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Abstract

The history of the enumeration of finite lattice paths with respect to a linear boundary is
rich with unexpected patterns and symmetries. Let a, b be coprime and let g be a positive
integer. We count the number of lattice paths from the startpoint (0, 0) to the endpoint
(ga, gb) whose steps are restricted to {(1, 0), (0, 1)}, with respect to a variable k measuring
how much of the path lies above the linear boundary joining the startpoint to the endpoint.
A first setting takes a = 1 and takes k to be the number of (0, 1) steps lying above the
boundary. A 1949 result due to Chung and Feller for the case b = 1 shows that the number
of paths is independent of k. Huq later showed that the same holds for all b. A second
setting instead takes k to be the number of lattice points on the path that lie above the
boundary. In this setting, let Nk(g) be the set of lattice paths for fixed a, b; we wish to
determine |Nk(g)|. Bizley found |N0(g)| explicitly in 1954. Firoozi, Marwendo, and Rattan
recently showed that |Nk(1)| is independent of k. We place both these results in a more
general framework by deriving a closed form expression for |Nk(g)|, which is significantly
more complicated than for the special cases k = 0 and g = 1. We find for each g that the
value |Nk(g)| is constant over each successive set of a + b values of k. Our proof relies on
finding an explicit bijection between a subset of Nk(g) and the set Nk+1(g). This leads to a
recursion for |Nk(g)| whose base case is given by Bizley’s result. We use symmetric functions
to show that the closed form expression satisfies the recursion.

Keywords: enumeration; lattice paths; flaws; bijection; recursion; symmetric functions
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Chapter 1

Introduction

The lattice path shown in Figure 1.1 contains exactly five lattice points that lie above the
linear boundary joining the startpoint (0, 0) to the endpoint (8, 6).

Figure 1.1: Lattice path from (0, 0) to (8, 6).

Let a, b be coprime and let g be a positive integer. Our objective is to count the number of
lattice paths from the startpoint (0, 0) to the endpoint (ga, gb), whose steps are restricted
to {(1, 0), (0, 1)}, containing exactly k points that lie above the boundary.

1.1 Basic definitions

We are concerned only with simple lattice paths. These are paths in the two-dimensional
lattice Z2 whose steps are restricted to the step set {(1, 0), (0, 1)}. We henceforth refer to
these just as paths.

Let p be a path. The boundary of p is the line joining its startpoint to its endpoint. The
path p touches or contains the lattice point (x+ i, y + j) if p starts at (x, y), and the first
i + j ≥ 0 steps of p consist of i of the (1, 0) steps and j of the (0, 1) steps (in any order).
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We consider the points of p to be ordered according to increasing values of i + j. A point
of p is a flaw if it lies strictly above the boundary of p. For example, the path in Figure 1.1
has the five flaws (0, 1), (1, 1), (1, 2), (2, 2), (5, 4), denoted in orange.

Definition 1.1.1. Let a, b be coprime and let g be a non-negative integer. Let N(g) be the
set of all paths from (0, 0) to (ga, gb), and Nk(g) be the subset of such paths having exactly
k flaws.

Note that the set N(0) = N0(0) contains only the empty path ε, namely the path consisting
of no steps. If g > 0, then the values that k may take lie in the range 0 ≤ k < g(a+ b). The
values |N0(g)| and |Ng(a+b)−1(g)| were found by Bizley in 1954 [7], but no values |Nk(g)|
have since been determined for 0 < k < g(a+ b) − 1.

Central objective. For each allowable value of k, find an explicit formula for |Nk(g)| for
given a, b.

1.2 Numerical observations

There is a fundamental asymmetry in the definition of a flaw, namely that points of a
path lying on the boundary are not flaws. We therefore might expect |Nk(g)| to be non-
increasing as k increases. Table 1.1 displays the numerical value of |Nk(g)| for g = 4 and
(a, b) = (3, 2), obtained by computer program (see Appendix A). We note two apparent
properties suggested by these values:

P1 (Constant on blocks). The value |Nk(g)| is constant on each of the g distinct blocks
of a+ b consecutive values of k.

P2 (Strictly decreasing). The value |Nk(g)| is strictly decreasing between successive blocks.

We shall show that properties P1 and P2 both hold for all g > 0 and (a, b).

1.3 Overview of results and methods

Table 1.1 displays the value of |Nk(4)|−|Nk+1(4)|. The values in the table suggest a strategy
for achieving our central objective: identify a subset Sk(g) of Nk(g) having cardinality
|Nk(g)| − |Nk+1(g)|, and construct a bijection between Nk(g) \ Sk(g) and Nk+1(g). We
achieve this in our main result (see Theorem 1.3.5). Properties P1 and P2 in Section 1.2
follow as consequences of the main result.

From now on, we regard a, b as fixed coprime integers.

1.3.1 The subset Sk(g) of Nk(g)

We introduce some additional vocabulary in order to define the subset Sk(g).
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k |Nk(4)| |Nk(4)| − |Nk+1(4)|
0 7229 0
1 7229 0
2 7229 0
3 7229 0
4 7229 754
5 6475 0
6 6475 0
7 6475 0
8 6475 0
9 6475 437
10 6038 0
11 6038 0
12 6038 0
13 6038 0
14 6038 586
15 5452 0
16 5452 0
17 5452 0
18 5452 0
19 5452

Table 1.1: Computer enumeration of |Nk(4)| for (a, b) = (3, 2).

Definition 1.3.1 (No flaws, max flaws). A path in N(g) has no flaws if it belongs to N0(g),
and has max flaws if it belongs to Ng(a+b)−1(g).

Definition 1.3.2 (Path concatenation). Let p1 and p2 be paths. The path concatenation
p1p2 is the path which takes all the (ordered) steps of p1, and then takes all the (ordered)
steps of p2.

Definition 1.3.3 (Boundary points). The boundary points of a path p ∈ N(g) comprise
the β + 1 lattice points of the form (ja, jb) that p contains (where j satisfies 0 ≤ j ≤ g).
We label the boundary points of p in order as (0, 0) = B0, B1, . . . , Bβ = (ga, gb). If β > 1,
(so that p contains boundary points other than (0, 0) and (ga, gb)), then p is boundary point
touching (BPT).

A path p ∈ N(g) contains at most g + 1 boundary points, because the number of lattice
points lying on the boundary is g+ 1 (see Figure 1.2). These boundary lattice points divide
the boundary into g segments of equal length; note that property P1 refers to g distinct
equally-sized blocks of consecutive values of k.

We may now define Sk(g).

3



Figure 1.2: A path p ∈ N(g) contains at most g + 1 boundary points.

Definition 1.3.4 (Subset Sk(g)). Let Sk(g) be the subset of Nk(g) comprising paths of the
form p1p2 where, for some j satisfying 0 < j ≤ g, we have p1 ∈ N0(g − j) and p2 ∈ Nk(j)
has max flaws. We write S(g) := ⋃· k Sk(g) and S := ⋃· k,g Sk(g).

See Figure 1.3 for two example paths in S(4). A path in S(g) is a concatenation of a path
p1 from (0, 0) to

(
(g− j)a, (g− j)b

)
having no flaws with a path p2 from

(
(g− j)a, (g− j)b

)
to (ga, gb) having max flaws. The condition on p2 implies that Sk(g) is empty unless k =
j(a+ b) − 1 for some j satisfying 0 < j ≤ g. Therefore

Sk(g) = ∅ for k ̸≡ −1 (mod a+ b), (1.3.1)

and, for each j satisfying 0 < j ≤ g,

Sj(a+b)−1(g) =
{
p1p2 : p1 ∈ N0(g − j) and p2 ∈ Nj(a+b)−1(j)

}
. (1.3.2)

Note that in Definition 1.3.4 the path p1 may be empty and may be BPT; the path p2 is
non-empty and is not BPT.

p1

p2

(a) A path p1p2 in S9(4), where
p1 ∈ N0(2) and p2 ∈ N9(2).

p1

p2

(b) A path p1p2 in S4(4), where
p1 ∈ N0(3) and p2 ∈ N4(1).

Figure 1.3: Two example paths in S(4) for (a, b) = (3, 2).

4



1.3.2 Main result and consequences

Theorem 1.3.5 (Main result). Let g, k satisfy 0 ≤ k < g(a+ b) − 1. Then

|Nk(g) \ Sk(g)| = |Nk+1(g)|.

We shall give a bijective proof of Theorem 1.3.5 in Chapter 3. The following result is a first
consequence of Theorem 1.3.5.

Corollary 1.3.6 (Constant on blocks). For each j satisfying 0 ≤ j < g, we have

|Nk(g)| = |Nj(a+b)(g)| for all k in the range j(a+ b) ≤ k < (j + 1)(a+ b).

Proof. The result follows directly from Theorem 1.3.5 and (1.3.1).

Corollary 1.3.6 establishes property P1, proving a conjecture due to Firoozi, Marwendo,
and Rattan [14]. In view of Corollary 1.3.6, we define

µj(g) := |Nj(a+b)(g)| for each j satisfying 0 ≤ j < g.

We may then rephrase Corollary 1.3.6 as

|Nk(g)| =



µ0(g) if 0 ≤ k < a+ b,

µ1(g) if a+ b ≤ k < 2(a+ b),
...

µg−1(g) if (g − 1)(a+ b) ≤ k < g(a+ b),

or more compactly as

|Nk(g)| = µj(g) for all j, k satisfying 0 ≤ j < g and j(a+ b) ≤ k < (j + 1)(a+ b).
(1.3.3)

Combine (1.3.2) and (1.3.3) to give

|Sj(a+b)−1(g)| = µ0(g − j)µj−1(j) for all j satisfying 0 < j < g. (1.3.4)

We now observe two further consequences of Theorem 1.3.5.

Corollary 1.3.7 (Recurrence relation). We have

µj−1(g) − µ0(g − j)µj−1(j) = µj(g) for each j satisfying 0 < j < g. (1.3.5)
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Proof. Since Sk(g) is a subset of Nk(g), we have by Theorem 1.3.5 that

|Nk(g)| − |Sk(g)| = |Nk+1(g)|.

Let j satisfy 0 < j < g. Take k = j(a+ b) − 1 and use (1.3.3) and (1.3.4) to give (1.3.5).

Corollary 1.3.8 (Strictly decreasing). We have µ0(g) > µ1(g) > · · · > µg−1(g).

Proof. This follows from Corollary 1.3.7, noting that µj(g) > 0 for 0 ≤ j < g by (1.3.3).

Corollary 1.3.8 establishes property P2.

1.3.3 The value of µj(g)

Recall that our central objective is to find an explicit formula for |Nk(g)| for each allowable
value of k and for given (a, b), and that by (1.3.3) it is sufficient to determine the values µj(g).
By inspection of Table 1.2, the recurrence relation (1.3.5) for µj(g) has a unique solution
for each j, g satisfying 0 ≤ j < g, provided the initial values µ0(g) are known for all g > 0.

µ0(1) µ0(2) µ0(3) µ0(4) µ0(5) · · ·
µ1(2) µ1(3) µ1(4) µ1(5) · · ·

µ2(3) µ2(4) µ2(5) · · ·
µ3(4) µ3(5) · · ·

µ4(5) · · ·
· · ·

Table 1.2: The values µj(g) for 0 ≤ j < g can be determined one column at a time using
the recurrence relation (1.3.5), provided the values µ0(g) in the initial row are known.

The required initial values µ0(g) are indeed known, as we describe in Corollary 1.3.12 after
introducing some notation involving integer partitions.

Definition 1.3.9 (Integer partition). Let m1,m2, . . . be non-negative integers and let
g = ∑

i≥1 imi. Write
⟨1m12m2 · · · ⟩ ⊢ g

to denote the integer partition of g having mi copies of the summand i.

Example 1.3.10. The integer partition 1 + 1 + 2 + 3 of 7 is written ⟨122131⟩.

We define the following quantities.

