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Abstract

Modern memory-optimized indexes often use optimistic locks for concurrent accesses. Read
operations can proceed optimistically without taking the lock, greatly improving performance
on multicore CPUs. But this is at the cost of robustness against contention where many
threads contend on a small set of locks, causing excessive cacheline invalidation, interconnect
traffic and eventually performance collapse. Yet existing solutions often sacrifice desired
properties such as compact 8-byte lock size and fairness among lock requesters. This thesis
presents optimistic queuing lock (OptiQL), a new optimistic lock for database indexing
to solve this problem. OptiQL extends the classic MCS lock—a fair, compact and robust
mutual exclusion lock—with optimistic read capabilities for index workloads to achieve both
robustness and high performance while maintaining various desirable properties. Evaluation
using memory-optimized B+-trees on a 40-core, dual-socket server shows that OptiQL
matches existing optimistic locks for read operations, while avoiding performance collapse
under high contention.
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Chapter 1

Introduction

Concurrent indexes [5,7,14,24,26,27,30,32,33,36] are crucial for online transaction processing
(OLTP) engines to achieve the desirable performance and functionality on modern servers
that can feature 10s–100s of CPU cores across multiple sockets. These indexes use a syn-
chronization scheme to ensure correct concurrent accesses. Importantly, the synchronization
scheme must be well-crafted to offer (1) high performance and (2) desired properties such
as fairness among worker threads, low lock space consumption and backward compatibility
for easy adoption. Recent memory-optimized indexes have moved away from traditional
pessimistic lock coupling [4] to lock-free approaches or optimistic locking. For example,
the BwTree [30] devises lock-free B+-tree algorithms with atomic instructions such as
compare-and-swap (CAS) [21] without using locks. Lock-free indexes can be fast, but are
notoriously hard to implement and debug [35,46]. Therefore, recent indexes focused more
on optimistic locking.

1.1 Centralized Optimistic Locking

Compared to lock-free designs and pessimistic locking, optimistic locks1 [7, 27] strike a
balance between implementation complexity and performance. The basic idea is to allow
read operations to proceed without exclusively acquiring the lock; only write operations
need to acquire the lock exclusively. To detect inconsistencies caused by concurrent writes,
read operations must check if the contents read earlier are still valid after the access. This is
typically done by checking whether a version number embedded in the lock has changed
after the read.

Optimistic locks greatly reduce synchronization overhead by avoiding shared memory
writes caused by acquiring a shared lock. They are easy to implement and preserve the
same API and compactness as traditional pessimistic locks by using only a single 8-byte

1Also known as “latches” to differentiate from “locks” used in logical-level concurrency control [15]. We
follow the synchronization literature to use “locks.”
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Figure 1.1: Update throughput of a memory-optimized B+-tree on a 80-thread server.
Centralized optimistic locks work well under low contention (a) but can collapse under high
contention (b). OptiQL performs well in both cases.

memory word as the lock. Thus, optimistic locking has been adopted by multiple recent
memory-optimized indexes [25,27,28,33].

However, existing optimistic locks are no panacea as they in fact achieve high performance
at the cost of robustness, i.e., the ability to degrade gracefully and maintain reasonable
performance under high contention. Figure 1.1 shows the throughput of a memory-optimized
B+-tree using optimistic locking (details in Chapter 6) when running an update workload
on a dual-socket, 40-core (80-hyperthread) server. Optimistic locking scales well as core
count increases under low contention, where keys are sampled randomly from a uniform
distribution. But the performance collapses under a high-contention workload where 80%
of the accesses focused on 20% of the keys. The reason is existing optimistic locks are
designed assuming contention is rare and implemented in a centralized fashion as a direct
extension to simple spinlocks [41] that use the hardware-provided compare-and-swap (CAS)
instruction [21] to acquire the lock in exclusive mode. Yet in practice database workloads can
exhibit various contention levels. Under high contention, many threads will issue and retry
CAS on a small set of locks. The CPU then spends most cycles on retrying CAS without
doing useful work, leading to performance collapse in Figure 1.1(b).

Such performance collapse issue is not unique to existing optimistic locks, but all
centralized locks. Both the synchronization and database communities have explored solutions,
but they still fall short in various scenarios. For example, exponential backoff [2] can
effectively ease contention on the lock, but requires significant per-application tuning [41]
and exacerbates unfairness among lock requesters which can lead to high tail latency. For
example, in our experiments we observed that the “lucky” threads can be ∼3× more likely to
acquire the lock than others, making exponential backoff undesirable for database workloads.
Other approaches, such as composite locks [12, 13], often use bigger lock words, posing
non-trivial challenges to existing database engines that already assume 8-byte (pessimistic
or optimistic) locks [23, 44]. Thus, it remains challenging to devise synchronization schemes
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for memory-optimized indexes that are both fast and robust, while maintaining various
desirable properties.

1.2 OptiQL: Optimistic Queuing Lock

This thesis proposes OptiQL,2 a new optimistic lock, to solve the aforementioned problems.
OptiQL draws inspirations from the synchronization literature to introduce queue-based
locking [9, 34, 37] to optimistic locks for both fairness and robustness. Queue-based locks
are known for improved robustness under high contention [19, 41], by forming a queue of
requesters which are granted the lock in FIFO order. Each lock requester spins locally on
a private shared memory location to wait for its predecessor to grant the lock, instead of
frequently retrying CAS on the lock.

OptiQL follows the classic queue-based MCS lock [37] to form a queue of requesters.3

Different from existing queue-based locks which only provide mutual exclusion or blocking
read [38], however, OptiQL forms a queue for exclusive lock requests only; readers still
proceed optimistically based on validation without taking the lock in exclusive mode. Since
the lock (in exclusive mode) is handed over from the previous lock holder to the next
following the queue, there would be little to no chance for optimistic readers to observe
a free lock if we blindly adopt the above approach, practically blocking most (if not all)
readers. Therefore, to truly enable optimistic reads, we further propose an opportunistic read
technique which admits readers between exclusive lock handover, i.e., after the predecessor
writer has finished executing its critical section, but before the next writer is granted the
lock. This way, OptiQL combines the best of both queue-based locks (for their fairness and
robustness under contention) and existing optimistic locks (for their high-performance under
read-dominant and low-contention workloads).

OptiQL maintains backward compatibility by keeping the lock compact as a single 8-byte
word. Indexes that already use 8-byte locks can adopt OptiQL without data layout changes.
In addition, OptiQL can be adopted by existing optimistic or pessimistic lock coupling
protocols. However, as we elaborate later, OptiQL’s queue-based design makes it necessary
to tweak these lock coupling protocols for the best results. For example, blindly replacing
traditional optimistic locks with OptiQL in a B+-tree may lead to unnecessary aborts and
retries for update workloads due to version changes, even though the update can be applied
correctly. We tackle these challenges in Chapter 5 by adapting concurrent B+-trees [28]
and tries [26,27] which are based on traditional OLC to use OptiQL. From our experience,

2OptiQL is pronounced as “optical.”

3At a first glance, this is similar to how lock managers for logical level concurrency control work [18].
However, OptiQL directly uses hardware synchronization instructions to realize the functionality, whereas
lock managers usually use latches such as OptiQL and mutexes/spinlocks to build lock queues and coordinate
requesters [15].
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these changes are important for performance reasons but straightforward. For example,
we only needed to change fewer than 100 LoC out of over 600 LoC to adapt an existing
OLC-based B+-tree. Moreover, as we show in later chapters, OptiQL itself is also very
simple to implement. These properties enable easier adoption of OptiQL in practice.

