
Improving the Performance of Bundle
Adjustment for On-Device SLAM using

GPU Resources
by

Shishir Gopinath

B.Sc., Simon Fraser University, 2021
B.A.Sc., University of British Columbia, 2017

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Shishir Gopinath 2023
SIMON FRASER UNIVERSITY

Spring 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Shishir Gopinath

Degree: Master of Science

Thesis title: Improving the Performance of Bundle Adjustment
for On-Device SLAM using GPU Resources

Committee: Chair: Alaa Alameldeen
Associate Professor, Computing Science

Steven Ko
Supervisor
Associate Professor, Computing Science

Jiangchuan Liu
Committee Member
Professor, Computing Science

Keval Vora
Examiner
Assistant Professor, Computing Science

ii

Abstract

Visual-inertial SLAM systems estimate the state and trajectory of a moving device while
building a map of the environment using sensors such as cameras and inertial measurement
units. These systems apply a general form of bundle adjustment to reduce error accumulated
in the relationships between keyframes, map points, and inertial states. We present tech-
niques to accelerate bundle adjustment for on-device SLAM using GPU resources. First, we
develop Vulkan compute shaders for calculating the Schur complement of a sparse matrix to
accelerate local visual-inertial bundle adjustment. Next, we extend this work for larger-scale
global bundle adjustment problems by developing an iterative linear solver for explicit and
implicit approaches. To evaluate the performance, we integrate our methods into a graph
optimization library, g2o, and visual-inertial SLAM system, ORB-SLAM3, and process a
mix of indoor and outdoor datasets on desktop and embedded devices. We also test our
methods on large-scale bundle adjustment datasets.

Keywords: Bundle Adjustment; Visual-Inertial SLAM; GPU Acceleration; Compute Shaders;
Non-linear Optimization; Embedded Devices

iii

Acknowledgements

Firstly, many thanks to my committee for their support and feedback, especially to my
supervisor Dr. Steven Ko of the Reliable Systems Lab at Simon Fraser University for his
guidance, and knowledge of SLAM, mobile devices, software systems, and programming
languages. I would also like to give a special thanks to Dr. Karthik Dantu from the University
at Buffalo for providing his time and expertise on SLAM and robotics.

To everyone from RSL, thank you. You have made my time here an enriching experience,
and I wish you all continued success in your efforts.

I would also like to acknowledge the efforts of the instructors and staff at SFU, with
whom I had the pleasure of interacting with. I had a great time learning about different
topics in computer science.

Of course, to my family, thank you for your support.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

1 Introduction 1

2 Background 4
2.1 Bundle Adjustment . 4
2.2 Vulkan Compute Shader Programming Model 8

2.2.1 Execution Model . 8
2.2.2 Memory Model . 9
2.2.3 Memory Properties . 10
2.2.4 Command Buffers and Queues . 10
2.2.5 Synchronization Primitives . 10
2.2.6 Push Constants and Specialization Constants 11
2.2.7 Subgroup Operations . 11

3 Related Work 12
3.1 Visual-Inertial SLAM . 12
3.2 Bundle Adjustment and Non-linear Optimization 12
3.3 Bundle Adjustment Acceleration . 13

3.3.1 GPU Acceleration . 13
3.3.2 FPGA Acceleration . 14
3.3.3 Comparison to Existing Solutions . 14

3.4 Embedded GPU Acceleration for Visual SLAM 15

v

3.5 High Performance Computing . 15
3.5.1 Sparse Matrix Formats . 15
3.5.2 BLAS . 16

4 Improving The Performance of Local Bundle Adjustment 17
4.1 Introduction . 17
4.2 Our Approach . 18
4.3 Implementation Details . 23

4.3.1 Pipelining . 23
4.3.2 Work Queue Generation . 25
4.3.3 Linear Algebra Operations . 26
4.3.4 Matrix Multiplication Shader . 29
4.3.5 Matrix Construction . 30
4.3.6 Memory Allocation . 31
4.3.7 Linear Solver . 31

4.4 Evaluation . 32
4.4.1 Experimental setup . 32
4.4.2 Block Solver Performance . 32
4.4.3 Overall Performance of Local Bundle Adjustment 33
4.4.4 GPU Memory Usage . 34
4.4.5 Effect of Memory Allocation Strategies 34
4.4.6 Threats to Validity . 35

5 GPU Acceleration for Global Bundle Adjustment 38
5.1 Introduction . 38
5.2 Work Queue Generation . 40

5.2.1 Dynamic Matrix Multiplication Based on the Block Compressed Sparse
Row Representation . 40

5.2.2 Parallel Work Queue Generation . 42
5.3 Linear Solver . 43
5.4 PCG Implementation . 44

5.4.1 Preconditioner . 44
5.4.2 Reduction for Vector Dot Products 45
5.4.3 Memory-Efficient Preconditioner Computation for Implicit Schur Elim-

ination . 46
5.4.4 Workload Distribution for Matrix Multiplication 46

5.5 Block Solver Improvements . 47
5.6 Evaluation on BAL Datasets with OpenMP 48
5.7 Evaluation on SLAM Datasets . 51

5.7.1 Block Solver Performance . 51

vi

5.7.2 Overall Performance of Full-Inertial Bundle Adjustment 54
5.7.3 Trajectory Error . 63
5.7.4 GPU Memory Usage . 65
5.7.5 Revised Performance of Local-Inertial Bundle Adjustment 69

6 Conclusion 71
6.1 Limitations and Future Work . 72

6.1.1 Evaluation and Datasets . 72
6.1.2 Parallelizing Constraint-Specific Calculations 72
6.1.3 GPU Direct Methods . 72
6.1.4 Reusing Partial Computations . 73
6.1.5 Choosing Optimal Parameters . 73
6.1.6 Beyond Bundle Adjustment . 74

Bibliography 75

vii

List of Tables

Table 4.1 Average local BA run times (in ms) for ORB-SLAM3 on the desktop
machine. From Gopinath, Dantu, and Ko [11] © 2023 IEEE. 33

Table 4.2 Average local BA run times (in ms) for ORB-SLAM3 on the Jetson
Xavier NX. From Gopinath, Dantu, and Ko [11] © 2023 IEEE. 34

Table 5.1 The timings (in seconds) for setting up the large multiplication op-
eration for computing HSchur and carrying it out for the Final-4585
dataset from BAL [3], averaged over ten runs. 43

Table 5.2 The number of images, points, observations, and initial mean squared
error (MSE) for the BAL problems [3] used for evaluation. 48

Table 5.3 The different solver configurations used for experiments. 48
Table 5.4 The performance on BAL datasets (desktop) with OpenMP enabled.

Time is given in seconds. 49
Table 5.5 The performance on BAL datasets (Jetson) with OpenMP enabled.

Time is given in seconds. 49
Table 5.6 The average block solver and BA times (ms) on the desktop for full-

map FIBA. 52
Table 5.7 The average block solver and BA times (ms) on the Jetson for full-map

FIBA. 53
Table 5.8 The number of keyframes, map points, and observations used for end-

of-sequence FIBA experiments. This does not include variables and
observations for inertial constraints introduced between consecutive
keyframes. 54

Table 5.9 The average execution times (seconds) across the ten trials on the
desktop for full-map FIBA. 55

Table 5.10 The average execution times (seconds) across the ten trials on the
Jetson for full-map FIBA. 56

Table 5.11 The RMS ATE (m) computed from five runs for each sequence (desktop). 63
Table 5.12 The RMS ATE (m) computed from five runs for each sequence (Jetson). 63
Table 5.13 Revised average local-inertial BA run times for ORB-SLAM3 on the

desktop machine. CPU timings from Gopinath, Dantu, and Ko [11] ©
2023 IEEE. 69

viii

Table 5.14 Revised average local-inertial BA run times for ORB-SLAM3 on the
Jetson Xavier NX. CPU timings from Gopinath, Dantu, and Ko [11] ©
2023 IEEE. 70

ix

List of Figures

Figure 1.1 Left camera view of ORB-SLAM3 processing the EuRoC Machine
Hall 01 visual-inertial dataset. 2

Figure 1.2 The map generated by ORB-SLAM3 when processing the EuRoC
Machine Hall 01 visual-inertial dataset. 2

Figure 2.1 The structure of the Hessian H generated by local-inertial bundle
adjustment. 5

Figure 2.2 The structure of Hpp generated by local-inertial bundle adjustment.
Only the upper triangular blocks are generated at runtime. 6

Figure 2.3 The structure of Hpl generated by local-inertial bundle adjustment.
Note the absence of non-zeros for inertial pose variables after the
156th row, which corresponds to 26 keyframes with 6 parameters
each. These variables do not form constraints with landmark variables. 6

Figure 2.4 The structure of Hll generated by local-inertial bundle adjustment.
It consists of 3 × 3 blocks along the diagonal. 7

Figure 2.5 The structure of HSchur generated by local-inertial bundle adjust-
ment, which inherits the structure from Hpp. The lower triangular
blocks are shown for convenience, but are not generated at runtime. 7

Figure 2.6 A compute shader dispatch describes the execution of a shader across
one or more workgroups. 8

Figure 2.7 A workgroup consists of one or more shader invocations. Each in-
vocation is represented as a cell in the diagram. Invocations in the
same workgroup can synchronize execution and memory accesses us-
ing barriers, and access the same shared variables. Invocations are
also implicitly organized into subgroups. Within the same subgroup,
invocations can interact with each other using subgroup functions. . 9

x

Figure 4.1 The dimensions and number of non-zeros of sparse matrices for local-
inertial bundle adjustment across indoor and outdoor EuRoC and
TUM-VI sequences. Only the upper triangular blocks are needed
for Hpp and HSchur. Larger-scale problems, such as the 52 image,
64053 landmark Venice dataset from BAL [3], generate as many as
9373671 non-zeros in the Hpl matrix. Figure from Gopinath, Dantu,
and Ko [11] © 2023 IEEE. 20

Figure 4.2 A sparse block matrix example with three filled-in blocks (top left).
A map that represents the blocks (top right). How the matrix is
stored in GPU memory (bottom). Figure from Gopinath, Dantu,
and Ko [11] © 2023 IEEE. 21

Figure 4.3 Multiplication between sparse block matrices generates a set of work
queues. Work queues which multiply blocks of the same dimensions
and do not write to the same block in matrix C are grouped together
for processing by a single shader dispatch. Figure from Gopinath,
Dantu, and Ko [11] © 2023 IEEE. 22

Figure 4.4 Visualization of task dependencies when pipelining the block solver
setup. 24

Figure 4.5 How work queues are stored in GPU-accessible arrays. 25
Figure 4.6 How column major and row major blocks are laid out in memory. . 28
Figure 4.7 How work is distributed in the matrix multiplication shader for a

single workgroup. The 6 × 6 matrix shown corresponds to the desti-
nation matrix. In this example, each subgroup consists of 32 invoca-
tions. The unshaded invocations are inactive. 29

Figure 4.8 χ2 error when we run the original CPU version and our GPU version
of block solver on the Venice BAL dataset for ten iterations. The
behaviours match each other’s. Figure from Gopinath, Dantu, and
Ko [11] © 2023 IEEE. 32

Figure 4.9 Average execution time of the main solving steps for an iteration of
the block solver for the EuRoC V201 sequence. Figure from Gopinath,
Dantu, and Ko [11] © 2023 IEEE. 35

Figure 4.10 A breakdown of the local-inertial bundle adjustment call for a run
of EuRoC V201 using each solver on the Xavier NX. Figure from
Gopinath, Dantu, and Ko [11] © 2023 IEEE. 36

xi

Figure 4.11 Average memory usage of buffer allocations (total across all heaps)
as reported by VulkanMemoryAllocator for various sequences over
five runs. The memory is suballocated from larger blocks which are
reserved during initialization. The allocator reserves approximately
100.66 MB on the desktop system and 33.55 MB on the Jetson.
Figure from Gopinath, Dantu, and Ko [11] © 2023 IEEE. 36

Figure 4.12 The impact of the GPU memory allocation method on the block
solver performance (desktop), for local-inertial BA on the TUM-VI
outdoors6 sequence (first 1000 seconds). Creating on-demand allo-
cations for each buffer as needed results in performance degrada-
tion over longer sequences. Using VMA to suballocate memory from
larger blocks avoids this overhead. Figure from Gopinath, Dantu,
and Ko [11] © 2023 IEEE. 37

Figure 5.1 The sizes and number of non-zeros of the matrices generated during
full-inertial bundle adjustment in ORB-SLAM3. Unlike local-inertial
bundle adjustment, the number of keyframes used to construct the
BA graph is not capped. 39

Figure 5.2 An example of a sparse block matrix stored in BCSR format, where
values for each block are stored in column-major order. The block
sizes are uniform. 40

Figure 5.3 How the indices for each matrix are processed. When the right matrix
is transposed, column-indices may be used instead. 41

Figure 5.4 How chunks of a work queue are distributed to different subgroups
within a workgroup when performing matrix-matrix multiplications.
In this example, each partition consists of two subgroups. The results
of each partition are stored in shared memory and reduced before
being written to the destination matrix. 47

Figure 5.5 How invocations processing different work queues are packed to-
gether for performing matrix-vector multiplications. 47

Figure 5.6 FIBA breakdown for the Jetson. 51
Figure 5.7 Convergence over time for the desktop on EuRoC sequences. 58
Figure 5.8 Convergence over time for the Jetson on EuRoC sequences. 59
Figure 5.9 Convergence over time for the desktop on TUM-VI room sequences. 60
Figure 5.10 Convergence over time for the Jetson on TUM-VI room sequences. 60
Figure 5.11 Convergence over time for the desktop on TUM-VI outdoors sequences. 61
Figure 5.12 Convergence over time for the Jetson on TUM-VI outdoors sequences. 62
Figure 5.13 The trajectory translation error distributions, across all dimensions. 64
Figure 5.14 GPU buffer memory usage for EuRoC sequences. 66

xii

Figure 5.15 GPU buffer memory usage for TUM-VI room sequences. 67
Figure 5.16 GPU buffer memory usage for TUM-VI outdoors sequences. 68

Figure 6.1 The overhead of computing the linear system (orange) for each opti-
mization iteration. Accelerating constraint-specific calculations would
reduce this overhead. 73

xiii

Chapter 1

Introduction

Simultaneous localization and mapping (SLAM) systems estimate the state and trajectory
of a mobile robot while also building a map of the environment using onboard sensors such as
cameras and LiDARs. Visual-inertial SLAM systems such as ORB-SLAM3 [1] achieve this
by identifying and tracking incoming colour or depth images with significant changes (called
keyframes), extracting 3D map points (landmarks) from these images, and estimating the
camera pose for each keyframe using the map points as well as inertial input. Such SLAM
systems are common building blocks in robot perception for navigation and manipulation,
as well as in augmented and virtual reality systems to determine the position and orientation
of a user’s device relative to the environment.

A common challenge in visual-inertial SLAM systems is drift or the accumulation of
inconsistencies in the relationships between the keyframes, map points, and relative odome-
try. A popular technique to enforce consistency, both locally between nearby keyframes and
related map points, as well as globally when a place is revisited (i.e. for loop closure), is
bundle adjustment (BA). Bundle adjustment resolves these inconsistencies by minimizing a
cost function, such as the weighted sum of squares [2], over error constraints. It co-optimizes
the growing set of pose and landmark parameters from the map in order to obtain more re-
fined estimates. Measured, or virtual observations, serve as the reference for computing the
error for each constraint. In visual bundle adjustment, reprojection constraints model the
difference between the measured image location of an observed map point and its projection
computed from estimated keyframe pose and map point parameters [3]. The parameters are
refined numerically using iterative non-linear least squares optimization methods [2, 3, 4].

Modern visual-inertial SLAM systems [1] perform bundle adjustment using an optimiza-
tion library such as g2o [5], GTSAM [6], or Ceres Solver [7]. In ORB-SLAM3, local bundle
adjustment is performed by the local mapping thread upon processing one or more incom-
ing keyframes [1]. Although local bundle adjustment operates on a subset of the map, it
is still a computationally expensive process, and this can cause delays in the local map-
ping pipeline. Global bundle adjustment, which operates on the entire map, is even more
time-consuming [1]. Even if executed in a dedicated thread, large global bundle adjustment

1

Figure 1.1: Left camera view of ORB-SLAM3 processing the EuRoC Machine Hall 01 visual-
inertial dataset.

Figure 1.2: The map generated by ORB-SLAM3 when processing the EuRoC Machine Hall
01 visual-inertial dataset.

latencies may result in early termination of the optimization, or delay related processes such
as monocular map initialization [8]. Decreasing these latencies would enable a SLAM system
to enforce consistency more frequently, and perform additional BA iterations in the same
amount of time. Therefore, we consider it desirable to optimize the performance of both
local and global bundle adjustment, since larger computation times may prevent a SLAM
system from accurately performing its mapping and localization tasks. To exacerbate the
problem, SLAM systems run on a diverse set of platforms, including resource constrained
micro-air vehicles. Thus, it is critical to optimize the compute-heavy parts of the SLAM
pipeline, such as bundle adjustment.

In this thesis, we investigate how we can efficiently use GPU resources to accelerate
both local and global bundle adjustment for on-device visual-inertial SLAM. In particu-
lar, we look at general numerical methods for small and large sparse block matrices, and
how we can execute them quickly on a GPU with low latency. We first focus on improv-
ing the performance of local visual-inertial bundle adjustment in Chapter 4 and implement

2

our techniques for g2o and ORB-SLAM3. In Chapter 5, we expand this work to acceler-
ate global bundle adjustment. We evaluate our methods using well-known visual-inertial
datasets, EuRoC [9] and TUM-VI [10], as well as the popular Bundle Adjustment in the
Large (BAL) datasets [3]. Our experiments show that we can obtain a reasonable perfor-
mance improvement in a memory-efficient manner over the existing g2o implementation
with our techniques, even when using an embedded GPU. We have made our implementa-
tion available online. 1

Material Reuse

The work presented in this thesis is primarily based on our conference paper, “Improv-
ing the Performance of Local Bundle Adjustment for Visual-Inertial SLAM with Efficient
Use of GPU Resources” by Shishir Gopinath, Karthik Dantu, and Steven Y. Ko, accepted
for presentation at the 2023 IEEE International Conference on Robotics and Automation
(ICRA) [11] © 2023 IEEE.

Text, as well as figures, and tables are reused, primarily in Chapter 1, Section 2.1,
Chapter 4 except for Section 4.3, and Chapter 6 before Section 6.1. Other chapters and
sections are mostly new material, except for where indicated otherwise. If the reused material
is relevant to your work, please refer to the final paper [11].

IEEE Copyright Notice

In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of Simon Fraser University’s products or services. Internal or per-
sonal use of this material is permitted. If interested in reprinting/republishing IEEE copy-
righted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a License from Right-
sLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of
Canada may supply single copies of the dissertation.

1Our code is available at https://github.com/sfu-rsl/gpu-block-solver.

