we have described on a somewhat superficial level how a neural networks works; in
practice more pieces are needed. Briefly, assuming a chosen network architecture, the pieces
needed are as follows:

1. Input data, along with the associated output values.

2. An activation function. Typically the same activation function is used on all hidden
nodes.5

3. A choice of loss function. The loss function is necessary in order to evaluate the
network’s performance. Common choices include squared loss and cross-entropy loss.

3This perhaps seemingly backwards matrix layout is used to facilitate matrix multiplication. Of course,
the matrices could have been defined in a more normal way, but this latter choice would have necessitated
the use of matrix transposes. The difference is merely one of notation.

4In matrix notation, the activation functions Φ operate component-wise on their arguments.

5Output nodes may require separate functions if their output values are to be interpreted as probabilities.
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4. A learning mechanism. This is needed to adjust the network’s weights in response to
the information provided by the loss.

In order to gain more understanding of these pieces, we discuss how they are used in
order to train a neural network.

Neural Network Training

Neural network training is essentially the process of adjusting the network weights in order
to improve the network’s performance. Training consists of two phases—a forward phase
and a backward phase—which are repeated until some stopping criterion is met.

Forward Phase Mathematically, the forward phase occurs as described before, modulo
computational details of implementation and optimization that are beyond the scope of this
project. In this phase, data are fed to the network, which uses these data to predict the
associated output values. The predicted output values and actual output values are then
given to the loss function as arguments to measure the network’s performance over the data
it was fed.

A decision needs to be made regarding how much data to feed to the network in the
forward phase. This is a hyperparameter referred to as the batch size. On the one extreme,
the entire data set may be fed to the network. This has the advantage of giving the most
complete picture possible of the network’s performance, and it generally leads to faster
training. The biggest disadvantage of this “full batch” approach is an increased propensity
for overfitting, and hence diminished generalization ability.

Conversely, on the other extreme a single data observation may be fed to the network,
so that the loss is computed only over that one observation. This generally requires less
memory than the full batch approach, but its biggest benefit is an injection of randomness
into the training process, which helps reduce overfitting.

Typically, because of the tradeoffs between these two approaches, intermediate batch
sizes in the range of 25 to 28 observations are used (Aggarwal, 2018), assuming that a
sufficient number of observations are available. (The powers of two are used for architectural
reasons.)

Backward Phase The goal of the backward phase is to use the information gained in the
forward phase to adjust the network’s weights so that the network can “learn” in order to
improve its performance. To this end, we will view the loss function L as a function of the
weight values, even though more superficially it is a function of the predicted and actual
output values.

Consider the neural network shown in Figure 3.3. We will use the node labels to
represent the output of a given node, so that for example y1 = Φy

(∑3
j=1 hjw2,j,1

)
and

h1 = Φh(g1w1,1,1).
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x1

Input
layer

g1

Hidden
layer

w0,1,1

h1

h2

h3

Hidden
layer

w1,1,1
w1,1,2
w1,1,3

y1

Output
layer

w2,1,1
w2,2,1
w2,3,1

Figure 3.3: Examining this neural network illustrates how the derivative with respect to a
given weight in the network is the sum of derivatives over all paths to that weight. Note
that weight wi,j,k is in layer i and connects node j on the left with node k on the right.

Assume that the neural network has been fed some amount of data, that it has made
prediction(s) ŷ, and let y be the corresponding observed value(s). The loss value (squared
loss, for example), is computed as a function of the predicted and observed values, so we
can write the loss value as L(ŷ, y). However, the predictions ŷ are a function of the weights
(w0,1,1, . . . , w2,3,1) ∈ R7, so we can rewrite the loss as L

(
ŷ(w0,1,1, . . . , w2,3,1), y

)
.

Holding the data constant we can think of the loss as a function L : R7 → R, which
enables us to envision a loss surface in seven-dimensional space, and attempt to find the
minimum of this surface. Since this surface is in general not analytically tractable, an
iterative approximation called stochastic gradient descent is used to try to minimize the
loss (Aggarwal, 2018).6 To this end, a method of calculating the partial derivatives of L
with respect to all the weights is required.

Suppose that we would like to calculate ∂L
∂w0,1,1

in Figure 3.3. By the chain rule ∂L
∂w0,1,1

=
∂L
∂ŷ

∂ŷ
∂w0,1,1

, so it suffices to focus on differentiating the output of the network with respect
to the weight. Skipping some mathematical details for brevity, one version of the chain rule
states

df
(
C(t)

)
dt

= gradf
(
C(t)

)
· C ′(t).

We are interested in dy1
dw0,1,1

. Looking at the chain rule, we can let

C(w0,1,1) =
(
h1(w0,1,1), h2(w0,1,1), h3(w0,1,1)

)
,

6This works because the gradient of L can be used to determine the direction of most rapid decrease at
any point on the surface of L.
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so

dy1
(
C(w0,1,1)

)
dw0,1,1

= grad y1
(
C(w0,1,1)

)
· C ′(w0,1,1) =

dy1
dh1

dh1
dw0,1,1

+ dy1
dh2

dh2
dw0,1,1

+ dy2
dh3

dh3
dw0,1,1

.

Now, notice that, for example, h1(w0,1,1) is really h1
(
g1(w0,1,1)

)
. This means that we need

to apply the single-variable chain rule. This gives us

dy1
(
C(w0,1,1)

)
dw0,1,1

= dy1
dh1

dh1
dg1

dg1
dw0,1,1︸ ︷︷ ︸

first path

+ dy1
dh2

dh2
dg1

dg1
dw0,1,1︸ ︷︷ ︸

second path

+ dy2
dh3

dh3
dg1

dg1
dw0,1,1︸ ︷︷ ︸

third path

.

Intuitively, to differentiate the output of a neural network with respect to a given weight,
one finds all paths to a given weight, multiplies the partial derivatives backwards along a
given path, and sums these products over all possible paths.