We use microbenchmarks to stress test OptiQL itself and more realistic YCSB-like [8]
benchmarks to test how OptiQL performs in popular indexes. Evaluation on a dual-socket,
40-core server show that under contention, a concurrent B+-tree [28] and trie (ART [26])
enabled by OptiQL outperform their counterparts with traditional OLC by up to ∼4×,
while maintaining practically the same performance as traditional optimistic locking under
low contention.

Our focus is index locking, but like other locks, OptiQL itself is general-purpose and
can be useful beyond indexing. Similar to how we devise lock coupling protocols, however,
additional changes may be needed, which is beyond the scope of this thesis.

1.3 Contributions and Thesis Organization

This thesis makes four contributions. 1 We revisit OLTP index synchronization and uncover
several properties that are desirable but were often ignored in previous designs. 2 We propose
OptiQL, a new optimistic lock that offers robust performance under various contention
levels, while maintaining efficient optimistic reads and other desirable properties. 3 Based
on OptiQL, we adapt locking protocols in representative OLTP indexes, including a memory-
optimized B+-tree and the adaptive radix trie (ART). 4 We provide a comprehensive
evaluation of OptiQL and alternative synchronization primitives for OLTP indexes. This
thesis is based on a paper submission currently under revision at SIGMOD 2024.

The remainder of this thesis is orgranized as follows. Chapter 2 gives the necessary
background. Chapter 3 summarizes the desired properties of index locking. We describe
OptiQL and its use in index locking in Chapter 4–5. Chapter 6 evaluates OptiQL. We cover
related work in Chapter 7 and summarize in Chapter 8.
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Chapter 2

A Primer on (Index)
Synchronization

Lock-based synchronization (optimistic or pessimistic) for OLTP indexes typically consists
of two components determined at design time: (1) the lock primitive and (2) a protocol that
uses the primitives to achieve concurrent accesses. Next, we give the necessary background
around these two aspects.

2.1 Pessimistic Index Locking

We take B+-trees as an example to review the background. Traditional systems combine
pessimistic locks (e.g., reader-writer locks) and lock coupling [15]. Each index node (inner or
leaf) is protected by a lock to enable fine-grained concurrency and more parallelism. The
lock is typically embedded in the header part of the in-memory representation of the node,
and held in the shared (exclusive) mode for read (write) accesses. With pessimistic locks,
the calling thread is blocked (busy-spins or gets rescheduled) until the lock is granted; some
locks also offer a “try” interface that returns without blocking if the lock cannot be granted
immediately.

Although a node can be locked individually, a thread often needs to lock more than one
node for structural modification operations (SMOs) like node split and merge, which in turn
is often triggered as part of an insert or delete operation. The common approach is lock
coupling [15], which locks nodes in the desired shared/exclusive mode as it drills down the
tree, but releases the lock on a parent node after it is sure that performing the intended
operation (e.g., insert) in the child node will not require revisiting the parent node (e.g., for
an SMO that propagates up the tree). This way, usually the thread will only need to hold
1–2 locks, thus improving performance.

Pessimistic index locking has been the standard practice in traditional systems which
are storage-centric, because in these systems storage I/O often presents a bigger bottleneck
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that overshadows index synchronization overhead. As we discuss next, however this is no
longer the case in memory-optimized systems.

2.2 Optimistic Locking

Modern memory-optimized systems assume the working set and indexes reside in DRAM,
so the relative overhead caused by synchronization is much higher than that in a storage-
centric system, as both data access and synchronization are pure memory accesses with
comparable latency. These indexes then opt for a different combination of optimistic locks
and correspondingly, optimistic lock coupling.

Optimistic Locks. An optimistic lock operates similarly to a reader-writer lock, however,
readers can proceed optimistically assuming the lock is not held exclusively without issuing
any hardware synchronization instruction (e.g., CAS) to acquire the lock in shared mode. As
a result, readers do not announce their existence by writing to shared memory, avoiding most
physical contention. This allows optimistic locks to scale almost perfectly on read-dominant
workloads. However, a concurrent writer can acquire the lock in exclusive mode and modify
the data being used by concurrent readers, without knowing the existence of any reader,
So readers must validate that the data it read did not change upon completion in case a
concurrent writer has modified it. Therefore, optimistic locks are in nature writer-biased
because readers must validate and backoff if inconsistencies are discovered. This can be
inefficient for certain operations such as long scans: a sporadic write can waste the much
effort of a heavy read operation. Some systems combine pessimistic read locks [6] with
optimistic locks to mitigate this problem. Nevertheless, optimistic locks have been widely
used by recent work for their efficiency under read-heavy workloads [27,28,32,33].

Existing optimistic locks [17, 27] realize these ideas by extending centralized test-and-
test-and-set (TTS) [40] spinlocks in Figure 2.1(a). Same as TTS, centralized optimistic
locks use a single 8-byte memory word as the lock, as Figure 2.1(b) shows. In addition
to the lock state using the most significant bit (1UL<<63), the lock also carries a version
number, whereas the TTS lock only needs one bit to record the lock state. The lock bit
arbitrates mutual exclusion between writers and the version counter records how many times
the lock has been acquired and released. In the acquire_ex function, writers synchronize
with each other like with a TTS lock using a CAS that assumes the lock bit is unset, but
additionally increment the version counter upon releasing the lock. Using the acquire_sh

function, readers start by recording the version number in a self-maintained variable v. If
acquire_sh returns true, then the reader can start to access the protected resource (e.g., a
tree node). When the access is done, we invoke release_sh which takes the previously read
version v as an input to validate that the lock still carries v and is unlocked. Otherwise, the
reader aborts and retries. Notably, the reader functions behave similarly to try locks: they do
not block and may return a “failed to lock” result. The caller must keep track of the version

6



uint64_t lock; 

void acquire() {
while (lock == 0 ||

!CAS(&lock, UNLOCKED, LOCKED)) {
/* optional backoff */
continue;

}
}

#DEFINE LOCKED   1UL
#DEFINE UNLOCKED 0UL

void release() {
lock = UNLOCKED;

}

(a) Test-and-test-and-set (TTS) lock

uint64_t lock;
#DEFINE LOCKED 1UL << 63

void acquire_ex() {
while (true) {  

uint64_t v = lock;
if ((v & LOCKED) ||

!CAS(&lock, v, v | LOCKED)) {
/* optional backoff */
continue;

}
}

}

void release_ex() {
lock = (lock + 1) & ~LOCKED;

}

bool acquire_sh(uint64_t &v) {
v = lock;
return !(v & LOCKED);

}

bool release_sh (uint64_t v) {
return lock == v;

}

(b) Existing optimistic lock based on TTS

acquire_sh(&A.lock)

acquire_ex(&C.lock)
release_sh(&B.lock)

r = acquire_sh(&A.lock, v)

acquire_ex(&C.lock)
r = release_sh(&B.lock, v’)

(r == true)

(r == false)

A

. . . B

C

A

. . . B

C

acquire_sh(&B.lock)
release_sh(&A.lock)

r = acquire_sh(&B.lock, v’)
r = release_sh(&A.lock, v)

(c) Traditional (left) and optimistic (right) lock coupling

Figure 2.1: Existing optimistic locks extend spinlocks (a) to support optimistic readers (b).
The similar interfaces allow easy adaption in lock coupling protocols (c).

number for validation later, whereas the writers use exactly the same interfaces as TTS and
reader-writer locks. Both TTS and optimistic locks can optionally use backoff [2] strategies
to reduce contention. However, this is at the cost of fairness between lock requesters [41].

