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Abstract 

Material extrusion or fused deposition modeling is a popular 3D printing process 

that currently faces challenges in processing flexible materials such as thermoplastic 

polyurethane regarding printability and fabrication performance. It has been observed that 

naturally occurring printing defects, such as stringing and blobs, have a significant impact 

on the mechanical properties of the prints. To address these challenges, this study 

presents a system that utilizes a convolutional neural network to control defects in real-

time, while simultaneously ensuring the printability of flexible materials through precise 

parameter control. The proposed system autonomously controls printing parameters such 

as flow rate and nozzle temperature. Results show that the system can correct stringing 

and blobs defects within 25 printing layers and reduce printing time by up to 30% while 

keeping the mechanical strength within an error range of 3.18%. This system has the 

potential to improve efficiency and reduce waste in advanced 3D printing technologies. 

Keywords:  3D printing; Material extrusion; Finite deposition modeling; Convolutional 

neural networks; Machine learning; Computer vision 
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 Introduction 

1.1. Background 

Additive Manufacturing (AM), so called 3D printing, is a process which enables the 

creation of complex, three-dimensional objects through the building layers of materials, 

such as plastic or metal, in a precise and controlled manner [1]. The process had 

experienced a remarkable expansion with first commercialization in year 1980 by Charles 

Hull [2]. In recent years, there has been a substantial growth in the development of 3D 

printing technologies. The advancements in 3D printing technology have led to its 

integration into a variety of industries including healthcare [3], aerospace [4], automotive 

[5], etc. The adoption of 3D printing technology in industrial manufacturing has brought 

several advantages over traditional manufacturing methods.  

Artificial Intelligence (AI) is defined to be imitation of intelligent behaviour using 

computing devices which can be divided into two categories: systems that think and act 

like human and systems that think and act rationally [6]. Today, AI is one of the core drivers 

of the industrial processes and a critical factor in emerging technologies in the new 

innovations of data analysis. Over the period of 1961–2018, the AI has shown the broad 

capability of its applications from oil consumption forecast [7], weather forecast [8], 

medical educations [9, 10], etc. [11]. Despite the considerable number of issues with the 

implementation of artificial intelligence, it has emerged as a disruptive and transformative 

technology, providing support in various domains and industries. 

1.1.1 Additive Manufacturing 

One of the key advantages of AM process is the ability to produce customized, 

complex parts and products in a timely and efficient manner. Traditional manufacturing 

methods, such as injection molding or CNC machining, often encounter limitations in their 

ability to produce unique or intricate designs due to feasibility concerns. With 3D printing, 

however, designs can easily be modified and optimized to meet the specific needs of a 

given application, making it particularly useful for small-batch production and prototyping 

[12]. Other terms are used as synonyms for AM including desktop manufacturing, rapid 

manufacturing, and agile tooling on-demand manufacturing [13]. The process of AM is 

generally divided into three steps, modelling, printing, and finishing [14]. 
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Prior to the AM process, the creation of 3D structure or the geometrical data of the 

desired object is required. This is typically done through computer-aided design (CAD) 

modeling processes [15, 16, 17]. The detailed and accurate representation of the desired 

objects including all specifications and dimensions required for printing can be created 

with it. Alternatively, 3D scanning technology can be used to import existing physical 

objects into the digital realm allowing them to be used as the basis of the 3D designs [18, 

19]. Then, the created designs are used as the blueprint for the rapid prototyping 

processes. Overall, the 3D modelling process is critical for the successful additive 

manufacturing process as it lays the foundation for the accuracy and precision of the final 

product. 

The printing process is the main process of the AM. After the creation of 3D model 

of the desired objects, the model needs to be converted into the data including geometrical 

information known as G-code. For this process, the 3D model needs to be converted using 

software known as “slicers” where it converts 3D models into a series of thin layers to 

create path for the motion of printer nozzle [20, 21]. The 3D printer then follows the G-

code instructions to extrude layers of liquid or powder to build layers of cross-sections of 

the model. Then, each layer are joined or fused to create the final 3D model with its 

advantage of ability to create any complex 3D structures. 