The backpropagation algorithm is used to compute the gradient in an efficient manner
(Aggarwal, 2018). Essentially, one notices that the technique described above for computing
derivatives farther back (i.e. close to the input layer) in a network involves much redundant
differentiation, so by storing these intermediate derivatives, the gradient can be computed
much more efficiently. Generically, if wi refers to the vector of weights in a neural network
at stage i of the learning process, and η ∈ R+, then the backpropagation update to the
weight vector is as follows:

wi+1 = wi − η gradL(wi),

where the hyperparameter η is referred to as the step size.
In this way, one can imagine stepping down the loss surface with every backpropagation

update. Unfortunately, this greedy algorithm is not guaranteed to find the global minimum
of the loss surface.

Forward-Backward Iteration The entire training process consists of repeated alterna-
tion between the forward and backward phases described above, terminating when some
convergence criterion is met (or perhaps when the operator’s patience or resources have
been exhausted). Each time the network has trained over the entire data set is referred
to as an epoch. Depending on the size of the data set and the complexity of the network,
training can proceed over tens or possibly hundreds of epochs.

Neural network training can be computationally demanding, since networks can have
thousands, millions or even billions of parameters and observations. Training is typically
done on graphics processing units (GPUs) due to their favorable architecture, which speeds
up computations drastically compared to CPUs.
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3.1.2 Convolutional Neural Networks

Introduction to CNNs

CNNs are a type of neural network that are well suited to image data (Goodfellow, Bengio, &
Courville, 2016). They are so named because of the “convolution” operations applied within
the network, although strictly speaking these operations are cross-correlations (Goodfellow
et al., 2016). CNNs are perhaps the archetypal example of biologically-inspired artificial
intelligence, because their conception was influenced by exploration of the visual cortex in
the mid-20th century (Aggarwal, 2018).

Although formal mathematical justification for CNNs is lacking, the common explana-
tion is that CNNs function by detecting relatively crude features of an input image, such as
lines, in the early layers of the network, and superimpose these features into progressively
more complex features in later layers (Aggarwal, 2018).

CNN Operations

Like feedforward neural networks, CNNs consist of an input layer, one or more hidden layers
and an output layer. The primary differences are the types of operations that the layers per-
form. The fundamental principles of neural networks—the forwards and backwards phases,
and gradient-based optimization—also apply to CNNs. Furthermore, training methods con-
sisting of feeding the entire training data set to the network multiple times, again referred
to as an epoch, are similar for both types of networks. For brevity, therefore, we will fo-
cus on the unique mathematical operations employed in CNNs; these unique operations are
convolution and pooling operations. We will also briefly discuss the regularization technique
known as dropout, which is commonly used to avoid overfitting deep neural networks.

The Convolution (Cross-Correlation)7 Consider a color image I of size h×w pixels,
represented numerically as an array with dimensions h × w × 3. (The depth of 3 is for
storage of the red, green and blue color values.) The convolution operation involves placing
a smaller h′ × w′ × 3 (h′ ≤ h, w′ ≤ w) array K, called the kernel or filter, at all possible
positions overlaid on I and computing the component-wise dot product between I and K.

More formally, the convolution of h × w × 3 image I (having i, j, l entry Ii,j,l) with
h′ × w′ × 3 kernel K (having i, j, l entry Ki,j,l) is a function

∗ : Rh×w×3 × Rh′×w′×3 → R(h−h′+1)×(w−w′+1)×1

7The convolution operation, for which CNNs are named, is actually a cross-correlation since neither of
the functions in the operation’s arguments are reflected. Despite this, we will adhere to the convention of
referring to this operation as a convolution.
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defined by

(I ∗K)r,s :=
h′∑
i=1

w′∑
j=1

3∑
k=1

Ir+(i−1),s+(j−1),l ·Ki,j,l.

To be clear, the symbol · above represents scalar multiplication.
Some notes regarding the convolution operation are as follows:

1. If the first two layers of the CNN are an input layer followed by a convolutional layer,
then the output I ∗ K of the convolutional layer is fed into the third layer of the
network, whatever that may be.8

2. The kernel K can only be placed in (h − h′ + 1) × (w − w′ + 1) positions over the
image I, so the convolution I ∗K only has height (h− h′ +1) and width (w−w′ +1).
Thus, repeated convolutions lead to significant “compression” of an array as it is fed
forward through the network.

3. The application of a single kernel results in an output array having a depth of 1. In
practice, p kernels K1,K2, . . . ,Kp may be applied within a given layer, meaning that
the output array of all p convolutions has dimensions (h− h′ + 1)× (w−w′ + 1)× p.
In practice a CNN may use tens or hundreds of kernels within a given convolutional
layer.

4. Some hyperparameters associated with the convolution operation are as follows:

(a) The dimensions of kernels used.9

(b) The number of kernels to use.

(c) The stride, which skips certain placements of the kernel over the image.

(d) The padding, which is an augmentation of the image in response to the fact that
information along the edges of the image is involved in fewer dot products with
a kernel.10

The Max Pool The max pool operation involves a smaller array P similar to the kernel
K, except that P has a depth of 1. If P has dimensions p×q×1 and acts on a layer L having

8An activation function, such as the ReLU, is often applied component-wise to the output of a convolution
operation, but as in a feedforward network, the ReLU is rarely presented separately, as its own layer.

9Within a given convolutional layer, it is simpler to use only kernels with equal height and width di-
mensions, and furthermore to require all kernels to have the same dimensions, although more complicated
arrangements are possible.