Optimistic Lock Coupling. With the interfaces in Figure 2.1(b), it is straightforward
to adapt traditional lock coupling to use optimistic locks. For brevity, we give the high-
level idea; details can be found elsewhere [25]. Figure 2.1(c) shows the same example used
by prior work [25] that contrasts traditional (left) and optimistic (right) lock coupling.
The key difference is the reader should conduct an extra validation step after invoking
the acquire_sh/release_sh, and if any failed, the operation is aborted and retried. The
example in Figure 2.1(c) shows the case where an exclusive lock is needed only at the
leaf level (node C) for an update operation. If an inner node (e.g., B) needs to be locked
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Algorithm 1 MCS lock acquire (left) and release (right) protocols.
uint64_t lock; 

1. void acquire(QNode *qnode) {
2.  pred = XCHG(&lock, qnode);
3.  if (pred == null) {
4.    qnode->granted = true;
5.  return;
6.  }
7.  pred->next = qnode;
8.  while (!qnode->granted) {}
9. }

1. void release(QNode *qnode) {
2.  if (!qnode->next && 
3.      CAS(&lock, qnode, null))
4.    return;
5.
6.  while (!qnode->next) {}
7.
8.  /* Pass lock to successor */
9.  qnode->next->granted = true;
10. }

exclusively, e.g., as part of an insert, the thread will attempt an “upgrade” operation which
performs a CAS on B’s lock assuming the previously-obtained version number (v’). We
expand later on how OptiQL can work with OLC in Chapter 5.

2.3 Queue-based and MCS Locks

Centralized locks like TTS and existing optimistic locks suffer from scalability collapse due
to centralized spinning on the lock word. Queue-based locks [9, 34, 37] solve this problem
by linking requesters in a FIFO queue, which in turn allows each thread to spin locally

on a private space, instead of on the centralized lock itself, thus reducing contention and
improving overall performance.

MCS [37] is one of the most widely used queue-based locks designed for mutual exclusion.
We therefore focus on it; other queue-based locks (such as CLH [9,34]) work similarly but
differ in how they manipulate the queue [41]. To facilitate queuing, each lock requester
brings a queue node that consists of (1) a next pointer to the next requester (successor)
and (2) a boolean (granted) indicating whether the queue node’s owner is granted the lock.
The lock is an 8-byte memory word that always points to the tail of the queue, whereas the
head of the queue owns the lock.

Algorithm 1 shows how a thread acquires/releases the lock. After initializing its queue
node (with next/granted set to NULL/false), a lock requester joins the queue by issuing an
atomic swap (XCHG) [21] on the lock word in line 2 of Algorithm 1 (left). XCHG returns the
value that was stored on the lock. If NULL is returned, the lock is free and the requester is
granted the lock (lines 3–4). Otherwise, a predecessor already held the lock, so the requester
links itself with it. Thus, the lock word always points to the latest lock requester. The
requester then spins on its own granted field until it becomes true (line 8). To release the
lock, the lock holder first determines if it has a valid successor, by reading its own next field
at line 2 of Algorithm 1 (right). If next is NULL, it changes the lock word back to NULL and
return directly if the CAS succeeded (i.e., there is indeed no successor). In case the successor
is yet to link itself with the lock holder by executing line 7 in Algorithm 1 (left) (but has
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executed line 2), we wait for next to become non-NULL (line 6). Finally, the successor is
granted to lock by toggling its granted field (line 9).

The queue-based design is the key to robustness and fairness. We describe how OptiQL
leverages it for optimistic locking later.
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Chapter 3

Desirable Properties and Tradeoffs

We summarize five desirable properties for OLTP index locks:

• D1. High-Performance. Locks are blocking in nature, so it should be lightweight,
especially when contention is rare.

• D2. Robust. Under contention, it is expected that the overall throughput may drop,
but should plateau without collapsing.

• D3. Fair. An OLTP system needs to serve many concurrent requests with SLAs. It is
then important for indexes to ensure all the clients have a fair chance to access data.

• D4. Compact. OLTP engines often use fine-grained locking, with numerous locks in
indexes and other components. It is then desirable for the lock to be compact, i.e., occupy
at most an 8-byte machine word, which is also the unit of atomic operations [21].

• D5. Amenable to Index Locking. As Section 2.2 shows, existing optimistic locks can
work almost seamlessly with lock coupling. A new lock should maintain this property to
be useful in practice.

An ideal lock would achieve all these properties. In practice, however, this is difficult (if
not impossible) because the properties can mandate tradeoffs with each other. Specifically,
robustness (D2) and fairness (D3) can be at odd with high performance (D1): both D2
and D3 require maintaining ordering among all requesters. This needs writing to shared
memory even when conflicts are completely absent (i.e., read-only), leading to poor read
performance [23, 42]. So optimistic locks (queue-based or not) fundamentally trade fairness
(between readers and writers) for performance. Nevertheless, OptiQL ensures fairness among
writers and retains the remaining properties, whereas existing centralized optimistic locks
also forgo robustness and fairness among writers, due to their centralized nature and that
CAS does not enforce ordering [41].
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Chapter 4

OptiQL: Optimistic Queuing Lock

In this chapter, we describe the detailed design of OptiQL, a queue-based optimistic lock.
OptiQL is a compact lock (D4) that combines the best of both queue-based locks (such as
MCS) and optimistic locks. It consists of three key designs: (1) forming a FIFO queue of
writer requesters, (2) allowing optimistic read when the lock is not granted to any writer,
and (3) opportunistically allowing readers during lock handover between two writers (if
any). The first design enables local spinning for robustness (D2) and fairness (among writers,
D3), while the remaining designs enable lock-free reads and tackle the challenge that a
queue-based lock handover may starve (optimistic) readers to improve fairness (D3). Overall,
these techniques allow high performance for both readers and writers (D1). To keep the
implementation simple, we base OptiQL on the MCS lock, requiring only surgical changes
to it with < 10 LoC.

The rest of this chapter describes OptiQL’s interfaces and structures. We then give the
detailed lock protocols of OptiQL in Chapter 4.3 and show how OptiQL can work with
optimistic lock coupling (D5) in Chapter 5.

4.1 Interfaces

OptiQL provides exactly the same interfaces for readers as centralized optimistic locks (in
C++ syntax). Existing OLC protocols can directly use them:

• bool acquire_sh(OptiQL *lock, uint64_t &v): “Acquire” the lock in optimistic read
mode. The caller provides an integer v to store the current lock version used for validation
later. Returns true if the caller can proceed assuming the protected data is consistent.

• bool release_sh(OptiQL *lock, uint64_t v): “Release” the lock in optimistic read
mode. Returns true if the validation using the given version v succeeded; returns false
otherwise.

By forming a queue of writer requesters, OptiQL requires slightly different interfaces for
writers:
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Queue Node ID

(a) Lock word (8-byte) layout

Status bits: 
mode/opportunistic read
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Next

(b) Queue node

Version

Figure 4.1: OptiQL structures. (a) The lock is still 8-byte but carries more information.
(b) A queue node (for writers only) includes a version number and a pointer to the next
writer.

• void acquire_ex(OptiQL *lock, QNode *qnode): Acquire the lock in writer mode.
The function is blocking and lock is granted after it returned.

• void release_ex(OptiQL *lock, QNode *qnode): Release the lock in writer mode.
Similarly, the function is blocking and lock is released after it returned.

Compared to centralized optimistic locks, the qnode parameter in acquire_ex/release_ex

is additional. The caller also must maintain the queue node structure by itself. We discuss
later how index locking protocols can be adapted to these new lock interfaces.

