
Code Coverage Criteria for Asynchronous
Programs

by

Mohammad Ganji

B.Sc., University of Tehran, 2020

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Mohammad Ganji 2023
SIMON FRASER UNIVERSITY

Spring 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Mohammad Ganji

Degree: Master of Science (Computing Science)

Thesis title: Code Coverage Criteria for Asynchronous
Programs

Committee: Chair: Manolis Savva
Assistant Professor, Computing Science

Saba Alimadadi
Supervisor
Assistant Professor, Computing Science

Steven Ko
Committee Member
Associate Professor, Computing Science

William N. Sumner
Examiner
Associate Professor, Computing Science

ii

Ethics Statement

iii

Abstract

In recent years, asynchronous programming has gained significantly in popularity. Asyn-
chronous software often exhibits complex and error-prone behaviors and should therefore
be tested thoroughly. Code coverage has been the most popular metric to assess test suite
quality. However, traditional code coverage criteria are not sufficient as a measure of test
adequacy for asynchronous applications. In particular, they do not adequately reflect com-
pletion, interactions, and error handling of asynchronous operations. This research proposes
novel test adequacy criteria for measuring: (i) eventual completion of asynchronous oper-
ations in terms of both successful and exceptional execution, (ii) registration of reactions
for handling both possible outcomes, and (iii) execution of said reactions through tests. We
present JScope, a code coverage tool for automatically measuring these criteria in Java-
Script applications and implement it as an interactive plug-in for Visual Studio Code. An
evaluation of JScope on 20 JavaScript applications shows that the proposed code coverage
criteria can help improve assessment of test adequacy, complementing traditional criteria.
Furthermore, an investigation of 15 real GitHub issues concerned with asynchrony demon-
strates that the new criteria can help reveal faulty asynchronous behaviors that are untested
and are deemed covered by traditional coverage criteria. We also report on a controlled ex-
periment with 12 participants to investigate the usefulness of JScope in realistic settings,
demonstrating that it is effective in improving programmers’ ability to assess test adequacy
and detect untested behavior, and that it can be helpful for debugging.

Keywords: coverage, dynamic analysis, asynchronous JavaScript

iv

Dedication

To my loving mom and dad, whose excitement for my achievements exceeds my own, and
without whom my research journey would have remained a distant dream.

v

Acknowledgements

I like to express my deepest gratitude to Dr. Saba Alimadadi, my supervisor, whose un-
wavering support and guidance have been invaluable throughout my career. I extend my
appreciation to Dr. Frank Tip for his active collaboration and supervision. I am also grateful
to Sadjad Tavakoli, my dear colleague and friend, for contributing to a more pleasant work
environment in the lab.

vi

Table of Contents

Declaration of Committee ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgements vi

Table of Contents vii

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Asynchronous Programming . 1
1.2 Testing Asynchronous Code . 2
1.3 Asynchronous Coverage Criteria - An Overview 2
1.4 Contributions . 3
1.5 Publications . 4
1.6 Dissertation Outline . 4

2 Background 5
2.1 Code Coverage Criteria . 5
2.2 Asynchronous Programming . 5
2.3 Promises and async/await in JavaScript . 6

3 Motivation and Challenges 9
3.1 Unhandled Exceptions . 9

3.1.1 Example 1 (Running Example) . 10
3.2 Pending Asynchronous Operations . 10

3.2.1 Example 2 . 11

vii

4 Asynchronous Coverage Criteria 13
4.1 Events and Traces . 13
4.2 Coverage Criteria for Promise-Based Code 14
4.3 async/await . 16
4.4 Feasibility of Asynchronous Coverage Criteria 17

5 Approach 18
5.1 Instrumentation and Trace Collection . 18
5.2 Measuring Asynchronous Coverage . 19
5.3 Visualizing the Asynchronous Coverage . 20
5.4 Implementation . 21

6 Evaluation 23
6.1 Asynchronous Coverage . 23

6.1.1 Experimental Design and Procedure 23
6.1.2 Results and Discussion . 23

6.2 Asynchronous Coverage and Test Effectiveness 26
6.2.1 Experimental Design and Procedure 26
6.2.2 Results and Discussion . 27

6.3 Usefulness of JScope to Developers . 30
6.3.1 Experimental Design and Procedure 31
6.3.2 Results and Discussion . 32

6.4 Performance . 34
6.5 Threats to Validity . 35

7 Related Work 36
7.1 Code Coverage Criteria . 36
7.2 Program Analysis for JavaScript . 37
7.3 Visualization . 37
7.4 User Studies . 38
7.5 Mutation Testing . 38

8 Conclusion and Future Work 39
8.1 Conclusion . 39
8.2 Future Work . 39

Bibliography 41

Appendix A Supplamantary Data File: JScope Source Code 49

Appendix B Supplamantary Data File: User Study Materials 50

viii

Appendix C Consent Form 51

ix

List of Tables

Table 4.1 Trace events for asynchronous operations. 13

Table 6.1 Summary of different coverage metrics reported by JScope and tradi-
tional coverage. 24

Table 6.2 correlation coefficients for asynchronous and traditional coverage criteria. 25
Table 6.3 Asynchrony-related JavaScript issues from Github. 26
Table 6.4 Tasks used in the user study. 32
Table 6.5 Performance overhead of JScope; The numbers show an average of

five executions . 34

x

List of Figures

Figure 1.1 High level overview of JScope . 3

Figure 3.1 Implementation of RepoService.remove. The plus and minus signs
indicate the changes in the commit related to the fix. 10

Figure 3.2 Implementation of async function visibility from Odoo’s website
builder. The plus and minus signs indicate the changes in the commit
related to the fix. 11

Figure 5.1 JScope coverage results for CLA Assistant. The open editor shows
RepoService.remove in repo.js. 21

Figure 6.1 Statement coverage vs JScope results, before and after the bug fix.
Green marks beside line numbers show covered statements reported
by Istanbul. Overlaying highlights are generated by JScope, where
yellow and red indicate promises with inadequate async coverage. . 28

Figure 6.2 Simplified implementation of the function buildProxyReq in express-
http-proxy before the fix. P1, P2, P3, and P4 show promises detected
by JScope. 29

xi

Chapter 1

Introduction

1.1 Asynchronous Programming

The importance of responsive and efficient programming has become paramount in today’s
digital landscape. With the continuous rise in demand for high-performing and interactive
applications, developers must find ways to optimize their code and minimize its impact on
user experience. Asynchronous programming is a solution that has gained traction in recent
years to address these challenges [50, 38].

In contrast to synchronous programming, where code is executed line-by-line in a block-
ing fashion, asynchronous programming allows non-blocking and out-of-order execution of
code. This means that the program can continue to process user input or execute other
tasks while it awaits the completion of a long-running operation. This enables real-time
user interactions, efficient client-server communications, and non-blocking I/O, all essential
for modern web development.

Asynchronous programming is present in various programming environments such as
mobile development and embedded systems [30, 25]. It is also implemented and used by
many popular languages, such as Java, Python, and C# [8, 7, 6]. However, it is most recog-
nized for its utility in JavaScript. JavaScript, the most widely used programming language
according to GitHub’s yearly survey [4], is single-threaded. Asynchronous execution of po-
tentially long-running tasks is the reason that seamless user interactions and responsiveness
of JavaScript applications is possible.

Traditionally, JavaScript has relied on callbacks and event-based programming to enable
asynchrony. However, callbacks are notorious for creating code that is difficult to read and
debug, often leading to what is commonly known as callback hell [11, 37, 47].

Promises [31, Section 27.2] and async/await [31, Section 15.6] have been introduced
into ECMAScript in recent years as improved alternatives to callbacks for implementing
asynchrony. These methods have become popular in writing asynchronous code, overtaking
the use of error-prone callbacks. They have proven to be so effective that other languages
like C++, Python, Java, Dart, and C# have added similar syntaxes to their languages

1

[5, 6, 7, 8, 12]. Despite the improved syntaxes, inherent non-determinism and non-sequential
execution of asynchronous code impairs developers’ comprehension and debugging abilities.
Understanding the flow of asynchronous execution and identifying and fixing faults caused
by JavaScript promises and async/await remain still challenging endeavors for developers
regardless of their popularity [51, 18, 77, 83].

1.2 Testing Asynchronous Code

Software testing is a crucial part of the software development process, and developers often
rely on an application’s tests to identify faults and verify its behavior. They often use
code coverage criteria such as statement and function coverage to assess the adequacy of
their tests and to identify and address shortcomings in existing tests [85]. Although a high
coverage does not guarantee a better bug finding capability, it is a necessary first step, as
tests are not able to identify bugs in unexercised code [43].

Testing asynchronous code poses unique challenges due to its non-deterministic nature
and out-of-order execution. Programs may involve multiple asynchronous operations exe-
cuted concurrently, or throw exceptions during the execution of asynchronous code, making
it difficult to ensure that the application behaves correctly. Traditional coverage criteria are
unable to examine various scenarios of exercising asynchronous code in terms of eventual
completion of asynchronous operations, their interactions, and their error handling. Fur-
ther, developers may fail to devise proper reactions for possible outcomes of asynchronous
events, leading to missing code that cannot be discovered by traditional criteria. Despite
the importance of testing asynchronous programs and the severity of the issues that occur
in such programs, there are currently no code coverage criteria that target the adequacy of
tests with regard to exploring scenarios that occur in asynchronous code.

1.3 Asynchronous Coverage Criteria - An Overview

In this dissertation, we introduce a new set of coverage criteria for assessing the adequacy
of tests in exercising the asynchronous behavior of JavaScript applications. Our proposed
criteria quantify the adequacy of tests in covering eventual successful or exceptional com-
pletion of asynchronous operations, registration of respective reactions for continuing the
flow of execution based on the operations’ outcome, and sufficient execution of chains of
reactions by the application’s tests. These criteria target the semantics of Promises and
async/await, as the most popular mechanisms for supporting asynchrony in JavaScript.
Our metrics are meant to be complementary to existing coverage metrics, such as statement
and function coverage.

Figure 1.1 Our approach for automatic calculation of asynchronous coverage starts by
a non-intrusive instrumentation of the code. Analysis of the collected data allows our algo-
rithm to calculate three types of coverage criteria for a given application, namely settlement

2

Figure 1.1: High level overview of JScope

coverage, registration coverage, and execution coverage. Our approach presents the results
as a textual report, as well as an interactive visualization embedded in a development en-
vironment. We implement our approach in an open-source plugin for Visual Studio Code
named JScope.

1.4 Contributions

Our work makes the following key contributions.

• We introduce a novel set of coverage criteria for assessing test adequacy of asyn-
chronous code. These criteria quantify the degree to which key scenarios are exercised
in asynchronous code, including successful/exceptional completion of asynchronous
operations, and registration and execution of reactions.

• We propose an approach for measuring said coverage criteria that intercepts and
analyzes asynchronous interactions. In addition to the coverage report, our approach
visualizes the coverage by overlaying a set of visual cues and warnings on the code to
guide programmers towards the tests’ insufficiencies.

• We implement our approach in an open-source interactive VS Code extension named
JScope, which we will make publicly available after the anonymous review process.

• We report on three different experiments to evaluate our approach. The results from
comparing traditional and asynchronous coverage reports from 20 Node.js applica-

3

tions show that our approach is effective in identifying test insufficiencies with respect
to asynchronous code and can complement traditional coverage metrics. We also find
that JScope’s warnings can lead to finding real bugs in parts of code despite be-
ing completely covered by traditional coverage criteria. Finally, we show through a
user study that JScope improves the accuracy of programmers in their testing and
debugging activities in realistic setting by 28% on average.

1.5 Publications

This dissertation also includes our paper currently under submission at ESEC/FSE confer-
ence. The paper below is the result of contributions of our collaborator and advisor from
North Eastern University Frank Tip, my supervisor Saba Alimadadi, and myself.

• ESEC/FSE 2023 (Under Submission) – Code Coverage Criteria for Asynchronous
Programs. Mohammad Ganji, Saba Alimadadi, Frank Tip

1.6 Dissertation Outline

The contents of this dissertation are organized as follows: Chapter 2 presents a background
on code coverage criteria, asynchrnous programming, and asynchrony in JavaScript. Chapter
3 contains two real problems as motivational examples for this research. Chapter 4 and 5
describe our proposed coverage criteria for asynchronous code, and how we use JScope to
measure these criteria. Chapter 6 details our evaluation results. Chapter 7 discusses related
work and the scope of our study. Finally, chapter 8 concludes our work

4

Chapter 2

Background

2.1 Code Coverage Criteria

Code coverage criteria are commonly used metrics for evaluating the quality of the test
suites. They measure the extent to which the source code program has been executed
during testing.

There are several methods for measuring code coverage, including but not limited to
statement coverage, branch coverage, and function coverage. Statement coverage measures
the number of lines of code execrised by the tests, while branch coverage measures the num-
ber of branches (e.g., if/else statements) taken during testing. Function coverage measures
the number of functions or methods executed during testing.

