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Abstract

Test cases play an important role in testing and debugging software. Large complex test
cases are hard to comprehend and can hinder these tasks. Thus, reducing test cases is crucial
for understanding and fixing defects in software. Given a test case with a property of interest,
such as demonstrating a bug in the software under test, the goal of test case reduction is to
create a smaller variant of the test case that still exhibits the bug. To generate this smaller
variant, a reducer searches over a set of smaller candidates by applying transformations to
the original test case. For each candidate, the reducer queries an oracle to verify whether the
desired properties still hold. If they do, the search continues from the new smaller variant.
Reducers stop when they see no more reduction opportunities or time out.

Even when automated, test case reduction is slow and time-consuming due to repeated
trial and error with smaller candidates. This causes interruptions that adversely affect a
developer’s productivity. The goal of this dissertation is to accelerate test case reduction by
proposing new techniques that address some of the limitations in the field. In particular,
we suggest generalized techniques that reduce test cases of various domains by traversing
their parse trees and applying reduction to the nodes.

To this end, we improve the theoretical bounds and empirical performance of the well-
known Delta Debugging algorithm by converting its quadratic worst case time complexity
into linear. We propose novel tree traversal orders that remove more of the test case earlier.
We train machine learning models, capable of avoiding candidates that do not adhere to a
domain’s validity constraints. We further leverage models that guide reduction towards gen-
erating candidates that are likely to be valid. These guiding models make their suggestions
based on the reduction progress.

Our empirical results on a set of real-world test cases from multiple domains are promising
and demonstrate the practical value of our techniques. More specifically, we obtain an
average improvement of around 60% in reduction time compared to the state of the art
when reducing C, Rust and Go programs.

Keywords: Test Case Reduction; Program Reduction; Machine Learning; Delta Debugging;
Debugging; Software Testing
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Chapter 1

Introduction

Testing and debugging are essential parts of software maintenance [3]. In testing, multiple
test cases (inputs) are fed into the software under test (SUT) to examine its behavior.
For instance, randomized testing is a process in which a fuzzer stress tests the SUT by
generating randomized and potentially large test cases and feeding them into the SUT to
look for possible failures [4]. When a test case fails, it indicates a bug in the SUT that
needs to be fixed. A person debugging the software should then identify the defects in the
software program that are the root causes of the observed failure in order to fix the bug.

The success and efficiency of the debugging process strongly depends on the test case [5].
A very large test case with many parts that are not relevant to the failure is hard to
understand and makes debugging a tedious task. In fact, in many software issue trackers,
only bugs that have a minimal reproducible test case are investigated [6]. As a result,
removing the irrelevant portions of a test case is of great importance.

The goal behind reducing a test case is to obtain a smaller and simpler test case from the
possibly large original test case such that the smaller test case still exhibits the property
of interest such as a bug or failure observed by the original test case. The smaller test
case with potentially fewer dependencies is typically more easily reproducible and can make
debugging easier. In addition, it can help avoid copyright issues the large test cases may
have in their publication and thus can be added to the test suite of the software under
test [7]. Finally, a bug report with a smaller test case is more general, meaning that it is
likely to subsume other bug reports with test cases that only differ in irrelevant details [1].

Figure 1.1 illustrates the process of testing and debugging software with initial and
reduced test cases. The software under test is a program written in the Python programming
language, and the test cases are the set of Food objects that are fed into the program as
inputs. The failure is an assertion error on line 25. In order to fix the bug, the causes of the
failure should be correctly identified. To this end, statements covered and executed by the
input test case are considered as potential causes. These statements, highlighted in yellow,
can help the person debugging the program to narrow down her search space. As can be
seen, the initial test case in Figure 1.1 (a) with Food objects that are irrelevant to the

1



1 from d a t a c l a s s e s import d a t a c l a s s
2
3 @datac lass
4 class Food :
5 group : str
6 c a l o r i e : f loat
7 name : str
8
9 # i n i t i a l t e s t case

10 foods = [ Food("vegetable", 20, "celery") ,
Food("main", 200, "rice") ,

11 Food("fruit", 80, "apple") , Food("dessert", 300, "ice
cream") ,

12 Food("vegetable", 30, "lettuce") , Food("main", 250,
"bread") ,

13 Food("fruit", 100, "banana") , Food("dessert", 400,
"cake") ]

14
15
16 def checkCalorieVeg(food):
17 if food.name == "celery":
18 assert (food.calorie == 20)
19 if food.name == "lettuce":
20 assert (food.calorie == 30)
21 def checkCalorieDessert(food):
22 if food.name == "ice cream":
23 assert(food.calorie == 300)
24 if food.name == "cake":
25 assert(food.calorie == 350) failure
26 def checkCalorieMain(food):
27 if food.name == "rice":
28 assert(food.calorie == 200)
29 if food.name == "bread":
30 assert(food.calorie == 250)
31 def checkCalorieFruit(food):
32 if food.name == "apple":
33 assert(food.calorie == 80)
34 if food.name == "banana":
35 assert(food.calorie == 100)
36 for food in foods:
37 if food.group == "vegetable":
38 checkCalorieVeg(food)
39 if food.group == "dessert":
40 checkCalorieDessert(food)
41 if food.group == "main":
42 checkCalorieMain(food)
43 if food.group == "fruit":
44 checkCalorieFruit(food)
45

(a) Initial test case

from d a t a c l a s s e s import d a t a c l a s s

@datac lass
class Food :

group : str
c a l o r i e : f loat
name : str

# reduced t e s t case
f oods = [ Food("dessert", 400, "cake") ]

def checkCalor ieVeg ( food ) :
i f food . name == " c e l e r y " :

a s s e r t ( food . c a l o r i e == 20)
i f food . name == " l e t t u c e " :

a s s e r t ( food . c a l o r i e == 30)
def checkCalorieDessert(food):

if food.name == "ice cream":
a s s e r t ( food . c a l o r i e == 300)

if food.name == "cake":
assert(food.calorie == 350) failure

def checkCalor ieMain ( food ) :
i f food . name == " r i c e " :

a s s e r t ( food . c a l o r i e == 200)
i f food . name == " bread " :

a s s e r t ( food . c a l o r i e == 250)
def c h e c k C a l o r i e F r u i t ( food ) :

i f food . name == " apple " :
a s s e r t ( food . c a l o r i e == 80)

i f food . name == " banana " :
a s s e r t ( food . c a l o r i e == 100)

for food in foods:
if food.group == "vegetable":

checkCalor ieVeg ( food )
if food.group == "dessert":

checkCalorieDessert(food)
i f food . group == " main " :

checkCalor ieMain ( food )
i f food . group == " f r u i t " :

c h e c k C a l o r i e F r u i t ( food )

(b) Reduced test case

Figure 1.1: Testing and debugging a Python program. Executed program lines are high-
lighted in yellow and the input test case is highlighted in blue.
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failure executes more statements of the program, making the debugging task more difficult.
In contrast, the smaller test case in Figure 1.1 (b) distills the statements that contribute to
the failure, yielding a smaller search space to identify and fix the bug.

In the above example, we described a scenario in which the test case is a set of input
objects and the software under test (SUT) is a Python program. However, there are a wide
variety of test cases and systems under test. A test case can be a program itself when testing
a compiler [4] or it can be a sequence of user interactions with a web application [8] or a
sequence of queries for a database [9, 10]. Thread schedules can be test cases for concurrent
programs [11] and GUI event traces in Android applications [12] are another example of
test cases.

Manual reduction of test cases is tedious and time-consuming if not infeasible. For
example, manually reducing a test case that triggers a non-deterministic bug in a multi-
threaded application is not possible [11, 13]. As a result, automated test case reduction has
drawn much attention during the past decades [1, 14, 15, 13, 16, 17, 18, 19, 20, 21].

To automatically find a smaller variant of the test case that still preserves the property of
interest (e.g., it still exhibits the failure in the software), the reduction algorithm explores a
search space of candidates by applying a set of transformations to the original test case and
generating smaller variants. The reduction transformations and the way they are applied are
defined individually by each algorithm. Removing parts of the test case or replacing larger
portions with smaller ones are the main reduction operations performed by the existing
techniques [1, 13, 15, 22, 10]. When a candidate is generated by applying a transformation,
the reduction algorithm verifies whether it preserves the property of interest by querying
an oracle. If the reduced variant preserves the property of interest (also referred to as a
successful variant), it replaces the original test case, and the search and reduction process
continue on the reduced variant. Reduction is an anytime algorithm, meaning that it can
stop at any time and return the smallest variant obtained so far. In practice, reducers stop
when they (1) see no more reduction opportunities or (2) time out [1, 15, 13].

Often, the problem of finding a smaller test case with the property of interest is ap-
proached through Delta Debugging (DD) [1], a longstanding and effective algorithm for
test case reduction that essentially generalizes binary search. However, for inputs with sig-
nificant structure, generic Delta Debugging can perform poorly, requiring significant time
and not performing much reduction [14, 23]. For compilers in particular, where the test
cases must be valid programs, this has led to specialized techniques like Hierarchical Delta
Debugging (HDD) [14, 23], domain specific reducers like C-Reduce [13], and most recently to
syntax guided domain agnostic reducers as seen in Perses [15]. Despite these advancements,
test case reduction may still take hours to run, hindering productivity and scalability. More
specifically, reduction processes that take hours instead of minutes can disrupt developer
workflow and reduce efficiency [24]. Moreover, they can limit the scalability of emerging uses
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for test case reduction [25, 26]. Thus, accelerating test case reduction turns into a significant
and intriguing study area.

The goal of this dissertation is to address some of the problems in this domain and
propose solutions to improve the efficiency of test case reduction while preserving its ef-
fectiveness. A more efficient reduction can speed up the debugging process by reducing
the number of long disruptions a developer may encounter during a day. This can help
developers to maintain their productivity by not switching tasks [27].

We measure the efficiency by using two metrics that are widely used in the state of the
art techniques [1, 14, 13, 15]:

1. Total test case reduction time (wall-clock time).

2. The total number of reduced variants or candidates generated during reduction (both
successful and unsuccessful ones). Since a verifying test by an oracle needs to be
performed on each reduced variant to check whether it preserves the property of
interest, we simply refer to this metric as the number of tests, oracle queries or oracle
calls.

In general, a reduction technique that performs fewer tests within shorter reduction time is
more efficient.

Also similar to previous works [1, 14, 13, 15], we define the size of the final reduced test
case as the metric to measure effectiveness. A smaller size indicates a higher effectiveness
and reduction power for the technique. The size can be represented in terms of the number
of elements that comprise a test case. For instance, a C program used as a test case for a
compiler consists of tokens that are the smallest meaningful units in a program. Hence, the
total number of tokens remaining in the final reduced program can be used as a metric to
measure the effectiveness of the program reducer.

By monitoring the reduction time, we identify the bottlenecks of existing techniques and
propose novel methods that speed up reduction while generating reduced test cases that
are comparable in size to those generated by the state of the art.

Additionally, this dissertation seeks to offer solutions that are not specifically tailored to
operate in one particular domain. These generalized techniques also referred to as domain
agnostic apply reduction operations on the nodes of the parse tree or abstract syntax tree
(AST) of the given test case. As a result, they are reusable on multiple domains with little
or no extra effort, they do not require extensive knowledge of the domain, and can easily
be applied when resources are limited.

With the goal of accelerating generalized test case reduction techniques, we pursue the
following five main directions:

(1) We propose and evaluate a value guided reduction technique called One Pass Delta
Debugging that skips performing tests with low likelihood of success in practice [2]. By
slightly modifying the original Delta Debugging algorithm, we reduce the number of tests in

4



the worst case behavior of Delta Debugging from O(n2) to just O(n). This enhancement can
be beneficial to any reducer whose infrastructure is based on Delta Debugging [14, 15, 13].
We originally introduced and published this idea at the 2018 IEEE International Conference
on Software Quality, Reliability and Security (QRS 2018) [2].

(2) We propose and evaluate a priority aware test case reduction technique called Par-
dis [28]. Its concept of priority awareness originates from Perses [15], the latest state of
the art domain agnostic program reducer, in which nodes in the parse tree of the test case
are ranked in a queue in a descending order of their size to be targeted by the reducer.
However, we demonstrate that Perses targets the prioritized nodes and tries to reduce them
in an inefficient manner. Pardis and its variant Pardis Hybrid propose different meth-
ods of prioritizing nodes in the queue that can help to remove larger portions of the test
case earlier, leading to a faster convergence towards the minimal test case. We originally
introduced and published this idea at the 22nd International Conference on Fundamental
Approaches to Software Engineering (FASE 2019) [28].

(3) Model Guided Pardis [29] is another variation of Pardis proposed and evaluated
in this dissertation. This new technique is built upon Pardis but it employs models trained
by machine learning algorithms to enable Pardis to predict and avoid conducting an invalid
reduction operation. In particular, we are interested in predicting and filtering semantically
invalid tests. These tests violate semantic constraints of the test case domain and have
drawn little or no attention among generalized reducers. For instance, removing a function
definition before removing its call site is a semantically invalid test performed by many
domain agnostic reducers, including Perses and original Pardis. A reducer with too many
semantically invalid candidates in its search space has to spend a lot of time running these
tests without seeing any progress in reduction. We originally introduced and published this
idea at the 18th IEEE/ACM International Conference on Mining Software Repositories
(MSR 2021) [29].

(4) Next, we propose Type Batched Reducer [30] to further improve the performance
of domain agnostic reduction techniques. In particular, we note that current domain agnostic
reducers such as Perses, Pardis and its variants traverse the parse tree in orders that can
hinder successful reduction. These reducers traverse the tree from the top down to visit nodes
with a larger number of descendants earlier. However, removing such nodes can often fail due
to dependencies within the test case. To mitigate this problem, Type Batched Reducer
partitions the nodes of the tree into batches and uses machine learning to select the batches
of nodes that are estimated to be the most effective at reducing the test case. In other words,
by selecting the most effective nodes to reduce at a given point in time during reduction, the
reducer is guided towards portions that are more likely to be successfully reduced. Unlike
traditional traversal based techniques such as Hierarchical Delta Debugging [14], Perses and
Pardis, the traversal orders suggested by Type Batched Reducer enable visiting nodes
at different levels and locations within the tree. We originally introduced and published
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this idea at the 32nd ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2023) [30].

(5) Finally, selecting the most advantageous nodes by Type Batched Reducer in-
creases the probability of successfully removing them. As a result, we propose and apply a
Probabilistic Joint Reduction technique [30] to simultaneously reduce over multiple
portions of the tree at once. This idea was also originally introduced and published at the
32nd ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2023) [30].

By exploring the above directions, we aim to significantly improve the speed of test case
reduction through a combination of 1) skipping likely uninformative tests, 2) enabling early
removal of high impact test case regions, 3) avoiding invalid tests, 4) prioritizing tests that
are more likely to be valid, and 5) learning which portions of the test case can get removed
together without making the property of interest disappear.

Our results are promising, showing an average improvement of around 60% in reduction
time when reducing real-world test cases from C, Rust, and Go domains without harming
the reduction power.

The rest of the dissertation is organized as follows:
In the next chapter, we provide background information on test case reduction, including

formal definitions and fundamentals of some existing techniques. Chapter 3 presents our
One Pass Delta Debugging algorithm, its evaluation and the conditions under which it
could function effectively. Chapter 4 describes Pardis and its variant Pardis Hybrid, our
two priority aware test case reduction techniques and compares them against Perses [15],
the latest state of the art domain agnostic reducer. The integration of machine learning and
test case reduction is the subject of Chapter 5. To decrease the number of invalid tests run
by current reducers, we propose two sets of models in this chapter. The first set of models
integrated into Pardis (also referred to as Model Guided Pardis) can help the reducer
to predict and avoid performing invalid tests. The second set of models introduced in Type
Batched Reducer suggests the most advantageous portions of the test case to reduce at a
given point in time during reduction. In Chapter 6, we investigate some other aspects of test
case reduction such as comparing our best domain agnostic reducer with C-Reduce [13], the
powerful and effective domain specific C reducer and further discuss the threats to validity
of the results and potential future directions. The dissertation closes with related work and
conclusions.
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Chapter 2

Background and Motivation

In this chapter, we first provide some formal definitions and terms in Section 2.1 that are
shared among existing test case reduction techniques and the novel techniques proposed in
this dissertation. Next, in Section 2.2, we describe Delta Debugging (DD) [1], a longstanding
approach to automated test case reduction that was proposed more than two decades ago
by Zeller and Hildebrandt. The generic process of Delta Debugging in searching for smaller
inputs with a property of interest has inspired various techniques to either improve [14, 23,
31, 19, 2, 32] or apply Delta Debugging in their intended applications [33, 15, 13, 8, 11, 12].
We present some limitations of Delta Debugging and study one of its improvements called
Hierarchical Delta Debugging (HDD) [14] in Section 2.3 that is more suitable for reducing
test cases with structure such as program source code. Despite the improvements by HDD, it
still suffers from some drawbacks also discussed in this section. In Section 2.4, we elaborate
on reducing test cases in form of program source code referred to as program reduction and
describe Perses [15], the latest state of the art domain agnostic program reducer. Perses
is a syntax based queue driven reducer proposed by Sun et al. that is mostly known as
a program reducer in the literature. However, it is capable of reducing test cases other
than programs from domains with structure such as XML files. Despite its capability and
generality, Perses has also limitations that are not addressed in the literature. In Section 2.5,
we discuss some of these limitations and motivate solutions for them. Similar to Perses, our
solutions are generalized and domain agnostic and can be used to reduce any test cases that
have structure, including programs and XML files.

2.1 Preliminaries

The aim of test case reduction is to reduce a test case with some property of interest such that
the reduced variant still preserves the property. Often, the property of interest is that the
test case exhibits a particular failure or bug. From here on, we refer to a test case satisfying
a particular property as inducing the failure without loss of generality. By applying a set
of transformations on the elements of the given test case, the reduction technique searches
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for smaller candidate variants and verifies whether they still induce the failure. To this
end, an oracle is queried on each variant to perform the verification. A variant that still
triggers the failure replaces the original test case and the reduction continues on the smaller
new variant. Test case reduction is an anytime algorithm, meaning that it can stop at any
time and return the smallest variant generated so far as the reduced test case. In practice,
reducers terminate when there are no more candidates available in their search space or
within a timeout. The returned reduced test case is normally 1-minimal.

In the following, we provide formal definitions for the terms used above:

Definition 2.1.1. Given τ as a test case with |τ | = n, e1, ..., en are elements of τ if
e1, ..., en ∈τ and e1

⊕
e2

⊕
...

⊕
en =τ and eis are pairwise disjoint and |ei| = 1, ∀ei ∈τ .

An element is the smallest unit of a test case that can be customized based on the
domain of the test case. For instance, an element of a sequence of user actions in a web
browser can be defined as a single action. An element of a C program as a test case for
a C compiler can be a single character, a token that is the smallest meaningful unit of a
program, a line of code or a node in the parse tree or abstract syntax tree (AST) of the
program.

Definition 2.1.2. Given τ as a test case, τ ′ is a configuration or variant of τ if τ ′ ⊆τ .

Note that ⊕ in Definition 2.1.1 preserves the order of elements. Thus, a variant of a
test case is a subset of the test case in which the elements of the subset preserve the same
order as the elements in the original test case.

Definition 2.1.3. Given reducer R and test case τ , the set of transformations M is the set
of reduction operations applied on elements of τ by R.

Reduction operations are customized based on the implementation of the reducer and the
domain of the test case. In general, removing elements from the test case or replacing them
with smaller elements are the main reduction operations performed by existing reducers [1,
14, 15, 22, 10]. Applying a transformation m ∈ M on test case τ generates a candidate
variant τ ′ ⊆τ to be verified by the oracle. The search space of the reducer consists of all
variants or configurations generated by the reducer.

Definition 2.1.4. Given a test case τ and a reducer with search space S, an oracle function
is the Boolean function ψ : S → {True, False} such that ψ(τ ′) = True if variant τ ′ ∈ S
triggers the failure and ψ(τ ′) = False otherwise. By definition, ψ(τ) = True when τ is the
initial failure-inducing test case and ψ(∅) = False.

The verification process performed by an oracle is referred to as an oracle query, an
oracle call or simply a test.
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Definition 2.1.5. Given τ as an original test case with ψ(τ) = True, the goal of test
case reduction is to find a minimal variant τmin from the search space S such that τmin =
argminτ ′∈S f(τ ′) and ψ(τmin) = True where f(τ ′) is a cost function with respect to a
metric such as |τ ′|.

Finally, the reduced test case generated by a reducer is not a globally minimum test
case because obtaining such a test case from an infinite set of potential transformations M
is exponential [15]. Moreover, a reducer applies transformations from M one by one that
makes the reduced test case not be locally minimum either. To mitigate the problem, a
more relaxed version of minimality called 1-minimality is introduced.

Definition 2.1.6. A test case τ is 1-minimal if ψ(τ) = True and ∀ei ∈τ , ψ(τ−ei) = False

where i = 1, 2, ..., |τ |.

This means that every atomic element in a 1-minimal test case is required to trigger the
failure. In other words, if any one single element is not present in the test case, the failure
will disappear. In practice, 1-minimal test cases are small enough to successfully provide
insights on a failure [1, 14, 15, 34, 35].

2.2 Delta Debugging

Given a failure-inducing test case, the well-established test case reduction technique, Delta
Debugging explores smaller test case variants based on a greedy search algorithm that is
similar to binary search [1].

Consider the example in Figure 2.1. The initial failing test case in this example is the
set of numbers τ✗={1, 2, 3, 4, 5, 6, 7, 8}. Suppose that the failure-inducing part of
the test case is the set {1, 7, 8} such that a test case variant exhibits the failure if and
only if {1, 7, 8} is a subset of the variant. Delta Debugging first partitions the test case
into halves, generating two subsets ∆1 ={1, 2, 3, 4} and ∆2 ={5, 6, 7, 8}. It then
passes these subsets to the oracle function to verify whether either of them can trigger the
failure:

1. if ψ(∆1) = True, then the test case τ✗ is reduced to ∆1.

2. else if ψ(∆2) = True, then the test case τ✗ is reduced to ∆2.

3. else if ψ(∆1) = False and ψ(∆2) = False, granularity is increased.

If the first or second branch is true, τ✗ reduces to subset ∆1 or ∆2, respectively and Delta
Debugging will continue recursively on the new test case. However, if the third branch is ex-
ecuted, none of the subsets on their own can trigger the failure. Hence, Delta Debugging in-
creases granularity by partitioning each subset into halves, so instead of having two subsets,
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Step Test Case (τ ′) ψ(τ ′) Description
0 τ✗ 1 2 3 4 5 6 7 8 True initial test case
1 ∆1 = ▽2 1 2 3 4 . . . . False test subset
2 ∆2 = ▽1 . . . . 5 6 7 8 False test subset
3 ∆1 1 2 . . . . . . False granularity increased

test subset
4 ∆2 . . 3 4 . . . . False test subset
5 ∆3 . . . . 5 6 . . False test subset
6 ∆4 . . . . . . 7 8 False test subset
7 ▽1 . . 3 4 5 6 7 8 False test complement
8 ▽2 1 2 . . 5 6 7 8 True reduce to complement
9 ∆1 1 2 . . . . . . False continued with same granularity

test subset1

10 ∆2 . . . . 5 6 . . False test subset1

11 ∆3 . . . . . . 7 8 False test subset1

12 ▽1 . . . . 5 6 7 8 False test complement
13 ▽2 1 2 . . . . 7 8 True reduce to complement
14 ∆1 = ▽2 1 2 . . . . . . False continued with same granularity

test subset1

15 ∆2 = ▽1 . . . . . . 7 8 False test subset1

16 ∆1 1 . . . . . . . False granularity increased
test subset

17 ∆2 . 2 . . . . . . False test subset
18 ∆3 . . . . . . 7 . False test subset
19 ∆4 . . . . . . . 8 False test subset
20 ▽1 . 2 . . . . 7 8 False test complement
21 ▽2 1 . . . . . 7 8 True reduce to complement
22 ∆1 1 . . . . . . . False continued with same granularity

test subset1

23 ∆2 . . . . . . 7 . False test subset1

24 ∆3 . . . . . . . 8 False test subset1

25 ▽1 . . . . . . 7 8 False test complement1

26 ▽2 1 . . . . . . 8 False test complement
27 ▽3 1 . . . . . 7 . False test complement
28 Result 1 . . . . . 7 8 True Done

1can be retrieved from a cache.

Figure 2.1: An example of the Delta Debugging algorithm, reducing test case {1, 2, 3,
4, 5, 6, 7, 8} with the failure-inducing portion to be subset {1, 7, 8}.

∆1 and ∆2, we will have four subsets, two generated by dividing ∆1 into halves and two gen-
erated by dividing ∆2. In our example, ψ({1, 2, 3, 4}) = False and ψ({5, 6, 7, 8}) = False.
Hence, Delta Debugging increases granularity by partitioning {1, 2, 3, 4} into {1, 2}

and {3, 4} and {5, 6, 7, 8} into {5, 6} and {7, 8}. Each of these subsets is passed to
the oracle to verify whether any of them can reproduce the failure on their own (steps 3-6 in
Figure 2.1). If none of these subsets can trigger the failure which is the case in our example,
Delta Debugging considers reducing to the complements of these subsets. A complement of
subset ∆i, i = 1, ..., n where n is the number of subsets at the current granularity, is defined
as ▽i = τ✗−∆i. If the test case can be successfully reduced to a complement (such as com-
plement {1, 2, 5, 6, 7, 8} in step 8 of our example), Delta Debugging will continue by
performing subset and complement tests at the same granularity (steps 9-13) until either
performing another successful reduction (step 13) or increasing granularity again (step 16).
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Note:
Reducing to complement ▽i is the same as successfully removing
subset ∆i from the test case where i = 1, ..., n and n is the number
of subsets (or complements) of the test case at the given granularity.

Delta Debugging terminates when the test case cannot be further partitioned (i.e., until
reaching subsets of the smallest possible size). This size is the finest granularity of the
reduction and varies for different problems and domains. It can be customized by the user.
For instance, a user may want to reduce a file of words by its characters. In this case, the
granularity is at the character level and the smallest subset has only one character. Another
user may want to reduce the same file by words or even sentences. In this case, each word (or
sentence) will be considered as one atomic element that cannot be partitioned further and
the reduction will be performed on the list of words (or sentences) until reaching subsets
with only one word (or one sentence). In our example of Figure 2.1, the smallest possible
subset contains a single number.

Now, we give a more general representation of the Delta Debugging algorithm steps
described above:

Let n be the number of subsets of the failure-inducing test case τ✗. The Delta Debugging
algorithm will execute one of the following four branches:

1. Reduce to subset: Test each subset ∆i, i = 1, 2, ..., n. If any of the subsets ∆i triggers
the failure, replace τ✗ with ∆i. Otherwise:

2. Reduce to complement: Test each complement ▽i = τ✗ −∆i, i = 1, 2, ..., n. If any of
the complements ▽i triggers the failure, replace τ✗ with ▽i and continue reducing ▽i
with n− 1 subsets. Otherwise:

3. Increase granularity: Try steps one and two again with 2n subsets. If 2n > |τ✗|, try
|τ✗| subsets.

4. Done: Stop the algorithm if granularity can no longer be increased (i.e., we have
reached the finest granularity). Return the reduced test case.

Figure 2.2 presents the formal definition of the three main actions (test subset, test
complement, increase granularity) of the Delta Debugging algorithm ddmin.

Given the test case τ✗ to reduce, Delta Debugging partitions the test case into two
subsets using ddmin2(τ✗, 2) which performs different types of reduction tests in sequence.
First, subset tests are performed and if a failure-inducing subset is found (line 1 of ddmin2),
τ✗ is replaced with the subset and ddmin2 is recursively called on the new test case. Line 2 of
ddmin2 performs complement tests while line 3 increases granularity when all complements
have been tested. The algorithm terminates when the test case cannot be further partitioned
(i.e. the smallest possible subsets have been tested along with their complements).
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input : τ✗ and ψ with ψ(τ✗) = True
output : τ✗

′ such that τ✗
′ ⊆ τ✗ and ψ(τ✗

′) = True
ddmin(τ✗) = ddmin2(τ✗, 2) where:

ddmin2(τ✗
′, n) =


ddmin2(∆i, 2) if ∃i ∈ 1, 2, ..., n s.t. ψ(∆i) = True
ddmin2(▽i,max(n− 1, 2)) else if ∃i ∈ 1, 2, ..., n s.t. ψ(▽i) = True
ddmin2(τ✗

′,min(|τ✗
′|, 2n)) else if n < |τ✗

′| (Increase granularity)
τ✗

′ else Done


note : ∆is are pairwise disjoint and |∆i| ≈ |τ✗

′|/n

Figure 2.2: The Delta Debugging algorithm [1].

Subset vs. Complement Tests. The intuition behind testing both subsets and comple-
ments in the Delta Debugging algorithm is to increase both efficiency and effectiveness in
reducing test cases. Efficiency is the speed of the reduction while effectiveness is the ability
to perform more reduction. Subset tests are greedy attempts performed by Delta Debugging
to enable a potentially successful large reduction by a single step. However, since subsets
are smaller than complements, they are less likely to contain the failure-inducing portion. In
contrast, complement variants are larger and more likely to reproduce the failure. However,
if a complement test succeeds, it will prune a smaller part of the test case compared to a
successful reduction to subset. To summarize, subset tests are less likely to succeed but if
they do, they will remove a large portion of the test case efficiently. On the other hand,
complement tests are more likely to succeed but if they do, they will remove a smaller por-
tion of the test case compared to a successful subset test, making additional tests required
for more pruning.
Time Complexity. The best case time complexity of Delta Debugging is logarithmic in
the size of the test case being reduced. This size is the same as the number of elements
within the test case. The best case scenario occurs when every single partition considered
by Delta Debugging triggers the failure. In contrast, the worst case time complexity of Delta
Debugging is quadratic. This quadratic behavior arises from a concept called revisiting in
which subsets with previously unsuccessful removal from a test case variant will be revisited
to verify whether they can successfully get removed from a similar variant. In Figure 2.1
for instance, step 7 of the algorithm performs an unsuccessful removal trial of subset {1,

2} from variant {1, 2, 3, 4, 5, 6, 7, 8}. When step 8 successfully removes {3, 4},
the algorithm revisits subset {1, 2} in step 12 to try removing it from the new variant {1,

2, 5, 6, 7, 8} which is again unsuccessful. In Chapter 3, we will discuss the process of
revisiting subset removals in detail and propose a version of Delta Debugging called One
Pass Delta Debugging with linear worst case time complexity that avoids performing
revisits.
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2.2.1 Limitations of Delta Debugging

Delta Debugging is a longstanding reduction algorithm that is widely available and easily
applied due to its generality. It is in particular useful for regression testing since it can
pinpoint the changes that cause a regression test to fail [34]. However, this algorithm was
proposed more than two decades ago to provide a name and a vocabulary for discussing test
case reduction. It suffers from drawbacks especially when it comes to reducing test cases
with structure, such as programs. Here, we discuss some of the limitations of the Delta
Debugging algorithm.

Unresolved Tests in Structured Domains

So far, we have presented the oracle function outcome as True or False based on observing
the failure in the reduced variant or not observing it, respectively. However, not every variant
of a test case is valid with respect to the test case domain. These variants will make the
oracle outcome indeterminate or unresolved. Since Delta Debugging does not leverage any
domain based knowledge when reducing a test case, it can drastically increase the number
of unresolved tests when applied on domains with strict requirements. Programs are one
example of this type of domain.

Consider a C program as a test case shown in Listing 2.1 with a run time exception
caused by division by zero. This program contains multiple functions. To minimize it by
Delta Debugging, we need to define a granularity level. For instance, we can decide to apply
reduction on lines of code such that each line of code is considered as one element and the
finest granularity consists of subsets that contain a single line of code.

To reduce this test case while defining lines of code as elements, Delta Debugging starts
with partitioning the test case into halves, generating two smaller programs that are both
invalid. The first half from line 1 to 10 includes a part that is an incomplete function
definition (void bar()). The second half from line 11 to 20 is also an invalid program due to
calling functions that are not defined. Delta Debugging will continue recursively on smaller
portions until it reaches the portions that contain a single line of code that are again mostly
invalid programs. For example, a line may contain a single curly brace or an incomplete
function signature.

Although we can apply Delta Debugging in these cases, it is very unlikely to be able
to reduce the original program to a smaller version efficiently. The reason is that lines
of code are not good elements to define for program reduction. A function that spans
over multiple lines as shown in our example makes Delta Debugging generate subsets of
incomplete programs that cannot be compiled.

To mitigate this problem, Misherghi and Su proposed Hierarchical Delta Debugging
(HDD) [14] that is more suitable for reducing structured test cases such as programs. Unlike
Delta Debugging that does not utilize any domain knowledge, HDD leverages the structure
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1 #include <s t d i o . h>
2 int f oo ( int a , int b)
3 {
4 return a/b ;
5 }
6 void i r r e l e v a n t ( )
7 {
8 p r i n t f ( " This f u n c t i o n i s i r r e l e v a n t \n" ) ;
9 }

10 void bar ( )
11 {
12 int d i v i s i o n = foo ( 2 , 0 ) ;
13 p r i n t f ( "%d" , d i v i s i o n ) ;
14 }
15 int main ( )
16 {
17 i r r e l e v a n t ( ) ;
18 bar ( ) ;
19 return 0 ;
20 }

Listing 2.1: A line of code is not a good atomic element when reducing a program.

of the test case to speed up reduction and effectively prune large portions of the test case
at an early stage. In Section 2.3, we fully describe the details of the HDD algorithm, its
advantage over Delta Debugging for structured test cases, its limitations and improvements.

Unnecessary Tests

Delta Debugging performs some tests that are not required to preserve the 1-minimality of
its reduced result. By looking more closely at the algorithm, it is realized that the entire
reduce to subset step of the algorithm is not required to preserve 1-minimality [31]. In
fact, as explained earlier in this section, this step is a greedy attempt by the algorithm
to achieve a significant reduction by performing a single test. However, since these subsets
are usually small, they are less likely to contain the failure-inducing portions. Thus, it is
unlikely for them to successfully trigger the failure in practice. In addition, if a subset can
trigger the failure, it will be eventually found by the algorithm when testing complements
because irrelevant subsets will be removed by complement tests, leaving the only subset
that triggers the failure in the test case.