4.2 OptiQL Lock Structures

OptiQL embeds several pieces of important information for functionality and correctness
in its compact 8-byte lock word. From a high-level, we need to support queuing and allow
optimistic readers to perform validation steps, requiring the lock word to carry a version
number and serve access to the queue of writers. As Figure 4.1(a) shows, the lock word
thus consists of (1) two bits for lock status, (2) a number of bits to record the latest writer
requester (represented by its queue node ID), and (3) the remaining bits to record a version
number for optimistic reads. The status bits includes a “locked” bit that indicates whether
currently the lock is granted to a writer, and another bit that indicates whether opportunistic
read (described later) is enabled. The numbers of bits to record the latest writer requester
and version number are adjustable, depending on the total number of writer requesters the
system intends to support.

Compared to the MCS lock (Section 2.3), instead of directly storing the address of the
latest requester’s queue node on the lock word, OptiQL stores a globally-indexed identifier of
the queue node. Since memory-optimized database engines do not oversubscribe the system
with more threads than hardware contexts and each thread does not need to hold many
locks during index operations (details in Chapter 5), the total number of queue nodes in
the entire system is not large. This means queue node IDs can be much shorter than a full
virtual memory address (up to 57 bits on modern 64-bit x86 architectures [21]), which allows
us to (1) track both the latest writer and store the version number on the lock word at
the same time (which as Chapter 4.3 describes is critical for correctness), (2) ensure the
version number can be big enough to avoid early wrap-around, while (3) still maintaining a
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Algorithm 2 OptiQL protocols for readers, which work in the same way as in traditional
optimistic locks without queue nodes.
1. #DEFINE STATUS_MASK 0xC000_0000_0000_0000ULL
2. #DEFINE LOCKED      0x8000_0000_0000_0000ULL
3.
4. bool acquire_sh(OptiQL *lock, uint64_t &v) {
5.  v = *lock;
6.  return (v & STATUS_MASK != LOCKED);
7. }
8.
9. bool release_sh(OptiQL *lock, uint64_t v) {
10.  return *lock == v;
11. }

compact 8-byte lock design to ease adoption by systems that already use 8-byte locks. Our
current implementation uses 10 bits for 1024 queue node IDs, leaving 52 bits for the version
number. Similar techniques have been used by previous memory-optimized OLTP engines to
use multiple processes [23]; OptiQL adopts it for maintaining the lock’s compactness. The
tradeoff is that accessing to queue nodes will require address translation from queue node
IDs to virtual memory pointers at runtime (described later), which however is a fixed and
negligible amount of overhead as shown by our and past evaluations [23].

To facilitate queuing and local spinning, OptiQL models after the MCS lock to require
each writer to provide a queue node; readers do not need to do so. As Figure 4.1(b) shows,
an OptiQL queue node consists of (1) a next pointer to the writer successor, and (2) a
version number. Compared to the MCS queue node, the only difference is an OptiQL queue
node carries a version number, instead of a granted boolean. As we describe next, this
allows us to easily maintain the version number that will be written back to the lock word
to enable reader validation and optimistic reads in practice.

4.3 OptiQL Protocols

With the aforementioned lock and queue node structures, we only need very simple changes
to adapt the MCS lock protocols to support the desirable features in OptiQL.

4.4 Optimistic Readers

The locking protocols for readers show a salient feature of OptiQL: they work as lightweight
as existing centralized optimistic locks, with the same interfaces and semantics without
using any queue nodes. In Algorithm 2, the reader simply reads the lock word (line 5) to
check whether the lock is already granted to a writer and opportunistic read is disallowed,
by extracting the two status bits (line 6). A reader is allowed to proceed in two case: (1)
the lock is free without any writers, i.e., the locked bit is unset in the lock word; (2) the
lock is granted (or about to be granted) to a writer but opportunistic read is enabled, i.e.,
both status bits are set. Otherwise, acquire_sh returns false, which will cause the caller
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Algorithm 3 OptiQL protocols for writers. Changes on top of the original MCS lock are
shaded.
1. #DEFINE OPREAD      0x4000_0000_0000_0000ULL
2.
3. void acquire_ex(OptiQL *lock, QNode *qnode) {
4.  pred = XCHG(lock, LOCKED | to_id(qnode));
5.  if (!pred.locked) { /* Lock is free */
6.   qnode->version = pred.version + 1;
7.   return; /* Lock acquired */
8.  } else {
9.   to_ptr(pred.qnode_id)->next = qnode;
10.   while (qnode->version == INVALID) {} /* Local spinning */
11.  }
12.  /* Lock granted, turn off opportunistic read */
13.  FETCH_AND(lock, ~(OPREAD | VERSION_MASK));
14. }
15.
16. void release_ex(OptiQL *lock, QNode *qnode) {
17.  if (qnode->next == null && 
18.      CAS(lock, LOCKED | to_id(qnode), qnode->version)) {
19.   return; /* Lock released - indeed no successor */
20.  }
21.  /* Enable opportunistic read */
22.  FETCH_OR(lock, OPREAD | qnode->version);
23.  /* Ensure the successor links after [qnode] */
24.  while (qnode->next == null) {}
25.  /* Grant successor the lock by passing version number */
26.  qnode->next->version = qnode->version + 1;
27. }

to retry. The LOCKED macro is defined similarly to that in the centralized optimistic lock
in Figure 2.1(b), and the amount of work done—read the lock word, apply a mask and
compare—is exactly the same. Validation (line 10) works exactly the same as release_sh

in Figure 2.1(b). This greatly simplifies the adaptation of existing optimistic lock coupling
protocols to use OptiQL (Chapter 5).

4.5 Exclusive Writers

For writers, OptiQL works similarly to the MCS lock, but with additional care for optimistic
readers.

Acquire. Algorithm 3 (lines 3–14) shows how a writer acquires the OptiQL lock in
exclusive mode. Same as the MCS lock, the writer first issues an atomic XCHG instruction to
record itself on the lock word with the mode bit on and opportunistic read bit off. Following
our encoding scheme in Section 4.2, the to_ptr function translates a queue node pointer
to its ID; we discuss the details for address translation later. Figures 4.2(a–d) show this
process with two requesters T1 and T2. XCHG returns the previous value that was stored
on the lock word. Thus, the writer can be granted the lock if the returned snapshot of the
lock word indicates the lock was not held (locked bit unset) at line 5 of Algorithm 3. In
addition—and different from the MCS lock—the writer increments the returned version
number and store the value in its queue node’s version field (line 6). Figure 4.2(b) shows
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Figure 4.2: Coordination of concurrent requesters. (a–c) Exclusive writers proceed like
using normal MCS locks. (d) Between lock handover, the current lock holder (T1) turns on
opportunistic read to allow other concurrent readers (e). (f) Opportunistic read is turned off
once the next exclusive requester (T2) is granted the lock, invalidating readers that did not
finish before T2 is granted the lock (g).

the status of the lock after the first requester, T1, has acquired the lock which was free in
Figure 4.2(a). Note that here the queue node’s next field still stores the full pointer to the
successor’s queue node; no address translation is required.

If the XCHG returned a lock word value with the locked bit set, then another writer
requester has acted faster to acquire the lock. The current requester (e.g., T 2 in Figure 4.2)
then must (1) link itself with the predecessor (line 9), and (2) spin locally to wait for
the predecessor (denoted as pred.address) to pass the lock (line 10). Note that the local
spinning is done by continuously checking the queue node’s version field which is initialized
to a sentinel value INVALID, and will be modified when the predecessor writer releases the
lock. These steps are exemplified by Figure 4.2(c). Finally, line 13 disables opportunistic
read as the last step, which we explain later.