Although the resolution of printed models is sufficient for many applications based 

on its initial setting, printing process slightly changes the size due to its accuracy and 

precision error from the printer. Then, the post-processing such as surface treatment or 

removing support structures can be applied onto the printed model to increase the quality 

of the model.  

1.1.2. Artificial Intelligence 

The field of AI can be broadly categorized into two distinct approaches based on 

their philosophical underpinnings: strong and weak AI [22]. The strong AI refers to the idea 

that the machines can be designed to mimic human-like cognitive abilities and perform 

tasks that were once considered to be exclusive domains of humankind. The goal of the 

strong AI is to create systems that can perform intelligent tasks in a manner that is 

indistinguishable from human-like reasoning. To test the performance of the developed 

AI, the test known as Turning Test can be conducted where it is not operational definitions 
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based rather is inductive to show its good inductive grounds for thinking process [23]. 

Furthermore, it is stated that even if the strong AIs pass the Turning Test, it may be far 

from exhibiting a human-like mindsets and behaviours [24]. 

Weak AI on the other hand, is focused on the development of systems that can perform 

specific intelligent tasks through the learning process. The primary aim is to design 

machines that can perform these tasks efficiently and effectively. The weak AI emphasizes 

the use of machine learning algorithms and statistical models to enable systems to 

minimize human effort. One key benefit is that it is more practical and achievable in the 

shorter term, and it can have a significant impact on various industries or field of studies. 

For example, weak AI shows wide range of applications such as image and speech 

recognition [25, 26], customer service chatbots [27], witness expert system [28], smart 

driving system [29], etc. [30]. By automating the time-consuming tasks, weak AI is widely 

used to improve efficiency and productivity while freeing up human resources to focus on 

more complex and value adding tasks. 

1.2. Motivation 

The market size of 3D printing technology has been rapidly expanding, making it 

more accessible to both industries and end-users. Despite its widespread adoption, there 

are three major challenges faced by the technology: the quality and speed of printing 

complex models, and the printability of flexible materials such as Thermoplastic 

Polyurethane (TPU) or nylon. Currently, most 3D printing models are fabricated using rigid 

materials such as Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) due to 

their processing simplicity. 

One potential solution to the issue of flexible material printing is the integration of 

a machine vision system on the commercial 3D printers, with support from AI systems. 

This approach would enable the detection and correction of defects during the printing 

process. Currently, there are limited solutions to address this problem. 

This research aims to develop a solution that can ensure printability while 

maximizing the printing speed and simultaneously detecting and correcting defects in the 

flexible material printing process. Ultimately, this work would contribute to the 

advancement of 3D printing technology in industries that require high-quality output, such 
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as aerospace and healthcare, by enabling the printing of complex structures with flexible 

materials. 

1.3. Objectives and Scope 

This research project aims towards developing the intelligent 3D printing system 

by utilizing computer vision and artificial intelligence specifically for the flexible material. 

The system aims to adjust printing parameters in real-time to correct detected defects 

while ensuring the printability of the flexible materials. The printing speed will be controlled 

based on the batch-printing-process where the printing speed is increased each batch of 

print and the correction data from previous batch will be applied to the new batch. The 

objectives of this research project are as follows: 

1. Selecting suitable 3D structures for compression testing that clearly present 

variations in response to changes in printing parameters. 

2. Identifying primary and secondary printing parameters to be controlled in real-time 

to ensure print quality and printability. 

3. Setting up a computer vision system with strategically placed image sensor. 

4. Designing the Convolutional Neural Networks (CNN) model for defect 

classification based on image data collected during printing. 

5. Creating a parameter control system that responds to real-time image data 

classification results. 

6. Developing a G-code update algorithm that increases printing speed while 

applying real-time correction data from previous print batches. 