3

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://github.com/sfu-rsl/gpu-block-solver

Chapter 2

Background

2.1 Bundle Adjustment

Since our main contribution is in developing techniques that efficiently perform visual-
inertial bundle adjustment, we provide a brief overview. We discuss three important aspects
of visual-inertial bundle adjustment directly relevant to our approach—bundle adjustment
as a graph optimization problem, non-linear least squares optimization, and the Schur com-
plement method. This discussion is mainly based on g2o—for details, please refer to its
description [5].
Bundle Adjustment as a Graph Optimization Problem: Modern SLAM systems
describe visual bundle adjustment problems as graphs, representing keyframe camera poses
and map points as vertices, connected by edges modelling reprojection errors. Visual-inertial
bundle adjustment introduces additional vertices and constraints for relative motion and
IMU bias residuals between consecutive keyframes [1]. The optimization of these constraints
is formulated as a non-linear least squares problem (i.e. minimization of the sum of squared
errors) and solved using an iterative method such as the Levenberg-Marquardt algorithm
(LMA) [12].
Non-Linear Least Squares Optimization: The problem of finding a parameter update
to minimize non-linear constraints in local bundle adjustment (i.e., reprojection errors) can
be represented using a linearized sparse system of equations. For LMA, this is expressed
as (H + λI)∆x = −b, where H is a symmetric positive semi-definite sparse block matrix
approximating the Hessian, λ is a damping factor added to the diagonal, and ∆x and
−b are vectors corresponding to the parameter update and gradient respectively [5, 2].
Each iteration of LMA attempts to solve for a new ∆x to reduce the error. However, for
bundle adjustment, it is common to exploit the problem structure to solve the system more
efficiently, by partitioning it in terms of pose (p) and landmark (l) variables. The vector
∆x is partitioned into pose update ∆xp and the landmark update ∆xl, while (H + λI) is
partitioned into submatrices Hpp, Hpl, Hll, and HT

pl [5]. Similarly, b is split into bp and bl. For
visual-inertial bundle adjustment, variables added by inertial constraints are also treated

4

Figure 2.1: The structure of the Hessian H generated by local-inertial bundle adjustment.

as pose variables, hence Hpp contains off-diagonal blocks. Submatrix Hll is block diagonal
when constraints between landmark parameters are absent, making it trivially invertible for
3D map points. This is ideal for the purposes of the Schur complement method, described
next.
Schur Complement Method: Using forward substitution, the Schur complement of (H +
λI) is used to find a reduced system HSchur∆xp = bSchur [2, 5]. Solving the reduced system
is relatively efficient, as landmark parameters generally outnumber pose parameters [3].
After solving for ∆xp, the landmark update can be computed via back substitution. These
relations are summarized by the following equations [5]:

HSchur = Hpp − HplH
−1
ll HT

pl (2.1)

bSchur = −bp + HplH
−1
ll bl (2.2)

∆xl = H−1
ll (−bl − HT

pl∆xp) (2.3)

The Schur complement method may also be referred to as Schur elimination in bun-
dle adjustment literature [13, 14]. Some bundle adjustment implementations use explicit
evaluation, where HSchur is computed and stored [5], while others evaluate matrix-vector
products with HSchur implicitly [3, 15, 14]. We explore both options in this thesis.

5

Figure 2.2: The structure of Hpp generated by local-inertial bundle adjustment. Only the
upper triangular blocks are generated at runtime.

Figure 2.3: The structure of Hpl generated by local-inertial bundle adjustment. Note the
absence of non-zeros for inertial pose variables after the 156th row, which corresponds to 26
keyframes with 6 parameters each. These variables do not form constraints with landmark
variables.

6

Figure 2.4: The structure of Hll generated by local-inertial bundle adjustment. It consists
of 3 × 3 blocks along the diagonal.

Figure 2.5: The structure of HSchur generated by local-inertial bundle adjustment, which
inherits the structure from Hpp. The lower triangular blocks are shown for convenience, but
are not generated at runtime.

7

2.2 Vulkan Compute Shader Programming Model

In this section, we provide a brief overview of compute shaders in the context of the Vulkan
API, on aspects which are relevant to our implementation. We provide a description of
the execution model, memory model, synchronization primitives, constants, and subgroup
operations. For further details, please refer to the Vulkan and OpenGL Shading Language
(GLSL) specifications [16, 17]. We additionally refer to the CUDA C++ Best Practices
Guide [18], since we evaluate our methods using NVIDIA GPUs, and also due to the simi-
larities between the CUDA and compute shader programming models.

2.2.1 Execution Model

A compute shader describes a computation across one or more workgroups, which consist
of work items [16]. Each workgroup contains one or more shader invocations, which execute
the main function of a shader program [16]. The shader program itself may be written in
GLSL or another language which can be compiled into SPIR-V bytecode. For our methods,
we generate this bytecode during library compile-time, but it can be prepared at run-time
as well. This bytecode cannot be used directly. At application run-time, pipeline objects are
constructed from the bytecode, which can then be dispatched for execution on a GPU. The
Vulkan implementation may also perform additional processing on the bytecode, including
optimizations such as loop unrolling and dead-code elimination [19].

Shader Dispatch

groupCountZ

groupCountX

groupCountY

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

Figure 2.6: A compute shader dispatch describes the execution of a shader across one or
more workgroups.

A compute shader dispatch can be organized into three levels. First, the number of work-
groups executed by a single compute shader dispatch is represented by a rectangular volume
computed from the product of x, y, and z dimensions [16], as shown in Figure 2.6. Within
each workgroup, the workgroup size, which also consists of three dimensions, determines the

8

Workgroup

local_size_y

local_size_x

local_size_z

Figure 2.7: A workgroup consists of one or more shader invocations. Each invocation is
represented as a cell in the diagram. Invocations in the same workgroup can synchronize
execution and memory accesses using barriers, and access the same shared variables. Invo-
cations are also implicitly organized into subgroups. Within the same subgroup, invocations
can interact with each other using subgroup functions.

number of invocations within a single workgroup, depicted in Figure 2.7. Workgroups in the
same dispatch do not have any execution dependencies between them, and thus are allowed
to execute in parallel. Invocations may also execute in parallel if they are active [20]. Each is
assigned to a subgroup, defined as “a set of invocations that can synchronize and share data
with each other efficiently” [16]. Subgroup operations allow invocations to communicate and
perform computations, such as reductions, without the use of shared variables.

A feature of the compute shader execution model is that each invocation can read
information about itself from built-in variables, and use that to determine its task. This
information includes the current workgroup ID, local invocation ID (among invocations in a
workgroup), or global invocation ID (among invocations across all workgroups) [17]. These
are three-dimensional values, due to the organization described previously. It is also possible
to retrieve one-dimensional IDs with respect to the current subgroup [20].

2.2.2 Memory Model

Compute shaders may access several types of memory, and we describe a simplified model
here. Global memory is used to back shader storage buffer objects (SSBOs). SSBOs are
used for storing a computation’s input and output data, and persist beyond the scope of
a shader dispatch. Shaders can also access shared variables, which exist in the scope of a
single workgroup’s execution and may be restricted to a few kilobytes per workgroup. They
are faster to access than values in global memory [18], making them well-suited for storing
intermediate computations. Invocations in the same workgroup can read and write to the
same shared variables, though accesses must be synchronized with the use of barriers. SSBOs

9

and shared variables may be cached in L1 and L2 memory caches [18]. Register memory is
used to store sufficiently small variables for fast access by a single invocation [18].

2.2.3 Memory Properties

In Vulkan, memory must be separately allocated prior to creating an SSBO. Allocations
must specify a memory type. A memory heap may support one or more memory types,
with each type having a set of properties. These properties provide guarantees about the
availability and visibility of values written to the memory, which in turn also affect the
performance of memory accesses. For our purposes, we are interested in memory types
supporting the properties described below [16]. Host refers to the processor and environment
of the application, on which the Vulkan API is used to invoke tasks, while device refers to
the processor and environment on which these tasks are executed [16].

• Device Local: The memory is the most efficient for devices accesses.

• Host Visible: The memory can be mapped for host access.

• Host Cached: The memory is cached by the host, allowing for faster access on the
host application side. However, it lacks the visibility guarantees provided by host
coherent memory. Memory ranges must be flushed for the device to see host writes,
and invalidated for the host to see device writes.

• Host Coherent: Flushing and invalidating memory ranges is not necessary, but the
memory may be slower to use.

2.2.4 Command Buffers and Queues

Vulkan commands are recorded into command buffers, which can be submitted to a queue
for execution [16]. Command buffers may be submitted to a queue more than once, allowing
for a prepare-once, execute-many-times approach. They can also be submitted to different
queues, allowing for asynchronous execution.

2.2.5 Synchronization Primitives

Vulkan provides a set of synchronization primitives for various situations. Shader invocation
control functions provide functionality to control the relative execution of invocations in a
workgroup [17]. Invocations within the same workgroup must synchronize access to shared
variables or buffers using memory and execution barriers in order for each other’s writes
to become visible. Likewise, pipeline barriers, which are inserted by the host, specify exe-
cution and memory dependencies between shader dispatches and other commands. Other
primitives include fences, which can be used to signal the host when a command buffer has
finished execution in a queue [16].

10

2.2.6 Push Constants and Specialization Constants

GLSL provides two methods to specify constants in a compute shader at run-time. Push con-
stants are a small bank of writable values representing a high speed path to update constant
data [16]. Push constant updates are recorded into a command buffer prior to recording a
compute shader dispatch command. Alternatively, specialization constants can be specified
at pipeline creation time. Specialization constants allow for control flow optimizations and
unrolling of loops [19]. However, the exact behaviour is implementation-dependent.

2.2.7 Subgroup Operations

Subgroup operations allow data to be shared between invocations in a subgroup without
using shared variables. An invocation may be inactive or active, depending on factors such
as the workgroup size and dynamic branching [20]. Whether an invocation participates
in a subgroup operation depends on if it is active, which is useful for conditional data-
sharing [20].

We briefly outline a subset of the subgroup-aware functionality offered by GLSL exten-
sions [20, 17], which we use in our implementation. Arithmetic extensions provide function-
ality for reductions, including the sum, product, maximum, or minimum of a variable across
active subgroup invocations [20]. This also includes variants for inclusive and exclusive scan
operations. Ballot functionality includes support for broadcasting one invocation’s value
to all other invocations in a subgroup [20]. Basic subgroup functionality includes support
for reading information about the current subgroup, the number of subgroups, and also
support for subgroup-level barriers [20]. A very useful function for selecting a single active
invocation from a subgroup is subgroupElect().

11

Chapter 3

Related Work

We now provide a brief overview of existing work on SLAM, non-linear optimization li-
braries, bundle adjustment acceleration, GPU acceleration for SLAM on embedded devices,
and related HPC work.

3.1 Visual-Inertial SLAM

Visual-inertial odometry and SLAM systems use inertial information to estimate changes in
motion between visual frames, improving localization accuracy and robustness when visual
tracking loss occurs [21, 22, 1, 23]. VINS-Mono fuses preintegrated IMU measurements [21]
with monocular observations of visual features to improve state estimation [22]. Similarly,
ORB-SLAM3 builds upon previous ORB-SLAM works [8, 24], incorporating inertial in-
formation into monocular, stereo, and RGB-D SLAM, while supporting both pinhole and
fisheye camera types, as well as multiple maps in the same session [1]. Kimera takes a
modular approach, where visual-inertial odometry is decoupled from mapping for improved
localization [23]. It supports both fast mesh-based reconstruction for obstacle avoidance,
and slower volumetric reconstruction for semantic annotation [23].

3.2 Bundle Adjustment and Non-linear Optimization

Many specialized optimization libraries have been developed for bundle adjustment and
other non-linear least squares SLAM problems. Lourakis and Argyros [12] implemented
Levenberg-Marquardt-based generic sparse bundle adjustment for large BA problems. Later,
Agarwal et al. [3] developed a large-scale solver based on direct and iterative methods for
non-linear least squares optimization, and published the Bundle Adjustment in the Large
(BAL) datasets, which are now commonly used to evaluate BA performance. This work was
further developed as Ceres Solver [7], which is used in systems such as VINS-Mono [22],
and supports exact automatic differentiation via template and operator overloading [25].
A follow-up work by Kushal and Agarwal [26] explores the impact of visibility-based pre-
conditioners for bundle adjustment using preconditioned conjugate gradients. GTSAM [6],

12

used in Kimera, is another popular library for estimation problems in robotics. It describes
problems as bipartite factor graphs, in which unknown variables are connected via edges to
factors representing functions [6]. The g2o library, which is used for non-linear least squares
optimization in ORB-SLAM [8] and derivatives [24, 1], implements a similar model, in
which hyper-edges directly represent ordered constraints between one or more vertices [5].
Recently, Demmel et al. [27] proposed RootBA, which implements a parallel algorithm based
on QR decomposition and outperforms Ceres Solver on medium to large BAL problems.

3.3 Bundle Adjustment Acceleration

3.3.1 GPU Acceleration

A popular strategy to improve the performance of large-scale bundle adjustment is to exe-
cute massively parallel calculations on a GPU [28, 15, 29, 30]. This is often achieved with
the use of a GPU compute API such as CUDA, in which programs called kernels (similar to
compute shaders) carry out various calculations. GPU methods may use direct or iterative
linear solving techniques, and there are tradeoffs for each.

Methods which use direct approaches usually compute and store the reduced pose sys-
tem, and use it to calculate an exact parameter update. By using CUDA, Choudhary,
Gupta, and Narayanan [28] compute the Schur complement on the GPU and the column
vector on the CPU. They use MAGMA Cholesky decomposition [31] to solve for the pose
update and achieve a 30−40× speedup for datasets with up to 500 images [28]. The CUDA
Bundle Adjustment library [32] takes a similar approach and targets the subset of the g2o
functionality used in ORB-SLAM2 [24], achieving a speedup of roughly 8 − 10× for maps
generated by processing KITTI datasets [33]. Cao et al. [30] use tile-based block matrix
multiplication for the Schur complement. They use LDLT decomposition to solve the pose
update and find that their method outperforms other multicore methods in both speed and
error reduction for BAL datasets.

On the other hand, iterative methods, which compute inexact parameter updates, have
been shown to scale well on GPUs for very large bundle adjustment problems without com-
promising on the solution quality [15, 29]. Wu et al. [15] develop multicore methods for
large-scale bundle adjustment. They implement methods based on preconditioned conju-
gate gradients (PCG) using implicit-Hessian and implicit-Schur matrix-vector evaluation.
Their multicore CPU implementation provides a 10× speedup over the previous methods
proposed by Agarwal et al. [3] while their CUDA-based GPU implementation achieves a
30× speedup [15]. Hänsch et al. [29] also investigate iterative methods on GPUs such as
PCG for LMA, non-linear conjugate gradient descent, and alternating resection-intersection.
They show that their methods converge faster on some problems while using up to half as
much memory compared to the implementation by Wu et al. [15]. They also find that
LMA methods converge slower but achieve better error reduction [29]. Another PCG-based

13

method is DeepLM [34], which implements visual bundle adjustment on top of the PyTorch
deep-learning framework. More recently, MegBA implements distributed bundle adjustment
using implicit-Schur PCG [14]. It uses edge-based partitioning to distribute blocks of the
Hessian across multiple machines and GPUs.

3.3.2 FPGA Acceleration

Liu et al. [13] propose π-BA, which implements energy-efficient FPGA acceleration for ex-
pensive visual BA calculations, including the Schur complement. Their method outperforms
Ceres-Solver running on a single ARM core by 7.3 times [13] for double-precision exper-
iments on small BAL datasets. Sun et al. [35] developed another FPGA implementation,
which avoids external memory accesses, called BAX. It also targets small BA problems
using single-precision floats. By evaluating their methods on cropped BAL datasets, they
find that BAX outperforms g2o on Intel and ARM processors, and is nearly as fast as a
GPU implementation, while requiring the least amount of power [35].

3.3.3 Comparison to Existing Solutions

As the main goal of our work is to improve the performance of visual-inertial bundle adjust-
ment, most existing GPU and FPGA solutions are not suitable due to lacking support for
inertial constraints. We propose a more general solution using a hybrid approach, in which
constraint specific calculations remain on the CPU, but operations involving sparse block
matrices and dense vectors are executed on a GPU. We develop GPU-friendly techniques
for handling sparse block matrices with variable-sized blocks, discussed in Chapter 4. This
allows our solution to handle not only visual-inertial bundle adjustment, but also other
similarly structured problems compatible with the reduced system partitioning scheme de-
scribed in Chapter 2. Below, we outline several other key differences between our work and
existing methods:

• We target both desktop machines and resource-constrained embedded devices [36] by
using different allocation strategies to balance memory usage and performance.

• Since our methods do not require support for floating point atomic operations, we are
able to target a wider range of GPUs using the Vulkan API.

• We demonstrate techniques to reduce setup latencies in order to keep up with frequent
local bundle adjustment workloads on a GPU.

• We evaluate the performance of our methods on real visual-inertial bundle adjustment
workloads generated on-the-fly.

14

3.4 Embedded GPU Acceleration for Visual SLAM

There are other parts of the visual SLAM pipeline which can benefit from GPU accelera-
tion as well, even on low-power embedded devices. Ma et al. [37] parallelize ORB feature
extraction and matching for ORB-SLAM2 using CUDA. On a Jetson TX2, their methods
increased trajectory errors, but cut down the processing time for EuRoC sequences by a
third, allowing for higher frame processing rates [37]. Lu et al. [38] parallelize optical flow
tracking, non-linear least squares optimization, and marginalization for VINS-Mono using
CUDA. Also using a Jetson TX2, they demonstrate speedups of 1.5-1.7× for marginaliza-
tion, while optical flow tracking speeds improved by 1.9× [38]. Their methods nearly double
the optical flow tracking framerate, but do not improve the performance of non-linear op-
timization [38].

3.5 High Performance Computing

In this section, we discuss how aspects of our work are related to research in high perfor-
mance computing (HPC). In particular, we discuss sparse matrix formats and basic linear
algebra subprograms (BLAS).

3.5.1 Sparse Matrix Formats

Sparse matrix formats are used to efficiently store matrices with few non-zero entries. These
compressed formats typically require less memory than dense representations, while also re-
ducing the amount of computations necessary for operations [39]. Conventional sparse ma-
trix representations include the coordinate (COO), compressed sparse row (CSR), and com-
pressed sparse column (CSC) formats [39]. Blocked variants of these representations, such
as block compressed sparse row (BCSR), store indices for fixed-size sub-matrices (blocks)
rather than scalar elements [40, 39]. An extension to BCSR is variable block compressed
sparse row (VBR), for representing sparse matrices which contain blocks of different dimen-
sions [40]. Block representations are cache-efficient [5, 41] since values of the same block are
stored together in memory. Generally, all values of filled-in blocks are treated non-zeros.
While CSR and CSC formats can achieve better compression, storing indices for non-zero
scalars may significantly increase the memory usage.

Specialized sparse block matrix representations are often used for SLAM optimization
problems [12, 25, 6, 42], due to the block-parameterization (the grouping of scalar compo-
nents) of multidimensional state variables and observations. This block-parameterization
is the underlying reason for the block structure of the large Hessian matrix described in
Section 2.1. A key feature of block representations is that they allow for efficient updates
when the linear system is rebuilt.

15

The reason why custom formats are used rather than formats such as VBR, is that
often there is a need for blocks to be randomly accessed in constant time, and this can
be enabled by storing additional information in the matrix data structure. Furthermore,
implementations may take different approaches to reduce the overhead of allocation and
modifications to the block structure [5, 41]. Another major limitation to existing block
formats such VBR is that they are not directly supported by standard GPU libraries such
as cuSPARSE [43], which is used to carry out operations involving sparse matrices efficiently
on CUDA-enabled hardware.