Release. To release the lock (lines 16–27), the writer checks if it has a known writer
successor, similar to the original MCS protocol. This is done by reading its own queue node’s
next field (line 17). If the result is NULL, we check whether there is indeed no writer successor
by issuing a CAS on the lock (line 18) to change it to the new version number and expecting
the lock word still records the lock holder’s queue node. If the CAS succeeds, then there
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is indeed no successor and the writer simply returns, finishing the release protocol. Note
that the version number is taken from the queue node’s version field, which was already
incremented (lines 6 and 26) to reflect the new version. For example, in Figure 4.2(h), the
lock word carries version 102 since two writers have been granted and released the lock,
which was initially at version 100 in Figure 4.2(a). This is similar to the release_ex function
in centralized optimistic locks shown in Figure 2.1(b) where the lock holder increments
the lock value by one. In OptiQL, since the lock word can be modified by a concurrent
XCHG (which proceeds unconditionally, unlike CAS), we cannot rely on the lock word itself to
calculate the next version number. Instead, OptiQL extends the queue node to maintain
version information.

If there is a writer successor (ignoring line 22 for now), we pass the lock to it, e.g., T2
in Figures 4.2(c) and 4.2(f), by incrementing and atomically storing the version number in
the successor’s queue node (line 26). This will cause the successor to break out of its local
spin loop at line 10. The successor now holds the lock, and since the version number was
incremented again (line 26), the successor is ready with right version number for executing
its own release protocol after executing the critical section.

4.6 Opportunistic Read

The queue-based design avoids performance collapse under contention caused by writers. It
eliminates the need to access the lock word during lock handover as the current lock holder
directly passes the lock to the successor. Thus, during lock handover the lock word is always
in a locked state. As a result, no reader can be admitted during lock handover. This is in
stark contrast to centralized optimistic locks: when a writer releases the lock, it resets the
lock word with a new version number. Before the next writer successfully acquires the lock,
readers could access the data during lock handover time. We observe this is the key reason
why optimistic locks still admits readers even under contention, exhibiting a certain level
of fairness even between readers and writers. Yet the queue-based design eliminates such
possibilities by directly passing the lock along the queue without changing lock status. As
we show in Chapter 6, this allows almost no readers as long as there are any writers.

OptiQL introduces opportunistic read to solve this problem. On top of optimistic reads,
opportunistic read takes advantage of the time window of consistency during lock handover:
when a writer finishes executing its critical section, until it finishes executing the release
protocol, the data protected by the lock is in fact in a consistent state and can be used
correctly by a concurrent reader. The opportunistic read bit introduced earlier serves exactly
this purpose. In Algorithm 3, after the current holder determines that there is indeed a
successor, we toggle the opportunistic read bit and set the lock word’s version number to
the version number maintained by the releasing writer, using an atomic-fetch-or [21]
instruction in one atomic step. This way, as shown in Figure 4.2(d), the lock word will
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then (1) have both the status bits set, (2) record the latest requester’s queue node, and
(3) carry a version number. Note that the queue node is retained on the lock word so that
subsequent writer requesters can queue up. The lock word now captures the consistent state
during lock handover. The current lock holder continues to finish executing its remaining
lock release steps. Meanwhile, as shown in Figure 4.2(e), readers can now optimistically
access the data protected by the lock using the protocols described in Section 4.4. The only
difference is that since readers follow Algorithm 2, they will take the entire lock word as
shown in Figure 4.2(e) and use it for validation later. This is correct because the “version”
only needs to be unique for the validation process to work properly, which is satisfied by the
writer’s release protocol described above. Therefore, the reader protocols in Algorithm 2
remain unchanged with opportunistic read.

After the version is set by the current writer, the successor breaks from its local-spinning at
line 10. It then turns off opportunistic read (line 13) to finish lock acquisition. Opportunistic
readers that validate after this point, e.g., those in Figure 4.2(g), will fail as the opportunistic
bit is unset, which was set when it read the lock word.

At a first glance, it may seem redundant to put the version number on the lock word,
in addition to toggling the status bit for opportunistic read. However, this is necessary for
correctness, to avoid a subtle ABA problem [20]. Consider a writer W that keeps repeating
its critical section that increments a zero-initialized counter c: W first acquires the lock in
exclusive mode, increments c to 1, and starts to execute release_ex. If W only toggles the
opportunistic read bit but does not put the version number on the lock word, a concurrent
reader R can now read c with value 1 and continue for other operations. Then W finishes
its execution and starts another round, incrementing c to 2 and again starts to release the
lock. Now suppose R finishes executing its critical section and starts validation: it will use
the old snapshot of the lock word which only carries W ’s queue node and status bits values,
leading R to wrongly pass the validation while the counter has been silently modified by W

to a different value (2). With the version number, however, R would be able to differentiate
the two rounds of critical section executions and correctly fail the validation. Therefore, it is
necessary for the lock word to record both the latest writer requester and version number
for opportunistic read to work properly.

4.7 Discussions

OptiQL inherits some properties of the MCS lock and combines the benefits of optimistic
locks, as a result of several important design tradeoffs we consciously made. First, compared
to TTS and centralized optimistic locks (Section 2.2), OptiQL’s writer release path (so is
MCS’s) can be more expensive by mandating a CAS instruction when contention is rare.
Second, to enable optimistic read in practice, OptiQL’s opportunistic read adds two atomic
(although cheap) operations on the lock word. Our evaluation in Chapter 6 shows that this
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can be non-negligible in certain microbenchmarks that stress the lock itself. However, we
find that the overheads are negligible in realistic workloads, making it a worthwhile tradeoff.

OptiQL requires non-standard interfaces that expect a queue node parameter. Since
OptiQL’s lock word now records the latest requester’s queue node ID, instead of its queue
node address, an address translation step is needed as we mentioned earlier. Combined, these
two issues require the application manage its queue nodes. Prior work [23] has explored
practical solutions to this problem in database engines, and we observe that index operations
(and database workloads in general) exhibit a sweetspot that requires only moderate and
easy-to-maintain changes, which we describe in the next section.
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Chapter 5

Index Locking with OptiQL

Now we demonstrate how two representative indexes—memory-optimized B+-trees [28]
and the adaptive radix tree (ART) [27]—can use OptiQL to achieve high performance and
robustness. The main challenges are (1) devising an efficient OLC protocol to work with
OptiQL’s queue-based design, and (2) coping with OptiQL’s interfaces that use queue nodes.
We begin with adapting OLC described in Section 2.2 for B+-trees and ART, and then
describe a general approach to managing queue nodes.

5.1 Memory-Optimized B+-Trees

Memory-Optimized B+-trees usually opt for smaller nodes (e.g., 512 bytes instead of 4KB)
for better cache efficiency [47]. This emphasizes the need for compact locks that occupy
8-byte or less space. OptiQL maintains this property by keeping the lock word 8-byte, and
shared accesses proceed in the same way as centralized optimistic locks.

For insert and update operations, a straightforward approach to adopting OptiQL in
a B+-tree that already uses traditional optimistic locks is then to change the lock type in
each node (inner and leaf) to OptiQL, and provide a queue node whenever the thread wants
to lock a node in exclusive mode. Although easy to implement, this approach does not work
well due to OptiQL’s queue-based nature and the way the original OLC protocol assumes
validation is performed. We use an example of updating a record to explain below. In the
original OLC protocol with centralized optimistic locks, a thread attempts to update a node
in four steps: (1) traverse to the target leaf node L using optimistic read; (2) read and record
locally the version of the lock protecting L, and validate the parent has not change (if so,
restart the operation); (3) search L for the target key (return if not found); (4) “upgrade”
the lock to become a writer lock and perform the update, after which the thread unlocks L

and returns. Importantly, in step 4 the upgrade operation issues a CAS on the lock word,
expecting the lock word to still contain the version obtained in step 3. Among these, step 4
is specific to CAS-based centralized locks described in Section 2.2. With a queue-based lock
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like OptiQL, a direct adaptation would be following steps 1–3, and acquire the OptiQL lock
in step 4 in exclusive mode.