 

1.4. Contributions 

For this research, Additive Manufacturing Laboratory (AML) at Simon Fraser 

University has extended the studies in 3D printing system and its applications. This 

research creates the foundation for the smart 3D printing system in the laboratory. In this 

research, the developed system demonstrated increasing the quality and time-efficiency 

of the commercial 3D printing system with flexible materials, TPU. This research has also 

been supported by the following publications: 
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• W. Lee, W. S. Kim "Self-controlled Yet Fast 3D Printing with Flexible Thermoplastic 

Polyurethane Materials" Submitted, 2023  

• C. Bao, H. Moeinnia, T. H. Kim, W. Lee and W. S. Kim "3D Structural Electronics 

via Multi-directional Robot 3D Printing" Advanced Materials Technologies 

2201349, 2022. 

• W. Lee, J. Fritsch, A. Maqsood, S. Liu, T. Bourassa, R. Calara and W. S. Kim, 

"Adaptive 3D Printing for In Situ Adjustment of Mechanical Properties", Advanced 

Intelligent Systems, 2200229, 2022. 

• T. H. Kim, X. Min, D. Baker, W. Lee and W. S. Kim, "3D architectured air sensing 

tubes for a portable mechanical ventilator", Flexible and Printed Electronics, vol. 

6, no. 3, p. 035010, 2021 

 

1.5. Thesis Overview 

This thesis investigates the development of an intelligent 3D printing system for 

flexible materials, including computer vision, neural network design, and control systems. 

Chapter 2 provides background information on the current state of additive manufacturing 

processes with artificial intelligence systems, along with specific applications. Chapter 3 

describes the development of the intelligent 3D printing system, including both hardware 

and software setup. Chapter 4 presents testing results for the developed neural network 

design, defect control capability, and printing speed optimization system. Chapter 5 

provides a summary of the research project and outlines potential future applications and 

improvements for the developed system. 
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 Literature Review 

2.1. Additive Manufacturing Processes 

In the consideration of commercially available AM fabricators or devices, AM 

technologies are generally categorized into seven groups: VAT photopolymerization, 

Material jetting, Binder jetting, Powder Bed Fusion, Sheet lamination, Directed Energy 

Deposition (DED), and Material extrusion [31]. Each technology differs from another in the 

manner of the application process, material curing principle, and the initial state of the 

material. 

The VAT photopolymerization process utilizes the ultraviolet (UV) light and 

photopolymers, which is light-curable resin to create desired 3D structures. Three key 

elements of the photopolymer mixture are monomers, oligomers, and photoinitiators 

where the photoinitiators release catalysts for the chain formation process between 

monomers and oligomers when exposed to the curing light [32, 33]. Some of the well-

known printing processes are Stereolithography (SLA) and Digital Light Processing (DLP). 

The Material jetting process creates parts by depositing droplets of liquid photopolymers 

using piezo printing heads. It is prominent AM method in the polymer printing due to its 

advantages with high-precision printing for the thin layer thickness features with the 

thickness can be as low as 16 µm [34, 35, 36]. Some of the well-known printing processes 

are PolyJet, Nanoparticle Jetting (NPJ), and Drop-On Demand (DOD). Binder jetting 

dispenses liquid binding agents on powder to form a two-dimensional pattern on a layer. 

A wide variety of materials such as polymers, ceramics, and metals have been processed 

successfully with it [37, 38]. Similarly, the 3D structures are created through bonding the 

successive layers of material through the heat input in the powder bed fusion process. 

The printing type Selective Laser Sintering (SLS) shares similar printing process where 

SLS uses laser to bond powders and Binder jetting uses an industrial printhead that 

selectively deposits a liquid binding agent onto the powder bed [39, 40]. The sheet 

lamination process is developed with the basis of one of the first commercialized AM 

techniques, Laminated Object Manufacturing (LOM) in 1991. The process develops 3D 

structures using sheet layers with inclusion of prefabricated components between layers 

for deposition process [41, 42]. Other than LOM, few well-known sheet lamination 

technique-based printing processes are Plastic Sheet Lamination (PSL) and Composite 
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Based Additive Manufacturing (CBAM). DED is one of the promising flexible 

manufacturing technologies due to direct fabrication characteristics of complex structures. 

It can print layers on even and uneven substrates through its line-by-line deposition 

process [43, 44]. Some of the well-known DED technique-based 3D printing processes 

are Directional Light Processing (DLP) and Direct Metal Deposition (DMD).  