Code coverage criteria can provide insight into the thoroughness of testing. They help
identify areas of the code that have not been tested, allowing developers to focus their
testing efforts on these areas and improve the overall quality of their code.

Despite its widespread use, there are challenges associated with code coverage criteria.
For instance, achieving high code coverage does not necessarily guarantee the absence of
bugs in the software, and low code coverage does not necessarily indicate a high number
of bugs. Additionally, code coverage can be difficult to measure in some types of software,
such as multi-threaded, concurrent, and asynchronous systems.

2.2 Asynchronous Programming

Asynchronous programming is a paradigm that enables multiple tasks to be executed in
parallel, without blocking the execution of other tasks. It allows tasks to be executed in-
dependently, and uses callbacks or other forms of event-based notifications to make their
results available. This allows applications to continue processing other tasks while waiting
for the result of an asynchronous operation.

As an example, consider a web page that needs to fetch data from a server. In a syn-
chronous programming model, the page would freeze until the data has been received from

5

the server. However, in an asynchronous programming model, the data fetch operation
would be executed asynchronously, allowing the page to continue processing other tasks
(such as receiving user input, or updating the graphical user interface) while waiting for the
data to arrive. Once the data has been received, a callback function would be invoked to
handle the data and update the page.

Asynchronous programming is commonly used in JavaScript to handle user interactions,
network requests, and other I/O-bound operations. Its inherent asynchrony, has made Java-
Script a widely used language for developing dynamic and responsive applications.

To handle the asynchronous nature of the language, developers often turn to two com-
monly used techniques: promises and async/await. These techniques play a crucial role in
effective JavaScript programming and are indispensable tools for building performant and
scalable applications. The following section includes more detail about the implementation
and utilities of Promises and async/await.

2.3 Promises and async/await in JavaScript

This section provides a brief review of promises [31, Section 27.2], and async/await [31,
Section 15.6], two features for asynchronous programming that were added to JavaScript in
recent years.

Creating promises A promise represents the value of an asynchronous computation, and
is in one of three states: pending, fulfilled, or rejected. The state of a promise can change
at most once: from pending to fulfilled, or from pending to rejected. We will say that a
promise is settled if its state is fulfilled or rejected. Promises are created by invoking the
Promise constructor, and are initially in the pending state. Promises come equipped with
two methods, resolve and reject, for fulfilling or rejecting the promise with a particular
value, respectively. For example, the following code assigns a promise to a variable p1 that
is either fulfilled with the value "hello" or rejected with an Error object.

1 const p1 = new Promise((resolve, reject) => {
2 if (Math.random() > 0.5) { resolve(" hello ") ; }
3 else { reject (new Error(’oops’)) ; }
4 });

Promises can also be constructed using the functions Promise. resolve and Promise

.reject. Each of these functions takes a single argument, i.e., the value that the promise
should be fulfilled or rejected with. The following example creates a promise that is fulfilled
with the value 3:

5 const p2 = Promise.resolve(3) ;

Synchronization functions such as Promise.all and Promise.race are other ways to
create promises. They wait on a set of promises to be settled in any order, returning a single

6

promise upon invocation. We will explain these functions in more detail near the end of this
section.

Registering reactions on promises The then and catch methods enable programmers
to register reactions on promises, i.e., functions that are executed asynchronously when a
promise is fulfilled or rejected. The value returned by a reaction is wrapped in another
promise, thus enabling programmers to chain asynchronous computations and propagate
errors. For example, the following code fragment shows the creation of a promise chain that
starts with p1:

6 p1.then(function f1(v) { console . log(v + "␣world"); })
7 .catch(f3(err) { console . log(" error ␣occurred:␣" + err) ; }

If p1 was fulfilled with the value "hello", the reaction that is registered by calling then

on p1 on line 6 concatenates that value with another string "␣world" and prints it to the
console, Line 7 registers a reject reaction on the promise that is created by calling then on
line 6. It prints an error message if any of the previous promises in the chain is rejected.
Therefore, the above code snippet will either print "hello␣world" or "error␣occurred:␣
oops".

Linking promises If the resolve associated with the Promise constructor is invoked
with an argument that is a promise, or when a reaction that is registered by calling then

or catch returns a value that is a promise (called p), the former promise p′ becomes linked
with p. If p is resolved with a value v, then p′ is resolved with v as well, and if p is rejected
with a value e, then so is p′, and if p remains pending, so does p′. The following example:

8 const p3 = Promise.resolve(" hello ")
9 const p4 = Promise.resolve("there")

10 p3.then(() => p4) // establish link with p4
11 .then((v) => console.log(v)) // prints "there"

creates promises p3 and p4. Given that p3 is fulfilled, its reaction is executed and returns p4,
so p4 and the promise returned by p3.then() on line 10 become linked. Since p4 resolves
to "there", the promise returned by p3.then() on line 10 resolves to "there" as well,
causing the reaction registered on line 11 to execute and print this value.

Synchronization Several functions are provided for synchronizing asynchronous compu-
tations. Promise.all provides a mechanism to wait for a set of promises to be settled in
any order; it takes as input an array of promises p1, · · · , pn and returns a promise p′ that
is resolved with an array [v1, · · · , vn], if each pi is fulfilled with a value vi. If any pi is
rejected, then p′ is immediately rejected with the same value, regardless of what happens
to other promises pj (j 6= i). Promise.any, Promise.race and Promise.allSettled are
other synchronization functions with similar structure but different behavior.

7

Similarly, Promise.allSettled takes an array of promises p1, · · · , pn as an argument
and fulfills when all of the p1, · · · , pn settle, i.e. fulfill or reject. Its value will be an array
containing values or errors of the settled p1, · · · , pn.

Promise.any takes an array of promises p1, · · · , pn as an argument and fulfills as soon
as any of the pi fulfills, with the value that pi was fulfilled with, or it rejects if all of the
pi are rejected, with an array of rejection reasons. Finally, Promise.race takes an array of
promises p1, · · · , pn as an argument and returns a promise that fulfills or rejects as soon as
one of these pi fulfills or rejects, with the same value that pi was fulfilled or rejected with.

async/await JavaScript’s async/await feature provides a syntactic enhancement on top
of promises. A function declared as async returns a promise that is fulfilled with the func-
tion’s return value. Inside an async function, await-expressions may be used to wait for a
promise to be settled. If an awaited promise p is fulfilled with value v, then an expression
await p evaluates to v; if it is rejected with a value err, err is thrown as an exception that
can be caught using try/catch . Consider the following code fragment:

12 async function f (){
13 try {
14 let v = await p;
15 /∗ 1 ∗/
16 } catch(e){ /∗ 2 ∗/ }

p is an expression that evaluates to a promise. The execution of the code fragment /* 1 */

depends on fulfillment of p. So one may think of code fragment /* 1 */ as a fulfill reaction
associated with p, and similarly the code fragment /* 2 */ as a reject reaction of p.

8

Chapter 3

Motivation and Challenges

We use this section to elaborate on some of the challenges in identifying parts of asyn-
chronous code that despite being covered by the tests, are not tested “sufficiently” and thus
may include bugs. We use real bug reports shown in Figure 3.1 and 3.2 to illustrate the
challenging nature of locating bugs in asynchronous code. These challenges are intensified
by developers’ confidence in correctness of the code, when they have tests that exercise
that piece of code. While existing coverage metrics may show full coverage of these code
segments, these metrics are unable to examine the execution of scenarios specific to asyn-
chronous code. As such, they will not identify inadequacies in testing asynchronous code.

3.1 Unhandled Exceptions

An asynchronous operation can eventually terminate successfully, or it may fail. While a
successful completion is usually the desired outcome, the failures or exceptional cases should
be tested thoroughly to verify the applications’ robustness and error recovery. Exceptional
scenarios are often not thoroughly tested by many applications, which can lead to bugs and
unexpected behaviors during execution should an exception occur [18]. These operations
are even equipped with extended exception handling in JavaScript. For instance, await

expressions can be surrounded by try/catch for handling a failed completion of the async
function. However, these rules are not enforced, and their proper usage or absence is not
examined by current testing and coverage techniques. As such, there are many applications
that do not have adequate exception handling in place and do not sufficiently test excep-
tional and failure cases in their asynchronous code. In the following example, we discuss how
failure to properly handle the rejection of an asynchronous operation results in the whole
system crashing. The bug occurs despite code coverage reports showing that the related
part of the code was in fact covered.

9

17 remove: async (req) => {
18 const dbRepo = await repo.remove(req.args)
19 if (dbRepo && dbRepo.gist) {
20 try {
21 – webhook.remove(req)
22 + await webhook.remove(req)
23 } catch (error) { // handle the error } }
24 return dbRepo
25 }

Figure 3.1: Implementation of RepoService.remove. The plus and minus signs indicate the
changes in the commit related to the fix.

3.1.1 Example 1 (Running Example)

CLA Assistant is a web service that streamlines the process of signing Contributor License
Agreements (CLAs). 1 This project is built by SAP SE 2 developers and has more than
1000 stars. The code in Figure 3.1 shows the async function RepoService.remove, which is
responsible for removing a repository from CLA Assistant (using repo.remove on line 18)
and removing all of its webhooks (webhook.remove, line 21).

To handle unexpected errors, the call to webhook.remove is placed inside a try/catch

(lines 20–23), which assures programmers of the robustness of this code segment. Program-
mers’ confidence in verifying this code segment is reinforced by covering and exercising all
its statements through the tests. Despite this, a bug was reported where an unhandled re-
jection in this method resulted in the hard shutdown of the service. Further investigation
showed that while there is a try/catch in place to handle errors in removing webhooks, the
developers failed to await the asynchronous webhook.remove method. Without an await

statement, the program does not wait for the async function to complete its execution.
In other words, The execution of RepoService.remove could end before webhook.remove

rejected with an error asynchronously. The exception was thrown outside the scope of
RepoService.remove and thus the catch clause could not have caught it, causing an un-
handled rejection.

The fix adds an await before webhook.remove to make RepoService.remove wait until
its completion (line 22).

3.2 Pending Asynchronous Operations

An asynchronous operation remains pending until it is “settled” successfully or through
a failure, i.e., resolved or rejected. It is common to chain asynchronous operations to

1https://github.com/cla-assistant/cla-assistant

2https://sap.com

10

https://github.com/cla-assistant/cla-assistant
https://sap.com

26 async function visibility (preview, widgetValue, params) {
27 – await new Promise(resolve => {
28 + await new Promise((resolve, reject) => {
29 this . trigger_up(’action_demand’, {
30 onSuccess: () => resolve(),
31 + onFailure: () => reject(), // ADDED IN FIX.
32 }); });
33 this . trigger_up(’ option_visibility_update ’ , {show});
34 }

Figure 3.2: Implementation of async function visibility from Odoo’s website builder. The
plus and minus signs indicate the changes in the commit related to the fix.

impose an ordering on their execution. In such cases, successful and exceptional completion
of an asynchronous operation each trigger respective reactions, and the execution of the
program continues. It is typically expected for all asynchronous operations to “settle.” In
cases where this does not happen, the appropriate reactions are not invoked, and the chain
of execution is interrupted. The following example demonstrates a real bug where a pending
asynchronous operation causes the program to freeze in a loading state, preventing the users
from futher interactions with the system.

3.2.1 Example 2

Figure 3.2 shows changes related to a bug fix from Odoo, a suite of web based open
source business apps, including Marketing, eCommerce, and Website Builder apps. 3 It has
nearly 25K stars on GitHub and is forked over 16K times. The async function visibility

is responsible for updating the visibility of a field inside a widget in the sidebar menu of
the website builder. The execution of this method depends on the completion of a promise
that notifies the parent widget to toggle its visibility (lines 27–32). The notification oc-
curs through trigger_up on lines 29–32. The trigger_up method accepts onSuccess or
onFailure callback arguments, and executes one of them according to the outcome of the
event. Here, the onSuccess callback fulfills the promise by calling its resolve method
(line 30). The visibility method then makes the field on the widget visible, allowing the
user to interact with the editor (line 33).

The bug report indicates a scenario where a widget just gets stuck, with a spinner spin-
ning forever. The issue occurs when the event fired by trigger_up ends with an exception.
Hence, the onSuccess callback is not called to resolve the promise. As there is no reject
reaction devised for an unsuccessful completion of the promise, it never settles. As the ex-
ecution of the remaining part of the visibility method depends on the settlement of the

3https://github.com/odoo/odoo/pull/87123

11

https://github.com/odoo/odoo/pull/87123

promise, the pending promise prevents the execution of line 33. This causes the widget to
get stuck in a loading state, making the application dysfunctional.

The fix rejects the promise upon failure of trigger_up (line 31), which settles the
promise and allows the execution to continue.

12

Chapter 4

Asynchronous Coverage Criteria

Our goal is to define coverage criteria that reflect to what extent the possible asynchronous
behaviors of an application are exercised. We introduce these criteria in terms of events in
execution traces that pertain to the use of asynchronous features. We define three coverage
criteria: settlement coverage, reaction registration coverage, and reaction execution coverage.
These criteria target the completion of all asynchronous operations (successful and excep-
tional), registration of reactions for both outcomes of the operations, and the execution
of said reactions, respectively. We begin by defining coverage notions for JavaScript appli-
cations that use promises, and will then explain informally how these notions extend to
async/await. Finally, we will discuss the feasibility of these criteria.