Compared to centralized optimistic locks where if the CAS failed the caller would retry
(usually from the root of the tree), under OptiQL the thread would line up after the
predecessor and wait for the lock to be granted. However, this approach is not efficient:
after the lock is granted, the thread must search the node again (i.e., repeating step 3) to
ensure it has the latest, correct information regarding the target key. Therefore, instead
of blindly following the original OLC protocol, we revise it slightly to directly acquire the
lock at the leaf level, instead of going through the upgrade step. Under our adapted OLC
protocol, an updater thread still proceeds as follows: (1) traverse to the target leaf node L

using optimistic read (same as original OLC); (2) directly lock L; (3) validate the parent
node has not changed (note this was step 2 in the original protocol); (4) search L for the
target key, perform the update, release the lock and return. This allows us to truly benefit
from the queue-based design in OLC protocols for B+-trees.

So far we have assumed all the locks in a B+-trees are changed to OptiQL. Since inserts
and deletes may incur SMOs that propagate to the root of the tree, the number of queue
nodes needed by a thread will scale with tree depth. Although in practice most B+-trees are
shallow, it is still beneficial to reduce the number of queue nodes that have to be maintained
because OptiQL limits the maximum number of queue nodes by encoding their IDs in the
lock word. Further, we note that (1) inner nodes experience less contention since they are
updated less frequently than leaf nodes, and (2) releasing a queue-based lock (including
OptiQL) can be more expensive since a CAS is involved if there is no contention. Based on
these observations, instead of using OptiQL for all the nodes, we only change the leaf nodes
to use OptiQL; inner nodes still use traditional optimistic locks. This effectively bounds the
number of queue nodes to maintain for each thread to two (in case of node merges) and
keeps the locking overhead low in inner nodes.

5.2 Adaptive Radix Tree (ART)

ART [26] is a variant of the trie structure that allows adaptive node sizes to improve
utilization and performance in memory-optimized environments, on top of techniques such
as path compression and lazy expansion. With centralized optimistic locks, ART is also
vulnerable to performance collapse under high contention, as Chapter 6 shows. Similar to
B+-trees, each ART node carries a lock that can be directly changed to OptiQL. Readers
follow the strategy similar to that of B+-trees under both OptiQL and centralized optimistic
locks. However, for modification operations such as inserts and updates, the techniques we
used for B+-trees to use different locks at different levels is infeasible due to its loosely
defined node type: a node in ART (and tries in general) can simultaneously serve the role of
an inner and leaf node, and the type (inner or leaf) of a node will not become clear until
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Figure 5.1: The logical (a–d) and physical (e–h) structures of ART with path compression
and lazy expansion. (a, e) Path to ABDG is fully materialized. (b, f) Node 3 points to ABEH
due to lazy expansion. (c, g) Path between nodes 2 and 5 is compressed, with prefix F in
node 5. (d, h) Path between nodes 1 and 6 is compressed, with prefix X in node 6. OptiQL
materializes nodes 8 and 9 under contention, so that locks on nodes 8 and 5 can be taken
directly for updating ABEH and ACFI. Node 10 is safe to skip as node 7 has no prefix.

we already access it. The former requires us to use OptiQL for all the nodes. However, this
will force SMO threads to also acquire the lock in OptiQL’s queue-based manner for inner
nodes, which as we mentioned in the B+-tree case can be inefficient. To still allow cheap
optimistic style lock acquisition, we added an upgrade interface for OptiQL that directly
uses CAS to acquire the lock by comparing the current version against a provided one. The
method allows readers to promote themselves to writers if there is a version match just
the same as traditional optimistic locks do. Similar to MCS try-lock but different from
traditional optimistic locks, however, we set the lock word to still carry a queue node such
that subsequent writers whose target keys end in the node can still leverage the queue-based
design to avoid performance collapse. The remaining issue then is to detect node type
accurately. We discuss two solutions below, depending on whether lazy expansion and path
compression are involved. We assume payloads are stored indirectly through a “TID” as
previous work suggests [26].

Without lazy expansion or path compression, the thread can reliably tell if a node is at
the leaf node level by checking the length of the target key. Since ART uses one byte per
level, the number of levels would match the number of bytes in a key. Then, for a key of l

bytes, we can take optimistic read locks for the first l − 1 levels and only take the lock in
exclusive mode directly at the last level.

With path compression and lazy expansion, there might not be such “last-level” node at
all since a higher-level node can point to the payload directly, or the last-level node is an
endpoint of a compressed path and thus carries a key prefix. In both cases, an updater will
only tell whether it should lock the node in exclusive mode after reading the node, yet directly
acquiring the lock in exclusive mode would defeat the purpose of employing optimistic locks.
Figure 5.1 shows several desired and pathological structures in a path-compressed, lazily
expanded ART. Exclusive locks can be directly taken on nodes 4 and 7 but not on node 3 or
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5. To solve this problem, we propose contention expansion, inspired by contention split in
B+-trees [1]. In each node, we employ a counter to record its contention level measured by
the number of exclusive lock acquisitions as a result of upgrade instead of direct, blocking
acquisition. A large counter value indicates that the node is probably a leaf node that
is lazily expanded or an endpoint of a compressed path. The counter is probabilistically
incremented to reduce overhead. Then, to ease future accesses, if the contention level passes
a threshold, we directly expand the node by materializing the last two levels. Subsequent
traversals would then be able to land on the last-level node and acquire the lock directly
in the exclusive mode. Our current implementation uses a sampling probability of 0.1 to
increment to counter and a fixed contention threshold of 1024, although ideally they should
be adapted for different workloads.

5.3 Queue Node Management

Normally, threads can allocate queue nodes directly on the stack or as a thread-local (and
socket-local) variable. However, OptiQL stores queue node IDs (instead of addresses) on the
lock word. This requires the application/index maintain an address translation mechanism
(to_ptr and to_id in Algorithm 3) which needs to satisfy two important requirements.
(1) It needs to be globally accessible. (2) In multi-socket servers queue nodes should be
locally allocated; otherwise, “local spinning” will incur remote traffic. A naive approach
is to track dynamically allocated queue nodes in a hash table, similar to how locks are
maintained in conventional database systems in a lock manager. However, this can bring
high overhead and defeat the purpose of using OptiQL; modern memory-optimized OLTP
engines [10,22,23,31,42] avoid using such hash tables and lock managers for the same reason.

We observe that it is preferable to pre-allocate all the required queue nodes in a contiguous
array and use indexes into the array as queue node IDs. Our solution uses interleaved NUMA
memory allocation for queue node management. NUMA libraries like libnuma can interleave
allocations across a set of NUMA nodes for a virtually contiguous chunk of memory (e.g.,
using libnuma).1 Thus, we allocate memory pages of queue nodes in a round-robin manner
across all sockets. For example, in a dual-socket system, if we request four 4KB pages, then
pages 0/2 will come from from NUMA node 0; pages 1/3 will be from node 1. We then
initialize queue nodes on these pages and allocate them at runtime. Note that since the
memory is presented to the application as a contiguous array, we can still directly take the
index into the array as the queue node ID, yet without dedicating bits in the queue node ID
to encode NUMA node information.