For i > 0, let

ci := 1
i(a+ b)

(
i(a+ b)
ia

)
. (1.3.6)

6



For g > 0 and an integer partition λ = ⟨1m12m2 · · · ⟩ ⊢ g, let

Cλ :=
∏
i≥1

cmi
i

mi!
, (1.3.7)

l(λ) :=
∑
i≥1

mi,

Eg :=
∑
λ⊢g

(−1)g−l(λ)Cλ, (1.3.8)

Hg :=
∑
λ⊢g

Cλ, (1.3.9)

and let
E0 := 1, H0 := 1. (1.3.10)

In 1954, Bizley found the values of |N0(g)| and |Ng(a+b)−1(g)| explicitly in terms of Hg

and Eg.

Theorem 1.3.11 (Bizley [7]). Let g > 0. Then

|N0(g)| = Hg,

|Ng(a+b)−1(g)| = (−1)g+1Eg.

Using (1.3.3), we obtain the following values for µ0(g) and µg−1(g).

Corollary 1.3.12 (Known values of µ0(g) and µg−1(g)). Let g > 0. Then

µ0(g) = Hg, (1.3.11)

µg−1(g) = (−1)g+1Eg. (1.3.12)

The unique solution µj(g) determined by the recurrence relation (1.3.5) and Corollary 1.3.12
can now be stated explicitly.

Theorem 1.3.13 (Path enumeration formula). We have

µj(g) =
j∑

k=0
(−1)kEkHg−k for 0 ≤ j < g.

Proof. Let g > 0. By (1.3.5) and Corollary 1.3.12, for 0 < j < g we have

µj(g) = µj−1(g) + (−1)jEjHg−j .
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Therefore (by an implicit induction)

µj(g) = µ0(g) +
j∑

k=1
(−1)kEkHg−k

=
j∑

k=0
(−1)kEkHg−k

using (1.3.10) and (1.3.11).

In Chapter 4, we give an alternative proof of Theorem 1.3.13 which does not assume that
the value of µg−1(g) is known. This will require some results involving symmetric functions.

1.3.4 Computation using the path enumeration formula

Let (a, b) = (3, 2) and g = 4. We illustrate the use of the path enumeration formula The-
orem 1.3.13 to calculate the number |Nk(4)| of paths from (0, 0) to (12, 8) having k flaws,
for each k satisfying 0 ≤ k < 20. By (1.3.3), it is sufficient to determine µj(4) for each
j = 0, 1, 2, 3.

We begin by listing the partitions of the integers 1, 2, 3, 4.

Partitions of 4 : ⟨41⟩, ⟨1131⟩, ⟨22⟩, ⟨1221⟩, ⟨14⟩,

Partitions of 3 : ⟨31⟩, ⟨1121⟩, ⟨13⟩,

Partitions of 2 : ⟨21⟩, ⟨12⟩,

Partitions of 1 : ⟨11⟩.

Using (1.3.6), we compute

c1 = 2, c2 = 21, c3 = 1001
3 , c4 = 12597

2 .

Using (1.3.7), we then compute (for example)

C⟨1221⟩ =
(
c2

1
2!

)(
c1

2
1!

)
= 42, C⟨13⟩ =

(
c3

1
3!

)
= 4

3 .

The full set of Cλ values is

C⟨41⟩ = 12597
2 , C⟨1131⟩ = 2002

3 , C⟨22⟩ = 441
2 , C⟨1221⟩ = 42, C⟨14⟩ = 2

3 ,

C⟨31⟩ = 1001
3 , C⟨1121⟩ = 42, C⟨13⟩ = 4

3 ,

C⟨21⟩ = 21, C⟨12⟩ = 2,

C⟨11⟩ = 2.

8



Using (1.3.8) and (1.3.9), we next calculate that (for example)

E3 = (−1)3−1C⟨31⟩ + (−1)3−2C⟨1121⟩ + (−1)3−3C⟨13⟩ = 1001
3 − 42 + 4

3 = 293,

H3 = C⟨31⟩ + C⟨1121⟩ + C⟨13⟩ = 1001
3 + 42 + 4

3 = 377.

The full set of Ek and Hk values is

H4 = 7229, E4 = −5452

H3 = 377, E3 = 293

H2 = 23, E2 = −19

H1 = 2, E1 = 2

H0 = 1, E0 = 1.

Using Theorem 1.3.13, we determine that

µ0(4) = E0H4 = 1 · 7229 = 7229

µ1(4) = E0H4 − E1H3 = 1 · 7229 − 2 · 377 = 6475

µ2(4) = E0H4 − E1H3 + E2H2 = 1 · 7229 − 2 · 377 − 19 · 23 = 6038

µ3(4) = E0H4 − E1H3 + E2H2 − E3H1 = 1 · 7229 − 2 · 377 − 19 · 23 − 293 · 2 = 5452.

Using (1.3.3), we may now determine the value of |Nk(4)| for each k satisfying 0 ≤ k < 20.
The resulting values agree with the computer enumeration reported in Table 1.1.

Note that we may alternatively use (1.3.12) to compute the value

µ3(4) = (−1)4+1E4 = 5452.

Remark 1.3.14. Bizley [7] noted that both Hk and Ek are integers because of the enu-
merations given in Theorem 1.3.11.

Remark 1.3.15. Although the quantity ci defined in (1.3.6) is not necessarily an integer,
it can be shown that ici is an integer.
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Chapter 2

Background

2.1 Lattice path enumeration problems

In order to place our results in a wider context, we give a very brief review of the lattice
path enumeration literature.

The study of lattice path enumeration has a long and rich history spanning hundreds of
years [21, 26]. Two historical problems that can be phrased in terms of lattice paths are the
‘gambler’s ruin problem’ [21] and Bertrand’s ‘ballot problem’ [3].

A lattice path problem is usually constrained to lie in d dimensions [24, 29] and specifies a
finite step set describing the allowable steps comprising the path [21, 36]. Examples of com-
mon small step sets include {(1, 0), (0, 1)} and {(1, 1), (1,−k)} [22, 26]. We are concerned
only with simple paths (those whose step set is {(1, 0), (0, 1)}) in the two-dimensional lat-
tice Z2. Although asymptotic enumeration is a major topic in the study of lattice paths
[4, 28, 29], our focus is on exact enumeration.

Lattice path enumeration problems often include a constraint that paths must satisfy with
respect to a specified boundary, for example: remaining strictly on one side of the boundary;
not crossing the boundary; or touching the boundary a specified number of times. The
boundary is often linear [10, 22, 30] or piecewise linear [19, 23]. Linear boundaries of rational
slope have been particularly studied [6, 7, 14, 16, 17, 26]. We are concerned with measuring
how much of the path lies above a linear boundary having rational slope.

2.2 Methods of analysis

Many methods of analysis have been applied to the study of lattice path enumeration
problems. These include generating functions [25, 34], Lagrange inversion [15], the kernel
method [4, 6, 28, 29], and symmetric functions [5, 20].
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A popular enumeration method is to construct an explicit bijection between two sets of
interest. Particular examples include the reflection principle [1, 13, 17] (whose origin is
often incorrectly attributed to André [32]), the cycle lemma [11, 12, 30], set partitions [31],
and rearrangement of path segments [8, 9]. It is often possible to use multiple methods to
solve the same enumeration problem, as demonstrated in [35].

We shall establish our main result (Theorem 1.3.5) by constructing a bijection, and our
alternative proof of the path enumeration formula (Theorem 1.3.13) using symmetric func-
tions.

2.3 Two settings

We use a variable k to measure how much of a simple path lies above the linear boundary
joining the startpoint (0, 0) to the endpoint (ga, gb) (where a, b are coprime). When the
slope b/a of the boundary is an integer (so a = 1), we may take k to be the number of (0, 1)
steps lying above the boundary (see Figure 2.1), as discussed in Section 2.4. Such steps are
called ‘flaws’ [9, 19, 34, 36].

When the slope b/a of the boundary is rational but non-integer, this definition of k is
no longer appropriate because some (0, 1) steps may lie partially above the boundary (see
Figure 2.2). In this case, we instead take k to be the number of lattice points of the path
that lie above the boundary, as discussed in Section 2.5. We shall use the same name ‘flaws’
for these lattice points, despite the change of setting.

Figure 2.1: A path having 5 of the (0, 1) steps lying above the boundary.

2.4 Boundaries of integer slope

In this section, we take k to be the number of (0, 1) steps of a path from (0, 0) to (g, gb)
that lie above the boundary.
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(a) This path has two of its (0, 1) steps
lying partially above the boundary.

(b) The number of lattice points lying
above the boundary is unambiguous.

Figure 2.2: A boundary of rational (non-integer) slope.

A classical result states that the number of paths from (0, 0) to (g, g) with k = 0 (known
as Dyck or Catalan paths) equals the gth Catalan number

1
g + 1

(
2g
g

)
.

Chung and Feller’s influential 1949 work [10] showed that the same count applies for all k.

Theorem 2.4.1 (Chung-Feller [10, Theorem 2A]). Let k satisfy 0 ≤ k ≤ g. Then the
number of paths from (0, 0) to (g, g) having k of the (0, 1) steps lying above the boundary
equals

1
g + 1

(
2g
g

)
.

Theorem 2.4.1 can be proven using bijective methods [35].

Huq generalized Theorem 2.4.1 to paths whose endpoint is (g, gb).

Theorem 2.4.2 (Huq [22, Corollary 5.1.2]). Let k satisfy 0 ≤ k ≤ gb. Then the number of
paths from (0, 0) to (g, gb) having k of the (0, 1) steps lying above the boundary equals

1
gb+ 1

(
(b+ 1)g

g

)
.

Further variations on Theorem 2.4.1 have been found [19, 27, 34].
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2.5 Boundaries of rational slope

In this section, we take k to be the number of lattice points of a path from (0, 0) to (ga, gb)
that lie above the boundary. As in Definition 1.1.1, we let Nk(g) be the appropriate set of
lattice paths for fixed coprime a, b.

In 1950, Grossman [18] conjectured an explicit formula for the number |N0(g)| of paths
from (0, 0) to (ga, gb) which lie weakly below the boundary (that is, which have no flaws).
In 1954, Bizley [7, Eq. (10)] proved Grossman’s formula using generating functions. Bizley [7,
Eq. (8)] also obtained an explicit formula for the number of paths which lie strictly below the
boundary (that is, which have no flaws and are not BPT). Since this second set is in bijection
with the set of paths lying strictly above the boundary (via rotation), this result gives the
value |Ng(a+b)−1(g)|. The values |N0(g)| and |Ng(a+b)−1(g)| are stated in Theorem 1.3.11. In
the nearly 70 years since Bizley’s results were published, the determination of |Nk(g)| has
remained an open problem for every intermediate value of k.

However, in 2019, Firoozi, Marwendo, Rattan [14] evaluated |Nk(g)| for the case g = 1 and
for the case a = b = 1.

Theorem 2.5.1 (Evaluation of |Nk(1)| [14]). We have

|Nk(1)| = 1
a+ b

(
a+ b

a

)
for all k satisfying 0 ≤ k < a+ b.

Theorem 2.5.2 (Evaluation of |Nk(g)| for a = b = 1 [14]). Let a = b = 1. Then

|Nk(g)| =
g−⌈ k+1

2 ⌉∑
i=0

CiCg−1−i for all k satisfying 0 ≤ k < 2g,

where Ci = 1
i+1
(2i

i

)
is the ith Catalan number.

Firoozi, Marwendo, Rattan [14] conjectured the result we have presented as Corollary 1.3.6
(Constant on blocks), based on numerical experiments together with the results of Theo-
rems 2.5.1 and 2.5.2. Their conjecture was a major inspiration for the formulation of our
main result Theorem 1.3.5. The truth of the conjecture is a direct corollary of this result.