The revisiting process briefly described at the beginning of this section is another form
of potentially unnecessary tests by which Delta Debugging tries to remove subsets that it
had previously been unsuccessful in removing them from a similar configuration. Skipping
these tests that are unlikely to succeed can benefit the performance of Delta Debugging
under certain circumstances [2, 18]. Chapter 3 thoroughly examines this possibility.
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2.3 Hierarchical Delta Debugging

To address the problem of unresolved tests generated by Delta Debugging on structured
domains as discussed in Section 2.2.1, Misherghi and Su proposed Hierarchical Delta Debug-
ging (HDD) [14]. Here, we describe how HDD can improve Delta Debugging. Moreover, we
provide insights on the limitations of HDD itself and discuss some works on its improvement.

2.3.1 HDD: A Better Reducer for Structured Domains

Hierarchical Delta Debugging (HDD) is the main major improvement on Delta Debugging
for domains with structured test cases such as programs, XML and JSON files, video frames
and any other input with nested and structured data. The reason behind proposing HDD
is that partitioning a test case at arbitrary points (i.e., how Delta Debugging works) on a
structured domain is far from an effective approach because of the large number of invalid
test case variants generated during the reduction.

Using the structure of the test cases, HDD defines domain specific boundaries and groups
relevant portions of the test case into one entity to generate fewer invalid test case variants.
More precisely, HDD applies the original Delta Debugging algorithm (ddmin) on levels of
the parse tree or abstract syntax tree (AST) of the failure-inducing test case. The tree is
either provided or can be constructed by directly consuming a grammar. It is generated
only once and will be modified during the reduction of the test case.

Starting from the top-most level that is the coarsest level of the tree and then proceeding
with the finer levels, HDD applies Delta Debugging on each level, considering the tree nodes
present at a level as a list of elements to reduce. To this end, Delta Debugging partitions
the list of nodes into halves and performs subset tests, complement tests and increases
granularity when required. You can refer to Section 2.2 for a complete description of the
steps in the Delta Debugging algorithm. Performing these tests at each level generates
different variants of the tree. A test case is retrieved (unparsed) from each variant and
passed to an oracle function to determine and eliminate the nodes that are not relevant to
the failure. Once Delta Debugging is done on one level, it returns a list of remaining nodes
at that level that have not been removed. HDD then moves one level down in the parse tree
to apply Delta Debugging on the children of the remaining nodes. The process continues
until the finest level of the tree is reached.

Algorithm 1 presents the formal definition of the Hierarchical Delta Debugging algo-
rithm.
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Algorithm 1: The Hierarchical Delta Debugging (HDD) algorithm [14].
Input: tree – The parse tree or AST of test case τ✗

Input: ψ – Oracle for the property to preserve with ψ(τ✗) = True

Result: A minimum test case τ✗
′ ⊆ τ✗ s.t. ψ(τ✗

′) = True

1 level← 0;
2 nodes← getNodes(tree, level);
3 while nodes ̸= ∅ do
4 minconfig ← ddmin(nodes, ψ);
5 prune(tree, level,minconfig);
6 level← level + 1;
7 nodes← getNodes(tree, level);

8 τ✗
′ ← unparse(tree);

9 return τ✗
′;

Starting from the coarsest level of the tree, HDD collects nodes present at that level (line
2) and applies Delta Debugging on them (line 4). On line 5, HDD removes deleted nodes
from the list of nodes and moves one level down (line 6) to collect nodes at that level (line
7). The process terminates when there are no nodes available at the level of consideration.
In other words, when HDD reaches and applies Delta Debugging on a level that is the finest
level with nodes that are all leaves with no children.

In general, traversing the tree from the top down can enable HDD to visit and possibly
remove nodes with larger portions of the test case earlier. For instance, if the test case
is a C program, function definitions within the program will be at a coarse level of the
tree, each represented by a single node. HDD will visit these nodes before their descendants
that can be statements and local declarations within those function. As a result, HDD
algorithm provides faster reduction for structured test cases compared to Delta Debugging
in practice [14].
Time Complexity. In theory, HDD has the worst case time complexity of O(n2) that is
equivalent to the worst case time complexity of Delta Debugging. This case occurs when the
test case is a flat list of elements with no structure. In contrast, the best case scenario is a
tree with n nodes and a constant branching factor of b such that for each parent, exactly one
child remains in the configuration. HDD’s time complexity in this case will be the product
of the number of levels in the tree (logbn) and the number of tests performed at each level
(b2) that is O(b2logbn) or simply O(logn). In practice, it is unlikely to have a constant
branching factor in the parse tree of a test case and the number of children remaining for
each parent node may also vary.

2.3.2 Fixed Point Reduction: Preserving 1-minimality by HDD

The term 1-minimality in tree based reduction techniques including HDD, referred to as
1-tree-minimal, is also defined by Definition 2.1.6 in Section 2.1 in which every single node
of the tree is required to trigger the failure. The reduced test case generated by HDD is not
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foo()

int

y decl

bar()

while

... if

y = 5 use

Figure 2.3: An example of a simplified tree in which HDD cannot preserve 1-minimality:
The test for removing the declaration node of variable y is performed before removing the
use node dependent on it and thus fails.

necessarily 1-minimal. The reason is that HDD performs tests level by level in a top down
approach and does not revisit levels that have already been tested. However, the removal
of a node at a lower level may enable the removal of a node at a higher level.

Consider a program with a declaration of a variable and its use in Figure 2.3. HDD
visits the level with the declaration before the level with the use and cannot remove the
declaration because it would cause an invalid program in which a variable is used without
being declared. After proceeding to the lower levels and removing the use, the declaration
node is now removable. However, the HDD algorithm is not able to revisit the node.

To solve this problem, two extensions to the HDD algorithm are proposed:

1. HDD+: HDD+ runs HDD for one iteration. Once terminated, it again tries removing
nodes of the tree one by one, starting from the top-most level to the finest level. If at
least one node is removed during this process, HDD+ starts another round and tries
removing nodes one by one until it reaches a round where no node is removed.

2. HDD*: HDD* is called the fixed point version of the HDD algorithm. HDD* keeps
calling the entire HDD algorithm on the tree in a loop. The loop terminates when a
call to HDD cannot remove any further nodes.

Time Complexity. HDD+ has a worst case time complexity of O(n2) because the worst
case time complexity of HDD is O(n2) and HDD+ adds at most n tests in n rounds which
happens when the last node is removed in every round. HDD* has the worst case time
complexity of O(n3) because it runs HDD at most n times. The better time complexity of
HDD+ can make it a better approach to use for preserving 1-minimality. Moreover, a new
direction for test case reduction emerged after HDD+ was proposed. This new direction
introduced effective and efficient node by node reduction strategies implemented by Perses,
the latest state of the art domain agnostic reducer [15] and our enhancement of it which we
will discuss later in Section 2.4 and Chapter 4.
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2.3.3 Limitations of HDD

Although HDD family of algorithms discussed so far (HDD, HDD+ and HDD*) consis-
tently demonstrates better efficiency and effectiveness than Delta Debugging on structured
domains [14, 23], it still suffers from some limitations that we discuss in this section.

Unresolved Tests in HDD

Although HDD can significantly decrease the number of unresolved tests compared to Delta
Debugging, it still generates a large number of these tests. The reason is that HDD leverages
the structured domain knowledge to only build a parse tree of the test case but it does not
use that knowledge to guide reduction on the generated nodes. In other words, HDD applies
Delta Debugging on the list of all nodes present at a level. However, some of these nodes
may not be even removable due to the grammar constraints of the test case. For instance,
HDD may try to remove the return type of a function or its name in a program. Generating
a function without a return type or name is not valid based on the syntax of programming
languages and will lead to an unresolved test.

Unbalanced Trees

An unbalanced tree increases the number of tests performed by HDD significantly. One
reason is that there are fewer nodes at each level of these trees, decreasing the chance of
HDD to reduce. Moreover, nodes at different levels in an unbalanced tree may be strongly
related and require to be considered together as a list of elements for a successful reduction.
As an example, context-free grammars use recursion to deal with lists of data. Such recursion
can generate unbalanced trees.

Consider the trees in Figure 2.4. Suppose that failure is caused by node 3 . Moreover,
suppose that each element is dependent on all its previous elements. For instance, node
1 cannot get removed if any of the nodes 2 , 3 or 4 is present in the tree. Node 2

cannot get removed before 3 and 4 and node 3 cannot get removed if 4 is present.
In the unbalanced tree (left), the recursive grammar rule list has generated a non-flattened
tree that is not suitable for reduction by HDD. In this tree, first, the level with nodes 1

and 2.list is visited. HDD cannot remove any of the nodes present at this level. Node 1

cannot get removed due to the presence of 2 , 3 and 4 in the tree and 2.list cannot get
removed due to containing the failure-inducing node, node 3 . Next, HDD performs similar
unsuccessful reduction trials on nodes 2 and 3.list . The next level to target is the level
with 3 and 4.list in which 4.list can successfully get removed but 3 cannot because
removing it makes the failure disappear. The minimal test case returned by performing
HDD on this tree is the list {1, 2, 3} which is not 1-minimal. On the other hand, if the
tree is balanced (right), all elements will be present at the same level, enabling HDD to
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1.list

2.list
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Figure 2.4: An unbalanced tree (left) generated by grammar recursive rules vs. a balanced
tree (right) that provides more pruning opportunities.
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Figure 2.5: A tree with chains. Branching nodes shown in red are the only nodes required
to be tested.

successfully remove all elements except for the failure-inducing node. The reduced test case
generated by performing reduction on the balanced tree is {3} which is 1-minimal.

Unnecessary Tests

HDD performs tests that are not required to preserve 1-minimality. These tests are per-
formed on nodes with only one child in a parse tree. These nodes comprise possibly long
chains as shown in Figure 2.5. In parse trees, tokens of a test case occur only at the leaves
of the tree. Hence, we will not miss any opportunities to remove tokens if we skip the nodes
in a chain and only consider nodes with branches in the tree. The only internal (non-leaf)
nodes in our example that may have a real impact on the size of the reduced test case are
nodes 1 , 4 and 9 shown in red.
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L2

bug

L1

L1

{ }L1

bug...

Figure 2.6: HDD cannot remove the pair of curly braces.

Limited Reduction Operations

HDD either tries to remove nodes or as we will see later in Section 2.3.4, it tries to replace
a node with its minimal valid string. However, there are nodes in a tree that require a more
complex reduction operation to be reduced. For instance, there are non-consecutive nodes
at the same level that need to be considered for reduction together. Otherwise, individual
attempts to remove them one by one will generate invalid variants. An example is when
HDD tries to remove an opening curly brace ({) individually without considering its closing
counterpart (}). Figure 2.6 depicts a tree where HDD cannot remove the braces and will
include them in the final result even though they are not relevant to the bug.

In the next section, we discuss some improvements presented in the literature to solve
or mitigate the aforementioned limitations.

2.3.4 Improvements on HDD

Various improvement measures over HDD have been proposed in the literature since the
introduction of the HDD algorithm more than a decade ago [23, 19, 10, 22, 36, 16, 17, 37].
In this section, we explore some of these measures that address the limitations described in
Section 2.3.3.

Preserving Syntactic Validity

As mentioned in Section 2.3.3, one of the major challenges in using HDD is still the large
number of unresolved tests caused by violating the grammar rules of the test case.

To ensure the syntactic validity of test case variants during reduction, Misherghi presents
an extended version of HDD that is capable of preserving syntactic validity [23]. The pro-
posed algorithm is based on a minimal-length string computation method. Figure 2.7 depicts
a simple grammar and an example parse tree generated by it. The letters (A to F) represent
non-terminal rules while ti i = 1, ..., 4 are terminals or leaves that are tokens of the test
case. Suppose that the subscript value i in ti is the length of the string represented by that
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D → A B | B | C
A → E F
B → t1
C → t2
E → t3
F → t4

Figure 2.7: A simple grammar and an example tree generated by this grammar. The minimal
valid string for node D is t1.

terminal (i.e., t1 has a minimal string with length 1, t2 has length 2, and so forth). In this
grammar, alternate rules are separated using |. For instance, rule D can imply either A and
B as its children or only B or only C. All three variants will be syntactically valid with
respect to the grammar.

The minimal string for each node is computed recursively starting from the terminals
of the grammar. Terminals have a minimal string equal to themselves. So ti nodes with
i = 1, ..., 4 have a minimal string with length i. Non-terminal nodes E, F and B have the
same minimal string as ti because their rules imply a single terminal. Node A has a minimal
string that is the concatenation of strings from E and F (t3t4 with length 7). Finally, node
D should compute its minimal string using its three alternate rules as follows:

If F (n) is the function that computes the minimal string of node n, we have:
F (D) = min{F (AB), F (B), F (C)} = min{F (A) +F (B), F (B), F (C)} = min{7 + 1,

1, 2} = 1
So even though the tree generated by rule D is using A B as its children, since B alone

is an alternate rule of D with a smaller string, we can replace the string represented by D
with t1 and generate a smaller test case that is syntactically valid.

Minimal string computation can decrease the number of invalid tests by providing in-
formation on the smallest possible entity a node in a tree and its corresponding grammar
rule can have without violating the syntactic validity of the test case. This information is
computed once ahead of time using the grammar rules and can be used as many times as
required during reduction. Using this information, each node will be tried to be replaced
with its minimal string. For instance, a complex arithmetic expression as a condition of an
if statement can be replaced with a single value 0 or 1, making reduction both 1) efficient
by avoiding syntactically invalid tests that try to remove the condition and 2) effective by
replacing a complex component with a simple entity.
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Note:
Replacing a node with a minimal string equal to empty string is
equivalent to removing that node.

Extended Context-Free Grammars

As described in Section 2.3.3, recursive rules in context-free grammars cause unbalanced
trees that are far from ideal for HDD. To mitigate this problem, Hodován and Kiss proposed
modernized Hierarchical Delta Debugging [19] that uses an extended form of context-free
grammars to replace recursive rules with rules that have quantifiers. More specifically, mod-
ernized HDD identifies all recursive rules in a grammar and replaces their right-hand side
with one of the three quantifiers: Optional (?), Kleene-Star (*) and Kleene-Plus (+) .

A → B | A B =⇒ A → B_plus
B_plus → B+

Figure 2.8: A recursive context-free grammar rule and its extended quantified form.

A

A

BA

A

BA
...

B

B

A

B_plus

Figure 2.9: Trees generated by rules in Figure 2.8. Extended context-free grammars convert
an unbalanced tree (left) to a balanced flattened one (right).

Rules extended by quantifiers are called quantified rules and the nodes of the tree gener-
ated by these rules are referred to as quantified nodes. ? indicates that a node has an optional
child (0 or 1) and * and + indicate 0 or more and 1 or more children for a node, respectively.
Not only do extended context-free grammars flatten unbalanced trees but they also provide
more reduction opportunities and make them explicit. For instance, rules with ? and * can
be safely removed (replaced with an empty string) and rules with the + quantifier can be
replaced with the minimal string of one of their children. Figure 2.8 and Figure 2.9 depict a
context-free grammar rule and its extended quantified form along with the trees generated

22



by them, respectively. As can be seen, use of the quantified rules in the grammar flattens
the unbalanced tree generated by recursive rules.

Sun et al. [15] further explore the idea of leveraging quantifiers in program reduction in
their reducer tool called Perses. We will discuss Perses in more detail in Section 2.4.

Further Reduction Operations: Node Replacements

As discussed in Section 2.3.3, HDD is incapable of pruning some parts of the test case that
are not relevant to the failure due to its limited reduction operations. For instance, HDD
cannot remove the pair of curly braces in Figure 2.6. As another example, consider the
following code:

if (cond1 || cond2) { exhibitBug(); }

To reduce this code, HDD will first try to remove the entire if statement which is not
a successful reduction since the exhibition of the failure is dependent on the code nested
within the body of the if statement. It then tries to remove the condition of the if statement
which will yield an invalid program. The more advanced version of HDD with minimal
string computation [23] discussed earlier in this section is also not able to entirely remove
the condition of the if statement and will generate a minimal test case similar to if (1)

{ exhibitBug(); } in which the condition is replaced with its minimal valid string. To
distill the only part relevant to the failure (i.e., exhibitBug();), reduction operations other
than simple removal and string replacement are required.

To enable more reduction, Morton and Bruno proposed FlexMin [10] that extends the
set of reduction operations to include both removal and another operation referred to as
node substitutions. If a node at a higher level of the tree gets replaced with one of its de-
scendants and still satisfies the oracle, it can perform reductions that will not be possible
otherwise. For instance, in Figure 2.6, the node L1 which is the direct parent of the right-
most bug in the tree can replace its parent node, leaving out the curly braces while still
preserving the bug. In the example of if statement with exhibitBug();, the nested state-
ment, exhibitBug();, can be lifted up, removing the entire if statement and its condition.
Performing node substitutions can increase the effectiveness of the reducer by generating
smaller test cases [37]. However, with respect to efficiency, it may degrade the performance
since trying every single descendant as a replacement candidate is syntactically valid (due
to transitivity of grammar rules that will be more discussed in Section 2.4.1) but may not
be scalable for large test cases.

To mitigate this problem, some restrictions are applied when looking for node replace-
ment candidates. For instance, FlexMin and its basis infrastructure SIMP [9] that is a
previous work by Bruno define boundaries based on the transitivity of grammar rules and
their labels. In particular, in their approach, only descendants that have the same gram-
mar rule’s label as their ancestor will be considered as replacement candidates in a top
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down traversal order. As other solutions, Perses [15] limits its length of search space to a
specific boundary within the tree and Herfert et al. [22] propose a filtering mechanism on
replacement candidates based on learning from data in their approach called generalized
tree reduction (GTR). GTR limits its search space to the children of a node but instead of
using the labels in grammar rules, it leverages a corpus of data that has been automatically
collected from a large number of test cases in the same domain. Using this collection, GTR
filters out those candidate replacements that will restructure the tree such that the new
structure has not been observed in the programs of the corpus.

In this dissertation, we provide results for both removal only and removal and replace-
ment when comparing our techniques with the state of the art reducers.

Squeezing Trees

In Figure 2.5, we presented a tree structure with long chains that makes HDD perform
unnecessary tests. In an attempt to improve HDD’s performance, another work proposed
by Hodován and Kiss [36] introduced a simple but effective algorithm to squeeze the parse
tree vertically. This algorithm skips performing tests on nodes present in the middle part
of a chain that have a minimal string identical to the last node of the chain, referred to as
the branching node in Figure 2.5. Using this algorithm, the efficiency of HDD improves by
skipping tests that can not have any impact on the size of the reduced test case.

2.4 Program Reduction

Programs are specific kinds of test cases that are useful for testing and debugging software
such as compilers and interpreters [13, 15]. In particular, large fuzzer-generated programs
are widely employed during fuzzer stress tests of software in which the software under test
is bombarded by various randomized input test cases to examine software’s behavior during
potentially unexpected situations [4]. As a result, program reduction becomes essential
to generate small and easy to comprehend programs to facilitate the debugging task [7].
Moreover, program reduction has also been useful for minimizing the attack surface of
programs [38, 39, 40, 41, 35], reducing resource consumption [25], and helping to understand
neural models of code [42, 26].

Although Hierarchical Delta Debugging and the subsequent works for its improvement
discussed in Section 2.3.4 address the problem of test case reduction on structured test cases,
including programs and propose solutions that are effective and efficient to some degree,
the several applications of program reduction make it deserve especial attention from the
community. In this section, we provide some background on one of the latest state of the
art program reducers, Perses [15]. Perses is a domain agnostic syntax based queue driven
approach that is suitable for reducing programs of multiple language domains. In addition,
as mentioned earlier in this chapter, Perses is also capable of reducing test cases other than
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programs from domains with structure such as XML files. However, we continue to refer to
Perses as a program reducer as initially introduced by its creators.

Compared to domain specific tools such as C-Reduce [13] that is capable of effectively
reducing programs of domain C, Perses or any other domain agnostic reducer generate
potentially larger final reduced outputs due to their general and domain agnostic reduction
operations (refer to Section 6.1 for some results). However, the generality, reusability and
availability of domain agnostic reducers on multiple domains without requiring significant
additional effort and expertise make them suitable options for efficiently reducing programs
of multiple languages.

2.4.1 Perses: A Domain Agnostic Program Reducer

Perses [15] is a general syntax guided program reducer. Given the programming language
grammar, Perses can reduce any structured input in any programming language such as a C
test case causing a compiler to crash or a Java program with a specific property of interest.

Considering P as the set of all possible programs in the search space of Perses to explore
during reduction. P = Pvalid ∪ Pinvalid such that Pvalid is the set of programs that do
not violate syntactic rules of the grammar while Pinvalid is the set of syntactically invalid
programs encountered during reduction. Perses has an empty Pinvalid due to leveraging
syntactic knowledge of grammars during reduction. For example, removing the return type
of a function declaration would not be valid because the C grammar specifies that the
return type is required. Such syntactically invalid program candidates are removed from
the search space of Perses. Moreover, Perses has a larger Pvalid compared to other state
of the art reducers such as modernized HDD (see Section 2.3.4). This larger set of valid
programs provides more reduction opportunities to explore, making it possible for Perses
to reduce more effectively.

In contrast to Hierarchical Delta Debugging that traverses the parse tree of a test case
level by level and applies reduction on all the nodes present at each level, Perses leverages
a priority queue to traverse the parse tree node by node. The number of tokens that are
descendants of a node defines the priority of a node in the queue such that a larger number
of tokens indicates a higher priority. This can be a more helpful strategy than reducing an
entire level before moving to the next one. The reason is that when reducing a level, there
may be other nodes at other levels of the parse tree such that reducing them boosts the
performance of the reducer. For instance, those nodes may have a large number of nodes and
tokens beneath them and removing them will lead to smaller test cases within fewer tests
or they may depend on other nodes and removing them early can break those dependencies
and enable further reduction.
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Priority Queue: A Prioritized Traversal of the Parse Tree

Perses defines the number of tokens that are descendants of the node in the parse tree as
the priority metric used in its priority queue. A node with a larger number of tokens will
be attempted before a node with a smaller number of tokens. Remember that tokens are
the smallest meaningful units in a program that occur only at leaves of a parse tree. Perses
starts by adding the root of the tree to the priority queue. If reducing a node is unsuccessful,
Perses adds its children to the queue to be processed later with respect to their priority. If
a reduction is successful, Perses updates the parse tree and proceeds with the next node in
the queue until the queue becomes empty or Perses times out.

Choosing the next available node from the queue, Perses performs one of the following
reduction operations on it:

1. Removing its children by applying Delta Debugging on them.

2. Replacing the node with one of its descendants.

More specifically, Perses categorizes nodes of the parse tree into the two groups of
quantified and regular nodes. As explained earlier in Section 2.3.4, nodes with a quantifier
such as a Kleene-Star (*), Kleene-Plus (+) or Optional (?) quantifier are quantified nodes.
Any non-terminal node that is not a quantified node is a regular node. By selecting an
appropriate type of reduction for each node based on its type, Perses keeps an empty set
of invalid programs and a large set of valid programs during reduction. In the following, we
explain the details.

Children Removal

Perses applies deletion only on nodes that can evaluate to an empty string. Hence, it can
preserve an empty set of syntactically invalid programs. These nodes include all children
of a Kleene-Star (*) node, all children except for one child of a Kleene-Plus (+) node and
the only child of an Optional node (?). In other words, Perses applies Delta Debugging on
the list of elements that are syntactically independent. For instance, a statement_star node
generated by a Kleene-Star quantified rule, can have zero or more statements as its children.
These children are syntactically independent. By applying Delta Debugging on the list of
children of statement_star, Perses removes as many statements as possible without violating
any syntactic rules, keeping Pinvalid empty.

Node Replacement and Compatibility Rules

In addition to applying deletion on the children of quantified nodes, Perses applies a re-
placement reduction operation on regular nodes such that the node under reduction will
be tried to get replaced with a compatible descendant node. We have fully described the
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node replacement operation in Section 2.3.4. Here, we discuss the compatibility rules Perses
leverages to find the node replacement candidates.

Suppose that A is the expected grammar rule of a node based on its parent (e.g., a
node with a parent statement_star is expected to have statement as its type). Node B is
compatible with node A and can replace it if any of the following is true:

1. A = B: Both A and B have the same rule type in the grammar. For instance, they
are both statements.

2. B is subsumed by A (B <: A): If B can be derived from A directly or transitively
(e.g., either A → B or (A → C and C → B)). Note that in order for this case of
compatibility to be true, A should be able to produce B alone rather than B along
with other byproducts.

As an example, consider the following C grammar rule:

statement→ if_statement | decl_statement | expr_statement | ...

An if_statement is subsumed by statement. Hence, an if_statement node can replace
a statement node and still generate a syntactically valid program.

3. If parent of A is a quantified rule (e.g. A_star → A∗), B <: A and B is the quantified
part of a quantified rule (e.g. we have B_star → B∗), then A can be replaced with
B_star without violating the grammar rules because both its parent and B_star can
have zero or more children.

Figure 2.10 depicts an example of replacement operations performed by Perses based
on the compatibility rules described above. The property to preserve is the node in red
and suppose that the node to replace is 2.if_stmt. This simplified tree is generated by the
following condensed rules:

stmt_star→ stmt*
stmt→ if_stmt | compound_stmt

Perses first tries to replaces 2.if_stmt with 3.compound_stmt because they are compatible
based on the second compatibility rule discussed above. In more detail, the expected rule
of 2.if_stmt based on its parent 1.stmt_star is stmt and the grammar rule stmt→ if_stmt
| compound_stmt infers that 3.compound_stmt is subsumed by stmt. After this successful
operation, the next operation will replace 3.compound_stmt with 4.stmt_star which are com-
patible based on the third compatibility rule. The parent of 3.compound_stmt is 1.stmt_star
(remember that 3.compound_stmt has replaced 2.if_stmt in the previous operation and has
a new parent) which is a Kleene node and 4.stmt_star is a Kleene node too with the quan-
tified part stmt that is compatible with the expected rule of 3.compound_stmt that is also
stmt (the first rule of compatibility).
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1.stmt_star

... 2.if_stmt

... ... 3.compound_stmt

4.stmt_star

...... ...

...

Figure 2.10: A tree example with node replacement opportunity.

Applying replacement reduction templates by Perses keeps the syntactically invalid set
of programs empty during reduction and also provides a larger set of valid programs to
explore.

Remember that there are state of the art techniques such as FlexMin [10] and GTR [22]
discussed in Section 2.3.4 that also perform replacement operations. However, their replace-
ment strategy is less powerful compared to Perses. In particular, these two state of the art
techniques are not capable of replacing a list of elements with another list of elements even
though the types of the elements in the two lists are compatible. For instance, consider a list
of elements with type C which has a nested list of elements of type B and B is subsumed
by C). More specifically, we have the following:

(C C C (B B B B)* C C C C C)*

Perses can replace the large outer list with the smaller inner list of B elements while FlexMin
and GTR cannot explore this smaller variant.

Perses Normal Form (PNF) Grammar

In addition to the priority queue and different reduction templates, Perses uses a framework
for automatically converting any grammar in Backus-Naur Form (BNF) to a grammar with
quantified rules called the Perses Normal Form (PNF). There are three intentions behind
this conversion:

1. Having a consistent form of grammar across different test cases.

2. Avoiding recursive occurrences of production rules in the parse tree of a test case and
replacing them with quantified rules such that more balanced parse trees that are
more suitable for reduction will be generated (see Figure 2.9 for illustration).
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3. Explicitly annotating the syntactically removable portions of a parse tree by leveraging
quantifiers. As a result, reduction can be guided by deleting children of quantified
nodes or replacing a node with a quantified parent with another quantified rule.

To convert a BNF grammar to an equivalent PNF, Perses first removes all epsilon
production rules (except for one that can define an empty input) by transforming the BNF
grammar rules to equivalent ones without an epsilon. Moreover, it removes rules that are
not reachable in a preprocessing step. It then transforms the grammar by defining all rules
with direct left or right recursions. It means that rules that are transitively recursive will be
transformed into rules that are directly recursive. Finally, Perses normalizes the grammar
by using Kleene-Star (*), Kleene-Plus (+) and Optional (?) quantifiers to replace recursive
rules with normalized rules. (see Figure 2.8 for an example of converting a recursive rule
into a quantified rule).

2.4.2 C-Reduce: A Domain Specific Program Reducer

C-Reduce proposed by Regehr et al. [13] is a powerful tool capable of effectively reducing
programs of domain C. By leveraging specific knowledge of the C programming language,
C-Reduce defines a large set of reduction transformations, particularly tailored to the C
programming language that domain agnostic reducers are typically not capable of perform-
ing them. By applying these transformations, C-Reduce can explore a larger search space
to find the minimal test case.

While C-Reduce tends to produce smaller programs due to its larger search space, it
requires significant effort and expertise to implement which limits its reusability and avail-
ability for reducing inputs in other languages. Moreover, its larger search space can adversely
impact the reduction speed and efficiency. In this dissertation, our focus is on improving
domain agnostic reducers, in particular Perses. These reducers provide an exciting direction
for us because they are more efficient at reducing test cases across various domains and can
be developed and reused without specific domain knowledge or expertise.

2.5 Problem Statement

As mentioned in Chapter 1, the principal objective of this dissertation is to address the
problem of inefficient test case reduction and propose solutions to mitigate it. Perses is
one of the latest well-known state of the art domain agnostic reducers and we believe that
addressing its shortcomings can indeed improve the performance of existing test case reduc-
tion practices. To this end, the list of issues we explore in this dissertation is defined by the
limitations of Perses outlined in this section. We demonstrate throughout the dissertation
that each of these limitations contributes to the degradation of reduction performance and
propose and evaluate novel techniques to lessen their negative effects in practice.
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The list of problems we aim to address and the overview of solutions we propose in this
dissertation are as follows:

Problem 1: Perses applies Delta Debugging on the list of children of quantified nodes.
The worst case time complexity of Delta Debugging is quadratic (see Section 2.2). When
such lists are long, significant time can be devoted to this task.
Solution 1: In Chapter 3, we propose One Pass Delta Debugging, a modification of
the original Delta Debugging algorithm. One Pass Delta Debugging has a linear worst
case time complexity as opposed to Delta Debugging’s quadratic time complexity.

Problem 2: Perses has a suboptimal priority mechanism. This suboptimality is twofold:
Problem 2.1: Perses defines priority of nodes in its queue such that a significant amount
of reduction time may be spent with little or no progress in reduction. We refer to this
limitation as priority inversion and fully explain it in Section 4.1. In general, priority
inversion occurs when a low priority task is scheduled instead of a high priority task.
Solution 2.1: In Chapter 4, we propose Pardis and its variant Pardis Hybrid with
different methods of prioritizing nodes in the queue that can help to remove larger portions
of the test case earlier, leading to a faster convergence towards the minimal test case.
Problem 2.2: Perses defines the priority of a node in the queue solely based on its number of
token descendants and explores parse trees in orders that can hinder successful reduction.
Solution 2.2: In Section 5.2, we propose Type Batched Reducer that leverages informa-
tion other than the number of token descendants to prioritize nodes. Using the information
that is easily achievable by the grammar, Type Batched Reducer makes use of machine
learning models to find the most advantageous batch of nodes to reduce at a given point
in time during reduction.

Problem 3: Despite preserving syntactic validity, Perses generates Semantically invalid
program variants during reduction. Exploring these invalid variants wastes the reduction
time and effort.
Solution 3.1: In Section 5.1, we propose Model Guided Pardis that employs machine
learning models, capable of predicting and avoiding the performance of semantically invalid
tests.
Solution 3.2: Our Type Batched Reducer proposed in Section 5.2 addresses this prob-
lem from a different perspective by selecting the most advantageous nodes with lower
likelihood of semantic invalidity and guiding the approach towards reducing them.

Problem 4: Despite applying Delta Debugging on the list of children of quantified nodes,
Perses lacks an effective and suitable joint reduction mechanism in which multiple nodes
can get removed successfully together.
Solution 4: In Section 5.2.3, we propose Probabilistic Joint Reduction, a technique
that works by learning over the nodes of the most advantageous batch returned by Type
Batched Reducer and trying to further prioritize the removal of nodes with higher
likelihood of removal success.

In the next section, we describe our experimental design for studies across the disserta-
tion.
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2.6 Experimental Setup

We design multiple studies throughout this dissertation. Some studies are the overall evalu-
ation of the techniques in which we compare our novel methods with the existing reducers.
The other studies are explanatory, conducted to motivate some property, elaborate on re-
sults or investigate some potential directions.

In the following, we provide information on our benchmark, execution environment and
the list of performance metrics we use to compare different reduction techniques.

2.6.1 Benchmark

To prevent bias as much as possible on our part, we use the benchmark provided by Perses
and available on their Github repository [43]. Perses’ benchmark consists of 38 programs
or test cases from three different domains: 26 test cases are C programs, produced by
Csmith [4], a tool for generating random C programs that statically and dynamically con-
form to the C99 standard [44], 9 test cases are Rust programs and 3 are Go programs. All
these programs cause real-world bugs in compilers such as GCC, Clang, Rust and Go. Out
of these 38 programs, we could replicate the behavior of 28 programs in our execution envi-
ronment. Our benchmark of these 28 programs consists of 17 C, 8 Rust and 3 Go programs
shown in Table 2.1 with their original sizes with respect to the number of tokens, nodes of
the parse tree and bytes.

To demonstrate the generality of our techniques, we also include an XML file in our
benchmark. This XML file triggers failure in XMLProc [45] , an XML parser written in
Python. Extending our benchmark with an XML file can help us to verify the performance
of our techniques in reducing structured test cases other than programs.

The grammars we use to build parse trees of test cases are also the ones available on
Github repository of Perses [43]. For the overall evaluation studies, we use the full benchmark
set (i.e., 28 programs and one XML file). For explanatory studies, we choose a sample chosen
randomly from our benchmark using the python random generator module [46] and use it
consistently across the dissertation. We embed at least one program from each category
into our sample benchmark. In particular, our sample benchmark consists of 9 programs: 2
C programs causing Clang compiler to fail, 3 C programs causing GCC compiler to fail, 3
Rust and 1 Go programs exhibiting bugs in Rust and Go compilers. The programs included
in our sample benchmark are highlighted in yellow in Table 2.1.