1Specifically, the numa_alloc_interleave function: https://linux.die.net/man/3/numa_alloc_
interleaved.
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In essence, our approach sets up an indirection between queue node IDs (which occupy
fewer bits) and the queue nodes’ virtual addresses (which occupy 64 bits). This is a common
approach taken by systems built for large-scale systems [23], however, previous solutions
required allocating an array per NUMA node and encoding the NUMA node ID in the
queue node ID. This further requires the application to pre-determine the number of
sockets to support, thus increasing complexity. In contrast, our approach does not have such
requirements, making it easier to implement and more practical.
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Chapter 6

Evaluation

We empirically evaluate OptiQL using both microbenchmarks and YCSB-like [8] workloads.
Through experiments, we show that:

• OptiQL matches the performance of centralized optimistic locks under low contention
and read-dominant workloads.

• OptiQL achieves robust performance under various contention levels without collapsing
under write-intensive workloads.

• Opportunistic read enables OptiQL to provide opportunistic read under mixed read/write
workloads.

6.1 Experimental Setup

We performed experiments on a dual-socket server equipped with two 20-core (40-hyperthread)
Intel Xeon Gold 6242R CPUs clocked at 3.1GHz; each CPU has 35.75MB of cache. In total
the server has 40 cores (80 hyperthreads). The server is populated with 384GB (32GB×12)
of DRAM occupying all the 12 channels across the two sockets. We run Arch Linux with
kernel version 5.16. All the locks and indexes are implemented in C++17 and compiled
with GCC 12 with the highest optimization level. We use jemalloc to reduce dynamic
memory allocation overhead at runtime. Threads are pinned to hardware hyperthreads to
avoid migrations by the OS scheduler.

Benchmarks. We use both microbenchmarks and index workloads to stress test
the locks and measure their performance under more realistic scenarios. We devised a
microbenchmark framework that can be plugged with various lock implementations. Each
thread keeps issuing lock acquire/release requests on a set of pre-allocated locks following
a uniform random distribution. Contention level is controlled by adjusting the number of
locks to be 1 (extreme contention), 5 (high contention), 30,000 (medium contention) and
1,000,000 (low contention). Inside the critical section, the thread increments a volatile

variable on the stack for 50 times.
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To conduct index experiments, we use PiBench [29], a unified benchmarking framework
for persistent and volatile indexes to issue the same workloads to both ART and B+-tree
variants using the tested locks. For B+-trees we follow prior work to use 256-byte nodes [47].
Each index is pre-loaded with 100 million records of 8-byte keys and 8-byte values. We then
issue index workloads, such as lookup, update, insert and different mixes of them.

Each experiment runs for 10 seconds and is repeated for 20 times. We collect the
throughput (lock acquires per second for microbenchmarks, and the number of index
operations per second for index benchmarks) numbers and report the averages of 20 runs
with error margins. We also report tail latency numbers for index workloads to explore the
effect of queuing in OptiQL.

Lock Variants. We implemented and test the following locks:

• OptLock: Centralized optimistic lock [27,28].

• OptiQL: OptiQL proposed in Chapter 4.

• OptiQL-NOR: Same as OptiQL but without opportunistic read.

• TTS: Classic TTS lock as described in Section 2.2.

• MCS: The MCS lock as described in Section 2.3.

Note that among the above locks, TTS and MCS do not support shared mode; they are
included as a reference to show the cost of supporting readers.

Next, we start with microbenchmark results to calibrate our expectations, and then
report index benchmark results.

6.2 Microbenchmark Results

Our first experiment evaluates how each lock performs under different levels of contention
under a varying number of threads.

Exclusive Writer Performance. We begin with a pure-write microbenchmark where
each thread keeps acquiring and releasing the lock in exclusive mode. Figure 6.1 summa-
rizes the results; the lightly shaded areas indicate the use of the second NUMA node and
the remaining darker shaded area depict where hyperthreads are used. Under extreme
contention, all the threads contend for a single lock, so the workload is inherently unscal-
able and the throughput for all locks is expected to drop. However, queue-based variants
(OptiQL, OptiQL-NOR and MCS) can maintain performance without completely collapsing
under contention.

Under high contention, threads still have a very high chance to conflict with each other.
Both OptiQL-NOR and MCS can handle contention well. OptiQL shows a similar trend but
lower absolute performance (a constant amount of overhead) than OptiQL-NOR because
it employs additional steps to support opportunistic readers. However, as we show later,
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Figure 6.1: Exclusive lock throughput under different contention levels; MCS and TTS are
shown as a reference to evaluate OptiQL’s writer performance as they do not support
readers. Queue-based OptiQL and OptiQL-NOR can avoid performance under extreme and
high contention.

in realistic scenarios such drop is negligible, and more importantly, it enables optimistic
readers to proceed, while OptiQL-NOR can starve readers. Finally, note that OptiQL variants
and MCS still outperforms OptLock and TTS by ∼2×, although both exhibit low absolute
performance. We therefore still recommend using a fair lock instead of relying on backoff
simply attain overall high performance at the risk of starving certain requesters. Under
medium, low and no contention cases, all locks scale similarly, with slightly lower scalability
beyond one socket.

Mixed Operations. Figure 6.2 shows the throughput of three locks under 80 threads; we
excluded read-only results as all the locks scale and perform identically. In the figure, OptLock

remains low performance due to high contention on the central lock word. OptiQL-NOR and
OptiQL are able to maintain high overall performance across different read/write ratios. Also,
OptiQL-NOR often performs better than OptiQL until the workload becomes read-heavy with
over 50% of reads, again due to the additional atomic instructions issued for opportunistic
reads. However, we note that the OptiQL-NOR achieved this by starving readers. In Table 6.1,
the successful rates of read operations of OptiQL-NOR are around or less than 2%, which
means few readers were able to successfully acquire the lock under OptiQL-NOR, whereas
OptiQL can achieve 28~32% successful rates for read operations. With more reads, the
overhead of opportunistic read gradually pays off and as more readers can successfully
acquire the lock and finish their operations.

The trend is slightly different under high contention where we see most locks achieve
higher throughput as read ratio increases. OptiQL-NOR also showed lower performance when
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Figure 6.2: Lock throughput under various contention levels and read/write ratios using
80 threads. OptiQL keeps the advantage of traditional optimistic locks under medium-low
contention and read-dominant workloads, while avoiding collapsing under high contention
and high write ratios.

Table 6.1: Reader success rate of OptiQL-NOR and OptiQL under varying read/write ratios
and high contention (80 threads).

Lock 20%/80% 50%/50% 80%/20% 90%/10%
OptiQL-NOR 2.02% 1.45% 0.52% 1.08%
OptiQL 31.63% 29.87% 30.42% 27.94%

the read ratio is increased from 80% to 90%, as threads spend most of their cycles failing
and retrying to acquire the lock in optimistic read mode. Under medium and low contention,
all the locks performed similarly with expected high performance for the mixed workloads.

Summary. Through microbenchmarks, we confirm that (1) OptiQL can avoid perfor-
mance collapse under contention, and (2) OptiQL’s opportunistic read can effectively enable
readers. Next, we evaluate these locks in real indexes.

6.3 End-to-End Index Scalability

Following Chapter 5 we adapt a memory-optimized B+-tree and ART to use OptiQL. In
the rest of this section, we use the following workloads for index experiments: (1) Read-only:
100% lookups; (2) Read-heavy: 80% lookups and 20% updates; (3) Balanced: 50% lookups
and 50% updates; (4) Write-heavy: 20% lookups and 80% updates; (5) Update-only: 100%
updates.