4.1 Events and Traces

Table 4.1 defines the promise-related events that may occur during execution. Here, we
assume that each promise that is created at run time has a unique promise identifier (pid).
Further, let S define the set of source locations where promises are created, including: (i)
calls to the Promise constructor, (ii) calls to Promise.resolve() and Promise.reject()

, (iii) calls to then , catch , and finally on promise objects, (iv) calls to Promise.all,

Create(pid, loc) creation of promise pid at location loc
Fulfilled(pid, loc) promise pid is fulfilled at location loc
Rejected(pid, loc) promise pid is rejected at location loc
Link(pid, pid′, loc) promise pid becomes linked to promise pid′ at location loc
Regfulfill(pid, f , loc, [pid′]) Register fulfill reaction f on promise pid at location loc, which

may chain it to promise with id pid′

Regreject(pid, f , loc, [pid′]) Register reject reaction f on promise pid at location loc,
which may chain it to promise with id pid′

Execfulfill(pid, f , loc) execute fulfill reaction f on promise pid at location loc
Execreject(pid, f , loc) execute reject reaction f on promise pid at location loc

Table 4.1: Trace events for asynchronous operations.

13

Promise.race, Promise.any, and Promise.allSettled, and (v) the end of execution of
an async function (either normal or exceptional exit).

Create events occur when any of situations (i)-(v) occurs. Link events occur when the
resolve function associated with a call to the Promise constructor or Promise.resolve

are invoked with an argument that is itself a promise. A Link event is always immediately
preceded by a Create event.

Fulfilled events occur when the resolve function associated with a Promise is invoked
with an argument that is not a promise, and when a reaction returns a value that is not
a promise. Likewise, Rejected events occur when the reject function associated with a
Promise is invoked, and when a reaction throws an exception. Note that the trace only
records Fulfilled and Rejected events for promises that are explicitly fulfilled or rejected
(i.e., it does not contain such events for linked promises that are resolved or rejected due
to being linked to another promise).

Regfulfill events happen when then is used to register a fulfill-reaction on a promise, and
Regreject events happen when catch or the second argument of then is used to register a
reject-reaction. Lastly, Execfulfill and Execreject events happen when a previously registered
fulfill-reaction or reject-reaction starts executing, respectively.

As an example, executing lines 1-7 in the code snippets given in Section 2.3 gives rise
to the following trace if p1 was fulfilled.

35 Create(pidp1, L1:L4)
36 Fulfilled(pidp1, L2:L2)
37 Create(pidp2, L5:L5)
38 Fulfilled(pidp2, L5:L5) // promise. resolve is instantly fulfilled .
39 Create(pidthen, L6:L6) // call to then returns a promise
40 Regfulfill(pidp1, f1, L6:L6, pidthen)
41 Create(pidcatch, L7:L7) // call to catch returns a promise
42 Regreject(pidthen, f2, L7:L7, pidcatch)
43 Execfulfill(pidp1, f1, L6:L6)
44 Fulfilled(pidthen, L6:L6)

Calls to then and catch return promises. The Regfulfill connects then to p1 and Regreject

connects catch to then, creating a promise chain. Also, f2 is never executed because none
of the other promises in the chain are rejected.

4.2 Coverage Criteria for Promise-Based Code

In the definitions that follow, we will use pid, pid′, · · · to represent promise identifiers.
Moreover, f, f ′, · · · will denote functions, and loc, loc′, · · · will denote source locations. Def-
inition 1 defines a trace as a sequence of trace events (see Table 4.1). We will use τ, τ ′, · · ·
to refer to execution traces.

Definition 1 (trace). A trace is an ordered sequence of trace events as specified in Table 4.1.

14

For each promise pid that occurs in a trace τ , there is a unique trace element Create(pid,
loc) corresponding to its creation. We define loc(pid) as the location loc that is referenced in
this trace element. The first coverage criterion we define is promise settlement coverage. This
measures the fraction of promises defined by an application that are settled (i.e., fulfilled or
rejected). Here, we consider a promise pid originating from location loc to be fully covered
if the trace contains both Fulfilled and Rejected events for pid, which requires location loc
to be executed at least twice. Moreover, when a Fulfilled or Rejected event is observed for a
promise pid, all promises directly or indirectly linked with pid are settled as well. To capture
this, we first define L(pid, τ) to denote the set of promises linked to pid in trace τ .

Definition 2 (linked promises). Let pid be the promise identifier for a promise. Then, the
set of promises linked to pid in a trace τ , denoted by L(pid, τ), is defined as:

L(pid, τ) = { pid′| pid′ = pid or
∃loc : Link(pid, pid′, loc) ∈ τ, pid′ ∈ L(pid, τ) }

Note that pid itself is also an element of L(pid, τ).
Using Definition 2, we now define the notion of promise settlement coverage as stated

in Definition 3. Informally, the definition computes the number of locations loc′ of promises
pid′ that are linked to a promise pid for which a Fulfilled or a Rejected event occurs in the
trace τ . It then divides the sum of these by 2∗|S|, where S is the number of locations where
a promise is created.

Definition 3 (promise settlement coverage). Let program P create promises at locations in
S, and let τ be the trace for an execution of P. We define the promise settlement coverage
of τ as:

|{ loc′ | Fulfilled(pid, loc) ∈ τ, pid′ ∈ L(pid, τ), loc′ = loc(pid′) }|+
|{ loc′ | Rejected(pid, loc), pid′ ∈ L(pid, τ), loc′ = loc(pid′) }|

2 ∗ |S|

Next, Definition 5 measures the percentage of promises on which reactions are registered.
Here, we consider a promise fully covered if both a fulfill reaction and a reject reaction
are registered on it. Note that the rejection of a promise p may be handled at the end
of a promise chain that includes p. To make this precise, Definition 4 defines the set of
dependent promises pid that occur at the end of a chain of fulfill-reactions that starts at
pid, i.e., pid pid′.

Definition 4 (dependent promises). Let program P create promises at locations in S, and
let τ be the trace for an execution of P. Then:

pid pid′ if
{

pid ≡ pid′ or
pid pid′′ and Regfulfill(pid′′, loc, f , pid′)

15

Using Definition 4, Definition 5 below computes reaction registration coverage through
the following steps: (i) compute the number of locations loc′ where a Regfulfill event occurs
on a promise pid for which a Create event occurs in the trace, (ii) compute the number of
locations loc′ where a Regreject event occurs on a promise pid′, where pid pid′, and where
a Create event for pid occurs in the trace, and (iii) compute the sum of these, and divide it
by 2 ∗ |S|.

Definition 5 (reaction registration coverage). Let program P create promises at locations
in S, and let τ be the trace for an execution of P. We define the reaction registration
coverage of τ as:

|{ loc′ | Create(pid, loc) ∈ τ, Regfulfill(pid, f , loc′, pid′) ∈ τ }|+
|{ loc′ | Create(pid, loc) ∈ τ, pid pid′, Regreject(pid′, f , loc′, pid′′) ∈ τ }|

2 ∗ |S|

Lastly, we define the notion of reaction execution coverage, measuring the percentage of
promises with executed reactions. This is expressed by Definition 6 below, which is similar
to Definition 5, except that it checks for the presence of Execfulfill and Execreject events in
the trace instead of Regfulfill and Regreject events. Achieving full reaction execution coverage
for a promise created at loc requires that loc is executed at least twice.

Definition 6 (reaction execution coverage). Let program P create promise at locations in
S, and let τ be the trace for an execution of P. We define the reaction execution coverage
of τ as:

|{ loc′ | Create(pid, loc) ∈ τ, Execfulfill(pid, f ,loc’) ∈ τ }|+
|{ loc′ | Create(pid, loc) ∈ τ, pid pid′, Execreject(pid′, f ,loc’) ∈ τ }|

2 ∗ |S|

4.3 async/await

The semantics of JavaScript’s async/await is defined in terms of promises, and provides
more convenient syntax that is highly similar to that of sequential code. Our approach is
to generate the events of Table 4.1 as discussed below.

An async function always returns a promise, thus upon calls to async functions a Create
event is included in the trace. When an async function returns a value that is not a promise,
a Fulfilled event is included in the trace to reflect its fulfillment. When an async function
returns a value that is a promise, a Link event is emitted, and a Rejected event is emitted
if an async function throws an exception that is not caught within its body.

For registration and execution of reactions, consider lines 12-16 in the code snippets from
Section 2. Upon execution of this code, the trace will contain a Regfulfill(pidp, await, L14:L14)

16

event at line 14. A Regreject(pidp, try/catch, L13:L16) event is also added for p, as await p

is located inside a try/catch . If the execution of the async function in the example above
continues to /* 1 */, an Execfulfill(pidp, await, L14:L14) event is included in the trace. Also,
if p is rejected and /* 2 */ is executed, the trace will contain a Execreject(pidp, try/catch,
L13:L16) event. Assuming these elements in a trace, the same coverage definitions apply as
before.

4.4 Feasibility of Asynchronous Coverage Criteria

The proposed coverage criteria for asynchronous programs are similar to traditional coverage
criteria in the sense that 100% coverage, while desirable, is not always attainable. For
example, in a conditional statement if E then S1 else S2, if the condition E always
evaluates to true, then the else-branch and all the statements in S2 are unreachable, and
branch coverage and statement coverage will be less than 100%. Analogously, in a code
fragment p.then(f), the promise created by the call to then will remain pending if p is
never fulfilled causing promise settlement coverage to remain less than 100%, and reaction
registration coverage and reaction execution coverage may remain below 100% for similar
reasons. Note that the use of Promise.resolve and Promise.reject may give rise to
promises that are always resolved 1 or rejected.

Promise chains also undermine the feasibility to achieving 100% registration coverage.
Since chain operations (i.e. then and catch) return a promise themselves, there will always
remain a promise at the end of any promise chain without any reactions registered to
it. Further, it is generally accepted to only include error handling operations inside the
callback of a catch function without any other logic. As a result, it may be impossible in
some programs to write a test scenario that rejects the promises returned by catch . In 5.2
we discuss heuristics defined to remedy such cases in our implementation.

1Note, however, that Promise.resolve does not necessarily produce a promise that is always resolved:
if the argument passed to Promise.resolve is itself a promise, then that promise becomes linked with
the newly created promise (the linked promise may remain pending or be rejected). Similar scenarios arise
for async functions.

17

Chapter 5

Approach

In this chapter, we describe our approach and our tool, JScope, for automatically mea-
suring and visualizing asynchronous coverage criteria as defined in Section 4.2. We will use
the term “async coverage” to refer to the results of settlement, reaction registration, and
reaction execution coverage combined, as JScope calculates and reports them collectively.
Our approach relies on the instrumentation of asynchronous behaviors of a JavaScript ap-
plication on the fly. JScope executes the instrumented code through the application’s test
suite to collect execution traces. Next, it utilizes the traces to locate promises, their re-
actions, and relations between them such as chains as means to calculate async coverage.
Finally, JScope presents the results and relevant warnings in terms of a textual report
and an interactive visualization. JScope is embedded within the development environment
of Visual Studio Code 1 and allows user interactions to discover more information about
individual promises and relationships between them.

5.1 Instrumentation and Trace Collection

To automatically collect trace events described in Table 4.1 for a program, we instrument the
behavior of JavaScript promises and async functions on the fly. Executing the instrumented
code through running the program’s test suite, we obtain a trace of events created as
discussed in Section 4.1.

In Section 4.1 we observed an example of how we collect traces for promise chains. To
furhter explain how we translate await statements into the traces defined in Table 4.1, let’s
consider our first motivating example from Figure 3.1. Initially, the application’s test suite
contains a test case T1 for RepoService.remove. T1 tests a scenario where a repository
and its webhook are successfully removed. Figure 5.1 shows the collected trace from running
T1 for the code fragment 3.1 after the fix.

45 Create(p1, L18:L18) // repo.remove is an async function and returns a promise

1https://code.visualstudio.com

18

https://code.visualstudio.com

46 Regfulfill(p1, await, L18:L18)
47 Fulfilled(p1, L18:L18) // the async function repo.remove executes successfully
48 Execfulfill(p1, await, L18:L18) // Code beyond await is executed
49 Create(p2, L22:L22) // webhook.remove is an async function and returns a promise
50 Regfulfill(p2, await, L22:L22)
51 Regreject(p2, try/catch, L20:L23)
52 Fulfilled(p2, L22:L22) // webhook.remove ends successfully
53 Execfulfill(p2, await, L22:L22) // Code beyond the second await is executed

Trace Events related from execution of RepoService.remove through T1 in CLA Assistant.

The fix also adds a new test case T2 to the test suite to check for a case where the
repository is removed, but call to webhook.remove fails with a rejected promise. Traces
collected from running T2 are shown in Listing 5.1.