Henceforth, we use the terms test case reduction and program reduction interchange-
ably because the majority of our test cases are large programs causing bugs in real-world
compilers.
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Table 2.1: Benchmark used in our experiments across different chapters of the thesis to
consistently compare various reduction techniques.

Original Sizes
SUT/Test Case

... tokens(#) nodes(#) bytes(#)

clang-22382 21,069 167,352 65,840
clang-22704 184,445 1,519,746 597,993
clang-23309 38,648 320,379 118,222
clang-25900 78,961 646,343 245,077
clang-27747 173,841 1,412,020 410,891
clang-31259 48,800 403,890 137,203
gcc-59903 57,582 469,297 166,786
gcc-60116 75,225 624,170 218,251
gcc-61383 32,450 246,936 110,655
gcc-61452 26,733 218,911 88,593
gcc-61917 85,360 687,028 254,778
gcc-64990 148,932 1,260,679 439,659
gcc-65383 43,943 365,149 125,271
gcc-66186 47,482 390,895 139,111
gcc-71626 6,134 39,547 14,465
gcc-71632 141 966 183
gcc-77624 1,306 5,415 4,856
geomean 29,769 228,004 84,543
median 47,482 390,895 137,203

rust-44800 802 5,179 2,078
rust-63791 8,144 61,008 16,455
rust-65934 107 507 217
rust-69039 191 1,058 589
rust-77002 348 3,080 607
rust-77993 4,989 29,655 17,127
rust-78336 980 4,972 2,980
rust-78622 157 815 227
geomean 659 3,978 1,534
median 575 4,026 1,343

go-28390 146 523 294
go-29220 127 551 323
go-30606 449 1,604 1,270
geomean 203 773 494
median 146 551 323
urls.xml 679 1,501 4,217

Test cases included in our sample benchmark are highlighted in yellow.

2.6.2 Execution Environment

We run our experiments on Ubuntu 16.04 inside a docker container with Intel(R) Core(TM)
i5-7300U CPU @ 2.6 GHz and 8 GB of RAM. Our techniques are implemented in C++.
Both the implementation and the data are available online [47].

2.6.3 Performance Metrics

Similar to existing techniques [15, 14, 1, 13, 19], we use the following performance metrics
to compare the performance of different reduction techniques:

1. The number of oracle queries or tests (Q)

2. reduction quality or size of the final reduced test case (R)
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3. reduction time that is the wall-clock time required to reduce the test case (T )

4. reduction efficiency, rate or speed that is the average number of tokens removed per
second (E).

In general, a smaller reduced size obtained by fewer oracle queries within a shorter
reduction time with higher efficiency shows a better performance.

The next chapters explain and evaluate our novel techniques for test case reduction.
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Chapter 3

One Pass Delta Debugging

This chapter addresses the first problem in our list of problems in Section 2.5 and explores
the following question:

Can we convert the quadratic worst case time complexity of Delta Debugging into
linear to improve its efficiency in practice without adversely affecting its effectiveness?

We originally introduced and published the ideas presented in this chapter at the 2018
IEEE International Conference on Software Quality, Reliability and Security (QRS 2018) [2].

Recall the background information on the steps of the Delta Debugging algorithm pre-
sented in Section 2.2. The original Delta Debugging works by first partitioning a test case
into chunks, also referred to as subsets, and then attempting to remove or retain individual
subsets to produce a smaller test case. Removing one part of a test case may enable other
parts of the test case to also be removed. Thus, when Delta Debugging successfully removes
a subset of the test case (i.e., a successful step 2 of the ddmin2 algorithm in Figure 2.2, re-
ferred to as reduce to complement), all remaining subsets are revisited, as they may become
removable themselves. When no further subsets can be removed, the subsets are recursively
partitioned and the process continues. Pathologically, the last subset visited may success-
fully get removed, causing all remaining subsets to be visited again. Because successfully
removing a subset may cause all already visited subsets to be revisited and tested again,
this revisiting behavior causes the algorithm to perform O(n2) tests in the worst case where
n is the size of the test case. For large test cases, this can be costly, easily taking hours to
reduce a single test case [13, 1].

The dependencies among elements of a test case are one of the causes of an element being
non-removable when it is first visited, yet being successfully removed in subsequent visits
when its dependents are removed. To better understand the concept of revisiting caused by
dependencies among elements of a test case, remember our set of numbers, τ✗={1, 2, 3,

4, 5, 6, 7, 8}, being reduced by Delta Debugging in Section 2.2. Again, each number
represents an element of the test case that Delta Debugging tries to remove. This time,
suppose that the minimal failure-inducing portion of the test case is the subset {1, 3, 5,
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Step Test Case τ ′ ψ1(τ ′) Discription
0 τ✗ 1 2 3 4 5 6 7 8 True initial test case
1 ∆1 = ▽2 1 2 3 4 . . . . False test subset
2 ∆2 = ▽1 . . . . 5 6 7 8 False test subset

3 ∆1 1 2 . . . . . . False granularity increased
test subset

4 ∆2 . . 3 4 . . . . False test subset
. . .

5 ▽1 . . 3 4 5 6 7 8 False test complement
6 ▽2 1 2 . . 5 6 7 8 False test complement

. . .

7 ∆1 1 . . . . . . . False granularity increased
test subset

8 ∆2 . 2 . . . . . . False test subset
. . .

9 ▽1 . 2 3 4 5 6 7 8 False test complement
10 ▽2 1 . 3 4 5 6 7 8 False test complement

. . .
11 ▽8 1 2 3 4 5 6 7 . True reduce to complement
12 ▽1 . 2 3 4 5 6 7 . False revisiting
13 ▽2 1 . 3 4 5 6 7 . False revisiting

. . .
14 ▽6 1 2 3 4 5 . 7 . True reduce to complement
15 ▽1 . 2 3 4 5 . 7 . False revisiting

. . .

16 Result 1 . 3 . 5 . 7 . True Done

Figure 3.1: Quadratic time complexity in original Delta Debugging. Revisiting steps after
each reduce to complement are highlighted. The even numbers are removed in backward
order. Oracle ψ1 is defined in Figure 3.2.

ψ1(τ)=
{
True if (1 ∧ 3 ∧ 5 ∧ 7) in τ

False else
Dependencies: 2 ← 4 ← 6 ← 8

ψ2(τ)=
{
True if (1 ∧ 3) in τ

False else

ψ3(τ)=
{
True if (3∧8)∨(4∧6) in τ

False else
Figure 3.2: Oracles used in Figure 3.1 and Figure 3.3. Dependency ← for ψ1 means that
removing the element on the left side of ← before removing the element on the right will
not induce the failure.
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7} in which every single number is necessary to trigger the failure. Moreover, suppose that
there is dependency among numbers 2, 4, 6 and 8 such that 2 cannot get removed without
first removing 4, nor 4 without first removing 6 and nor 6 without removing 8. In this
case, all tests until ddmin reaches the finest granularity do not induce the failure as shown
in Figure 3.1. Then the complements of the last removable elements succeed in reverse
order, requiring all of the remaining complements to be tried again. More specifically, if
the oracle returns True for a complement test (e.g., step 11 in Figure 3.1), a revisiting
process is performed without repartitioning to re-run all previous complement tests in that
granularity with the new updated test case.

Three rows are highlighted in Figure 3.1 to depict this revisiting process clearly. After
successfully removing 8 from the test case and reducing it to {1, 2, 3, 4, 5, 6, 7} in
step 11, 1 is reconsidered for removal from the new test case, {1, 2, 3, 4, 5, 6, 7} in
the next step. Similarly, elements 2, 3, ..., 7 are also reconsidered for removal from this
new set of numbers. This revisiting occurs after each successful removal of a subset that is
the reduce to complement step.

In this example, the quadratic behavior can be eliminated by simply performing ddmin
in reverse order on the test case, but generally, the dependencies between parts of a test case
need not occur in only one direction. Instead, we may ask, what is the benefit of this revis-
iting in practice? Can we practically avoid this O(n2) process under certain circumstances?
To answer, we describe three conditions under which performing the revisiting process in
Delta Debugging becomes unnecessary.

3.1 Conditions for Skipping Revisiting

The revisiting behavior is a key part of ensuring the minimality guarantees that Delta
Debugging provides [1]. By skipping this process, one might expect that the test case re-
duction becomes grossly less effective. In this section, we discuss why skipping revisits might
be okay. To this end, we identify three key reasons: common dependence order, unambiguity
and deferred removal. Satisfaction of these three key formal and empirical conditions of test
case reduction can enable the process to produce minimal or near-minimal test cases while
skipping revisiting of already considered subset removals.

3.1.1 Common Dependence Order.

Just as in Figure 3.1, sometimes there is a preferred ordering that can improve the overall
efficiency of Delta Debugging. For example, when removing statements from a C program,
uses of identifiers must be removed before their declarations in order to satisfy validity
constraints. Since the uses mostly occur after their definitions, removing the lines of a C
file in reverse order is likely to remove the uses first and thus enable removing declarations
when they are first visited. When the common ordering of dependencies for a particular test
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Test Case ψ2(τ✗) ψ3(τ✗)
τ : 1 2 3 4 5 6 7 8 True True
τ1 : 1 2 3 4 5 6 . . True True
τ2 : 1 2 3 4 . . 7 8 True True

τ1 ∩ τ2 : 1 2 3 4 . . . . True False

Figure 3.3: Satisfaction and dissatisfaction of unambiguity with ψ2 and ψ3 (defined in
Figure 3.2), respectively.

case structure is known, the complement trials can be ordered to respect the dependencies.
We refer to this condition as the common dependence order.

3.1.2 Unambiguity.

Unambiguity is a property first proposed in an initial version of Delta Debugging [34] called
dd+.

Definition 3.1.1 (Unambiguity). A failing test case τ is unambiguous if ∀τ1, τ2 ⊆ τ , ψ(τ1) =
True ∧ ψ(τ2) = True =⇒ ψ(τ1 ∩ τ2) = True.

Informally, an ambiguous test case (the one in which unambiguity does not hold) has
multiple causes for its failure and a reduced test case satisfying any of these causes will
be failure-inducing. Consider the example in Figure 3.3. ψ2 in Figure 3.2 returns True if
both 1 and 3 are present in the test case and returns False otherwise. Test case τ with this
oracle is unambigious since both {5, 6} and {7, 8} can be removed from τ individually,
and the test case generated by combining the results of these two removals still induces the
failure. Now consider τ with ψ3. For this oracle, the property of interest is the presence of
either {3, 8} or {4, 6}. Definition 3.1.1 does not hold in this scenario because:

ψ3({1, 2, 3, 4, 5, 6})=True ∧ ψ3({1, 2, 3, 4, 7, 8})=True
but ψ3({1, 2, 3, 4})=False.

Note that an unambiguous test τ enables reasoning about subtests τ1 and τ2 indepen-
dently because the results can be recombined using intersection, which is independent of
order. In other words, τ1 ∩ τ2 = τ2 ∩ τ1. As a result, if unambiguity holds for a test case,
the order in which reduce to complement operations are performed is irrelevant and revis-
iting need not be performed. The relevance of revisit tests not being necessary increases
in parallel Delta Debugging [31] where multiple subsets may be simultaneously tried for
removal.

3.1.3 Deferred Removal.

The last condition is deferred removal. When this property is satisfied, a potentially suc-
cessful subset removal that is skipped, will be considered for removal in the form of two
smaller subsets when the granularity is increased through refinement in the natural flow
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ID n Test Case τ ψ(τ)
1 6 . . 3 4 5 6 7 8 9 10 11 12 False
2 6 1 2 . . 5 6 7 8 9 10 11 12 False

. . .
6 6 1 2 3 4 5 6 7 8 9 10 . . True
7 5 . . 3 4 5 6 7 8 9 10 . . False
8 5 1 2 . . 5 6 7 8 9 10 . . False
9 5 1 2 3 4 . . 7 8 9 10 . . False
10 5 1 2 3 4 5 6 . . 9 10 . . False
11 5 1 2 3 4 5 6 7 8 . . . . True
12 4 . . 3 4 5 6 7 8 . . . . False
13 4 1 2 . . 5 6 7 8 . . . . False
14 4 1 2 3 4 . . 7 8 . . . . False
15 4 1 2 3 4 5 6 . . . . . . False
16 8 . 2 3 4 5 6 7 8 . . . . False

. . .

Figure 3.4: Complement tests with revisiting enabled. Removed portions are {11, 12} and
{9, 10}

.

ID n Test Case τ ψ(τ)
1 6 . . 3 4 5 6 7 8 9 10 11 12 False
2 6 1 2 . . 5 6 7 8 9 10 11 12 False

. . .
6 6 1 2 3 4 5 6 7 8 9 10 . . True
7 10 . 2 3 4 5 6 7 8 9 10 . . False

. . .
15 10 1 2 3 4 5 6 7 8 . 10 . . True
16 10 1 2 3 4 5 6 7 8 . . . . True

Figure 3.5: Complement tests with revisiting disabled, removing the same elements as reduc-
tion with enabled revisiting due to satisfaction of the deferred removal property. Removed
portions are {11, 12}, {9}, and {10}.

of the Delta Debugging algorithm (line 3 of ddmin2 in Figure 2.2). Formally, we have the
following:

Definition 3.1.2 (Deferred Removal). Suppose that τ is a failing test case and ∆ =
{e1, e2} ⊆ τ is a subset of τ such that ψ(τ −∆) = True. Deferred removal is fully satisfied ⇐⇒
ψ(τ − {e1}) = True and ψ(τ − {e2}) = True where {e1} and {e2} are individually removed from τ

in the selected order of removing subsets that is consistent across all granularities.

Consider the examples in Figure 3.4 and Figure 3.5. Figure 3.4 depicts reduction by
original Delta Debugging in which revisiting is performed while reduction in Figure 3.5
does not perform revisiting. Suppose that at some point during reduction, we have test case
variant {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with n = 6 as the number of subsets
present at the granularity. Moreover, suppose that {9, 10} cannot get removed before {11,

12} and both of them are the only portions irrelevant to the failure. The highlighted rows
in Figure 3.4 are the revisiting tests performed after Delta Debugging successfully removes
{11, 12} and {9, 10} from the test case. While these tests are skipped in Figure 3.5,
the removed elements are the same in both figures. The reason is that row with ID 11 in
Figure 3.4 is replaced with rows 15 and 16 in Figure 3.5 that remove the same elements
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at subsequent finer granularities when revisiting is disabled. The term deferred in deferred
removal property does, in fact, refer to this delayed removal performed at later granularities.

Note that deferred removal comes at a cost. Every time that refinement occurs, a subset
that could have been removed but was not turns into two smaller subsets that will be tested
independently. Thus, the cost of removing a missed subset may grow exponentially with
the number of refinements. However, there is a logarithmic number of refinements (granu-
larities) in the process which makes the worst case cost linear. At the same time, revisiting
as in original Delta Debugging would require reconsidering all reduce to complement op-
portunities, leading to the O(n2) behavior but possibly at much coarser granularities where
n is smaller. It is not clear what the performance trade off is in practice. We empirically
explore this trade off in Section 3.3. In the next section, we present the formal definition of
a Delta Debugging algorithm that does not perform revisiting tests. We call this algorithm
One Pass Delta Debugging [2].

3.2 One Pass Delta Debugging: The Algorithm

Inspired by the observation that revisiting subsets after a reduce to complement operation
may not be necessary, we consider a variant of Delta Debugging that considers each sub-
set and its complement only once per granularity. We call this variant One Pass Delta
Debugging (OPDD) [2] and present it in Figure 3.6. The key changes from the original
ddmin presented in Figure 2.2 are highlighted. Intuitively, the major difference in OPDD is
in the handling of reduce to complement cases. Instead of recursively restarting the reduc-
tion process for each reduce to complement opportunity, OPDD successively tries removing
each remaining unvisited subset from the current minimal test case.

input : τ✗ and ψ with ψ(τ✗) = True
output : τ✗

′ such that τ✗
′ ⊆ τ✗ and ψ(τ✗

′) = True
opdd(τ✗) = opdd2(τ✗, 2) where:

opdd2(τ✗
′, n) =


opdd2(∆i, 2) if ∃i ∈ {1, . . . , n} | ψ(∆i) = True

refine(foldl(complement?, (τ✗
′, n), [1, .., n])) else if ∃i ∈ {1, . . . , n} | ψ(∇i) = True

refine(τ✗
′, n) else

complement?((τ✗
′, n), i) =

{
(τ✗

′ −∆i, n− 1) if ψ(τ✗
′ −∆i) = True

(τ✗
′, n) else

refine(τ ′
✗, n) =

{
opdd2(τ✗

′,min(|τ✗
′|, 2n)) if n < |τ✗

′|
τ✗

′ else

Figure 3.6: The One Pass Delta Debugging algorithm [2].

This is captured by applying a standard left fold (foldl) of complement? on the list of
remaining subsets in Figure 3.6. complement? simply tries to remove a particular subset
from τ✗

′ and returns the smaller test when it still reproduces the failure. foldl is a higher-
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order function that combines the results of complement? executions in order from left to
right. After applying the left fold, OPDD calls refine on the result to either refine (increase)
the granularity or finish. This avoids a recursive invocation of opdd2 that would reconsider
removing particular subsets from the test case again.
Correctness. We consider a test case reduction algorithm correct when it is guaranteed
to produce a test case that (1) induces the failure and (2) is not larger than the original
test case. OPDD is an anytime algorithm that preserves correctness during all its executed
steps meaning that in any step, the current version of the test case induces the failure. This
holds regardless of whether the conditions described in Section 3.1 are satisfied or not.

Proof by induction: In the first step of the algorithm, the original test case triggers
the failure. If the test case still induces the failure in step k, the test case in step k+1 either
induces the failure or not. If it does, test case in step k+ 1 is trivially failure-inducing. If it
does not, OPDD does not update the test case since a True outcome of an oracle is used
as an invariant in OPDD for identifying failure-inducing test cases. Hence, the test case in
step k + 1 will remain the same as the one in step k. □
Time Complexity. The interesting measure of algorithmic complexity is how the number
of oracle queries grows with the size of the test case. Just like the original Delta Debugging,
OPDD performs a logarithmic number of granularity refinements with a constant amount
of work for each partition at a particular granularity that is querying the oracle for each
partition and its complement. As a result, the worst case number of oracle queries of OPDD
is O(n) where n is the size of the test case. In contrast, the revisiting of original Delta
Debugging leads to quadratic complexity in the worst case as observed in Figure 3.1. In the
best case scenario, both Delta Debugging and OPDD have logarithmic time complexity
because both algorithms in that case always perform a reduce to subset by dividing the test
case into halves. In practice, the closer the real-world cases are to the worst case scenario,
the potential improvement in efficiency, brought by OPDD, becomes more noticeable. The
next section compares the performance of OPDD against original Delta Debugging for
real-world test cases and bugs in our benchmark presented in Section 2.6.1.

3.3 Evaluation

In this section, we explore the performance characteristics of One Pass Delta Debugging
in practice with a particular eye to the conditions and properties mentioned so far: common
dependence order, unambiguity and deferred removal. We implement OPDD on Perses
infrastructure by replacing its original Delta Debugging with our proposed variant of Delta
Debugging. We observe that not only can we pragmatically exploit common dependence
order, unambiguity and deferred removal, but they can significantly impact the measured
running time of test case reduction in practice.

We continue this section by exploring the following research questions:
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• RQ1. Is there a common dependence order among elements of test cases in practice?

• RQ2. Does empirical evidence suggest practical satisfaction of unambiguity?

• RQ3. What is the performance of OPDD in terms of metrics introduced in Sec-
tion 2.6.3 that are reduced test case size, reduction time, the number of oracle queries
and the reduction efficiency?

• RQ4. How can satisfaction of deferred removal play a role in OPDD test case reduc-
tion process? Does it help OPDD to generate reduced test cases comparable in size
to those generated by original Delta Debugging?

In the following, we answer each one of the above questions by conducting explanatory
and evaluation experiments.

3.3.1 RQ1. Common Dependence Order in Practice

As described previously in this chapter, if the preferred dependence order among elements
of a test case is known, complement tests can be ordered in a way such that performing
revisiting becomes unnecessary. Here, we perform a study on our smaller sample benchmark
to examine whether a common dependence order among their elements exists in practice.

To conduct this study, we consider two natural orderings for subset removals:

1. Forward (→) that is removing subsets from the beginning of the test case to the end.

2. Backward (←) that is removing subsets from the end of the test case to the front.

Next, we measure the number of successful revisiting subset removals for each ordering when
running the original Delta Debugging algorithm. Recall that a successful subset removal
means that the test case without the subset satisfies the oracle by triggering the failure.
The number of successful revisiting subset removals is the number of subsets that were not
successfully removed in the first round of running the oracle, but after updating the test
case, they were successfully removed in a revisiting round. The idea is that the ordering
with fewer successful revisiting subset removals is the preferred ordering. For instance in
Figure 3.1, the preferred ordering is backward with no successful revisits while the forward
ordering causes quadratic behavior.

The second and third columns of Table 3.1 depict the results of this experiment. As
can be seen, for all the five test cases that have different number of successful revisiting
subset removals for their orderings, the backward ordering has fewer number of successful
revisits, making it the preferred ordering for our sample benchmark test cases. This is
indeed expected when reducing compiler test cases. As an example, the use of a variable is
usually after its declaration and should get removed first to make removal of the declaration
possible.
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This evidence can help us to infer that the common dependence order among program-
ming language test cases is likely to be backward. Hence, if we remove subsets in backward
order, we may not need to perform revisiting tests. However, we can see cases that even for
backward dependence orders, successful revisits still occur. In particular, we can see success-
ful removals in revisiting rounds for test cases clang-25900, gcc-61383 and rust-63791.

As a result, we cannot conclude that if subsets of a test case are removed in backward
order, then performing revisiting becomes completely unnecessary. We later show that de-
ferred removal helps to address cases where a common dependence ordering fails.

Table 3.1: Number of successful revisiting subset removals in forward and backward order-
ings along with unambiguity satisfaction results for our sample benchmark.

# Successful revisits # Granularities with successful removal
Test Case

. Forward (→) Backward (←) trivial (single
removal)

successful
combination

unsuccessful
combination

Unambiguity
ratio (%)

clang-25900 5 1 25 22 0 100
clang-31259 7 0 24 20 0 100
gcc-60116 13 0 47 43 0 100
gcc-61383 36 1 21 44 0 100
gcc-77624 0 0 8 3 0 100
rust-63791 4 1 19 1 0 100
rust-65934 0 0 1 0 0 100
rust-77993 0 0 10 4 0 100
go-30606* 0 0 0 0 0 N/A

* This test case has no list-based (Kleene-Star and Kleene-Plus) successful reduction by Delta Debugging. Only single
Optional children are removed.

3.3.2 RQ2. Unambiguity in Practice

As described earlier in Section 3.1.2, if test cases are unambiguous, the removal of differ-
ent subsets should be independent from each other, making revisiting unnecessary. Thus,
OPDD should produce the same results as original Delta Debugging.

To examine the occurrence of unambiguity in practice, for each granularity reached by
Delta Debugging in test cases of our sample benchmark, we verify whether Definition 3.1.1
holds or not. Recall that Delta Debugging partitions a test case into n disjoint subsets where
n defines the granularity. At any given granularity with test case variant τ = ∪ni=1si, we
compute ψ(τ−si) for all subsets individually (LHS of Definition 3.1.1), maintaining a list S
of subsets that have successfully been removed from τ . Next, when all subsets are examined
individually, we construct a cumulative test case T , consisting of subsets in S and then we
compute ψ(τ−T ) (RHS of Definition 3.1.1). If ψ(τ−T ) = True, then unambiguity holds at
the given granularity with respect to subsets in S. Otherwise, unambiguity does not hold.

For each test case, we compute the total number of granularities with at least one
individual successful subset removal that were reached and analyzed during complement
tests of Delta Debugging. Note that unambiguity trivially holds for granularities with exactly
one successful subset removal (the fourth column in Table 3.1). The fifth and sixth columns
show the number of granularities with at least two individual successful removals. As can be
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seen, unambiguity strongly holds for all test cases since no unsuccessful removal of combined
subsets in S occurs in our sample benchmark. This evidence strongly suggests that test cases
are likely to be unambiguous in practice.

3.3.3 RQ3. OPDD Performance

So far, we observed that both common dependence order and unambiguity have some em-
pirical support in our suite of sample test cases. This provides some intuition that OPDD
may be successful in practice. To verify, we implement One Pass Delta Debugging to
compare its performance against original Delta Debugging with respect to our performance
metrics presented in Section 2.6.3. We run this study on our full set of benchmark with 28
programs and one XML file. Again, we build both original Delta Debugging and OPDD
on the infrastructure of Perses and select the backward ordering for removing subsets in
both since as observed in Section 3.3.1, backward ordering may be the preferred ordering
for reducing program source code.

Results are shown in Table 3.2. The best values for each metric are highlighted for
each test case. Interestingly, for all the test cases except for one (rust-63791), Perses with
OPDD generates a reduced test case with exactly the same size of a test case produced
by Perses with original Delta Debugging. For rust-63791 that is the only test case that
OPDD generates a larger output, the reducer times out after 4 hours. It is possible that the
generated outputs by Perses DD and Perses OPDD would have the same size if unlimited
reduction time was available.

These results strongly suggest that skipping revisiting tests does not harm the reduc-
tion power and effectiveness in practice. Moreover, we can see that the efficiency of Perses
improves when revisiting tests are skipped using OPDD. In further detail, for C test cases
on average, the number of oracle queries, the reduction time and reduction efficiency are
3,007 queries, 876 seconds and 31.56 removed tokens per second, respectively. These num-
bers are 3,264 oracle queries, 1,013 seconds of reduction time and 27.29 removed tokens per
second for Perses with original Delta Debugging. This is an average improvement of 14%
for reduction time of C test cases. We further compute a speed up metric by dividing the
reduction time of Perses DD by the reduction time of Perses OPDD. The average speed up
achieved by OPDD for C test cases is 1.16.

Similarly, OPDD improves the efficiency of reduction on Rust and Go test cases although
this improvement is less noticeable. One reason is that the original size of the test cases
in Rust and Go are much smaller than C test cases. As a result, there is less room for
improvement when reducing test cases of these domains. However, OPDD still performs
reduction faster than original Delta debugging for all three Go programs and similarly, for 6
out of 8 Rust test cases. To explain the only case in which reduction does not time out and
Perses DD performs better (rust-77002), we can consider multiple reasons. One of them is
the possibility of having multiple minimal test cases. As explained in Section 2.1, finding a
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Table 3.2: A comparison between the performance of Perses using original Delta Debugging
(Perses DD) and Perses using One Pass Delta Debugging (Perses OPDD). Node re-
placements disabled.

Perses DD Perses OPDD

Test Case
...

O(#)
t R(#) Q(#) T (s) E(#/s) R(#) Q(#) T (s) E(#/s)

Speed Up
(×)
...

clang-22382 21,069 1,144 5,114 3,220 6.19 1,144 4,674 3,165 6.30 1.02
clang-22704 184,445 746 4,104 1,645 111.67 746 3,728 1,423 129.09 1.16
clang-23309 38,648 2,321 9,173 2,882 12.60 2,321 8,659 2,667 13.62 1.08
clang-25900 78,961 798 4,205 1,393 56.11 798 3,777 1,217 64.23 1.14
clang-27747 173,841 612 3,743 1,613 107.40 612 3,411 1,374 126.08 1.17
clang-31259 48,800 920 4,189 1,605 29.83 920 3,805 1,524 31.42 1.05
gcc-59903 57,582 1,879 10,477 4,040 13.79 1,879 10,010 3,732 14.93 1.08
gcc-60116 75,225 1,281 9,066 4,706 15.71 1,281 8,392 4,496 16.45 1.05
gcc-61383 32,450 1,287 6,161 1,454 21.43 1,287 4,717 1,166 26.73 1.25
gcc-61452 26,733 1,023 5,548 3,563 7.22 1,023 5,165 3,515 7.31 1.01
gcc-61917 85,360 1,401 8,132 1,905 44.07 1,401 7,510 1,718 48.87 1.11
gcc-64990 148,932 1,120 6,350 1,932 76.51 1,120 5,859 1,735 85.19 1.11
gcc-65383 43,943 1,121 5,850 1,628 26.30 1,121 5,395 1,447 29.59 1.13
gcc-66186 47,482 1,299 4,889 1,244 37.12 1,299 4,539 1,129 40.91 1.10
gcc-71626 6,134 61 474 38 159.82 61 446 34 178.62 1.12
gcc-71632 141 82 190 62 0.95 82 190 60 0.98 1.03
gcc-77624 1,306 23 99 13 98.69 23 97 5 256.60 2.60
geomean 29,769 654 3,264 1,013 27.29 654 3,007 876 31.56 1.16
median 47,482 1,120 5,114 1,628 29.83 1,120 4,674 1,447 31.42 1.11

rust-44800 802 472 2,113 11,907 0.03 472 2,102 11,208 0.03 1.06
rust-63791 8,144 5,768 3,873 T/O 0.17 5,809 4,126 T/O 0.16 1.00
rust-65934 107 100 148 86 0.08 100 148 76 0.09 1.13
rust-69039 191 128 428 2,275 0.03 128 428 2,265 0.03 1.00
rust-77002 348 302 818 1,846 0.02 302 810 2,195 0.02 0.84
rust-77993 4,989 48 174 181 27.30 48 169 160 30.88 1.13
rust-78336 980 18 117 504 1.91 18 109 487 1.98 1.03
rust-78622 157 29 78 335 0.38 29 74 282 0.45 1.19
geomean 659 151 401 1,083 0.22 151 396 1,037 0.23 1.04
median 575 114 301 1,175 0.13 114 299 1,341 0.13 1.05

go-28390 146 84 212 33 1.88 84 211 30 2.07 1.10
go-29220 127 74 98 12 4.42 74 98 8 6.63 1.50
go-30606 449 423 629 155 0.17 423 629 149 0.17 1.04
geomean 203 138 236 39 1.12 138 235 33 1.33 1.20
median 146 84 212 33 1.88 84 211 30 2.07 1.10
urls.xml 679 30 37 2 324.50 30 37 2 324.50 1.00

O, R and Q denote number of tokens in the original test case, reduced one and total number of oracle queries
performed by the reduction technique, respectively. T is the reduction time in seconds and E is the efficiency in
terms of the number of tokens removed per second. The speed up is calculated by dividing the reduction time of
Perses DD by the reduction time of Perses OPDD. Timeout (T/O) is set to 4 hours.

unique global minimum for large test cases is infeasible. As a result, different reducers such
as original Delta Debugging and OPDD that have different search spaces may generate a
different minimal test case or explore different candidates with varying oracle verification
time. Hence, it is possible that a reducer’s behavior in a few specific test cases in practice
does not correspond to its predicted theoretical improvement. We discuss this possibility
further in Section 6.2 and conduct a study in Section 4.5.3 to examine the oracle verification
time and its impact on the overall reduction process. Finally, although we are running all
our experiments on the same environment and try to minimize factors that can adversely
affect the validity of our results, it may not be possible to prune all the potential risk factors.
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We discuss this further again in Section 6.2. In general, based on the collected results for
our benchmark, we believe that our One Pass Delta Debugging improves the efficiency
of original Delta Debugging without harming its effectiveness.

Table 3.3: A comparison between the performance of Perses using original Delta Debugging
(Perses DD) and Perses using One Pass Delta Debugging (Perses OPDD). Node re-
placements enabled.

Perses DD Perses OPDD

Test Case
...

O(#)
t R(#) Q(#) T (s) E(#/s) R(#) Q(#) T (s) E(#/s)

Speed Up
(×)
...

clang-22382 21,069 334 5,030 3,535 5.87 334 4,656 3,474 5.97 1.02
clang-22704 184,445 266 4,289 1,788 103.01 266 3,950 1,489 123.69 1.20
clang-23309 38,648 237 6,747 2,229 17.23 237 6,365 2,095 18.33 1.06
clang-25900 78,961 304 4,578 1,660 47.38 304 4,205 1,493 52.68 1.11
clang-27747 173,841 220 4,311 1,624 106.91 220 3,974 1,495 116.13 1.09
clang-31259 48,800 374 5,312 2,424 19.98 374 4,920 2,161 22.41 1.12
gcc-59903 57,582 465 9,908 4,572 12.49 465 9,680 4,489 12.72 1.02
gcc-60116 75,225 480 7,514 9,088 8.22 480 7,129 8,905 8.39 1.02
gcc-61383 32,450 321 5,649 1,805 17.80 321 4,487 1,472 21.83 1.23
gcc-61452 26,733 370 5,552 3,993 6.60 370 5,238 3,876 6.80 1.03
gcc-61917 85,360 327 5,869 1,829 46.49 327 5,399 1,652 51.47 1.11
gcc-64990 148,932 354 5,873 2,288 64.94 354 5,489 2,112 70.35 1.08
gcc-65383 43,943 228 5,383 1,819 24.03 228 5,002 1,723 25.37 1.06
gcc-66186 47,482 441 4,692 1,563 30.10 441 4,392 1,403 33.53 1.11
gcc-71626 6,134 60 535 36 168.72 60 507 35 173.54 1.03
gcc-71632 141 75 217 57 1.16 75 217 57 1.16 1.00
gcc-77624 1,306 22 196 10 128.40 22 194 13 98.77 0.77
geomean 29,769 232 3,315 1,119 25.27 232 3,093 1,058 26.72 1.06
median 47,482 321 5,312 1,819 24.03 321 4,656 1,652 25.37 1.06

rust-44800 802 464 3,057 T/O 0.02 464 2,728 T/O 0.02 1.00
rust-63791 8,144 6,203 3,395 T/O 0.13 6,269 3,285 T/O 0.13 1.00
rust-65934 107 100 238 510 0.01 100 238 559 0.01 0.91
rust-69039 191 120 826 4,372 0.02 120 826 4,248 0.02 1.03
rust-77002 348 286 3,900 11,018 0.01 286 3,892 9,650 0.01 1.14
rust-77993 4,989 16 175 705 7.05 16 170 786 6.33 0.90
rust-78336 980 15 106 438 2.20 15 98 379 2.55 1.16
rust-78622 157 29 77 319 0.40 29 73 310 0.41 1.03
geomean 659 127 571 2,176 0.12 127 550 2,139 0.12 1.02
median 575 110 532 2,539 0.08 110 532 2,517 0.08 1.02

go-28390 146 84 245 35 1.77 84 244 35 1.77 1.00
go-29220 127 60 165 16 4.19 60 165 18 3.72 0.89
go-30606 449 233 912 204 1.06 233 912 203 1.06 1.00
geomean 203 106 333 49 1.99 106 332 50 1.91 0.96
median 146 84 245 35 1.77 84 244 35 1.77 1.00
urls.xml 679 9 21 1 670 9 21 1 670 1.00

O, R and Q denote number of tokens in the original test case, reduced one and total number of oracle queries
performed by the reduction technique, respectively. T is the reduction time in seconds and E is the efficiency
in terms of number of tokens removed per second. The speed up is calculated by dividing the reduction time of
Perses DD by the reduction time of Perses OPDD. Timeout (T/O) is set to 4 hours.