To support visual-inertial bundle adjustment, our library also implements a custom
sparse block matrix representation for variable block sizes. This representation allows for
fast access of values both on the host (by g2o) and on a GPU (by compute shaders). Our
representation differs from that of Polok et al. [42] in how operations are carried out on a
GPU. We store additional information to quickly generate data structures and pre-record
GPU commands for block-wise multiplications, as described in Section 4.2.

3.5.2 BLAS

Basic linear algebra subprograms (BLAS) perform low-level operations involving matrices
and vectors efficiently [44]. There are multiple specifications and implementations of BLAS,
and in general, they are organized into multiple levels [44]. Level 1 BLAS focuses on scalar
and vector operations, Level 2 BLAS focuses on matrix-vector operations, and Level 3 BLAS
is concerned with matrix-matrix operations [44]. BLAS operations may be carried out on a
GPU, using an implementation such as cuBLAS [45] or MAGMA [31]. For our methods, since
we use a non-standard matrix representation to support multiple block sizes, we implement a
library of compute shaders to carry out low-level operations on sparse matrices, rather than
use an existing BLAS implementation. This gives us additional control over exactly how
operations such as multiplications are carried out on a GPU and allows us to implement
strategies for different types of workloads (discussed in Section 4.3 and Section 5.4). In
general, the techniques presented in this thesis may be useful for applications where BLAS
is used for batched dense matrix multiplication.

16

Chapter 4

Improving The Performance of
Local Bundle Adjustment

4.1 Introduction

In this chapter, we investigate how we can use GPUs to improve the performance of local
bundle adjustment for ORB-SLAM3, on both a desktop machine and an NVIDIA Jetson
Xavier NX embedded board. As discussed in Chapter 3, previous works have successfully ap-
plied GPU acceleration methods to large-scale bundle adjustment problems to obtain large
speedups in offline scenarios. However, local bundle adjustment problems not only involve
fewer keyframes and map points, but also introduce inertial constraints in the case of visual-
inertial SLAM. These constraints change the structure of the matrices involved in bundle
adjustment, as described in Chapter 2. Therefore, while investigating GPU acceleration for
local bundle adjustment, we consider the following questions:

• Can computations across smaller bundle adjustment problems still benefit from GPU
acceleration?

• How can we multiply sparse block matrices, with varying block matrix sizes, efficiently
on a GPU?

• How can we mitigate the setup cost associated with moving calculations to the GPU?

• How well do our methods perform, in terms of execution time, when operating in the
context of a real-time SLAM system?

To address these questions, we develop a solution based on Vulkan compute shaders. We
show that by efficiently utilizing GPU resources, we can significantly improve the perfor-
mance of local bundle adjustment for visual-inertial SLAM. This performance improvement
comes from two observations we have made regarding the overhead and the workload. First,
when solving for the parameter update in local-inertial bundle adjustment, computing the

17

Schur complement has the largest overhead, hence it is the most promising as an opti-
mization candidate. Second, the workload consists of operations on small- to medium-sized
sparse matrices, and we can tailor the use of GPU resources specifically for this workload
to achieve better performance.

Based on these observations, we develop several techniques that efficiently handle small-
to medium-sized sparse matrices, mainly for the Schur complement. First, we use a compact
sparse block matrix representation that manages memory with low overhead for matrices of
these sizes. Second, we design specialized work queues that enable us to parallelize sparse
block matrix multiplication operations on a GPU. Third, we hide the latency of setting up
GPU computation programs (called compute shaders) by pipelining their setup operations
while their input data is being produced. Lastly, we use a particular GPU memory allocation
strategy that boosts performance significantly, especially for longer SLAM sequences.

To concretely evaluate our approach, we develop a library for sparse matrix operations
on GPUs based on our techniques and use it to implement a new block solver for g2o, which
computes the Schur complement. We then replace the block solver in g2o with our own
for ORB-SLAM3 and execute well-known SLAM datasets, EuRoC [9] and TUM-VI [10],
for our evaluation. Our GPU implementation uses the Vulkan API, via Kompute [46], due
to its popularity and cross-platform support (including support for desktop GPUs, mobile
GPUs, and all major OSes) [47].

Our evaluation shows that our method achieves up to a 33.79% reduction in execution
time for local visual-inertial bundle adjustment on a desktop machine with a dedicated
GPU, and up to a 26.68% reduction on the Jetson Xavier NX embedded board using an
integrated Volta GPU.

4.2 Our Approach

Motivation: As mentioned in Section 4.1, our performance improvement starts with two
observations we have made from our analysis of the workload for local BA. Our first obser-
vation is that Schur complement has the largest overhead when solving for the parameter
update in local visual-inertial bundle adjustment, as we show later in Section 4.4 (Figure 4.9
and Figure 4.10). This occurs especially with local BA with fewer keyframes. Our second
observation is that the workload for local visual-inertial bundle adjustment consists of small-
to medium-sized matrix operations. This observation can be seen in Figure 4.1, which shows
the dimensions and the number of non-zero elements of the matrices used to compute the
Schur complement in local visual-inertial bundle adjustment. We have generated the data
by executing ORB-SLAM3 with EuRoC and TUM-VI indoor and outdoor sequences.

As we can see from Figure 4.1, the sizes of these matrices range from small (hundreds
of rows and columns) to medium (tens of thousands of rows and columns). In compari-
son, a popular dataset for bundle adjustment, BAL [3] (Bundle Adjustment in the Large),

18

generates matrices with millions of rows and columns. The underlying reason why we see
small- to medium-sized matrices for local visual-inertial bundle adjustment is that robot
motion at typical speeds, outdoors as well as indoors, limits the number of map points from
prior images that can be reprojected into the current image. Furthermore, the number of
keyframes is limited in visual-inertial bundle adjustment, as the inertial constraints increase
the number of associated pose variables [1].
Overview: Algorithm 1 describes the main solving step performed in each iteration of
the non-linear least squares optimization described in Section 2.1. The goal is to solve for
parameter update ∆x, and the Schur complement is used to perform this process efficiently.
In g2o, this is done by a component called a block solver.

In our approach, we allocate sparse block matrices in GPU-visible memory, perform
computation-heavy parts of the Schur complement step in parallel using the GPU, and
read back the computed HSchur and bSchur to solve for ∆xp on the CPU using sparse LDLT
factorization from Eigen [48]. Lastly, we use this result to compute ∆xl also using the
GPU. To perform these tasks efficiently, we develop and combine several techniques, which
we describe next.

Algorithm 1 GPU Block Solver: Solving Step
Input: Hpp, Hpl, Hll, M1, M2, HSchur, bSchur, v1, bp, bl

Output: ∆xp, ∆xl

1: HSchur ← Hpp ▷ cpu
2: bSchur ← −bp ▷ cpu
3: v1 ← −bl ▷ cpu
4: M1 ← H−1

ll ▷ gpu
5: M2 ← HplM1 ▷ gpu
6: HSchur ← HSchur −M2HT

pl ▷ async-gpu
7: bSchur ← bSchur −M2v1 ▷ async-gpu
8: ∆xp ← LDLT(HSchur, bSchur) ▷ cpu
9: v1 ← v1 − (∆xT

p Hpl)T ▷ gpu
10: ∆xl ←M1v1 ▷ gpu

Sparse Matrix Representation: One type of overhead that comes with the use of a
GPU is the cost of data transfer between CPU-accessible memory and GPU-accessible
memory, especially for systems with dedicated GPU memory. We manage this cost by
developing a compact sparse block matrix representation. Figure 4.2 shows an example. In
our representation, values for block matrices are stored in column-major order. A map is
used to store the starting offset for each block matrix in the memory mapped buffer, along
with the block dimensions. We also manage extra block indices and track dimensions for
each block-row and block-column, which allow us to quickly check for filled-in blocks of a
matrix. These are not shown in Figure 4.2. Our representation only stores non-zero values
of the matrix in the buffer, which reduces the overall GPU memory requirement.
Work Queues: In order to perform matrix multiplications efficiently on a GPU, we design
specialized work queues that manage computational tasks. Our unit of task is a block-

19

Figure 4.1: The dimensions and number of non-zeros of sparse matrices for local-inertial
bundle adjustment across indoor and outdoor EuRoC and TUM-VI sequences. Only the
upper triangular blocks are needed for Hpp and HSchur. Larger-scale problems, such as the
52 image, 64053 landmark Venice dataset from BAL [3], generate as many as 9373671 non-
zeros in the Hpl matrix. Figure from Gopinath, Dantu, and Ko [11] © 2023 IEEE.

20

1, 3, 2, 4 4, 6, 5, 7 1, 4, 2, 5, 3, 6

Memory Mapped Buffer

1, 2
3, 4

4, 5
6, 7

1, 2, 3
4, 5, 6

Sparse Block Matrix Map

(0, 0)
offset
dim

0
2x2

(0, 1)
offset
dim

4
2x2

(1, 2)
offset
dim

8
2x3

Figure 4.2: A sparse block matrix example with three filled-in blocks (top left). A map
that represents the blocks (top right). How the matrix is stored in GPU memory (bottom).
Figure from Gopinath, Dantu, and Ko [11] © 2023 IEEE.

by-block multiplication, where a block is a submatrix. This follows the design of g2o that
divides a matrix into multiple blocks and performs block-by-block multiplications for cache
efficiency [5, 49]. A key change in visual-inertial bundle adjustment is that these blocks are
not uniformly-sized. The sizes are determined by the input graph’s vertices (as in g2o). An
example is shown in Figure 4.3. In the example, matrix A is divided into six blocks, where
four blocks (A-0, A-4, A-14, and A-18) are 2 × 2 in size, and the two remaining blocks
(A-8 and A-22) are 2 × 3 in size. Matrix B is divided into three blocks, where the first two
blocks (B-0 and B-4) are 2 × 2 in size, and the last block (B-8) is 3 × 2 in size. These two
matrices are multiplied and the output is written to matrix C with two blocks of the same
size (2 × 2).

These block multiplications provide a natural opportunity for parallelization using a
GPU, where block-by-block multiplications execute in parallel. However, there are two chal-
lenges with GPU parallelization, which our work queue design addresses. First, there are
block multiplications that write to the same destination block, which means that we need to
handle data races. For example, in Figure 4.3, tasks A-0 × B-0, A-4 × B-4, and A-8 × B-8
all write to block C-0. Second, each block-by-block multiplication needs to be carried out by
a compute shader, and there is a cost associated with setting up a shader and dispatching
it for GPU execution. Thus, it is important to manage this cost carefully.

We address these challenges by creating multiple work queues where block multiplication
tasks that satisfy the following criteria altogether get inserted into the same work queue—
(i) tasks that write to the same destination block, and (ii) tasks that handle the same left
and right block dimensions. Work queues with the same block dimensions share one shader
and each can execute in parallel. Within the same work queue, each task is executed in
a serialized fashion, one by one. Since we insert tasks that write to the same destination
block in a single work queue (hence serialized), we avoid data race problems. Batching
work queues with the same left and right block dimensions also reduces the overhead from
setting up and dispatching new shaders, which are specialized with constant values for loop
bounds. However, there are cases where tasks that write to the same destination block must

21

Matrix C Matrix A Matrix B

Block Matrices and Dimensions

2

2

2 2 2 3

B-0

B-4

B-8

2

C-0 A-4A-0 A-8

X+=

C-4 A-18A-14 A-22

2

2

2

2

3

Work Queue

A-8 x B-8

Work Queues

Work Queue

A-22 x B-8

Work Queue

Work Queue

A-0 x B-0 A-4 x B-4

A-14 x B-0 A-18 x B-4

Figure 4.3: Multiplication between sparse block matrices generates a set of work queues.
Work queues which multiply blocks of the same dimensions and do not write to the same
block in matrix C are grouped together for processing by a single shader dispatch. Figure
from Gopinath, Dantu, and Ko [11] © 2023 IEEE.

handle blocks with different dimensions, and thus get inserted into different work queues.
Since these cases still have data race problems, we use pipeline barriers to manually enforce
serialization between shader dispatches.

Following these rules, for the example in Figure 4.3, we create four work queues. The first
work queue has two tasks, A-0 × B-0 and A-4 × B-4, which write to the same destination
block, C-0, and have the same dimensions. The second work queue has one task, A-8 × B-8.
Though it writes to the same C-0 block as the tasks in the first queue, the dimensions are
different, which is why we use a different work queue. The work queue generation process
is repeated for the second block, C-4, producing two more work queues. As mentioned,
a pipeline barrier is inserted to introduce memory and execution dependencies between
each batch of work queues, preventing data races when accessing values in each destination
block. The reason we use pipeline barriers rather than finer-grained floating point atomic
operations is that these operations require an extension [16], which to the best of our
knowledge, is only available for devices with CUDA support. In order to support other
GPUs, these extensions are not used. An additional advantage of using work queues is that
they reduce the amount of reads and writes to the destination matrix.
Shader Setup Pipelining: To further mitigate the cost of setting up shaders for GPU
execution, we pipeline this process along with the operations that produce the input for the
Schur complement step. For Algorithm 1, the inputs Hpp, Hpl, Hll, bp, and bl are computed
on the CPU. Next, steps 1-3 also execute on the CPU and initialize memory used for

22

computing and storing the reduced system. Thus, for the first block solver iteration, we
hide the latency of shader set-up, work queue generation, and recording of GPU commands
by executing these in parallel, mainly while building the linear system and with steps 1-3.
This allows us to execute steps 4-7 on a GPU as soon as the input is ready.
Memory Allocation: We have discovered that GPU memory allocation strategies play
a significant role in the overall performance of our implementation for local visual-inertial
bundle adjustment. When allocating GPU memory on-demand as needed, we have ob-
served performance degradation over time, more noticeably across longer SLAM sequences.
We have then switched our GPU memory allocation strategy to the TLSF allocation algo-
rithm [50] as provided by VulkanMemoryAllocator (VMA) [51], which allows for suballoca-
tion of existing GPU memory allocations. This allocation algorithm has shown to be robust
to long-term uses and does not show any performance degradation. The effect on the block
solver execution time is shown in Section 4.4.

4.3 Implementation Details

This section provides additional details regarding the pipelining of shader setup, how work
queues are generated and stored in GPU buffers, and how matrix operations are carried out
using shaders. Specifics regarding matrix construction and GPU buffer memory allocation
are also outlined.

4.3.1 Pipelining

Figure 4.4 shows how tasks that are responsible for initializing the block solver are pipelined.
In the diagram, each task is represented by a node. Tasks may also be further decomposed
into subtasks, which may be executed in parallel, but these are not shown. A description of
each task is given below:

• Resize and Reserve: The sizes of the block-rows and block-columns for each sparse
block matrix are determined by scanning the vertices of the graph, as in the origi-
nal g2o implementation. Next, the sparse block matrix data structures are allocated
and initialized with these sizes. GPU buffers for vectors involved in the block solver
computations are allocated during this task. Lastly, blocks are reserved for Hpp, Hpl,
and Hll according to the structure of the BA graph. Reserving a block designates that
part of the matrix as filled-in, creating appropriate block indices, and ensuring that
memory for its values will be allocated.

• Allocate 1: This task is responsible for creating buffers and allocating memory of the
specified type, which is dependent on the platform. It also generates the appropriate
commands for synchronizing host-visible memory with device-local memory and zeros
the host-visible part if needed. Later, this task is extended to set up shaders and

23

Figure 4.4: Visualization of task dependencies when pipelining the block solver setup.

commands for applying the damping factor to the diagonals of Hpp and Hll (discussed
in Chapter 5).

• Allocate 2: GPU memory for H−1
ll and HplH

−1
ll is allocated in this task.

• Record Schur 1: The shaders and commands for the inversion of the diagonal blocks
in Hll are prepared in this task. For explicit Schur elimination, two multiplication
operations, one for computing HplH

−1
ll and another for computing bSchur are also

recorded.

• Record Schur 2: For explicit Schur elimination, we generate work queues and set
up appropriate shaders for the multiplication between HplH

−1
ll and HT

pl. This is an
expensive process, especially for larger BA problems, and we will explore further

24

optimizations in Chapter 5, along with less costly implicit methods. For implicit Schur
elimination, we record matrix-vector multiplications for computing bSchur.

• Record Landmark Update: This task is responsible for setting up the multiplica-
tion operations necessary for computing the landmark update ∆xl, corresponding to
steps 9-10 in Algorithm 1.

• Solver Setup: Any steps necessary for setting up the linear solver are performed
by this task. While we do not require any special set up for direct solving meth-
ods (i.e. LDLT, LLT), we record matrix vector operations for solvers based on the
preconditioned conjugate gradients method (discussed in Chapter 5).

• Reserve HSchur: This task generates the structure for HSchur based on the BA
graph. It also simultaneously sorts the row and column indices while allocating GPU
memory in parallel. The sorted indices are used for outputting the upper triangular of
HSchur in compressed sparse column (CSC) format when solving for ∆xp using direct
methods.

• Init HSchur: For explicit Schur elimination, this task is responsible for performing
HSchur = Hpp and records synchronization operations for making values of HSchur

visible to the host for the linear solver step.

• Map Blocks: Active vertices and edges in the graph are mapped to host-visible
memory for Hpp, Hpl, and Hll. This allows g2o to compute Hessian blocks directly
in memory that is either visible to the GPU or memory that supports transfers into
device-local memory, depending on the memory allocation scheme which is used.

4.3.2 Work Queue Generation

Pairs

Queue Metadata
Work Queue Representation

0
2
0

2
2
4

4
1
0

5
1
4

0
0

4
4

14
0

18
4

8
8

22
8

start
size
destination

left
right

Figure 4.5: How work queues are stored in GPU-accessible arrays.

Following the work queue example in Figure 4.3, we show how work queues are con-
cretely represented in Figure 4.5. Each pair in the Pairs array represents a task, consisting
of the locations of the left and right block matrices which are to be multiplied together.

25

These locations are offsets into their corresponding value arrays. The Queue Metadata ar-
ray contains information needed to process all the tasks in a work queue. The start field
corresponds to the location of the first pair in the pairs array, while size is the number of
pairs in the queue. The destination field is the offset of the target block matrix in the array
of values for the destination matrix.

The work queue generation algorithm varies for each of the operations discussed in
Section 4.3.3. A general description is given in Algorithm 2. In this description, we denote
the left matrix as matrix A, the right matrix as matrix B, and the destination matrix as
matrix C. We only generate work queues for blocks in matrix C that have been reserved.
This is an important optimization inherited from g2o since it only reserves upper triangular
blocks for HSchur due to its symmetry. For Algorithm 2, we also assume that A and B

have compatible dimensions, but this must be checked at runtime. The algorithm iterates
through each of the reserved blocks in C and generates the list of block pairs for each unique
combination of block dimensions. This is represented with the blockPairs map, where each
key is four integers representing the left and right block dimensions. The pairs are written
into a list of pairs for the entire operation (line 9 of Algorithm 2) and the corresponding
metadata is written into a map of lists, where each list is for a different combination of block
dimensions (line 8). For matrix sizes observed in local bundle adjustment (Figure 4.1), the
overhead of work queue construction is low.