54 Create(p3, L18:L18)
55 Regfulfill(p3, await, L18:L18)
56 Fulfilled(p3, L18:L18)
57 Execfulfill(p3, await, L18:L18)
58 Create(p4, L22:L22)
59 Regfulfill(p4, await, L22:L22)
60 Regreject(p4, try/catch, L20:L23)
61 Rejected(p4, L22:L22) // webhook.remove is rejected in T2.
62 Execreject(p4, try/catch, L20:L23) // so the catch block is executed to handle the exception .

Trace Events related from execution of RepoService.remove through T2 in CLA Assistant.

As it appears in these examples, an await behind a promise is translated as a Regfulfill ,
similar to using a then . Similarly, a try/catch block is an alternative to using catch for
handling exceptions. As such, it is translated to a Regreject .

5.2 Measuring Asynchronous Coverage

Initially, we analyze collected trace data to identify individual promises throughout the test
suite. As promises can only be settled once, at least two test cases are required to achieve
full async coverage for a promise. As such, we uniquely identify a promise based on its static
creation location in the code. Multiple Create events with the same location across several
test case executions in a test suite will be considered as the same promise. To improve
identification of promises, we consider the call-sites of async functions and regular functions
that return a promise as their identifying location, elaborated more in Section 5.4. We then
integrate different execution paths corresponding to the same promise to locate its various
settlements, registered reactions and exception handling mechanisms and execution of such
reactions.

Next, we detect relations between promises such as promise chains and linked promises.
By definition, a reject reaction at the end of a chain is capable of catching all exceptions
caused by any promise in that chain. In order to have a more precise representation of

19

sufficient error handling, our algorithm propagates a reject reaction in a chain to all of its
ancestor promises. Additionally, for promises returned by catch , we only require Fulfilled
event, and the rest are considered covered. This implies that registering reactions for catch

is optional, as ending chains with a catch is a generally accepted way of using promises.
While there is no obligation for catch to be at the end of a chain, we apply this heuristic to
make asynchronous coverage metrics more consistent with its usages in realistic scenarios.
Similarly, to avoid unresolvable missing coverage warnings, Regfulfill events are optional
for then . Note that without these heuristics achieving 100% async coverage would be
impossible, as there will always be one promise without any handlers at the end of any
chain. It is also possible for a promise to be linked to another promise, meaning its eventual
state will be entirely dependent on the fate of the other promise. Our algorithm also detects
promise links by locating where a promise p1 is resolved with another promise p2, and
applies all Fulfilled and Rejected events of p2 to p1 as well. Note that these heuristics are
specific to the implementation of promises in JavaScript and are not behaviors associated
with asynchrony. Features such as chaining or linking may not exist in a different language
with asynchronous features. As such, we did not include these heuristics in the definition
of our coverage criteria. Finally, we (1) calculate and visualize the async coverage for the
application by combining async coverage from all promises, and (2) report a list of warnings
for all promises’ missing reactions.

For instance, the promise p1 in trace 4.1 has four different trace events associated with
it: Fulfilled, Regfulfill , Regreject , and Execfulfill . Although Regreject(pidp2, f2, L7:L7, pidp3) is
not directly registered to p1, we infer the p1 p2 p3 chain and assign the reject reaction to
all related promises including p1. The execution covers only half of the possible settlements
for p1 resulting in a partial async coverage. A new test case rejecting p1 is required for full
async coverage.

Consider the code from Figure 3.1 as another example. Executing the full test suite
combines the traces from T1 and T2, merging all promises that are created at the same
locations. In our example, p1 and p3 are considered as a single unique promise, and so are
p2 and p4. The traces from T1 result in a full registration coverage for p2, as both Regfulfill

and Regreject events are in place. It also includes Fulfilled and Execfulfill for p2, leading to
a partial settlement and execution coverage for this promise. The traces from T2 append
Rejected and Execreject events to p2, leading to its full async coverage.

5.3 Visualizing the Asynchronous Coverage

We designed an interactive visualization integrated in VSCode, a widely used development
environment, based on feedbacks gathered from a preliminary user study we conducted.
Users can invoke JScope on demand in VSCode through a button (Figure 5.1, A), which
will begin to automatically calculate asynchronous coverage for the selected project. It then

20

Figure 5.1: JScope coverage results for CLA Assistant. The open editor shows
RepoService.remove in repo.js.

presents the results in terms of a textual report (Figure 5.1, B&C) and visual cues overlayed
on the code (D–F in Figure 5.1).

We improved the JScope’s usability and accesibility, in an iterative process using user
feedback. We collected the feedback through a priliminary user study where participants
performed coverage-related tasks using JScope.

JScope summarizes async coverage results in the Coverage Overview panel to help
with overall understanding of async coverage. It consists of two parts, an async coverage
summary (Figure 5.1, B), followed by a list of clickable warnings (Figure 5.1, B). We utilized
hyperlinks to connect the warnings with the location of their respective promises in the code.
This allows developers to seamlessly go back and forth between the warning and the relevent
sections in the code. Additionally, we overlay relevant visual cues on the code in the editor.
JScope highlights promises using a red-yellow-green “color spectrum” to determine their
level of async coverage. (Figure 5.1, D) As such, the promise in line 82 is highlighted with
red, indicating minimal async coverage. Similarly, the green and yellow highlights on line
92 and 87 indicate fully and partially covered promises, respectively. Users can obtain more
details on the warnings on demand, by hovering the mouse over warning cues (Figure 5.1,
E&F). By leveraging the integration of focus within the context [27], we help maintain
programmers’ mental model of the overall program while working with individual promises.
It further helps prevent the users from being overwhelmed by the information.

5.4 Implementation

We used NodeProf.js [76] to instrument JavaScript programs. It is a newer and more
lightweight instrumentation framework built on top of Jalangi [71] and further supports

21

the async/await syntax. JavaScript uses builtin functions to settle promises, i.e. calls to
resolve and reject functions associated with a promise constructor cannot be intercepted
using NodeProf.js. It also doesn’t provide an API to access registered reactions to a promise.
As such, we utilized JavaScript proxies [3] to modify the behavior of these builtin features
in order to intercept the execution of callbacks used for settling promises and registering
their reactions. Our dynamic analysis required additional functionalities for detection of
exception handling for await statements and try/catch blocks. To this end, we extended the
implementation of Nodeprof.js to support detection of try/catch blocks.

Using code location as an approximation to uniquely identify a promise compromises
the precision of our results. It is possible for a function that returns a promise to be called
in different locations, with different outcomes for each promise instance. In order to improve
the accuracy of such cases and achieve consistency with the behavior of async functions,
our implementation consideres call-sites of these functions as the creation location of the
promise. Similar to an async function, if a regular function returns a promise, each of its
call-sites are considered as a separate unique promise object. For instance, running JScope
on the code below will result in two different promises created on lines 69 and 70.

63 function promisify (value) {
64 return new Promise((resolve, reject) => {
65 resolve (value) ;
66 });
67 }
68
69 const p1 = promisify(14);
70 const p2 = promisify(15);

We utilized programmatic APIs of Mocha [1] and Tap [2] testing frameworks for auto-
matic execution of apps through their test suites and VSCode’s extension development API
to integrate JScope into its editor. JScope is available for download as an open-source
application [9].

22

Chapter 6

Evaluation

We evaluate our approach by measuring the asynchronous coverage for 20 JavaScript ap-
plications, studying their correlations with traditional coverage criteria, and investigating
bugs in asynchronously uncovered code. Further, we assess the usefulness of JScope for
developers through a controlled experiment. We address the following research questions.

RQ1. Does having high traditional coverage imply adequate testing of asynchronous
code?

RQ2. How can asynchronous coverage criteria facilitate identifying test inadequacies
regarding faulty asynchronous code?

RQ3. How does using JScope help improve developers’ performance in assessing test
adequacy and debugging?

RQ4. What is the performance overhead of JScope?

6.1 Asynchronous Coverage

To answer RQ1, we ran JScope on 20 web applications, measured three types of asyn-
chronous coverage criteria and studied their correlations with traditional coverage metrics.

6.1.1 Experimental Design and Procedure

We randomly selected 20 open-source JavaScript applications from GitHub that used promises
and/or async/await and had a test suite. We ran JScope on the subjects by automatically
exercising them through their test suites. We measured the results of the three asynchronous
coverage metrics, and calculated statement, function, and branch coverage of benchmarks
using Istanbul, 1 a popular JavaScript coverage tool. We then examined the possible corre-
lations of our proposed asynchronous coverage criteria with these traditional criteria.

6.1.2 Results and Discussion

1https://istanbul.js.org/

23

https://istanbul.js.org/

Application Objects Traditional Coverage Asychronous Coverage

Name LOC #Tests #Promises Statement(%) Function(%) Branch(%) Settlement(%) Registration(%) Execution(%)

1. Node Fetch 2475 392 12 97 100 94 74 68 59
2. CLA Assistant 20406 315 225 94 94 84 59 76 56
3. Minipass Fetch 1523 57 20 100 100 100 74 59 55
4. Cacache 1878 95 99 100 100 100 64 66 55
5. Github Action ... 485 42 10 100 100 100 100 100 100
6. Co 470 43 10 99 100 98 84 94 94
7. Delete Empty 272 20 8 91 100 80 47 77 46
8. JSON Schema ... 3070 256 34 88 88 78 87 94 88
9. Async Cache Dedupe 1476 120 13 100 100 100 56 83 57
10. Environment 4374 328 64 81 76 72 51 70 51
11. Socket Cluster Server 2044 72 52 82 70 70 62 50 41
12. Socket Cluster Client 10648 37 13 73 54 53 77 45 41
13. Minipass 840 131 10 100 100 100 87 50 20
14. Grant 2756 495 29 98 97 89 53 70 52
15. Express HTTP Proxy 798 106 57 96 97 87 70 100 80
16. Install 556 31 7 98 98 95 46 100 78
17. Cachegoose 224 27 8 91 92 79 43 80 30
18. Enquirer 10491 179 88 68 63 61 50 47 42
19. Avvio 5460 180 13 94 95 91 50 56 37
20. Matched 274 30 9 96 100 78 53 100 64
AVERAGE 3385 144 39 92 91 85 64 74 57

Table 6.1: Summary of different coverage metrics reported by JScope and traditional coverage.

24

Statement Function Branch Settlement Registration Execution

Settlement 0.20 0.10 0.26 1 0.11 0.48
Registration 0.49 0.56 0.35 0.11 1 0.79
Execution 0.31 0.33 0.29 0.48 0.79 1

Table 6.2: correlation coefficients for asynchronous and traditional coverage criteria.

The results are displayed in Table 6.1. The first four columns show an application’s name,
lines of code, number of tests, and number of promise objects observed in the analysis,
respectively. The next three columns depict the results of traditional coverage criteria,
i.e., statement, function, and branch coverage. The following three columns include the
calculated asynchronous coverage metrics for each benchmark: settlement, registration, and
execution coverage.

As an example, the Node Fetch application in row 1 contains 2475 lines of source code
and 392 tests. 12 promise objects are created during the execution of Node Fetch through
its test suite by JScope. The coverage of the application’s code is 97%, 100%, and 94% in
terms of statement, function, and branch coverage, respectively. However, the asynchronous
coverage in terms of settlement, registration, and execution coverage is 74%, 68%, and 59%,
respectively.

Overall, the benchmarks had relatively high traditional coverage scores, with an average
of 92%, 91%, and 85% statement, function, and branch coverage, respectively. However,
it can be seen that the settlement, registration, and execution coverage scores were much
lower, with an average of 64%, 74%, and 57%, respectively. This means that, on average, the
test suite of a typical JavaScript application a exercises 92% of the statements but about
65% of the expected outcomes of its promises and async functions. a may not even register
over 25% of necessary reactions for async operations. Even fewer reactions are actually
exercised through tests.

Next, we examined the potential correlations between asynchronous and traditional
coverage criteria. We used the Kendall rank correlation coefficient, which does not assume
a normal data distribution. Kendall coefficient is in the range of [-1, +1], where closeness to
+1 and -1 shows a stronger correlation. Numbers closer to 0 indicate weaker relationships
accordingly. The results, as depicted in Table 6.2 show no strong correlations between
traditional and asynchronous coverage metrics. The lack of strong correlations supports
our hypothesis that traditional coverage metrics are not necessarily equipped for indicating
the sufficient execution of asynchronous scenarios through tests. In other words, covering
more lines or functions does not imply covering more of the asynchronous behavior of an
application.