Performance under Contention. Since a major goal of OptiQL is to avoid perfor-
mance collapse under contention, we first run the above workloads under a self-similar [16]
distribution with a skew factor of 0.2 (i.e., 80% accesses target 20% keys). In addition, we
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Figure 6.3: Read-only throughput of B+-tree (left) and ART (right) under a skewed workload
(self-similar distribution with a skew factor of 0.2). OptiQL and OptiQL-NOR perform the
same as OptLock for read-only workloads.

make the key space dense such that to increase the stress on the lock. For example, following
this distribution, the first 256 keys would accept 16% of the total accesses. Figure 6.3 and
Figure 6.4 shows the throughput of B+-tree and ART under this setup. Both indexes and
all locks perform well under read-only workloads thanks to optimistic reads.

As Section 6.2 describes, since OptiQL requires two additional atomic instructions on
the lock word per lock handover to support opportunistic read, OptiQL often performs
worse than OptiQL-NOR. This overhead is negligible even under the update-only workload
where the two atomics are pure overhead (although slightly more observable in ART where
OptiQL-NOR marginally outperforms OptiQL). However, as long as read operations are present
(which is the case for the remaining workloads in Figure 6.4), OptiQL yields more robust
and higher performance through opportunistic read than OptiQL-NOR in non-trivial index
benchmarks. We also observe that ART scales worse than B+-tree when the workload is not
pure read-only. We attribute the reason to the fact that the B+-tree implementation uses
small, 256-byte nodes. This leads to a fanout of 14, effectively enabling finer-grained locking
compared to ART which can have nodes containing up to 256 children/payloads. Overall,
under write-heavy and balanced workloads, OptiQL can be over 2× faster than OptiQL-NOR,
showing the effectiveness of OptiQL’s opportunistic read design. Note that this is achieved
without further trading off fairness (as optimistic locks already bias toward writers); we
discuss fairness and tail latency later.

Low Contention Performance. Now we evaluate OptiQL’s performance under low
contention, under which traditional optimistic locks perform well. We run the same experiment
for both indexes but change the benchmark to follow a uniform random distribution.
Figure 6.5 shows the results. As expected, both B+-tree and ART scale well and the
difference between lock variants is minuscule. We observed similar trends under other
workload mixes, so we conclude that OptiQL provides performance similar to centralized
optimistic locks when contention is low.
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Figure 6.5: Index throughput under low contention and the balanced workload. Both
centralized optimistic locks and OptiQL variants perform well when contention is rare.

6.4 Tail Latency and Fairness

The choice of a locking primitive also impacts tail latency, which is related to fairness
between index accessing threads. We collect up to 99.999 percentile tail latency to explore
this in Figure 6.6 across different workloads and under 20 (one socket) and 40 threads (two
sockets). Here, OptLock has drastically increasing tail latencies under update-only workloads,
while OptiQL-NOR and OptiQL stay relatively stable across the horizontal axis. We have also
collected the variance of per-thread throughput which shows a similar trend (not shown
here), corroborating with this result.

Despite the better results than OptLock, we note that OptiQL-NOR also exhibits latency
spikes under the balanced workload under 40 threads in both indexes. This is because of its
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Figure 6.6: Latency at different percentiles at 20 and 40 threads under self-similar distribution
(skew factor 0.2).

reader-starving nature without opportunistic read: most readers will have to retry many
times to successfully read a record.

6.5 Impact of Key Space Sparsity

So far we have only used dense keys to stress test the indexes. This naturally causes ART to
avoid lazily expanding last-level nodes which can happen in practice. We therefore conduct
another experiment to populate ART with 100 million sparse integer keys, which would
incur lazy expansion. As Figure 6.7 shows, under the self-similar distribution, indexes that
use OptLock exhibit poor performance and collapse as we use more than one socket because
they suffer from excessive retries under contention, whereas OptiQL and OptiQL-NOR can
follow the contention expansion design in Section 5.2 to local-spin, avoiding performance
collapse.
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integer keys.
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Chapter 7

Related Work

Our work is closely related to locking primitives and index designs.
Synchronization Primitives. We have discussed the basics on centralized and queue-

based locks earlier, so we do not repeat here. Because of nice features such as robustness
and fairness (FIFO), many proposals adapt the MCS lock, with support for pessimistic
readers [38], more NUMA-friendly spinning [11] to reduce lock handover cost, and context-
free standard lock interfaces [44]. OptiQL uniquely further adds optimistic read capabilities.
In addition to queue-based locks, ticket locks [41] also enforce FIFO, They record a global
“next-serving” ticket number and threads are served by the order in which they acquired their
own number. However, ticket locks are still centralized and thus vulnerable to performance
collapse under contention. Optimistic locks are inherently biased toward writers because
readers do not announce their existence to prevent writers from clobbering the data being
read. Recent work [6, 45] has combined pessimistic readers with optimistic locks. We leave it
as future work to add such features in OptiQL.

Concurrent Indexes. Traditional lock coupling [4] often fails to scale, so recent indexes
prefer other alternatives. Most of them detect conflicts with version numbers. OLFIT [7]
combines the B-link tree idea and version-based optimistic locks. Masstree [36] uses two
version counters to differentiate updates and splits to reduce unnecessary retries. Some
recent persistent memory (PM) indexes [32,33,39,43] also use optimistic locks to improve
scalability. Several indexes further avoid locking with lock-free algorithms. The Bw-Tree [30]
is a representative which is a lock-free B-tree that uses an indirection layer to allow atomic
updates using single-word CAS. BzTree [3] is another lock-free B-tree designed for PM, but
uses a multi-word CAS [46] primitive to simplify the implementation. Compared to lock-free
indexes, lock-based approaches do not provide strong progress guarantee (e.g., due to OS
scheduling). However, these cases are rare as memory-optimized OLTP systems typically
do not oversubscribe the system. Moreover, (optimistic) lock-based approaches are usually
easier to implement than lock-free ones [47], making them the preferred choice in many
systems.
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Chapter 8

Summary

In this chapter, we conclude the thesis and discuss potential future research.

8.1 Conclusion

Synchronization primitives play critical roles in concurrent indexes. However, existing
optimistic locks in memory-optimized indexes are vulnerable to performance collapse under
contention due to their centralized design inherited from centralized spin locks. To solve this
problem, we propose OptiQL, a new optimistic lock that leverages a queue-based design
to allow writer requesters to line up and spin locally, instead of centrally on the lock word,
to reduce unnecessary accesses to the lock word. Readers can still proceed optimistically
without writing to shared memory. With OptiQL, we adapted optimistic lock coupling
algorithms to apply OptiQL in two representative indexes, ART and a B+-tree. Evaluation
results show that OptiQL retains the benefits of traditional centralized optimistic locks by
matching their read performance, while providing robustness without collapsing under high
contention, among other desirable features such as compact lock word and fairness (FIFO
ordering) among writers, which were often sidestepped or traded off by prior work.

8.2 Future Work

The following section outlines potential areas of future research.
System integration and end-to-end performance. We did not explore the practica-

bility of integrating OptiQL into existing OLTP systems [22,42]. Opportunities for future
research include supporting index structures based on OptiQL in transactional systems and
evaluating their end-to-end performance.

Pessimistic reader variants. We did not compare with pessimistic readers-writer
locks [38,41], which might held its place on long-running read workloads like range scans.
An evaluation for such locks and the interoperability and composability between OptiQL
and them are left as future work.
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