10For example, in Figure 3.4, a corner pixel in I will be involved in only one dot product with K, while
the center pixel will be involved in nine dot products with K.
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Figure 3.4: An example of part of a two-dimensional discrete convolution (or more properly,
cross-correlation). The convolution I ∗K is computed via the component-wise dot product
of K with the portion of I that it overlaps. We can think of I as the image and K as
the “filter” or “kernel”, so that I ∗ K is the output of the first layer of the network, and
therefore the input into the second layer. Notice that the output I ∗K is smaller than the
input I, and a subsequent convolution (I∗K)∗K′ would be smaller still. This is a consistent
feature of convolutional neural networks. Note also that color images may be represented as
3-dimensional arrays as opposed to matrices (2-dimensional arrays) if the RGB color model
is used, for example. In such a case K will also be a 3-dimensional array. Furthermore, in
CNNs, multiple filters K are often used within a given layer.

dimensions h×w× d, then the pooling operation produces a layer P(L) having dimensions
(h− p+ 1)× (w − q + 1)× d. In particular,

P(L)r,s,t := max
{
li,j,t ∈ L : r ≤ i ≤ (r + p− 1), s ≤ j ≤ (s+ q − 1)

}
.

Some notes regarding the max pool operation are as follows:

1. Because it operates at all depths 1 ≤ t ≤ d, the max pool is a depth-preserving
operation. In other words, the output array P(L) has the same depth as the input
array.

2. However, the max-pool is not a height- or width-preserving operation, for much the
same reasons as the convolution.

3. The max pool has its own stride hyperparameter, much like the convolution.

Dropout Dropout is a regularization technique applied layer-wise during CNN train-
ing, which involves training random subsets of the overall network (Hinton, Srivastava,
Krizhevsky, Sutskever, & Salakhutdinov, 2012; Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014). If dropout is applied to layer l in the network, then each time the
network is fed a training image, independent draws from a Bernoulli(p) distribution are
made to determine which nodes in layer l are kept or discarded. The training prediction
and backpropagation are then carried out only over the sub-network containing the remain-
ing nodes. During training, repeated samples from the Bernoulli(p) distribution are drawn,
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Figure 3.5: The AlexNet architecture. After receiving a 224× 224× 3 input image, AlexNet
applies a sequence of convolutions, ReLU operations, and pooling operations (in the portions
represented by the deep rectangular prisms) before applying a set of linear layers with
dropout (in the portions represented by the tall rectangular prisms). Figure created using
NN-SVG.

which means that different subsets of the original network are trained. During testing,
dropout is not applied, so the entire network is used. Using dropout significantly reduces
network overfitting, and thus improves the network’s ability to generalize to the test data
(Srivastava et al., 2014).

3.1.3 AlexNet

The CNN that underpins our work is called AlexNet (Krizhevsky et al., 2012). Although
CNNs date back to the 1980s, in 2012 the AlexNet CNN ushered in what is arguably the
modern era in computer vision by winning the ImageNet Large Scale Visual Recognition
Challenge, thoroughly surpassing past performers and challengers (Aggarwal, 2018). Since
then, CNNs have served as the standard for image classification, as can be seen by the fact
that subsequent winners of the ImageNet competition have also been CNNs (Aggarwal,
2018). Below, a brief summary of the AlexNet architecture is provided. Further details can
be found in (Krizhevsky et al., 2012).

The AlexNet network can be broken into two broad parts: an early convolutional part
and a later, more conventional feed-forward part. In the convolutional part, AlexNet takes
as input a 224× 224× 3 image and, over a number of layers, applies an increasing number
of convolution filters which decrease in height and width. The first convolutional layer
applies 64 filters of size 11 × 11 × 3; a later convolutional layer applies 384 filters of size
3×3×256. (As previously mentioned, formal mathematical justification for CNN operation
is lacking, but the intuition is that larger numbers of smaller filters in later layers capture
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more complex features of the input image.) AlexNet uses 5 convolutional layers in total.
After every convolutional layer the ReLU operation is used, and a handful of max-pooling
operations are layered in as well. In the feed-forward part, AlexNet contains 3 linear layers
with ReLU activation functions before delivering its class probability calculations.11 To
reduce overfitting, dropout is used.

Because the ImageNet Challenge requires classifying images belonging to one of 1000
categories, AlexNet by default has 1000 nodes in its final layer. However, this can be modified
when applying AlexNet for other purposes, such as classifying galaxy morphology into four
categories.

The architecture of AlexNet is shown in a standard visual representation in Figure 3.5.
Note that the original AlexNet architecture (shown in Figure 3.5) has 1,000 nodes in its
output layer, corresponding to the 1,000 object categories in the ImageNet dataset. For
this work, the number of output nodes was reduced to 4 in accordance with the number of
categories for the problem at hand.

3.2 Data Preparation, Procedures and Tooling

For our work, all galaxy images were scaled to 256× 256 in height and width to allow room
for cropping to 224 × 224, which is the input size required by AlexNet. Regarding data
augmentation, PyTorch is naturally set up to use random data augmentation, which involves
the probabilistic application of standard data augmentation techniques. For example, the
PyTorch function transforms.RandomHorizontalFlip() will, each epoch, horizontally flip
a given image with probability 0.5.

The data set was split into 12,000 training images and 2,034 testing images uniformly
at random. We constructed 100 such test/train splits. No hyperparameter tuning was done.
(The decision to forgo hyperparameter tuning was made in order to make an even compari-
son between the pretrained and non-pretrained networks.) For each random split of the data
set, which we refer to as a run, the pretrained AlexNet was trained for 200 epochs, while
the non-pretrained AlexNet was trained for 400 epochs. This additional training time was
given to the non-pretrained AlexNet so that it had a better opportunity to achieve optimal
performance. The training used the standard cross-entropy loss via the PyTorch function
torch.nn.CrossEntropyLoss(), which is described in the PyTorch documentation.