25

Co
mm

it

Ap
p

Ca
teg
or
y

Se
ttl
em
en
t

Re
gis
tra
tio
n

Ex
ec
ut
ion

Br
an
ch

1. #f56491a express-http... Unhandled Exception 63 96 74 87
2. #d902776 cla-assistant Unhandled Exception 58 75 55 84
3. #8ff7de7 streamroller Unhandled Exception 60 81 67 100
4. #8e94a60 eslint_d.js Unhandled Exception 70 65 65 89
5. #6bcf8ca checkfire Unhandled Exception 40 55 40 -
6. #fff6640 postgres Unhandled Exception 71 83 60 91
7. #2fc9693 haraka-... Unhandled Exception 25 33 33 -
8. #e5615da ioredis Unhandled Exception 76 69 55 88
9. #146bb3b install Unhandled Exception 50 100 62 96
10. #0dfff52 json-schema... Unhandled Exception 80 91 81 88
11. #cbcdfc6 socketcluster... Unhandled Exception 63 50 43 70
12. #dfbafbf clamscan Pending Operation 58 89 62 38
13. #48a2ddf cla-assistant Broken Promise Chain 58 75 55 84
14. #b0a86d4 avvio Broken Promise Chain 38 58 38 90
15. #68342f8 libnpmteam Unnecessary Asynchrony 40 83 61 100

Table 6.3: Asynchrony-related JavaScript issues from Github.

Overall, while the high traditional coverage scores raise confidence in sufficient veri-
fication of the code, they are not equipped with identifying shortcomings of the tests in
asynchronous scenarios. For instance, while 85% of the branches are exercised on average,
only 57% of the expected reactions of asynchronous operations are invoked.

6.2 Asynchronous Coverage and Test Effectiveness

To address RQ2, We used JScope and Istanbul to examine both types of coverage for code
snippets related to previously resolved issues on GitHub. We investigated (1) if traditional
coverage criteria raise any warnings regarding inadequate testing of faulty asynchronous
code and (2) if JScope could have helped discover these bugs during testing.

6.2.1 Experimental Design and Procedure

We randomly selected 15 issues from JavaScript projects on GitHub that relied on asyn-
chrony for their execution, were accompanied by a supported test suite and used one of the
testing frameworks supported by JScope. All these issues were fixed by the developers.
We used the issue descriptions, commits, conversations, and related pull requests to con-
firm that the issues were valid and caused by an asynchronous part of the code. Next, we

26

https://github.com/villadora/express-http-proxy/pull/274/files
https://github.com/cla-assistant/cla-assistant/commit/d9027760ae943afe768dd14161da444896462e9d
https://github.com/log4js-node/streamroller/pull/160
https://github.com/mantoni/eslint_d.js/pull/215
https://github.com/open-climate-tech/checkfire/commit/6bcf8ca73e66c42f19d2ae2cdc5ff7e16996607
https://github.com/porsager/postgres/commit/fff66407c8dbcfc4c4f30da188d45f090ddcedf3
https://github.com/haraka/Haraka/issues/3048
https://github.com/luin/ioredis/commit/e5615da8786956df08a9b33b6cd4dd31e6eaa759
https://github.com/benjamn/install/commit/146bb3bebad3ca8a99c3bc410b1693e6c05576e3
https://github.com/APIDevTools/json-schema-ref-parser/commit/0dfff5219151c870fdb68045a17c23028c96c85a
https://github.com/SocketCluster/socketcluster-server/commit/cbcdfc6b1a315e251e87ae371f3224fac45e7c36
https://github.com/kylefarris/clamscan/commit/dfbafbf
https://github.com/cla-assistant/cla-assistant/commit/48a2ddff982938d53dcc23178d9bbf246ac8f302
https://github.com/fastify/avvio/commit/b0a86d4473f08ab71ec0bd2d29f80a8e228e1451
https://github.com/npm/libnpmteam/commit/68342f842c0961bb60dc8c6f8731238c5a69a8ea

collected traditional code coverage results using Istanbul to ensure for each program the
statements relevant to the code causing these bugs were executed and thus covered by the
tests before the fix. We then ran JScope on two versions of each project, one immediately
before and one immediately after each bug fix. We used JScope’s output to investigate the
inadequacies of the tests in exercising the asynchronous behavior in code segments related
to each bug.

6.2.2 Results and Discussion

Table 6.3 lists the 15 analyzed bugs and the changes in asynchronous and traditional cover-
age reports before and after the fix. Columns 1–3 show the commit pertaining to the bug fix,
the application name, and the bug category, respectively. The next three columns display
the calculated async coverage numbers before the fix. Finally, the last column displays the
branch coverage before the fix. We included branch coverage as a representative of the basic
traditional coverage metrics, i.e. statement, branch, and function coverage to demonstrate
the general state of these applications in terms of their coverage before the fix. As priorly
mentioned, all these applications have full traditional coverage for code segments relevant
to the bug.

Overall, JScope showed insufficient coverage and relevant warnings for all bugs, ad-
dressing which could have helped detect and fix the bug before deployment. Traditional
coverage, however, showed no sign of warning or insufficient testing for any of the bugs or
their relevant code segments. While the async coverage scores generally increased after the
fixes, they also decreased in a few cases. In those cases, the fix introduced new promises
that were not fully covered and thus decreased the overall async coverage.

Next, we discuss the main categories of studied bugs and describe how JScope’s reports
and warnings could have benefited the bug finding process through two examples.

Unhandled Exceptions

Developers often neglect to test exceptional executions of asynchronous operations [18].
While current coverage criteria can indicate insufficient testing of conditions and branches,
they are unable to detect insufficient testing of alternative scenarios for asynchronous op-
erations, such as missing reactions for rejected asynchronous operations or missing error
handling.

Example A. Eslint_d.js is an application that daemonizes ESLint 2 for higher perfor-
mance and has >30k weekly downloads on the NPM registry (Table 6.3, row 4). It caches
and reuses a single linter object to reduce overhead. Line 272 of the left code snippet in
Figure 6.1-A shows how the async function getCache is invoked to asynchronously retrieve

2https://www.npmjs.com/package/eslint

27

Figure 6.1: Statement coverage vs JScope results, before and after the bug fix. Green
marks beside line numbers show covered statements reported by Istanbul. Overlaying
highlights are generated by JScope, where yellow and red indicate promises with

inadequate async coverage.

a cached ESLint linter object from a given path. The program, using await, waits until
this promise fulfills. A bug was reported on this method despite the full coverage of this
code segment by the tests, as depicted by the green markings by the line numbers. The bug
report stated that the application crashes with an unhandled promise exception if the path
given to getCache cannot be resolved. The proposed fix added a try/catch around the
call to getCache to allow handling exceptions caused by the rejected promise and prevent
further crashes (Figure 6.1-A, right snippet, lines 273–278). A corresponding test was also
added to the test suite that programmatically simulates the exception and exercises the
catch block (lines 275-278).

This bug had remained undetected in production for four months. However, running
JScope on the faulty version of the code reported insufficient coverage in terms of a missing
reject reaction for the promise returned by getCache, shown as the highlighted code on line
272 and the "Missing error handler" warning message box (Figure 6.1-A). Having had access
to JScope during testing could have helped reveal this bug before production.

Our results in Table 6.3 showed multiple instances of unhandled exceptions, similarly
missed by the applications’ tests. Row 3 is an example where developers managed to achieve
100% statement coverage, while still failing to detect a missing reject reaction causing a
crash. Consider our first motivating example from Section 3.1.1. Ambiguous reports mention
the same issue two years before the fix. The issue persisted to a point where it had damaged
the users’ trust, with a user calling CLA Assistant a phishing tool. 3

This group of bugs can get more complicated in practice, and thus harder to locate and
address. Figure 6.2 is a simplified code fragment related to row 1. a middleware to proxy

3https://github.com/cla-assistant/cla-assistant/issues/[561,691, and 822]

28

71 function buildProxyReq(Container) {
72 return new Promise((resolve) => { // P1
73 Promise. all ([parseBody, createReqOptions]) // P2
74 .then((responseArray) => { // P3
75 resolve (Container)
76 }) });
77 }
78 buildProxyReq(container) .catch(next); // P4

Figure 6.2: Simplified implementation of the function buildProxyReq in express-http-proxy
before the fix. P1, P2, P3, and P4 show promises detected by JScope.

HTTP requests with 350k weekly downloads on NPM. 4 P1’s executor function constructs
a promise chain P2 P3, where P3 fulfills P1. The developer is under the impression that
with catch (P4) in place, exceptions caused by buildProxyReq will be properly handled.
However, this code creates two separate chains P1 P4 and P2 P3, allowing rejections
in the second promise chain to crash the program. This application is also included in row
16 of the coverage summary table15. Despite full statement coverage for buildProxyReq,
JScope shows warns pointing out to the accidental broken promise chain.

Broken Promise Chains

JavaScript programs will not wait for the completion of asynchronous operations, unless
explicitly specified. In other words, the execution of operations that depend on the comple-
tion of a promise is reliant on properly chaining them through promise reactions or await

statements. Developers can mistakenly break the chain of asynchronous operations by not
awaiting their completion [51]. This may alter the flow of execution leading to undesired
outcomes. Moreover, the outcome of the promise will not be used, and potential exceptions
will not be caught, which can lead to a myriad of issues in programs. Our first motivating
example displayed a case were this mistake led to the CLA Assistant application crashing,
caused by an unhandled exception thrown by an un-awaited promise (Section 3.1.1).

Example B. Row 13 of Table 6.3 shows another issue in CLA Assistant. Repositories that
use CLA Assistant may require contributors to sign a Contributor License Agreement (CLA)
through CLA Assistant’s web interface. When a user signs a CLA through CLA Assistant’s
web interface, handleWebhook is invoked (partially shown in Figure 6.1-B). Upon invocation
of the async function updateForCla\- NotRequired (line 146), a promise is returned that
asynchronously communicates the status update on the signature to GitHub servers. It then
sends a confirmation to the user (line 153).

4https://github.com/villadora/express-http-proxy/pull/274

29

https://github.com/villadora/express-http-proxy/pull/274

Users had reported issues where the web interface shows an updated status for a pull
request, whereas on GitHub, the repository is still pending CLA Assistant’s update. Two
other preceding issues vaguely report the same bug with reporters unable to reproduce the
error. 5

JScope reported low async coverage for the promise on line 146 before the fix (Fig-
ure 6.1-B). The warning states that the promise has not settled and has no reactions,
suggesting a fix through adding a then or await statement. This matches the fix pro-
vided by the developers for the original issue, which added an await before the call to
updateForClaNotRequired to wait for the function’s completion before sending a response
to user (line 146). Note that after the fix, partial coverage for the promise on line 146 indi-
cates that erroneous scenarios are not tested. This is also apparent with statement coverage
showing untested catch block on line 151.

Pending Operations

If not explicitly settled, asynchronous operations remain pending, causing endless execution
of programs or memory leaks. These cases often happen as a result of developers treating
asynchronous code similar to synchronous code, such as incorrectly calling return inside the
promise executor function to denote its completion instead of calling resolve as is the case
in Table 6.3, row 12. For these cases, JScope reports missing fulfillment and low settlement
coverage for the pending promise.

Unnecessary Asynchrony

Developers may complicate code by using promises where asynchrony is not required. They
may also nest promises, causing unanticipated bugs as in Figure 6.2. While generally less
severe, JScope warns about their missing rejection scenarios.

Overall, async coverage criteria can effectively expose test inadequacies related to asyn-
chrony that are undetected by traditional coverage metrics. As such, JScope can help iden-
tify parts of code that contain asynchrony-related bugs in practice despite being covered by
traditional coverage.

6.3 Usefulness of JScope to Developers

To address RQ3, we conducted a controlled user experiment to investigate the effectiveness
of JScope in helping programmers identify and debug (un)covered JavaScript code.

5https://github.com/cla-assistant/cla-assistant/issues/[520, 697]

30

6.3.1 Experimental Design and Procedure

Our experiment had a “between-subject” design to avoid the carryover effect. We divided
our participants into two groups: control and experimental groups. The experimental group
had access to a simplified and web-based version of JScope results. Both groups had access
to the code, as well as statement coverage results from Istanbul, loaded on our web-based
user interface. The web-based user interface for experimental group contained JScope’s
visual cues and user interactions and a style similar to JScope for consistency.

Variables.

Our Independent Variable is the type of tool used, referred to as Tool from hereon, which
is a nominal variable with two levels: JScope and Istanbul. We consider two continuous
Dependent Variables, task completion duration (seconds) and accuracy (%), which represent
the performance of programmers in completing the tasks.

Participants.

We recruited six male and six female participants, aged 21–35, consisting of 10 graduate
students and two software engineers, with 1–5 years of experience in software development.
We assigned them randomly to experimental and control groups. We balanced the expertise
based on our participants’ responses to a pre-questionnaire (Section 6.3.1).

Experimental Object.

We used a simplified src/body.js file from Fetch, 6 an application for implementing
browsers’ window.fetch in Node.js, which has a test suite and >25M weekly downloads.
For the debugging task, we chose a fixed bug from Docusaurus, an application for building
and deploying websites. 7 The unhandled reject reaction bug, covered by the tests, led to
silent failure of the whole application.

Tasks.

We designed three tasks that pertained to test adequacy and quality assessment (Table 6.4).
The first task was designed to assess the effectiveness of Tool in helping programmers
identify both well-tested and insufficiently tested functions (T1.A & T1.B). T2 required
the participants to locate all created promises (T2.A) and to identify those that were not
sufficiently tested (T2.B). T3 was designed to investigate the usefulness of Tool in helping
participants identify the root cause of the bug (T3.A) and propose a fix (T3.B).