2.1.1. Material Extrusion 

The material extrusion is one of the most widely used 3D printing processes which 

involves the material from a spool of filaments that is loaded into the printer. The filaments 

then are melted to form a semi crystalline polymer above the glass transition temperature 

(𝑇𝑔) and its melting temperature (𝑇𝑀) [45]. The well-known material extrusion-based 

printing techniques are Fused Filament Fabrication (FFF) or Fused Deposition Modelling 

(FDM) [46]. Both systems create 3D structures by deposition of thin layers with filaments 

through the heated nozzle on the building plate. The nozzle extracts a thin layer of molten 

filaments onto the plate and stack the printed layers [47]. The system is broadly used in 

multiple disciplines due to its simplicity of usage and wide range of compatible materials 

such as soft to rigid plastics or polymers, ceramics, and metals [48]. 

There are two types of designs of the tool head: Direct Drive and Bowden [49, 50]. 

The main difference between the two tool heads is the location of the driving motor that 

pushes filament through the system. The direct drive design has motor mounted on the 

tool head gaining stronger extrusion force at a cost of nozzle stability due to inertia. The 

Bowden, however, has motor mounted on the printer chassis gaining the nozzle stability 

at the cost of losing extrusion force.  

The direct drive is the most popular tool head design that is used in the market. As 

shown in the Figure 2.1, the direct drive extruder head consist of three core components: 

driving gear, guide roller, and hot end (heater). The printing process begins with the 

gripping of solid filament in between the gear and idle roller. The gear provides adequate 

force to push the filament in the hot end for the melting to extrusion process. The hot end 

consists of cylindrical ceramic cartridge heater that heats the aluminum heating box with 

thermistor for temperature sensing.  
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Figure 2.1.  (a) The detailed schematic of the direct drive FDM extruder head. (b) 
The photo view of the common direct drive FDM extruder head. 
Reproduced with permission [51]. 

Within FDM, there are different types of printer designs such that the fabrication 

process dimension is not limited to 3-axis rather extends towards 6-axis. Few of new 

methods were investigated to overcome the disadvantages of the commercial 3-axis 

based 3D printers. 5-axis support-free 3D printing technologies were presented as shown 

in the Figure 2.2a,b. Mainly, two different approaches were found for 5-axis 3D printing 

technique: adding the stationary print plate [52, 53] or adding increased degree-of-

freedom to the motion of the nozzle [54, 55]. Even if the 5-axis 3D printing techniques 

allow minimizing the support printed for the complex or curve-based structures, there is 

still limitation of the print size. Generally, with 3-axis or 5-axis 3D printers, the size of the 

printable structures are limited to chassis size of the printer. To further overcome the 

disadvantage, the 3D printing system utilizing the robotic arms were studied as shown in 

Figure 2.2c [56, 57, 58, 59].  
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Figure 2.2.  (a) The 5-axis 3D printing system based on the rotation of the print 
plate. Reproduced with permission [52]. Copyright 2019, Robotics 
and Computer-Integrated Manufacturing. (b) The 5-axis 3D printing 
system by adding rotation to the printing nozzle. Reproduced with 
permission [54]. Copyright 2018, Additive Manufacturing. (c) The 6-
axis robotic arm-based 3D printing system [56].  
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2.1.2. 3D Printing Materials 

The printable materials vary based on the AM process such that material types are 

divided into powder, sheet, wire, and liquid forms. Specifically, for FDM as the focus of the 

research, the printable materials are as follows [60]: 

• Acrylonitrile Butadiene Styrene (ABS) 

• Polycarbonate 

• PC/ABS Blend 

• Polylactic Acid (PLA) 

• Polyetherimide (PEI) 

• Polymer bound 

• Polyetheretherkeytone (PEEK) 

• Thermoplastic polyurethane (TPU) 

• Chocolate 

In the research, two main materials were considered: PLA and TPU. In the study of printing 

materials but not limited, the materials can be divided broadly into rigid and flexible 

materials based on its stiffness and shore hardness scale [61, 62, 63]. PLA filament used 

for the fabrication shows the following properties as follows [64]: 
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Table 2.1. Property of PLA Filament for FDM 3D Printers 