Standard Python-language tools including Matplotlib (Hunter, 2007), NumPy (Harris
et al., 2020), pandas (pandas development team, 2020; Wes McKinney, 2010), and seaborn
(Waskom, 2021) were used for performing our numerical experiments and compiling the
results to be presented. In particular, PyTorch (Paszke et al., 2017) was used to obtain the

11The paper (Krizhevsky et al., 2012), which introduced the AlexNet architecture, makes clear that the
size of AlexNet was limited by computational power and memory, and patience to endure long training
times.
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pretrained and non-pretrained AlexNet networks, and to train and test them. The networks
used are available off the shelf in PyTorch, via the torchvision.models subpackage. Fur-
ther, the Cedar computing system at Simon Fraser University, provisioned by the Digital
Research Alliance of Canada and the BC DRI Group, was used to carry out the neural
network training and testing.

18

https://alliancecan.ca
https://alliancecan.ca


Chapter 4

Results

In this chapter, we present and discuss the results obtained over the 100 runs, and compare
the pretrained and non-pretrained networks on a variety of metrics. We begin with Figure
4.1, in which we present histograms of the peak test accuracy for all runs for both the
pretrained and non-pretrained networks; this figure also provides the epoch in which peak
test accuracy is achieved. We also compute the difference in peak test accuracy between
the pretrained and non-pretrained networks, as well as the difference in the epoch number
for which peak test accuracy was achieved for the two networks, and display the results in
Figure 4.2. (For the latter calculation, only the first 200 epochs of training were considered
for the non-pretrained network.)

To compare the pretrained and non-pretrained networks given a fixed training budget
of 200 epochs, for each run we compute the difference between the peak accuracy of the
pretrained network and the highest accuracy achieved by the non-pretrained network within
its first 200 epochs of training. These results are presented in Figure 4.3. Examination of the
histograms displayed in Figures 4.1–4.3 indicates that the pretrained AlexNet is preferred
over the non-pretrained version. Pretraining leads to a higher overall accurracy, with an
average peak accuracy (over the 100 runs) of 84.2% versus 82.4% for pretrained and non-
pretrained, respectively. Furthermore, the pretrained network required significantly fewer
epochs to reach its peak accuracy.

To further explore the efficiency gain of pretraining, we evaluate the performance of the
pretrained network over a restricted portion of training, such as the first 20 or 50 epochs.
Selected results are presented in Figure 4.4. The top left panel of Figure 4.4 is a histogram
of the difference in peak test accuracy for the 200-epoch pretrained network and the 50-
epoch pretrained network, showing that the average gain in accuracy from the additional
150 epochs of training is only about 1%, and the maximum gain over all 100 runs is less
than 3%. If the pretrained network is limited to only 20 epochs, then the top right panel
of Figure 4.4 shows that the average gain in accuracy from the additional 180 epochs of
training increases to approximately 2% to 2.5%, with a maximum gain over the 100 runs
of approximately 4%. This suggests that good performance can be achieved with relatively
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few epochs, such as 20. Depending on the specific application and resource constraints, it
may therefore be sufficient to train a pretrained network for a relatively small number of
epochs.

The bottom row of Figure 4.4 displays the test classification accuracy curves for pre-
trained (left panel) and non-pretrained (right panel) models over all 100 runs. The clas-
sification accuracy curves for the pretrained network reinforce the finding that the vast
majority of improvement is acquired within the first 10–20 epochs of training. The widths
of the bands of lines (an informal measure of variability), indicate that there is much less
variability when using a pretrained model than when using a non-pretrained model. The
bottom right panel of the figure shows that the non-pretrained models require roughly 50
epochs of training in order to make any improvement at all; presumably this is the typical
amount of training necessary to adjust a model’s parameters sufficiently in order to begin
changing its classification behavior.

Table 4.1 provides a summary of the results presented in Figures 4.1–4.4. The infor-
mation presented in the Table is consistent with that conveyed in the Figures, namely
that the pretrained network is more accurate and less variable in its performance than the
non-pretrained network. Table 4.1 also provides more precise insight into the diminishing
returns from training the pretrained network. Within the first 10% of training (20 epochs as
opposed to 200), the pretrained network achieves an average peak test accuracy of 82.0%;
within the first 25% of training (50 epochs), the pretrained network achieves a peak test
accuracy of 83.1%. These means are within approximately 2% and 1%, respectively, of the
peak test accuracy of 84.2%, and it is worth noting that despite the reduced training time,
the standard deviations are essentially indistinguishable from those for the full 200 epochs’
worth of training. This implies that there is no (or very little) variance penalty when doing
a comparatively small amount of training of the pretrained network.

Figure 4.5 is presented as typical output for one of the 100 runs for both networks. (Run
49 was selected arbitrarily.) The upper panels present the train and test accuracy progression
over all epochs of training, while the lower panels present train and test performance for
both networks over all epochs from the perspective of the loss function. In general, the
values of the loss function did not appear to provide any information not already apparent
from the accuracy information, but the loss information is nevertheless presented in Figure
4.5 for additional illustration.

4.1 Classification Accuracy by Class and Analysis of Models

In order to develop a deeper understanding of model performance, the top-performing pre-
trained and non-pretrained models (by test accuracy) from each run were fed the test data
set once again, and per-class accuracy figures were recorded. Figures 4.6 and 4.7 display
histograms of this result.
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Number of Training Epochs
Network 400 200 50 20 10 5
Pretr. — 84.2%, 0.7% 83.1%, 0.7% 82.0%, 0.8% 80.8%, 1.1% 79.3%, 1.2%
Non-Pr. 82.4%, 0.9% 79.7%, 1.5% — — — —

Table 4.1: Selected figures summarizing the results from the present project. The percent-
ages are the average peak accuracy (over 100 runs) and associated standard deviations.
Certain figures are excluded from the table because they are not meaningful. Percentages
are rounded to the nearest tenth of a percent; epoch numbers are rounded to the near-
est epoch. The pretrained AlexNet clearly outperforms the non-pretrained AlexNet, but
analyzed in terms of efficiency its advantage is even more striking: with just 20 epochs of
training it is clearly superior to the non-pretrained AlexNet with 10 times as much training,
and almost tied with the non-pretrained AlexNet with 20 times as much training.