The exact values stated in Theorems 2.5.1 and 2.5.2 imply the special cases g = 1 and
a = b = 1 of Corollary 1.3.6, respectively. Theorem 2.5.1 is equivalent to the statement that
(1.3.3) holds for g = 1, where µ0(1) takes the value 1

a+b

(a+b
a

)
. This expression for µ0(1) is

the same as that given by the path enumeration formula, Theorem 1.3.13:

µ0(1) = E0H1 = C⟨1⟩ = c1 = 1
a+ b

(
a+ b

a

)
.

13



Similarly, Theorem 2.5.2 is equivalent to the statement that (1.3.3) holds for a = b = 1,
where µj(g) takes the value

g−j∑
i=1

Ci−1Cg−i.

However, this expression for µj(g) when a = b = 1 does not take the same form as that
given by the path enumeration formula (even though both expressions are equal because
they count the same set).

Our central objective in this work is to find an explicit formula for |Nk(g)| for given a, b,
for all allowable values of k.
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Chapter 3

Proof of main result

For convenience, we restate our main result here.

Theorem 1.3.5. Let g, k satisfy 0 ≤ k < g(a+ b) − 1. Then

|Nk(g) \ Sk(g)| = |Nk+1(g)|.

We shall prove our main result in this chapter by constructing a bijection from Nk(g)\Sk(g)
toNk+1(g). We present some intuition for the proof method in Section 3.1 and give an outline
of the proof in Section 3.2. We then prove the result in detail in the rest of this chapter.

3.1 Building intuition

We identify various important attributes of paths and describe some basic path operations.
We then use these concepts to give a concise proof of Theorem 2.5.1 (which deals with the
case g = 1).

We begin with some terminology.

Definition 3.1.1 (Elevation). Let (i, j) be a point of a path in N(g). The elevation of (i, j)
is ja− ib.

The elevation of a particular point of a path in N(g) is a measure of the directed perpen-
dicular distance from that point to the path boundary. Note that points on the boundary
have zero elevation; points above the boundary have positive elevation; and points below
the boundary have negative elevation.

The points of a path closest to the boundary that do not lie on the boundary have special
significance.
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Definition 3.1.2 (Highest points below, lowest points above). Let p be a path in N(g).
The highest points below the boundary (HPBs) are those points (if any) of p lying strictly
below the boundary which attain the closest elevation to zero. We label the HPBs in order
as H1, . . . ,Hη. The lowest points above the boundary (LPAs) are defined analogously and
labelled L1, . . . , Lℓ.

See Figure 3.1 for an example of the HPBs and LPAs of a path.

0

4 1 −2

2

6 3 0 −3 −6

−2 −5 −8

−4

0

Figure 3.1: A path p in N5(2) for (a, b) = (4, 3), where the elevation of each point of p is
marked. The HPBs of p are the points (2, 1), (6, 4); the (unique) LPA of p is the point (1, 1).
The set of HPBs and the set of LPAs each impose a (respectively shaded) region which
contains no path points in its interior.

Definition 3.1.3 (Path split, subpath). Let p ∈ N(g) contain the points (0, 0) = R0,
R1, . . . , Rn−1, Rn = (ga, gb) in that order (and possibly contain other points). A split of p
at the points R1, . . . , Rn−1 is a decomposition of p into the n consecutive paths

p1 := p[R0, R1], p2 := p[R1, R2], . . . , pn := p[Rn−1, Rn],

where pi = p[Ri−1, Ri] represents the subpath of p between Ri−1 and Ri. We may then write
p as the concatenation p = p1p2 · · · pn.

Note that the flaws of a path p ∈ N(g) are defined in relation to the boundary joining
the startpoint (0, 0) to the endpoint (ga, gb). However, we consider the flaws of a proper
subpath r of p in relation to the boundary of r, not of p.

Remark 3.1.4. If a path p is split at a boundary point of p (other than the startpoint or
endpoint) into p1p2, each of p1 and p2 will have the same ‘slope’ (that is, the same values
of a, b) as p. However, if p is split into r1r2 at a point not lying on the boundary of p, then
each of r1 and r2 will have a slope different from p. In general, a subpath r of p has the
same slope as p if and only if r starts and ends at points of p having the same elevation. If
r is a proper subpath of p ∈ N(g) and has the same slope as p, then r ∈ N(h) for some h
satisfying h < g (for the same values of a, b).
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We next consider the operation of cyclically permuting the steps of a path r1r2 with respect
to the last point P of the r1 subpath to produce the path r2r1: see Figure 3.2 for an example.

P
r1

r2

(a) The path r1r2.

P

P

r1
r2

r1

r2

(b) This cyclic permuta-
tion sends P to the ori-
gin.

r1
r2

(c) The path r2r1.

Figure 3.2: Cyclically permuting the steps of r1r2 with respect to P .

Lemma 3.1.5. Let p be a path in N(g) containing a point P , and let f be the mapping
that cyclically permutes the steps of p with respect to P .

(i) Let the elevation of P be e. Then, under the mapping f , the elevation of each point
of p reduces by exactly e.

(ii) Let p have n + 1 boundary points, and suppose that P is an HPB. Then, under the
mapping f , the number of flaws increases by exactly n.

Proof.

(i) This follows from the definition of elevation.

(ii) This follows from the definition of HPB, noting that the first and last point of p merge
to form a single point in the cyclically permuted path f(p).

See Figure 3.3 for an illustration of the cyclic permutation f used in the proof of Lemma 3.1.5
(using the value n = 1 for part (ii)).

We now prove Theorem 2.5.1 (which deals with the case g = 1) using the concepts of
elevation, HPBs, LPAs, and cyclic permutations.

Proof of Theorem 2.5.1. Let k satisfy 0 ≤ k < a+b−1. Since |N(1)| =
(a+b

a

)
, it is sufficient

to exhibit a bijection f from Nk(1) to Nk+1(1).

Let p ∈ Nk(1), so that p has startpoint (0, 0) and endpoint (a, b). Since a, b are coprime, by
the definition of elevation each of the points of p (apart from the startpoint and endpoint)
has a unique elevation.
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Figure 3.3: Cyclic permutation of a path with respect to its HPB. This animation can be
viewed through a JavaScript-enabled PDF reader (such as Adobe Acrobat).

The path p has non-max flaws by assumption, and is not BPT because a, b are coprime.
Therefore p has at least one point strictly below the boundary, and by the uniqueness of
elevations p has a unique HPB H. Take f to be the mapping that cyclically permutes p
with respect to H. By Lemma 3.1.5(ii) with n = 1, the number of flaws in the resulting
path f(p) is k + 1 (see Figure 3.3), so f maps Nk(1) to Nk+1(1). The map f is invertible:
cyclically permute the image f(p) with respect to its unique LPA to recover the original
path p.

The proof of our main result is considerably more involved than might be suggested by the
simplicity of the bijection used in the preceding proof. Firstly, we wish to find a bijection
from Nk(g) \Sk(g) to Nk+1(g). In the case g = 1, we did not have to consider the set Sk(g)
because it is empty for all k satisfying 0 ≤ k < a+ b− 1. Secondly, in general we may not
assume that the path p ∈ Nk(g) \ Sk(g) has a unique HPB. Thirdly, cyclic permutation of
a path p ∈ Nk(g) \ Sk(g) need not necessarily map to Nk+1(g), as we now demonstrate.

Consider the path p ∈ N5(2) shown in Figure 3.4a. Cyclically permute p with respect to its
unique HPB H. The resulting path (seen in Figure 3.4b) has 7 flaws, not 6. The reason that
the number of flaws of p increases by two is that p touches the boundary at the point B,
so it is no longer true that each of the points of p (apart from the startpoint and endpoint)
has a unique elevation. Under cyclic permutation, the startpoint and endpoint of p merge
to form a single point as before, but additionally the elevation of the boundary point B
increases from 0 to create an additional flaw.

We can deal with the example path shown in Figure 3.4b using a modification of the
cyclic permutation technique: see Figure 3.5. Split p at the point B, and then apply cyclic
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B

H

(a) The path p.

B

(b) Cyclic permutation of p.

Figure 3.4: Cyclically permuting the steps of p with respect to H results in two additional
flaws.

B

(a) Split the path p at B. (b) Apply cyclic permutation
to the bracketed subpath.

(c) Resulting path.

Figure 3.5: Incrementing the flaws of p.

permutation as before but only to the bracketed subpath. This gives a mapping from N5(2)
to N6(2).

This example illustrates several of the key ideas we shall use for our general mapping:
distinguishing paths that are BPT from those that are not; rearranging subpaths of a path;
and defining the mapping recursively.

3.2 Proof outline

We shall prove Theorem 1.3.5 by constructing an explicit bijection

ϕg,k : Nk(g) \ Sk(g) → Nk+1(g)

for each k in the range 0 ≤ k < g(a+ b) − 1.

We specify three distinct actions for the map ϕg,k by constructing three different bijections.
Then, depending on the characteristics of each path p in its domain, ϕg,k will apply exactly
one of these actions to p.

We first partition the set Nk(g) \ Sk(g) into subsets Xk(g), Yk(g), Zk(g) and partition
(using a different method) the set Nk+1(g) into subsets Xk+1(g), Yk+1(g), Zk+1(g). Note
that we abuse the standard definition of a set partition by allowing empty sets to appear as
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partitioning subsets. We then construct an explicit bijection ϕX
g,k : Xk(g) → Xk+1(g), and

similarly ϕY
g,k and ϕZ

g,k, as illustrated in Figure 3.6. These three bijections collectively define
the composite map ϕg,k.

Since the number k of flaws of a path p ∈ N(g) is determined, we may define the function

ϕg : N(g) \ S(g) → N(g) \N0(g), (3.2.1)

where
ϕg(p) := ϕg,k(p) if p ∈ Nk(g) \ Sk(g).

Xk(g)

Yk(g)

Zk(g)

Sk(g)

Xk+1(g)

Yk+1(g)

Zk+1(g)

ϕX
g,k

ϕY
g,k

ϕZ
g,k

Nk(g) Nk+1(g)

Figure 3.6: The bijection ϕg,k : Nk(g) \ Sk(g) → Nk+1(g) is induced by the bijections
ϕX

g,k, ϕY
g,k, ϕZ

g,k between each partitioning subset of Nk(g) \ Sk(g) and the corresponding
partitioning subset of Nk+1(g).

In order to define the action of ϕg, we require an auxiliary map

ψg : Q(g) → Q(g), (3.2.2)

where Q(g) and Q(g) are subsets of N(g).

Both ϕg and ψg are defined recursively in intertwined fashion, as shown in Figure 3.7.

ϕg

ϕg−1

ϕ1

ψg−1

ψ1

ψ0

...
...

(a) The map ϕg is defined us-
ing the shaded maps.

ϕg

ϕg−1

ϕ1

ψg

ψg−1

ψ1

ψ0

...
...

(b) The map ψg is defined us-
ing the shaded maps.

Figure 3.7: Recursive definition of ϕg and ψg.
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Our strategy for proving Theorem 1.3.5 is to show that ϕg is a bijection for all g. Represent
by P (g) the statement that ϕg is a bijection and that some further conditions on ϕg hold,
and represent by R(g) the statement that ψg is a bijection and that some further conditions
on ψg hold.

We prove by induction on g that P (g) and R(g) hold for all g ≥ 0, as illustrated in Figure 3.8.
We then obtain Theorem 1.3.5 as an immediate consequence since P (g) implies that ϕg,k is
a bijection for each k.

P (g)
P (g − 1)

P (1)
P (0)

R(g − 1)

R(1)
R(0)

...
...

(a) Proving P (g) requires all
of the shaded statements.

P (g)
P (g − 1)

P (1)
P (0)

R(g)
R(g − 1)

R(1)
R(0)

...
...

(b) Proving R(g) requires all
of the shaded statements.

Figure 3.8: Coupled induction on g used to show that P (g) and R(g) hold.

We construct the maps ϕg and ψg in Sections 3.3 to 3.5, and then prove P (g) and R(g) by
induction in Section 3.6.