The results in Table 3.2 are collected when nodes in the parse trees of test cases are
only tried for removal. Table 3.3 depicts the results of reduction when both node removal
and node replacement trials as described in Section 2.4.1 are enabled. These results also
show the same improvement caused by OPDD. Note that the reduced sizes in Table 3.3
are smaller than Table 3.2 due to more reduction operations performed by both Perses DD
and Perses OPDD.
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Finally, it is worth mentioning that the improvement caused by OPDD may be more
significant when reducing larger lists of nodes with higher likelihood of unsuccessful tests.
These lists are likely to be closer to the worst case scenario of original Delta Debugging and
provide more opportunity for boosting their reduction when OPDD is used. We observed
this in one of our previous works where we applied original Delta Debugging and OPDD on
the Hierarchical Delta Debugging (HDD) framework [2]. Since HDD applies Delta Debug-
ging on all the nodes present at a level, it generally attempts to reduce longer lists compared
to Perses that applies Delta Debugging on lists of children of quantified nodes. Moreover,
HDD is more likely to fail due to trying to remove irrelevant nodes of a level together [17].
As a result, HDD can provide more room for improvement [2].

In this dissertation, our focus is on the latest state of the art test case reduction tech-
niques, such as Perses, that operate by traversing the parse tree in a more sophisticated
fashion. However, regardless of the reduction approach and the degree of significance, One
Pass Delta Debugging can enhance the performance of Delta Debugging and speed up
any framework that is built upon it.

Next, we describe a study to explain the third property introduced in this chapter, the
deferred removal property, in practice.

3.3.4 RQ4. Deferred Removal in Practice

By exploring our first research question in Section 3.3.1, we learned that backward ordering
is likely to be the preferred ordering for removing subsets from test cases of programming
language domain in practice. By choosing this ordering and applying One Pass Delta
Debugging on our full set of benchmark in Section 3.3.3, we observed improvement in
efficiency of test case reduction while producing reduced outputs of the same size compared
to original Delta Debugging for most of the cases. However, we also observed in Table 3.1
that successful revisiting subset removals still occur in backward ordering for a few test
cases in practice. This means that if we do not perform revisiting tests, we may miss
some reduction opportunities even when removing subsets is performed in backward order.
However, we mainly see the same output results for both One Pass Delta Debugging
and original Delta Debugging? Why?

To answer the above question, this section evaluates a third property called deferred
removal. We have previously provided the definition and details of this property in Sec-
tion 3.1.3. In a nutshell, if this property holds, it means that removable elements skipped
by OPDD in a granularity are likely to be captured and removed in subsequent finer granu-
larities. The satisfaction of this property can assist in obtaining outputs of comparable size
by One Pass Delta Debugging even when common dependence order or unambiguity
properties do not completely hold in practice.

To examine whether deferred removal holds in practice, we select the three test cases in
Table 3.1 that have successful revisiting subset removal in their backward ordering reduction.
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These test cases are clang-25900, gcc-61383 and rust-63791, each one of them with
exactly one successful revisiting test when removing their subsets in backward order. Based
on the results in Table 3.2, original Delta Debugging and OPDD generate outputs of the
same size for the first two test cases while OPDD produces a slightly larger output for
the third test case within the reducer’s 4 hour timeout. For these three cases, we set up an
experiment to record when (i.e., at which granularity in reducing a list) each unique element
(here node in the parse tree) is removed from the test case in the reduction process of both
OPDD and original Delta Debugging.

We observe three different interesting behaviors of OPDD for the three test cases:
clang-25900. In this case, OPDD removes the elements of the subset removed in a revisit-
ing round by the original Delta Debugging algorithm at the immediate next finer granularity.
gcc-61383. In this case, original Delta Debugging removes a subset of size two in a re-
visiting round. One of the elements (nodes) of this subset is captured and removed in the
immediate next granularity by OPDD. The other remaining node is removed when per-
forming fixed point iterations of reduction. Details on fixed point rounds are provided in
Section 2.3.2.
rust-63791. In this case, the elements of subsets skipped by OPDD are not captured and
removed within the 4 hour time out. This can explain the slightly larger output generated
by OPDD for this specific test case.

Based on the observations above, we can see that deferred removal occurs in practice.
However, in the case that deferred removal does not completely hold, the fixed point iter-
ations of tree based reduction can indeed help OPDD to generate outputs of the same or
similar size compared to original Delta Debugging. These results indicate that in practice,
we do not necessarily require a strict dependence order among elements of a test case or full
unambiguity to be able to skip subset revisits without adversely affecting the performance
of Delta Debugging in terms of the size of the reduced test case.

Finally, it is worth mentioning that although postponing the successful removal of a
subset to a finer granularity may increase the number of tests by dividing a subset into
two in the following granularity, sparsity of successful subset revisits in addition to larger
number of unsuccessful revisits that are skipped should decrease the overall number of tests
in practice as seen in Table 3.2 and Table 3.3.

3.4 Summary

In this chapter, we proposed a variant of the Delta Debugging algorithm with better theoret-
ical time complexity and higher efficiency in practice. This variant called One Pass Delta
Debugging (OPDD) has a linear worst case time complexity in contrast to the original
Delta Debugging algorithm with quadratic worst case time complexity. By skipping tests
that are less likely to succeed based on a simple observation of prior tests, OPDD performs
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only one pass of complement tests at each granularity. In our evaluation set, both OPDD
and original Delta Debugging generated outputs of the same size although OPDD per-
formed fewer tests within shorter reduction time. To explain this behavior, we investigated
two properties existing in the literature called common dependence order and unambiguity,
and proposed a new third property called deferred removal. We demonstrated that empir-
ical satisfaction of these properties can help OPDD to achieve reduced test cases of the
same or similar size as the original Delta Debugging. Reduction techniques using Delta
Debugging and infrastructures built upon it can directly benefit from using our One Pass
Delta Debugging technique by replacing their original Delta Debugging mechanism with
OPDD. In Perses infrastructure, replacing Delta Debugging with our OPDD version led
to an average speed up of 1.16x, 1.04x, and 1.20x when reducing C, Rust, and Go programs
of our benchmark, respectively while generating outputs of the same size.
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Chapter 4

Priority Aware Test Case
Reduction

This chapter addresses the second problem in our list of problems in Section 2.5 with a
focus on problem 2.1 and explores the following question:

Can we mitigate the problem of priority inversion in Perses by devising a new priority
aware reduction technique that is capable of reducing the more beneficial portions of a
test case at an early stage?

We originally introduced and published the ideas presented in this chapter at the
22nd International Conference on Fundamental Approaches to Software Engineering (FASE
2019) [28].

4.1 Priority Inversion

Recall the background information on Perses, the latest state of the art domain agnostic
program reducer in Section 2.4.1. In spite of using a priority queue of nodes in the parse
tree of the program to reduce, Perses still suffers from a drawback in its priority mechanism
that we call priority inversion. In general, priority inversion occurs when a low priority task
is scheduled instead of a high priority task. In case of program reduction by Perses, priority
inversion occurs when significant time may be spent trying to perform reduction operations
on portions of the parse tree that will not have a large impact on the size of the reduced
test case.

To better understand the concept of priority inversion, consider a quantified Kleene-
Star (*) node with a large number of tokens as descendants that has multiple children,
maybe hundreds such that each child has a small number of token descendants. Figure 4.1
depicts a simplified version of this scenario. As mentioned earlier in Section 2.4.1, Perses
tries to remove the children of the quantified node by applying Delta Debugging on them.
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Program_Unit w:23

1.Foo_star w:15

...

w:1

...

w:1

...

w:1

...

w:1

... w:11

2.FOO_star w:9 ... w:2

BAR_star w:8

Figure 4.1: Priority inversion, an inefficient reduction prioritization by Perses: Perses spends
reduction effort on the red portion while the green nodes have larger impact (number of
token descendants) and should be prioritized.

Reducing a large list of children for a quantified node may take a long time due to the
following reasons:

1. As mentioned in Section 2.2, Delta Debugging has a quadratic worst case time com-
plexity with respect to the size of the list being reduced. A large number of children
in the list can make the quadratic time complexity of Delta Debugging inefficient.

2. Reducing a child node with a small number of tokens removes a small portion of the
test case, generating a possibly large remaining variant to be tested against an oracle.
An oracle call on a larger variant is likely to be more expensive than a smaller variant
due to multiple verification steps within the oracle, including the potential need to
compile the variant. Moreover, removing a small portion is less likely to enable the
removal of other portions.

Although our One Pass Delta Debugging proposed in Chapter 3 can mitigate the
first problem, the second problem still remains. For example in Figure 4.1, while Perses
spends a lot of time applying either original Delta Debugging or OPDD on children of
1.FOO_star with small number of tokens (represented by w), there are 2.FOO_star and
BAR_star with larger number of tokens that their reduction is postponed by Perses.

Program p in Listing 4.1 and its parse tree in Figure 4.2 demonstrate the details of
priority inversion. Suppose that the property of interest to preserve is printing "Hello World!"
on line 14.

To search for a smaller program with this property of interest, Perses traverses the
parse tree using a priority queue ordered by the number of token descendants of each node.
Henceforth, we refer to this number as the token weight or simply weight of a node. For
each test, Perses removes the node with the maximum weight from the work queue.

The queue starts out containing only the root node of the parse tree. Recall that Perses
performs specific reduction operations on different types of nodes during traversal as ex-
plained in Section 2.4.1. For instance, on optional nodes, Perses tries to remove the optional
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1 int d = 10 ;
2 struct S {
3 int f 1 ;
4 int f 2 ;
5 } ;
6 void f oo ( ) {
7 struct S s1 = {1 , 2} ;
8 int i = 0 ;
9 bool increment = true ;

10 i f ( increment ) {
11 i += 2∗ i + i + 1 ;
12 }
13 s1 . f 1 = d∗ i ;
14 printf("Hello World!\n");
15 }
16 int main ( ) {
17 foo ( ) ;
18 return 0 ;
19 }

Listing 4.1: A C program with a statement to preserve on line 14.

child node. For list nodes, Perses minimizes the list of children using Delta Debugging. Any
remaining children of the traversed node are then added to the priority queue in order to
be traversed in the future.

In our example, Perses first removes the root node 1 from the queue. Because 1
is a quantified Kleene-Star node, its children are syntactically removable. Hence, Perses
applies Delta Debugging on the list of children of 1 . Different combinations of children are
removed from 1 and the result is checked by an oracle ψ to find a smaller program. First,

1.translationUnit *
w:84

2.exDecl
w:5

d

3.exDecl
w:11

S

4.funcDef
w:55

foo 6.compound *
w:49

8.decl
w:10

s1

9.decl
w:5

i

10.decl
w:5

incr

11.selection
w:16

if(...) 15.expr
w:10

i += 2*i + i + 1;

12.expr
w:8

s1.f1 = d*i;

13.expr
w:5

printf@14

5.funcDef
w:13

main 7.compound *
w:7

14.expr
w:4

foo();

return

Figure 4.2: The simplified parse tree of program in Listing 4.1. Each internal node is anno-
tated with an ID and its grammar rule type. * denotes a quantified Kleene-Star node.
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node(s) to
remove ψ

{2,3,4,5} False
{2,3} False
{4,5} False

{3,4,5} False
{2,4,5} False
{2,3,5} False
{2,3,4} False

{2} False
{3} False
{4} False
{5} False

{8,9,10,11,12,13} False
{8,9,10} False

{11,12,13} False
{10,11,12,13} False
{8,9,12,13} False
{8,9,10,11} False

{8,9} False
{10,11} True
{12,13} False

{9,12,13} False
{8,12,13} False
{8,9,13} False
{8,9,12} True

{13} False
{14} False

(a) Perses

node to
remove ψ

{1} False
{4} False
{6} False
{11} True
{5} False
{3} False
{8} False
{12} True
{7} False
{13} False
{10} True
{9} True
{2} True
{14} False
(b) Pardis

node(s) to
remove ψ

{1} False
{4} False
{6} False
{11} True
{5} False
{3} False
{8} False
{12} True
{7} False
{13} False

{10,9} True
{2} True
{14} False

(c) Pardis Hybrid

Figure 4.3: One round of removal tests in Perses, Pardis and Pardis Hybrid for the parse
tree in Figure 5.2. Numbers are node IDs.

all children are removed and ψ is checked. After this fails, the first half of the children,
nodes 2 and 3 are removed, but ψ returns False because this removes required external
declarations. Since removing the second half of the children, nodes 4 and 5 also fails, the
process continues recursively. First, Delta Debugging tries shrinking the list by only keeping
each individual child (i.e., subset tests in Delta Debugging), and next it tries removing
each individual child (i.e., complement tests). Ultimately, none of the tests succeed, so all
children are added to the queue, and reduction continues with node 6 that has the next
largest weight. This node is a list node and Perses applies Delta Debugging on the list of
its children. This process continues until the queue becomes empty or the reducer times
out. The precise tests exercised in this process are illustrated in Figure 4.3 (a). Note that
in spite of applying our more efficient version of Delta Debugging, OPDD, on the lists of
children in this example, 19 steps elapse until a successful test occurs when using Perses.
This can lead to inefficiency in test case reduction.

Here, the problem is that while the priorities used by Perses are controlled by the token
weight, they determine how the children of the traversed nodes are removed. Thus, any
node whose parent in the parse tree is a quantified node is given the same priority as all
other elements in the list. This is because Delta Debugging recursively tries to minimize the
entire list until no single element can be removed, regardless of the priorities of individual list
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elements. As a result, Perses must employ Delta Debugging on the entirety of the children
of 1 even though it would be more beneficial to focus on just one child, node 4 .

To mitigate this problem, we propose Pardis [28], a test case reduction technique that
more directly models the priorities. We note that in a quantified node, such as node 1 ,
each child may be removed in a syntactically valid fashion. In other words, based on the
grammar, children of a quantified node are syntactically removable, independent from each
other. As a result, when traversing a syntactically removable node in the parse tree, we can
simply try directly to remove it, adding its children if the removal fails.

For instance, in the running example, we would visit node 1 first. Because 1 cannot
get removed, we would simply add its children to the priority queue. Note that all children
of 1 are syntactically removable, but 4 has the largest token weight. Thus, we next select
4 to traverse but removing 4 also fails. Children of 4 are added to the queue and from

the given token weights, we next attempt to remove node 6 1 and after it fails, we add its
children to the queue. Then, node 11 is visited and successfully removed. Next, Pardis tries
to remove nodes 5 , 3 and 8 in order and fails but node 12 successfully gets removed.
Removing node 12 enables the removal of node 2 when it is first visited by Pardis whereas
Perses would require multiple traversals of the parse tree to remove it.

Similar to Perses, the process of selecting nodes and reducing them by Pardis continues
until the queue becomes empty or Pardis times out. As can be seen in Figure 4.3 (b), just
4 steps elapse until the first successful test removes node 11 by Pardis.

This new priority aware approach can still have drawbacks, however. After focusing on
the highest priority nodes, there may be many lower priority nodes remaining. For example,
there are multiple remaining nodes of weight 5 in the tree of Figure 4.2. The above approach
of Pardis considers each node one at a time, which can have poor performance when
reducing such long lists. In our example, Pardis performs 4 tests to remove nodes 11, 12,
10 and 9 one by one. However, Perses is able to remove these nodes by performing only
two tests due to its capability of removing groups of nodes together.

To enable performing tests on groups of nodes in our new technique, we also propose a
hybrid version of Pardis that still prioritizes nodes by maximum token weight but addi-
tionally makes use of a list based reduction technique for spans of nodes that have the same
parent and token weight. This hybrid approach named Pardis Hybrid is able to achieve
the benefits of being priority aware while still avoiding the cost of considering each node of
the parse tree individually. In our running example as shown in Figure 4.3 (c), Pardis Hy-
brid can remove nodes 9 and 10 together by performing only a single test. In Section 4.5,
we show experimentally that these lower priority nodes occur in practice and that Pardis

1 6 is a quantified node with all its children being syntactically removable. As a result, 6 itself is
syntactically removable too.
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Hybrid can be beneficial for some cases. The next sections present the algorithms behind
our techniques in detail.

4.2 Pardis: The Algorithm

Similar to Perses, the core of Pardis maintains a priority queue of the nodes in a parse tree
and traverses the nodes in order to process them. It also makes use of Perses Normal Form
(PNF) grammar resulted by grammar transformations performed by Perses and discussed in
Section 2.4.1. The key difference is that instead of using the token weight of a parent node to
determine when its syntactically removable children may be removed, Pardis identifies all
syntactically removable nodes and uses their token weights directly to prioritize the search.
The core algorithm for this process is quite straightforward and presented in algorithm 2.

Algorithm 2: Pardis: Priority aware queue driven test case reduction [28].
Input: τ✗ – The test case to reduce as a parse tree
Input: ψ : S→ B – Oracle for the property to preserve where S is the search space and

ψ(τ✗) = True

Input: ρ : V→ N× · · · × N – Prioritizer for tree nodes
Result: A minimum test case τ✗

′ ⊆ τ✗ s.t. ψ(τ✗
′) = True

1 τ✗
′ ← τ✗;

2 work ← MaxPriorityQueue({τ ✗
′.root}, ρ);

3 while !work.empty() do
4 node ← work.takeMax();
5 if node.isSyntacticallyRemovable() && ψ(τ✗

′ − node) then
6 τ✗

′ ← τ✗
′ - node;

7 else
8 work.insert(node.children);

9 return τ✗
′;

Line 2 of the algorithm constructs the priority queue (a max-heap), initializing it with
the root of the parse tree and using a parameterizable priority ρ. ρ is simply a function that
takes a node and returns its priority as a tuple. The priority queue selects the element with
a lexicographically maximal priority, so ties on the first element of the priority tuple are
broken by the second element and so on. As seen in Figure 4.4, for Pardis, ρPardis returns a
pair of numbers, the token weight of the node and the position of the node in a decreasing,
right-to-left, breadth first search. The specific breadth first order means that for parse tree
p with n nodes, bfsOrder(p.root)=n, the last child c of p.root has bfsOrder(c)=n-1, and so
on. Thus, if several nodes have the same token weight, the one highest in the parse tree
and furthest to the right is selected next. This ordering decreases the chances of trying to
remove a declaration before its uses [48].

Line 3 starts the core of the algorithm. While there are more nodes to explore in the
queue, the node with the next highest priority is considered. If it is syntactically removable
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Definitions:
tokensBelow(n) – returns the number of tokens beneath a parse tree node n.

bfsOrder(n) – returns the position of a parse tree node n in a decreasing,
right to left, breadth first search.

Prioritizers:
ρPardis = (tokensBelow(n), bfsOrder(n))

ρperses =
{ let parentWeight ← tokensBelow(n.parent) if n.parent else ∞ in

let parentOrder ← bfsOrder(n.parent) if n.parent else ∞ in
(parentWeight, parentOrder)

ρPardis Hybrid =
{ let parentOrder ← bfsOrder(n.parent) if n.parent else ∞ in

(tokensBelow(n), parentOrder, bfsOrder(n))

Figure 4.4: Prioritizers used for Pardis, node at a time Perses, and Pardis Hybrid.

and can be successfully removed based on the oracle’s outcome, we remove it from the parse
tree, otherwise we add its children to the queue so that they will also be traversed.

While the algorithm is surprisingly simple, we have found it to perform significantly
better than the state of the art Perses in practice. As we explore in Section 4.5, this results
from prioritizing the search towards those portions of the input where reduction can have
the greatest impact.

To more closely compare with Perses, consider a version of Perses that upon visiting a
list or optional node, it only tries removing each child of that node once2. This one node at a
time variant of Perses can also be implemented using algorithm 2 by carefully choosing the
priority formula ρ. Because Perses considers removing the children of the nodes it traverses,
it actually prioritizes the work queue using the token weight of the parent rather than the
token weight of syntactically removable nodes being considered for removal. This leads to
the alternative prioritizer ρperses presented in Figure 4.4. Observe that all children of a list
node receive the same token weight, that of the entire list. This can inflate the priority of
some nodes in the work queue and leads to poor performance.

Intuitively, using Pardis can have the following important benefits:

1. Stalls in reduction from unsuccessful rounds of Delta Debugging can be mitigated.

2. By removing large portions of a test case earlier on, each oracle query to ψ can take less
time because smaller inputs tend to be faster to check (e.g., compiling and verifying
a smaller program is typically faster).

3. Removing large portions earlier on can also enable removal of other nodes, leading to
a faster convergence towards the reduced test case.

2We compare against both versions of Perses in Section 4.5
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Like other test case reduction algorithms [13, 15, 14, 16, 22], algorithm 2 is used to com-
pute a fixed point. That is, in practice the algorithm is repeated until no further reductions
can be made. As in prior works, we omit this from our presentation for clarity. In theory,
this means that the worst case complexity of the technique is O(n2) where n is the number
of nodes in the parse tree. This arises when only one leaf of the parse tree is removed in each
pass through the algorithm. In practice, most nodes are not syntactically removable, and
we show in Section 4.5 that performance of Pardis exceeds the state of the art techniques.

4.3 Pardis Hybrid: The Algorithm

Pardis, the initial priority aware technique from algorithm 2 can also encounter perfor-
mance bottlenecks. The original motivation for using Delta Debugging on lists of children
in the parse tree was that it tries to remove multiple children at the same time. Although
the worst case time complexity of Delta Debugging is quadratic or linear for its original
and OPDD versions, respectively, its best case time complexity is O(log(n)) where n is
the number of children in the list. Processing one node at a time, however, requires that
every list element is considered individually, guaranteeing O(n) time for one round of algo-
rithm 2. Priority aware reduction that proceeds one node at a time faces a different set of
inefficiencies that can still cause stalls in the reduction process.

Thus, we desire a means of removing multiple elements from lists at the same time while
still preserving priority awareness. In order to achieve this, we developed Pardis Hybrid,
as presented in algorithm 3.

Algorithm 3: Pardis Hybrid algorithm with priority aware list reduction [28].
Input: τ✗ – The test case to reduce as a parse tree
Input: ψ : S→ B – Oracle for the property to preserve where S is the search space and

ψ(τ✗) = True

Input: ρ : V→ N× · · · × N – Prioritizer for tree nodes
Result: A minimum test case τ✗

′ ⊆ τ✗ s.t. ψ(τ✗
′) = True

1 τ✗
′ ← τ✗;

2 work ← MaxPriorityQueue({τ ✗
′.root}, ρPardis Hybrid);

3 while !work.empty() do
4 nodes ← work.takeWithSameWeightAndParent();
5 removable, non-removable ← partitionRemovable(nodes);
6 removed, retained ← minimize(τ✗

′, removable, ψ);
7 τ✗

′ ← τ✗
′ - removed;

8 work.insert(
⋃

x∈retained∪non-removable x.children);

9 return τ✗
′;

Pardis Hybrid uses a modified prioritizer as presented in Figure 4.4 by which it first
orders nodes by their token weights, then by parent traversal order, and then by node
traversal order. The effect this has is that all children of the same parent with the same
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weight are grouped together. As a result, we can remove them from the priority queue
together and perform list based reduction (like Delta Debugging) to more efficiently remove
groups of elements in a list that have the same priority. Because the search is still primarily
directed by the nodes’ token weights, it still fully respects the priority mechanism introduced
in this chapter.

Similar to Pardis, line 2 of algorithm 3 starts by creating the priority queue. Note
that it specifically uses the prioritizer ρPardis Hybrid, which groups children having the same
token weight in the priority queue. As long as there are more nodes to consider, line 4 takes
all nodes from the queue with the same weight and parent. If the weight of a node is unique,
this simply returns a list of length 1. Line 5 filters out syntactically non-removable nodes
from the test, and line 6 just applies list based reduction to any syntactically removable
nodes. Lines 7 and 8 then remove the eliminated nodes from the tree and add the children
of remaining nodes to the work queue. Again, this algorithm actually runs to a fixed point.

As fully explained in Chapter 3, while the worst case behavior of original Delta De-
bugging is O(n2) [1], this can be improved to O(n) by giving up hard guarantees on min-
imality [2]. Since this reduction process is performed to a fixed point anyway, minimize on
line 5 can make use of our O(n) approach to list based reduction, OPDD, without losing
1-minimality in practice. As a result, the time complexity of Pardis Hybrid is the same
as Pardis.

4.4 Syntactical Removability Pruning

As a further optimization, we observed that many oracle queries performed by Perses,
Pardis or Pardis Hybrid are simply unnecessary. Specifically, recall that a node can
be tagged as syntactically removable because it is an element of a list or a child of an
optional node, as previously defined by Perses grammar transformations in Perses Normal
Form. The complete algorithm for this tagging is in TagRemovable of algorithm 4. However,
for example, a list of one element could contain another list of one element. In the parse
tree, this appears as a chain of nodes, at least two of which are syntactically removable.
Removing any one of these nodes removes the same tokens from the parse tree. Thus, it is
only necessary to select a single removable node from any chain of nodes, and the others
can be disregarded.

We exploit this through an optimization called syntactical removability pruning. We
traverse every chain of nodes in the parse tree, preserving the removability of the highest
node in the chain and eliminating removability from those below it. The complete algorithm
is presented in PruneRemovable of algorithm 4. In effect, it is just a depth first search that
removes redundant removability from nodes along the way instantaneously.

We investigate the potential impact of this pruning on the actual reduction process in
the next section.
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Algorithm 4: Tagging and pruning syntactically removable nodes.
1 Function TagRemovable(τ✗)

Input: τ✗ – The test case to reduce as a parse tree
2 foreach Node n ∈ τ✗ do
3 if n ∈ KleeneStar ∪KleenePlus ∪Optional then
4 foreach c ∈ n.children do c.isSyntacticallyRemovable ← true;

5 Function PruneRemovable(τ✗)
Input: τ✗ – The test case to reduce as a parse tree

6 Function OptimizeBelow(n)
7 hasRemovable ← false;
8 Loop
9 if hasRemovable then

10 n.isRemovable ← false;
11 else if n.isRemovable then
12 hasRemovable ← true;
13 if 1 ̸= |n.children| then
14 break;
15 n ← n.getOnlyChild();

16 foreach c ∈ n.children do OptimizeBelow(n);

17 OptimizeBelow(τ ✗.root);

4.5 Evaluation

In this section, we evaluate the performance of Pardis and Pardis Hybrid and examine
the impact of priority inversion on reduction by answering the following research questions:

• RQ1. How do Pardis and Pardis Hybrid perform compared to Perses in terms of
reduction time and efficiency, number of oracle queries, and size of the reduced test
case?

• RQ2. How does priority inversion affect the reduction efficiency? In particular, does
reduction require more work with a traversal order suffering from priority inversion?

4.5.1 RQ1. Performance: Pardis and Pardis Hybrid vs. Perses

To thoroughly examine the performance of reduction when implementing the algorithms
proposed in this chapter, we define six different variants of reduction techniques. Each one
of these variants applies a different reduction algorithm such that each new algorithm adds
one difference to the previous one. All these variants compute fixed point rounds of reduction
such that reducers keep traversing the parse tree for multiple rounds until the last round
cannot remove anything from the test case. We define these variants as follows:

58



• Perses DD: The original algorithm of Perses that applies original Delta Debugging on
lists of children of quantified nodes.

• Perses OPDD: The modified algorithm of Perses that applies One Pass Delta De-
bugging proposed in Chapter 3 on lists of children of quantified nodes.

• Perses N: The one node at a time Perses that does not apply any versions of Delta
Debugging on list elements but tries to remove them one by one using Perses’ parent
oriented priorities.

• Pardis w/o Pruning: This variant uses the Pardis algorithm but does not apply
the pruning optimization proposed in Section 4.4.

• Pardis Original: Our proposed algorithm in this chapter that also applies the syn-
tactical removability pruning optimization.

• Pardis Hybrid: The hybrid version of Pardis with syntactical removability pruning
and OPDD as its version of Delta Debugging.

For completeness, similar to the evaluation of One Pass Delta Debugging in Sec-
tion 3.3, we implement the above variants once with removal as the only reduction operation
and once with both removal and replacement as reduction operations to be performed on
nodes of the parse tree. Our benchmark is the full set of test cases presented in Table 2.1
and the performance metrics are presented in Section 2.6.3 and are the same as the metrics
in the previous studies.

Results are presented in Table 4.1 and Table 4.2. Again, the best values for each metric
are highlighted for each test case. As can be seen in Table 4.1, for all the C test cases, either
Pardis or Pardis Hybrid outperform all variants of Perses in terms of the reduction time,
the total number of oracle queries and the reduction efficiency. With respect to efficiency
for C test cases, Pardis and Pardis Hybrid remove 46.58 and 58.21 tokens per second
on average, respectively while the best Perses variant with respect to this metric (i.e.,
Perses OPDD) removes only 31.56 tokens per second on average. Moreover, Pardis variants
generate smaller outputs compared to Perses variants on average for C test cases.

For Rust test cases, Pardis has the shortest reduction time in 5 out of 8 test cases.
Additionally for test case rust-63791 that all reduction variants time out, Pardis performs
the most reduction in the available time compared to the other variants. Overall, on average,
for C test cases, Pardis Hybrid shows the best results while Pardis, the original version
is the fastest when reducing Rust test cases. For Go test cases, Pardis and Pardis Hybrid
perform equally well and surpass the other variants.

Similarly, either Pardis or Pardis Hybrid outperforms the other variants in Table 4.2
with an average number of 37.26, 0.14 and 2.43 tokens removed per second for C, Rust and
Go test cases, respectively. Reducing the XML file is quite fast in all six variants. However,
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Pardis and Pardis Hybrid perform fewer number of tests compared to the other variants
in this table.

The results across variants suggest that the improvements caused by Pardis and Pardis
Hybrid arise from priority awareness and syntactical removability pruning. In particular,
the difference between the performance of Pardis w/o Pruning and Pardis, the original
version can demonstrate the impact of algorithm 4, the pruning optimization, on reduc-
tion speed. Moreover, the better performance of Pardis w/o Pruning in comparison to
Perses N shows that the new priority mechanism defined by Pardis can indeed improve
the efficiency of the reduction process. We further discuss this in Section 4.5.2.
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Table 4.3: The speed up achieved by each test case reduction technique with respect to
Perses DD.

Replacements disabled Replacements enabled

Test Case Perses
OPDD

Perses
N

Pardis w/o
Pruning

..
Pardis Pardis

Hybrid
Perses
OPDD

Perses
N

Pardis w/o
Pruning

..
Pardis Pardis

Hybrid
clang-22382 1.02 0.74 0.81 0.84 1.25 1.02 0.71 0.81 0.83 1.15
clang-22704 1.16 0.24 0.38 0.39 1.20 1.20 0.49 0.55 0.54 1.06
clang-23309 1.08 1.30 1.88 2.89 2.76 1.06 1.36 0.89 1.06 0.85
clang-25900 1.14 1.28 1.77 2.41 2.53 1.11 1.15 1.55 1.68 1.81
clang-27747 1.17 1.43 1.93 2.46 2.58 1.09 1.35 1.39 1.52 1.44
clang-31259 1.05 1.18 1.30 2.05 2.14 1.12 1.18 1.45 1.62 1.77
gcc-59903 1.08 0.28 1.72 2.83 2.63 1.02 1.27 0.47 0.51 0.51
gcc-60116 1.05 1.16 1.43 2.47 2.40 1.02 2.54 2.72 2.93 2.89
gcc-61383 1.25 0.74 1.51 1.82 3.07 1.23 0.80 1.31 1.41 1.97
gcc-61452 1.01 1.02 1.38 1.46 1.89 1.03 0.93 1.34 1.38 1.80
gcc-61917 1.11 0.60 1.48 2.00 2.75 1.11 0.53 1.40 1.45 1.85
gcc-64900 1.11 1.06 1.51 2.05 2.20 1.08 1.17 1.39 1.83 1.97
gcc-65383 1.13 1.23 1.61 2.18 2.23 1.06 0.97 1.48 1.58 1.77
gcc-66186 1.10 1.17 1.74 2.29 2.32 1.11 0.94 1.59 1.71 1.81
gcc-71626 1.12 0.93 1.19 1.36 2.38 1.03 0.90 1.03 1.13 2.57
gcc-71632 1.03 1.09 1.03 1.13 1.11 1.00 0.93 1.00 1.06 1.10
gcc-77624 2.60 0.93 1.18 1.30 2.17 0.77 0.56 0.63 0.67 0.91
geomean 1.16 0.88 1.32 1.71 2.13 1.06 0.97 1.13 1.23 1.48
median 1.11 1.06 1.48 2.05 2.32 1.06 0.94 1.34 1.41 1.77

rust-44800 1.06 1.26 1.21 1.81 1.90 1.00 1.00 1.00 1.00 1.00
rust-63791 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
rust-65934 1.13 1.34 1.30 2.26 2.10 0.91 0.98 1.01 1.39 1.20
rust-69039 1.00 0.89 1.18 1.87 1.61 1.03 0.85 1.07 1.24 1.18
rust-77002 0.84 0.90 0.88 1.20 0.91 1.14 1.21 1.21 1.14 1.14
rust-77993 1.13 0.95 0.96 1.03 1.09 0.90 0.94 1.05 0.65 0.90
rust-78336 1.03 1.01 1.10 1.61 1.59 1.16 1.45 1.29 1.24 1.46
rust-78622 1.19 1.25 1.40 2.11 2.09 1.03 1.39 1.13 1.79 1.85
geomean 1.04 1.06 1.12 1.54 1.46 1.02 1.08 1.09 1.14 1.19
median 1.05 1.01 1.14 1.71 1.60 1.02 1.00 1.06 1.19 1.16

go-28390 1.10 1.22 1.27 1.83 1.83 1.00 1.09 1.09 1.46 1.52
go-29220 1.50 0.92 1.09 2.00 2.00 0.89 0.84 0.89 1.00 0.94
go-30606 1.04 0.96 0.96 1.55 1.53 1.00 1.00 1.00 1.14 1.09
geomean 1.20 1.03 1.10 1.78 1.78 0.96 0.97 0.99 1.19 1.16
median 1.10 0.96 1.09 1.83 1.83 1.00 1.00 1.00 1.14 1.09
urls.xml 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

To further expand our evaluation, we compute a metric that measures the speed up
gained by each variant with respect to Perses DD by dividing the reduction time of Perses
DD by the reduction time of the variant. Table 4.3 depicts the results. Columns 2 to 6
represent the speed up metric computed by the reduction times available in Table 4.1 while
columns 7 to 11 show speed up calculated by using data in Table 4.2. As can be seen, either
Pardis or Pardis Hybrid results in the highest speed up in the majority of the cases.
In fact, there are only four test cases where Pardis or Pardis Hybrid did not have the
highest speed up. For two test cases, rust-63791 and urls.xml, the speed up achieved is
equal to 1 for all variants, meaning that no speed up is indeed achieved. The reason is that
all reduction variants including Perses DD time out when reducing the first test case and
they all reduce the second test case quite fast. As a result, the reduction time for all variants
is the same in these two cases. For the other two test cases, gcc-77624 and rust-77993,
Perses OPDD has the highest speed up. By having a closer look at Table 4.1, we can see
that these test cases also have a relatively fast reduction for all variants and the difference
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Figure 4.5: Converging to a reduced test case in our sample benchmark using six variants
of reduction techniques. Node replacements disabled.

in reduction time of variants is just a few seconds which means that Pardis and Pardis
Hybrid are fast in reducing these test cases as well.