Figure 4.1: Top: Histograms of peak test accuracies for all runs for both the pretrained and
non-pretrained networks. The pretrained networks are both more accurate on average and
less varied in the peak accuracy that they achieve. Bottom: Histograms of the epoch in which
peak test accuracy is achieved for each run, for both pretrained and non-pretrained networks.
These histograms appear to suggest that 200 epochs of training are probably sufficient for
the pretrained networks, while the non-pretrained networks might have benefited from even
more than 400 epochs of training.
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Figure 4.2: Histograms of the gains that result from using the pretrained network as opposed
to the non-pretrained network. On the left is the peak test accuracy for the pretrained
network minus the respective figure for the non-pretrained network. On the right is the epoch
in which peak test accuracy was achieved for the pretrained network, minus the respective
figure for the non-pretrained network, if the non-pretrained network had been restricted to
train for only 200 epochs. It is clear that in terms of accuracy, the non-pretrained network
never outperforms the pretrained network. In terms of speed in reaching peak accuracy,
the pretrained network is almost always faster than the non-pretrained network, even when
restricting the latter to 200 epochs of training.

Figure 4.3: This figure is similar to the left histogram in Figure 4.2, except that we only
consider the first 200 epochs for the non-pretrained networks. The advantage for the pre-
trained networks roughly doubles in this case.
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Figure 4.4: Top Left: Gain from letting the pretrained networks train for 200 epochs, as
opposed to only 50 epochs. The gain is roughly 1%. Top Right: Gain from letting the
pretrained networks train for 200 epochs, as opposed to only 20 epochs. The gain is roughly
2–2.5%. Bottom Left: Each line in this panel contains the progression in test accuracy
for the pretrained AlexNet for 1 of the 100 runs performed. It is clear that most of the
improvemnt occurs within the first 20–30 epochs of training. Bottom Right: Each line in
this panel contains the progression in test accuracy for the non-pretrained AlexNet for 1
of the 100 runs performed. The width of the band of lines suggests that performance of
the non-pretrained AlexNet is more variable than the pretrained AlexNet. Furthermore, it
usually takes around 50 epochs of training for the non-pretrained AlexNet’s parameters to
adjust enough in order for the network’s predictions to begin shifting.
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Figure 4.5: Top left: Train and test accuracies of run 49 over all epochs for the pretrained
AlexNet. The blue line in this panel is one of the lines in the bottom-left panel in Figure 4.4.
Top right: Equivalent information is presented for the non-pretrained AlexNet. Bottom left:
Train and test loss values of run 49 over all epochs for the pretrained AlexNet. The blue
line in this panel is one of the lines in the bottom-right panel in Figure 4.4. Bottom right:
Equivalent information is presented for the non-pretrained AlexNet. Run 49 was chosen
as an arbitrary representative of the 100 runs performed, although naturally there is some
variation. Across most runs, performance of the pretrained network in training eventually
surpasses performance in testing, although the point at which this occurs, and the eventual
gap between the two, vary from run to run. This phenomenon is much weaker, perhaps
nonexistent, for the non-pretrained networks, which may suggest that they would have
benefited from more than 400 epochs of training. The non-pretrained networks also often
take at least 50 epochs before the weights have adjusted enough for predictions to begin
improving. (Initially the non-pretrained networks appear to classify all test images as being
of spiral galaxies.)
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The models were all roughly the same in that they were quite accurate when presented
with images of spiral galaxies, less accurate when presented with images of elliptical galaxies,
and less accurate still when presented with images of lenticular galaxies. Furthermore, they
perform quite poorly when presented with images of irregular or miscellaneous galaxies,
presumably due to the fact that there are few such images in the data set, and moreover
the category itself is ill defined in the sense that it mostly serves as a grab-bag of images
that fit in none of the preceding three categories.

However, besides the fact that pretrained networks classify images of elliptical, lenticu-
lar and spiral galaxies slightly more accurately than do the non-pretrained networks, there
is one striking difference, namely that the pretrained networks classify images of irregu-
lar and miscellaneous galaxies almost twice as accurately as the non-pretrained networks.
Even though the accuracy is still below 50%, this result might suggest that pretraining
is potentially valuable for acquiring knowledge of uncommon or irregular examples in the
application at hand. The fact that the pretrained networks offer a negligible improvement
over the non-pretrained on spiral galaxies, by far the most common in the data set, might
bolster this hypothesis.

Table 4.2 summarizes the results presented in Figures 4.6 and 4.7. This Table makes
clear that not only is the pretrained network superior across all classes to the non-pretrained
network in average class accuracy, but the pretrained network is also less variable in its
classification performance. The only exception to this is the Irr+Misc class, for which the
pretrained network is more variable than the non-pretrained network, but the pretrained
network’s almost twofold superiority in average accuracy for this class offsets its slightly
higher variability.

Figure 4.8 presents confusion matrices for the top-performing pretrained and non-
pretrained models from run 49. (This is the same run as that presented in Figure 4.5.) The
information in this figure is consistent with that presented in Figures 4.6 and 4.7, namely
the hierarchy in classification performance across the four categories of galaxy morphology,
and the general superiority of the pretrained network. However, the confusion matrices also
provide some insight into the nature of the misclassifications made by the networks. In par-
ticular, both pretrained and non-pretrained models tend to misclassify pictures of galaxies
into adjacent morphological categories. For example, the majority of the misclassified spiral
galaxies are classified as lenticular, as opposed to being classified as elliptical galaxies.