Properties Values References 

Density [𝑔/𝑐𝑐] 1.24 [65, 66] 

Glass transition temperature (𝑇𝑔) [°C] 53 – 64 [67] 

Crystalline melting temperature (𝑇𝑚) [°C] 145 – 186 

150 – 155 

[67, 68] 

Melt processing temperature [°C] > 185 – 190 [69] 

Tensile strength [MPa] 29.9 – 46.3 [70] 

Hardness (Shore D) 48 – 87 [71] 

Furthermore, the TPU filament is divided into different types based on its shore hardness 

scale such as 80A, 85A, 90A, 95A, 64D, and 72D [72]. Typically, shore A hardness scale 

measures the hardness of flexible mold rubbers that range in hardness from very soft and 

flexible, to medium and somewhat flexible material. On the other hand, shore D hardness 

scale measures the hardness of hard rubbers, semi-rigid plastics and hard plastics [73]. 

In this study specifically, the TPU-85A material was considered due to its challenges with 

fabrication process. The mechanical property of TPU-85A filament is as follows:  
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Table 2.2. Property of TPU Filament for FDM 3D Printers 

Properties Values References 

Density [𝑔/𝑐𝑐] 1.11 [74, 75] 

Glass transition temperature (𝑇𝑔) [°C] 55 – 85 [76, 77] 

Crystalline melting temperature (𝑇𝑚) [°C] 163.5 – 190 [78] 

Melt processing temperature [°C] > 200 – 216 [78, 79] 

Tensile modulus [MPa] 12 [72, 80] 

Hardness (Shore A) 85 [71] 

Furthermore, the Young’s modulus or stiffness of different materials can be 

explained with the graph shown in Figure 2.3 below. Based on the Table 2.1 and Table 

2.2 above, PLA shows lower flexibility in terms of its strength and hardness scale. Also, 

the PLA filament is classified under shore D scale and TPU lies under shore A scale. In 

this study, the representation of rigid material is selected PLA and flexible material to be 

TPU-85A [81, 82]. 

 

Figure 2.3.  The Young’s Modulus (Stiffness) graphical representation of 
different materials. 
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2.1.3. Challenges in 3D Printing with Flexible Materials 

 

Figure 2.4.  The common quality issues found in FDM process (a) Gaps in 
between layers. Reproduced with permission [83]. Copyright 2019, 
International Journal for Interactive Design and Manufacturing. (b) 
Layer delamination. Reproduced with permission [84]. Copyright 
2016, Springer eBook. (c) Blobs and Zits [85, 86] (d) Stringing issues 
[87] 

As briefly mentioned above, the 3D printing process with flexible material has 

critical challenges with its printability and printing quality [88, 89]. Some of the common 

print quality issue found in the 3D printing process are gaps in between layers [90, 91], 

layer separations or delamination [92], blobs and zits [93], and stringing [94] as shown in 

Figure 2.4. Furthermore, the printability issue is addressed by mainly two reasons: nozzle 

clogging [95] and filament buckling [96]. The nozzle clogging is one of the most significant 

errors that occur in the printing, and its occurrence has three reasons: presence of external 

particles on the filament, filament carbonization due to burning, and absence of place for 

extrusion [97]. Some studies have been conducted to detect the clogging or potentially 

clogging status on the FDM printers using captive detector that can operate inside high 

temperature [98]. The filament buckling issue is more common for flexible materials due 

to two mains reasons, high PE flexibility [99] and low column strength [100].  
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2.2. Artificial Intelligence (AI)  

One of the methods to recover the disadvantages of the commercial FDM printing 

techniques is to control printing parameters manually for defects or restart the printing 

process. Plenty of study have been conducted to predict the performance of the printers 

by monitoring specific parameters such as temperatures [101] and nozzle conditions [102]. 