The process for generating and binning work queue pairs is described in Algorithm 3.
As before, each list of pairs in the blockPairs map corresponds to a single work queue.
The algorithm traverses a sparse block-row of matrix A, where the block-row matches the
block-row of block c. Each of these blocks is designated as a. It then checks for the existence
of a block b in matrix B, where the block-row matches the block-column of a, and the block-
column matches that of c. If a match is found, the offsets of a and b are appended to the
list of pairs for the corresponding block dimensions.

Next, Algorithm 4 shows how we generate GPU commands to execute work queues.
We use an object m to represent the sequence of operations that will be recorded. This
serves as an abstraction for a Vulkan command buffer and handles compute shader creation
as well. For each pair of block dimensions, the algorithm copies the queue metadata into
the gmetadata buffer and records a single shader dispatch along with a barrier operation.
The pairs for all block dimensions are already stored contiguously in correct order due to
Algorithm 2, and thus can be copied into gpairs with a single call to std::memcpy.

4.3.3 Linear Algebra Operations

In order to implement Algorithm 1, we develop techniques for performing operations involv-
ing matrices and vectors using compute shaders. These operations include matrix-matrix
multiplications, matrix-vector and vector-matrix multiplications, and block diagonal matrix
inversion. These are described in further detail next.

26

Algorithm 2 Work Queue Generation
Input: A, B, C
Output: Map of lists metadata and pairs list
1: for all block c in matrix C do
2: blockP airs← getBlockPairs(c)
3: for all (dims, dimP airs) ∈ blockP airs do ▷ Iterate over keys and values
4: start← pairs.size() ▷ Set offset of first pair in work queue
5: size← dimP airs.size() ▷ Set number of tasks in work queue
6: destination← c.offset ▷ Set write location
7: md←Metadata(start, size, destination)
8: metadata[dims].append(md)
9: pairs.concatenate(dimP airs)

10: end for
11: end for
12: return metadata, pairs

Algorithm 3 Pair Binning
Input: Sparse block matrices A, B, and block c
Output: Map of lists of pairs blockP airs

1: for each filled-in block a ∈ A.blocksAtRow(c.blockRow) do
2: b← B.blockAt(a.blockColumn, c.blockColumn)
3: if b ̸= nil then
4: p← Pair(a.offset, b.offset)
5: blockP airs[(a.dim, b.dim)].append(p)
6: end if
7: end for
8: return blockP airs

Matrix-Matrix Multiplication: The block solver primarily relies on two types of matrix
multiplication. The first is multiplication, where the matrix on the right side is transposed.
For step 6 of Algorithm 1, rather than compute and store HT

pl, the implementation treats
the block-rows of the right matrix as block-columns when constructing work queues. In
order for this to work, the behaviour of the multiplication shader program is altered using
specialization constants. First, the right-hand side block matrix dimensions (the number
of rows and columns) are swapped. Next, we set a boolean constant which indicates that
the right blocks are transposed. This boolean parameter is transposeRight in Algorithm 4.
It modifies the behaviour of the shader to read the right-hand side block matrices as if
they were stored in a row-major order, instead of the default column-major order used by
Eigen. The difference between each memory layout is shown in Figure 4.6. The second type
of matrix-matrix multiplication we implement is for the case where one matrix is block
diagonal. We use this for computing HplH

−1
ll . Although storing another Hpl-sized matrix

is expensive, we do this to avoid recomputing the same blocks in HplH
−1
ll when computing

HplH
−1
ll HT

pl. Work queue generation is simplified for block diagonal matrices. Due to the
matrix structure, we can omit queue metadata (Figure 4.5) entirely as an optimization, and
only generate left and right pairs, since there is only one block per block-row or block-column
in a block diagonal matrix.

27

Algorithm 4 Recording Work Queue Dispatch
Input: A, B, C, metadata, pairs, add, transposeRight
Output: Multiplication object m

1: Create GPU buffers gmetadata, gpairs
2: Copy pairs into gpairs
3: Initialize m with gmetadata, gpairs, A.buffer, B.buffer, and C.buffer
4: writeLoc = 0
5: for all (dims, metaList) ∈ metadata do
6: firstLoc = writeLoc
7: Copy metaList into gmetadata at writeLoc
8: n← metaList.size()
9: writeLoc← writeLoc + n

10: m.recordShader(dims, firstLoc, n, add, transposeRight)
11: m.insertBarrier()
12: end for
13: return m

Figure 4.6: How column major and row major blocks are laid out in memory.

Matrix-Vector and Vector-Matrix Multiplication: As per Algorithm 1, the block
solver must compute products between matrices and vectors. Matrix-vector multiplication
uses the same shaders as matrix-matrix multiplication. The primary change in adapting
these shaders for vectors is in how work queues are generated. Since the vectors are dense,
it is necessary to manually calculate the read and write offsets of the source and destination
vectors respectively. Another variant used by the block solver is vector-matrix multipli-
cation, where the vector is on the left-side of the multiplication. This is implemented for
calculating HT

pl∆xp, which we compute as (∆xT
p Hpl)T , following the design of g2o. Trans-

posing the input and output vectors is free, since the memory layouts do not change.
Block Diagonal Matrix Inversion: We invert sparse block diagonal matrices, such as Hll

(step 4 of Algorithm 1) by inverting each block in parallel. We do this for block matrix sizes
up to 4 × 4 using built-in GLSL functions. This is sufficient, since visual bundle adjustment
uses map points with three parameters for landmark variables, resulting in 3 × 3 Hessian
blocks in Hll. The block inversion shader uses specialization constants to specify the block
size, which can be used to optimize away unused functions for other block sizes at the time
of pipeline creation. The inversion shader requires offsets to access each block. Unlike the
multiplication shaders, which compute each element of a destination block independently,
each shader invocation in the inversion shader is responsible for loading and inverting an
entire block.

28

4.3.4 Matrix Multiplication Shader

As previously mentioned, specialized compute shaders are dispatched to carry out block-
by-block matrix multiplications on a GPU. Each work queue in a batch can be processed
independently by a different workgroup. Although tasks in a work queue are processed
one by one, the shader implementation further divides the workload of each task over
the invocations in a workgroup. Therefore, each element of the destination matrix can be
calculated in parallel. A visual description of this is provided in Figure 4.7. For more details
on the compute shader execution model, please refer to Section 2.2.

Subgroup 0

element = gl_LocalInvocationID.x
row = element % 6
column = element / 6

6x6 Matrix

Subgroup 1

gl_SubgroupSize = 32

Figure 4.7: How work is distributed in the matrix multiplication shader for a single work-
group. The 6×6 matrix shown corresponds to the destination matrix. In this example, each
subgroup consists of 32 invocations. The unshaded invocations are inactive.

The process of initializing a shader can be relatively expensive, since the pre-processed
bytecode (discussed in Section 2.2) undergoes additional processing by the Vulkan imple-
mentation at runtime. This cost can increase due to the use of additional specialization
constants. As mentioned previously, the multiplication shader, as well as other shaders,
use specialization constants to encode the dimensions of block matrices into the program
itself and modify behaviour through static conditionals. To speed up this process, we mod-
ify Kompute to use a single pipeline cache, so that the results of pipeline creation can be
reused [16].

Since the values of each block matrix are stored compactly together for cache-efficiency,
blocks are not loaded into shared memory. In our testing, we observed that storing these
blocks in shared memory, and synchronizing access with a barrier across the workgroup,
slowed down multiplications for small-sized local-inertial BA matrices. For these reasons,
our design does not use shared memory.

There are inefficiencies with this design. The first is that tasks in a work queue are
processed in serial by a workgroup. However, it is only when we read from or write to an
element in the destination block that we must worry about data races. The block-by-block
multiplications themselves can be executed in parallel. Another inefficiency is that many
invocations are left inactive in the second subgroup, due to the dimensions of the destination
matrix. An earlier design used subgroup operations to distribute different pairs of a work

29

queue across invocations in a subgroup, but was also abandoned due to poor performance.
We later revise how blocks are multiplied in Chapter 5.

4.3.5 Matrix Construction

Sparse block matrices must undergo multiple initialization steps before use. We optimize for
bundle adjustment workloads under the assumption that the structure of the graph is static,
meaning that filled-in blocks of H are not added or removed after initial setup for a bundle
adjustment function call. This is tied to the allocation model we use, since creating buffers
and allocating backing memory is expensive even when using the suballocation strategy
described in Section 4.2. As a consequence, the BA graph must be processed twice. The
first pass is for reserving blocks, while the second pass is for mapping blocks to the graph.
These two passes are also separated by an allocation stage, in which storage is acquired for
the non-zero values in each matrix. As in the g2o implementation, the dimensional offsets
of the block-rows and block-columns must be initialized using the sizes of the sorted pose
and landmark variables.

Reserving block matrices in the first pass involves updating the tracking information
stored in the sparse block matrix. Reserving a block creates a record in the matrix of the
block’s dimensions and offset (shown in Figure 4.2). It is also possible to determine the
dimensions of a block without this information, by taking the difference between adjacent
block-columns and block-row offsets, but we cache these for convenience. After updating the
map, we store two integer indices, one for the corresponding block-row and corresponding
block-column. Lastly, we update the total number of values in the overall matrix.

Buffer allocation is performed for all values in a sparse block matrix at once. The size
of the buffer is determined using the total number of non-zeros computed when reserving
blocks. Depending on the platform, we allocate memory differently. One option is a single-
buffer scheme, intended for platforms with integrated GPUs. For platforms with discrete
GPUs, we use a two-buffer scheme. These are described in further detail in Section 4.3.6.

The second pass through the BA graph is responsible for mapping memory for Hessian
blocks back to their corresponding vertices and edges. In the original g2o block solver, this is
not a separate pass, since memory can be allocated for each block in the matrix on-demand.
To map a block, we look up the block offset and return a pointer to the memory-mapped
buffer at that offset. This pointer is stored and used by g2o to construct an Eigen::Map

which can be accessed to update values in the matrix directly.
The underlying reason why this second pass is necessary is that all non-generic compu-

tations, such as the application of the parameter update, as well as the error and Jacobian
matrix calculations, are still performed by the host. This design is what allows the revised
block solver to function as a drop-in replacement for different types of bundle adjustment
problems. Still, these computations can benefit from g2o’s existing parallelization scheme,
which uses OpenMP.

30

4.3.6 Memory Allocation

For systems such as the Jetson Xavier NX, on which the GPU shares memory with the
host, the block solver is configured to exclusively use host-visible, host-coherent memory.
Therefore, on these systems, it is not necessary for the block solver to flush or invalidate
mapped memory, in order to maintain up-to-date visibility of values. Moreover, since all
buffers are backed by host-visible memory, explicit data transfers for device access are
eliminated completely.

For systems with discrete GPUs, on which dedicated memory is available in large
amounts, we use a two-buffer scheme for shader storage buffer objects. We extend the
functionality provided by Kompute [46] to introduce a new tensor type, DeviceCached,
which is based on the existing Device tensor type. Here, tensor refers to a Kompute data
structure which serves as a wrapper around a Vulkan buffer and its allocated memory. The
first buffer is backed by host-visible, host-cached memory and is used for calculations by the
host. While this type of memory needs special handling to ensure the visibility of written
values, it is much faster to use for host operations, such as for building the linear system
(computing H and b), than host-coherent memory. The second buffer is allocated with
device-local memory for efficient device access [16]. This allocation strategy assumes that
this memory is not host-visible, although in practice this may not always be the case. Using
this two-buffer strategy adds additional overhead, since it becomes necessary to transfer
values between the host-visible buffer and the device-local buffer for each LMA iteration.
Even with this overhead, our evaluation on the desktop machine in Section 4.4 shows that
this strategy performs well.

Matrices such as H−1
ll store intermediate values that do not need to be accessed by the

host. For such values, we use the Storage tensor type, which creates a single buffer using
one of the GPU-accessible memory types.

4.3.7 Linear Solver

As mentioned in Section 4.2, we use Eigen sparse LDLT decomposition to solve for ∆xp

on the CPU, as in the original implementation. This introduces additional overhead, since
HSchur must first be copied back to the CPU, and then converted into an upper triangular
CSC matrix. There are a few reasons as to why this step is still executed on a CPU.
Firstly, the dimensions of HSchur are constrained, either explicitly by the keyframe limit
for local-inertial bundle adjustment, or implicitly due to the number of co-visible keyframes
available. This results in relatively little time spent on the linear solver step, as shown in
Section 4.4, thus implementing GPU acceleration may yield little benefit. For larger BA
problems, we implement preconditioned conjugate gradients instead, in Chapter 5, which
allows for memory-efficient implicit evaluation [3, 15, 29]. The development of a custom
LDLT solver is left as an area for future work, as discussed in Chapter 6.

31

4.4 Evaluation

Figure 4.8: χ2 error when we run the original CPU version and our GPU version of block
solver on the Venice BAL dataset for ten iterations. The behaviours match each other’s.
Figure from Gopinath, Dantu, and Ko [11] © 2023 IEEE.

4.4.1 Experimental setup

We implement our techniques as a drop-in replacement block solver for g2o and integrate
our modifications into ORB-SLAM3. We evaluate the runtime performance of the original
CPU block solver (from g2o) and the GPU-enabled block solver (our own) and measure
GPU memory usage. Vectorization is enabled and OpenMP is disabled for both solvers,
which use double-precision. We run experiments on a desktop machine with an 8-core AMD
Ryzen 5800X processor operating at 3.8 GHz and 32 GB of RAM, using an NVIDIA RTX
3080. We also use an NVIDIA Jetson Xavier NX board with a 6-core ARM Carmel CPU
running in the 15W, 6-core power mode at 1.4 GHz, with 8 GB of RAM, and a Volta GPU.

We process a mix of indoor and outdoor sequences from EuRoC and TUM-VI datasets
using ORB-SLAM3 in the stereo-inertial configuration. To demonstrate that our implemen-
tation performs correctly, we compare the reduction in error for a BAL dataset in Figure 4.8
and observe matching behaviour.

4.4.2 Block Solver Performance

There is consistent performance improvement across all the sequences on both machines
with our GPU solver. On the desktop, our method achieves a speedup of 5.08× for the
Schur complement step before the linear solver step on V201, and a 2.87× speedup on the

32

Sequence CPU Time (ms) GPU Time (ms) Avg Diff. (%)
MH01 52.66± 21.52 35.97± 15.92 -31.69
MH02 45.77± 18.69 32.56± 12.90 -28.86
MH03 55.69± 19.51 40.53± 14.10 -27.22
MH04 50.99± 13.92 37.40± 9.47 -26.66
MH05 52.03± 13.12 37.17± 9.31 -28.56

V101 61.49± 13.77 43.22± 9.40 -29.72
V102 55.74± 15.92 41.03± 12.70 -26.39
V103 49.75± 14.07 34.18± 9.27 -31.30
V201 53.85± 13.32 35.65± 8.30 -33.79
V202 54.59± 12.84 38.20± 9.84 -30.03
V203 35.07± 11.79 25.97± 8.51 -25.96

outdoors1 35.08± 19.05 27.55± 12.82 -21.47
outdoors2 41.74± 22.07 32.03± 14.78 -23.27
outdoors3 46.37± 16.56 37.20± 11.98 -19.78
outdoors4 38.93± 23.07 29.08± 15.08 -25.30
outdoors5 58.15± 17.99 45.39± 14.34 -21.95
outdoors6 51.69± 16.70 42.55± 14.75 -17.67
outdoors7 43.07± 14.28 34.17± 10.73 -20.66

room1 75.85± 18.29 60.47± 17.04 -20.28
room2 70.25± 19.70 56.97± 17.49 -18.90
room3 75.91± 18.00 63.56± 18.36 -16.27
room4 68.40± 18.35 52.25± 15.30 -23.61
room5 75.65± 15.87 61.08± 15.51 -19.25
room6 73.85± 17.20 54.79± 15.04 -25.81

Table 4.1: Average local BA run times (in ms) for ORB-SLAM3 on the desktop machine.
From Gopinath, Dantu, and Ko [11] © 2023 IEEE.

Jetson (Figure 4.9). Likewise, there is a significant improvement for the landmark update
calculation, while the linear solver step performs similarly despite the readback overhead
for GPU memory.

4.4.3 Overall Performance of Local Bundle Adjustment

Table 4.1 and Table 4.2 show the running times of the local-inertial bundle adjustment
averaged over five trials. Results show that our GPU solver consistently reduces the aver-
age local BA execution time for both platforms. As the workload for local BA is partly
determined by visible landmarks and co-visible keyframes, there are large variations in each
trial for both solvers. The average performance improvement in local BA (decrease in time)
using our GPU solver ranges from 16.27% to 33.79% on the desktop, and 13.81% to 26.68%
on the Jetson Xavier NX. Figure 4.10 shows an averaged breakdown of local-inertial bundle
adjustment for EuRoC V201. The block solver performance improvement is reflected in the
segment for optimization.

33

Sequence CPU Time (ms) GPU Time (ms) Avg Diff. (%)
MH01 290.11± 90.14 218.14± 71.84 -24.81
MH02 266.54± 87.47 198.80± 64.99 -25.41
MH03 293.20± 82.64 229.28± 62.79 -21.80
MH04 259.37± 63.69 201.51± 46.47 -22.31
MH05 265.93± 58.42 204.59± 44.35 -23.07

V101 319.78± 67.03 242.61± 50.34 -24.13
V102 279.96± 76.11 223.42± 60.53 -20.20
V103 232.96± 60.27 184.85± 42.39 -20.65
V201 270.85± 54.41 198.60± 36.17 -26.68
V202 263.80± 57.52 209.39± 46.17 -20.63
V203 156.71± 67.21 132.58± 49.78 -15.40

outdoors1 174.06± 79.79 139.35± 53.19 -19.94
outdoors2 194.50± 96.58 156.31± 66.33 -19.63
outdoors3 194.88± 87.45 159.08± 59.54 -18.37
outdoors4 189.94± 95.33 150.47± 66.36 -20.78
outdoors5 268.61± 93.56 214.33± 67.61 -20.21
outdoors6 227.14± 66.35 188.45± 50.36 -17.03
outdoors7 210.96± 65.75 169.21± 45.45 -19.79

room1 349.89± 83.33 288.99± 70.97 -17.40
room2 351.81± 98.73 284.01± 84.96 -19.27
room3 321.51± 73.31 277.10± 69.85 -13.81
room4 314.02± 77.29 254.69± 67.64 -18.89
room5 342.29± 76.55 284.34± 64.29 -16.93
room6 355.83± 85.74 284.19± 68.85 -20.13

Table 4.2: Average local BA run times (in ms) for ORB-SLAM3 on the Jetson Xavier NX.
From Gopinath, Dantu, and Ko [11] © 2023 IEEE.

4.4.4 GPU Memory Usage

Figure 4.11 shows the average amount of memory occupied by GPU buffer allocations for
local-inertial BA, totalled over all memory heaps. Memory usage is larger on the desktop
machine due to the use of device-local memory. On both machines, TUM-VI outdoors
sequences use the least amount of memory, while EuRoC sequences use the most, possibly
due to differences in co-visible keyframes and the sparsity of features. We observe that the
largest memory usage is for the V101 sequence and the smallest for outdoors1.

4.4.5 Effect of Memory Allocation Strategies

As mentioned in Section 4.2, we have discovered that the GPU memory allocation method
influences the performance of bundle adjustment, especially for longer SLAM sequences.
Figure 4.12 shows the difference between on-demand allocation (allocating memory for a
buffer as needed) and TLSF allocation using VMA (suballocating memory from an exist-
ing block). As shown, on-demand allocation exhibits performance degradation over longer
sequences. The reason is that, in the first iteration of each optimization, the block solver
must wait increasingly longer for allocations to finish. Suballocating memory avoids this
problem, which leads to better performance.