In addition, we graphed the reduction progress of each test case in our sample benchmark
when using the six variants of reduction techniques. Figure 4.5 depicts the percentage of
remaining tokens over time during reduction. Note that the y-axis is log scaled. In general,
Pardis and Pardis Hybrid show much faster convergence towards a reduced test case
compared to Perses variants in the majority of the cases.

Finally, recall that the only factor differentiating Perses N from Pardis w/o Pruning is
the order in which the queue of nodes is traversed. Unlike Perses N, Pardis w/o Pruning
does not suffer from priority inversion and guides the reduction process based on token
weights of the nodes. As can be seen, this advantage leads to faster convergence to a reduced
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test case, especially in the majority of the large test cases. We examine the impact of priority
inversion on reduction speed more rigorously in the next section.

4.5.2 RQ2. The Impact of Priority Inversion

As presented in our motivating example in Section 4.1 and as shown empirically in Fig-
ure 4.5, faster convergence can be achieved by avoiding priority inversion using Pardis
or Pardis Hybrid. This section further investigates the potential reason for this faster
convergence.

One explanation to consider is that the priority awareness model in Pardis and Pardis
Hybrid may decrease the amount of work required to remove a token. To explore this on
our sample benchmark, we define a metric called the number of removal attempts for a token
that is the number of times a single token is considered for removal. Based on the structure
of the parse trees, removing any ancestor of a token in the tree will remove that token, so if
a first attempt fails, a deeper ancestor may be attempted. We compute this for every token
of the test case to get a sense of the work required for each token. A better traversal order
of the parse tree should cause fewer overall token removal attempts.

To measure only the impact of different traversal orders, we compare Pardis w/o
Pruning with Perses N. As described in Section 4.5.1, they follow the exact same reduction
rules and differ only in their traversal orders.

Figure 4.6 depicts histograms of the distributions of token removal attempts for Pardis
w/o Pruning and Perses N on our sample benchmark. In particular, for large test cases
such as clang-25900, clang-31259, gcc-60116, gcc-61383, and rust-63791, we observe
either a higher overall number of token removal attempts for Perses N or a tendency in its
distribution towards larger values of removal attempts. This indicates that Perses N requires
more work to remove individual tokens in these cases. For smaller test cases, the number of
attempts is almost the same for Perses N and Pardis w/o Pruning. The data presented
in Table 4.1 also show that the performance of Perses N and Pardis w/o Pruning is
almost the same when reducing these small test cases.

Additionally, for each test case in our sample benchmark with different number of re-
moval attempts in Perses N and Pardis w/o Pruning, we statically measure that the
difference between the two reduction variants is significant. We use a Wilcoxon signed-rank
test [49] to determine whether the distribution of Perses N is indeed greater than that of
Pardis w/o Pruning. The smallest p-values we collect are for test cases clang-31259,
gcc-60116, and gcc-61383 which indicate that Perses N has a substantially greater dis-
tribution of token removal attempts compared to Pardis w/o Pruning for these test
cases.
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Figure 4.6: Distribution of token removal attempts for Pardis w/o Pruning and node at
a time Perses (Perses N).

4.5.3 Pardis Hybrid: A Potential Sweet Spot in Reduction

As discussed earlier, unlike Perses, Pardis Hybrid does not suffer from priority inversion
because it prioritizes the search primarily on the token weight of nodes being considered
for removal. Moreover, unlike Pardis, it does not strictly remove one node at a time and
allows the removal of nodes with the same weight and the same parent as a group. Hence,
it can be considered a sweet spot in reducing test cases. We conduct two studies that can
further explore this idea.

1) Oracle Verification Time

The number of oracle queries is a common metric used in similar studies to reason about
reduction efficiency since it directly impacts the total reduction time [15, 1, 14, 31, 2]. For
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Figure 4.7: Distribution of oracle verification time for Pardis and Pardis Hybrid.

instance, as shown in Table 4.1, both Pardis and Pardis Hybrid perform fewer oracle
queries and take less time than Perses.

However, the number of oracle queries is not the only factor involved. The time required
to run each of these queries, or oracle verification time, also affects the total running time.
For instance, in one Rust and 9 C test cases in Table 4.1, Pardis performs fewer oracle
queries while Pardis Hybrid has a faster reduction time with larger number of oracle
queries.

Oracle verification time can depend on multiple factors such as the size and complexity
of the test case. Since Pardis Hybrid takes advantage of the possibility to remove more
than one node at a time, it may try variants of the test case that are smaller and may
be faster to verify compared to Pardis. These potentially less expensive tests can lead to
faster reduction time of Pardis Hybrid when reducing some test cases in spite of its larger
number of oracle queries.

To check this hypothesis, we select the two test cases, clang-25900 and clang-31259,
from our sample benchmark that satisfy the following criteria in their reduction results:

• The number of oracle queries performed by Pardis is smaller than Pardis Hybrid.

• Pardis Hybrid performs reduction in shorter time compared to Pardis.

Next, we record the running time of each oracle query during the reduction of these test
cases.

Figure 4.7 depicts the distribution of oracle verification times in Pardis and Pardis
Hybrid for clang-25900 and clang-31259. The distributions show that Pardis has more
queries that take longer compared to Pardis Hybrid. In particular, Pardis has a consider-
ably larger number of oracle queries with verification time in the range of 0.6 to 0.8 seconds.
In contrast, the majority of oracle queries run by Pardis Hybrid take between 0 and 0.2
seconds which are the fastest tests. As a result, the shorter queries in Pardis Hybrid can
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Figure 4.8: Distribution of token weights of nodes visited during Pardis reduction.

decrease its overall reduction time, making it reduce test cases with fewer queries compared
to Perses and shorter queries compared to Pardis. Thus, we can refer to it as a sweet spot
in test case reduction.

2) Distribution of Token Weights

The motivation behind proposing Pardis Hybrid as discussed in Section 4.1 was that if
lists in a test case shrink after removing nodes with large unique token weights, applying
Delta Debugging on list elements with the same weight can be beneficial. In fact, the more
of the remaining nodes that share token weights, the more beneficial using Delta Debugging
becomes since it provides the opportunity to remove those nodes in just one test. This can
avoid the possibly time-consuming process of visiting nodes one by one.
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To understand the distribution of token weights in practice, we run Pardis original,
the node by node removal variant on test cases of our sample benchmark. Figure 4.8 shows
the x-axis log scaled distributions of token weights for these test cases. As can be seen, all
distributions are inclined towards smaller values of token weights. This indicates that there
is a large number of nodes with small token weights visited during reduction by Pardis
and combining them for removal may be advantageous.

Moreover, we compute the median of token weights for each test case to statistically
measure the middle value of our data sets. For the large C test cases, clang-25900,
clang-31259, gcc-60116, and gcc-61383, the median value is smaller than 8. This means
that half of the nodes have one of only eight different small token weights and can benefit
from the grouped removals. Similarly, the median values for gcc-77624 and Rust test cases
are 12 and less than 10, respectively. The median value of the only Go test case in our
sample benchmark, go-30606 is 24, which is also relatively small compared to the initial
size of the test case that is 449 tokens.

These small median values can further motivate the use of Pardis Hybrid in practice.

4.6 Summary

In this chapter, we identified and explored one of the drawbacks of Perses [15], the latest
state of the art syntax guided test case reducer. We referred to this drawback as priority
inversion in which a low priority task is scheduled instead of a high priority task. We demon-
strated empirically that priority inversion can adversely impact the overall reduction time.
To mitigate this problem, we suggested Pardis, a priority aware queue driven test case re-
duction technique. Similar to Perses, Pardis preserves syntactic validity during reduction.
However, it does not suffer from the priority inversion present in Perses. To further opti-
mize our proposed technique, we introduced another variant of our reducer called Pardis
Hybrid. This new variant adheres to the priority models provided by Pardis. In addition,
it brings in the capability of removing several elements together. Using either Pardis or
Pardis Hybrid when reducing our benchmark led to an average speed up of 2.13x, 1.54x,
and 1.78x for C, Rust, and Go domains, respectively while preserving a similar reduction
power compared to the state of the art Perses. More specifically, we generated outputs of
even smaller size (by 10% on average) for C. For Rust, using Pardis and Pardis Hybrid
generated outputs with 148 and 150 tokens on average, respectively while Perses produced
outputs with 151 tokens on average. The average reduced size for the Go domain was 138
tokens for all three techniques.
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Chapter 5

Machine Learning and Test Case
Reduction

This chapter integrates machine learning algorithms into test case reduction to accelerate its
performance. We begin by addressing the third problem in our list of problems in Section 2.5
and continue by providing solutions for problems 2.2 and 4.

We start by exploring the following question:

How can we mitigate the problem of semantically invalid candidate variants generated
during test case reduction?

Recall that both Perses [15] and Pardis [28], our tool presented in Chapter 4, preserve
syntactic validity by constructing their priority work queues based on syntactically remov-
able nodes. However, an oracle function typically checks multiple aspects of a candidate test
case other than syntactic validity. These aspects along with the verification of the bug can
make running such oracles an expensive task, especially for complex test cases and inputs
with a long running time. Hence, it is desirable to avoid running oracles on test case variants
that are not likely to preserve the property of interest.

One group of these variants are semantically invalid programs that can be divided into
two groups:

• Programs in which the dependencies among their elements are broken. These programs
cause compile time issues. For example, removing the declaration of a variable before
its use generates a program that does not compile.

• Programs with undefined behavior that could cause run time issues.

Precise identification of semantic invalidity requires significant effort and expertise to
develop domain specific tools. These tools will be aware of dependencies among elements
of a program and can check for undefined behavior. However, as previously stated in Sec-
tion 2.4.2, they are not reusable across domains which may hinder their availability. Hence,

70



clang-25900 clang-31259 gcc-60116 gcc-61383 gcc-77624
test case

0

20

40

60

80

100
or

ac
le

 q
ue

rie
s 

(%
)

55
43

64

46

4

11

4

2

14 19

13

6

35

27 27
19

46

65

success
no POI
runtime
compile

Figure 5.1: A breakdown of the outcomes of the oracle queries performed by Pardis.

general purpose and domain agnostic techniques are desirable, and improving them is the
focus of this dissertation, including this chapter.

To demonstrate that the problem of semantic invalidity is real, we provide a breakdown
of oracle outcomes produced during reduction by Pardis for the C test cases in our sample
benchmark used throughout the dissertation. We select the C test cases because they are
larger which can make them potentially more complex to reduce.

This breakdown is presented in Figure 5.1 with the following four categories of test
outcomes:

1. Invalid due to compile time issues: These tests are performed on test case variants
that cannot compile. Because Pardis preserves syntactic validity during reduction,
these tests are the direct cause of violating semantic validity rules such as breaking
dependencies as described above.

2. Invalid due to run time issues: These tests are performed on test case variants with
undefined behavior such as programs with memory issues.
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3. Valid but without the property of interest (no POI): These tests are performed on
test case variants that are both syntactically and semantically valid but they do not
contain the property of interest. For example, they do not trigger the failure.

4. Valid tests with the property of interest: These tests are performed on test case variants
with the property of interest and can successfully reduce the test case. An ideal search
space for a reducer should consist of only these variants.

Excluding gcc-77624 that simply contains a sequence of declarations with no compile
time issues generated in its reduction, we can see that oracle queries with compile time issues
caused by semantic invalidity comprise a large portion of the performed tests with 55%,
43%, 64%, and 46% of the total number of tests in clang-25900, clang-31259, gcc-60116,
and gcc-61383, respectively. This further motivates us to develop solutions that mitigate
the problem of semantic invalidity present in the state of the art reducers.

To this end, in Section 5.1 of this chapter, we propose a model-guided variant of Pardis.
Model Guided Pardis [29] tries to avoid performing tests on compile time semantically
invalid test case variants by consulting trained models before querying the oracle. In Sec-
tion 5.2, we extend our learning mechanism by proposing Type Batched Probabilistic
Joint Reduction to guide reduction towards generating test case variants that are more
likely to 1) be semantically valid, and 2) contain the bug.

5.1 Avoiding Semantic Invalidity

We originally introduced and published the ideas presented in this section at the 18th
IEEE/ACM International Conference on Mining Software Repositories (MSR 2021) [29].

Recall our motivating example in Chapter 4 with a program listing and its parse tree.
To keep this section self contained, we reiterate the figures on the next page.

As can be seen, there are multiple dependencies among nodes of this parse tree. For
instance, node 12 containing the use of s1 depends on node 8 which itself depends on
node 3 which declares struct S. Similarly in another dependency, node 12 is dependent on
node 2 with respect to variable d. There are other dependencies such as the condition of
the if statement with dependency on node 10 or the dependency of call site foo() of node 14
on the definition of foo beneath node 4 . Although all nodes involved in each dependency
are syntactically removable based on the C grammar rules, they need to get removed in an
appropriate order to avoid semantic validity issues.

In this chapter, we prune the search space of Pardis by leveraging generalized models
to predict semantic validity of a node’s removal. Specifically, we introduce a new reduction
technique called Model Guided Pardis [29] that leverage models to predict whether
removal of a node from the parse tree of a test case is semantically valid or not. If the
model predicts that removing the node is semantically valid, then the oracle will be called
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1.translationUnit *
w:84

2.exDecl
w:5

d

3.exDecl
w:11

S

4.funcDef
w:55

foo 6.compound *
w:49

8.decl
w:10

s1

9.decl
w:5

i

10.decl
w:5

incr

11.selection
w:16

if(...) 15.expr
w:10

i += 2*i + i + 1;

12.expr
w:8

s1.f1 = d*i;

13.expr
w:5

printf@14

5.funcDef
w:13

main 7.compound *
w:7

14.expr
w:4

foo();

return

Figure 5.2: The simplified parse tree of program in Listing 5.1. Each internal node is anno-
tated with an ID and its grammar rule type. * denotes a quantified Kleene-Star node.

to determine the test outcome. Otherwise, the oracle will be skipped and no test will be
performed on that node. Our models are trained by extracting syntactic properties of a large
corpus of programs described in Section 5.1.1. Given a correct grammar of any input domain,
leveraging predictions by machine learning models allows for constructing a search space
for Model Guided Pardis that consists of only candidate test cases that are syntactically
valid and are likely to be semantically valid too.

1 int d = 10 ;
2 struct S {
3 int f 1 ;
4 int f 2 ;
5 } ;
6 void f oo ( ) {
7 struct S s1 = {1 , 2} ;
8 int i = 0 ;
9 bool increment = true ;

10 i f ( increment ) {
11 i += 2∗ i + i + 1 ;
12 }
13 s1 . f 1 = d∗ i ;
14 printf("Hello World!\n");
15 }
16 int main ( ) {
17 foo ( ) ;
18 return 0 ;
19 }

Listing 5.1: A C program with a statement to preserve on line 14.
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Table 5.1: List of disallowed warnings used in oracle scripts of Perses to impose validity
constraints during reduction.

Warning message Warning message
incompatible redeclaration more conversions than data arguments (printf)
eliding middle term ordered comparison between pointer and integer
invalid in C99 format specifies type different from argument’s type
return type of main is not int incompatible integer to pointer conversion and vice versa
type specifier missing assignment making integer from pointer without a cast
division by zero missing return type: return type defaults to a type
cast from pointer to integer expected semicolon at end of expression
missing declaration type useless type name in empty declaration
too few arguments for format comparison between pointer and integer
format expects type T (printf) declaration does not declare anything
unknown type name non-void function should return a value
use of undeclared identifier excess elements in struct initializer

To this end, we need to train models that can correctly skip semantically invalid tests to
improve the performance of the reduction. However, they should also have a high precision
and be able to consider as many tests that are semantically valid as possible without skipping
them in order to achieve reduced test cases with size similar to state of the art techniques.

We define a test case variant generated by removing a node as semantically invalid if it
causes at least one of the following:

1. Compilation errors: Any test case variant that cannot get compiled successfully and
causes compiler to return failure exit status is considered as semantically invalid.

2. Disallowed warnings: Any test case variant that generates a warning message that is in
the list of warnings extracted from the oracle scripts of Perses [43] is semantically in-
valid. These warnings are presented in Table 5.1. The list includes a range of warnings
from missing type specifier and empty declaration to incompatible conversions.

The focus of this study is to train models with respect to semantic invalidity caused
by compile time issues since they comprise a larger portion of tests compared to tests with
run time issues as briefly seen in Figure 5.1. In the following, we describe the process of
collecting data and extracting features for training these predictive models.

5.1.1 Training Data Collection

To train models capable of predicting semantic validity, we need to collect training data in
form of (source, target) pairs such that source contains the features representing the node
and target is a Boolean value that shows a valid or invalid removal. To this end, we collect
three different sets of training data for the three domains present in our benchmark: C,
Rust and Go. We exclude the XML file because we have shown in the earlier chapters
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that the existing and proposed reducers can reduce this file in less than just two seconds
which does not leave room for improvement. Moreover, the purpose of including this XML
file in our benchmark was to demonstrate that our techniques are capable of reducing test
cases beyond just programs. As a result, we can see this test case more as an indicator of
feasibility rather than trying to improve it and will exclude it from the evaluations in the
rest of the dissertation.

Our initial collected training sets consist of the following programs:

1. C: 40 large non-buggy fuzzer-generated C programs. These programs with an av-
erage number of more than 28,000 tokens are generated by Csmith [4], a tool for
randomly generating C programs that statically and dynamically conform to the C99
standard [44].

2. Rust: 40 non-buggy Rust programs collected from Github trending Rust projects [50].

3. Go: 40 non-buggy Go programs collected from Github trending Go projects [51].

For each program, we build its parse tree and pass it to Pardis, its original version with
one node at at time removal. Since Pardis places only syntactically removable nodes in a
priority queue and removes them one at a time from the parse tree, it enables us to capture
the removal success or failure of nodes with respect to their semantic validity by eliminating
the possibility of removing syntactically invalid nodes. We define a validity checker oracle
function and pass it to Pardis as a script along with the parse tree of the test case to
reduce.

This oracle returns True when both of the following criteria are satisfied:

• Removing the node from the parse tree does not yield semantic invalidity as deter-
mined by the compilation errors and warnings described above.

• Removing the node from the parse tree does not remove a specific randomly selected
token from the test case.

The second criterion checks for a simulated property of interest which enables us to
train our models without real-world bugs so that they can immediately be used on the next
bug found. This is akin to a lightweight transfer learning process [52]. Moreover, it prevents
early termination of a reduction phase and enables us to collect more data.

Figure 5.3 depicts the process of collecting and logging parse trees from test cases.
By trying to remove each node, we capture a parse tree in which the node considered for
removal, referred to as the query node henceforth, is tagged as the source along with a
success (s) or failure (f ) target value that is the outcome of the validity checker oracle on
the candidate test case when the query node is removed.

If the query node cannot be removed, we record the parse tree, the node and the failure
outcome and continue with trying to remove the next node in the queue.
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Figure 5.3: The training data collection process. For each test case, the process terminates
when either every single token of the test case is considered to be preserved in the oracle or
Pardis hits a 30 minute timeout.

If the query node can be removed successfully, we record the parse tree, the node and the
success outcome. Then we remove the node from the parse tree and continue with trying to
remove the next node in the queue from the updated tree.

Hence, for each test, we record a parse tree that can be considered as one single data
point in form of (source, target) where source is the query node with its features to be
extracted and target is the success or failure of our oracle that is the validity checker script.

In total, we collect 286,842 parse trees for the C domain from which we use 215,131 trees
(i.e., 75% of the total number of parse trees) to train our models and leave aside 71,711
trees as a test set. Our data set for C is close to balanced with 58% success vs. 42% failure
labels. For the Rust domain, we initially collect 472,209 data points with 21% success and
79% failure labels. To balance this data set, we perform random undersampling to decrease
the number of data points with failure labels. Our final balanced data set for Rust has
185,672 data points with 50% success and 50% failure labels from which we use 139,254
points to train our models. The initial data set collected for Go contains 174,371 points in
which the failure labels comprise the majority of the collected labels. Similar to Rust, we
perform random undersampling on the initial Go data set. From 28,940 data points in our
final balanced Go set, we use 21,705 data points to train the Go models.
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5.1.2 Features Extraction

Similar to a prior work on program mutation [53], we leverage simple syntactic properties
of grammars to define our feature sets. In particular, we define the following sets of features
for query nodes of parse trees collected in Section 5.1.1:

1. The grammar rule type of the query node itself.

2. The grammar rule types of the immediate children of the query node.

3. The grammar rule types of the nodes on the path from the query node to the root of
the parse tree.

As an example, recall the parse tree in Figure 5.2. Suppose that we want to remove node
11.selection from the tree. This node will be our query node with the following features:

1. node’s type: selection statement.

2. Children’s types: terminal if and the type of node 15, expression statement.

3. Path to root’s types: selection statement, compound statement, function definition, trans-
lation unit.

5.1.3 Features Representation

We make use of data constants and structures to represent the extracted features.
For the first feature, the node’s grammar rule type, we use unique IDs to represent types

of query nodes. Each unique ID corresponds to a unique rule type in the grammar. The C,
Rust and Go grammars available on Perses Github [43] and used in our studies have 266,
709, and 213 unique rule types, respectively. Hence, we define 266, 709, and 213 unique IDs
corresponding to these rule types.

To represent the second and third features, the children’s types and the path’s types, we
leverage a bag of words model [54]. For children’s type in the C grammar, we define a bit set
of size 267 that represents 266 internal grammar rule types and the keyword terminal used
for the leaves of the parse tree. This bit set is of size 710 and 214 for Rust and Go grammars,
respectively. If a rule type is present among the children’s types, we set the corresponding
element in the bit set to 1 and set it to 0 otherwise. Similarly, for the types of nodes on the
path from the query node to the root, we define bit sets with 266, 709 and 213 elements
for the C, Rust and Go grammars, respectively. Because a terminal cannot be on the path
to the root1, the bit set representing path’s types has one element fewer than the bit set of

1The query node itself cannot be a terminal either due to not being syntactically removable based on the
properties of quantified grammar rule types.
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children’s types for each grammar. Again, we set the elements of these bit sets to 1 if they
are present on the path and set them to 0 otherwise.

We feed these features individually or in combination into our training algorithm. The
next part explains the training process in more detail.

5.1.4 Training Models

With Boolean target values of our data points collected in Section 5.1.1, our problem is
a classification problem in which we try to decide which class of removals (i.e., valid or
invalid) a specific node removal belongs to.

To train our models, we use random forests [55], a well-known and efficient classifier that
chooses the class with the most votes over all the trees in the forest. To avoid complexity,
we consider more advanced training techniques, such as deep learning, as a potential future
work, and instead exploit simple program properties to train intuitive models in order to
better understand the potential benefits of using models in test case reduction [56].

For each data point in our training set, we feed the features described in Section 5.1.2 as
source and the result of the node removal (i.e., success or failure) as target into our training
algorithm.

We build the following five models:

• Mrf.node
2: model trained using the grammar rule type of the query node as a feature.

• Mrf.children: model trained using the types of immediate children of the query node
as features.

• Mrf.path: model trained using the types of nodes on the path from the query node to
the root of the parse tree as features.

• Mrf.node.children: model trained using the types of the query node and its immediate
children in combination as features.

• Mrf.node.children.path: model trained using the types of the query node, its children and
nodes on the path from the query node to the root all in combination as features.

Note that the process of collecting data, extracting features, and training our models
is fairly quick. For instance, it took us 18 hours in total to collect the data set, extract
node types as features, and train the models for the C domain. This is a one-time overhead,
and the majority is consumed by the data collection phase. Once data has been collected,
multiple models can be trained easily using the same data set.

In the next section, we explain how we use these models in the process of test case
reduction.

2rf is abbreviation for random forests.
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Algorithm 5: Model Guided Pardis [29].
Input: τ✗ – The test case to reduce as a parse tree
Input: ψ : S→ B – Oracle for the property to preserve where S is the search space and

ψ(τ✗) = True
Input: M : F→ B – Model to predict whether a node removal is semantically valid or not.

F represents the set of input features.
Input: Q = {n1, n2, ..., nN} – Priority queue of syntactically removable parse tree nodes
Result: A minimum test case τ✗

′ ⊆ τ✗ s.t. ψ(τ✗
′) = True

1 τ✗
′ ← τ✗;

2 while !Q.empty() do
3 node ← Q.front();
4 features ← extractFeatures(node) ;
5 if M(features) && ψ(τ✗

′ − node) then
6 τ✗

′ ← τ✗
′ - node;

7 else
8 work.insert(getRemovableFrontier(node.children));

9 return τ✗
′;

5.1.5 Model Guided Pardis: The Algorithm

We present Model Guided Pardis in algorithm 5. Given a test case τ✗ and an oracle
function ψ, this approach leverages a predictive model M that can be easily integrated into
the reduction process. Model Guided Pardis traverses a priority queue of syntactically
removable nodes similar to Pardis. However, for each query node, rather than immediately
querying the oracle, it collects its features using extractFeatures() on line 4 and queries the
model instead on line 5. The return value of extractFeatures() depends on the type of the
model chosen. For instance, it returns the unique ID of the node’s grammar rule type for
Mrf.node, while a bit set is returned for Mrf.children and Mrf.path. A combination of features
is returned for Mrf.node.children and Mrf.node.children.path. Each of these models is a Boolean
function that receives features of the query node as input and returns a predicted Boolean
value.

By querying the model, Model Guided Pardis can decide whether to continue con-
sidering a node. If the model suggests that removing a node will be valid, the approach
proceeds by running the oracle and, if the oracle also returns True, the reducer removes
the query node and its descendants from the parse tree on line 6 because the smaller test
case preserves the bug.

If the model predicts that removal will be invalid, Model Guided Pardis takes the
other branch and adds the frontier of syntactically removable descendants to the priority
queue (line 8). This frontier consists of those syntactically removable descendants that are
the highest in the parse tree. In other words, a descendant node will not be added to the
queue if it has an ancestor that is also a syntactically removable descendant of the query
node.
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Adding the frontier of syntactically removable descendant nodes is similar to adding the
children of a node to the queue in algorithm 2. Here, we use frontier rather than children
because the model is called only on syntactically removable nodes in algorithm 5. Moreover,
we applied some syntactical removability pruning to optimize chains of nodes as presented
in algorithm 4. The term frontier thus more accurately describes how we update the priority
queue in algorithm 5.

The algorithm continues by attempting to remove the next node in the queue until the
queue becomes empty or Model Guided Pardis times out. Note that the key difference
between Model Guided Pardis and Pardis is that Model Guided Pardis avoids
executing the oracle ψ when the model predicts that removing the query node is invalid.
Algorithm 5 also runs to a fixed point similar to other tree based reduction techniques,
including Perses and Pardis.

5.1.6 Evaluation

We evaluate the performance of our models by answering the following research questions:

• RQ1. How do different reducer models perform in terms of reduction time and effi-
ciency, number of oracle queries and size of the reduced test case?

• RQ2. What are the precision and recall rates of our models?

• RQ3. What types of semantic issues (i.e., errors and warnings) are predicted correctly
by our models and what types are not? What is the ratio of correct and incorrect
predictions with respect to each error and warning type?

RQ1. Models’ Performance

As described earlier in Section 5.1.4, we have five different types of models trained for
each domain that we need to evaluate: Mrf.node, Mrf.children, Mrf.path, Mrf.node.children and
Mrf.node.children.path. Our benchmark and performance metrics are the same as in the pre-
vious studies and presented in Section 2.6.1 and Section 2.6.3.

Results of reduction on test cases of each domain using different types of models are
shown in Table 5.2 and Table 5.3. Similar to the previous chapters, the first table shows
the results of reduction by Model Guided Pardis where node replacements are disabled,
while the second table shows the reduction results with enabled node replacements.

As can be seen in Table 5.2, for the C domain, Mrf.node.children.path, our model with the
combined set of features has the best results for the majority of the cases with respect to the
total number of tests, reduction time and efficiency. On average, Model Guided Pardis
using this type of model reduces test cases of domain C in 55 seconds while Pardis has an
average reduction time of 595 seconds. This is an improvement of more than 90%. However,
a closer inspection of the table reveals that this improvement has come at a cost and that
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is the significantly larger outputs of Model Guided Pardis using Mrf.node.children.path

compared to Pardis. The outputs generated by Model Guided Pardis with this type
of model are almost 10 times larger than outputs of Pardis on average. This might be
the result of missing reduction opportunities caused by a large number of false negatives in
Mrf.node.children.path, which we will fully discuss when answering our second research question
in Section 5.1.6.

The next fastest model in our set of models for the C test cases in Table 5.2 is Mrf.path

with 98 seconds of reduction time on average. This model also generates outputs of relatively
large size with 5,035 tokens on average. There is an interesting observation in the results
of this model for one of the test cases, gcc-61452. Model Guided Pardis does not
perform any oracle queries on this test case which means that the Mrf.path model predicts
semantic invalidity for all the variants, generating a significant number of false negatives. As
a result, the reducer using this model skips tests that could be successful otherwise. Model
Mrf.children also suffers from the problem of false negatives when reducing the majority of the
test cases. We thoroughly examine the accuracy of our models in Section 5.1.6. For now, we
exclude those test cases with no reduction when computing the geomean and median values
of each model and ignore them when highlighting the best values for each performance
metric in our tables. From the remaining models, we have Mrf.node and Mrf.node.children

that not only do they outperform Pardis by an average reduction time of 460 and 465
seconds, respectively but they also generate outputs of comparable size (648 and 766 tokens
on average vs. 587 tokens of Pardis).

Similarly for the Rust domain, there are models such as Mrf.children, Mrf.path and
Mrf.node.children.path that do not perform any reduction on all or some of the test cases
in Table 5.2. Our best model that performs reduction on all the Rust test cases is Mrf.node

with an average reduction time of 471 seconds compared to the average reduction time of
Pardis that is 701 seconds. This 33% improvement is achieved by generating outputs that
are larger by only 52 tokens on average.

For the Go test cases in Table 5.2, Mrf.node.children.path is the best model for reducing
test case go-29220. This model decreases the overall number of tests performed on this
test case and improves the reduction efficiency by more than two times while generating
outputs of the same size compared to Pardis. The other useful model for the Go domain
is Mrf.children that decreases the total number of tests from 421 in Pardis to 18 in Model
Guided Pardis when reducing go-30606, while maintaining a similar reduction power.

These results suggest that using models can indeed help with accelerating test case
reduction. However, the type of the selected model can depend on the domain and the
metric one is trying to improve. For instance, if generating larger outputs is negligible,
Mrf.node.children.path can be used for the C and Rust domains. Otherwise, Mrf.node will be a
more suitable option since, despite offering less improvement on reduction time, it generates
outputs that are comparable in size to those generated by the state of the art techniques.
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Table 5.4: The speed up achieved by Model Guided Pardis using each type of model
with respect to Pardis.