3.3 Domain and codomain of ϕg and ψg

In this section, we use vocabulary from Section 2.5 to define the domain and codomain of
the maps ϕX

g,k, ϕY
g,k, ϕZ

g,k (collectively giving ϕg) and ψg.

We define the subsets Q(g) and Q(g) of N(g) that will form the domain and codomain
of ψg, respectively. Recall that ε is the empty path.

Definition 3.3.1 (Subsets Q(g), Q(g)). Let Q(0) := {ε} and Q(0) := {ε}. For g > 0, let

Q(g) := {p ∈ N(g) : p[Bβ−1, Bβ] has at least one flaw},

Q(g) := {p ∈ N(g) : p[Bβ−1, Bβ] has non-max flaws},

where the boundary points of p ∈ N(g) are denoted by B0, B1, . . . , Bβ.

We partition Nk(g) \ Sk(g) into the subsets Xk(g), Yk(g), Zk(g) that will form the domain
of ϕX

g,k, ϕY
g,k, ϕZ

g,k, respectively.

Definition 3.3.2 (Subsets Xk(g), Yk(g), Zk(g)). Let g, k satisfy 0 ≤ k < g(a + b) − 1.
Partition Nk(g) \ Sk(g) into subsets Xk(g), Yk(g), Zk(g) comprising those paths p, whose
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boundary points are B0, B1, . . . , Bβ, satisfying the specified conditions:

p belongs to conditions
Xk(g) β = 1 (not BPT)
Yk(g) β > 1 and p[B1, Bβ] /∈ S

Zk(g) β > 1 and p[B1, Bβ] ∈ S

We now partition Nk+1(g) (using a different method) into the subsets Xk+1(g), Yk+1(g),
Zk+1(g) that will form the codomain of ϕX

g,k, ϕY
g,k, ϕZ

g,k, respectively.

Definition 3.3.3 (Subsets Xk+1(g), Yk+1(g), Zk+1(g)). Let g, k satisfy 0 ≤ k < g(a+ b) − 1.
Partition Nk+1(g) into subsets Xk+1(g), Yk+1(g), Zk+1(g) comprising those paths p, whose
boundary points are B0, B1, . . . , Bβ and whose LPAs are L1, . . . , Lℓ, satisfying the specified
conditions:

p belongs to conditions

Xk+1(g)
p[B1, Bβ] (possibly empty) has no flaws.
p[L1, Lℓ] ∈ Q(h) for some h satisfying 0 ≤ h < g

Yk+1(g) p[B1, Bβ] (non-empty) has at least one flaw

Zk+1(g)
p[B1, Bβ] (possibly empty) has no flaws.
p[L1, Lℓ] /∈ Q(h) for each h satisfying 0 ≤ h < g

3.4 The maps ϕXg,k, ϕYg,k, ϕZg,k
In this section, we define the maps

ϕX
g,k : Xk(g) → Xk+1(g),

ϕY
g,k : Yk(g) → Yk+1(g),

ϕZ
g,k : Zk(g) → Zk+1(g),

(3.4.1)

for g, k satisfying 0 ≤ k < g(a + b) − 1. These three maps then collectively define ϕg,k :
Nk(g) \ Sk(g) → Nk+1(g) piecewise as follows:

ϕg,k =


ϕX

g,k on Xk(g),

ϕY
g,k on Yk(g),

ϕZ
g,k on Zk(g).

The action that each of ϕX
g,k, ϕY

g,k, ϕZ
g,k performs on a path p in its domain involves rear-

ranging and manipulating subpaths of p.
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We must therefore specify a path split representation for a typical path in each of the sets
Xk(g), Yk(g), Zk(g).

Lemma 3.4.1. Let g, k satisfy 0 ≤ k < g(a + b) − 1, and let p ∈ Nk(g) \ Sk(g) (so that p
has non-max flaws). Let B0, B1, . . . , Bβ be the boundary points of p.

Case 1: p ∈ Xk(g). Then β = 1. Let the HPBs of p be H1, . . . ,Hη (where η ≥ 1), and let

r1 = p[B0, H1],

r2 = p[Hη, B1].

Then we may write p = r1str2, where

1. st is the unique split (at some HPB Hγ) of p[H1, Hη] such that s ∈ Q(h) for
some h satisfying 0 ≤ h < g and t has no flaws,

2. r1r2, r1tr2, r1sr2 are each not BPT.

Case 2: p ∈ Yk(g). Let

p1 = p[B0, B1],

p2 = p[B1, Bβ].

Then we may write p = p1p2, where p2 ∈ N(h)\S(h) for some h satisfying 0 < h < g.

Case 3: p ∈ Zk(g). The subpath p[B0, B1] has at least one flaw. Let L be the last LPA of
p[B0, B1], and let

r1 = p[B0, L],

r2 = p[L,B1],

t = p[B1, Bβ−1] (possibly empty),

s = p[Bβ−1, Bβ] (non-empty).

Then we may write p = r1r2ts, where

1. t has no flaws and s has max flaws,

2. r1sr2 is not BPT.

Proof.

Case 1: p ∈ Xk(g).

1. This follows from Definitions 3.3.1 and 3.3.2, noting that if s is empty then h = 0.

23



2. Since the path p = r1str2 lies in Xk(g), it is not BPT. The subpath st begins and
ends at the same elevation because st = p[H1, Hη], and the subpath s begins and
ends at the same elevation because s ∈ Q(h). Therefore the paths r1r2, r1tr2,
r1sr2 are each not BPT.

Case 2: p ∈ Yk(g). This follows from Definition 3.3.2.

Case 3: p ∈ Zk(g). The subpath p[B0, B1] has at least one flaw, otherwise we would have
that p = p[B0, B1] p[B1, Bβ] ∈ S by Definitions 1.3.4 and 3.3.2, contradicting that
p /∈ Sk(g).

1. This follows from Definitions 1.3.4 and 3.3.2.

2. The subpath r1r2 = p[B0, B1] is not BPT, and the subpath s = p[Bβ−1, Bβ]
begins and ends at the same elevation and has max flaws. Therefore the path
r1sr2 is not BPT.

We next specify a path split representation for a typical path in each of the sets Xk+1(g),
Yk+1(g), Zk+1(g).

Lemma 3.4.2. Let g, k satisfy 0 ≤ k < g(a + b) − 1, and let p ∈ Nk+1(g) (so that p has
at least one flaw). Let B0, B1, . . . , Bβ be the boundary points of p, and let L1, . . . , Lℓ be the
LPAs of p (where ℓ ≥ 1).

Case 1: p ∈ Xk+1(g). Let

r2 = p[B0, L1],

s = p[L1, Lℓ] (possibly empty),

r1 = p[Lℓ, B1],

t = p[B1, Bβ] (possibly empty).

Then we may write p = r2sr1t, where

1. s ∈ Q(h) for some h satisfying 0 ≤ h < g and t has no flaws,

2. r2r1 is not BPT.

Case 2: p ∈ Yk+1(g). Let

p1 = p[B0, B1],

p2 = p[B1, Bβ] (non-empty).

Then we may write p = p1p2, where p2 ∈ Nk′+1(h) for some h, k′ satisfying 0 < h < g

and k′ ≥ 0.
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Case 3: p ∈ Zk+1(g). Then ℓ > 1. Let

r1 = p[B0, Lℓ−1],

s = p[Lℓ−1, Lℓ] (non-empty),

r2 = p[Lℓ, B1],

t = p[B1, Bβ] (possibly empty).

Then we may write p = r1sr2t, where s has max flaws and t has no flaws.

Proof.

Case 1: p ∈ Xk+1(g).

1. This follows from Definition 3.3.3.

2. Since r2sr1 is not BPT, and L1 and Lℓ have the same elevation, the path r2r1 is
not BPT.

Case 2: p ∈ Yk+1(g). This follows from Definition 3.3.3.

Case 3: p ∈ Zk+1(g). By Definition 3.3.3, we have p[L1, Lℓ] /∈ Q(0) and so ℓ > 1. The
statement then follows from Definitions 3.3.1 and 3.3.3.

We now define the composite map ϕg,k : Nk(g) \ Sk(g) → Nk+1(g) by specifying each
of the maps ϕX

g,k, ϕY
g,k, ϕZ

g,k according to their action on a path represented according to
Lemma 3.4.1.

Definition 3.4.3 (ϕX
g,k, ϕY

g,k, ϕZ
g,k). Let g, k satisfy 0 ≤ k < g(a + b) − 1 and let p ∈

Nk(g) \ Sk(g).

Case 1: p ∈ Xk(g). Write p = r1str2 according to Case 1 of Lemma 3.4.1, where s ∈ Q(h)
for some h satisfying 0 ≤ h < g. Then the map ϕX

g,k : Xk(g) → Xk+1(g) is given by

ϕX
g,k(p) = r2ψh(s)r1t.

Case 2: p ∈ Yk(g). Write p = p1p2 according to Case 2 of Lemma 3.4.1, where p2 ∈ N(h)\
S(h) for some h satisfying 0 < h < g. Then the map ϕY

g,k : Yk(g) → Yk+1(g) is given
by

ϕY
g,k(p) = p1ϕh(p2).

25



Case 3: p ∈ Zk(g). Write p = r1r2ts according to Case 3 of Lemma 3.4.1. Then the map
ϕZ

g,k : Zk(g) → Zk+1(g) is given by

ϕZ
g,k(p) = r1sr2t.

We shall show in Section 3.6 that each of the maps ϕX
g,k, ϕY

g,k, ϕZ
g,k has the specified codomain.

We refine Figure 3.7a in Figure 3.9 by illustrating how the maps ϕY
g,k and ϕX

g,k are recursively
defined in terms of the maps {ϕh : 0 < h < g} and the auxiliary maps {ψh : 0 ≤ h < g} (to
be defined in Section 3.5), respectively.

ϕX
g,k

ϕg−1

ϕ1

ψg−1

ψ1

ψ0

...
...

(a) Defining ϕX
g,k requires

the shaded maps.

ϕY
g,k

ϕg−1

ϕ1

ψg−1

ψ1

ψ0

...
...

(b) Defining ϕY
g,k requires

the shaded maps.

ϕZ
g,k

ϕg−1

ϕ1

ψg−1

ψ1

ψ0

...
...

(c) Map ϕZ
g,k is directly

defined.

Figure 3.9: Recursive definition of ϕX
g,k and ϕY

g,k. The map ϕZ
g,k is defined directly without

the use of recursion.

3.5 The map ψg

In this section, we define the auxiliary map ψg : Q(g) → Q(g). We begin by introducing the
reversal of a path.

Definition 3.5.1. Let p be a path whose ordered steps are s1, s2, . . . , sn. The reversal of p
is the path p whose ordered steps are sn, . . . , s2, s1.

Geometrically, p is obtained by rotating p by half a revolution. This leads to the following
observation.

Remark 3.5.2. For g ≥ 0, the reversal mapping

: N(g) → N(g)

is a bijection that for all p = p1p2 ∈ N(g) satisfies p1p2 = p2 p1.

Under the reversal mapping , a flaw maps to a non-flaw; a boundary point maps to a
boundary point; a point below the boundary maps to a flaw. This gives the following
counting result.
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Remark 3.5.3. Let p ∈ N(g) have k flaws and β + 1 boundary points. Then p has
g(a+ b) − β − k flaws.

We now specify a path split representation for a typical path in Q(g).

Lemma 3.5.4. Let g > 0 and q ∈ Q(g) have boundary points B0, B1, · · · , Bβ. Let

q1 = q[B0, B1],

q2 = q[B1, Bβ] (possibly empty).

Then we may write q = q1q2, where

1. q2 ∈ Q(h) for some h satisfying 0 ≤ h < g,

2. if q2 ∈ Q(0), then q1 has at least one flaw.

Proof. Since g > 0, we have that q = q1q2 is non-empty. The results follow from Defini-
tion 3.3.1 by considering the cases that q2 is non-empty or empty.