6https://github.com/node-fetch/node-fetch

7https://github.com/facebook/Docusaurus/issues/238

31

https://github.com/node-fetch/node-fetch
https://github.com/facebook/Docusaurus/issues/238

Task Description
T1.A Identifying sufficiently tested functions
T1.B Identifying less robust functions (i.e. not sufficiently tested)
T2.A Locating all promises created during testing
T2.B Identifying promises that are not properly tested
T3.A Locating the root cause of a failure
T3.B Finding the fix to the failure

Table 6.4: Tasks used in the user study.

Pre-study.

All participants filled a pre-questionnaire form prior to their session, indicating their de-
mographic information and their experience in programming, JavaScript development, and
testing, and self-assessed proficiency levels. We used this data to fairly balance the partici-
pants between groups.

Training.

The participants were given a refresher tutorial on main concepts of asynchronous Java-
Script and coverage. The experimental group also received a tutorial on using JScope.

Tasks.

Next, the participants started performing the tasks (Table 6.4). The participants were al-
lowed to interact with the code and the tools and write their answers on a Google Doc
shared with the examiner. We measured the duration during the session by providing each
task to the participants individually, which they returned after completing the task. To
measure accuracy, we used pre-defined rubrics to mark the participants’ responses after the
session.

Post-study.

After the session, the participants responded to a post-questionnaire form with qualitative
data on usefulness of the Tool used and its limitations.

6.3.2 Results and Discussion

We ran the Shapiro-Wilk normality test on the data, and since the distributions were
not normal, we used Mann-Whitney U tests to analyze the results. The results showed a
statistically significant difference (28% on average) on the total accuracy of responses for
the experimental group using JScope (Mean=95%, STDDev=9%), compared to the control
group (Mean=74%, STDDev=12%).

32

The results also showed the control group spent slightly less time in total (Mean=33:56,
STDDev=4:35), compared to the experimental group (Mean=36:29, STDDev=5:01), al-
though the difference was not statistically significant. The results of individual tasks showed
that although the experimental group spent more time for completing T1 compared to the
control group, they performed all other tasks faster (14%–33% on average). It was expected
for the experimental group to spend more time on T1 due to the additional learning curve
incurred by their infamiliarity with JScope, and they still achieved an average of 33%
higher accuracy for T1. We do not find these results surprising, due to the following. First,
the unfamiliarity of the participants with JScope and necessity of using both tools incurred
a larger learning curve for experimental group, which affected the time in which they com-
pleted T1. Further, T1 required examining the whole code, regardless of whether or not
asynchrony is involved. It is reasonable that JScope did not improve the duration, as the
tasks were generic and not directly related to async coverage, and the participants in the
experimental group The experimental group still achieved an average of 33% higher accu-
racy for T1, and the difference was statistically significant. Further analysis of the results
showed that the control group believed they had successfully completed the task and thus
terminated it earlier, while they had missed part of the necessary information and hence
achieved lower accuracy scores. For the remaining tasks, the experimental group performed
consistently faster than the control group, while achieving higher accuracy.

More Accurate Assessment of Test Effectiveness.

The tasks involved performing various activities including general function coverage to more
specific promise coverage, for all of which JScope showed to improve the accuracy of the
participants. We had hypothesized that JScope would be most useful for tasks directly
involving asynchronous interactions.

For instance, T2 involved examining promises and async/await statements, where we
expected JScope to be helpful. Using JScope helped the experimental group perform
significantly better for T2. They completed this tasks 33% faster (p=0.02) and 30% more
accurately (p=0.04) on average.

Debugging.

The effectiveness of tests is directly dependent on its bug finding capability. Coverage metrics
do not directly attribute to identifying and fixing bugs. However, they can facilitate the
process by guiding programmers towards the less verified portions of the code that may
contain bugs. Using JScope helped experimental group in the debugging process by helping
them achieve more accurate answers while spending less time locating the root cause of a
failure (T3.A) and finding a fix (T3.B). The results were statistically significant for the
accuracy of the proposed fix (T3.B) where experimental group achieved an average of 37%
higher accuracy (p=0.03).

33

Application Execution Time (s) Instrumentation (s) Slowdown

Name LOC #Tests Normal(Instrumented)

21. Node Fetch 2475 392 11(22) 35 2x
22. CLA Assistant 20406 315 5(69) 97 14x
23. Minipass Fetch 1523 57 4(32) 26 8x
24. Cacache 1878 95 3(61) 29 20x
25. Github Action ... 485 42 1(30) 41 30x
26. Co 470 43 1(6) 25 6x
27. Delete Empty 272 20 0.5(38) 30 76x
28. JSON Schema ... 3070 256 10(218) 36 22x
29. Async Cache Dedupe 1476 120 21(32) 23 2x
30. Environment 4374 328 28(2501) 93 89x
31. Socket Cluster Server 2044 72 19(53) 30 3x
32. Socket Cluster Client 10648 37 9(62) 32 7x
33. Minipass 840 131 3(36) 25 12x
34. Grant 2756 495 5(364) 59 73x
35. Express HTTP Proxy 798 106 27(58) 43 2x
36. Install 556 31 0.08(118) 25 1475x
37. Cachegoose 224 27 2(34) 48 17x
38. Enquirer 10491 179 0.4(98) 40 245x
39. Avvio 5460 180 6(56) 25 9x
40. Matched 274 30 0.06(8) 29 133x
MEDIAN 1523 101 4.5(54.5) 31 15.5x

Table 6.5: Performance overhead of JScope; The numbers show an average of five executions

participants feedback.

Overall, the experimental group found JScope useful. In particular, they liked the overview
of the coverage report, interactions with the overlayed visual cues, and the warning messages
that guided them towards missing functionality or tests.

Overall, participants using JScope performed 28% more accurately in testing and de-
bugging asynchronous code.

6.4 Performance

We measured the performance of JScope in terms of its overhead of instrumentation and
test suite execution time by averaging five executions of each test suite, with and without
JScope. Table 6.5 presents our performance analysis for the applications in Table 6.1. The
results indicate a median of 31 seconds of instrumentation (23–97 seconds). The slowdown
factor for execution of the instrumented code generally ranges 2x–100x (median: 15.5x). This
slowdown is similar to other instrumentation-based dynamic analyses for JavaScript [18, 77,
39].

34

6.5 Threats to Validity

Our study participants, benchmark projects, or issues, may not be a proper representation
of the real world. We tried mitigating this by randomly selecting participants who met the
minimum experience requirements and projects of different sizes from different domains that
had the prerequisites for using JScope.

To mitigate the examiner’s bias in our user study, we delegated the timekeeping to the
participants, allowing them to decide the start and end time of each task by handing them
the tasks separately and asking them to return it afterwards. We defined a detailed rubric for
grading the accuracy of the results before conducting our study to address the same threat
in measuring participants’ accuracy. We attempted to mitigate the impact of expertise level
in our study by classifying participants based on their responses to our pre-questionnaire.

Regarding the completeness of our results, Our approach might miss the cases where
the code is not covered, since dynamic analysis is not complete. However, our manual
investigation of JScope results for projects in Table 6.1 and Table 6.3 indicates that the
results for promises that are executed by the test suites are predominantly accurate.

To balance the training between both groups of our study, Both groups received a tutorial
on main concepts such as testing and coverage, JavaScript development, and asynchrony
in JavaScript. The control group then received a tutorial on Istanbul. The experimental
group were presented with a brief training on the visualization and usability of the tool,
which they were seeing for the first time. The tutorial and the accompanying narration were
carefully crafted to provide a consistent introduction to the tool, without providing further
knowledge on the semantics of JavaScript, the object application, and the tasks used in the
study. They had only a few minutes to familiarize themselves with the tool. We believe the
lack of experience of the experimental group could affect the results against JScope, as in
reality, our users would have more experience and/or have access to more support with the
tool. Furthermore, this type of introduction of the tool, as our independent variable, is also
commonly practiced in the research community, more thoroughly discussed in Chapter 7.

Finally, we published JScope and the user study data to allow reproducibility of our
experiments [9, 10].

35

Chapter 7

Related Work

7.1 Code Coverage Criteria

While being the most prominent test quality assessment technique [86], code coverage cri-
teria have always been under scrutiny about their effectiveness [42, 35, 43, 41]. Hemmati
investigated the effectiveness of code coverage criteria, which he refers to as control-flow cov-
erage, by showing their inadequacy to detect bugs when used in isolation [41]. His results
suggest that combining these coverage criteria with data-flow coverage metrics increases
the bug detection capability substantially. Inozemtseva et al. also conducted a large scale
study on effectiveness of code coverage criteria [43]. Their study resulted in a low correlation
between code coverage criteria and test effectiveness, suggesting that code coverage criteria
alone are not a good indicator of the effectiveness of the test suites. A more recent study
on code coverage for JavaScript applications indicates that a majority of uncovered parts
of code in JavaScript are event-dependent and asynchronous callbacks [35]. The results of
this study support our motivation that asynchronous JavaScript is prone to a wider range
of bugs and testing asynchrony in JavaScript is a challenging endeavour.

Generic nature of traditional coverage criteria has lead to emergence of various domain-
specific coverage criteria, covering a wide range of domains in programming including but
not limited to logical expressions [19], neural networks [79, 13], graphical user interfaces [54],
and state machines [73, 45]. Several coverage metrics have been introduced using data-flow
to target concurrency in actor-based [81], concurrent [84, 33, 80, 72, 66], and distributed
programs [67, 40]. Researchers have proposed novel criteria for dynamic web applications by
targeting HTML elements [63, 87], page access and database access [14, 88], and RESTful
APIs [53, 28]. Other work have targetted JavaScript specifically, focusing on its loosely
typed nature [24] or DOM elements [61]. None of these techniques, however, address the
asynchronous execution and its respective challenges.

36

7.2 Program Analysis for JavaScript

Event-dependent and asynchronous callbacks form a majority of untested code in JavaScript
[35]. Prior work have used static analysis to model program behavior, detect anti-patterns,
and provide refactorings for JavaScript code [52, 74]. Madsen et al. presented event-based
call graphs, a program representation to model JavaScript’s event-driven behavior [52]. They
further introduced promise graphs to model the behavior of JavaScript promises, and de-
tect promise-related anti-patterns. More recently, Turcotte et al. leveraged static analysis
to identify and visualize asynchrony-related anti-patterns [83]. Arteca et al. further pub-
lished resynchronizer, a refactoring tool for asynchronous JavaScript code to allow program
execution speedups [22].

However, JavaScript’s dynamic nature introduces many challenges and limitations to
using static analysis [20]. Dynamic analysis has been popularly used in JavaScript to
address the imprecision of static analysis in analyzing JavaScript’s inherent dynamism [48,
82, 65]. Much research in this area targets understanding, debugging, and testing techniques
for programs in general [39, 62, 34, 23] [78, 29, 36, 56, 49, 57], and more recently for
asynchronous JavaScript in particular [18, 77, 70].

Alimadadi et al. proposed a model for understanding JavaScript event-based interactions
[17]. They also extended the notion of promise graphs by Madsen et al. [51] and developed
PromiseKeeper [18] to help find anti-patterns related to JavaScript promises. NRace [26] is
also a tool with a dynamic approach, incorporating happens-before rule and multi-priority
queue to detect event races in Node.js. Sun et al. introduced AGraph [77], another dynamic
analysis tool that detects bugs related to asynchronous sources of JavaScript programs
based on their proposed model for communications with Node.js event loop. Tools such as
Sahand [15] or AwaitViz [82] are the results of efforts to visualize the behavior of asynchrony
in JavaScript in order to better comprehend their behavior. The extensive research on bug
detection and comprehension of asynchrony confirms our argument for the necessity of test
adequacy criteria that take into account the asynchrony in JavaScript and other languages.

7.3 Visualization

Visualization has been effectively used for better comprehension and modeling of event-
driven and asynchronous programs [18, 83, 17]. Tools such as Sahand [15] or AwaitViz [82]
are the results of efforts to visualize the behavior of asynchrony in JavaScript in order to bet-
ter comprehend their behavior. DrAsync visualizes promise lifetime in JavaScript programs
to identify anti-patterns and performance bottlenecks [83]. Madsen et al. and Alimadadi et
al. use graph visualization to shed light on the behavior of JavaScript promises and the in-
teractions between them. Seifert et al. presented an interactive and integrated visualization
for JavaScript’s asynchronous call graphs [70]. Similar to Seifert et al., we leveraged editor

37

integration to facilitate the comprehension of asynchronous coverage through an interactive
interface.

7.4 User Studies

User studies are prevalently used in collecting expert data [75], measuring accuracy or
usefulness of tools [16, 69], and comparing multiple approaches [46]. Many prior research
have conducted user studies with 10 to 14 participants [75, 46, 32]. Recruiting a similar
number of participants has been common in the software engineering community, even
when the user study has been the only means of evaluation [32, 69]. We further introduced
JScope as an independent variable in our study, analogous to the works of Ponzanelli et
al. [64] and Alimadadi et al [15].