However, these methods require accurate mathematical and physical models 

representation to the specific issues. The difficulty of developing such system dramatically 

increase due to complexity of the printing processes. Unlike the indirect monitoring 

methods, the operators usually monitor the printing process to distinguish defects and 

control printing parameters manually [103]. As the appearance of the printed parts play a 

great role in determining the occurrence of defects, the operator’s manual control is one 

of the simplest ways to enhance the quality of the 3D printing process. 

However, due to the slow fabrication speed of commercial FDMs, different 

research have been studied as mentioned such as increasing the degree of freedom of 

motion to minimize support structures. Even with minimized or no supports are printed for 

the 3D model, the fabrication speed of 3D printers is still a known obstacle of entering the 

mass-production era [104, 105, 106]. As so, it is not possible for the operators to just wait 

by the printer to monitor the process in real-time. 

For solutions to minimize human effort, the study on developing computer vision 

system-based quality control of the 3D printing process have been investigated. Some of 

the study focuses on the defects found in the part geometry [107, 108] or infill patterns 

[109, 110, 111]. The presented methods require the process to be paused to recreate 3D 

model of the printed parts with its point cloud which is time-consuming and computationally 

heavy. The further investigation for the current development of human-free quality control 

of the 3D printing process have been completed. The studies include both real and non-

real-time parameter control using different types of AIs for different printing issues. 

2.2.1. AI Categorization 

The intelligent systems that offer AI capabilities often rely on machine learning 

algorithms. Often the machine learning and deep learning algorithms are considered into 

two distinct but similar features [112]. The machine learning describes the system learning 
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from the problem-specific training data to automate the analytical model building and 

solving processes [113]. The deep learning is classified as the subset of machine learning 

where the term deep refers to the number of layers in the neural networks [114, 115] as 

shown in the Venn diagram in Figure 2.5.  

 

Figure 2.5.  The Venn diagram showing the hierarchical relationship between 
machine learning algorithms, artificial neural networks, and deep 
neural networks  [116] 

The major machine learning achievement was Support Vector Machines (SVM) 

proposed by Vapnik and Cortes in 1995 [117] where this was the time isolating machine 

learning group into SVM or Neural Networks (NN) studies. Different classifiers were 

developed such as Adaboost by Vapnik and Cortes in 1997 [118] and Random Forests by 

Breiman in 2001 (RF) [119] which are used as a basis of classification model. Near today 

with opening to the new era of NN, deep learning, the different algorithm models were 

developed such as Linear Classifier [120], Logistic Regression [121], Naïve Bayes (NB) 

[122], Bayesian Network [123], Random Forest [124], Bootstrapped Aggregation 

(Bagging) [125], k-Nearest Neighbour (k-NN) [126] and Artificial Neural Network (ANN) 

[127]. The applications of machine learning are divided into different domains, computer 

vision, prediction, semantic analysis, natural language processing and information 

retrieval [114]. As the research focuses on the computer vision system, the further 

investigation was completed for the computer vision system. The computer vision system 

consists of object recognition and detection [128, 129]. 

The deep learning, as a subset of machine learning is a neural network with large 

number of layers and parameters (complex models). In short, deep learning employs a 
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sequence of multiple non-linear layers for extracting and transforming features [130]. The 

complexity of the features increase as the layer number increases meaning that the deep 

learning is able to analyze and extract the useful information from the data collected from 

different sources [131]. Specifically, different neural networks designs were developed 

such as Restricted Boltzmann Machine (RBM), the generative stochastic ANN [132], 

Recurrent Neural Networks (RNN), NN capable of recovering the stored pattern [133], 

Bidirectional Recurrent Neural Networks (BRNN), capable of training simultaneously in 

positive and negative time direction [134], Long Short-Term Memory (LSTM), consists of 

multiplicative gate units learning to open and close access to the constant error flow [135], 

and Convolutional Neural Networks (CNN), suitable for image detection and classification 

[136]. 

Furthermore, based on the problem and dataset, the machine learning algorithms 

can be classified into three categories: supervised learning, unsupervised learning, and 

reinforcement learning. Many applications use supervised learning such as stock market 

forecast system [137], understanding customer perception and needs [138, 139], etc. 

Also, reinforcement learning for the optimal control [140] or unsupervised web applications 

for microservices [141]. More specifically, the three types can be divided based on the 

knowledge of the input data. 