We now define the map ψg : Q(g) → Q(g). In view of Definition 3.3.1, we take ψ0 to be
the trivial bijection which maps the empty path to the empty path. We define ψg for g > 0
according to its action on a path represented according to Lemma 3.5.4.

Definition 3.5.5 (ψg). Let g > 0. Write q = q1q2 according to Lemma 3.5.4, where
q2 ∈ Q(h) for some h satisfying 0 ≤ h < g. Then the map ψg : Q(g) → Q(g) in given by

ψg(q) = ϕg

(
q1ψh(q2)

)
. (3.5.1)

The map ψg is defined recursively using the map ϕg and the maps {ψh : 0 ≤ h < g}, as
shown in Figure 3.7b. We shall show in Section 3.6 that the expression (3.5.1) is well-defined
and that the map ψg has the specified codomain.

We remark that identifying an appropriate map ψg was a major milestone in the develop-
ment of this thesis.

3.6 The statements P (g) and R(g)

In this section, we specify a statement P (g) asserting (among other properties) that ϕX
g,k,

ϕY
g,k, ϕZ

g,k are bijections for each k, and a statement R(g) asserting (among other properties)
that ψg is a bijection. We then prove the statements P (g) and R(g) concurrently, by induc-
tion on g ≥ 0 (see Figure 3.8). As noted in Section 3.2, establishing P (g) for each g > 0
proves our main result (Theorem 1.3.5).
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We still must show that each of the maps ϕX
g,k, ϕY

g,k, ϕZ
g,k and ψg has the appropriate

codomain specified in (3.4.1) and (3.2.2). This will be included in the proofs that each of
these maps is a bijection. We now define the statements P (g) and R(g).

Definition 3.6.1 (Statements P (0), R(0)). The statement P (0) is defined to be true. The
statement R(0) is that ψ0 : Q(0) → Q(0) is a bijection.

Definition 3.6.2 (Statement P (g)). Let g > 0. The statement P (g) is that the following
properties hold for all k satisfying 0 ≤ k < g(a+ b) − 1.

PX
bij(g) : ϕX

g,k is a bijection.

P Y
bij(g) : ϕY

g,k is a bijection.

PZ
bij(g) : ϕZ

g,k is a bijection.

PX
elev(g) : Let p ∈ Xk(g) and let the HPBs of p have elevation −e. Then the LPAs of

ϕX
g,k(p) have elevation e.

Pflaw(g) : Let p ∈ N(g) \ S(g) and p = ϕg(p), and write p = p1 · · · pn and p = p1 · · ·pm

where each path is split at its respective boundary points. Then

(i) if p1 has at least one flaw, then so does p1,

(ii) suppose n > 1. If p1 has at least one flaw, then so does p1.

Definition 3.6.3 (Statement R(g)). Let g > 0. The statement R(g) is that the following
properties hold.

Rbij(g) : ψg is a bijection.

Rflaw(g) : Let q ∈ Q(g) and q = ψg(q), and write q = q1 · · · qn and q = q1 · · ·qm where
each path is split at its respective boundary points. Then

(i) q has exactly n more flaws than q,

(ii) q has exactly m fewer flaws than q.

Relev(g) : Let q ∈ Q(g) and let the LPAs of q have elevation e. Then the HPBs of ψg(q)
have elevation −e.

We shall prove the statements P (g) and R(g) by induction on g ≥ 0, according to the
roadmap given below.

Remark 3.6.4. The statements P (g), R(g) are defined differently for g = 0 and g > 0 (see
Definitions 3.6.1 to 3.6.3). Whenever we use the inductive hypothesis that P (h) and R(h)
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hold for all h satisfying 0 ≤ h < g, we shall be careful to consider the cases h = 0 and h > 0
separately as necessary.

Proof Roadmap:

I. (Base case). The statement P (0) holds vacuously. The statement R(0) holds trivially
by Definition 3.3.1.

II. (Inductive hypothesis). Let g > 0. Assume that

statements P (h) and R(h) hold for all h satisfying 0 ≤ h < g. (3.6.1)

III. (Inductive step for P (g)). Lemma 3.6.5. Subject to the inductive hypothesis (3.6.1),
statement P (g) holds. This is proven using the following claims.

(a) Claim 3.6.6. PX
bij(g) and PX

elev(g) hold.

(b) Claim 3.6.7. P Y
bij(g) holds.

(c) Claim 3.6.8. PZ
bij(g) holds.

(d) Claim 3.6.9. Pflaw(g) holds.

IV. (Inductive step for R(g)). Lemma 3.6.10: Subject to the inductive hypothesis (3.6.1),
statement R(g) holds. This is proven using Lemma 3.6.5 in addition to the following
claims.

(a) Claim 3.6.11. Rbij(g) holds.

(b) Claim 3.6.12. Rflaw(g) holds.

(c) Claim 3.6.13. Relev(g) holds.

V. (Conclusion). This completes the induction (which implies the main result, Theo-
rem 1.3.5).

Following step II of the Proof Roadmap, let g > 0 and assume that the inductive hypothesis
(3.6.1) holds. We write

X(g) =
⋃·
k

Xk(g), Y (g) =
⋃·
k

Yk(g), Z(g) =
⋃·
k

Zk(g),

X (g) =
⋃·
k

Xk+1(g), Y(g) =
⋃·
k

Yk+1(g), Z(g) =
⋃·
k

Zk+1(g).

Lemma 3.6.5. Subject to the inductive hypothesis (3.6.1), statement P (g) holds.

We split the proof of Lemma 3.6.5 into Claims 3.6.6 to 3.6.9.
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Claim 3.6.6. The statements PX
bij(g) and PX

elev(g) hold.

Proof. Let k satisfy 0 ≤ k < g(a+ b) − 1. Let p ∈ Xk(g) and write p = r1str2 according to
Case 1 of Lemma 3.4.1, where s ∈ Q(h) for some h satisfying 0 ≤ h < g and t has no flaws.
Write s = ψh(s) and p = ϕX

g,k(p). By Definition 3.4.3,

p = r2sr1t. (3.6.2)

Let the HPBs of p have elevation −e. We shall show in the following sequence of steps that
PX

bij(g) and PX
elev(g) hold:

(i) PX
elev(g) holds,

(ii) ϕX
g,k has codomain Xk+1(g),

(iii) ϕX
g,k is one-to-one,

(iv) ϕX
g,k is onto.

(i) PX
elev(g) holds:

By the definition of r1, r2 and Lemma 3.4.1, the path r1r2 is not BPT and has a
unique HPB with elevation −e occurring at the last point of the r1 subpath of r1r2.
By Lemma 3.1.5(i),

the path r2r1 has a unique LPA with elevation e occurring at the last point

of the r2 subpath of r2r1. (3.6.3)

Since t has no flaws, the path r2r1t also has a unique LPA with elevation e, occurring
at the last point of the r2 subpath of r2r1t. To show that PX

elev(g) holds, it is therefore
sufficient by (3.6.2) to show that

the elevation of the HPBs (if any) of s is strictly less than −e. (3.6.4)

If h = 0, then s ∈ Q(0) is empty. Otherwise h > 0, and so s ∈ Q(h) has at least one
flaw by Definition 3.3.1. Since r1sr2 is not BPT by Lemma 3.4.1, and the last point
of the r1 subpath of r1sr2 has elevation −e, the elevation of the LPAs of s is strictly
greater than e. Then by R(h) of the inductive hypothesis (with h > 0), Relev(h) holds
and so the elevation of the HPBs of s is strictly less than −e. Therefore (3.6.4) holds.

(ii) ϕX
g,k has codomain Xk+1(g):

We shall show that p = r2sr1t is in X (g) and that p has k + 1 flaws.
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By the definition of r1, r2, the path r2r1 is not BPT. Then from (3.6.3) and (3.6.4),

r2sr1 is not BPT. (3.6.5)

We also find from (3.6.3) and (3.6.4) that the LPAs of r2sr1 are identically the bound-
ary points of s. By the inductive hypothesis, the codomain of ψh is Q(h), and so
s ∈ Q(h). It then follows from Definitions 3.3.1 and 3.3.3 that r2sr1 ∈ X (h∗) for
some h∗. Since t has no flaws, we then have p = r2sr1t ∈ X (g).

It remains to show that p = r2sr1t has k + 1 flaws. Let s (in isolation) have k′ flaws,
and let s ∈ Q(h) have m+1 boundary points. Since r1r2 is not BPT by Lemma 3.4.1,
this implies that r1r2s has m+ 2 boundary points.

Claim 1. The path r1r2 has k − k′ flaws.

Claim 2. The path s has k′ −m flaws.

Combining Claims 1 and 2, we see that r1r2s has (k − k′) + (k′ −m) = k −m flaws.
Then from Lemma 3.1.5(ii) we find that (r2s)r1 has (k−m) + (m+ 1) = k+ 1 flaws.
Since t has no flaws, this implies that p = r2sr1t also has k + 1 flaws, as required.

We now prove Claim 1. We know that p = r1str2 ∈ Xk(g) has k flaws, and that s (in
isolation) has k′ flaws. Since the s subpath of p = r1str2 starts and ends at an HPB
of p, the path r1tr2 (in isolation) has k − k′ flaws. Since t has no flaws, the path r1r2

also has k − k′ flaws, proving Claim 1.

We now prove Claim 2. If h = 0, then both s and s are empty and m = k′ = 0, and
so s has 0 = k′ −m flaws. Otherwise h > 0, and then by Rflaw(h)(ii) of the inductive
hypothesis, s has m fewer flaws than s, namely k′ −m flaws. This proves Claim 2.

(iii) ϕX
g,k is one-to-one:

Let p′ ∈ Xk(g) satisfy ϕX
g,k(p′) = ϕX

g,k(p).

Write p′ = r′
1s

′t′r′
2 according to Lemma 3.4.1, where s′ ∈ Q(h′) for some h′ satisfying

0 ≤ h′ < g. By the inductive hypothesis, ψh′ has codomain Q(h′). Let s′ = ψh′(s′) ∈
Q(h′). Using Definition 3.4.3, we have

r2sr1t = ϕX
g,k(p) = ϕX

g,k(p′) = r′
2s

′r′
1t

′. (3.6.6)

We know by (3.6.5) that r2sr1 is not BPT, and similarly that r′
2s

′r′
1 is not BPT. We

therefore conclude from (3.6.6) that r2sr1 = r′
2s

′r′
1 and t = t′.
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We know by (3.6.3) and (3.6.4) that the subpath s of r2sr1 starts at the first LPA and
ends at the last LPA of the path r2sr1. The same is true of the s

′ subpath of r′
2s

′r′
1.

Since r2sr1 and r′
2s

′r′
1 are the same path, they have the same LPAs and so s = s

′ and
therefore r1 = r′

1 and r2 = r′
2.

We have seen that ψh has codomain Q(h), and ψh′ has codomain Q(h′). It follows
from ψh(s) = s = s

′ = ψh′(s′) that h = h′. Then s = s′, because ψh is a bijection by
the inductive hypothesis. Therefore p = r1str2 = r′

1s
′t′r′

2 = p′.

(iv) ϕX
g,k is onto:

(Note that we reassign the variable names p,p, r1, r2, t, s, s, e, h in the rest of this
proof.) Let p ∈ Xk+1(g). Write p = r2sr1t according to Lemma 3.4.2, where s ∈ Q(h)
for some h satisfying 0 ≤ h < g and t (possibly empty) has no flaws. Since ψh

is a bijection by the inductive hypothesis, we may define s = ψ−1
h (s) ∈ Q(h). Let

p = r1str2. We shall show that p ∈ Xk(g) and that ϕX
g,k(p) = p.

Let the LPAs of p have elevation e.

Claim 1. r1r2 is not BPT and has a unique HPB at elevation −e occurring at the
last point of the r1 subpath.

Claim 2. The LPAs (if any) of s ∈ Q(h) have elevation strictly greater than e.

Since t has no flaws, Claims 1 and 2 imply that

(1) p = r1str2 is not BPT,

(2) the first and last HPB of p occur at the first and last point of the subpath st.