Replacements disabled Replacements enabled

Test Case Mrf.node Mrf.children Mrf.path

Mrf.node

.children

Mrf.node.

children.path
Mrf.node Mrf.children Mrf.path

Mrf.node

.children

Mrf.node.

children.path

clang-22382 1.04 N/A* 2.61 1.03 53.56 1.01 0.72 0.65 1.00 0.76
clang-22704 0.81 1.04 4.97 0.64 5.86 1.04 0.35 0.34 1.01 0.43
clang-23309 1.77 N/A* 11.09 1.67 12.63 0.91 2.55 0.64 0.74 0.80
clang-25900 1.16 N/A* 15.18 1.13 11.10 1.04 0.87 1.05 1.19 1.05
clang-27747 1.10 0.84 3.98 1.29 5.21 0.86 0.69 0.60 0.91 0.51
clang-31259 2.02 1.08 6.93 1.47 16.66 1.21 1.54 1.01 1.26 1.01
gcc-59903 2.07 N/A* 8.26 1.05 14.15 1.07 1.00 2.08 1.44 1.52
gcc-60116 2.54 N/A* 5.02 2.45 10.42 1.11 1.98 0.94 1.13 0.94
gcc-61383 0.95 N/A* 3.16 1.06 36.32 0.89 1.34 0.92 1.19 0.98
gcc-61452 1.00 N/A* N/A* 0.88 26.28 0.98 0.79 0.77 0.95 0.73
gcc-61917 1.26 N/A* 17.94 1.22 20.23 0.91 1.29 0.83 0.80 0.88
gcc-64900 1.33 N/A* 4.56 1.27 11.37 0.65 0.86 0.64 0.70 0.58
gcc-65383 0.56 N/A* 13.12 1.25 11.69 0.75 0.82 0.52 0.68 0.54
gcc-66186 1.23 N/A* 14.70 1.15 19.43 0.70 0.87 0.43 0.75 0.72
gcc-71626 0.93 0.88 0.97 0.93 1.17 0.94 1.00 1.19 1.00 0.91
gcc-71632 3.06 0.90 9.17 5.00 9.17 1.32 1.00 1.35 1.26 1.38
gcc-77624 1.25 N/A* 0.71 1.11 1.25 0.94 1.88 1.07 1.15 0.94
geomean 1.29 0.94** 5.54** 1.28 10.81 0.95 1.04 0.81 0.99 0.82
median 1.23 0.90** 5.98** 1.15 11.69 0.94 1.00 0.83 1.00 0.88

rust-44800 2.68 N/A* N/A* 1.08 65.76 1.01 3.64 3.65 1.14 5.06
rust-63791 1.00 N/A* N/A* 1.00 N/A* 1.00 1.00 1.00 1.00 1.00
rust-65934 2.11 N/A* N/A* 1.12 N/A* 6.24 N/A* N/A* 4.66 N/A*

rust-69039 6.44 N/A* N/A* 1.34 N/A* 1.30 N/A* N/A* 3.38 N/A*

rust-77002 3.90 N/A* N/A* 2.20 12.59 3.98 4.64 2.51 0.82 2.64
rust-77993 0.21 N/A* N/A* 0.22 6.25 0.67 0.84 0.87 1.12 1.14
rust-78336 0.98 N/A* N/A* 0.87 1.97 1.24 0.64 0.77 1.02 0.69
rust-78622 0.81 N/A* N/A* 0.75 2.94 1.39 3.18 11.13 0.88 4.68
geomean 1.49 -** -** 0.92 7.86** 1.57 1.75** 2.02** 1.40 1.91**

median 1.56 -** -** 1.04 6.25** 1.27 2.09** 1.76** 1.07 1.89**

go-28390 1.80 N/A* N/A* N/A* N/A* 1.26 6.00 4.80 6.00 4.80
go-29220 1.20 1.50 1.20 1.20 2.00 0.89 1.07 0.94 1.23 1.07
go-30606 1.43 20.00 1.45 1.45 N/A* 1.11 1.27 1.18 1.32 2.67
geomean 1.46 5.48** 1.32** 1.32** 2.00** 1.08 2.01 1.75 2.14 2.39
median 1.43 10.75** 1.33** 1.33** 2.00** 1.11 1.27 1.18 1.32 2.67

* No speed up is calculated for models and test cases with no reduction.

** Test cases with no reduction are excluded when computing geomean and median values.

Table 5.4 also depicts the speed up achieved by using each model compared to Pardis
by dividing the reduction time of Pardis by the reduction time of Model Guided Pardis
using each model. Although leveraging models in reduction when node replacements are
enabled can outperform Pardis in some cases, the improvement achieved by our best model
for each domain is more significant when node replacements are disabled. One explanation
could be that our models are trained with respect to removal and they do not reason about
valid or invalid replacements. Moreover, as we will show in Section 5.1.6, our models have
false negatives which can generate larger test case variants throughout the reduction process
by missing reduction opportunities. As a result, performing node replacements on a larger
variant with more number of nodes may take longer. Training models with higher accuracy
that are also capable of predicting the semantic validity of a node replacement can help in
this regard. We will further discuss this in Section 6.3.2.

Finally, we provide the average execution time of each type of model compared to the
average execution time of the oracle for each test case in our sample benchmark. As can
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Table 5.5: The execution time of different types of models compared to the execution time
of the oracle. The execution times are in milliseconds.

Test Case Mrf.node Mrf.children Mrf.path Mrf.node.children Mrf.node.children.path Oracle Speed Up (×)
clang-25900 2 2 2 2 4 365 91
clang-31259 2 1 2 1 1 531 266
gcc-60116 2 2 2 2 3 513 171
gcc-61383 2 2 2 2 2 380 190
gcc-77624 0.26 0.25 0.28 0.25 0.30 93 310
geomean 1.33 1.15 1.35 1.15 1.48 323 189
median 2 2 2 2 2 380 190

rust-63791 3 4 4 3 4 3,853 963
rust-65934 0.3 0.3 0.3 0.3 0.3 528 1,760
rust-77993 1 3 2 1 3 1,054 351
geomean 0.97 1.53 1.34 0.97 1.53 1,290 841
median 1 3 2 1 3 1,054 963

go-30606 0.6 1 0.9 0.6 0.7 238 238

be seen in Table 5.5, the execution of every individual model is substantially faster than
executing an oracle. The speed up metric is computed by dividing the execution time of the
oracle by the execution time of the model with the longest execution time. The significant
speed up achieved for each test case further motivates the use of inexpensive models to
avoid costly oracle checks when it is possible.

The results presented in this section suggest that by leveraging simple grammar prop-
erties, we can select an appropriate set of features such as the rule types of nodes in the
parse tree of the test case to train models that are capable of speeding up syntax guided
reduction by trying to avoid performing tests that are likely to be semantically invalid.

Next, we measure the accuracy metrics for our models on two types of test sets, synthetic
and real. More details regarding these measures and the two test sets are provided in the
following section.

RQ2. Precision and Recall Rates

In this section, we discuss the possible categories of our models’ outcomes (the predicted
values) with respect to the oracles’ outcomes (the actual values) and compute the precision
and recall rates of our models.
Models’ outcomes. Figure 5.4 depicts the categories of our models’ outcomes with respect
to the outcome of an oracle query. As can be seen, the predicted outcomes of our models
belong to one of the following categories:

• True positive (TP ): Model correctly predicts that removal of the query node is seman-
tically valid. After passing the semantic validity checks, these tests will be subdivided
into two subcategories:

– Oracle pass (TPop): The return value of the oracle query is True for these tests,
leading to a successful removal and reducing the test case.

– Oracle failure (TPof ): These tests fail to remove the node from the parse tree of
the test case. However, their failure is caused by reasons other than compile time
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Figure 5.4: A breakdown of models’ outcomes.

semantic invalidity. They may fail due to either run time issues such as memory
leaks in the test case variant or not preserving the property of interest.

• True negative (TN): Model correctly predicts that removal of the node is semantically
invalid.

• False positive (FP ): Model falsely predicts that removal of the query node is seman-
tically valid.

• False negative (FN): Model falsely predicts that removal of the query node is seman-
tically invalid. These tests will not be executed by Model Guided Pardis due to
a false prediction. If these tests were to be executed, they would have the subcate-
gories of oracle pass (FNop) and oracle failure (FNof ) similar to the category of true
positives above.

While the false positives may decrease the improvement brought by Model Guided
Pardis by allowing for execution of tests on semantically invalid variants, false negatives can
cause Model Guided Pardis to generate larger outputs by missing potentially successful
tests on semantically valid variants.
Distribution of models’ outcome categories. To measure the accuracy of our mod-
els, we compute the distribution of true positives, true negatives, false positives and false
negatives for each model on two types of data sets:

1. Synthetic test sets: As described earlier in Section 5.1.1, for training models in each
domain, we use 75% of our collected data points while keeping the remaining 25% as

86



Table 5.6: The distribution of models’ outcomes for our synthetic test sets.

T P T N F P F N

Domain
...

Model
... # % # % # % # %

Precision
(%)
...

Recall
(%)
...

Mrf.node 45,908 64 13,301 19 9,474 13 3,028 4 83 94
Mrf.children 44,709 62 14,592 20 8,183 12 4,227 6 85 91

C Mrf.path 47,351 66 14,197 20 8,578 12 1,585 2 85 97
Mrf.node.children 44,709 62 14,592 20 8,183 12 4,227 6 85 91

Mrf.node.children.path 46,185 64 15,541 22 7,234 10 2,751 4 86 94
Mrf.node 20,366 44 17,515 38 5,707 12 2,830 6 78 88

Mrf.children 20,582 44 17,012 37 6,150 13 2,674 6 77 89
Rust Mrf.path 20,792 45 18,199 39 5,034 11 2,393 5 81 90

Mrf.node.children 20,608 45 17,344 37 5,666 12 2,800 6 78 88
Mrf.node.children.path 21,064 45 18,148 39 5,105 11 2,101 5 80 91

Mrf.node 3,419 47 2,720 38 938 13 158 2 78 96
Mrf.children 3,497 48 2,601 36 976 14 161 2 78 96

Go Mrf.path 3,463 48 2,917 40 669 9 186 3 84 95
Mrf.node.children 3,433 48 2,694 37 938 13 170 2 79 95

Mrf.node.children.path 3,390 47 2,949 41 703 9 193 3 83 95

a test set. We refer to these test sets as synthetic because they have been collected
during reduction of non-buggy test cases.

2. Real test sets: These test sets are collected when reducing test cases of our sample
benchmark. Since the values in these sets have been collected when reducing test cases
with real bugs, we refer to these sets as real test sets.

Additionally, we compute the precision and recall rates of each model on each test set.
Table 5.6 depicts the results of accuracy metrics described above for our synthetic test

sets. For the C domain, all our models have precision and recall rates above 80% and 90%,
respectively. The precision rates of our Rust models are between 77% and 81% with recall
rates between 88% and 91%. The Go models also show a high accuracy by precision rates
above 78% and recall rates above 95% on our Go synthetic test set.

To measure the accuracy metrics on our real test sets, we perform reduction by Model
Guided Pardis, using different types of models on our sample benchmark with a slight
modification to record the model’s prediction along with the actual outcome of the oracle
for each test.

To this end, we define three types of actual outcome for an oracle:

• Passed: Test was successful. Oracle passed and node got removed.

• Compile time semantic checks failed: Test was unsuccessful. Oracle failed due to the
semantic invalidity of the test case variant during compilation and node did not get
removed.

• Run time or property checks failed: Test was unsuccessful. Compile time semantic
checks passed but oracle failed due to either failing the run time constraints or not
preserving the bug.
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Table 5.7: The distribution of models’ outcomes for our real test sets.
T Pop T Pof T N F P F Nop F Nof

Model
...

Test Case
... # % # % # % # % # % # %

Precision
(%)
...

Recall
(%)
...

clang-25900 396 25 188 12 543 34 333 21 25 2 97 6 64 83
clang-31259 373 25 169 11 444 30 185 13 27 2 276 19 75 64
gcc-60116 664 18 317 8 1,768 48 617 17 59 1 293 8 61 74
gcc-61383 937 45 111 5 598 28 374 18 22 1 61 3 74 93

Mrf.node gcc-77624 65 60 13 12 0 0 0 0 5 5 25 23 100 72
rust-63791 123 5 269 11 1,179 45 826 33 21 1 122 5 32 73
rust-65934 1 1 0 0 45 63 26 36 0 0 0 0 4 100
rust-77993 80 23 47 13 6 2 3 1 122 35 91 26 98 37
go-30606 17 4 242 58 0 0 0 0 0 0 162 38 100 62

clang-25900 0 0 0 0 876 55 0 0 421 27 285 18 N/A* 0
clang-31259 400 27 446 30 0 0 628 43 0 0 0 0 57 100
gcc-60116 0 0 0 0 2,391 64 0 0 715 19 612 17 N/A* 0
gcc-61383 0 0 0 0 949 46 0 0 959 47 154 7 N/A* 0

Mrf.children gcc-77624 0 0 0 0 0 0 0 0 69 83 14 17 N/A* 0
rust-63791 0 0 0 0 2,070 70 0 0 516 18 355 12 N/A* 0
rust-65934 0 0 0 0 36 97 0 0 1 3 0 0 N/A* 0
rust-77993 0 0 0 0 26 1 0 0 2,501 94 129 5 N/A* 0
go-30606 17 4 1 0 0 0 0 0 2 0 411 96 100 4

clang-25900 112 7 90 6 802 50 74 5 309 20 195 12 73 29
clang-31259 7 0 66 4 600 41 29 2 393 27 379 26 72 9
gcc-60116 79 2 226 6 1,985 54 411 11 634 17 383 10 43 23
gcc-61383 120 6 59 3 894 42 81 4 836 40 113 5 69 16

Mrf.path gcc-77624 24 22 14 13 0 0 0 0 46 43 24 22 100 35
rust-63791 0 0 0 0 2,032 73 0 0 428 15 325 12 N/A* 0
rust-65934 0 0 0 0 36 97 0 0 1 3 0 0 N/A* 0
rust-77993 0 0 0 0 26 1 0 0 2,656 94 133 5 N/A* 0
go-30606 1 0 242 56 0 0 0 0 32 7 162 37 100 56

clang-25900 387 24 154 10 501 32 375 24 34 2 131 8 59 77
clang-31259 376 25 189 13 362 25 259 18 32 2 256 17 69 66
gcc-60116 650 18 277 7 1,603 43 792 21 63 2 333 9 54 70
gcc-61383 890 42 27 1 830 40 142 7 69 3 145 7 87 81

Mrf.node.children gcc-77624 65 60 10 9 0 0 0 0 5 5 28 26 100 69
rust-63791 199 7 404 13 0 0 2,427 80 0 0 0 0 20 100
rust-65934 1 1 0 0 0 0 70 98 0 0 1 1 1 50
rust-77993 83 50 73 44 0 0 10 6 0 0 0 0 94 100
go-30606 17 4 1 0 0 0 0 0 2 0 411 96 100 4

clang-25900 15 1 26 2 856 54 18 1 406 26 261 16 69 6
clang-31259 11 1 40 3 615 42 14 1 389 26 405 27 78 6
gcc-60116 25 1 82 2 2,364 63 31 1 688 19 528 14 78 8
gcc-61383 3 0 18 1 966 46 9 0 953 46 154 7 70 2

Mrf.node.children.path gcc-77624 62 57 14 13 0 0 0 0 8 8 24 22 100 70
rust-63791 0 0 0 0 2,081 69 0 0 564 19 370 12 N/A* 0
rust-65934 0 0 0 0 35 97 0 0 1 3 0 0 N/A* 0
rust-77993 2 0 0 0 31 1 0 0 2,606 93 157 6 100 0
go-30606 0 0 0 0 0 0 0 0 18 8 206 92 N/A* 0

* N/A represents precision rates for those models and test cases that have no true and false positives in their reduction.

Note that although we guide the reduction process by our models’ suggestions, we also
query the oracle every time we attempt to remove a node, regardless of the models’ predic-
tions. This is how we can have pairs of values with predicted and actual outcomes used to
compute the accuracy metrics for each model.

Table 5.7 shows the precision and recall rates of our models for an actual reduction of test
cases in our sample benchmark. As can be seen, Mrf.node and Mrf.node.children have precision
and recall rates above 60% in the majority of the cases. However, despite performing well
on the synthetic test set, Mrf.children, Mrf.path and Mrf.node.children.path perform poorly on
the real test set. They have low recall rates that indicate a large number of false negatives
for these models. This means that these models may miss reduction opportunities. As a
result, we observed that no reduction was performed by these models on some of the test
cases in Table 5.2 in contrast to the other two models, Mrf.node and Mrf.node.children that
have higher recall rates and more reduction power.

We can infer from these observed results that the grammar rule type of a node in the
parse tree can be a useful piece of information for training models with high precision and
recall rates.
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Figure 5.5: A breakdown of the outcomes of the oracle queries performed by Pardis and
Model Guided Pardis.

RQ3. Prediction of semantic invalidity types

In this section, we measure the performance of our models in terms of the total number of
tests performed on variants with compile time issues. Moreover, we identify the correct and
incorrect predictions of our models with respect to different types of semantic issues. More
precisely, we examine which error and disallowed warning types are predicted correctly by
our models and which ones are not.

Recall the distribution of the oracle outcomes generated by Pardis in Figure 5.1 at the
beginning of this chapter. Oracle queries with compile time issues comprised the plurality
of the tests for 4 out of 5 test cases in this figure. The large portion of these queries
can adversely affect the reduction speed as previously noted. To understand the impact of
leveraging models on the number of this type of oracle outcomes, we select our two best
models for the C domain, identified in the previous sections, and perform reduction by
Model Guided Pardis using these models to collect its types of oracle outcomes. The
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two models selected are Mrf.node, our most effective model that generates outputs of similar
size compared to Pardis and Mrf.node.children.path that is our most efficient model, yielding
the highest speed up in reduction.

Figure 5.5 depicts the distributions of oracle outcomes for Pardis and Model Guided
Pardis with Mrf.node and Mrf.node.children.path. As can be seen, Model Guided Pardis
using these two types of models has distributions where compile time issues do not com-
prise the majority of the tests. Interestingly, the majority of the tests become successful
when integrating Mrf.node into Pardis to perform a model guided reduction. In the distri-
bution of Mrf.node.children.path, the percentage of oracle outcomes with compile time issues
also decreases and tests that do not preserve the property of interest (no POI) comprise
the majority of the oracle outcomes instead. These results suggest that leveraging these
models can indeed mitigate the problem of compile time issues generated during reduction.
Generating fewer invalid oracle outcomes of this type can increase the efficiency of test case
reduction as also shown in our results in Table 5.2. However, as Figure 5.5 also suggests,
there is still room for improvement. Leveraging models in other forms with other purposes
can be interesting directions. We investigate some of these models in Section 5.2.

Finally, to understand what types of semantic issues are filtered or missed by Model
Guided Pardis, we select Mrf.node that is our model with a larger number of tests and
investigate two sets of its outcomes: true negatives that are the frequent errors and warnings
correctly filtered by our model and false positives that are the common errors and warnings
falsely missed by our model.

Figure 5.6 depicts the breakdown of true negatives (TN) and false positives (FP) for
Mrf.node on the four C test cases in Figure 5.5. First, we can see that the number of true
negatives for these cases is indeed larger than the number of false positives. Moreover,
Mrf.node is able to filter most of the frequent errors and disallowed warnings in the majority
of the cases. In particular, control reaches end of non-void function is filtered correctly in most
of the cases. Use of undeclared identifier is another common error that is partially handled by
our model. Other errors and warnings such as declaration does not declare anything, expected
semicolon after expression and missing type specifier are also mainly filtered. Unknown type
name seems to be the only error in our list of common compile time issues that has a
larger number of false positives compared to true negatives. However, as can be seen in the
diagrams, this error comprises a small portion of semantic issues.

The data presented in this section demonstrate promising results for leveraging models
in test case reduction. However, these models are still in the initial stage and steps to
improve them could indeed increase the benefits of using them. The next section describes
some of our measures taken for this purpose.
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Figure 5.6: Semantic validity issues filtered (TN) and missed (FP) by Mrf.node.

5.2 Guiding Towards Semantic Validity

We originally introduced and published the ideas presented in this section at the 32nd
ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023) [30].

So far in this chapter, we proposed and assessed Model Guided Pardis, a reducer
tool based on Pardis that leverages trained models to predict and avoid performing tests
on semantically invalid test case variants. Although Pardis enhanced by models shows
promising results with respect to speeding up the reduction process, it still has limitations.

In this section, we propose a new technique called Type Batched Probabilistic
Joint Reduction [30] to address the following drawbacks:

1. Model Guided Pardis traverses the parse tree in a strict top down fashion to
prioritize nodes with a larger token weight. This can postpone visiting nodes located
at lower levels of the tree that have a high likelihood of removal success.
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2. Model Guided Pardis simply avoids querying an oracle on a test case variant
that is predicted as semantically invalid by its models. For example, Model Guided
Pardis may predict that removing a declaration node is always semantically invalid.
This prediction may be useful when the use of that declaration is still present in the
tree. However, once the use is removed, the declaration becomes removable and a
better reducer should then be able to try removing the declaration. Model Guided
Pardis does not have this dynamic reasoning about the reduction progress.

3. Model Guided Pardis removes nodes one at a time and lacks an efficient mechanism
to enable successful group removals.

More specifically, we first propose a technique called Type Batched Reducer to
directly address the first two limitations mentioned above. We further extend our Type
Batched Reducer by introducing a Probabilistic Joint Reduction technique to
address the third limitation. Moreover, we empirically demonstrate that Type Batched
Reducer and Probabilistic Joint Reduction work synergistically to accelerate test
case reduction.

5.2.1 Type Batched Test Case Reduction

The idea of Type Batched Test Case Reduction is to select an appropriate ordering
among tests such that the following behaviors become possible:

1. The ordering allows for visiting nodes at lower levels of the tree with high likelihood
of removal success early in the reduction process.

2. The ordering enables performing tests with higher likelihood of success before tests
with lower likelihood of success. The likelihood of success for tests may change during
reduction to better reflect an appropriate ordering. A good ordering, for instance,
suggests removing uses before declarations. In other words, an appropriate ordering
can guide reduction towards removing portions that are more likely to be successfully
removed at a given point in time during reduction.

To better understand the differences between the Type Batched Reducer and the
traversal based techniques such as Perses, Pardis and its variants introduced so far, consider
the program in Listing 5.2 with its parse tree shown in Figure 5.7. This example is the same
as the motivating example presented throughout the dissertation with a small change on
line 13 where d ∗ i is replaced with d/i. Again, the property of interest to preserve when
reducing this program is printing Hello World!.

As mentioned earlier in this chapter, the problem of semantic dependencies between
elements within this program is evident. For instance, the use of type S depends on its
definition. Similarly, calling function foo requires the definition of foo to be present. To
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mitigate this problem, as previously stated, there is the option of manually constructing
these dependencies and using them in the search process. However, this would require
detailed knowledge about the semantics of the input format. A reducer hand tailored based
on domain knowledge would no longer be domain agnostic. It would require significant labor
to be customized to the specific language and domain.

1 int d = 10 ;
2 struct S {
3 int f 1 ;
4 int f 2 ;
5 } ;
6 void f oo ( ) {
7 struct S s1 = {1 , 2} ;
8 int i = 0 ;
9 bool increment = true ;

10 i f ( increment ) {
11 i += 2∗ i + i + 1 ;
12 }
13 s1 . f 1 = d/ i ;
14 printf("Hello World!\n");
15 }
16 int main ( ) {
17 foo ( ) ;
18 return 0 ;
19 }

Listing 5.2: A C program with a statement to preserve on line 14.

1.translationUnit *
w:84

2.exDecl
w:5

d

3.exDecl
w:11

S

4.funcDef
w:55

foo 6.compound *
w:49

8.decl
w:10

s1

9.decl
w:5

i

10.decl
w:5

incr

11.selection
w:16

if(...) 15.expr
w:10

i += 2*i + i + 1;

12.expr
w:8

s1.f1 = d/i;

13.expr
w:5

printf@14

5.funcDef
w:13

main 7.compound *
w:7

14.expr
w:4

foo();

return

Figure 5.7: The simplified parse tree of program in Listing 5.2. Each internal node is anno-
tated with an ID and its grammar rule type. * denotes a quantified Kleene-Star node.
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In contrast, the key insight of domain agnostic Type Batched Reducer is that de-
pendencies can be approximately inferred and modeled in a generalized fashion such that
not only can a node removal causing semantic invalidity be predicted and avoided similar to
what Model Guided Pardis does but also those portions of the test case that are more
likely to be semantically valid at a given point during reduction are identified and reduction
is guided to reduce them first.

To this end, grammar rule types can be used again to give us information about the
possible dependencies. For example in Figure 5.7, the grammar rules for parsing expression
statements differ from those used to parse function and type declarations. This time, instead
of simply avoiding tests on declarations, we can first try removing expression statement
nodes and only afterward try removing declarations. This preserves the dependencies that
a naive traversal may violate, but it only directly uses information from the grammar. The
general pattern is that it can be advantageous to consider reduction on some set of nodes
before others, and the types of internal nodes provide leverage in making that decision.

We discuss how to choose an ordering over different grammar types in Section 5.2.2.
For now, suppose that an appropriate ordering among types of nodes is given. Instead of
traversing the parse tree and attempting to perform expensive reduction operations at every
node, Type Batched Reducer selects one type at a time and only operates on nodes
of that selected type during the traversal. Once all nodes of the selected type have been
considered, it selects one of the remaining unselected types and traverses the tree again.
After all types have been selected or it looks unprofitable to continue type batching, a
traversal based syntax guided approach such as Pardis is used to finish reduction.

Consider our running example again. Recall that a traversal based reduction technique
performs a tree traversal guided by the number of token descendants below each node to
reduce this program. This means that a node with a larger number of tokens is visited
before a node with a smaller number of tokens. Suppose that the traversal based reducer
used for reducing this program is Pardis without loss of generality. Starting with the node
with the largest number of token descendants (i.e., the root node 1 ), Pardis queries an
oracle to see whether removal of 1 succeeds or fails. It fails since removing 1 yields an
empty file. Pardis then tries to remove the node with the next largest number of tokens,
4 . Removing this node is also unsuccessful since it removes the definition of function foo

while its use is still within the program (call site on line 17). The reducer then proceeds
with node 6 but cannot remove it since the property of interest (i.e., printing Hello World!
on line 14) will not be preserved by removing 6 . Removing node 11 will also cause the
oracle to fail because it is required to increment variable i to avoid a run time issue on
line 13. Removing node 5 will remove the main function, generating an invalid C program.
Removing node 3 fails because of the def-use dependencies of struct S. Removing node
15 also fails due to the same reason for node 11. The next node considered by Pardis is
8 that is the declaration of s1 and cannot get removed before its use. Next, node 12 is
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visited and Pardis is able to remove it successfully. Removing nodes 7 , 9 , 10, 13 and
14 also fails due to either removing elements required by other elements in the program or
removing the property of interest.

Model Guided Pardis has a similar behavior to Pardis when reducing this program.
In particular, it traverses the tree in the same order as Pardis. If a proper model is used,
Model Guided Pardis is however capable of avoiding oracle queries on some of the nodes
with failed removal.

Now, let us see how a simple version of type batching might work on this example.
Given a selected type, this version will merely traverse the parse tree and try to remove
each node of that type individually. We develop a more nuanced version of the technique
called Probabilistic Joint Reduction later in Section 5.2.3. For simplicity, we consider
removing nodes of a given type one by one for now. Suppose that we select node types in
the following order: expression statement (expr) → selection statement (selection) → declara-
tion (decl) → compound statement (compound) → function definition (funcDef) → external
declaration (exDecl) → translation unit, such that the type on the left is selected before the
type on the right.

Instead of starting with the root node, the Type Batched Reducer starts by selecting
the first type, expression statement from the list of our type ordering and adds only nodes of
that type to its search space in a decreasing order of the number of their token descendants,
such that an expression statement node with a larger number of tokens as its descendants is
visited before an expression statement node with fewer number of tokens. The first node to
consider for removal is 15 since it has a grammar rule type that is the same as the selected
type, expression statement, and it has the largest number of tokens (i.e., 10) among nodes
with this type. Node 15 cannot get removed because it contains line 11 that is necessary
to avoid a run time issue on line 13. The next node to consider is 12 and is successfully
removed. Note that it took 9 oracle queries for the traversal based approach to remove 12
while Type Batched Reducer could remove this node by performing only 2 queries. The

Table 5.8: Visiting order of nodes, number of total and successful oracle queries and number
of removed tokens using traversal based Pardis, Type Batched and Type Batched
Joint reduction techniques.

Reducer Order of removal trials (oracle
queries) →

# total
queries

# successful
queries

# removed
tokens

reduced
output

Traversal
based

Pardis

(1, ×) (4, ×) (6, ×) (11, ×) (5, ×) (3, ×)
(15, ×) (8, ×) (12, ✓) (7, ×) (13, ×) (10,

×) (9, ×) (2, ✓) (14, ×)

15 2 13 Listing 5.4

Type
Batched

(15, ×) (12, ✓) (13, ×) (14, ×) (11, ✓)
(10, ✓) (9, ✓) (8, ✓) (6, ×) (7, ×) (4, ×)

(5, ×) (3, ✓) (2, ✓) (1, ×)

15 7 60 Listing 5.5

Type
Batched

Joint

({15, 12}, ✓) (13, ×) (14, ×) (11, ✓)
({10, 9, 8}, ✓) (6, ×) (7, ×) (4, ×) (5, ×)

({3, 2}, ✓) (1, ×)

11 4 60 Listing 5.5

✓and × represent successful and unsuccessful removals, respectively.
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next nodes with type expression statement are 13 and 14 but their removal is unsuccessful
due to not preserving the property of interest. After all nodes of type expression statement
are visited, the next type in our ordering, selection statement is selected. There is only one
node of this type, node 11, and is successfully removed. The next type in our ordering
is declaration with nodes 10, 9 and 8 . By performing three oracle queries, the Type
Batched Reducer can remove all the three nodes one by one. The next types to consider
are compound statement and function definition. Nodes with type compound statement are
6 and 7 and cannot get removed because their removal makes the property of interest

disappear. Removing nodes of type function definition, 4 and 5 , also fails because of
the same reasons explained above. The next type to select from our ordering is external
declaration with nodes 3 and 2 that successfully get removed. The last node to consider
is the root node with an unsuccessful removal.

The first two rows of Table 5.8 contrast the traversal based Pardis with Type Batched
Test Case Reduction approach for one round of tree reduction. Their resulting reduced
outputs appear in Listing 5.4 and Listing 5.5, respectively. Observe that the traversal based
reducer uses 15 oracle queries to remove only 13 tokens, leading to the majority of the
tokens being tried again in subsequent fixed point rounds. In contrast, Type Batched
Reducer removes 60 tokens using the same number of queries in a single tree reduction
round, leading to a faster convergence towards the final reduced program.

1 int d = 10 ;
2 struct S {
3 int f 1 ;
4 int f 2 ;
5 } ;
6 void f oo ( ) {
7 struct S s1 = {1 , 2} ;
8 int i = 0 ;
9 bool increment = true ;

10 i f ( increment ) {
11 i += 2∗ i + i + 1 ;
12 }
13 s1 . f 1 = d/ i ;
14 p r i n t f ( " He l l o World ! \ n " ) ;
15 }
16 int main ( ) {
17 foo ( ) ;
18 return 0 ;
19 }

Listing 5.3: Original

int d = 10;
struct S {

int f 1 ;
int f 2 ;

} ;
void f oo ( ) {

struct S s1 = {1 , 2} ;
int i = 0 ;
bool increment = true ;
i f ( increment ) {

i += 2∗ i + i + 1 ;
}

s1.f1 = d/i;
p r i n t f ( " He l l o World ! \ n " ) ;

}
int main ( ) {

foo ( ) ;
return 0 ;

}

Listing 5.4: Traversal based

int d = 10;
struct S {

int f1;
int f2;

};
void f oo ( ) {

struct S s1 = {1, 2};
int i = 0;
bool increment = true;
if (increment) {
i += 2*i + i + 1;
}

s1.f1 = d/i;
p r i n t f ( " He l l o World ! \ n " ) ;

}
int main ( ) {

foo ( ) ;
return 0 ;

}

Listing 5.5: Type batched

Figure 5.8: Original program of Listing 5.2 and its reduced versions generated by traversal
based Pardis and Type Batched Reducer after one round of reduction.
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Additional Challenges and Advantages

Type batching shows strong potential benefits, but using it effectively requires addressing
some additional challenges. We identify and address two key challenges in making type
batching work: (1) type scheduling, and (2) stopping criteria. We also observe that type
batching can significantly increase the likelihood of individual nodes being successfully re-
moved, which enables further new techniques like Type Batched Probabilistic Joint
Reduction.

Type scheduling refers to how we decide which types to run batches of at any point in
time. It is the key mechanism that allows type batching to preserve dependencies. If, for
instance, we chose to schedule declarations before statements, then attempting to remove
declarations would fail if they are used by a statement. In contrast, removing statements
first does not violate this dependency. The challenge lies in determining which orderings or
schedules are better than others. In Section 5.2.2, we show that it is possible to train simple
time-varying models of test case reduction that allow us to identify such orderings. Similar
to the models of Model Guided Pardis in Section 5.1.1, these models can be trained using
non-buggy code with a simulated property of interest and still yield appropriate orderings
for improving reduction on real-world test data.

The stopping criteria determine when to switch from performing type batched operations
to cleaning up the reduction with a traversal based technique. Not all types of nodes are as
likely to be removable as others. At some point it may be more beneficial to stop considering
any further type batches over such unsuccessful types when they are deemed to be expensive
and unlikely to be beneficial. We explore this further also in Section 5.2.2.

Finally, we note that Pardis and Model Guided Pardis perform oracle queries to re-
move nodes one by one. We introduce Type Batched Probabilistic Joint Reduction
that leverages the increased likelihood of successful removal for each node to attempt to re-
move multiple nodes at the same time where it is expected to be beneficial. In our example,
a Probabilistic Joint Reduction technique enables a simultaneous removal of nodes
{15, 12}, {10, 9, 8} and {3, 2} as shown in the last row of Table 5.8. Our Type Batched
Probabilistic Joint Reduction builds upon the insights of recent works like Proba-
bilistic Delta Debugging (PDD) [32], combining them with the benefits of type batching
to accelerate reduction further for structured inputs such as programs. Unlike most ap-
proaches, including PDD, type batching enables the simultaneous removal of nodes across
different levels and locations within the tree. We explore this reduction technique more in
Section 5.2.3.

The next section elaborates on the core design of Type Batched Reducer while also
presenting our solutions to the above mentioned challenges.
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5.2.2 Type Batched Reducer: The Algorithm

The fundamental idea underlying Type Batched Test Case Reduction approach is
that test case reduction can be faster when some types of nodes in a parse tree are considered
before others. We partition the nodes into batches and perform reduction on one batch of
nodes at a time. Because our goal is to improve the overall speed of reduction, we want to
order the batches to create a list batch that maximizes the expected rate of reduction, ER,
for a failing test case τ✗ as follows:

ER(batch, τ✗) = E
[# tokens removed

# oracle queries

]
(5.1)

In other words, for a failing test case τ✗ to reduce, this rate of reduction expresses the
number of tokens that we expect each oracle query to remove on average for a particular
sequence of batches. If we can choose an ordering with a higher expected rate, then this can
speed up the overall reduction process.

As stated earlier in the beginning of this section, grammar rule types or the labels applied
by the parser to nodes of the parse tree can be used to partition nodes for a test case. Each
type t captures both the structure of the test case as well as the aspects of the meaning,
like the differences between declarations and expressions.