34

Figure 4.9: Average execution time of the main solving steps for an iteration of the block
solver for the EuRoC V201 sequence. Figure from Gopinath, Dantu, and Ko [11] © 2023
IEEE.

4.4.6 Threats to Validity

The findings of our research are largely based on our analysis of two datasets, EuRoC and
TUM-VI, as well as our implementation based on g2o and ORB-SLAM3. Though we have
reasons to believe that our results are generally applicable to other platforms and scenarios
(see our motivation in Section 4.2), they need to be interpreted in the context laid out in
this paper.

For local visual-only BA problems in which the sizes of the pose variables are uniform,
fixed-size matrices are used, which may allow the CPU block solver to benefit more from
vectorization. Bottlenecks which must be resolved for global BA include work queue gen-
eration, building the linear system, and the linear solver step. For large problems, implicit
iterative methods [15, 29] have been shown to be more suitable for GPU execution.

35

Figure 4.10: A breakdown of the local-inertial bundle adjustment call for a run of EuRoC
V201 using each solver on the Xavier NX. Figure from Gopinath, Dantu, and Ko [11] ©
2023 IEEE.

(a) Desktop (b) Jetson

Figure 4.11: Average memory usage of buffer allocations (total across all heaps) as reported
by VulkanMemoryAllocator for various sequences over five runs. The memory is suballo-
cated from larger blocks which are reserved during initialization. The allocator reserves
approximately 100.66 MB on the desktop system and 33.55 MB on the Jetson. Figure from
Gopinath, Dantu, and Ko [11] © 2023 IEEE.

36

Figure 4.12: The impact of the GPU memory allocation method on the block solver per-
formance (desktop), for local-inertial BA on the TUM-VI outdoors6 sequence (first 1000
seconds). Creating on-demand allocations for each buffer as needed results in performance
degradation over longer sequences. Using VMA to suballocate memory from larger blocks
avoids this overhead. Figure from Gopinath, Dantu, and Ko [11] © 2023 IEEE.

37

Chapter 5

GPU Acceleration for Global
Bundle Adjustment

5.1 Introduction

We now turn our attention to how we can extend our techniques to accelerate global bundle
adjustment for visual-inertial SLAM. Specifically, we focus on improving the performance
of our implementation for visual BAL problems [3] and also for full-inertial BA workloads
generated by ORB-SLAM3 [1]. As we saw in Chapter 4, it is possible to execute some
block solver calculations on a GPU and obtain a moderate speedup for local-inertial bundle
adjustment problems, which involve operations on small to medium-sized sparse matrices.
In this chapter, we modify our approach to improve the scalability of the block solver
and handle larger matrices generated by full-map optimization. We show the sizes of such
matrices, generated by executing indoor and outdoor EuRoC and TUM-VI sequences with
ORB-SLAM3 in Figure 5.1. These larger matrices pose a different set of challenges which
impact performance, as we describe next.
Work Queue Generation Time: We have seen for small workloads that the amount of
time needed to generate work queues, especially for the multiplication between HplH

−1
ll and

HT
pl, is not a major bottleneck due to the pipelining of the setup as described in Chapter 4.

This does not hold for large bundle adjustment problems, since the upper bound for the
number of work queues which must be generated for matrix-matrix multiplication grows
non-linearly when the dimensions of the destination matrix increase. Therefore, we consider
three options. First, we can reduce the amount of time spent on work queue generation,
mainly for computing HplH

−1
ll HT

pl, by avoiding this exact operation entirely. We can achieve
this by switching to implicit methods instead, when using an iterative linear solver. Alterna-
tively, we can try to avoid work queue generation for some operations and look for blocks to
multiply in the multiplication shader itself. Lastly, we consider improving how we generate
work queues by rewriting the generation algorithm to take advantage of GPU hardware. We
implement and evaluate all three of these methods, each of which has different tradeoffs.

38

Figure 5.1: The sizes and number of non-zeros of the matrices generated during full-inertial
bundle adjustment in ORB-SLAM3. Unlike local-inertial bundle adjustment, the number of
keyframes used to construct the BA graph is not capped.

Linear Solver: As we will see, the linear solver step, which uses LDLT factorization in
ORB-SLAM3, is the most computationally expensive step for large bundle adjustment prob-
lems due to the increased dimensions of HSchur, which grow beyond 2000 rows and columns
as shown in Figure 5.1. This is a departure from local visual-inertial bundle adjustment,
for which computing the reduced system was the most expensive part of the main block
solver steps. Therefore, we examine iterative methods based on conjugate gradients, which
have been successfully applied to large-scale bundle adjustment problems using GPUs in the
past [15, 29], and investigate their applicability to global visual-inertial bundle adjustment
for on-device SLAM.
Memory Usage: The methods we developed for local bundle adjustment problems were
designed for workloads consisting of small to medium-sized matrices. It becomes apparent,
however, that these methods can become costly when the sizes of matrices such as Hpl

increase, since we make extra allocations to store the results of intermediate computations
including HplH

−1
ll . Iterative methods allow us to forgo computing and storing the Schur

39

complement, lowering memory usage. This can affect which preconditioners are readily
available, and therefore have consequences for the convergence. Thus, we develop methods
to work around these limitations efficiently using shaders that take advantage of shared
memory.

We will now take a look at how we can address these challenges in more detail. To
evaluate our methods, we use BAL datasets and maps generated by processing EuRoC and
TUM-VI sequences with ORB-SLAM3.

5.2 Work Queue Generation

As mentioned, the work queue generation method developed and described in Chapter 4
scales poorly for multiplications between large matrices. While it is possible to avoid work
queue generation for computing HSchur by using implicit methods (Section 5.4), we present
two alternative methods to address this problem, for when matrix construction cannot be
avoided.

5.2.1 Dynamic Matrix Multiplication Based on the Block Compressed
Sparse Row Representation

Our first approach uses a new multiplication shader which dynamically determines which
blocks should be multiplied together, each time that it is executed. This involves making the
indices of filled-in blocks in each matrix available to the shader. We use a representation
similar to block compressed sparse row (BCSR) [52]. An example of BCSR is shown in
Figure 5.2. In the figure, the difference between consecutive values in the row pointers array
corresponds to the number of filled-in blocks in a block-row. For example, the first block-row
has 2 − 0 = 2 blocks, while the second has 3 − 2 = 1 block. The column indices array stores
the block-column of each block, sorted in order for each block-row. A limitation is that the
block sizes are uniform across the entire matrix. For this reason, it is not suitable for storing
matrices such as Hpp, since pose variables may have a varying number of parameters for
visual-inertial bundle adjustment.

Figure 5.2: An example of a sparse block matrix stored in BCSR format, where values for
each block are stored in column-major order. The block sizes are uniform.

40

We now describe the key details of our dynamic matrix multiplication algorithm, which
reuse the existing row and column block indices stored by each sparse block matrix. These
indices are populated at the time that each block in the matrix is reserved. They are not
compressed. Separate vectors are stored for the indices of the filled-in blocks, for each block-
row and block-column.

First, we prepare the indices in a format suitable for in-shader processing. For execution
on the GPU, we require these indices to be (i) sorted and (ii) grouped together by the block
dimensions. Therefore, we first copy the existing indices, sort them, and then simultane-
ously convert these indices into a compressed format (either sparse-row or sparse-column
depending on the operation) while also storing them separately for each block size. In this
scheme, the values array from BCSR is replaced with an array containing the offsets of each
same-sized block, into the non-zeros buffer for the entire matrix. Then, these compressed
indices are uploaded into GPU buffers. This process is shown in Figure 5.3, where matrix
A corresponds to the left operand, and matrix B corresponds to the right operand.

Figure 5.3: How the indices for each matrix are processed. When the right matrix is trans-
posed, column-indices may be used instead.

Using these transformed indices, we record dispatch commands for the dynamic mul-
tiplication shader, for valid combinations of left and right block matrix dimensions. This
shader is similar to the work queue-based multiplication shader in Chapter 4 except that it
simply traverses the indices of both matrices and multiplies blocks when there is a match.
Since the indices are separated for different block sizes, the dimensions do not need to be
checked in the shader, and are encoded as specialization constants as before. An additional
array is used to store the block-row, block-column, and offset of each block in the destination
matrix. This information is used to determine which destination block is being computed
by the current workgroup, and which indices should be accessed.

41

5.2.2 Parallel Work Queue Generation

We now describe our alternative GPU work queue generation method. First, we observe that
work queues can be generated independently for each destination block and combination
of block dimensions. We could rewrite the existing algorithms from Chapter 4 to take
advantage of multiple CPU threads, but a better option is to offload this work onto the
numerous cores found on modern GPUs. An advantage of this approach is that work queues
computed in GPU memory do not need to be transferred from the host. Therefore, we look
at how we can achieve work queue generation using compute shaders.

Work queues can be generated in-shader by repurposing the bufferized indices which
were generated for dynamic matrix multiplication. Since these indices are already grouped
together by block dimensions, grouping the work queues by pairs of block dimensions is
simplified. This method uses two new shaders. The first shader is used for estimation and
the second shader is used for construction. Each is described next.

The estimation shader traverses the bufferized indices for each destination block, and
determines the exact sizes of the corresponding work queues. The dispatch is organized so
that each shader invocation handles one work queue. An invocation increments the number
of items for a single work queue when it finds a pair of blocks with matching indices. The
number of work queues, and the total number of all items across all work queues, for one
pair of block dimensions, are recorded in a buffer representing an allocator. To do this,
we use subgroup reductions to sum up the total number of non-empty work queues and
items. Then for each subgroup, an elected invocation adds the summed values to the buffer
atomically. These sizes are read back on the host and used to allocate buffers for the work
queues which are to be written.

The construction shader writes out the work queue metadata and pairs into the newly
allocated buffers. The sizes of each work queue are not stored by the previous step and must
be determined again by traversing the indices. Then space is suballocated from the buffers
at two levels. As before, subgroup-level operations are used to determine the total number
of work queues and pairs handled by a subgroup, and the allocator buffer, which has been
reset, is updated atomically. The values returned by these atomic operations serve as the
starting offsets into the metadata and pairs buffers and are broadcasted to all invocations
in the current subgroup. Next, each active invocation in the subgroup (which handles a
non-empty work queue) determines its own write offsets using an exclusive scan (via the
subgroupExclusiveAdd function). This exclusive scan returns the sum of the number of
items for active invocations with a lower subgroup invocation ID than the caller’s [20].
Lastly, the work queue data is written out to both buffers at these offsets, requiring another
traversal of the indices.

After constructing these work queues, we can use our existing work queue multiplica-
tion shader to carry out the operation. The main change is that when recording shader

42

dispatches, the starting offset into the queue metadata buffer is always zero, since we no
longer pack work queues for different block dimensions into the same buffer.

Original In-shader Lookup GPU Work Queue Generation

Setup 28.834 0.823 2.017
First Multiplication 0.229 1.704 0.185

Table 5.1: The timings (in seconds) for setting up the large multiplication operation for
computing HSchur and carrying it out for the Final-4585 dataset from BAL [3], averaged
over ten runs.

As shown in Table 5.1, although GPU work queue generation takes longer to set up
than dynamic matrix multiplication, the multiplication operation becomes much faster for
large bundle adjustment problems, since it avoids the overhead of looking up indices and
CPU-GPU work queue transfers. Therefore, it is the final method used for preparing the
multiplication operation between HplH

−1
ll and HT

pl when computing HSchur.

5.3 Linear Solver

With GPU work queue generation, our block solver can now efficiently compute the Schur
complement in order to obtain a reduced system, but as discussed in Section 5.7, solving this
reduced system can become the most expensive step for global bundle adjustment problems.
To restate the problem, we require an optimized linear solver to find the solution of the
reduced linear system

HSchur∆xp = bSchur

where HSchur is a symmetric semi-positive definite matrix. That is, given a vector v ∈ Rn,
vT HSchurv ≥ 0. We have seen that for local bundle adjustment, this matrix can be relatively
small, in comparison to the entire matrix H. However, for global bundle adjustment and
similar problems, HSchur may be much larger, as shown in Figure 5.1, thereby increasing
the computation time.

Bundle adjustment implementations often employ direct methods for solving symmetric
systems [2]. The main advantage of direct methods is that they allow for the solution to
be computed with low error. Direct methods require the matrix of the linear system to be
computed and stored in memory. Common choices are Cholesky (LLT) decomposition and
square-root free Cholesky (LDLT) decomposition.

There are several challenges to consider when using methods based on Cholesky de-
composition. To begin with, HSchur must be converted into a compatible format for the
solver. In the case of the existing implementation, it must be converted into the compressed
sparse column (CSC) format. We must also consider methods to minimize fill-in, which is
the increase in the number of non-zeros when decomposing the matrix. This is commonly
achieved with a variable reordering method, such as approximate minimum degree [2, 12].

43

Another challenge is that sparse Cholesky methods are difficult to parallelize, especially for
GPUs, due to the dependencies between sub-problems [53].

Iterative methods present an alternative to direct approaches. They can be used to
compute inexact solutions very quickly [3]. A well-known, memory efficient choice is pre-
conditioned conjugate gradients (PCG) [3, 5]. A simplified description of PCG is given in
Algorithm 5, primarily based on the implementation in g2o [5, 54]. In the algorithm, t is the
tolerance and maxIter refers to the maximum number of iterations before the algorithm is
terminated.

Agarwal et al. [3] previously demonstrated that PCG can be applied to large visual
bundle adjustment problems, without explicitly constructing HSchur. This is achieved by
evaluating matrix-vector products implicitly. In fact, it can be observed in Algorithm 5 that
no matrix-matrix products are computed. Thus, given a vector v⃗, we can implicitly evaluate
HSchurv⃗ as

HSchurv⃗ = Hppv⃗ − Hpl(H−1
ll (HT

plv⃗)) (5.1)

In practice, implicit evaluation may not yield the same result due to floating point
round-off, but it is sufficient for our purposes.

These properties, along with the simplicity of the algorithm, make PCG relatively
straightforward to parallelize and execute on GPUs [15, 29]. Another advantage of PCG
is that it can directly operate on our existing block representation, improving cache effi-
ciency. Therefore, we choose to implement PCG for our linear solver, described in the next
section.

5.4 PCG Implementation

We now describe key parts of our PCG implementation, as well as additional relevant
changes. We implement Algorithm 5 using compute shaders. Our solver supports both ex-
plicit and implicit methods for Schur elimination, as given by Equation 2.1 and Equation 5.1
respectively. Operations inside the main loop, excluding those for initialization, are recorded
into a single command buffer, in order to minimize the cost from queue submission.

5.4.1 Preconditioner

PCG uses a preconditioner to improve the condition number of a linear system [26]. Us-
ing a preconditioner is necessary to improve the convergence across PCG iterations, and
therefore improve the quality of the computed solution. We mainly consider block-Jacobi
preconditioners [3], since they are easy to generate and invert. When PCG is invoked on an
explicit matrix representation, we use the block diagonal of that matrix. For the implicit
method, we consider both the block diagonal of the Hpp matrix which is already available
to us, and also the block diagonal of HSchur [3], which can be calculated relatively cheaply

44

Algorithm 5 Preconditioned Conjugate Gradients
Input: A, b⃗, maxIter, t
Output: x⃗

1: x⃗, q⃗, s⃗← 0⃗
2: r⃗ ← b⃗
3: M ←blockDiagonal(A) ▷ Block-Jacobi preconditioner matrix
4: J ←M−1

5: d⃗← Jr⃗
6: dn ← r⃗ · d⃗
7: d0 ← tdn

8: if absT ol then ▷ Initially absT ol← T rue
9: if res > 0 and res > d0 then ▷ Initially res← −1

10: d0 ← res
11: end if
12: end if
13: for all i← 1 to maxIter do
14: if dn ≤ d0 then
15: return x⃗
16: end if
17: q⃗ ← Ad⃗
18: α = dn/(d⃗ · q⃗)
19: x⃗← x⃗ + αd⃗
20: r⃗ ← r⃗ − αq⃗
21: s⃗← Jr⃗
22: dold = dn

23: dn = r⃗ · s⃗
24: β = dn/dold

25: d⃗← s⃗ + βd⃗
26: end for
27: res← 0.5dn ▷ Preserved for next call
28: return x⃗

without separately storing HplH
−1
ll . The matrices of the block diagonal are inverted block-

by-block on the host, since GLSL only supports built-in matrix types up to 4 × 4, whereas
for visual-inertial BA, the matrix sizes can go up to 6 × 6.

5.4.2 Reduction for Vector Dot Products

We implement parallel reduction for inner products by sharing data at both the subgroup
and workgroup level. After reading values from the input buffer, invocations within the same
subgroup perform a summation reduction using subgroupAdd. Following this, an elected
invocation from each subgroup stores the result of the reduction in shared memory for
the entire workgroup. Afterwards, invocations of the first subgroup load these values from
shared memory, and perform a second subgroup reduction. The resulting value is written
out to an intermediate buffer. This method allows a single dispatch of the shader to reduce
the number of values down to the number of workgroups used. For increased efficiency, each
invocation in a workgroup reads multiple values from the input array. If the number of
values to be reduced exceeds the capacity for a single workgroup, then the reduction shader
is dispatched multiple times until there are no more values to reduce.

45

5.4.3 Memory-Efficient Preconditioner Computation for Implicit Schur
Elimination

We have developed a method to compute only the block diagonal of HSchur for the implicit
mode of the PCG solver, without storing intermediate products such as HplH

−1
ll , by taking

advantage of the following observations. For the structure of these matrices, please refer to
Chapter 2. Recalling Equation 2.1, when computing diagonal blocks of HSchur, it is only
necessary to multiply the block-row i of HplH

−1
ll with block-column i of HT

pl to obtain
the term which is subtracted from blocki,i of Hpp. Next, due to the transposition of Hpl,
the block-row and block-column have equivalent structure, meaning that it is sufficient to
store offset pairs for Hpl and H−1

ll using regular work queues, rather than triplets for three
matrices. Lastly, since H−1

ll is block diagonal, for a work queue with n pairs, only 2n matrix
multiplications are required.

From these observations, we develop a memory-efficient solution. A single shader is used
to multiply all three matrices, Hpl, H−1

ll , and HT
pl together. When recording the dispatch

operation, the size of the workgroup is increased, so that it is large enough to process each
element of a final or intermediate block using a dedicated shader invocation. For example,
for a 6 × 3 Hpl block multiplying a 3 × 3 block from H−1

ll , a workgroup size of at least 18
invocations is required to compute this intermediate result. However, we must also consider
that the final block subtracted from HSchur, which is initialized with Hpp, has a size of
6 × 6 = 36 elements. Therefore, we use the maximum of these two quantities to determine
the workgroup size.

For processing each task in a work queue, we first compute the block in HplH
−1
ll and

then use this result to multiply the transposed block from Hpl. Since we do not allocate
buffer memory for the intermediate product, we temporarily store it in shared memory. This
requires the use of a GLSL barrier to make values written to the shared memory become
visible to the rest of the workgroup. Thus, we avoid the cost of recomputing elements of
HplH

−1
ll multiple times.