From (1) and Definition 3.3.2, we have p ∈ Xk∗(g) for some k∗. From (2) and Def-
inition 3.3.1, the split r1str2 of p ∈ Xk∗(g) is consistent with the split described in
Lemma 3.4.1 and so by Definition 3.4.3 we have

ϕX
g,k∗(p) = r2ψh(s)r1t = r2sr1t = p ∈ Xk+1(g).

It then follows from (ii) that p ∈ Xk∗+1(g), and so k∗ = k as required.

We now prove Claim 1. By the definition of r1, r2 and Lemma 3.4.2, r2r1 is not BPT
and has a unique LPA at elevation e occurring at the last point of the r2 subpath
of r2r1. Claim 1 now follows from Lemma 3.1.5(i).

We now prove Claim 2. If h = 0, then s ∈ Q(0) is empty. Otherwise h > 0, and then
by definition of s in Lemma 3.4.2 the HPBs of s have elevation −e′ for some e′ > e.
Let the elevation of the LPAs of s ∈ Q(h) be d. Since h > 0, we may use Relev(h) of
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the inductive hypothesis to show that d = e′. Therefore the elevation of the LPAs of
s is strictly greater than e, proving Claim 2.

Claim 3.6.7. The statement P Y
bij(g) holds.

Proof. Let k satisfy 0 ≤ k < g(a + b) − 1. Let p ∈ Yk(g) and write p = p1p2 according to
Lemma 3.4.1, where p1 is not BPT and p2 ∈ N(h) \ S(h) for some h satisfying 0 < h < g.
Write p = ϕY

g,k(p). By Definition 3.4.3,

p = p1ϕh(p2). (3.6.7)

We shall show in the following sequence of steps that P Y
bij(g) holds:

(i) ϕY
g,k has codomain Yk+1(g),

(ii) ϕY
g,k is one-to-one,

(iii) ϕY
g,k is onto.

(i) ϕY
g,k has codomain Yk+1(g):

We shall show that p = p1ϕh(p2) has k + 1 flaws and that p is in Y(g).

Let p2 have k′ flaws, and then p1 has k − k′ flaws. Since h > 0, by the inductive
hypothesis ϕh,k′ maps p2 ∈ Nk′(h) \ Sk′(h) to a path in Nk′+1(h). Therefore ϕh(p2) =
ϕh,k′(p2) has k′ + 1 flaws. The number of flaws of p = p1ϕh(p2) is then (k − k′) +
(k′ + 1) = k + 1. Since ϕh(p2) has k′ + 1 > 0 flaws, by Definition 3.3.3 we obtain
p = p1ϕh(p2) ∈ Y(g).

(ii) ϕY
g,k is one-to-one:

Let p′ ∈ Yk(g) satisfy ϕY
g,k(p) = ϕY

g,k(p′).

Write p′ = p′
1p

′
2 according to Lemma 3.4.1, where p′

1 is not BPT and p′
2 ∈ N(h′) \ S(h′)

for some h′ satisfying 0 < h′ < g. Using Definition 3.4.3, we have

p1ϕh(p2) = ϕY
g,k(p) = ϕY

g,k(p′) = p′
1ϕh′(p′

2).

Since p1 and p′
1 are not BPT, it follows that p1 = p′

1 and ϕh(p2) = ϕh′(p′
2). Since

h > 0 and h′ > 0, by the inductive hypothesis ϕh and ϕh′ have codomain N(h) and
N(h′), respectively. It then follows from ϕh(p2) = ϕh′(p′

2) that h = h′. Since ϕh is a
bijection by the inductive hypothesis, this gives p2 = p′

2 and so p = p1p2 = p′
1p

′
2 = p′.
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(iii) ϕY
g,k is onto:

(Note that we reassign variable names in the rest of this proof.) Let p ∈ Yk+1(g).
Write p = p1p2 according to Lemma 3.4.2, where p1 is not BPT and p2 ∈ Nk′+1(h)
for some h, k′ satisfying 0 < h < g and k′ ≥ 0.

Since p2 has k′ + 1 flaws, the path p1 has k − k′ flaws. Since h > 0, by the inductive
hypothesis ϕh,k′ is a bijection from Nk′(h) \ Sk′(h) to Nk′+1(h). We may therefore
define

p2 = ϕ−1
h,k′(p2) ∈ Nk′(h) \ Sk′(h),

so p2 has k′ flaws. Let p = p1p2, which has (k − k′) + k′ = k flaws. Since p2 /∈ S, we
have by Definition 3.3.2 that p ∈ Yk(g). Since p1 is not BPT, the split p1p2 of p is
consistent with the split described in Lemma 3.4.1. Therefore by Definition 3.4.3 we
have

ϕg(p) = ϕY
g,k(p1p2) = p1ϕh(p2) = p1p2 = p,

as required.

Claim 3.6.8. The statement PZ
bij(g) holds.

Proof. Let k satisfy 0 ≤ k < g(a + b) − 1. Let p ∈ Zk(g) and write p = r1r2ts according
to Lemma 3.4.1, where t (possibly empty) has no flaws and s (non-empty) has max flaws.
Write p = ϕZ

g,k(p). By Definition 3.4.3,

p = r1sr2t. (3.6.8)

We shall show in the following sequence of steps that PZ
bij(g) holds:

(i) ϕZ
g,k has codomain Zk+1(g),

(ii) ϕZ
g,k is one-to-one,

(iii) ϕZ
g,k is onto.

(i) ϕZ
g,k has codomain Zk+1(g):

We shall show that p = r1sr2t = ϕZ
g,k(p) has k + 1 flaws and that p is a member

of Z(g).

The path s has max flaws, and the last point of the r1 subpath of r1r2ts lies above
the boundary. Therefore the path p = r1sr2t has one more flaw than p = r1r2ts and
so has k + 1 flaws.
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By Lemma 3.4.1, r1sr2 is not BPT, and it follows by Definitions 3.3.1 and 3.3.3 that
r1sr2 ∈ Z(h) for some h. Since t has no flaws, it follows that r1sr2t ∈ Z(g).

(ii) ϕZ
g,k is one-to-one:

Let p′ ∈ Zk(g) satisfy ϕZ
g,k(p) = ϕZ

g,k(p′).

Write p′ = r′
1r

′
2t

′s′ according to Lemma 3.4.1, where s′ has max flaws. Using Defini-
tion 3.4.3, we have

r1sr2t = ϕZ
g,k(p) = ϕZ

g,k(p′) = r′
1s

′r′
2t

′.

Since r1sr2 and r′
1s

′r′
2 are not BPT by Lemma 3.4.1, it follows that r1sr2 = r′

1s
′r′

2
and t = t′.

Since s has max flaws, and the last point of subpath r1 of r1r2 is the last LPA of r1r2,
the subpath s of r1sr2 connects the last two LPAs of r1sr2. The same is true of the s′

subpath of r′
1s

′r′
2. Since r1sr2 and r′

1s
′r′

2 are the same path, they have the same LPAs
and so s = s′. Therefore r1 = r′

1 and r2 = r′
2, and so p = r1r2ts = r′

1r
′
2t

′s′ = p′.

(iii) ϕZ
g,k is onto:

(Note that we reassign variable names in the rest of this proof.) Let p ∈ Zk+1(g).
Write p = r1sr2t according to Lemma 3.4.2, where t (possibly empty) has no flaws
and s (non-empty) has max flaws. Let p = r1r2ts. We shall show that p ∈ Zk(g) and
that ϕZ

g,k(p) = p.

By Definition 3.3.2, we have p ∈ Zk∗(g) for some k∗. The split r1r2ts of p ∈ Zk∗(g) is
consistent with the split described in Lemma 3.4.1 and so by Definition 3.4.3 we have

ϕZ
g,k∗(p) = r1sr2t = p ∈ Zk+1(g).

It then follows from (i) that p ∈ Zk∗+1(g), and so k∗ = k as required.

Claim 3.6.9. The statement Pflaw(g) holds.

Proof. Let p ∈ N(g) \S(g) and p = ϕg(p), and write p = p1 · · · pn and p = p1 · · ·pm where
each path is split at its respective boundary points.

(i): Suppose p1 has at least one flaw. We shall show that p1 has at least one flaw in each
of the cases p ∈ X(g), p ∈ Y (g), p ∈ Z(g).
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Case p ∈ X(g). Write p = r1str2 ∈ X(g) according to Lemma 3.4.1, where s ∈ Q(h)
for some h satisfying 0 ≤ h < g. By Definition 3.4.3,

p1 · · ·pm = ϕg(p) = r2ψh(s)r1t.

By the definition of r2, none of the interior boundary points of r2ψh(s)r1t is
contained in the r2 subpath, and the last point of this subpath lies above the
boundary. Therefore p1 has at least one flaw.

Case p ∈ Y (g). Using Definition 3.4.3, we have

p1 · · ·pm = ϕg(p) = p1ϕh(p2 · · · pn)

for some h satisfying 0 < h < g. Since p1 and p1 are not BPT by definition,
p1 = p1 and so p1 has at least one flaw.

Case p ∈ Z(g). Write p = r1r2ts ∈ Z(g) according to Lemma 3.4.1. By Defini-
tion 3.4.3,

p1 · · ·pm = ϕg(p) = r1sr2t.

By the definition of r1, none of the interior boundary points of r1sr2t is contained
in the r1 subpath, and the last point of this subpath lies above the boundary.
Therefore p1 has at least one flaw.

(ii): Suppose that n > 1 and that p1 has at least one flaw. We shall show that p1 has at
least one flaw. Since n > 1, the path p is BPT and so p /∈ X(g) by Definition 3.3.2.
Suppose, for a contradiction, that p1 has no flaws. Since p = p1p2 . . . pn /∈ S(g) by
assumption, this implies that p2 . . . pn /∈ S. Therefore p ∈ Y (g) by Definition 3.3.2.
By Definition 3.4.3,

p1 · · ·pm = ϕg(p) = p1ϕh(p2 · · · pn)

for some h satisfying 0 < h < g. Since p1 and p1 are not BPT by definition, p1 = p1

and so p1 has no flaws, contrary to assumption.

Claims 3.6.6 to 3.6.9 collectively establish Lemma 3.6.5, completing step III of the Proof
Roadmap. The final step of the Roadmap is step IV, which we prove in Lemma 3.6.10.

Lemma 3.6.10. Subject to the inductive hypothesis (3.6.1), statement R(g) holds.

We split the proof of Lemma 3.6.10 into Claims 3.6.11 to 3.6.13, and make use of Lemma 3.6.5.

Claim 3.6.11. The statement Rbij(g) holds.
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Proof. Let q ∈ Q(g) and write q = q1q2 according to Lemma 3.5.4, where q2 ∈ Q(h) for
some h satisfying 0 ≤ h < g. Write q = ψg(q). By Definition 3.5.5,

q = ϕg

(
q1ψh(q2)

)
. (3.6.9)

We shall show in the following sequence of steps that Rbij(g) holds:

(i) the expression (3.6.9) for q is well-defined,

(ii) ψg has codomain Q(g),

(iii) ψg is one-to-one,

(iv) ψg is onto.

(i) The expression (3.6.9) for q is well-defined:

It is sufficient to show that q1ψh(q2) /∈ S, so that q1ψh(q2) lies in the domain of ϕg.

Suppose firstly that h = 0, so that q1 has at least one flaw by Lemma 3.5.4. Since q1

is not BPT by definition,

q1 is not BPT and has non-max flaws (when h = 0). (3.6.10)

Therefore q1ψh(q2) = q1ψ0(q2) = q1 /∈ S, as required.

We may therefore take h > 0. By the inductive hypothesis, ψh(q2) ∈ Q(h) and so
ψh(q2) has at least one point below the boundary by Definition 3.3.1. Therefore ψh(q2)
has at least one flaw, and since q1 is non-empty by definition we find that

q1ψh(q2) = ψh(q2) q1 /∈ S,

as required.