The supervised learning requires a training dataset to include examples of the 

classes or known as labelled data [142]. An example could be the prediction of output for 

the provided input based on the provided specific relationship between input and output. 

The unsupervised learning on the other hand, does not require pre-existing labelled data 

[143]. In the case of unsupervised learning, the training data only contains input without 

known output requiring the algorithm to detect patterns by finding the structural information 

of interest from the dataset. The reinforcement learning system describes the current state 

of the system instead of dividing the input and output [144]. The system experiences 

process of achieving goal by trial-and-error process. 

2.2.2. AI in 3D Printing 

The study on the application using AI to enhance 3D printing processes have been 

conducted with different types of AI and AM processes. Different types of AIs such as 

Transfer Support Vector Machine (TSVM), Conditional Adversarial Network (CAN), Naïve 
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Bayes Classifier and J48 Decision Trees (NBC & J48), Bayesian Networks (BN), Filter 

bank and SVM in FDM, Electron-Beam Melting (EBM), Laser Powder Bed Fusion (LPBF), 

Selective Laser Melting (SLM), and SLA AM devices. 

Guo et al. [145] applied TSVM to FDM for the fault diagnosis approach for the 

conventional delta 3D printer, type of FDM. The new learning method, transfer component 

analysis (TCA) [146] was utilized to extract cross-domain and massive unlabelled data 

from the target. The fault classification of 83.79% was achieved to improve the 3D printer 

fault diagnosis process. Li et al. [147] utilized CAN to commercial FFF printers to reduce 

inconsistency and 3D geometrical inaccuracies in the fabrication process as shown in 

Figure 2.6a. The developed system showed accuracy of 44.4%, 87.6%, and 99.2% for 

data within ±0.05mm, ±0.10mm, and ±0.15mm correspondingly. Wu et al. [110] developed 

the integration between NBC and J48 to classify defects developed on the surface of 

printed layers as shown in Figure 2.6b through FDM. The accuracy of the developed 

algorithm showed 95.51% for two-class classification, with and without defects. Bacha et 

al. [148] introduced the combination of BN theory and data acquisition techniques for fault 

diagnosis for the FDM. The system was developed with two cases with variations of a 

parameter, maximum number of parents in the calculation, and the classification results 

were found to be 92.56% and 98.18% for the parameter being 1 and 3 accordingly. Scime 

et al. [149] introduced in-situ monitoring and analysis for LPBF process using Filter bank 

with computer vision system. The overall classification results showed 98% overall with 

95% accuracy among anomalies, 100% accuracy for anomaly-free regions, and 89% 

anomaly identification accuracy. Zhang et al. [150] proposed SVM to identify anomalies 

with LPBF printing process using high speed camera as shown in Figure 2.6c. The 

features of different objects such as melt pool, plume and spatter were investigated, and 

the classification accuracy showed 90.1%.  
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Figure 2.6.  (a) The illustration of the inconsistency and inaccuracies in 3D 
geometric structure. Reproduced with permission [147]. Copyright 
2021, Additive Manufacturing. (b) The example of anomalies on the 
surface of LPBF process. Reproduced with permission [149]. 
Copyright 2018, Additive Manufacturing. (c) The Regions of Interest 
(ROIs) of melt pool, plume, and spatters for the LPBF. Reproduced 
with permission [150]. Copyright 2018, Materials & Design. 

2.2.3. Convolutional Neural Networks (CNN) 

The different types of deep learning or machine learning algorithms were 

previously studied for the quality control of different, CNN shows higher accuracies in 

comparison to other classification methods [150]. Quite a few numbers of studies were 

conducted for FDM/FFF, LPBF, SLA devices. Lee et al. [151] investigated the effect of 

flowrates on the printed model developed fault detection and flowrate correction 

algorithms for FDM printers as shown in Figure 2.7a. By utilizing CNN, the system showed 