Figure 4.9 presents confusion matrix data over all 100 runs for the pretrained and non-
pretrained AlexNets. (Note that as opposed to Figure 4.8, the totals have been converted
to proportions.) Similar to Figure 4.8, Figure 4.9 provides information not only concerning
how the models classify images of galaxies, but also how they misclassify images of galaxies.
In the top-left panel of Figure 4.9, the value in each cell of the matrix is the average value for
that cell from the 100 individual confusion matrices for the pretrained network. The bottom-
left panel of Figure 4.9 contains an equivalent matrix for the non-pretrained network. The
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Figure 4.6: Histograms of class accuracies for the most accurate pretrained model of each
run. There is a clear hierarchy in performance that is somewhat consistent with the distribu-
tion of the test data set (i.e. highest performance in the most frequenly occurring images),
although the fact that the lenticular galaxies are in some sense “between” the elliptical and
spiral galaxies seems to reduce lenticular accuracy.

top-right and bottom-right panels of Figure 4.9 contain the associated cell-wise standard
deviations for the pretrained and non-pretrained networks, respectively. As with Figure 4.8,
the most salient feature of Figure 4.9 is the demonstration that both pretrained and non-
pretrained networks tend to misclassify images of galaxies into adjacent categories. This is
sensible given that the morphological characteristics of these galaxies are thought to occur
on a continuum, at least to some extent.

4.2 Statistical Significance Tests

In order to provide a quantitative measure of the differences in performance between the
pretrained and non-pretrained AlexNets, sign tests are conducted below. (The sign test
makes no assumptions about the distribution of the quantities being compared (Roussas,
1997)).
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Figure 4.7: Histograms of class accuracies for the most accurate non-pretrained model of each
run. These histograms are broadly similar to those in Figure 4.6, with the main exception
being much poorer Irr+Misc performance.

Class Pretrained Non-Pretrained

Elliptical 83.3%, 3.2% 81.5%, 4.0%
Lenticular 66.4%, 3.0% 64.2%, 3.0%
Spiral 92.9%, 1.2% 92.4%, 1.7%

Irr+Misc 38.1%, 7.9% 21.4%, 6.7%

Table 4.2: Class accuracy averages and standard deviations across all 100 runs for both
pretrained and non-pretrained networks. Percentages are rounded to the nearest tenth of a
percent. The pretrained networks are more accurate on average across all categories, and
also have smaller or equal standard deviations with the exception of the Irr+Misc category.
Despite the larger standard deviation in that case, it seems clear that the pretrained net-
works are far superior for the Irr+Misc category.
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Figure 4.8: Left: Confusion matrix for the top-performing model from run 49 of the pre-
trained AlexNet. The sum of the numbers within a row is the number of images of that type
within the test set for that run. For example, looking at the second row, in run 49 there were
110+ 309+ 77+ 5 = 501 images of lenticular galaxies in the test set, and 309/501 ≈ 61.7%
of those images were classified correctly. Furthermore, 110/501 ≈ 22.0% of images of lentic-
ular galaxies were mis-classified as elliptical galaxies. The confusion matrices for all runs are
roughly similar in that the models tend to mis-classify images of galaxies into adjacent cat-
egories, which is relatively sensible. Right: Confusion matrix for the top-performing model
from run 49 of the non-pretrained AlexNet. Again, the sum of the numbers within a row is
the number of images of that type within the test set for that run. For example, looking at
the second row, in run 49 there were 95 + 319 + 86 + 1 = 501 images of lenticular galaxies
in the test set, and 319/501 ≈ 63.7% of those images were classified correctly. Furthermore,
95/501 ≈ 19.0% of images of lenticular galaxies were mis-classified as elliptical galaxies. As
with the pretrained network, the confusion matrices for all runs are roughly similar in that
the models tend to mis-classify images of galaxies into adjacent categories.
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Figure 4.9: Top Left: The average confusion matrix for the pretrained AlexNet is shown.
The entries in this confusion matrix are the means across all 100 confusion matrices for the
pretrained network, one pertaining to each run. This figure shows that the network tends
to misclassify images of galaxies into adjacent categories. Top Right: A matrix showing the
standard deviations of the individual confusion matrices for the pretrained network over
all 100 runs. Bottom Left: The average confusion matrix for the non-pretrained AlexNet.
The entries in this confusion matrix are the means across all 100 confusion matrices for the
non-pretrained network, one pertaining to each run. Like the top-left figure, the bottom-
left figure shows that the non-pretrained network tends to misclassify images of galaxies
into adjacent categories. Bottom Right: A matrix showing the standard deviations of the
individual confusion matrices for the non-pretrained network over all 100 runs.
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Let X0, X1, . . . , X99 be independent and identically distributed random variables with
distribution function F , representing the distribution of peak test accuracy for the 100
runs of the pretrained AlexNet (over 200 epochs of training). Similarly, let Y0, Y1, . . . , Y99

be independent and identically distributed random variables with distribution function G,
representing the distribution of peak test accuracy for the 100 runs of the non-pretrained
AlexNet (over 400 epochs of training). We wish to test the hypothesis

H : F = G.

The result of the two-sided sign test is a p-value of approximately 1.58 × 10−30, which
provides strong evidence against the null hypothesis. We therefore have statistically signif-
icant evidence that the pretrained model is more accurate, even though the differences in
accuracy may appear slight.

We can perform a similar test on differences in training time and energy used, using the
number of epochs of training required to reach peak test accuracy as a proxy. Using similar
definitions as above, the result of a two-sided sign test is the same p-value of approximately
1.58×10−30, which again provides strong evidence against the null hypothesis. We therefore
have statistically significant evidence that the pretrained model is not only more accurate
but also more efficient.

The details of both sign tests are as follows. To test for a difference in accuracy, define
the random variables

Zj :=

1, if Xj > Yj

0, if Xj < Yj

Z :=
99∑
j=0

Zj

for j = 0, 1, . . . , 99, and the probability

p := P(Xj > Yj).

Then we have Z ∼ Bin(100, p) and the hypothesis H above is equivalent to testing p = 1
2 .
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In the present case, we have Z = 100, so the p-value can be computed as follows:

P(Z ≤ 0 ∪ Z ≥ 100) = P(Z ≤ 0) +P(Z ≥ 100)

=
(

0
100

)(1
2

)0 (
1− 1

2

)100−0
+
(
100
100

)(1
2

)100 (
1− 1

2

)100−100

=
(1
2

)100
+
(1
2

)100

= 1
299

≈ 1.58× 10−30.