7.5 Mutation Testing

Mutation testing is also used as an alternative approach for measuring test quality [44, 55].
It requires defining mutants (i.e. altered versions of code) and measuring how many of
them are detected by the tests. While not as popular as code coverage criteria, some prior
research propose mutation algorithms and testing fault detection tools for JavaScript [68].
Mirshokraie et al. have done promising research on mutation testing for JavaScript. They
proposed an algorithm to select variables and branches for mutation and a function ranking
metric [59] and further adopted mutation testing to build automatic test generation tools
[58, 60]. Despite their effectiveness, mutation testing for JavaScript is typically very costly,
and has yet to gain the popularity of code coverage [21].

38

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we proposed a set of coverage criteria for assessing the adequacy of
tests in verifying asynchronous program behavior. These criteria target eventual comple-
tion, registration of reactions, and execution of reactions for asynchronous operations. We
utilized dynamic program analysis to instrument JavaScript applications for measuring our
proposed criteria. We designed and implemented a tool to automatically calculate and gen-
erate asynchronous coverage reports. By embedding our tool into a typical development
environment, we enabled programmers to view async coverage results on top of the code,
reducing the cognitive burden of combining the results from a separate view. The interactive
visualizations provide developers with extended debugging and comprehension capabilities
regarding asynchronous code. The results of our evaluation show that asynchronous cover-
age criteria are complementary to traditional metrics such as statement coverage. Through
examining real issues from open-source programs, we showed that async criteria can help
programmers detect insufficiencies of tests and related bugs in asynchronous code where tra-
ditional metrics can’t. Our controlled user experiment also demonstrated that our tool helps
improve developers’ performance in tasks related to assessing test quality and debugging of
asynchronous code.

8.2 Future Work

Asynchrony in Other Languages

Asynchronous programming is a language-agnostic paradigm, and not limited to JavaScript.
However, JavaScript’s inherent asynchrony, and its predominance in modern web develop-
ment has made it a prominent choice for our research. Promises and async/await proved
to be effective methods for utilizing asynchrony, so that they found their way into other
programming languages. They are in python as Awaitables, in C++ as Promises, in Java
and Dart as Futures, and in C# as Tasks [12, 7, 8, 5, 6]. These commonalities put for-

39

ward possibilities of generalizing async coverage criteria for languages that are inherently
synchronous, but utilize asynchrony.

Automatic Test Generation

A good test suite helps to identify defects early in the development process and provides
confidence in the software’s behavior. Writing tests manually is a time-consuming and error-
prone task, especially when dealing with complex software systems. As such, automatic test
generation has become an active area of research in recent years. We examined that our
proposed coverage criteria can help improve the quality of tests and discover potential
issues in asynchronous JavaScript code. One possible future direction could be to utilize
these criteria to model applications’ behavior in order to automatically generate test suites.
With the goal to maximize asynchronous coverage criteria, these automatically generated
tests can contribute to robustness of asynchronous programs.

40

Bibliography

[1] Mocha, the fun, simple, flexible JavaScript test framework, 2022. [Online; accessed
1-September-2022].

[2] Node Tap, 2022. [Online; accessed 1-September-2022].

[3] Proxy - JavaScript, 2022. [Online; accessed 1-September-2022].

[4] Top programming languages | the state of the octoverse, 2022. [Online; accessed 17-
February-2023].

[5] Asynchronous programming: futures, async, await, 2023. [Online; accessed 30-Aug-
2022].

[6] Asynchronous programming with Async and Await (Visual Basic), 2023. [Online; ac-
cessed 30-Aug-2022].

[7] Awaitables, python documentation, 2023. [Online; accessed 16-Jan-2023].

[8] Future (Java Platform SE 8), 2023. [Online; accessed 30-Aug-2022].

[9] JScope - VSCode Extension for measuring Asynchronous Coverage Criteria, 2023. [On-
line; accessed 14-Feb-2023].

[10] JScope User Study Materials, 2023. [Online; accessed 14-Feb-2023].

[11] M. Ogden, Callback Hell, 2023. [Online; accessed 14-Feb-2023].

[12] Promises, Cplusplus.com, 2023. [Online; accessed 14-Feb-2023].

[13] Faouzi Adjed, Mallek Mziou-Sallami, Frédéric Pelliccia, Mehdi Rezzoug, Lucas Schott,
Christophe Bohn, and Yesmina Jaafra. Coupling algebraic topology theory, formal
methods and safety requirements toward a new coverage metric for artificial intelligence
models. Neural Computing and Applications, pages 1–16, 2022.

[14] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automating Coverage Met-
rics for Dynamic Web Applications. In 2010 14th European Conference on Software
Maintenance and Reengineering, pages 51–60, 2010.

[15] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Understanding Asyn-
chronous Interactions in Full-Stack JavaScript. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 1169–1180, 2016.

41

[16] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Inferring hierarchical motifs
from execution traces. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 776–787, 2018.

[17] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. Under-
standing JavaScript Event-Based Interactions. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, page 367–377, New York, NY, USA,
2014. Association for Computing Machinery.

[18] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding Broken Promises
in Asynchronous JavaScript Programs. Proc. ACM Program. Lang., 2(OOPSLA), oct
2018.

[19] P. Ammann, J. Offutt, and Hong Huang. Coverage criteria for logical expressions. In
14th International Symposium on Software Reliability Engineering, 2003. ISSRE 2003.,
pages 99–107, 2003.

[20] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. A Survey of Dynamic Analysis and Test
Generation for JavaScript. ACM Comput. Surv., 50(5), sep 2017.

[21] J. H. Andrews, L. C. Briand, and Y. Labiche. Is Mutation an Appropriate Tool for
Testing Experiments? In Proceedings of the 27th International Conference on Soft-
ware Engineering, ICSE ’05, page 402–411, New York, NY, USA, 2005. Association for
Computing Machinery.

[22] Ellen Arteca, Frank Tip, and Max Schäfer. Enabling Additional Parallelism in Asyn-
chronous JavaScript Applications (Artifact). Dagstuhl Artifacts Series, 7(2):5:1–5:6,
2021.

[23] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. A
Framework for Automated Testing of Javascript Web Applications. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE ’11, page 571–580,
New York, NY, USA, 2011. Association for Computing Machinery.

[24] Sora Bae, Joonyoung Park, and Sukyoung Ryu. Partition-Based Coverage Metrics and
Type-Guided Search in Concolic Testing for JavaScript Applications. In Proceedings
of the 5th International FME Workshop on Formal Methods in Software Engineering,
FormaliSE ’17, page 72–78. IEEE Press, 2017.

[25] Bruce Belson, Jason Holdsworth, Wei Xiang, and Bronson Philippa. A survey of asyn-
chronous programming using coroutines in the internet of things and embedded sys-
tems. ACM Trans. Embed. Comput. Syst., 18(3), jun 2019.

[26] Xiaoning Chang, Wensheng Dou, Jun Wei, Tao Huang, Jinhui Xie, Yuetang Deng,
Jianbo Yang, and Jiaheng Yang. Race Detection for Event-Driven Node.js Applications.
In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 480–491, 2021.

[27] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A review of
overview+detail, zooming, and focus+context interfaces. ACM Computing Surveys,
41(1):2:1–2:31, 2009.

42

[28] Davide Corradini, Amedeo Zampieri, Michele Pasqua, and Mariano Ceccato. Restats:
A Test Coverage Tool for RESTful APIs. CoRR, abs/2108.08209, 2021.

[29] Monika Dhok, Murali Krishna Ramanathan, and Nishant Sinha. Type-Aware Concolic
Testing of JavaScript Programs. In Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, page 168–179, New York, NY, USA, 2016. Association
for Computing Machinery.

[30] Danny Dig. Refactoring for asynchronous execution on mobile devices. IEEE Software,
32(6):52–61, 2015.

[31] ECMAScript 2021 Language Specification. https://www.ecma-international.org/
ecma-262/, June 2021.

[32] Brian Ellis, Jeffrey Stylos, and Brad Myers. The factory pattern in api design: A usabil-
ity evaluation. In 29th International Conference on Software Engineering (ICSE’07),
pages 302–312, 2007.

[33] M. Factor, E. Farchi, Y. Lichtenstein, and Y. Malka. Testing concurrent programs: a
formal evaluation of coverage criteria. In Proceedings of the Seventh Israeli Conference
on Computer Systems and Software Engineering, pages 119–126, 1996.

[34] Amin Milani Fard and Ali Mesbah. JSNOSE: Detecting JavaScript Code Smells. In
2013 IEEE 13th International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), pages 116–125, 2013.

[35] Amin Milani Fard and Ali Mesbah. JavaScript: The (Un)Covered Parts. In 2017 IEEE
International Conference on Software Testing, Verification and Validation (ICST),
pages 230–240, 2017.

[36] Amin Milani Fard, Ali Mesbah, and Eric Wohlstadter. Generating Fixtures for
JavaScript Unit Testing. In Proceedings of the 30th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’15, page 190–200. IEEE Press, 2015.

[37] Keheliya Gallaba, Quinn Hanam, Ali Mesbah, and Ivan Beschastnikh. Refactoring
asynchrony in javascript. In 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 353–363. IEEE, 2017.

[38] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. Automatic migration from syn-
chronous to asynchronous javascript apis. Proc. ACM Program. Lang., 5(OOPSLA):1–
27, 2021.

[39] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. DLint: Dynamically
Checking Bad Coding Practices in JavaScript. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, page 94–105, New York,
NY, USA, 2015. Association for Computing Machinery.

[40] Dominik Hellhake, Tobias Schmid, and Stefan Wagner. Using Data Flow-Based Cov-
erage Criteria for Black-Box Integration Testing of Distributed Software Systems. In
2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST),
pages 420–429, 2019.

43

https://www.ecma-international.org/ecma-262/
https://www.ecma-international.org/ecma-262/

[41] Hadi Hemmati. How Effective Are Code Coverage Criteria? In 2015 IEEE International
Conference on Software Quality, Reliability and Security, pages 151–156, 2015.

[42] Michael Hilton, Jonathan Bell, and Darko Marinov. A Large-Scale Study of Test Cov-
erage Evolution, page 53–63. Association for Computing Machinery, New York, NY,
USA, 2018.

[43] Laura Inozemtseva and Reid Holmes. Coverage is Not Strongly Correlated with Test
Suite Effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, page 435–445, New York, NY, USA, 2014. Association for
Computing Machinery.

[44] Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation
Testing. IEEE Transactions on Software Engineering, 37(5):649–678, 2011.

[45] Kenneth Koster and David Kao. State coverage: A structural test adequacy criterion
for behavior checking. pages 541–544, 01 2007.

[46] Thomas D. LaToza, Micky Chen, Luxi Jiang, Mengyao Zhao, and André van der Hoek.
Borrowing from the crowd: A study of recombination in software design competitions.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 551–562, 2015.

[47] Paul Leger and Hiroaki Fukuda. Using continuations and aspects to tame asynchronous
programming on the web. In Companion Proceedings of the 15th International Con-
ference on Modularity, MODULARITY Companion 2016, page 79–82, New York, NY,
USA, 2016. Association for Computing Machinery.

[48] Ding Li, James Mickens, Suman Nath, and Lenin Ravindranath. Domino: Understand-
ing Wide-Area, Asynchronous Event Causality in Web Applications. In Proceedings of
the Sixth ACM Symposium on Cloud Computing, SoCC ’15, page 182–188, New York,
NY, USA, 2015. Association for Computing Machinery.

[49] Guodong Li, Esben Andreasen, and Indradeep Ghosh. SymJS: Automatic Symbolic
Testing of JavaScript Web Applications. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, page
449–459, New York, NY, USA, 2014. Association for Computing Machinery.

[50] Matthew C Loring, Mark Marron, and Daan Leijen. Semantics of asynchronous
javascript. In Proceedings of the 13th ACM SIGPLAN International Symposium on
on Dynamic Languages, pages 51–62, 2017.

[51] Magnus Madsen, Ondřej Lhoták, and Frank Tip. A Model for Reasoning about
JavaScript Promises. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017.

[52] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static Analysis of Event-Driven
Node.Js JavaScript Applications. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2015, page 505–519, New York, NY, USA, 2015. Association for
Computing Machinery.

44

[53] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. Test Coverage Criteria
for RESTful Web APIs, page 15–21. Association for Computing Machinery, New York,
NY, USA, 2019.

[54] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage Criteria for GUI
Testing. SIGSOFT Softw. Eng. Notes, 26(5):256–267, sep 2001.

[55] author. Memon, Atif. Mutation Testing Advances: An Analysis and Survey, volume
112 of Advances in Computers. Academic Press„ Cambridge, MA :, 2019.

[56] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. Leveraging Existing Tests
in Automated Test Generation for Web Applications. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
page 67–78, New York, NY, USA, 2014. Association for Computing Machinery.