(ii) ψg has codomain Q(g):

Split q = ϕg

(
q1ψh(q2)

)
at its boundary points into q = q1 · · ·qm. We shall show that

q ∈ Q(g) by showing that qm has at least one flaw (so that qm has non-max flaws).

Equate the two expressions for q to give

qm · · ·q1 = ϕg

(
q1ψh(q2)

)
. (3.6.11)

Suppose firstly that h = 0. From (3.6.10) and Definition 3.3.2 we have q1 ∈ X(g).
By Lemma 3.6.5, PX

bij(g) holds and so ϕg(q1) ∈ X (g). Then by (3.6.11), we have
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qm · · ·q1 = ϕg

(
q1ψ0(q2)

)
= ϕg(q1) ∈ X (g) and so qm has at least one flaw by

Definition 3.3.3, as required.

We may therefore take h > 0. Let r = ψh(q2). Split r at its boundary points into
r = r1 · · · rn. Then by (3.6.11) we have

qm · · ·q1 = ϕg

(
q1ψh(q2)

)
= ϕg

(
rn · · · r1 q1

)
. (3.6.12)

By the inductive hypothesis, r = r1 · · · rn = ψh(q2) ∈ Q(h) and so rn has non-max
flaws by Definition 3.3.1. Therefore, rn has at least one flaw and so rn · · · r1 q1 /∈ S.
By Lemma 3.6.5, we may apply Pflaw(g)(i) to (3.6.12) to conclude that qm has at
least one flaw, as required.

(iii) ψg is one-to-one:

Let q′ ∈ Q(g) satisfy ψg(q) = ψg(q′).

Write q′ = q′
1q

′
2 according to Lemma 3.5.4, where q′

2 ∈ Q(h′) for some h′ satisfying
0 ≤ h′ < g. Using Definition 3.5.5, we have

ϕg

(
q1ψh(q2)

)
= ψg(q) = ψg(q′) = ϕg

(
q′

1ψh′(q′
2)
)
.

By Lemma 3.6.5, we know that ϕg is a bijection and so

q1ψh(q2) = q′
1ψh′(q′

2).

Since both q1 and q′
1 are not BPT by definition, it follows that q1 = q′

1 and so

ψh(q2) = ψh′(q′
2).

Since ψh has codomain Q(h) and ψh′ has codomain Q(h′) by the inductive hypothesis,
this implies h = h′. Then q2 = q′

2, because ψh is a bijection by the inductive hypothesis.
Therefore, q = q1q2 = q′

1q
′
2 = q′.

(iv) ψg is onto:

(Note that we reassign variable names in the rest of this proof.) Let q ∈ Q(g). We
shall find q ∈ Q(g) satisfying ψg(q) = q.

Since q has at least one flaw by Definition 3.3.1, we see from (3.2.1) that q lies in the
codomain of ϕg. Since ϕg is a bijection by Lemma 3.6.5, we may then define

r = ϕ−1
g (q) ∈ N(g) \ S(g). (3.6.13)
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Split r at its boundary points into r = r1 · · · rn, so that

ϕg(r1 · · · rn) = ϕg(r) = q. (3.6.14)

Claim 1. We have r1 · · · rn−1 ∈ Q(h) for some h satisfying 0 ≤ h < g.

In view of Claim 1, and since ψh : Q(h) → Q(h) is a bijection by the inductive
hypothesis, we may define q = rn q

′ where

q′ = ψ−1
h (r1 · · · rn−1) ∈ Q(h). (3.6.15)

Claim 2. We have q ∈ Q(g).

Since rn is not BPT, rn is not BPT. Then by Claim 2, the split rn q
′ of q ∈ Q(g)

is consistent with the split described in Lemma 3.5.4. Therefore by Definition 3.5.5,
(3.6.15), and (3.6.14),

ψg(q) = ϕg

(
ψh(q′) rn

)
= ϕg

(
(r1 · · · rn−1) rn

)
= ϕg(r) = q,

as required.

We now prove Claim 1. If n = 1, then r1 · · · rn−1 is the empty path and so Claim 1
holds with h = 0. We may therefore take n > 1, so that r1 · · · rn−1 ∈ N(h) for some h
satisfying 0 < h < g. Split q ∈ Q(g) at its boundary points into q = q1 · · ·qm. Then
qm has at least one flaw by Definition 3.3.1, and by (3.6.14) we have

qm · · ·q1 = ϕg(r1 · · · rn).

By Lemma 3.6.5, we may therefore use Pflaw(g)(ii) to conclude that r1 has at least
one flaw and so r1 has non-max flaws. Then by Definition 3.3.1, the path r1 · · · rn−1 =
rn−1 · · · r1 is a member of Q(h). This proves Claim 1.

We now prove Claim 2. We have q′ ∈ Q(h) by (3.6.15). If h > 0, then q = rn q
′ ∈ Q(g)

by Definition 3.3.1. We may therefore take h = 0 so that n = 1 by Claim 1. Since
rn = r /∈ S by (3.6.13) and rn is not BPT, rn has at least one point below the
boundary. Therefore rn has at least one flaw and is not BPT. Since q′ ∈ Q(0) is
empty, q = rn q

′ = rn ∈ Q(g) by Definition 3.3.1. This proves Claim 2.

Claim 3.6.12. The statement Rflaw(g) holds.

Proof. Let q ∈ Q(g) and q = ψg(q), and write q = q1 · · · qn and q = q1 · · ·qm where each
path is split at its respective boundary points. Then q has n+ 1 boundary points and q has
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m + 1 boundary points, and by Remark 3.5.3 parts (i) and (ii) of Rflaw(g) are equivalent.
We therefore prove only part (i).

Let q have k flaws. We shall show that q has k + n flaws.

The split (q1)(q2 . . . qn) of q ∈ Q(g) is consistent with the split described in Lemma 3.5.4,
where q2 · · · qn ∈ Q(h) for some h satisfying 0 ≤ h < g. By Definition 3.5.5, we have

q = ψg(q) = ϕg

(
ψh(q2 · · · qn) q1

)
, (3.6.16)

which is a valid expression by Claim 3.6.11.

Suppose firstly that h = 0, so n = 1. Then q2 · · · qn ∈ Q(0) is empty and so q = ϕg(q1)
by (3.6.16). Since q1 = q has k flaws, Lemma 3.6.5 implies that q = ϕg(q1) has k+1 = k+n

flaws, as required.

We may therefore take h > 0. Let q1 have k′ flaws. Since q = q2 · · · qn q1, this implies that
q2 · · · qn has k − k′ flaws. Since h > 0 and q2 . . . qn ∈ Q(h), we may use Rflaw(h)(i) to show
that ψh(q2 · · · qn) has (k − k′) + (n − 1) flaws. The number of flaws of ψh(q2 · · · qn) q1 is
therefore (k − k′ + n− 1) + k′ = k + n− 1. It then follows from Lemma 3.6.5 and (3.6.16)
that q = ϕg

(
ψh(q2 · · · qn) q1

)
has (k + n− 1) + 1 = k + n flaws.

Claim 3.6.13. The statement Relev(g) holds.

Proof. Let q ∈ Q(g) and let the LPAs of q have elevation e. Write q = q1q2 according to
Lemma 3.5.4, where q2 ∈ Q(h) for some h satisfying 0 ≤ h < g. Define r = q1ψh(q2). By
Definition 3.5.5, we have

ψg(q) = ϕg

(
q1ψh(q2)

)
= ϕg(r).

It is therefore sufficient to show that the LPAs of ϕg(r) have elevation e.

Suppose firstly that h = 0. Then q2 ∈ Q(0) is empty and so r = q1. Since q1 is not BPT
by definition and q1 = q ∈ Q(g) has at least one flaw, r = q1 is not BPT and has non-max
flaws and therefore r ∈ X(g). Since the LPAs of q1 = q have elevation e, the HPBs of r = q1

have elevation −e. By Lemma 3.6.5, we may apply PX
elev(g) to r ∈ X(g) to conclude that

the LPAs of ϕg(r) have elevation e, as required.

We may therefore take h > 0 for the remainder of this proof. Split r at its boundary points
into r = r1 · · · rn = ψh(q2) q1, where n > 1. Since q1 is not BPT by definition, this implies
that

r1 · · · rn−1 = ψh(q2) and rn = q1,

and so q = rn q2.
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Case 1. rn has max flaws.
Then all flaws of q = rn q2 occur within q2, and so the LPAs of q2 have elevation e.
Since h > 0, we may apply Relev(h) of the inductive hypothesis to q2 ∈ Q(h) to show
that the HPBs of ψh(q2) have elevation −e. Therefore

the LPAs of r1 · · · rn−1 = ψh(q2) have elevation e. (3.6.17)

In particular, r1 · · · rn−1 has at least one flaw and so r = (r1 · · · rn−1)rn /∈ S.

Since r /∈ S and rn has max flaws, there exists a minimum index γ satisfying 1 ≤ γ < n

such that rγ+1 · · · rn ∈ S. Therefore

rγ · · · rn ∈ Z(h′) for some h′ satisfying 1 < h′ ≤ g

and for all j satisfying 1 ≤ j < γ,

rj · · · rn ∈ Y (hj) for some hj satisfying 1 < hj ≤ g.

By repeated application of Case 2 of Definition 3.4.3, we obtain

ϕg(r) = (r1 · · · rγ−1)ϕh′(rγ · · · rn). (3.6.18)

By definition of γ, we have that rγ has at least one flaw. Split rγ at its last LPA into
rγ = r1r2. By Case 3 of Definition 3.4.3,

ϕh′(rγ · · · rn) = ϕh′

(
r1r2(rγ+1 · · · rn−1)rn

)
= r1rnr2(rγ+1 · · · rn−1),

and so by (3.6.18)

ϕg(r) = (r1 · · · rγ−1)r1rnr2(rγ+1 · · · rn−1).

Since rn has max flaws, it follows using (3.6.17) that the LPAs of ϕg(r) have eleva-
tion e, as required.

Case 2. rn has non-max flaws.
The path q2 ∈ Q(h) has at least one flaw because h > 0, and the path rn has a
point below the boundary by assumption. We may therefore let the HPBs of rn have
elevation −e1, and let the LPAs of q2 have elevation e2. Since the LPAs of q = rn q2

have elevation e, we have e = min{e1, e2}.
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Since h > 0, we may apply Relev(h) of the inductive hypothesis to show that the HPBs
of ψh(q2) have elevation −e2. Therefore

the LPAs of r1 · · · rn−1 = ψh(q2) have elevation e2. (3.6.19)

Since rn has non-max flaws, for all j satisfying 1 ≤ j < n we have rj+1 · · · rn /∈ S and
so

rj · · · rn ∈ Y (hj) for some hj satisfying 1 < hj ≤ g.

By repeated application of Case 2 of Definition 3.4.3, we obtain

ϕg(r) = r1 · · · rn−1ϕh′(rn) (3.6.20)

where h′ = g − h satisfies 0 < h′ < g. Since rn has non-max flaws and is not BPT,
rn ∈ X(h′). Since the HPBs of rn have elevation −e1, we may apply PX

elev(h′) of the
inductive hypothesis (h′ > 0) to show that the LPAs of ϕh′(rn) have elevation e1. It fol-
lows from (3.6.19) and (3.6.20) that the LPAs of ϕg(r) have elevation e = min{e1, e2},
as required.

Claims 3.6.11 to 3.6.13 collectively establish Lemma 3.6.10, completing step IV of the Proof
Roadmap. Therefore P (g) and R(g) hold for all g > 0, proving Theorem 1.3.5.
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Chapter 4

Alternative proof of the path
enumeration formula

In this chapter, we give an alternative proof of the path enumeration formula.

Theorem 1.3.13 (Path enumeration formula). We have

µj(g) =
j∑

k=0
(−1)kEkHg−k for 0 ≤ j < g.