To test for a difference in efficiency, we make similar definitions to those made above,
but using a subscript e for “epoch”. We find that Ze = 0 because in every case the non-
pretrained AlexNet required more epochs to reach its peak test accuracy than did the
pretrained AlexNet. The computations and resulting p-value are identical to those shown
above.
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Chapter 5

Summary and Outlook

The main objective of this work is to compare pretrained (on ImageNet) and non-pretrained
versions of AlexNet by training them on galaxy images from the Sloan Digital Sky Survey
Data Release 4 (as described in (Nair & Abraham, 2010)) and comparing their performance
and efficiency. We note that while the overall classification accuracies achieved are compara-
ble to or slightly surpass similar attempts (e.g., those described in (Cavanagh et al., 2021)),
chasing the highest possible classification accuracy would lead us to consider other network
architectures, hyperparameter tuning, etc. Rather, we have demonstrated the benefit to
considering pretrained deep learning models for certain tasks. Our results are as follows:

1. The pretrained AlexNet had a consistent edge (compared to the non-pretrained AlexNet)
in peak classification accuracy. It had an 84.2% average peak test accuracy, compared
to an average peak test accuracy of 82.4% for the non-pretrained AlexNet.

2. The pretrained AlexNet was much more efficient (compared to the non-pretrained
AlexNet) in that it attained peak test accuracy much more quickly. On average, the
pretrained AlexNet achieved peak test accuracy in epoch 155 (standard deviation of
34 epochs), compared to epoch 367 (standard deviation of 33 epochs) for the non-
pretrained AlexNet.

3. When considering only the first 200 epochs of training for the non-pretrained AlexNet,
in order to provide a comparison with the pretrained AlexNet given an equal amount
of training, the peak classification accuracy advantage for the pretrained AlexNet
more than doubles, to about 4.6%.

4. The pretrained AlexNet achieves comparable performance to state-of-the-art methods,
such as (Cavanagh et al., 2021), rather quickly. The pretrained AlexNet’s average
peak test accuracy after just 20 epochs of training is 82.0%, comparable with the
headline 81–83% figures from (Cavanagh et al., 2021). After 50 epochs of training,
the pretrained AlexNet’s figure is 83.1%. This suggests that, taking advantage of
pretraining, peak performance comparable to that from (Cavanagh et al., 2021) can
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be achieved in as little as 10–60 minutes, depending on the computational resources
at hand.

5. Regarding per-class accuracies, the most striking advantage for the pretrained AlexNet
is that it often classifies the Irr+Misc images more than twice as accurately as the non-
pretrained AlexNet. (Gains in classification accuracy for the other three categories are
much smaller.)

Regarding the last point, as a neural network is somewhat of a black box, it is hard
to know precisely how the pretrained AlexNet becomes so much more adept at identifying
images of Irr+Misc galaxies. It seems reasonable to speculate that there is some sort of gen-
eralizable information within the unrelated ImageNet (pre)training set that is nevertheless
applicable to classifying images of galaxies. Further speculating, it may be that pretraining
on large, general, but unrelated data sets is of particular value in maximizing the ability
to identify or classify rare cases in the particular application of interest, particularly when
those rare cases are considered significant.

A challenge for galaxy morphology classification and many areas of astrophysical image
classification more generally is the relative lack of training data. The number of galaxy
images available for the present work, 14,034, is much smaller than the amount of data
typically available for training deep learning models; ImageNet alone contains more than
14,000,000 images, the labeling of which is trivial compared to galaxy morphology clas-
sification by hand. While upcoming surveys such as those by Euclid will generate more
data, proper labelling remains a challenge. However, the use of pretrained models, as we
described in this project, offers the community a way of leveraging the significant effort
already spent on developing and training deep learning models without sacrificing accuracy.
Indeed, we suggest that the accuracy of a pretrained model may be slightly superior on
common examples and vastly superior on rare examples, with much greater efficiency to
boot.

Looking ahead we note that, in the deep learning community, AlexNet in particular and
perhaps CNNs in general are no longer considered state of the art. This can be seen, for
instance, in the progression of performance on the ImageNet data set over time. AlexNet
is no longer close to the top-performing models on ImageNet, most of which are no longer
CNNs. Transformer models (Vaswani et al., 2017) are often the highest-performing archi-
tectures currently and are much closer to the current state of the art. Exploration of their
properties and performance is the subject of future work, especially the potential benefit of
pretraining with them.
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Appendix A

Code and Data

The full extent of data produced during the computations for this project is about 27 TB,
therefore sharing all of it is unfeasible.1 Nevertheless, all figures and code have been made
available, along with a master record containing sample information as well as accuracy and
loss information. This information is available at GitHub:
https://github.com/jsa378/01_masters.

The list below describes the data available at the GitHub link above.

Note that below, model_1 refers to the pretrained AlexNet and model_8 refers to the non-
pretrained AlexNet.

1. The files comparison_run_0.png, comparison_run_1.png, . . . , comparison_run_99.png
contain figures like Figure 4.5 for all 100 runs.

2. The files confusion_matrix_model_1_run_0.png, confusion_matrix_model_1_run_1.png,
. . . , confusion_matrix_model_1_run_99.png contain figures like Figure ?? (i.e. for
the pretrained models) for all 100 runs.

3. The files confusion_matrix_model_8_run_0.png, confusion_matrix_model_8_run_1.png,
. . . , confusion_matrix_model_8_run_99.png contain figures like Figure ?? (i.e. for
the non-pretrained models) for all 100 runs.

4. There are various .png files with the word loss in their name that show informa-
tion similar to that shown in this project with regard to accuracy. For example,
loss_epoch_histogram_local.png shows information like that shown in Figure ??,
but for the loss instead of the accuracy.