[57] Shabnam Mirshokraie and Ali Mesbah. JSART: JavaScript Assertion-Based Regression
Testing. In Marco Brambilla, Takehiro Tokuda, and Robert Tolksdorf, editors, Web
Engineering, pages 238–252, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[58] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. PYTHIA: Generating
test cases with oracles for JavaScript applications. In 2013 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 610–615, 2013.

[59] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. Guided mutation test-
ing for JavaScript web applications. IEEE Transactions on Software Engineering,
41(5):429–444, 2014.

[60] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. JSEFT: Automated
Javascript Unit Test Generation. In 2015 IEEE 8th International Conference on Soft-
ware Testing, Verification and Validation (ICST), pages 1–10, 2015.

[61] Mehdi Mirzaaghaei and Ali Mesbah. DOM-Based Test Adequacy Criteria for Web
Applications. In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, page 71–81, New York, NY, USA, 2014. Association for
Computing Machinery.

[62] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. Detecting JavaScript Races That
Matter. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, page 381–392, New York, NY, USA, 2015. Association
for Computing Machinery.

[63] Hung Nguyen, Hung Phan, Christian Kästner, and Nguyen Tien. Exploring output-
based coverage for testing PHP web applications. Automated Software Engineering,
26, 03 2019.

[64] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea Mocci, Rocco Oliveto,
Massimiliano Di Penta, and Michele Lanza. Supporting software developers with a
holistic recommender system. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 94–105, 2017.

45

[65] Ohad Rau, Caleb Voss, and Vivek Sarkar. Linear Promises: Towards Safer Concur-
rent Programming. In Anders Møller and Manu Sridharan, editors, 35th European
Conference on Object-Oriented Programming (ECOOP 2021), volume 194 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 13:1–13:27, Dagstuhl, Ger-
many, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[66] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective Race Detection for
Event-Driven Programs. SIGPLAN Not., 48(10):151–166, oct 2013.

[67] Christopher Robinson-Mallett, Robert M. Hierons, and Peter Liggesmeyer. Achieving
Communication Coverage in Testing. SIGSOFT Softw. Eng. Notes, 31(6):1–10, nov
2006.

[68] Diego Rodríguez-Baquero and Mario Linares-Vásquez. Mutode: Generic JavaScript
and Node.Js Mutation Testing Tool. In Proceedings of the 27th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, ISSTA 2018, page 372–375,
New York, NY, USA, 2018. Association for Computing Machinery.

[69] Nicholas Sawadsky, Gail C. Murphy, and Rahul Jiresal. Reverb: Recommending code-
related web pages. In 2013 35th International Conference on Software Engineering
(ICSE), pages 812–821, 2013.

[70] Dominik Seifert, Michael Wan, Jane Hsu, and Benson Yeh. An Asynchronous Call
Graph for JavaScript. In 2022 IEEE/ACM 44th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pages 29–30, 2022.

[71] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A Selec-
tive Record-Replay and Dynamic Analysis Framework for JavaScript. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
page 488–498, New York, NY, USA, 2013. Association for Computing Machinery.

[72] Elena Sherman, Matthew B. Dwyer, and Sebastian Elbaum. Saturation-Based Test-
ing of Concurrent Programs. In Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foun-
dations of Software Engineering, ESEC/FSE ’09, page 53–62, New York, NY, USA,
2009. Association for Computing Machinery.

[73] Khashayar Etemadi Someoliayi, Sajad Jalali, Mostafa Mahdieh, and Seyed-Hassan
Mirian-Hosseinabadi. Program State Coverage: A Test Coverage Metric Based on
Executed Program States. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 584–588, 2019.

[74] Thodoris Sotiropoulos and Benjamin Livshits. Static Analysis for Asynchronous
JavaScript Programs, 2019.

[75] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and Alberto
Bacchelli. When testing meets code review: Why and how developers review tests.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pages 677–687, 2018.

46

[76] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Efficient Dynamic
Analysis for Node.Js. In Proceedings of the 27th International Conference on Compiler
Construction, CC 2018, page 196–206, New York, NY, USA, 2018. Association for
Computing Machinery.

[77] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder. Reasoning about
the Node.Js Event Loop Using Async Graphs. In Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2019, page
61–72. IEEE Press, 2019.

[78] Haiyang Sun, Andrea Rosà, Daniele Bonetta, and Walter Binder. Automatically As-
sessing and Extending Code Coverage for NPM Packages. In 2021 IEEE/ACM Inter-
national Conference on Automation of Software Test (AST), pages 40–49, 2021.

[79] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob
Ashmore. Structural Test Coverage Criteria for Deep Neural Networks. ACM Trans.
Embed. Comput. Syst., 18(5s), oct 2019.

[80] Juichi Takahashi, Hideharu Kojima, and Zengo Furukawa. Coverage Based Testing
for Concurrent Software. In 2008 The 28th International Conference on Distributed
Computing Systems Workshops, pages 533–538, 2008.

[81] Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph Johnson. Bita: Coverage-guided,
automatic testing of actor programs. In 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 114–124, 2013.

[82] Ena Tominaga, Yoshitaka Arahori, and Katsuhiko Gondow. AwaitViz: A Visualizer of
JavaScript’s Async/Await Execution Order. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, page 2515–2524, New York, NY, USA,
2019. Association for Computing Machinery.

[83] Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip. DrAsync: Identi-
fying and Visualizing Anti-Patterns in Asynchronous JavaScript. In Proceedings of the
44th International Conference on Software Engineering, ICSE ’22, page 774–785, New
York, NY, USA, 2022. Association for Computing Machinery.

[84] Cheer-Sun D. Yang, Amie L. Souter, and Lori L. Pollock. All-Du-Path Coverage for
Parallel Programs. In Proceedings of the 1998 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA ’98, page 153–162, New York, NY, USA,
1998. Association for Computing Machinery.

[85] Yucheng Zhang and Ali Mesbah. Assertions are strongly correlated with test suite
effectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, page 214–224, New York, NY, USA, 2015. Association
for Computing Machinery.

[86] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software Unit Test Coverage and
Adequacy. ACM Comput. Surv., 29(4):366–427, dec 1997.

[87] Yunxiao Zou, Zhenyu Chen, Yunhui Zheng, Xiangyu Zhang, and Zebao Gao. Virtual
DOM Coverage for Effective Testing of Dynamic Web Applications. In Proceedings

47

of the 2014 International Symposium on Software Testing and Analysis, ISSTA 2014,
page 60–70, New York, NY, USA, 2014. Association for Computing Machinery.

[88] Yunxiao Zou, Chunrong Fang, Zhenyu Chen, Xiaofang Zhang, and Zhihong Zhao. A
Hybrid Coverage Criterion for DynamicWeb Testing (S). In SEKE, 2013.

48

Appendix A

Supplamantary Data File: JScope
Source Code

Description:

The accompanying zip file contains the source code of JScope to allow reproducibility. For
any questions or contribution, please raise an issue or create a pull-request in this repository:
https://github.com/MohGanji/jscope

Filename:

jscope-source-code.zip

49

Appendix B

Supplamantary Data File: User
Study Materials

Description:

The appended zip file contains materials used in our user study. It includes pre-questionnaire,
study tasks for control and experimental groups, and the pre-study tutorial. These docu-
ments are also available online at https://github.com/MohGanji/jscope-user-study.

Filename:

jscope-user-study-main.zip

50

Appendix C

Consent Form

51

Consent Form
Testing Asynchronous code in JavaScript

Principal Investigator:
Dr. Saba Alimadadi

Student Lead:
Mohammad Ganji

Co Investigators:
Dr. Frank Tip 

 

Application #30000800 of 1 4 Ver. 3

52

PURPOSE:
We have developed a novel technique for assessing JavaScript test quality. The
purpose of this study is to evaluate the effectiveness of our tool in helping
programmers. During the study, you will perform a few tasks related to understanding
and debugging asynchronous JavaScript code.

STUDY PROCEDURES:
A day prior to the experiment, we will email you a copy of the consent form for you to
study in your own time, and a pre-questionnaire form, indicating your experience and
level of expertise in related fields.

During the period of this experiment, first you will be handed in a physical copy of the
consent form to sign. We will give you a participant ID with which you will be identified,
and you can hand it in if you later decide to withdraw from the experiment. Afterwards,
you will be asked to perform a list of tasks and write down the results. After finishing
the study, you will fill a post-questionnaire form about your opinion on the tool. At last,
we will have a short interview to ask you qualitative questions about the your
experience with the tool.

Consent forms will be administered in person at the time of experiment and thus
signatures will be collected in person. You may also ask questions about the consent
form and the procedure of the experiment. You may leave the experiment at any time
that you wish. You can withdraw your volunteered participation without consequences.

LOCATION AND DEVICES
The location of the study will be at the building TASC1, room 9205. You are provided
with a laptop containing the instructions, the tool, the code and the tasks.

POTENTIAL RISKS:
The risks related to this project are minimal and are no more than what you would
encounter in your regular day.

The research team will abide by the latest provincial health guidelines in relation to the
COVID19 pandemic.

The research team is fully vaccinated against COVID-19 and participants also
need to be fully vaccinated in order to participate. You will be required to show
proof of vaccination at the start of the session.

POTENTIAL BENEFITS:
The results of this study will help assess and improve our under-development tool for
testing and debugging JavaScript applications. Developers can use the tool, in order to
help them in testing and debugging their code.

DISSEMINATION:

Application #30000800 of 2 4 Ver. 3

53

The results of this study will be used to 1) enhance usability and efficiency of the tool
used during the experiment, 2) publish a paper in a conference in software testing and
debugging, and 3) as part of the thesis of the student lead in this study. You will also be
informed about the web page on which the tool will be published at the end of the
experiment.

FUTURE CONTACT:
After Completion of this experiment, the investigator team will not initiate any contact
you. However, feel free to contact a co-investigator should you have any comments,
questions or concerns.

You can obtain the results of this study from the student lead, Mohammad Ganji via
email after the results have been processed, analyzed and documented.

CONTACT FOR COMPLAINTS:
If you have any concerns about your rights as a research participant and/or your
experiences while participating in this study, please contact the SFU Office of Research
Ethics at dore@sfu.ca or 778-782-6618.

CONFIDENTIALITY:
The data collected in this study is anonymized and confidentiality is maintained to best
of the research team's ability.

Data will be recorded in the form of text documents and will not include any personal
information about the participant. The gathered data will be put in a password
protected folder in the investigators flash memory stick, and will be locked in a secure
cabinet for 4 years after the date of the study.  

Please note that posting to comments sections, liking or sharing on social media or
other forums about this study may identify you as a participant. We therefore suggest
that if this study was made available to you via a social media site or other online
forums, you refrain from posting comments to protect your confidentiality

VOLUNTARY PARTICIPATION:
Your participation is voluntary. You have the right to refuse to participate in this study. If
you decide to participate, you may still choose to withdraw from the study at any time
during, or after the study without any negative consequences to the education,
employment, or other services to which you are entitled or are presently receiving. We
will give you a participant ID at the beginning of the study, which is associated to you.
You will need to hand in that ID for us to be able to withdraw your results from the
study. You should not feel pressured to participate because of an existing relationship
with the research team.

CONSENT:

Application #30000800 of 3 4 Ver. 3

54

Taking part in this study is entirely up to you. You have the right to refuse to participate
in this study. If you decide to take part and later change your mind, you can withdraw
from the study at any time without giving a reason and without any negative impact on
your grades, or employment, or any services to which you are presently entitled to
receive.

• Your signature below indicates that you have received a copy of this Consent Form
for your own records.

• Your signature indicates that you consent to participate in this study.

• You do not waive any of your legal rights by participating in this study.

Participant’s Name

Participants Signature

Date

Application #30000800 of 4 4 Ver. 3

55

	Declaration of Committee
	Ethics Statement
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Asynchronous Programming
	Testing Asynchronous Code
	Asynchronous Coverage Criteria - An Overview
	Contributions
	Publications
	Dissertation Outline

	Background
	Code Coverage Criteria
	Asynchronous Programming
	Promises and async/await in JavaScript

	Motivation and Challenges
	Unhandled Exceptions
	Example 1 (Running Example)

	Pending Asynchronous Operations
	Example 2

	Asynchronous Coverage Criteria
	Events and Traces
	Coverage Criteria for Promise-Based Code
	async/await
	Feasibility of Asynchronous Coverage Criteria

	Approach
	Instrumentation and Trace Collection
	Measuring Asynchronous Coverage
	Visualizing the Asynchronous Coverage
	Implementation

	Evaluation
	Asynchronous Coverage
	Experimental Design and Procedure
	Results and Discussion

	Asynchronous Coverage and Test Effectiveness
	Experimental Design and Procedure
	Results and Discussion

	Usefulness of JScope to Developers
	Experimental Design and Procedure
	Results and Discussion

	Performance
	Threats to Validity

	Related Work
	Code Coverage Criteria
	Program Analysis for JavaScript
	Visualization
	User Studies
	Mutation Testing

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix Supplamantary Data File: JScope Source Code
	Appendix Supplamantary Data File: User Study Materials
	Appendix Consent Form