Algorithm 6: Type batched test case reduction [30].
Input: τ✗ – The test case to reduce as a parse tree
Input: ψ : S→ B – Oracle for the property to preserve where S is the search space and

ψ(τ✗) = True
Result: A minimum test case τ✗

′ ⊆ τ✗ s.t. ψ(τ✗
′) = True

1 τ✗
′ ← τ✗;

2 Function type_batched_reduction(τ✗
′, ψ):

3 types ← extract (τ✗
′);

4 while types ̸= ∅ do
5 best ← take_best(types, τ✗

′);
6 types ← types - best;
7 if stop_early(τ✗

′, best) then
8 break
9 τ✗

′ ← typed_traversal_reduction(τ ✗
′, best, ψ)

10 τ✗
′ ← full_traversal_reduction(τ✗

′, ψ) ;
11 return τ✗

′

The core of our technique is shown in algorithm 6. We build upon this design throughout
the remainder of this section. Line 3 starts by extracting the observed rule types from the
test case being reduced. The loop starting on line 4 performs reduction on one batch of
nodes at a time in the chosen order. Line 5 selects the best batch based on the current
contents of the reduced test case so far and the remaining partitions. Lines 7-8 allow the
process to stop early if that looks more fruitful than processing further partitions. Line 9
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performs the reduction while only considering nodes in the chosen partition. For simplicity,
we assume that reduction in the loop only removes nodes from the parse tree as opposed
to both removing and replacing them. Finally, line 10 performs a clean-up pass using a
normal traversal based test case reducer. This clean-up allows the technique to gain better
efficiency by ordering the partitions well in the loop, while still having the full reduction
power of existing reducers. In other words, Type Batched Reducer can be seen as a
higher efficiency first phase to complement existing reducers.

Algorithm 6 highlights some of the challenges that must be addressed in order for the
technique to work and ways that the technique can be extended or evolved. The most
critical of these challenges is choosing which batches to reduce. We call this selection process
scheduling. As we shall explore later, scheduling well can boost efficiency, but scheduling
poorly can adversarially harm efficiency. For this reason, having effective and automated
techniques is critical.

The next challenge arises because it can be advantageous to stop batch based reduction
early. The conditions for stopping early are called the stopping criteria. It can be possible,
for instance, that all easy to remove batches have been processed, and the only batches
left to consider are for nodes that are very unlikely to be removed. In such cases, early
transitioning to the clean-up phase is desirable.

Finally, even if we are able to find a good schedule, the efficiency is limited by the
number of tokens that can be removed at once. We show how some of the effects of type
batched reduction can overcome this burden with Type Batched Probabilistic Joint
Reduction. We explore each of these challenges in the following.

Scheduling

The goal of scheduling is to produce an automated ordering for batches that maximizes
ER(batch, τ✗) for the sequence of batches in the schedule. For illustration, consider a naive
solution that uses some simplifying assumptions. Suppose that each individual type batch
has a fixed rate ERt(τ✗

′) known a priori. From our previous example, this is like assuming
that declaration nodes are always removable (1) at the same probability of success and with
(2) the same number of tokens beneath them. This assumption leads to a straightforward
greedy approach to scheduling: sort the batches by descending ERt(τ✗

′). This would allow
algorithm 6 to reduce the most efficient batches earlier, leaving less remaining work for
the following batches to perform. While this makes some impractical assumptions about
ERt(τ✗

′), this greedy approach lays the foundation of Type Batched Reducer. Specif-
ically, we propose to use machine learning to automate a time-varying approximation of
ERt(τ✗

′) that we can use to guide scheduling.
However, as we shall see, this can be challenging for several reasons. First, it can be

challenging to even compute ERt(τ✗
′) for a single batch within a schedule. Oracle outcomes

during reduction are not i.i.d. data, meaning that they are not independent and may change
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based on the outcomes of the earlier oracle calls. From the example in Figure 5.7, we expect
ERdeclaration(τ✗

′) in a program to be lower if declarations are ordered before expression
statements compared to when they are ordered after expression statements. Hence, ERt(τ✗

′)
of a single batch can vary both over time and with the batches that run before it. Second,
training such a model of expectation requires training data, but we do not want to require
data from, e.g., real-world bugs before building a model. Instead, we want to have the model
and the technique trainable without real-world bugs so that it can immediately be used on
the next bug found. This is similar to our training mechanism for Model Guided Pardis
in Section 5.1.
Simple approximations for ERt(τ ✗

′)
We start by discussing how to approximate ERt(τ✗

′). Suppose for the moment that
training data exist from previous test case reduction sessions using an existing traversal
based reducer. In fact, our training data for Type Batched Reducer will be similar to
the training data for Model Guided Pardis already presented in Section 5.1.1.

As the reduction traverses a sequence of nodes n1, n2, n3, . . . , traversing each node ni
records a tuple (τ✗.size, ni.type, ψ(c)) for a smaller candidate test case c produced by remov-
ing ni. The simplest strategy we might consider uses a naive model where the probability
of successful reduction for a type is constant. For each node type t, we would compute Pt,
the probability that a candidate is successful when visiting a node of the given type:

Let of_type(c, t) = ∃n s.t. c = τ✗
′ − n ∧ n.type = t

where τ✗
′ − n is a subtree of τ✗

′ rooted at node n.

Pt = P (ψ(c) = True|of_type(c, t)) (5.2)

= 1
|{c|of_type(c, t)}|

∑
{c|of_type(c,t)}∧ψ(c)=True}

1

That is, Pt is the number of successful candidates traversing a node of type t divided by
the total number of candidates when traversing a node of type t. Given Pt for type t, we can
compute E [# tokens removed] and E [# queries], which allow us to approximate ERt(τ✗

′)
for a particular input τ✗ using the estimated rate for a type, ÊRt(τ✗

′):

ERt(τ✗
′) = E

[# tokens removed
# queries

]
(5.3)

≈ E [# tokens removed]
E [# queries] = ÊRt(τ✗

′)

Per Jensen’s inequality, this only approximates the expected rate [57]. Given a reducer
that tries to remove syntactically removable nodes while traversing them such as Perses or
Pardis, these expectations can be computed by traversing the parse tree as shown below.
For instance, tokens(n, t) considers removing all the tokens below a node n with probability

100



Pt. When it is unsuccessful with probability (1− Pt), the expectations from the children of
n are combined instead.

E [# tokens removed] = tokens(τ✗.root, t) (5.4)

tokens(n, t) = Pt ∗ 1{n.type=t} ∗ n.tokens

+ (1− Pt ∗ 1{n.type=t})
∑

c∈n.children
tokens(c, t)

E [# queries] = queries(τ✗.root, t) (5.5)

queries(n, t) = 1{n.type=t∧is_syntactically_removable(t)}

+ (1− Pt ∗ 1{n.type=t})
∑

c∈n.children
queries(c, t)

where 1{B} denotes 1 when B is true and 0 when B is false.
Thus, if we assume that Pt is constant per type t, we can use ÊRt(τ✗

′) for greedy
scheduling. However, as previously mentioned, these probabilities are not i.i.d. in practice,
so we may ask how much that affects the results and whether a richer model is required.
Figure 5.9 explores this question for three types of nodes in our set of C programs.
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Figure 5.9: The probability of removal success for each type changes during reduction.
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The Y axis captures the probability of successful removal, while the X axis represents
reduction progress measured by the fraction of nodes in the original parse tree that have
been removed in the current parse tree. Observe that the probabilities per type change
significantly during reduction. For instance, declarations are unlikely to be removable at
the beginning of the reduction process, but toward the end of the process they are quite
likely to be removable. Statements, in contrast, are consistently likely to be removable.
Some types, like parameter lists, do not even appear until close to the end of the reduction
process because modern reducers such as Perses and Pardis try to remove larger program
chunks before smaller ones. We explore this further in our empirical results in the rest of
the chapter, but this tells us that desirable models for Pt should at least account for the
temporal effects of reduction.

To produce these time-varying models of Pt, we train a separate logistic regression
model [58] for each rule type. The only feature of the model is the normalized reduction
progress: τ✗

′.size
τ✗.size . That is, the number of nodes in the parse tree of the partially reduced

test case τ✗
′, before a node is removed, out of the total number of nodes in the original

test case τ✗. At the beginning of reduction, this has the value 1, and it approaches 0 as
more of the tree is removed. The outcome labels are 1 for successful oracle queries and 0
for unsuccessful ones. With this, we estimate Pt by extracting the estimated probabilities
from the model using the current test case size relative to the original. This is the version
of Pt used in our computation of ÊRt(τ✗

′) in our greedy formulation of type scheduling in
the following:

take_best(types, τ✗
′) = argmaxt∈typesÊRt(τ✗

′) (5.6)

Note, this does not directly account for the impact of ordering between different types.
Rather, it attempts to infer which orderings are more likely to be beneficial only indepen-
dently considering the observed success rates as the combined reduction progresses. The
idea is that the influence of one type on another is still captured in the individual success
rates for each type alone. While we discuss further potential improvements in Section 6.3,
we show in the evaluation of Type Batched Reducer that this algorithm is able to infer
effective orderings in practice.
Using synthetic training data.

We train the logistic regression models of our Type Batched Reducer using the
full sets of normally compiling source files used for training Model Guided Pardis in
Section 5.1. Similarly, we run one node at at time removal Pardis on each file to minimize
the source file while preserving a randomly selected token and compiling. The outcome
of each oracle query is recorded along with the type of the node being visited and the
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current size of the test case. As a result, Type Batched Reducer preserves the generality
of its models similar to Model Guided Pardis by not being restricted to bug specific
information.

Stopping Criteria

The time-varying approach to ÊRt(τ✗
′) allows us to choose the next type with the highest

estimated rate at any moment. Eventually all types with high rates will have been chosen
already, and all remaining rates will be slow. Recall from algorithm 6 that there is a final
clean-up phase using a traversal based reducer, too. It is thus desirable to have some way of
saying that all high-efficiency types have been chosen and that the algorithm should move
on to the clean-up phase. The conditions for making this change are the stopping criteria.

Just as with take_best() in Equation 5.6, we use the estimated rates to make this
decision. Instead of asking which type has the best ÊRt(τ✗

′), we want to know whether
ÊRt(τ✗

′) for the best type is greater than the estimated rate from the clean-up phase itself.
If the rate from the batch is higher, it makes sense to continue using the batch. If the rate
from the clean-up phase is at least equal to the best next batch, it is preferable to exit to
the clean-up phase. This is determined and made possible by using the Boolean function
stop_early() defined in the following:

stop_early(τ✗
′, best) =

{
True if ÊRbest(τ✗

′) ≤ ÊRclean-up(τ✗
′)

False else

}
(5.7)

Note that computing the rate for the finishing phase is almost the same as for a single
type. tokens(n) and queries(n) simply remove the type check on n (1{n.type=t}) and use the
probability Pn.type for each individual node n in order to consider the probability of each
different node type where appropriate.

5.2.3 Probabilistic Joint Reduction: The Algorithm

Type batching and training models based on the reduction progress can address the first
two limitations of Model Guided Pardis that we described at beginning of the section:
1) Using type batching, a strict top down traversal order of the tree by Model Guided
Pardis or any other traversal based reducer will be replaced with a traversal order that
is capable of visiting nodes at different locations and levels within the tree, and 2) using
the reduction progress to train models enables the dynamic reasoning of the reduction
technique.

In addition, type batching increases the probability that any one node is removable on
its own. This also means that the probability of removing multiple nodes at the same time
(jointly) increases, giving another opportunity to improve the reduction rate by changing
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typed_traversal_reduction() in algorithm 6. This can be a further improvement over the
limited single node removal operations in Pardis original version and Model Guided
Pardis.

Algorithm 7: Probabilistic Joint Reduction over types [30].
Input: t – The type of the parse tree node to reduce over
Input: τ✗ – The partially reduced test case so far
Input: ψ : S→ B – Oracle for the property to preserve where S is the search space and

ψ(τ✗) = True
Result: A test case τ✗

′ ⊆ τ✗ s.t. ψ(τ✗
′) = True

1 τ✗
′ ← τ✗;

2 Function probabilistic_joint_reduction(τ ✗
′, t, ψ):

3 initialize_probabilities(τ✗
′);

4 Qt,prio ← collect_type_frontier(τ ✗
′.root, t);

5 while Qt,prio ̸= ∅ do
6 chunk ← pop_chunk(Qt,prio);
7 if ψ(τ✗

′ - chunk) then
8 τ✗

′ ← τ✗
′ - chunk;

9 else if let {n} = chunk then
10 frontiert ← collect_type_frontier(n, t);
11 Qt,prio.insert(frontiert);
12 else
13 update_probabilities(chunk);
14 Qt,prio.insert(chunk);
15 return τ✗

′;
16 Function collect_type_frontier(n, t)
17 frontier ← ∅;
18 for child of n do
19 if child.type = t then
20 frontier ← frontier ∪ { child };
21 else
22 frontier ← frontier ∪ collect_type_frontier(child, t);
23 return frontier ;
24 Function prio(n)
25 return n.probability * n.tokens;
26 Function pop_chunk(Q)
27 chunk ← ∅ ;
28 while Q ̸= ∅ ∧ EG(chunk) < EG(chunk +Q.top()) do
29 chunk ← chunk + Q.pop();
30 return chunk

To propose an effective joint reduction mechanism, we leverage recent approaches from
Probabilistic Delta Debugging (PDD) [32]. The original idea of PDD is that every failed
trial when removing a subset from a list of elements lowers the belief about whether each
element in the subset can be removed. If removing subset S from the list fails, for each
element ei present is S, PDD increases the probability of keeping (not removing) that
element, prob(ei), as follows:
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prob(ei) = prob(ei)/(1−
∏
ej∈S

(1− prob(ej))) (5.8)

The belief (or probability) of removing the element then becomes 1 − prob(ei). The
reduction process then leverages this belief in order to estimate the expected number of
elements that can be removed (the expected gain, EG) and to prioritize which elements of
the list to try removing next. This yields an O(n) reduction process for a list, but unlike
other recent O(n) reducers, including our One Pass Delta Debugging introduced in
Chapter 3, it is guided by the belief in removability. Moreover, prioritizing elements based
on the belief of removability updated by observed behavior of prior tests provides a joint
reduction mechanism that is more efficient than other joint reduction techniques, including
the original Delta Debugging algorithm [32].

This careful selection of how to remove multiple elements at the same time is precisely
what we would like to leverage within a type batch. Note that our scenario is also somewhat
different from PDD. Rather than considering removal of elements in a list, we are interested
in removing all nodes of a given type from across the entire parse tree. The gain that we
are most interested in is also not +1 for each node considered, but rather the gain is the
actual number of tokens removed from the entire tree. These differences lead to a different
problem formulation as presented in Algorithm 7.

The core function of the algorithm starts on line 2, providing a refined implementation for
typed_traversal_reduction() in algorithm 6. As with other priority aware reducers discussed
in this dissertation, it maintains a priority queue of nodes to consider, Qt,prio. However, this
queue maintains the invariant that it only holds nodes of the correct type for the current
batch. Each iteration of the loop on line 5 is similar to a trial from PDD. It (1) builds a
chunk of nodes from the queue based on the expected gain, (2) tries removing those nodes
from the tree, (3) updates the tree, the belief in removability, and/or the priority queue
based on the outcome of the trial for the chunk. The process repeats until no nodes of the
given type are left to explore.

Note that the probability in algorithm 7 is different than the probability previously used
to compute ÊRt(τ✗

′). The former represents the belief of removability for each node while
the latter shows the probability of removal success for each grammar rule type.

The belief initialization (line 3) and belief updates (line 13) are the same as in PDD.
However, it is worth mentioning that in contrast to PDD, we are running a chunk removal
trial in a search space where syntactic validity is already preserved. As a result, our tests
may fail (line 9 or line 12) because of only two reasons: Violating semantic constraints or
removing the property of interest.

At the beginning phase of reducing elements without any observed behavior of tests,
the probability of removing each element (the belief in removability of a node) is set to a
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high value (0.99 in PDD and this dissertation). The probability of removal for each element
then starts to decrease after each failing trial of removing that element using Equation 5.8.

The main differences between original PDD and our Probabilistic Joint Reduction
lie in our priority queue and how we measure expected gain. Note, unlike PDD, our priority
queue holds nodes from across the entire parse tree rather than a single list. These nodes
capture a frontiert of the tree similar to Model Guided Pardis in algorithm 5. They are
the highest nodes of type t that have not been ruled out by the PDD reduction. When a
node is ruled out by PDD, the t frontier inside the subtree of that node is added to the
exploration queue (lines 10-11).

Our changes to expected gain affect both how the queue is prioritized as well as how
we construct chunks. In PDD, the benefit of removing an element from a list was simply 1.
The expected gain for removing a chunk was then (∏n∈chunk bn)|chunk| where bn measures
the belief that a node is removable. In our case, however, the gain from removing each node
may differ based on the number of tokens in the subtree below a node. Thus, we have:

EG(chunk) = (
∏

n∈chunk
bn) ∗

∑
n∈chunk

|tokens(n)| (5.9)

That is, the expected gain is the belief that all nodes in a chunk are removable multiplied
by the total number of tokens removed by a chunk. Nodes in the Qt,prio are ordered by
expected gain, which guides chunk construction by this new metric in pop_chunk.

In the next section, we shall see that this provides a significant benefit, enabling the
approach to remove more nodes at once with each oracle query inside a type batch.

5.2.4 Evaluation

In this section, we empirically assess the main strategies we take in our new approach.
Moreover, we perform an overall evaluation of Type Batched Probabilistic Joint Re-
duction technique to compare it against Perses, Pardis and its variants.

To this end, we explore the following research questions:

• RQ1. How do different batch schedules impact the performance of reduction? In
particular:

– How do the schedules generated by our models compare against random sched-
ules?

– How do our time-varying schedules compare against time-invariant schedules?

• RQ2. How do type batching and probabilistic joint reduction interplay? In particular:

– What is the impact of type batching on the performance of joint reduction?

– What is the impact of joint reduction on the performance of type batched reduc-
tion?
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• RQ3. How does Type Batched Probabilistic Joint Reduction compare to the
state of the art reducers in terms of reduction time, number of oracle queries and final
reduced size?

The experimental design with respect to benchmark, performance metrics and execution
environment is based on the information available in Section 2.6 and is the same as other
evaluation studies in this dissertation. Our training data sets consist of the full sets of
programs collected in Section 5.1.1 for training Model Guided Pardis.

RQ1: The impact of different batch schedules on reduction

To understand the effectiveness of our model-generated schedules, we compare them against
two groups of baseline schedules on our sample benchmark set. The first group, referred to
as random, consists of schedules with the same types as our schedules but ordered in a
random fashion. The second group called time-invariant consists of greedy schedules that
use constant probabilities for each type of node in the parse tree. In the following, we explain
how we construct each group in more detail.
Random schedules. Comparing against random schedules of types allows us to see how
our schedules perform relative to the space of possible schedules. Note that this space is
still limited to the same types selected by our schedules but with different orderings. It
does not contain schedules constructed by any possible syntactically removable type in the
grammar. We believe that schedules created by arbitrary types from across the grammar
are far from an appropriate baseline to compare our schedules against and limiting random
schedules to the list of best types selected by our algorithm enables us to have a more
accurate comparison.

To create random schedules for comparison, we take the same first types selected by
Type Batched Reducer (up to five types for efficiency) and randomly sample 20 from
their set of possible orderings (without replacement and excluding our schedule). If the
number of possible orderings is less than 20 for a schedule and a test case, we select all
the available orderings. We compare these orderings against our schedules that are also
truncated to five types where applicable. Our full schedules are short in practice. On average,
our schedules have five types for our C programs and consist of only two types for Rust and
Go programs. As a result, it is unlikely to lose substantial scheduling data by truncating
longer schedules to five types.
Time-invariant schedules. Time-invariant schedules use the greedy approach from al-
gorithm 6, Equation 5.6 and Equation 5.7, but the probabilities for each node type are
time-invariant, or constant. These probabilities are computed a priori as in Equation 5.2.
Comparing against these schedules allows us to assess the impact of using the time-varying
models of type probabilities Pt. It is informative for understanding the importance of ac-
counting for how these probabilities change over time. For comparison, the number of types
included in these schedules is not larger than that of random and time-varying schedules.
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Figure 5.10: Performance of Type Batched Probabilistic Joint Reduction using
random, time-invariant and time-varying schedules.

Results contrasting the different schedules are shown in Figure 5.10. We exclude one
of our test cases, rust-65934 from our set because its schedule has only one type and no
nodes from that type are removed from the test case. The blue line depicts the average
performance of random schedules, augmented by a shaded range for the standard deviation
of random schedules. The green dashed line shows the performance of reduction using the
time-varying schedules. The red line shows the performance of time-invariant schedules. The
X axis is the reduction time in seconds, and the Y axis is the number of remaining tokens
in the test case as the reduction proceeds.

As shown, for three test cases, clang-31259, gcc-60116 and rust-77993, the time-
varying schedules yield a faster convergence towards a reduced test case compared to both
the average behavior of random schedules and the time-invariant schedules. The time-
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varying schedules for test cases clang-25900, gcc-61383 and go-30606 are better than
random schedules and perform on par with time-invariant schedules. For the remaining two
test cases, gcc-77624 and rust-63791, either random or time-invariant schedule has the
best performance. For gcc-77624, the shorter reduction time of the time-invariant schedule
comes at a price though. This schedule has only one type while random and time-varying
schedules consist of two types. As a result, the time-invariant schedule generates a larger
output due to its less reduction power caused by having one fewer type. In Section 6.3,
we further discuss the results of this study, especially to explain the observation that our
time-varying schedules fall within the standard deviation range of random schedules for
some cases. Overall, the results of this study suggest that using our time-varying models to
generate schedules can provide a more effective framework to guide reduction.

To understand the behavior of time-invariant schedules, we examined the orders of their
scheduled types and observed that a large number of declarations (e.g., function definitions)
are always scheduled before their uses (e.g., function call sites). This can explain the plateau
without reduction progress at the beginning of time-invariant schedules for clang-31259

and gcc-60116 in Figure 5.10. We find two reasons to explain why time-invariant schedules
prioritize declarations over uses:

1. These declarations contain many tokens, so removing them can yield a large gain for
the reducer.

2. The overall probability of removal success for these declarations is high. It means
that although declarations are not removable at the beginning of reduction, most
of them can successfully be removed as reduction proceeds and removes their uses.
This increases their overall probability of removal, which is used in the time-invariant
schedules.

In contrast, time-varying schedules account for changes in Pt. They prioritize uses over
declarations by assigning a low probability to declarations at the beginning of reduction
and a higher probability later as reduction proceeds. Uses and declarations are a specific
example of one program element depending on another. Our time-varying scheduling tries
to learn these relationships automatically and prioritize accordingly.

RQ2: Interplay between Type Batched Reducer and Probabilistic Joint Reduc-
tion

This research question studies the interplay between type batching and joint reduction by
examining whether each of them can improve the other with respect to the performance of
reduction. In particular, we answer the following questions:

• Does type batching improve the performance of joint reduction? To answer, we com-
pare the performance of joint reduction without type schedules against joint reduction
with type schedules.
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• Does joint reduction improve the performance of type batching? To answer, we need
to compare the performance of batched reduction using joint reduction vs. batched
reduction using a traversal based reducer.

To measure the impact of type batching on joint reduction, we compare two different
versions of algorithm 6. In the type agnostic version, we remove the schedule loop of line 4
and make the clean-up phase use joint reduction over all types simultaneously at line 10.
In the type batched version, we use the algorithm as written with joint reduction inside the
schedule loop at line 9. We use Pardis at line 10 for the clean-up phase in this version.

To measure the impact of joint reduction on type batching, we also consider two variants
of algorithm 6. In the joint reduction version, we again use joint reduction inside the schedule
loop at line 9. In the traversal based reduction version, we replace line 9 with Pardis. The
clean-up phase at line 10 is again Pardis for both versions.

Results are shown in Figure 5.11. By comparing the green and blue lines, we can see
that type batching can improve the performance of joint reduction with respect to either
time or size in 7 out of 9 test cases. Similarly, by comparing the green and purple lines, we
can see that in 6 out of 9 cases, using joint reducer on nodes of the same type can improve
the performance of type batched reduction compared to using Pardis.

Results of these studies suggest that Type Batched Reducer and Probabilistic
Joint Reduction are synergistic and leveraging both of them together can help us to
achieve a better overall performance of reduction.

To further investigate the impact of our joint reducer on type batching, we replace
line 9 of algorithm 6 with Probabilistic Delta Debugging (PDD) [32]. As explained earlier
in Section 5.2.3, we make use of insights from PDD to propose Probabilistic Joint Re-
duction that is suitable for structured inputs. To measure how our Probabilistic Joint
Reduction compares against PDD, we define four different variants of joint reduction to
replace line 9 of algorithm 6 with and evaluate the performance of the following reducers:

1. Type Batched PDD: This is the variant that is the closest to the original PDD pro-
posed in the literature. Although type batched PDD reduces an entire parse tree
rather than a list, it uses removal success probabilities of nodes to construct chunks.
In addition, it considers the value gained by removing each node to be the same and
equal to one. These are the same strategies taken by PDD.

2. Type Batched PDD+w: Similar to type batched PDD, Type Batched PDD+w leverages
probabilities of nodes to construct chunks but instead of considering the gain of all
nodes as one, it defines the number of token descendants or token weight of each node
as its gain.

3. Type Batched Joint: This is our Type Batched Probabilistic Joint Reduction
that uses expected gain of each node that is the product of its removal probability
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Figure 5.11: Converging to a reduced test case in our sample benchmark using Type
Batched Joint, Type Agnostic Joint and Type Batched Pardis.

and token weight to construct chunks and considers the token weight of each node as
its gain.

4. Type Batched Joint+1: This variant constructs chunks of nodes by expected gain but
considers the value of each node to be one.

Table 5.9 summarizes the above variants based on their prioritization in chunk con-
struction and gained value computation mechanisms. Results of reduction on our sample
benchmark using these joint variants are shown in Figure 5.12 with X axis to be the re-
duction time in seconds and Y axis to be the log scaled percentage of remaining tokens.
As can be seen, for the majority of the cases, either Joint or Joint+1 shows the best results
among variants which highlights the significance of prioritizing elements by expected gain
in structured domains.
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Table 5.9: Different variants of joint reduction distinguished by their different prioritization
mechanisms in chunk construction and computing gained values.

Prioritized by Gained value

Variant
...

probability
...

expected gain
...

token weight
...

1
...

PDD ✓ ✓
PDD+w ✓ ✓

Joint ✓ ✓
Joint+1 ✓ ✓
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Figure 5.12: Converging to a reduced test case in our sample benchmark using different
variants of Joint reduction and PDD.

Size of removed chunks. Finally, to better understand why type batching improves the
overall performance of joint reduction, we compute the distributions of sizes of chunks that
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Figure 5.13: Distribution of number of nodes (n) removed together using Type Batched
Joint vs. type agnostic joint reduction.

were successfully removed using Type Batched Probabilistic Joint Reduction and
its type agnostic version (using type schedules vs. not using them) for the C benchmarks.

Figure 5.13 compares the two distributions. As can be seen, the number of larger chunks
that were successfully removed increases using type batching. In more detail, chunks of size
one decrease from 77% in type agnostic approach to 49% of the total successful oracle queries
when performing type batching while chunks of size two, three and four increase from 12%,
5% and 2% to 21%, 10% and 6% of the total successfully removed chunks. Chunks of size
larger than 10 comprise 4% of successful oracle queries in the type batched approach while
this number is 1% for the approach not performing type batching. In particular, we observe
chunks of size up to 58 when using our type batched reducer which enables successful removal
of 58 nodes together. Having larger chunks of nodes can explain the faster convergence of
joint reduction when using type batching compared to not using it.

RQ3: Comparison with the state of the art techniques

Finally, we compare the overall performance of Type Batched Probabilistic Joint
Reduction against Perses, Pardis and its variants on our full benchmark set. Again, we
use Pardis for the clean-up phase of Type Batched Probabilistic Joint Reduction.
Although any type of reducer can be used for this phase, we believe that using other reducers
for clean-up is not likely to have a significant impact on the overall performance of Type
Batched Probabilistic Joint Reduction. This can be supported by the empirical
evidence shown in Figure 5.10 where most of the reduction occurs during type batching
with few tokens left for the clean-up phase.

113



Results are shown in Table 5.10 and Table 5.11. Similar to other full evaluation studies
in the dissertation, the first table shows results of reduction with removal only operations
while the second table presents results of removal and replacement.

For C test cases, Type Batched Probabilistic Joint Reduction has the shortest
average reduction time and the highest average efficiency in both tables. It improves the
reduction time of Perses DD by 60% in Table 5.11 and has 41% faster reduction compared
to the next best reducer for C programs in this table, Pardis Hybrid. For Rust and Go
programs, Model Guided Pardis with Mrf.node as its model has the best performance on
average among all techniques.
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Similar to other chapters, we provide a speed up table by dividing the reduction time of
Perses DD by the reduction time of Type Batched Probabilistic Joint Reduction.
To make a thorough comparison, we also compute and provide the speed up metric for other
reduction techniques proposed in this dissertation with respect to Perses DD. Table 5.12
summarizes the results for the speed up metric across all techniques. Based on these result,
the two techniques Type Batched Reducer and Model Guided Pardis yield the
highest speed up for test case reduction among all techniques.

Table 5.12: The speed up achieved by each test case reduction technique with respect to
Perses DD.

Replacements disabled Replacements enabled

Test Case Perses
OPDD

..
Pardis Pardis

Hybrid
Model
Guided
Pardis

Type
Batched

Joint

Perses
OPDD

..
Pardis Pardis

Hybrid
Model
Guided
Pardis

Type
Batched

Joint
clang-22382 1.02 0.84 1.25 0.87 1.83 1.02 0.83 1.15 0.83 1.56
clang-22704 1.16 0.39 1.20 0.31 0.38 1.20 0.54 1.06 0.56 0.50
clang-23309 1.08 2.89 2.76 5.10 12.42 1.06 1.06 0.85 0.97 9.25
clang-25900 1.14 2.41 2.53 2.81 3.30 1.11 1.68 1.81 1.76 2.92
clang-27747 1.17 2.46 2.58 2.71 3.10 1.09 1.52 1.44 1.30 2.57
clang-31259 1.05 2.05 2.14 4.14 2.06 1.12 1.62 1.77 1.96 3.47
gcc-59903 1.08 2.83 2.63 5.86 3.02 1.02 0.51 0.51 0.55 2.51
gcc-60116 1.05 2.47 2.40 6.27 2.92 1.02 2.93 2.89 3.24 4.97
gcc-61383 1.25 1.82 3.07 1.74 2.60 1.23 1.41 1.97 1.25 2.96
gcc-61452 1.01 1.46 1.89 1.45 2.19 1.03 1.38 1.80 1.35 1.93
gcc-61917 1.11 2.00 2.75 2.53 2.33 1.11 1.45 1.85 1.31 2.67
gcc-64900 1.11 2.05 2.20 2.73 2.74 1.08 1.83 1.97 1.20 3.33
gcc-65383 1.13 2.18 2.23 1.22 2.73 1.06 1.58 1.77 1.18 2.97
gcc-66186 1.10 2.29 2.32 2.81 2.10 1.11 1.71 1.81 1.20 2.52
gcc-71626 1.12 1.36 2.38 1.27 4.22 1.03 1.13 2.57 1.06 3.00
gcc-71632 1.03 1.13 1.11 3.44 1.09 1.00 1.06 1.10 1.39 1.16
gcc-77624 2.60 1.30 2.17 1.63 2.17 0.77 0.67 0.91 0.63 2.00
geomean 1.16 1.71 2.13 2.20 2.42 1.06 1.23 1.48 1.16 2.51
median 1.11 2.05 2.32 2.71 2.60 1.06 1.41 1.77 1.20 2.67

rust-44800 1.06 1.81 1.90 4.85 1.97 1.00 1.00 1.00 1.01 1.29
rust-63791 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
rust-65934 1.13 2.26 2.10 4.78 0.58 0.91 1.39 1.20 8.64 1.28
rust-69039 1.00 1.87 1.61 12.04 1.82 1.03 1.24 1.18 1.61 1.43
rust-77002 0.84 1.20 0.91 4.69 1.32 1.14 1.14 1.14 4.54 2.29
rust-77993 1.13 1.03 1.09 0.22 0.27 0.90 0.65 0.90 0.44 1.41
rust-78336 1.03 1.61 1.59 1.58 1.49 1.16 1.24 1.46 1.54 1.33
rust-78622 1.19 2.11 2.09 1.70 2.15 1.03 1.79 1.85 2.49 1.36
geomean 1.04 1.54 1.46 2.30 1.11 1.02 1.14 1.19 1.79 1.39
median 1.05 1.71 1.60 3.20 1.41 1.02 1.19 1.16 1.58 1.35

go-28390 1.10 1.83 1.83 3.30 1.74 1.00 1.46 1.52 1.84 1.09
go-29220 1.50 2.00 2.00 2.40 1.33 0.89 1.00 0.94 0.89 0.94
go-30606 1.04 1.55 1.53 2.21 1.20 1.00 1.14 1.09 1.27 1.08
geomean 1.20 1.78 1.78 2.60 1.41 0.96 1.19 1.16 1.28 1.03
median 1.10 1.83 1.83 2.40 1.33 1.00 1.14 1.09 1.27 1.08

The speed up metric allows for comparing reduction techniques based on their reduction
time. To also illustrate the impact of reduced size on the performance of these techniques,
we provide graphs in Figure 5.14 and Figure 5.15. For each domain, the X axis shows the
average reduced size generated by each technique divided by the average original size of the
test cases in the domain. The Y axis is the average reduction time of the technique divided
by the average reduction time of Perses DD in that domain. Because X axis represents size
and Y axis is reduction time, the technique on the bottom left of the graphs has the best
performance.
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As a result, we can see that Type Batched Reducer with disabled node replacement is
the best reducer for the C domain as shown in Figure 5.14 (a). Depending on the metric one
is trying to improve, either Type Batched Reducer, Model Guided Pardis, Pardis
or even Pardis Hybrid may be the best reduction option for the Rust and Go domains.
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Figure 5.14: Reduced size and reduction time of each technique with respect to the original
size and Perses DD’s reduction time. Node replacements disabled. The technique on the
bottom left of the graphs has the best performance.
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Figure 5.15: Reduced size and reduction time of each technique with respect to the original
size and Perses DD’s reduction time. Node replacements enabled. The technique on the
bottom left of the graphs has the best performance.

5.3 Summary

In this chapter, we trained and used machine learning models to further speed up test case
reduction. In particular, we focused on addressing the problem of semantically invalid tests
generated by domain agnostic reducers during reduction. These tests with no real impact
on the reduced size could significantly waste the reduction time and effort.