The proof presented in Chapter 1 assumed that the value of both µ0(g) and µg−1(g) is
known (see Corollary 1.3.12). Here we shall assume that only the value of µ0(g) is known.
Our proof will require some results involving symmetric functions.

4.1 Alternative proof

We shall prove the path enumeration formula for µj(g) by showing that it satisfies the
recurrence relation (1.3.5) and the initial values (1.3.11) for µ0(g). Our proof depends on
the following identity that we shall establish in Section 4.2.

Theorem 4.1.1 (Sum identity). Let g > 0. Then

g∑
k=0

(−1)kEkHg−k = 0.

Alternative proof of Theorem 1.3.13. Let

Mj(g) =
j∑

k=0
(−1)kEkHg−k.
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We show that µj(g) = Mj(g) for all j, g satisfying 0 ≤ j < g by showing that M0(g) takes
the initial values (1.3.11) for µ0(g), and that Mj(g) satisfies the recurrence relation (1.3.5)
for µj(g).

We have M0(g) = (−1)0E0Hg = Hg by (1.3.10).

Set g = j in Theorem 4.1.1 and use (1.3.10) to obtain the relation

0 =
j−1∑
k=0

(−1)kEkHj−k + (−1)jEj .

Using this relation, we calculate

Mj−1(g) −M0(g − j)Mj−1(j) =
j−1∑
k=0

(−1)kEkHg−k − Hg−j

j−1∑
k=0

(−1)kEkHj−k

=
j−1∑
k=0

(−1)kEkHg−k + (−1)jEjHg−j

= Mj(g).

Note that we can use Theorem 4.1.1 to simplify the expression for µg−1(g) given by the
path enumeration formula. Let g > 0 and take j = g − 1 in Theorem 1.3.13 to obtain

µg−1(g) =
g∑

k=0
(−1)kEkHg−k − (−1)gEgH0 = (−1)g+1Eg

using Theorem 4.1.1 and (1.3.10). This is the same expression as given in (1.3.12).

It remains to prove Theorem 4.1.1.

4.2 Sum identity

In this section we prove the required sum identity (Theorem 4.1.1) using the algebra of sym-
metric functions. We begin by reviewing background results from the symmetric function
literature.

4.2.1 Symmetric functions

A symmetric function over a countable set X = {x1, x2, . . . } of indeterminates is a formal
power series f(x1, x2, . . . ) of bounded degree with coefficients taken from a commutative
ring R that satisfies

f(x1, x2, . . . ) = f(xσ(1), xσ(2), . . . )

for every permutation σ of N = {1, 2, . . . }. We will always take R = Q.

44



A symmetric function is homogeneous if all of its terms have equal degree. Let Λi be the set
of all homogeneous symmetric functions of degree i, together with the additive identity 0,
and let Λ be the ring of all (not necessarily homogeneous) symmetric functions.

We define the following homogeneous symmetric functions. Let

pi =
∑
j≥1

xi
j ,

ei =
∑

1≤j1<···<ji

xj1 · · ·xji ,

hi =
∑

1≤j1≤···≤ji

xj1 · · ·xji ,

which are each members of Λi, and

p0 = 1, e0 = 1, h0 = 1,

which are each members of Λ0.

For an integer partition λ = ⟨1m12m2 · · · ⟩, we let

pλ =
∏
i≥1

pmi
i .

For λ ⊢ g, we can see that pλ belongs to Λg.

4.2.2 The algebra of symmetric functions

Both Λi and Λ are vector spaces over Q. The set Λ is also an algebra: it is a vector space
endowed with a bilinear product, namely the product of formal power series. Furthermore
[33, pages 286–287], Λ is a direct sum of the Λi:

Λ =
⊕
i≥0

Λi = {f0 + · · · + fn : n ≥ 0, fi ∈ Λi}.

Hence Λ is a graded algebra, meaning that

(i) each element f ∈ Λ may be written as f = f0 + · · · + fn for some n ≥ 0 and fi ∈ Λi,

(ii) given fi ∈ Λi, fj ∈ Λj , we have fifj ∈ Λi+j .

Let A = {a1, a2, . . . } be a (finite or countable) subset of a graded algebra Γ. The subset A
is algebraically independent if its elements satisfy no non-trivial polynomial equations. The
subset A generates Γ as an algebra if Γ = Q[a1, a2, . . . ]. The following result describes the
algebraic setting for symmetric functions.
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Proposition 4.2.1 ([33, pages 286–287 and Corollary 7.7.2]). Let Par be the set of all
integer partitions. Over Q, we have that

1. the vector space Λi has basis {pλ : λ ⊢ i}.

2. the vector space Λ has basis {pλ : λ ∈ Par}.

3. the set {pi : i ≥ 0} is algebraically independent and generates Λ as an algebra.

4.2.3 Symmetric function identity

The symmetric functions ei and hi satisfy the following identity.

Theorem 4.2.2 (Symmetric function identity [33, page 296, equation (7.13)]). Let g > 0.
Then

g∑
k=0

(−1)kekhg−k = 0.

Proof. Following [33, page 296], we take the respective generating functions of ei and hi to
be the formal power series

E(t) =
∑
i≥0

eit
i, (4.2.1)

H(t) =
∑
i≥0

hit
i. (4.2.2)

Since each of the terms of ei is a product of i distinct indeterminates, we have that

E(t) = (1 + x1t)(1 + x2t) · · · =
∏
i≥1

(1 + xit).

Similarly, each of the terms of hi is a product of i (not necessarily distinct) indeterminates,
and so

H(t) = (1 + x1t+ x2
1t

2 + · · · )(1 + x2t+ x2
2t

2 + · · · ) · · · =
∏
i≥1

∑
k≥0

xk
i t

k.

By using (1 − x)−1 =
∑
k≥0

xk, we have

H(t) =
∏
i≥1

(1 − xit)−1.

We now find two different representations for the product H(t)E(−t). Firstly, we have that

H(t)E(−t) =
∏
i≥1

(1 − xit)−1(1 − xit) = 1. (4.2.3)
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Secondly, by the series convolution [2, page 54, equation (1)] of (4.2.1) and (4.2.2), we have
that

H(t)E(−t) =

∑
i≥0

hit
i

∑
j≥0

(−1)jejt
j

 =
∑
g≥0

( g∑
k=0

(−1)kekhg−k

)
tg. (4.2.4)

Equating the coefficient of tg in the expressions (4.2.3) and (4.2.4) gives the required result.

4.2.4 A specialization of Λ

A specialization of Λ [33, Definition 7.8.1] is a map ν : Λ → Q satisfying

ν(d1f1 + d2f2) = d1ν(f1) + d2ν(f2), (4.2.5)

ν(f1f2) = ν(f2)ν(f2), (4.2.6)

for all d1, d2 ∈ Q and f1, f2 ∈ Λ. Since the pi are algebraically independent and generate Λ
by Proposition 4.2.1, a specialization ν is uniquely determined by the values of ν(pi) for all
i ≥ 0.

Recall the definition (1.3.6) of ci. Specify the values

ν(pi) = ici for all i ≥ 0,

and take ν to be the specialization that results from (4.2.5) and (4.2.6). We now prove the
following result on the values of ν(ei) and ν(hi).

Proposition 4.2.3. Let g ≥ 0. We have

ν(eg) = Eg,

ν(hg) = Hg.

Proof. Since eg, hg ∈ Λg, and {pλ : λ ⊢ g} is a basis for the vector space Λg, we may write eg

and hg each as a (unique) linear combination of the pλ. It is known [33, Proposition 7.7.6]
that

hg =
∑
λ⊢g

z−1
λ pλ, (4.2.7)

eg =
∑
λ⊢g

(−1)g−l(λ)z−1
λ pλ,
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where zλ = ∏
i≥1 i

mimi!. We first compute ν(hg). By (4.2.7) and the definition of pλ, we
have

hg =
∑
λ⊢g

z−1
λ pλ

=
∑
λ⊢g

∏
i≥1

pi
mi

imimi!
.

Applying ν and using properties (4.2.5) and (4.2.6) then gives

ν(hg) =
∑
λ⊢g

∏
i≥1

ν(pi)mi

imimi!

=
∑
λ⊢g

∏
i≥1

(ici)mi

imimi!

=
∑
λ⊢g

∏
i≥1

ci
mi

mi!

=
∑
λ⊢g

Cλ

= Hg.

Similarly, we compute

ν(eg) =
∑
λ⊢g

(−1)g−l(λ)Cλ

= Eg.

4.2.5 Proof of sum identity

Apply the specialization ν of Section 4.2.4 to the symmetric function identity (Theo-
rem 4.2.2), and use properties (4.2.5) and (4.2.6) and Proposition 4.2.3 to prove the sum
identity (Theorem 4.1.1).
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Chapter 5

Conclusion

We have given in (1.3.3) and Theorem 1.3.13 a closed form expression for |Nk(g)|, the num-
ber of simple lattice paths having exactly k lattice points lying above the linear boundary
joining the startpoint (0, 0) to the endpoint (ga, gb). In doing so, we have proved the 2019
‘Constant on blocks’ conjecture [14].

We propose some open problems for future study.

1. The computation of |Nk(g)| using (1.3.3) and Theorem 1.3.13 is quite involved. Is
there a simpler closed form expression for |Nk(g)|, perhaps akin to Theorem 2.5.2?

2. Theorem 1.3.13 is proved by solving a recurrence relation, using Corollary 1.3.12 as
a base case. Corollary 1.3.12 is predicated on Theorem 1.3.11, which Bizley proved
using generating functions [7]. Is there a combinatorial proof of Theorem 1.3.11?

3. Our main result Theorem 1.3.5 is proved by induction on g, using an explicit bijection
involving maps ϕg, ψg and statements P (g), R(g). Is there a shorter proof of this
result, for example using different statements, or a different bijection, or an alternative
approach such as generating functions?

4. Can Theorem 1.3.13 be generalized to more than two dimensions, using an appropriate
definition of flaws to measure how much of a path in higher dimensions lies outside a
specified region?
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Appendix A

Code

We illustrate part of the program we used to count lattice paths, written in Python. This
program was developed in conjunction with Takudzwa Marwendo in 2019.

For 0 ≤ i ≤ ga and 0 ≤ j ≤ gb and boundary line ay = bx, we store the number of partial
paths to the point (i, j) having k flaws as the entry path_num_arr[j][i][k] of a three-
dimensional array. The function num_array constructs path_num_arr and populates cor-
rect values for path_num_arr[0][i][k] and path_num_arr[j][0][k] , and assigns every
other entry of the array the initial value 0 . The function paths_num then fills in the values
of path_num_arr[j][i][k] for 0 < i ≤ ga and 0 < j ≤ gb, and then returns the array
n_k_list = path_num_arr[gb][ga] , which holds the values n_k_list[k] = |Nk(g)| for
all k satisfying 0 ≤ k < g(a+ b).

def num_array ( ga , gb ) :
path_num_arr = [ ]
for j in range ( gb+1):

path_num_arr . append ( [ ] )
for i in range ( ga +1):

path_num_arr [ j ] . append ( [ ] )
for k in range ( ga+gb ) :

i f j==0 and k==0:
path_num_arr [ j ] [ i ] . append (1 )

e l i f ( i==0 and k==j ) :
path_num_arr [ j ] [ i ] . append (1 )

else :
path_num_arr [ j ] [ i ] . append (0 )

return path_num_arr

def paths_num( ga , gb ) :
path_count_arr = num_array ( ga , gb )
for j in range (1 , gb+1):

for i in range (1 , ga +1):
i s_f law = 0 #0 i f ( i , j ) not a f law , 1 i f i t i s
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i f j ∗ga>gb∗ i :
i s_f law = 1

for k in range ( is_f law , ga+gb ) :
path_count_arr [ j ] [ i ] [ k]=

path_count_arr [ j −1] [ i ] [ k−is_f law ]
+path_count_arr [ j ] [ i −1] [ k−is_f law ]

n_k_list = path_count_arr [ gb ] [ ga ]
return n_k_list
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