5. All the constituent images that comprise Figure 4.5 are available individually for all
runs. For example, loss_history_model_8_run_49.png contains the plot from the
lower-right of Figure 4.5.

1The large amount of data produced is due to saving every model after every epoch of training. The main
information not being shared is the models themselves, since those files are hundreds of megabytes each and
there are roughly 60,000 of them.
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6. The files model_1_8_ddp_0.py, model_1_8_ddp_1.py, . . . , model_1_8_ddp_9.py con-
tain the Python code used for data preparation and model training.2

7. The file collation.py was used to create most of the plots shown in this project.
(Some plots were created in the Python code mentioned above.)

8. The file sign_test.py was used to process the data to perform the sign tests.

9. The file sample_perf_history_master.tar can be loaded using PyTorch. In the
following I will assume that it has been loaded as the variable sample_perf_history.
Once loaded, it is a Python dictionary containing the following keys and information:3

i samples_list: Indices for the training and test data for each run. For exam-
ple, sample_perf_history[‘samples_list’][49][‘training_set_indices’]
and sample_perf_history[‘samples_list’][49][‘test_set_indices’] respec-
tively contain the indices of the training and test samples drawn when randomly
splitting the data for run 49.

ii samples_counts: The number of Elliptical, Lenticular, Spiral and Irr+Misc galax-
ies (in that order) in training and test sets for each run. Examples of use:
sample_perf_history[‘samples_counts’][49][‘training_set’] and
sample_perf_history[‘samples_counts’][49][‘test_set’].

iii samples_percentages: Percentage breakdowns of Elliptical, Lenticular, Spiral
and Irr+Misc galaxies for training and test sets for each run. Examples of use:
sample_perf_history[‘samples_percentages’][49][‘training_set’] and
sample_perf_history[‘samples_percentages’][49][‘test_set’].

iv pretrained_best_train_acc: Peak training accuracy of pretrained AlexNet for
all runs. Example of use: sample_perf_history[‘pretrained_best_train_acc’][49].

v pretrained_best_test_acc: Peak testing accuracy of pretrained AlexNet for all
runs. Example of use: sample_perf_history[‘pretrained_best_test_acc’][49].

vi pretrained_best_train_acc_epoch: Epoch when peak training accuracy oc-
curred for all runs. Example of use:
sample_perf_history[‘pretrained_best_train_acc_epoch’][49].

vii pretrained_best_test_acc_epoch: Epoch when peak testing accuracy occurred
for all runs. Example of use:
sample_perf_history[‘pretrained_best_test_acc_epoch’][49].

viii pretrained_best_train_loss: Minimum training loss of pretrained AlexNet
for all runs. Example of use:
sample_perf_history[‘pretrained_best_train_loss’][49].

ix pretrained_best_test_loss: Minimum testing loss of pretrained AlexNet for
all runs. Example of use:
sample_perf_history[‘pretrained_best_test_loss’][49].

2The work was split into 10 pieces in order to take advantage of available resources.

3Because of the often self-explanatory labeling system used, I will list all keys contained in the dictionary,
but not describe all of them.
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x pretrained_best_train_loss_epoch: Epoch when minimum training loss oc-
curred for all runs. Example of use:
sample_perf_history[‘pretrained_best_train_loss_epoch’][49].

xi pretrained_best_test_loss_epoch: Epoch when minimum testing loss occurred
for all runs. Example of use:
sample_perf_history[‘pretrained_best_test_loss_epoch’][49].

xii non_pretrained_best_train_acc

xiii non_pretrained_best_test_acc

xiv non_pretrained_best_train_acc_epoch

xv non_pretrained_best_test_acc_epoch

xvi non_pretrained_best_train_loss

xvii non_pretrained_best_test_loss

xviii non_pretrained_best_train_loss_epoch

xix non_pretrained_best_test_loss_epoch

xx pretrained_cumulative_train_acc: Lists of training accuracies for every epoch
of every run. Example of use:
sample_perf_history[‘pretrained_cumulative_train_acc’][49] provides val-
ues for all epochs for run 49.

xxi pretrained_cumulative_test_acc: Lists of testing accuracies for every epoch
of every run. Example of use:
sample_perf_history[‘pretrained_cumulative_test_acc’][49] provides val-
ues for all epochs for run 49.

xxii pretrained_cumulative_train_loss: Lists of training losses for every epoch of
every run. Example of use:
sample_perf_history[‘pretrained_cumulative_train_loss’][49] provides
values for all epochs for run 49.

xxiii pretrained_cumulative_test_loss: Lists of testing losses for every epoch of
every run. Example of use:
sample_perf_history[‘pretrained_cumulative_test_loss’][49] provides val-
ues for all epochs for run 49.

xxiv non_pretrained_cumulative_train_acc

xxv non_pretrained_cumulative_test_acc

xxvi non_pretrained_cumulative_train_loss

xxvii non_pretrained_cumulative_test_loss

xxviii pretrained_elliptical_acc: Elliptical class accuracy for the best model from
every run. Example of use:
sample_perf_history[‘pretrained_elliptical_acc’][49].

xxix pretrained_lenticular_acc: Lenticular class accuracy for the best model from
every run. Example of use:
sample_perf_history[‘pretrained_lenticular_acc’][49].

xxx pretrained_spiral_acc: Spiral class accuracy for the best model from every
run. Example of use:
sample_perf_history[‘pretrained_spiral_acc’][49].
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xxxi pretrained_irrmisc_acc: Irr+Misc class accuracy for the best model from ev-
ery run. Example of use:
sample_perf_history[‘pretrained_irrmisc_acc’][49].

xxxii non_pretrained_elliptical_acc

xxxiii non_pretrained_lenticular_acc

xxxiv non_pretrained_spiral_acc

xxxv non_pretrained_irrmisc_acc
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