5.4.4 Workload Distribution for Matrix Multiplication

To process multiplications more efficiently, we revise how tasks are distributed across a GPU
according to the type of multiplication. For matrix-matrix multiplications, we utilize larger
workgroup sizes to process parts of the same work queue in parallel, shown in Figure 5.4.
For matrix-vector multiplications, which involve fewer elements per work queue, a single
workgroup now processes multiple work queues (Figure 5.5). This strategy not only impacts
small-matrix operations, such as those seen in local bundle adjustment, but also operations
for large matrices and vectors generated during global bundle adjustment. This is especially
important for PCG, as the impact of the workload distribution for operations involving
large matrices and vectors is magnified over several iterations.

46

Figure 5.4: How chunks of a work queue are distributed to different subgroups within a
workgroup when performing matrix-matrix multiplications. In this example, each partition
consists of two subgroups. The results of each partition are stored in shared memory and
reduced before being written to the destination matrix.

Figure 5.5: How invocations processing different work queues are packed together for per-
forming matrix-vector multiplications.

5.5 Block Solver Improvements

The block solver was modified to better handle larger BA problems. First, we revised our
method for initializing HSchur with the blocks from Hpp. Previously, these blocks were copied
to the mapped buffer by the host. In the revised implementation, we use specialized shaders
to copy blocks, thus parallelizing this process. Another change is that the LMA damping
factor λ is now added to the diagonals of Hpp and Hll in-shader, rather than on the host.
Likewise, the backup and restoration of the diagonals are also performed by shaders. These
operations are not expensive for local BA workloads, but may become more costly as the
number of pose and landmark parameters grow, so the decision was made to parallelize
them. Lastly, changes were made to the setup pipelining. Primarily, the implementation
defers waiting for the landmark update calculation setup until after the linear solver step.

47

5.6 Evaluation on BAL Datasets with OpenMP

We first evaluate our methods using Bundle Adjustment in the Large (BAL) datasets [3].
As before, we perform our experiments on two machines. We use a desktop machine with an
AMD Ryzen 7 5800X CPU running at 3.8 GHz, with 32 GB of RAM, and an NVIDIA RTX
3080 GPU. For experiments on an embedded board, we use a Jetson Xavier NX, which has
a 6-core ARM Carmel CPU operating at 1.4 GHz and 8 GB of RAM. It uses an integrated
384-Core Volta GPU [36] and is configured for the 6-core 15W power mode. From each BAL
dataset, we pick the largest problem with less than 1000 poses to avoid thrashing on the
Jetson, due to limited available memory. The properties of each dataset are summarized in
Table 5.2.

Dataset Images Points Observations Initial MSE

Trafalgar-257 257 65 132 225 911 217
Dubrovnik-356 356 226 730 1 255 268 168

Ladybug-969 969 105 826 474 627 72
Venice-951 951 708 276 3 748 892 101

Final-961 961 187 103 1 692 975 51

Table 5.2: The number of images, points, observations, and initial mean squared error (MSE)
for the BAL problems [3] used for evaluation.

We test each configuration with support for OpenMP and Eigen vectorization enabled,
and record the final mean squared error (MSE) and the total BA time. To run our ex-
periments, we modify the BAL example application from g2o [5] to process each dataset
problem in different modes. The experiments use the default optimization parameters and
compute the initial λ automatically. The PCG solvers use a tolerance of 1 × 10−6 and are
limited to 50 iterations. Block ordering is used for the direct solvers, which performs block-
wise permutation to reduce fill-in. The maximum number of BA iterations is set to 20 and
the timeout to 3000 seconds. On the Jetson, it was necessary to increase the GPU watchdog
timeout from five seconds to ten seconds.

Configuration Block Solver Linear Solver HSchur Preconditioner

LLT / LDLT (CPU) g2o LLT / LDLT (Eigen) Explicit —
LLT / LDLT (GPU) ours LLT / LDLT (Eigen) Explicit —

PCG (CPU) g2o Block PCG (g2o) Explicit Block-Jacobi (HSchur)
PCG (GPU) ours Block PCG (ours) Explicit Block-Jacobi (HSchur)

PCG Implicit (GPU) ours Block PCG (ours) Implicit Block-Jacobi (HSchur)
PCG Implicit-Hpp (GPU) ours Block PCG (ours) Implicit Block-Jacobi (Hpp)

Table 5.3: The different solver configurations used for experiments.

We summarize the tested configurations in Table 5.3. All solvers use double-precision.
The Eigen sparse linear solver provided by g2o uses LLT decomposition internally. Older
versions of g2o, such as the version included with ORB-SLAM3, use LDLT decomposition.

48

For consistency with the latest release, we also use LLT decomposition for our GPU block
solver when performing experiments on BAL datasets.

The purpose of these experiments is to compare how the overall performance of visual
bundle adjustment changes when we replace parts of the existing OpenMP implementation
with GPU parallelization. It is possible to achieve lower MSE in less time by adjusting
the initial λ, the maximum number of iterations, and by making changes to LMA itself.
For example, setting λ = 1 initially can improve the error reduction, but for the largest
Ladybug and Final problems, we observed that this results in Schur matrices that are no
longer positive definite, causing Cholesky decomposition to fail.

Dataset Metric
LLT

(CPU)
LLT

(GPU)
PCG

(CPU)
PCG

(GPU)

PCG
Implicit
(GPU)

PCG
Implicit-Hpp

(GPU)

Trafalgar-257 MSE 0.92 0.92 0.92 0.92 0.92 1.05
Time 4.39 3.57 2.38 1.17 1.40 1.41

Dubrovnik-356 MSE 1.02 1.02 1.02 1.02 1.02 1.02
Time 52.91 45.75 10.44 4.84 5.27 5.22

Ladybug-969 MSE 4.75 4.75 4.74 4.74 4.74 27.71
Time 119.86 119.08 4.91 2.06 2.00 2.36

Venice-951 MSE 2.32 2.32 2.32 2.32 2.32 2.32
Time 735.89 715.99 31.75 14.80 14.37 13.72

Final-961 MSE 1.88 1.91 1.88 1.88 1.88 1.88
Time 1866.28 1717.02 134.36 11.79 8.85 7.47

Table 5.4: The performance on BAL datasets (desktop) with OpenMP enabled. Time is
given in seconds.

Dataset Metric
LLT

(CPU)
LLT

(GPU)
PCG

(CPU)
PCG

(GPU)

PCG
Implicit
(GPU)

PCG
Implicit-Hpp

(GPU)

Trafalgar-257 MSE 0.92 0.92 0.92 0.91 0.92 1.05
Time 23.59 18.93 12.94 5.62 8.36 8.22

Dubrovnik-356 MSE 1.02 1.02 1.02 1.02 1.02 1.02
Time 248.71 225.99 60.44 34.15 33.32 33.79

Ladybug-969 MSE 4.75 4.75 4.74 4.74 4.74 28.46
Time 540.67 464.26 25.89 12.14 11.52 13.63

Venice-951 MSE 2.931 3.832 2.32 2.32 2.32 2.32
Time 2902.24 2920.51 185.71 156.17 81.13 76.58

Final-961 MSE 2.073 2.074 1.88 1.88 1.88 1.88
Time 2957.61 2947.97 443.90 282.47 80.29 72.76

1 LLT (CPU) times out after 18 iterations.
2 LLT (GPU) times out after 17 iterations.
3 LLT (CPU) times out after 9 iterations.
4 LLT (GPU) times out after 9 iterations.

Table 5.5: The performance on BAL datasets (Jetson) with OpenMP enabled. Time is given
in seconds.

49

Table 5.4 and Table 5.5 show the results of our experiments. Since the linear solver
step is the main bottleneck for these larger problems, computing the reduced system and
the landmark update on the GPU yields only minor performance improvement. Due to
this, on the Jetson, LLT configurations reach the timeout for the Venice-951 and Final-961
problems. On the other hand, GPU PCG configurations significantly improve performance
compared to CPU PCG and direct solver configurations, even when OpenMP is enabled.
In general, all configurations perform similarly in terms of reducing the MSE when they
are not terminated early, with a few exceptions. On Trafalgar-257 and Ladybug-969, using
the block diagonal of the Hpp matrix as the preconditioner results in higher MSE at the
end of the optimization. The GPU LLT configuration also stops at a higher MSE compared
to others for Final-961 on the desktop. It is also interesting to observe that for smaller
problems such as Trafalgar-257 and Dubrovnik-356, implicit PCG configurations are not
always the fastest.

During development, we have determined that our solution is able to handle problems
up to Final-4585 on the desktop machine, which is the second largest in the BAL dataset.
The largest problem, Final-13682, cannot be processed by GPU solver configurations, since
it requests allocations larger than the 4 GB limit imposed by the Vulkan implementation.

50

5.7 Evaluation on SLAM Datasets

As our primary goal is to improve the performance of global bundle adjustment for visual-
inertial SLAM, we evaluate our methods using maps generated by ORB-SLAM3 running in
stereo-inertial mode. To generate these maps, we again process EuRoC [9] and TUM-VI [10]
visual-inertial datasets. Unlike local-inertial bundle adjustment, global bundle adjustment is
only applied as part of processes such as monocular map initialization and loop closure, and
thus occurs infrequently. This is further complicated by the fact that loop detection may fail
to trigger for a given run of a sequence. For these reasons, the method of evaluation used
in Chapter 4, in which the average local BA execution times were computed over multiple
runs, is not suitable for evaluating the performance of global bundle adjustment.

To address this problem, we modify ORB-SLAM3 to perform full- (global-) inertial bun-
dle adjustment (FIBA) on the entire map produced after processing each dataset sequence.
The main benefit of this approach is that by disabling the parameter recovery step, in which
the optimized parameters stored in the BA graph are retrieved, we can run multiple ex-
periments on the same map. As shown for a large and small map in Figure 5.6, parameter
recovery amounts to less of 1% of the total FIBA time on average. Thus, at the end of each
sequence, we test each solver configuration and perform ten trials, using ten BA iterations
each. For these experiments, OpenMP support is left disabled and Eigen vectorization is
enabled, as in the original build configuration.

(a) room4 (b) outdoors6

Figure 5.6: FIBA breakdown for the Jetson.

5.7.1 Block Solver Performance

Table 5.6 and Table 5.7 summarize the average amount of time spent on different steps in
the block solver for a single LMA iteration and the average BA time, for end-of-sequence

51

full-inertial bundle adjustment, for each dataset category. For large maps generated by
processing longer outdoors sequences, the linear solver step is the most expensive, and
switching to the GPU PCG solver in any configuration greatly reduces the execution time.
Yet for some datasets, the linear solver is not always the bottleneck. Such behaviour is
observed for desktop CPU solver configurations on TUM-VI room maps, where the average
amount of time spent on the Schur complement step exceeds the amount of time spent on
the linear solver, due to the smaller map sizes.

Dataset
LDLT
(CPU)

LDLT
(GPU)

PCG
(CPU)

PCG
(GPU)

PCG
Implicit
(GPU)

PCG
Implicit-Hpp

(GPU)

EuRoC

Schur 16.36 0.56 16.56 0.55 0.17 0.18
Linear Solver 31.20 31.26 13.63 3.40 5.81 5.20
∆xl 2.23 0.25 2.16 0.14 0.15 0.15
Total BA 799.88 634.77 491.67 213.31 230.14 224.75

TUM-VI room

Schur 10.34 0.42 10.31 0.41 0.11 0.12
Linear Solver 9.67 9.90 7.65 3.12 4.69 4.16
∆xl 0.81 0.19 0.80 0.09 0.09 0.09
Total BA 343.59 227.81 302.19 134.44 150.22 145.05

TUM-VI outdoors

Schur 247.26 7.67 247.26 7.70 0.94 0.94
Linear Solver 3284.47 3302.91 955.91 28.41 31.32 30.95
∆xl 25.71 0.75 25.87 0.56 0.57 0.57
Total BA 77 102.95 73 394.76 24 866.70 4170.95 4075.39 4077.66

Table 5.6: The average block solver and BA times (ms) on the desktop for full-map FIBA.

52

Dataset
LDLT
(CPU)

LDLT
(GPU)

PCG
(CPU)

PCG
(GPU)

PCG
Implicit
(GPU)

PCG
Implicit-Hpp

(GPU)

EuRoC

Schur 52.53 4.20 54.05 4.35 0.74 0.74
Linear Solver 111.72 113.38 66.55 17.20 33.55 31.68
∆xl 9.96 0.81 10.22 0.40 0.41 0.41
Total BA 3580.35 2227.73 1982.79 938.04 1045.04 1025.42

TUM-VI room

Schur 34.97 3.53 35.07 3.56 0.49 0.48
Linear Solver 42.85 42.78 38.32 12.44 21.40 20.72
∆xl 5.03 0.66 5.04 0.28 0.28 0.28
Total BA 1752.04 1138.24 1485.72 685.53 764.56 757.36

TUM-VI outdoors

Schur 455.89 45.23 455.61 45.19 4.34 4.33
Linear Solver 3882.10 3896.52 1952.26 256.91 301.37 317.35
∆xl 75.65 2.56 74.67 2.15 2.13 2.13
Total BA 96 265.39 89 251.17 63 510.52 16 331.78 16 329.50 16 166.17

Table 5.7: The average block solver and BA times (ms) on the Jetson for full-map FIBA.

53

5.7.2 Overall Performance of Full-Inertial Bundle Adjustment

We evaluate the performance of FIBA using the strategy described above. The solver con-
figurations from Table 5.3 are used, except that LDLT replaces LLT, as in the original im-
plementation. Table 5.8 summarizes the statistics of the maps generated by each sequence
for both platforms. The Xavier NX generates smaller maps due to different performance
characteristics. The average FIBA times are given in Table 5.9 and Table 5.10. This time
excludes the time spent on recovering and applying optimized parameters to the map, due
to the approach used.

Sequence
Keyframes
(Desktop)

Map Points
(Desktop)

Observ.
(Desktop)

Keyframes
(Jetson)

Map Points
(Jetson)

Observ.
(Jetson)

MH01 126 9403 42 327 126 9139 41 544
MH02 114 8450 38 227 114 8443 37 836
MH03 148 11 516 56 160 135 10 261 50 165
MH04 169 14 119 65 201 157 12 548 58 945
MH05 161 13 830 65 977 154 12 381 60 653

V101 105 8547 37 524 110 9038 40 793
V102 115 10 872 44 054 109 9541 38 578
V103 130 9717 37 782 119 8523 34 355
V201 92 7780 31 948 89 7582 30 186
V202 127 10 333 40 774 115 8463 33 998
V203 284 15 571 65 778 225 10 665 45 247

room1 78 2622 21 926 78 2499 21 423
room2 82 2925 23 009 80 2897 22 378
room3 81 3353 22 574 85 3483 23 669
room4 83 3301 20 995 77 2919 19 669
room5 81 2651 23 787 75 2414 21 067
room6 72 2320 21 486 73 2367 22 125

outdoors1 3738 88 768 431 608 3342 71 179 333 573
outdoors2 2510 72 079 362 589 2251 58 061 292 052
outdoors3 2943 72 929 431 305 2125 45 115 246 289
outdoors4 1770 43 247 227 468 1599 35 935 181 294
outdoors5 2365 71 880 447 025 1849 55 099 312 450
outdoors6 5183 187 253 907 125 4091 122 048 564 374
outdoors7 3262 99 731 504 594 2847 78 247 387 359
outdoors8 2075 62 077 338 256 1820 49 589 269 489

Table 5.8: The number of keyframes, map points, and observations used for end-of-sequence
FIBA experiments. This does not include variables and observations for inertial constraints
introduced between consecutive keyframes.

In order to observe the behaviour of each configuration, we recorded the robustified χ2

metric over time. We use the χ2 error metric, based on the weighted sum of squared errors,
as provided by g2o rather than MSE, since FIBA uses a robust Huber kernel to reduce
the influence of feature mismatches, whereas no kernel is used for inertial residuals [1].
Figure 5.7 and Figure 5.8 show the convergence behaviour for EuRoC, while Figure 5.9
and Figure 5.10 show it for TUM-VI room sequences. Lastly, the behaviour for larger maps
generated by TUM-VI outdoors sequences is shown in Figure 5.11 and Figure 5.12.

54

Sequence
LDLT
(CPU)

LDLT
(GPU)

PCG
(CPU)

PCG
(GPU)

PCG
Implicit
(GPU)

PCG
Implicit-Hpp

(GPU)

MH01 0.68 0.54 0.50 0.22 0.24 0.23
MH02 0.59 0.41 0.44 0.18 0.20 0.19
MH03 0.78 0.54 0.61 0.26 0.28 0.28
MH04 1.03 0.93 0.63 0.28 0.30 0.30
MH05 0.74 0.48 0.64 0.29 0.30 0.31

V101 0.65 0.40 0.31 0.13 0.15 0.14
V102 0.61 0.42 0.41 0.19 0.21 0.20
V103 0.62 0.28 0.30 0.14 0.15 0.15
V201 0.40 0.27 0.30 0.14 0.16 0.15
V202 0.73 0.37 0.35 0.15 0.17 0.16
V203 1.97 2.34 0.92 0.36 0.38 0.36

room1 0.33 0.23 0.24 0.11 0.12 0.12
room2 0.37 0.33 0.24 0.12 0.13 0.12
room3 0.33 0.21 0.33 0.15 0.17 0.16
room4 0.29 0.15 0.24 0.11 0.12 0.11
room5 0.47 0.28 0.47 0.19 0.22 0.21
room6 0.28 0.16 0.30 0.13 0.14 0.14

outdoors1 51.47 44.82 26.35 4.30 4.24 4.26
outdoors2 30.44 28.16 19.91 3.39 3.39 3.61
outdoors3 296.18 286.92 52.06 4.69 4.07 4.07
outdoors4 17.72 15.34 13.33 2.39 2.42 2.24
outdoors5 81.64 95.37 16.81 3.45 3.35 3.28
outdoors6 60.15 49.93 32.93 7.70 7.68 7.68
outdoors7 50.08 43.54 18.88 4.20 4.20 4.22
outdoors8 29.16 23.08 18.66 3.25 3.26 3.25

Table 5.9: The average execution times (seconds) across the ten trials on the desktop for
full-map FIBA.

In terms of overall speedup, our methods on the desktop machine achieve up to about a
72.9× speedup over the base CPU LDLT configuration, which corresponds to approximately
a 12.8× speedup over the CPU PCG configuration, when using implicit PCG methods. On
the Jetson, there is a smaller speedup of up to 19.1× over CPU LDLT and 8.24× over CPU
PCG for implicit PCG methods. To reiterate, the reason implicit configurations are faster
is that the computation of the Schur complement is skipped. Both implicit configurations
largely perform similarly, although the Hpp variant has a slight advantage on the Jetson.