To mitigate the adverse effect of these tests, we proposed Model Guided Pardis
that improves the performance of Pardis by predicting and skipping tests on candidates
that are likely to be semantically invalid. We leveraged multiple sets of features to train
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various models. Our results highlight the importance of grammar rule types in developing
effective and efficient models that are capable of predicting semantic invalidity. In particular,
Model Guided Pardis with Mrf.node model trained by the grammar rule type of the node
considered for removal, resulted in an average speed up of 1.29x, 1.49x, and 1.46x for C,
Rust, and Go domains, respectively compared to Pardis. This speed up led to a slight
increase in the average reduced size. While Pardis generated outputs with 587, 148, and
138 tokens on average for C, Rust, and Go domains, respectively, the reduced outputs
produced by Model Guided Pardis had 648, 200, and 166 tokens on average.

Additionally, we proposed Type Batched Probabilistic Joint Reduction that
leverages grammar rule types to prioritize and suggest portions of the test case that are the
most advantageous to reduce. This suggestion is made through a schedule of types that is
built dynamically during the reduction process. Moreover, we demonstrated that using type
schedules can increase the probability of successful simultaneous removal of several nodes
to further accelerate reduction.

Compared to the state of the art Perses, Type Batched Probabilistic Joint Re-
duction led to an average speed up of 2.42x, 1.11x, and 1.41x when reducing C, Rust,
and Go programs, respectively. The outputs generated by Type Batched Probabilistic
Joint Reduction were either smaller or equal in size to those produced by Perses with
565, 150, and 138 tokens on average for C, Rust, and Go, respectively. The average reduced
size by Perses was 654, 151, and 138 tokens for these domains.

To summarize, both Model Guided Pardis and Type Batched Probabilistic
Joint Reduction address the problem of semantic invalidity during reduction to increase
efficiency. While the former achieves this by learning to avoid semantically invalid tests, the
latter learns to guide reduction towards performing tests that are likely to be semantically
valid. Additionally, by building chunks of nodes based on updating the belief of remov-
ability of each node with regard to both semantic validity and the property of interest,
Type Batched Probabilistic Joint Reduction is capable of simultaneously removing
multiple portions of the test case.
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Chapter 6

Discussion

So far in the dissertation, we proposed and evaluated domain agnostic techniques to ac-
celerate test case reduction for inputs from multiple domains. In this section, we examine
how our techniques compare against C-Reduce [13], the most well-known domain specific
program reducer for C. We also discuss the threats to validity of our techniques and the po-
tential improvements as directions for further exploring domain agnostic test case reduction
in the future.

6.1 C-Reduce: A Domain Specific C Reducer

As described earlier in Section 2.4.2, C-Reduce is a powerful tool for effectively reducing
C programs. Its search space is hand tailored to adhere to the validity constraints of the
domain. Due to a larger and more sophisticated set of reduction transformations, C-Reduce
tends to generate outputs that are smaller than the domain agnostic reducers with gener-
alized search spaces.

To better understand how our proposed techniques stand in relation to C-Reduce, we
conduct the following two studies:

1. Running C-Reduce on the original C programs in our benchmark to measure the
reduced size, reduction time, the number of queries and the efficiency of this domain
specific reducer.

2. Running C-Reduce on the smaller versions of the C programs in our benchmark that
are already reduced by one of our proposed domain agnostic reducers. In other words,
we make use of C-Reduce as a post processing step for enabling potential further
reduction on the outputs generated by our reducer.

Results of the first study are presented in Table 6.1. For direct comparison, reduction
results of Type Batched Probabilistic Joint Reduction are also shown in the table.
We select our Type Batched Reducer to compare it against C-Reduce since it has the
smallest number of oracle queries, the shortest reduction time and the highest efficiency
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Table 6.1: A comparison between the performance of domain specific C-Reduce and domain
agnostic Type Batched Probabilistic Joint Reduction on the set of C programs.
Node replacements are enabled in Type Batched Reducer.

C-Reduce Type Batched Joint
Test Case

...
O(#)

t R(#) Q(#) T (s) E(#/s) R(#) Q(#) T (s) E(#/s)

clang-22382 21,069 70 16,104 4,659 4.51 331 1,882 2,261 9.17
clang-22704 184,445 51 16,953 3,656 50.44 233 4,755 3,542 52.01
clang-23309 38,648 43 30,569 3,348 11.53 154 780 241 159.73
clang-25900 78,961 101 21,982 2,354 33.50 315 1,889 568 138.46
clang-27747 173,841 69 15,038 1,638 106.09 401 1,730 631 274.87
clang-31259 48,800 127 25,741 3,034 16.04 362 1,623 698 69.40
gcc-59903 57,582 102 47,632 5,156 11.15 623 2,699 1,821 31.28
gcc-60116 75,225 84 33,960 4,328 17.36 608 4,032 1,830 40.77
gcc-61383 32,450 71 17,574 2,154 15.03 315 1,642 609 52.77
gcc-61452 26,733 130 32,825 13,293 2.00 360 1,867 2,067 12.76
gcc-61917 85,360 80 31,999 4,431 19.25 366 2,369 686 123.90
gcc-64990 148,932 110 31,258 6,270 23.74 332 1,834 687 216.30
gcc-65383 43,943 61 18,193 2,617 16.77 271 1,600 612 71.36
gcc-66186 47,482 142 27,907 4,358 10.86 394 1,720 621 75.83
gcc-71626 6,134 44 3,831 226 26.95 60 164 12 506.17
gcc-71632 141 73 8,686 953 0.07 75 134 49 1.35
gcc-77624 1,306 15 951 79 16.34 22 89 5 256.80
geomean 29,769 72 17,254 2,367 12.00 240 1,219 445 63.47
median 47,482 73 21,982 3,348 16.34 331 1,730 631 71.36

O, R and Q denote number of tokens in the original program, reduced one and total number of
oracle queries performed by the reduction technique, respectively. T is the reduction time in seconds
and E is the efficiency in terms of number of removed tokens per second.

among our domain agnostic reducers on average for the C domain. As can be seen, Type
Batched Reducer is able to reduce these programs in 445 seconds on average compared
to C-Reduce with an average reduction time of 2,367 seconds. In addition, Type Batched
Reducer performs only 1,219 oracle queries while the average number of tests performed
by C-Reduce is 17,254. The number of tokens removed per second is more than 63 by Type
Batched Reducer compared to 12 tokens by C-Reduce. In other words, reduction time
and number of oracle queries improve by 81% and 93%, respectively and the efficiency
becomes more than 5 times larger using the Type Batched Reducer. In contrast, with
respect to size, Type Batched Reducer generates outputs of size 240 tokens on average
compared to 72 tokens by C-Reduce which means that C-Reduce has 70% more reduction
power.

The above results are expected because as described earlier in this chapter, the more
sophisticated search space of C-Reduce increases both the power and time of reduction. If a
slight increase in size is negligible, Type Batched Reducer will be a more suitable choice
because it offers a framework for faster reduction. C-Reduce, on the other hand, excels in
situations where a smaller size is strictly required.

A question that arises here is that can we combine the benefits of both domain specific
and domain agnostic reducers? Can we set up a framework to yield the higher reduction
power of C-Reduce and the shorter reduction time of Type Batched Reducer together?
The second study stated above can answer this question.
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Table 6.2: The performance of reduction when using domain agnostic Type Batched
Probabilistic Joint Reduction as a preprocessing step before C-Reduce.

C-Reduce Type Batched Joint → C-Reduce

Test Case
...

O(#)
t R(#) Q(#) T (s) E(#/s) R(#) Q(#) T (s) E(#/s)

Speed Up
(×)
...

clang-22382 21,069 70 16,104 4,659 4.51 70 11,309 3,562 5.90 1.31
clang-22704 184,445 51 16,953 3,656 50.44 50 11,304 4,055 45.47 0.90
clang-23309 38,648 43 30,569 3,348 11.53 22 5,732 615 62.81 5.44
clang-25900 78,961 101 21,982 2,354 33.50 83 15,869 1,820 43.34 1.29
clang-27747 173,841 69 15,038 1,638 106.09 71 12,513 1,576 110.26 1.04
clang-31259 48,800 127 25,741 3,034 16.04 166 23,354 2,529 19.23 1.20
gcc-59903 57,582 102 47,632 5,156 11.15 102 32,428 4,004 14.36 1.29
gcc-60116 75,225 84 33,960 4,328 17.36 93 22,665 3,633 20.68 1.19
gcc-61383 32,450 71 17,574 2,154 15.03 73 11,645 1,327 24.40 1.62
gcc-61452 26,733 130 32,825 13,293 2.00 117 17,584 3,782 7.04 3.51
gcc-61917 85,360 80 31,999 4,431 19.25 118 14,243 1,599 53.31 2.77
gcc-64990 148,932 110 31,258 6,270 23.74 75 14,501 1,870 79.60 3.35
gcc-65383 43,943 61 18,193 2,617 16.77 81 10,144 1,287 34.08 2.03
gcc-66186 47,482 142 27,907 4,358 10.86 142 19,011 2,544 18.61 1.71
gcc-71626 6,134 44 3,831 226 26.95 44 2,721 132 46.14 1.71
gcc-71632 141 73 8,686 953 0.07 74 2,385 767 0.09 1.24
gcc-77624 1,306 15 951 79 16.34 15 983 48 26.90 1.65
geomean 29,769 72 17,254 2,367 12.00 71 10,155 1,375 20.71 1.72
median 47,482 73 21,982 3,348 16.34 75 12,513 1,820 26.90 1.62

O, R and Q denote number of tokens in the original program, reduced one and total number of oracle queries
performed by the reduction technique, respectively. T is the reduction time in seconds and E is the efficiency in
terms of number of removed tokens per second.

To this end, we run Type Batched Reducer as a preprocessing step of C-Reduce
to perform reduction as fast as possible using our domain agnostic reducer, and then run
C-Reduce on the output files of Type Batched Reducer to perform a more rigorous
reduction. Results of this combined study are shown in Table 6.2. Interestingly, using Type
Batched Reducer before C-Reduce generates outputs that are the same or even smaller
than those generated by C-Reduce in 10 out of 17 cases. In other cases, outputs generated by
Type Batched Reducer → C-Reduce are only a few tokens larger. On average, running
Type Batched Reducer before C-Reduce generates outputs of size 71 tokens in 1,375
seconds while C-Reduce generates outputs of size 72 tokens in 2,367 seconds on average. The
combined technique increases the speed of C-Reduce by 1.72 on average while maintaining
its reduction power. The results of this study suggest that Type Batched Reducer can
be used complementary to C-Reduce to accelerate test case reduction even in cases where
a smaller size is strictly required.

To further support the above claim, Figure 6.1 (a) depicts a comparison between C-
Reduce and Type Batched Probabilistic Joint Reduction both as standalone and
complementary techniques. The X axis is computed by dividing the reduced size generated
by each technique by the original size for each test case. Y axis shows the reduction time of
each technique divided by C-Reduce’s reduction time. As a result, this value is always one
for C-Reduce when it is used individually. Again because X axis represents size and Y axis is
reduction time, the technique on the bottom left of the graphs has the best performance. For
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Figure 6.1: Reduced size and reduction time of C-Reduce, Type Batched Probabilistic
Joint Reduction and their combined version with respect to the original size and C-
Reduce’s reduction time. The technique with more points on the bottom left of the graphs
has a better performance.

better illustration, Figure 6.1 (b) shows the same graph with a focus on the majority of the
data by excluding gcc-71632 with the outlier points. As can be seen, both Type Batched
Joint and Type Batched Joint → C-Reduce have shorter reduction time compared to
C-Reduce, while Type Batched Joint → C-Reduce generates outputs similar in size to
those produced by C-Reduce.

6.2 Threats to Validity

In this section, we discuss some of the threats to validity of the results presented in the
dissertation.

6.2.1 Generalizability

To prevent bias as much as possible on our part, we used the benchmark provided by Perses
and available on their Github repository [43]. This benchmark consists of multiple primarily
large C, Rust and Go programs that reveal bugs in real-world compilers. We were able to
replicate failures for the majority of these programs. To further generalize the benchmark,
we augmented it by an XML file to demonstrate the capability of our techniques in reducing
non-program inputs as well.

We compare our techniques with the state of the art on the full set of benchmark
discussed above. For explanatory studies, we choose a random sample and use it consistently
across the dissertation. We embed at least one program from each domain into this sample
benchmark.
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6.2.2 Non-deterministic Behavior

The majority of our test cases reveal bugs in compilers. As a result, the oracle scripts in our
studies contain calls to failing compilers and other potential applications such as address
sanitizers and undefined behavior checkers. Although compilers are deterministic in general,
address space layout randomization (ASLR) may cause a non-deterministic behavior of a
compiler by randomizing loading memory locations of executables. To mitigate this problem,
in addition to performing multiple runs for each test case and each reduction technique, we
disabled ASLR during our studies.

6.2.3 Oracle Verification Time

We previously discussed in Section 4.5.3 that the verification time of every single oracle run
can directly impact the total reduction time of the technique. In particular, we demonstrated
that a technique with a larger number of oracle calls may have a shorter overall reduction
time if its oracle calls are less expensive. One of the factors that affects the oracle verification
time is the input size. For instance, compared to Pardis, Pardis Hybrid removes multiple
nodes together and generates typically smaller remaining configurations that need to be
tested against an oracle. Smaller inputs tend to be compiled faster. As a result, there were
cases in Table 4.1 where the reduction time of Pardis Hybrid was shorter but the number
of tests were larger than those performed by Pardis.

However, it is also possible that multiple runs of an oracle on the same input differ in
verification time as well. This is again due to the compilation phase that may differ in timing
when compiling the same input multiple times. Thus, when comparing two techniques, it
is possible that they both run the same oracle on the same input at some point during
their reduction and obtain different results for verification time. This problem may be more
noticeable when compiling the Rust test cases as the compilation in Rust requires multiple
dependencies and usually takes longer than compilation in C. To mitigate this problem,
we run several rounds of reduction for each test case and technique on the same execution
environment to ensure that the results do not diverge significantly.

6.2.4 1-minimality

As described earlier in Chapter 2, finding the absolute global minimum of a test case with
a property of interest is not feasible. Hence, each reducer has its own search space and
may produce a different reduced output. This may cause some unclarity when comparing
techniques. For example, it is possible that a technique that is theoretically worse than other
techniques performs well on a specific test case in practice. The structure of the specific test
case and the search space of the reducer can for instance allow for removing a statement with
multiple uses early in the reduction phase and enable the removal of those uses’ declarations
once they are visited.
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To mitigate this problem, in addition to the results of reduction on each individual test
case, we provide the average behavior of each technique through geomean and median values
for each domain.

6.3 Future Work

In this section, we discuss some potential future research directions that can further ac-
celerate test case reduction and yield speeds that can minimize developer interruption. In
particular, we focus on integrating machine learning into the reduction process.

6.3.1 Input Features

We used a specific set of features to train our models. In particular, we found that grammar
rule types provide valuable information for the learning process. While effective, the fea-
tures selected in this dissertation are not the only properties to leverage in order to reason
about the validity of the tests. We may use more complex features in future to further im-
prove precision of models. For example, we can define features that more precisely capture
dependencies among elements in the test case. A path from a declaration to a use or some
dependency pairs representing def/use elements may be appropriate choices to this end.
However, a possible challenge is increased noise in the training data that may adversely
affect the performance of the models.

6.3.2 Reduction Operations

We currently train our models with respect to the removal operations. Model Guided
Pardis learns when to perform a removal trial on a node and when not to. Type Batched
Reducer also learns how to select batches of nodes that are likely to have a higher expected
rate of removal. As a future direction, it is possible to learn other reduction operations such
as node replacement. Model Guided Pardis can be extended to learn when to perform
a node replacement or what candidate node to choose for replacement in order to increase
the likelihood of successful reduction. Type Batched Reducer can also be extended to
approximate the expected rate of both removal and replacement.

6.3.3 Training Data and Algorithms

We used random forests and logistic regression to train our models. Our goal in this disser-
tation was not to propose models with the best absolute performance. Rather, we aimed to
derive models that are easy to understand and that can convincingly show that the effect of
machine learning on test case reduction is real. In fact, this dissertation opens the door to
several future improvements for using machine learning to directly guide test case reduction.
For instance, neural embeddings of the nodes [59] could be used to help guide the batch
partitioning process. Moreover, longer term reduction reward computed by reinforcement
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learning techniques [60] could be used to improve the overall reduction process. For in-
stance, our Type Batched Reducer currently focuses on greedy selection of batches, but
it is possible that suboptimal greedy batches actually improve the reduction rates for other
partitions afterward. Models of reduction that can account for ordering beyond time and
impact on longer rates provide an avenue here. We expect this to improve our time-varying
schedules that still fall in some regions of the standard deviation of random schedules in
Figure 5.10.

Finally, the training data directly impact the behavior of the models. Thus, we made
our best effort to collect representative data by using large fuzzer-generated programs and
trending Github projects. However, different training data sets can be used to investigate
their impact on the reduction process. In one of our prior works [29], we leveraged small
test cases from the GCC torture test suite [61] to train models for Model Guided Pardis
on the C domain that has the largest test cases. Those models had a similar behavior
compared to the models trained by large fuzzer-generated programs in this dissertation.
Future research on using different training data sets on various domains is possible.

6.3.4 Human Studies

Similar to prior works on test case reduction [1, 14, 15, 13, 36, 16, 31, 19], we evaluate
the performance of our techniques in terms of the metrics mentioned in Section 2.6.3. The
intuition is that a smaller test case obtained within a shorter reduction time indicates a
higher performance of the reduction technique. Although this statement seems reasonable,
it leaves out an important determining factor in evaluating a software technique: How can
a technique help humans in practice? Although an interesting question, finding an answer
to it has been out of the scope of our dissertation and can be pursued as an interesting
direction for future work.
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Chapter 7

Related Work

We describe research work related to this dissertation from multiple perspectives. First, We
discuss research on test case reduction, its techniques and applications in general. Then, we
focus on program reduction as a specific kind of test case reduction and present the most
recent state of the art program reducers. In addition, we describe some works that introduce
other applications and uses of program reduction. We explain how the methods suggested
in this dissertation differ from the ones already in use for test case reduction. Finally, we
review works that make use of machine learning algorithms in the context of programs.

7.1 Test Case Reduction

In this section, we discuss related research on different algorithms and applications of test
case reduction.

7.1.1 Algorithms

Over the past few years, test case reduction has become a popular and interesting research
direction. The Delta Debugging algorithm, ddmin, proposed by Zeller and Hildebrandt [1]
has undoubtedly played an important role in this regard. This algorithm provides a general
framework similar to binary search that is capable of reducing inputs from any domain.
In spite of its generality, Delta Debugging is primarily unsuitable for minimizing test cases
with structure. This is because Delta Debugging treats a test case as a flat input without
reasoning about the relationships among its atomic elements.

To compensate for this shortcoming, a variant of Delta Debugging called Hierarchical
Delta Debugging (HDD) was proposed by Misherghi and Su [14] that applies Delta De-
bugging on the levels of the parse tree generated for the structured input. Leveraging the
structure of a test case in the form of a parse tree increases the likelihood of reducing re-
lated portions together, creating smaller test cases faster compared to the original Delta
Debugging algorithm.
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Although HDD improves the efficiency and effectiveness of Delta Debugging, it still
suffers from drawbacks. More specifically, HDD does not preserve syntactic validity of a test
case during reduction. This is due to the fact that HDD only uses the domain knowledge to
build a parse tree at the beginning of the reduction and does not utilize it to further guide
the reduction process. As a result, a large number of syntactically invalid test case variants
can be generated during reduction. Performing tests on these variants is always unsuccessful,
leading to an increase in the reduction time without any impact on the reduced size. To
mitigate this problem, Misherghi proposed a syntax guided version of HDD in a dissertation
format [23]. By computing the minimal syntactically valid string for each grammar rule and
its corresponding node in the parse tree, the syntax guided HDD reduces the total number
of invalid tests and the overall test case reduction time by only running tests that adhere
to the syntactic constraints of the input domain.

Since HDD and its syntax guided version were first proposed, extensive research has
been done to improve them. To this end, Hodován and Kiss proposed Modernized Hierar-
chical Delta Debugging [19] that uses an extended form of context-free grammars to replace
recursive rules with rules that have quantifiers. In contrast to HDD, Modernized HDD gen-
erates parse trees that are more balanced, leading to potentially more reduction. Moreover,
using quantifiers in context-free grammars makes syntactically valid reduction opportunities
more explicit.

To enable reduction operations other than removing nodes from the parse tree, Morton
and Bruno proposed performing node substitutions in their reducers, FlexMin [10] and
SIMP [9] that were introduced for simplifying database queries. These reducers perform
HDD’s regular reduction operations, while they are also capable of restructuring trees by
performing node replacements. These replacements can allow for more reduction, yielding
potentially smaller final reduced test cases. To preserve syntactic validity when replacing
nodes in the parse tree, FlexMin and SIMP leverage the grammar knowledge to identify
syntactically compatible descendant nodes.

Replacing nodes is also proposed by Herfert et al. [22] in their approach called generalized
tree reduction (GTR). Similar to FlexMin and SIMP, GTR tends to preserve syntactic
validity in its reduction. To this end, GTR limits its search space to the children of a
node and instead of using the grammar knowledge, it leverages a corpus of data that has
been automatically collected from a large number of test cases in the same domain. Using
this corpus of data, GTR filters out those candidate replacements that will restructure the
tree such that the new structure has not been observed in the corpus. The GTR’s filtering
mechanism can be useful if the grammar of the test case is not available (e.g., due to
the ownership rights). However, the possibility of the false negatives can make GTR miss
reduction opportunities by skipping valid replacements that have not been observed in the
corpus.
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Finally, a recent work by Vince et al. [37] thoroughly investigates the node replacement
operation in a version of HDD called HDD extended with hoisting and shows that node
replacements can indeed lead to smaller reduced test cases. For each technique that we
investigate in this dissertation, we provide results for both removal only and removal and
replacement reduction. Our results also support the idea of applying node replacements
when smaller outputs are desired.

As another measure to improve HDD, Hodován and Kiss [36] introduced a simple but
effective algorithm to squeeze the parse tree vertically. This algorithm skips performing tests
on nodes present in the middle part of a chain that have a minimal string identical to the
last node of the chain. A chain is defined as a sequence of nodes with only one child. Using
this algorithm, the efficiency of HDD improves by skipping tests that can not have any
impact on the size of the reduced test case. Our syntactical removability pruning algorithm
proposed in Section 4.4 is similar to the idea of Hodován and Kiss for chains.

Coarse Hierarchical Delta Debugging [16] is another improvement over HDD which can
be used as a standalone reduction technique if 1-minimality is not a strict requirement. It
can also be used as a preprocessing step for the original HDD. Coarse HDD skips performing
tests on nodes that do not have an empty minimal string according to the grammar and
only targets syntactically removable nodes. As a result, it has a smaller search space that
can speed up reduction.

HDDr [17], a recursive variant of Hierarchical Delta Debugging is another proposed
improvement that recursively applies HDD on the children of nodes starting from the root
node. Hence, instead of applying the Delta Debugging algorithm on all the nodes present at
a level, HDDr applies Delta Debugging on the siblings, increasing the likelihood of successful
tests by considering interrelated nodes together.

In addition to the solutions presented to improve Hierarchical Delta Debugging, there
are works that try to improve the original Delta Debugging algorithm, ddmin, itself.

A lack of dependence among tests performed by Delta Debugging has enabled parallel
implementations of its algorithm [31]. Berkeley Delta [62] makes use of a line-based parti-
tioning mechanism to generate subsets and complements that are more likely to adhere to
the domain constraints. Generalizing the split factor of Delta Debugging is another improve-
ment measure proposed in the literature to accelerate the progress of the algorithm [63].

Groce et al. [33] extend Delta Debugging to achieve test cases that are more suited for
scenarios other than failures. Lithium [18] is another improvement over Delta Debugging
which performs revisiting tests only at the finest granularity. The idea of our technique,
One Pass Delta Debugging (OPDD) [2] is similar to Lithium. However, OPDD skips
performing revisiting tests at all granularities, including the finest granularity. Moreover,
OPDD is the first work to propose the notion of deferred removal and empirically exploiting
it along with satisfaction of unambiguity described by Zeller [34] and common dependence
order in practice to speed up test case reduction.
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Recently, Wang et al. [32] proposed Probabilistic Delta Debugging (PDD), a variation of
Delta Debugging that works by learning the probability of removal success for each element
in the test case based on the collection of prior tests. The original idea of our Probabilistic
Joint Reduction technique was inspired by the PDD algorithm. However, we apply the
modifications discussed in this dissertation to make the reduction algorithm more suitable
for structured domains. Additionally, we empirically demonstrate that running our Type
Batched Reducer in combination with Probabilistic Joint Reduction technique
can further improve the performance of PDD-based joint reducer.

Using dynamic tainting to reduce inputs of programs [64], searching through file-based
subsets of a test case exhaustively [65], isolating failure causes by comparing passing and
failing runs [66, 67, 68, 69, 70], embedding internal reduction into test case generation
tools [71], and optimizing test suites rather than simplifying test cases [72, 73] are among
other remarkable reduction techniques in the literature.

7.1.2 Applications

Test case reduction techniques, particularly the Delta Debugging algorithm, ddmin, have
been widely used in a variety of domains and applications in practice.

To mention a few, using the Delta Debugging algorithm, Orso et al. [74] automati-
cally isolate the subset of the interactions between components of a large system and their
environment, Hammoudi et al. [8] reduce recordings of events that lead to a failure of a
web application, and Choi and Zeller [11] simplify the failure-inducing thread schedules of
concurrent programs.

DEMi, a tool developed by Scott et al. [75], minimizes faulty executions of distributed
systems by applying Delta Debugging as part of its minimization phase and Clapp et al. [12]
propose a technique for minimizing GUI event traces generated for Android applications
by utilizing a variant of Delta Debugging. Lei and Andrews [76] generate randomized unit
tests and show that applying Delta Debugging is very effective for reducing sequences of
method calls in the failing tests generated during the fuzz testing process [77]. Similarly,
Pike introduces SmartCheck [78] to reduce counterexamples generated by QuickCheck [79],
a tool for random testing of Haskell programs. Leitner et al. [80] propose that applying
static slicing in conjunction with Delta Debugging could result in a more efficient test case
minimization technique. Similarly, Gupta et al. [81] integrate Delta Debugging with the
benefit of forward and backward dynamic program slicing. Brummayer and Biere [82, 83]
devise a grammar-based black box fuzz testing technique for generating robust SMT solvers
and integrate Delta Debugging into their technique to obtain minimized SMT formulas that
are more useful for test case generation, debugging and verification.
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7.2 Program Reduction

Program reduction is a specific kind of test case reduction in which reduction is performed
on program source code typically used as an input to a compiler or interpreter. These
programs in the form of complex and structured data are often generated randomly during
the fuzz testing of the compiler or interpreter and may contain parts that are not relevant
to the failure [4, 13]. Two different types of program reducers are proposed in the literature
to simplify these programs: domain specific and domain agnostic tools.

Domain specific reducers are powerful tools capable of reducing programs of a single
domain. Their development requires extensive domain specific knowledge and expertise.
The most well-known domain specific program reducer is C-Reduce [13], an effective tool
for reducing C programs. C-Reduce has inspired similar domain specific program reducers,
each hand tailored for a specific programming language domain. Among them are Elm-
Reduce [6], a reducer for the test cases written in the Elm programming language, JS
Delta [84], developed for the JavaScript domain, spirv-fuzz [85], a tool specific to the SPIR-
V domain, an intermediate representation used by the OpenCL programming models, J-
Reduce for Java bytecode [20, 21], and ReduKtor for Kotlin [86]. Our domain agnostic
techniques proposed in this dissertation can be used as both standalone or complementary
to the domain specific reducers.

A recent domain agnostic program reducer is Perses [15]. It performs reduction in a
syntax guided manner using a priority queue. Although Perses is introduced as a program
reducer, it is capable of reducing inputs of any domain with a given grammar, including
test cases that are not programs such as XML files.

This dissertation tackles the problem of speeding up test case reduction with a particular
eye on improving Perses. More specifically, we address the shortcomings present in the
priority mechanism of Perses, how it traverses the parse tree, and the semantically invalid
tests generated during its reduction. We propose Pardis and Pardis Hybrid [28], two
syntax guided priority aware reducers. In contrast to Perses, Pardis and its hybrid version
aim at spending the reduction effort on those portions of the test case that can have a larger
impact on the reduction progress. We further propose a model guided version of Pardis
called Model Guided Pardis [29] that can mitigate the problem of semantically invalid
tests generated by Perses and Pardis.

In addition to simplifying test cases, techniques for program reduction are helpful for
removing unnecessary features, reducing attack surfaces, and decreasing security vulner-
abilities. This process called program debloating has been extensively researched in the
literature [38, 35, 40, 39, 87, 41].

Program reduction has also demonstrated recent utility across domains other than test
case reduction and program debloating. Resource efficiency is one area in which elimi-
nating features can shrink programs to increase their efficiency in IoT settings [25]. In
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addition, program reduction can benefit machine learning by helping to understand mod-
els of code [42, 26]. Trace simplification [88, 89], abstracting an executable slice from the
program [90], fault localization [91], model checking software [92], and reducing execution
paths [93] are among other use cases of program reduction.

7.3 Machine Learning and Programs

Models to perform tasks related to programs are continuously trained and used. Raychev et
al. [94] make use of decision trees to propose probabilistic models for code completion and
repair. Mesbah et al. [95] leverage neural machine translation in their tool called DeepDelta
to repair the code that does not compile. Similarly, bug detectors based on deep learning
have received attention in the literature [96, 97, 98, 99, 100]. There are works using machine
learning to help facilitate static analysis [101, 102, 103, 104]. Grieco et al. [105] make use of
static and dynamic features to predict if a test case is likely to contain a software vulnera-
bility using machine learning techniques. Xue et al. [106] propose a machine learning based
binary code analysis to facilitate malware detection and code refactoring tasks, and Brun
and Ernst [107] identify a subset of properties that are most likely to reveal an error using
a classifier.

Finally, several techniques have integrated learning into the reduction process in some
form. Among traversal based reducers, GTR [22] learns from a corpus which tree transfor-
mations to consider at a node. Both Model Guided Pardis [29] and Type Batched
Reducer proposed in this dissertation leverage models to accelerate reduction by skipping
invalid tests and prioritizing candidates with higher probability of success. CHISEL [35] ap-
plies reinforcement learning to select which Delta Debugging action (test subset, test com-
plement, refine granularity) to apply on a list. Probabilistic Delta Debugging (PDD) [32]
updates its belief in each element of a list being removable based on failed oracle queries,
attempting to remove subsets of a list that look most promising. Neither Chisel nor PDD
leverages prior knowledge about the probability of success. They both solely rely on updat-
ing beliefs based on observed oracle failures during reduction.
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Chapter 8

Conclusions

In this dissertation, we proposed a variety of techniques to accelerate test case reduction,
which is a crucial step for efficiently testing and debugging software. Given a test case with
a property of interest, such as exhibiting a bug in a software under test, our techniques
build a parse tree or abstract syntax tree (AST) of the test case using a grammar and
traverse the tree to apply generalized reduction transformations, such as node removals and
node replacements, to generate a smaller variant of the test case that still preserves the
property. Since our techniques require only a parse tree (or a grammar to build it), they
are generalized and domain agnostic, meaning that they are capable of simplifying inputs
from multiple domains such as test cases written in different programming languages.

In particular, we investigated Perses [15], the latest state of the art domain agnostic
test case reducer that leverages a priority queue to order visiting nodes in the parse tree,
and identified some of its shortcomings that can slow down the reduction process. We then
proposed solutions to address these limitations.

To this end, we first proposed One Pass Delta Debugging (OPDD) [2] which im-
proves the theoretical bounds of the classic Delta Debugging algorithm [1] by converting its
O(n2) worst case time complexity into just O(n). By skipping unnecessary reduction steps,
OPDD achieves better empirical results. Because Perses makes use of Delta Debugging to
reduce lists of nodes, it directly benefits from our One Pass Delta Debugging algorithm.
Using OPDD led to an average speed up of 1.16x, 1.04x, and 1.20x when reducing C, Rust,
and Go programs of our benchmark, respectively while generating outputs of the same size.

Next, we proposed a more efficient traversal order of the tree by devising two new
techniques, Pardis and Pardis Hybrid [28]. These reducers further accelerate Perses’
reduction by prioritizing nodes that may have a larger impact on the reduced size and
visiting them early in the reduction process. Using either Pardis or Pardis Hybrid when
reducing our benchmark led to an average speed up of 2.13x, 1.54x, and 1.78x for C, Rust,
and Go domains, respectively while preserving a similar reduction power compared to the
state of the art Perses.
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Model Guided Pardis [29] was another reduction technique proposed in the disser-
tation to mitigate the problem of semantically invalid test case variants generated during
reduction. To avoid generating these variants that are expensive and hinder successful re-
duction, Model Guided Pardis consults models that we have trained using a large corpus
of data to predict and skip semantically invalid tests. By leveraging simple syntactic prop-
erties of grammars such as rule types, we trained models that could speed up reduction
by 1.29x, 1.49x, and 1.46x on average for C, Rust, and Go domains, respectively compared
to our Pardis technique. While this came at the price of a slight increase in the average
reduced size, our best models exhibited precision and recall rates above 60% when reducing
the majority of real-world test cases in our benchmark.

Finally, we proposed Type Batched Probabilistic Joint Reduction [30] which
again uses machine learning to suggest portions of a test case that are most likely to be
advantageous to reduce at a particular point in the reduction. Using our Type Batched
Reducer, we can guide the reduction process with the goal of maximizing the expected rate
of reduction. We further extended this to jointly reduce multiple portions of the test case
at once. Compared to the state of the art Perses, Type Batched Probabilistic Joint
Reduction led to an average speed up of 2.42x, 1.11x, and 1.41x when reducing C, Rust,
and Go programs, respectively. The outputs generated by Type Batched Probabilistic
Joint Reduction were either smaller or equal in size to those produced by Perses.

The performance results of our techniques are promising and show a significant im-
provement in the speed of test case reduction. Our reduction strategies can be applied both
independently and as complementary to domain specific reducers to enhance their speed.
We expect that by minimizing the disruptions caused by long test case reduction times,
our more efficient reducers can assist developers in maintaining their productivity. We also
believe that our proposed techniques can open up new possibilities for future research.
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