It should also be noted that although PCG configurations are shown to be much faster
than LDLT configurations in our experiments, LDLT configurations tend to achieve better
error reduction for larger maps. This is especially noticeable for maps generated by outdoors
sequences on the desktop machine, which are larger than their counterparts on the Jetson.
The reason for this is that PCG configurations compute inexact LMA steps [3] since they
solve for ∆xp iteratively. This can be compensated for by adjusting the PCG stopping
criteria, but finding a good balance between the error reduction quality and the speedup

55

Sequence
LDLT
(CPU)

LDLT
(GPU)

PCG
(CPU)

PCG
(GPU)

PCG
Implicit
(GPU)

PCG
Implicit-Hpp

(GPU)

MH01 3.56 2.57 2.19 0.99 1.08 1.06
MH02 3.43 1.54 1.83 0.85 0.93 0.96
MH03 3.77 2.48 2.15 1.02 1.15 1.15
MH04 3.90 1.79 2.50 1.20 1.32 1.20
MH05 2.28 1.76 3.10 1.42 1.59 1.57

V101 3.42 2.33 1.54 0.75 0.84 0.82
V102 2.57 1.71 1.40 0.73 0.82 0.81
V103 2.30 1.84 1.43 0.75 0.84 0.83
V201 2.47 0.90 1.27 0.68 0.77 0.75
V202 3.53 2.49 1.59 0.76 0.85 0.84
V203 8.17 5.09 2.81 1.18 1.30 1.28

room1 1.52 1.05 1.60 0.69 0.77 0.76
room2 1.44 0.76 0.76 0.44 0.45 0.45
room3 2.63 1.80 1.33 0.72 0.77 0.76
room4 1.44 1.00 1.56 0.70 0.79 0.78
room5 1.99 1.30 2.12 0.90 1.04 1.03
room6 1.50 0.93 1.54 0.67 0.76 0.76

outdoors1 80.57 82.75 72.89 18.44 18.32 19.08
outdoors2 70.66 55.19 55.15 14.65 15.15 15.08
outdoors3 263.16 263.78 113.83 19.28 15.87 13.81
outdoors4 38.19 37.13 30.19 8.92 9.14 9.46
outdoors5 70.13 58.33 53.61 14.59 15.08 14.75
outdoors6 106.44 93.76 77.62 24.67 25.72 26.59
outdoors7 77.39 73.75 57.08 17.34 18.24 17.43
outdoors8 63.59 49.31 47.71 12.76 13.11 13.14

Table 5.10: The average execution times (seconds) across the ten trials on the Jetson for
full-map FIBA.

for both large and small bundle adjustment problems may be non-trivial. Possible ways to
address this challenge are discussed in Chapter 6.

Jetson Performance

The maximum speedup observed on the Jetson is smaller, primarily due to the differences
in hardware. The Volta GPU on the Jetson Xavier NX has 384 CUDA cores [36], whereas
the RTX 3080, as reported by the nvidia-smi tool, has 8704 CUDA cores and also oper-
ates at faster clock speeds (1965 MHz vs 1100 MHz). The larger number of CUDA cores
allows the desktop machine to process more work queues in parallel, giving it a major per-
formance advantage when performing bundle adjustment on large outdoors maps, which
have thousands of keyframes. This is reflected in Table 5.9 and Table 5.10. The maximum
speedups over LDLT (CPU) and PCG (CPU), excluding outdoors sequences, are 5.52× and
2.57× respectively on the desktop. On the Jetson, the corresponding speedups are 6.94×

56

and 2.38×. It may be possible to improve the efficiency further by adjusting the number of
work queues processed by each workgroup on the Jetson, as well as the workgroup sizes.

LDLT Slowdown

Occasionally, the LDLT (GPU) configuration takes longer than LDLT (CPU). The most
severe cases occur for outdoors5 on the desktop and outdoors1 on the Jetson. On the
desktop, as shown in Figure 5.11, LDLT (GPU) not only takes longer but also achieves
worse error reduction. The reason for the increased execution time is not transfer overhead,
but that the average number of inner LMA iterations (for adjusting the damping factor)
per outer optimization iteration is higher (1.80 compared to 1.44). The average amount
of time spent in the block solver for an LMA iteration is still lower when using the GPU
configuration. LMA iterations may be repeated in situations where decomposition fails, or
when the computed ∆x increases the error instead. Numerical differences in the reduced
system calculation for each configuration may also result in different behaviour for the linear
solver step. On the Jetson, LDLT (GPU) achieves better error reduction for outdoors1
(Figure 5.12), but again performs more LMA iterations on average (1.90 vs 1.60), resulting
in larger BA times. Overall, the performance degradation observed can likely be avoided by
switching to a GPU-accelerated LDLT solver.

57

Figure 5.7: Convergence over time for the desktop on EuRoC sequences.

58

Figure 5.8: Convergence over time for the Jetson on EuRoC sequences.

59

Figure 5.9: Convergence over time for the desktop on TUM-VI room sequences.

Figure 5.10: Convergence over time for the Jetson on TUM-VI room sequences.

60

Figure 5.11: Convergence over time for the desktop on TUM-VI outdoors sequences.

61

Figure 5.12: Convergence over time for the Jetson on TUM-VI outdoors sequences.

62

5.7.3 Trajectory Error

We perform an additional set of experiments in which each solver configuration is used
for all full-inertial bundle adjustment calls throughout each sequence, rather than at the
end. For selected TUM-VI sequences, chosen by final map sizes (Table 5.8), we aggregate
the trajectory error across five runs. The trajectory error for each run is computed using
evo [55], which first aligns the estimated trajectory with a ground truth trajectory before
computing the error. The root-mean-square absolute trajectory error (RMS ATE) in meters
is reported for each sequence and configuration in Table 5.11 and Table 5.12. Additionally,
the distributions of the trajectory errors, across all three dimensions, are shown in Fig-
ure 5.13a and Figure 5.13b. There does not appear to be any consistent change in error
due to the configuration. It should be noted that trajectory alignment is less stable for
outdoors sequences, since ground truth data is only available at the start and the end of the
sequence. The differences in the error on each platform are due to the different performance
characteristics. As summarized in Table 5.8, fewer keyframes, map points, and observations
are collected for longer sequences on the Xavier NX.

Sequence
LDLT
(CPU)

LDLT
(GPU)

PCG
(CPU)

PCG
(GPU)

PCG-Implicit
(GPU)

PCG-Implicit-Hpp

(GPU)

room4 0.01 0.01 0.01 0.01 0.01 0.01
outdoors1 33.95 34.15 33.60 34.12 32.28 34.51
outdoors4 7.47 8.33 8.82 7.54 8.01 7.15
outdoors6 11.53 9.10 12.42 10.36 7.57 10.06

Table 5.11: The RMS ATE (m) computed from five runs for each sequence (desktop).

Sequence
LDLT
(CPU)

LDLT
(GPU)

PCG
(CPU)

PCG
(GPU)

PCG-Implicit
(GPU)

PCG-Implicit-Hpp

(GPU)

room4 0.01 0.01 0.01 0.01 0.01 0.01
outdoors1 24.42 28.03 29.64 26.46 26.15 24.90
outdoors4 5.17 4.07 5.09 4.11 5.05 5.71
outdoors6 16.97 15.56 20.64 23.58 15.95 23.39

Table 5.12: The RMS ATE (m) computed from five runs for each sequence (Jetson).

63

(a) Desktop

(b) Jetson

Figure 5.13: The trajectory translation error distributions, across all dimensions.

64

5.7.4 GPU Memory Usage

The total buffer memory usage of each GPU method, as reported by VulkanMemoryAllo-
cator, for end-of-sequence FIBA is shown in Figure 5.14, Figure 5.15, and Figure 5.16. As
expected, implicit PCG methods require the least amount of memory, since at most, only
the block diagonal of HSchur must be constructed for the preconditioner. Thus, for implicit
methods, we entirely avoid allocating memory for intermediate result HplH

−1
ll . Explicit

PCG uses the largest amount of memory, since we allocate additional memory for vectors
and work queues in addition to the memory for computing the Schur complement. Lower
buffer memory usage is observed on the Jetson. This is because only host-coherent memory
is used, while the desktop machine creates additional buffers with device-local memory to
speed up global memory access in-shader. Furthermore, smaller maps are produced on the
Jetson. Implicit PCG using the block diagonal of Hpp as the preconditioner matrix uses the
least amount of memory for buffers, although this amount is only slightly less than using
the block diagonal of the Schur matrix instead.

65

Figure 5.14: GPU buffer memory usage for EuRoC sequences.

66

Figure 5.15: GPU buffer memory usage for TUM-VI room sequences.

67

Figure 5.16: GPU buffer memory usage for TUM-VI outdoors sequences.

68

5.7.5 Revised Performance of Local-Inertial Bundle Adjustment

We rerun the experiments for local-inertial bundle adjustment from Chapter 4, mainly to
determine how the changes to the block solver and work queue generation have affected
the performance. We do not evaluate the performance of the PCG solver, since too many
iterations are needed to converge to a solution with low residual error, and each PCG
iteration costs at least one queue submission, so LDLT for small matrices yields better
performance. Table 5.13 and Table 5.14 compare the local-inertial BA execution times for
the original CPU block solver and the revised GPU block solver. While there is a small
decrease in performance on outdoors sequences for both platforms, there is also a larger
performance improvement for the Jetson on EuRoC sequences. The decrease in execution
time of the revised solver ranges from 17.97% to 37.72% (1.22 − 1.61× speedup) on the
desktop, and 15.87% to 32.55% (1.19−1.48× speedup) on the Jetson. For the V201 sequence,
the total fraction of time spent in the local mapping thread on local bundle adjustment
decreased from 17.41% to 11.31% on the desktop and from 48.39% to 36.93% on the Jetson.

Sequence CPU Time (ms) GPU Time (ms) Avg Diff. (%)
MH01 52.66± 21.52 34.30± 12.85 -34.86
MH02 45.77± 18.69 31.55± 11.82 -31.05
MH03 55.69± 19.51 38.32± 13.74 -31.19
MH04 50.99± 13.92 35.62± 8.89 -30.14
MH05 52.03± 13.12 35.56± 8.76 -31.66

V101 61.49± 13.77 41.51± 8.34 -32.49
V102 55.74± 15.92 39.19± 11.68 -29.68
V103 49.75± 14.07 33.06± 8.59 -33.55
V201 53.85± 13.32 33.53± 7.23 -37.72
V202 54.59± 12.84 36.39± 9.03 -33.34
V203 35.07± 11.79 25.29± 7.78 -27.89

outdoors1 35.08± 19.05 28.67± 12.91 -18.28
outdoors2 41.74± 22.07 33.14± 15.14 -20.61
outdoors3 46.37± 16.56 38.04± 12.35 -17.97
outdoors4 38.93± 23.07 29.58± 14.69 -24.00
outdoors5 58.15± 17.99 44.67± 13.11 -23.18
outdoors6 51.69± 16.70 40.83± 11.48 -21.01
outdoors7 43.07± 14.28 34.98± 10.99 -18.79

room1 75.85± 18.29 57.01± 17.04 -24.85
room2 70.25± 19.70 56.22± 17.49 -19.97
room3 75.91± 18.00 59.10± 18.36 -22.14
room4 68.40± 18.35 49.07± 15.30 -28.26
room5 75.65± 15.87 58.86± 15.51 -22.20
room6 73.85± 17.20 54.29± 15.04 -26.49

Table 5.13: Revised average local-inertial BA run times for ORB-SLAM3 on the desktop
machine. CPU timings from Gopinath, Dantu, and Ko [11] © 2023 IEEE.

69

Sequence CPU Time (ms) GPU Time (ms) Avg Diff. (%)
MH01 290.11± 90.14 196.20± 59.85 -32.37
MH02 266.54± 87.47 180.75± 57.81 -32.19
MH03 293.20± 82.64 209.73± 59.86 -28.47
MH04 259.37± 63.69 185.31± 43.11 -28.55
MH05 265.93± 58.42 187.86± 39.44 -29.36

V101 319.78± 67.03 221.36± 46.16 -30.78
V102 279.96± 76.11 201.45± 54.99 -28.04
V103 232.96± 60.27 168.80± 39.94 -27.54
V201 270.85± 54.41 182.68± 31.99 -32.55
V202 263.80± 57.52 189.26± 42.56 -28.26
V203 156.71± 67.21 119.02± 42.38 -24.06

outdoors1 174.06± 79.79 144.56± 56.67 -16.95
outdoors2 194.50± 96.58 162.60± 68.52 -16.40
outdoors3 194.88± 87.45 163.79± 61.70 -15.96
outdoors4 189.94± 95.33 156.30± 66.92 -17.71
outdoors5 268.61± 93.56 218.82± 71.87 -18.54
outdoors6 227.14± 66.35 191.09± 51.08 -15.87
outdoors7 210.96± 65.75 172.21± 48.37 -18.36

room1 349.89± 83.33 274.82± 71.53 -21.46
room2 351.81± 98.73 274.71± 81.28 -21.92
room3 321.51± 73.31 270.27± 69.44 -15.94
room4 314.02± 77.29 242.78± 69.64 -22.69
room5 342.29± 76.55 273.27± 65.79 -20.17
room6 355.83± 85.74 273.96± 72.95 -23.01

Table 5.14: Revised average local-inertial BA run times for ORB-SLAM3 on the Jetson
Xavier NX. CPU timings from Gopinath, Dantu, and Ko [11] © 2023 IEEE.

70

Chapter 6

Conclusion

In this thesis, we have demonstrated how we can improve the performance of visual-inertial
bundle adjustment for on-device SLAM using GPU resources. In Chapter 4, we developed
techniques that specifically target operations on small- to medium-sized matrices, mainly
for the Schur complement. We implemented our techniques as a drop-in replacement block
solver for g2o, and integrated it with ORB-SLAM3. Our evaluation with EuRoC and TUM-
VI datasets showed that we can speed up local-inertial bundle adjustment by up to 1.51×
across indoor and outdoor SLAM sequences on a desktop machine, and by up to 1.36× on
a Jetson Xavier NX embedded board.

Later, in Chapter 5, we extended our methods to accelerate global bundle adjustment
problems as well. Primarily, we developed a new work queue generation method and an
iterative linear solver based on the method of preconditioned conjugate gradients. Our
experiments on BAL datasets showed that our methods provide an additional speedup
over the existing OpenMP parallelization for g2o. For full-inertial bundle adjustment on
maps produced by ORB-SLAM3, GPU implicit PCG methods obtained a speedup of up
to 12.8× on the desktop, and 8.24× on the Jetson Xavier NX board, over the existing
explicit CPU PCG implementation. This corresponds to a 72.9× speedup on the desktop
and a 19.1× speedup on the Jetson over the base CPU LDLT configuration, although in
some cases LDLT configurations achieved better error reduction for larger maps. Lastly,
reevaluating our methods for local-inertial bundle adjustment showed an improved speedup
of up to 1.61× and 1.48× across indoor and outdoor SLAM sequences on the desktop and
the Jetson Xavier NX, respectively.

Our results show that accelerating generic operations for matrices and vectors can
greatly improve the performance of both local-inertial and full-inertial bundle adjustment,
and point to a need for memory-efficient techniques to gracefully handle constraint-specific
calculations.

71

6.1 Limitations and Future Work

6.1.1 Evaluation and Datasets

From our experiments in Chapter 5, we have found that evaluating the performance of
full-inertial bundle adjustment is particularly challenging due to factors such as nonde-
terministic behaviour resulting in generated workload variability. Furthermore, the map
generation process can be time-consuming, depending on the sequence length and hardware
characteristics of the target device. There is a clear need for datasets that represent small
to large visual-inertial BA problems, using compact parameterization for pose, inertial, and
landmark variables that would typically be found in a real-time SLAM system. Another
limitation of the evaluation is that it does not assess the effect on mapping quality due to
the lack of absolute ground truth data. This may be addressed through the use of simulated
sequences, where the geometry of the virtual environment is readily available.

6.1.2 Parallelizing Constraint-Specific Calculations

Our solution does not yet address all bottlenecks for bundle adjustment. Although we have
implemented GPU acceleration for the main solving steps (Schur complement, ∆xp, ∆xl),
our techniques remain general and do not provide any speedup for calculations which vary
between constraints, as shown in Figure 6.1. Meanwhile, existing solutions for visual bundle
adjustment handle Hessian and error computations as well [15, 13]. Improving the perfor-
mance of these calculations for visual-inertial SLAM requires a more specialized solution,
and achieving this in a user-friendly manner is non-trivial. Extending our existing shader-
based solution to support the expression of non-linear constraints would expose API-specific
details to the user, complicating development. Moreover, vertex parameterization may vary
across SLAM systems due to differences in sensor configurations or system design. For this
reason, distributing shader-based vertices and constraints as part of a library may be an in-
adequate solution. Using a cross-platform abstraction layer [56] rather than Vulkan directly
may help address some of these problems. Alternatively, techniques may be adapted from
domain-specific languages, which have demonstrated promising results for solving non-linear
least squares problems on GPUs [57, 58].

6.1.3 GPU Direct Methods

Direct solving methods allow for a more exact computation of the parameter update in
each optimization iteration, and thus it may be beneficial to investigate the performance of
GPU-accelerated LLT/LDLT solvers for both local and global bundle adjustment problems.
Still, off-the-shelf solvers require converting HSchur to an intermediate sparse matrix format,
which adds overhead and increases memory usage. Therefore, it would also be advantageous
to investigate the viability of GPU-acceleration for direct methods on sparse block matrices
with variable-sized blocks, as we have done with our PCG solver.

72

Figure 6.1: The overhead of computing the linear system (orange) for each optimization
iteration. Accelerating constraint-specific calculations would reduce this overhead.

6.1.4 Reusing Partial Computations

There are also additional opportunities to reuse intermediate results, which can be exploited
to improve the overall performance of bundle adjustment. Given that the structure of the
Schur matrix does not change between successive iterations in the same bundle adjustment
call, incremental updates to the factorization may provide further performance improve-
ment when using direct methods such as Cholesky decomposition [41]. Furthermore, across
multiple LMA iterations in the same optimization iteration, the main change to the linear
system is the damping factor. Therefore, in future work, it may be beneficial to investigate
alternative methods to speed up this backtracking process, as demonstrated by RootBA
which uses QR decomposition [27].

6.1.5 Choosing Optimal Parameters

As seen in Chapter 5, using an iterative solving method such as PCG can provide a large
speedup for visual-inertial bundle adjustment problems, but may result in worse error reduc-
tion since the computed pose parameter update is inexact. To compensate for this, we may
consider more effective preconditioners or adjusting LMA and PCG parameters, including
the initial damping factor, number of iterations, and stopping criteria. However, choosing
these parameters to improve the error reduction for large problems may adversely impact the
speedup for small problems due to unnecessary iterations. Therefore, we consider two types
of approaches in order to balance the error reduction and execution performance. The first
is a learning-based approach, in which an online model is used to determine optimal param-
eters based on the problem size and structure. The second is to focus on directly improving
the PCG strategy used, by developing alternative preconditioners [26] and modifying the

73

algorithm to terminate early when stagnation is detected. It may also be advantageous to
further investigate the relationship between the inexact step computed by the block solver
and the overall error reduction quality achieved by the outer algorithm.

6.1.6 Beyond Bundle Adjustment

The methods we have developed can be applied to other types of non-linear optimization
problems, as well as problems involving sparse matrix operations. SLAM systems such
as ORB-SLAM3 perform other types of g2o-based optimizations, including inertial-only
optimization, pose-graph optimization, and essential graph optimization [1]. Beyond SLAM,
examples of interesting non-linear least squares optimization problems in vision and graphics
include human pose estimation [59], mesh and volumetric deformation, optical flow, recovery
of shape from image shading [57], and blendshape fitting [58]. Determining how well our
methods perform for these requires additional experiments, which would involve porting the
necessary constraints to a test application.

74

Bibliography

[1] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M. M. Montiel, and
Juan D. Tardós. “ORB-SLAM3: An Accurate Open-Source Library for Visual, Vi-
sual–Inertial, and Multimap SLAM”. In: IEEE Transactions on Robotics 37.6 (2021),
pp. 1874–1890. doi: 10.1109/TRO.2021.3075644.

[2] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.
“Bundle adjustment—a modern synthesis”. In: International workshop on vision al-
gorithms. Springer. 1999, pp. 298–372.

[3] Sameer Agarwal, Noah Snavely, Steven M Seitz, and Richard Szeliski. “Bundle ad-
justment in the large”. In: European conference on computer vision. Springer. 2010,
pp. 29–42.

[4] Kurt Konolige and Motilal Agrawal. “FrameSLAM: From bundle adjustment to real-
time visual mapping”. In: IEEE Transactions on Robotics 24.5 (2008), pp. 1066–1077.

[5] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. “g2o: A general framework for graph optimization”. In: 2011 IEEE Interna-
tional Conference on Robotics and Automation. 2011, pp. 3607–3613. doi: 10.1109/
ICRA.2011.5979949.

[6] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction. Tech. rep. Geor-
gia Institute of Technology, 2012.

[7] Sameer Agarwal and Keir Mierle. “Ceres solver: Tutorial & reference”. In: Google Inc
2.72 (2012), p. 8.

[8] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. “ORB-SLAM: a Versatile
and Accurate Monocular SLAM System”. In: IEEE Transactions on Robotics 31.5
(2015), pp. 1147–1163. doi: 10.1109/TRO.2015.2463671.

[9] Michael Burri et al. “The EuRoC micro aerial vehicle datasets”. In: The Interna-
tional Journal of Robotics Research (2016). doi: 10.1177/0278364915620033. eprint:
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.
full.pdf+html. url: http://ijr.sagepub.com/content/early/2016/01/21/
0278364915620033.abstract.

[10] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stueckler, and D. Cremers. “The TUM
VI Benchmark for Evaluating Visual-Inertial Odometry”. In: International Conference
on Intelligent Robots and Systems (IROS). Oct. 2018.

[11] Shishir Gopinath, Karthik Dantu, and Steven Y. Ko. “Improving the Performance
of Local Bundle Adjustment for Visual-Inertial SLAM with Efficient Use of GPU
Resources”. In: 2023 IEEE International Conference on Robotics and Automation
(ICRA). 2023, to be published.

75

https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1177/0278364915620033
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract

[12] Manolis I.A. Lourakis and Antonis A. Argyros. “SBA: A software package for generic
sparse bundle adjustment”. In: ACM Transactions on Mathematical Software 36 (1
Mar. 2009). issn: 00983500. doi: 10.1145/1486525.1486527.

[13] Qiang Liu, Shuzhen Qin, Bo Yu, Jie Tang, and Shaoshan Liu. “π-BA: Bundle Ad-
justment Hardware Accelerator based on Distribution of 3D-Point Observations”. In:
IEEE transactions on computers (2020), pp. 1–1. issn: 0018-9340. doi: 10.1109/TC.
2020.2984611.

[14] Jie Ren, Wenteng Liang, Ran Yan, Luo Mai, Shiwen Liu, and Xiao Liu. “MegBA: A
GPU-Based Distributed Library for Large-Scale Bundle Adjustment”. In: European
Conference on Computer Vision. 2022.

[15] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M. Seitz. “Multicore
bundle adjustment”. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE Computer Society, 2011, pp. 3057–
3064. isbn: 9781457703942. doi: 10.1109/CVPR.2011.5995552.

[16] The Khronos® Group Inc. Vulkan 1.3 Specification. 2023. url: https://registry.
khronos.org/vulkan/specs/1.3- extensions/html/vkspec.html (visited on
03/29/2023).

[17] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL ® Shading Language,
Version 4.60.7. 2019. url: https://registry.khronos.org/OpenGL/specs/gl/
GLSLangSpec.4.60.pdf.

[18] NVIDIA. CUDA C++ Best Practices Guide. 2023. url: https://docs.nvidia.com/
cuda/cuda-c-best-practices-guide/ (visited on 03/29/2023).

[19] ARM. Arm® GPU Best Practices Developer Guide Version 3.1. 2023. url: https:
//developer.arm.com/documentation/101897/latest/.

[20] Neil Henning. Vulkan Subgroup Tutorial. 2018. url: https://www.khronos.org/
blog/vulkan-subgroup-tutorial.

[21] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. “On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry”. In: IEEE Transactions on
Robotics 33 (1 Feb. 2017), pp. 1–21. issn: 15523098. doi: 10 . 1109 / TRO . 2016 .
2597321.

[22] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator”. In: IEEE Transactions on Robotics 34 (4
Aug. 2018), pp. 1004–1020. issn: 15523098. doi: 10.1109/TRO.2018.2853729.

[23] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. “Kimera: an Open-
Source Library for Real-Time Metric-Semantic Localization and Mapping”. In: IEEE,
May 2020, pp. 1689–1696. isbn: 978-1-7281-7395-5. doi: 10.1109/ICRA40945.2020.
9196885. url: https://ieeexplore.ieee.org/document/9196885/.

[24] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2: an Open-Source SLAM System
for Monocular, Stereo and RGB-D Cameras”. In: IEEE Transactions on Robotics 33.5
(2017), pp. 1255–1262. doi: 10.1109/TRO.2017.2705103.

[25] Sameer Agarwal, Keir Mierle, and The Ceres Solver Team. Ceres Solver. Version 2.1.
Mar. 2022. url: https://github.com/ceres-solver/ceres-solver.

76

https://doi.org/10.1145/1486525.1486527
https://doi.org/10.1109/TC.2020.2984611
https://doi.org/10.1109/TC.2020.2984611
https://doi.org/10.1109/CVPR.2011.5995552
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://developer.arm.com/documentation/101897/latest/
https://developer.arm.com/documentation/101897/latest/
https://www.khronos.org/blog/vulkan-subgroup-tutorial
https://www.khronos.org/blog/vulkan-subgroup-tutorial
https://doi.org/10.1109/TRO.2016.2597321
https://doi.org/10.1109/TRO.2016.2597321
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/ICRA40945.2020.9196885
https://doi.org/10.1109/ICRA40945.2020.9196885
https://ieeexplore.ieee.org/document/9196885/
https://doi.org/10.1109/TRO.2017.2705103
https://github.com/ceres-solver/ceres-solver

[26] Avanish Kushal and Sameer Agarwal. “Visibility Based Preconditioning for bundle
adjustment”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition.
2012, pp. 1442–1449. doi: 10.1109/CVPR.2012.6247832.

[27] Nikolaus Demmel, Christiane Sommer, Daniel Cremers, and Vladyslav Usenko. “Square
Root Bundle Adjustment for Large-Scale Reconstruction”. In: (Mar. 2021). doi: 10.
1109/CVPR46437.2021.01155. url: http://arxiv.org/abs/2103.01843%20http:
//dx.doi.org/10.1109/CVPR46437.2021.01155.

[28] Siddharth Choudhary, Shubham Gupta, and P. J. Narayanan. Practical Time Bundle
Adjustment for 3D Reconstruction on the GPU. 2012. doi: 10.1007/978-3-642-
35740-4_33. url: http://link.springer.com/10.1007/978-3-642-35740-4_33.

[29] Ronny Hänsch, Igor Drude, and Olaf Hellwich. “MODERN METHODS OF BUNDLE
ADJUSTMENT ON THE GPU”. In: ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences III-3 (June 2016), pp. 43–50. issn: 2194-
9050. doi: 10.5194/isprs-annals-III-3-43-2016. url: https://www.isprs-
ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/43/2016/.

[30] Mingwei Cao, Liping Zheng, Wei Jia, and Xiaoping Liu. “Fast incremental structure
from motion based on parallel bundle adjustment”. In: vol. 18. Springer Science and
Business Media Deutschland GmbH, Apr. 2021, pp. 379–392. doi: 10.1007/s11554-
020-00970-3.

[31] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. “Towards dense linear algebra
for hybrid GPU accelerated manycore systems”. In: Parallel Computing 36.5-6 (June
2010), pp. 232–240. issn: 0167-8191. doi: 10.1016/j.parco.2009.12.005.

[32] Fixstars Corporation. Cuda Bundle Adjustment. 2022. url: https://github.com/
fixstars/cuda-bundle-adjustment.

[33] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2012.

[34] Jingwei Huang, Shan Huang, and Mingwei Sun. “DeepLM: Large-scale Nonlinear
Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposi-
tion”. In: IEEE Computer Society, 2021, pp. 10303–10312. isbn: 9781665445092. doi:
10.1109/CVPR46437.2021.01017.

[35] Rongdi Sun, Peilin Liu, Jianwei Xue, Shiyu Yang, Jiuchao Qian, and Rendong Ying.
“BAX: A Bundle Adjustment Accelerator with Decoupled Access/Execute Archi-
tecture for Visual Odometry”. In: IEEE Access 8 (2020), pp. 75530–75542. issn:
21693536. doi: 10.1109/ACCESS.2020.2988527.

[36] Jinwoo Jeon, Sungwook Jung, Eungchang Lee, Duckyu Choi, and Hyun Myung. “Run
Your Visual-Inertial Odometry on NVIDIA Jetson: Benchmark Tests on a Micro Aerial
Vehicle”. In: IEEE robotics and automation letters 6 (3 2021), pp. 5332–5339. issn:
2377-3766. doi: 10.1109/LRA.2021.3075141.

[37] Tianji Ma et al. “Research on the Application of Visual SLAM in Embedded GPU”.
In: Wireless communications and mobile computing 2021 (2021), pp. 1–17. issn: 1530-
8669. doi: 10.1155/2021/6691262.

77

https://doi.org/10.1109/CVPR.2012.6247832
https://doi.org/10.1109/CVPR46437.2021.01155
https://doi.org/10.1109/CVPR46437.2021.01155
http://arxiv.org/abs/2103.01843%20http://dx.doi.org/10.1109/CVPR46437.2021.01155
http://arxiv.org/abs/2103.01843%20http://dx.doi.org/10.1109/CVPR46437.2021.01155
https://doi.org/10.1007/978-3-642-35740-4_33
https://doi.org/10.1007/978-3-642-35740-4_33
http://link.springer.com/10.1007/978-3-642-35740-4_33
https://doi.org/10.5194/isprs-annals-III-3-43-2016
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/43/2016/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/43/2016/
https://doi.org/10.1007/s11554-020-00970-3
https://doi.org/10.1007/s11554-020-00970-3
https://doi.org/10.1016/j.parco.2009.12.005
https://github.com/fixstars/cuda-bundle-adjustment
https://github.com/fixstars/cuda-bundle-adjustment
https://doi.org/10.1109/CVPR46437.2021.01017
https://doi.org/10.1109/ACCESS.2020.2988527
https://doi.org/10.1109/LRA.2021.3075141
https://doi.org/10.1155/2021/6691262

[38] Quan Lu, Jianli Xu, Likun Hu, and Minghui Shi. “Parallel VINS-Mono algorithm
based on GPUs in embedded devices”. In: International Journal of Advanced Robotic
Systems 19 (1 Jan. 2022). issn: 17298814. doi: 10.1177/17298814221074534.

[39] Jianhua Gao et al. “A Systematic Survey of General Sparse Matrix-matrix Multipli-
cation”. In: ACM Computing Surveys 55 (12 Dec. 2023), pp. 1–36. issn: 0360-0300.
doi: 10.1145/3571157.

[40] Sandra Carney, Michael A. Heroux, Guangye Li, Roldan Pozo, Karin A. Remington,
and Kesheng Wu. A Revised Proposal for a Sparse BLAS Toolkit. 1996, pp. 1–34. url:
https://sdm.lbl.gov/~kewu/ps/SparseBLAS96.pdf.

[41] Lukas Polok, Marek Solony, Pavel Smrz, Viorela Ila, and Pavel Zemcik. “Incremental
cholesky factorization for least squares problems in robotics?” In: vol. 8. IFAC Sec-
retariat, 2013, pp. 172–178. isbn: 9783902823366. doi: 10.3182/20130626-3-AU-
2035.00027.

[42] Lukas Polok, Marek Solony, Viorela Ila, Pavel Smrz, and Pavel Zemcik. “Efficient
implementation for block matrix operations for nonlinear least squares problems in
robotic applications”. In: 2013, pp. 2263–2269. isbn: 9781467356411. doi: 10.1109/
ICRA.2013.6630883.

[43] NVIDIA. cuSPARSE Documentation. url: https : / / docs . nvidia . com / cuda /
cusparse/ (visited on 04/20/2023).

[44] L Susan Blackford et al. “An updated set of basic linear algebra subprograms (BLAS)”.
In: ACM Transactions on Mathematical Software 28 (2 June 2002), pp. 135–151. issn:
0098-3500. doi: 10.1145/567806.567807. url: https://dl.acm.org/doi/10.1145/
567806.567807.

[45] NVIDIA. cuBLAS Documentation. url: https://docs.nvidia.com/cuda/cublas/
(visited on 04/20/2023).

[46] The Institute for Ethical AI and Machine Learning. Kompute Framework. 2022. url:
https://github.com/KomputeProject/kompute.

[47] The Khronos® Group Inc. Vulkan. 2022. url: https://www.vulkan.org (visited on
03/29/2023).

[48] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.
[49] Kurt Konolige. “Sparse Sparse Bundle Adjustment”. In: Proceedings of the British

Machine Vision Conference (BMVC). 2010.
[50] M. Masmano, I. Ripoll, A. Crespo, and J. Real. “TLSF: a new dynamic memory

allocator for real-time systems”. In: Proceedings. 16th Euromicro Conference on Real-
Time Systems, 2004. ECRTS 2004. 2004, pp. 79–88. doi: 10.1109/EMRTS.2004.
1311009.

[51] AMD. Vulkan Memory Allocator. 2022. url: https : / / github . com / GPUOpen -
LibrariesAndSDKs/VulkanMemoryAllocator.

[52] Ryan Eberhardt and Mark Hoemmen. “Optimization of block sparse matrix-vector
multiplication on shared-memory parallel architectures”. In: Institute of Electrical
and Electronics Engineers Inc., July 2016, pp. 663–672. isbn: 9781509021406. doi:
10.1109/IPDPSW.2016.42.

78

https://doi.org/10.1177/17298814221074534
https://doi.org/10.1145/3571157
https://sdm.lbl.gov/~kewu/ps/SparseBLAS96.pdf
https://doi.org/10.3182/20130626-3-AU-2035.00027
https://doi.org/10.3182/20130626-3-AU-2035.00027
https://doi.org/10.1109/ICRA.2013.6630883
https://doi.org/10.1109/ICRA.2013.6630883
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://doi.org/10.1145/567806.567807
https://dl.acm.org/doi/10.1145/567806.567807
https://dl.acm.org/doi/10.1145/567806.567807
https://docs.nvidia.com/cuda/cublas/
https://github.com/KomputeProject/kompute
https://www.vulkan.org
https://doi.org/10.1109/EMRTS.2004.1311009
https://doi.org/10.1109/EMRTS.2004.1311009
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://doi.org/10.1109/IPDPSW.2016.42

[53] Steven C. Rennich, Darko Stosic, and Timothy A. Davis. “Accelerating sparse Cholesky
factorization on GPUs”. In: Parallel Computing 59 (Nov. 2016), pp. 140–150. issn:
01678191. doi: 10.1016/j.parco.2016.06.004.

[54] R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for It-
erative Methods, 2nd Edition. Philadelphia, PA: SIAM, 1994. url: https://netlib.
org/linalg/html_templates/Templates.html.

[55] Michael Grupp. evo: Python package for the evaluation of odometry and SLAM.
https://github.com/MichaelGrupp/evo. 2017.

[56] The Khronos® Group Inc. SYCL. 2023. url: https://www.khronos.org/sycl/
(visited on 03/29/2023).

[57] Zachary Devito et al. “Opt: A domain specific language for non-linear least squares
optimization in graphics and imaging”. In: ACM Transactions on Graphics 36 (5 Oct.
2017). issn: 15577368. doi: 10.1145/3132188.

[58] Michael Mara, Felix Heide, Michael Zollhöfer, Matthias Nießner, and Pat Hanrahan.
“Thallo – Scheduling for High-Performance Large-Scale Non-Linear Least-Squares
Solvers”. In: ACM Transactions on Graphics 40 (5 Oct. 2021), pp. 1–14. issn: 0730-
0301. doi: 10.1145/3453986. url: https://dl.acm.org/doi/10.1145/3453986.

[59] Haixun Sun, Yanyan Zhang, Yijie Zheng, Jianxin Luo, and Zhisong Pan. “G2O-Pose:
Real-Time Monocular 3D Human Pose Estimation Based on General Graph Opti-
mization”. In: Sensors 22 (21 Nov. 2022). issn: 14248220. doi: 10.3390/s22218335.

79

https://doi.org/10.1016/j.parco.2016.06.004
https://netlib.org/linalg/html_templates/Templates.html
https://netlib.org/linalg/html_templates/Templates.html
https://github.com/MichaelGrupp/evo
https://www.khronos.org/sycl/
https://doi.org/10.1145/3132188
https://doi.org/10.1145/3453986
https://dl.acm.org/doi/10.1145/3453986
https://doi.org/10.3390/s22218335

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Bundle Adjustment
	Vulkan Compute Shader Programming Model
	Execution Model
	Memory Model
	Memory Properties
	Command Buffers and Queues
	Synchronization Primitives
	Push Constants and Specialization Constants
	Subgroup Operations

	Related Work
	Visual-Inertial SLAM
	Bundle Adjustment and Non-linear Optimization
	Bundle Adjustment Acceleration
	GPU Acceleration
	FPGA Acceleration
	Comparison to Existing Solutions

	Embedded GPU Acceleration for Visual SLAM
	High Performance Computing
	Sparse Matrix Formats
	BLAS

	Improving The Performance of Local Bundle Adjustment
	Introduction
	Our Approach
	Implementation Details
	Pipelining
	Work Queue Generation
	Linear Algebra Operations
	Matrix Multiplication Shader
	Matrix Construction
	Memory Allocation
	Linear Solver

	Evaluation
	Experimental setup
	Block Solver Performance
	Overall Performance of Local Bundle Adjustment
	GPU Memory Usage
	Effect of Memory Allocation Strategies
	Threats to Validity

	GPU Acceleration for Global Bundle Adjustment
	Introduction
	Work Queue Generation
	Dynamic Matrix Multiplication Based on the Block Compressed Sparse Row Representation
	Parallel Work Queue Generation

	Linear Solver
	PCG Implementation
	Preconditioner
	Reduction for Vector Dot Products
	Memory-Efficient Preconditioner Computation for Implicit Schur Elimination
	Workload Distribution for Matrix Multiplication

	Block Solver Improvements
	Evaluation on BAL Datasets with OpenMP
	Evaluation on SLAM Datasets
	Block Solver Performance
	Overall Performance of Full-Inertial Bundle Adjustment
	Trajectory Error
	GPU Memory Usage
	Revised Performance of Local-Inertial Bundle Adjustment

	Conclusion
	Limitations and Future Work
	Evaluation and Datasets
	Parallelizing Constraint-Specific Calculations
	GPU Direct Methods
	Reusing Partial Computations
	Choosing Optimal Parameters
	Beyond Bundle Adjustment

	Bibliography