99.99% classification accuracy and corrected underflow and overflow issues within two to 

eight layers of printing process; and allow the printer to print models showing similar 

mechanical properties at different initial flowrates. Jin et al. [152] focuses on identifying 

and correcting the flow-related issues as shown in Figure 2.7b with computer vision 

system mounted at the nozzle. The CNN model was designed for the identification and 

the accuracy of 98% was resulted showing the faster identification of faults than human. 
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Similarly, Khan et al. [153] investigated defects found in the infill layers of the FFF process 

as shown in Figure 2.7c with computer vision system mounted at the top of the FFF printer 

chassis. The CNN model was also created and the suitable accuracy of 84% was found 

using 50 number of epochs. Not only limited to FDM or FFF printers, Scime et al. [154] 

and Yuan et al. [155] investigated application of CNN to LPBF printing systems to 

autonomously detect processing defects (anomalies) in the fabrication process. The 

anomalies occurrence during the interaction between recoater at the overall classification 

accuracy of 97% and powder bed and track width measuring system with classification 

accuracy of 93% were developed accordingly. Khadilkar et al. [156] utilized CNN to predict 

stress distribution on the cured layer of the bottom-up SLA process-based models in real-

time. The CNN resulted 5.6% prediction error with input data of sliced layer view of the 

CAD model. 

 

Figure 2.7.  (a) The printed ASTM D638 Type V models at different flowrates 
[151] (b) The three types of flow-based conditions of FDM. 
Reproduced with permission [152]. Copyright 2019, Manufacturing 
Letters. (c) The surface defects found in the infill layer from the FDM 
process. Reproduced with permission [153]. Copyright 2021, 
Materials Today: Proceedings. 
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 Development of Rapid 3D Printing 
System 

3.1. Hardware System 

Prior to the initiation of the intelligent rapid 3D printing system development 

process, critical decisions had to be made regarding the hardware and software design 

specifications. This include, the selection of test specimen, selection of the printing 

parameters to be controlled, method of CNN design development, and experimental 

design. As mentioned above, the main scope of the research study is 1) to reduce stringing 

and blobs defects developed through the fabrication process 2) to sustain the mechanical 

properties of fabricated samples at the increased printing speed 3) to ensure the 

printability of the flexible material printing process. 

 

Figure 3.1.  (a) The overview of the mechanical failure of FDM extruders (b) The 
graphical presentation of filament buckling phenomenon. (c) The 
graphical representation of blobs building around the nozzle tip. 

As briefly mentioned above, the two main issues of the 3D printing process 

especially FDM is the defects and mechanical failure such as nozzle clogging or filament 

buckling issue. As shown in the Figure 3.1. Mainly the filament buckling shown in Figure 
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3.1b occurs when the filament extrusion rate is much lower than the filament feed rate 

(𝑣2 << 𝑣1). To further investigate the reasons behind the filament buckling phenomenon, 

the loading conditions on the filament needs to be analyzed, and shown below is the 

Euler’s critical loading condition [157]: 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿2
 

For the two materials PLA and TPU as shown in Table 2.1and Table 2.2, it is clear that 

the filament buckling phenomenon is more probable for flexible material TPU with its much 

lower modulus of elasticity (𝐸) compared to rigid material PLA. Considering both 

conditions of filament buckling phenomenon, it shows the critical reason behind limited 

fabrication speed of flexible material. Furthermore, to find the critical speed limitation of 

the selected filament, the complex model was printed at different printing speed as shown 

in the Figure 3.2. The FDM printer (Formbot VIVEDINO T-Rex 3+) was used for all of 

fabrication process in the study. At the same printing speed setting of 30mm/s, TPU was 

not able to complete the printing process when operated without any intermediate 

parameter control as shown but hardly showed similar results at the half of printing speed 

as the printed model with PLA. The critical speed of interest in the study, therefore, was 

selected to be 15mm/s which is set as the basis for the performance test of the developed 

system. 

 

Figure 3.2.  The comparison between the printing results of complex 1D strut-
based Octet 2×2×2 model printed by PLA and TPU at different 
printing speed. 
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3.1.1. Testing Models 

In the process of selecting the test specimen for the study, three criterions were 

considered: 1) compression test friendly model 2) complex structure for 3D printing 

process that can be fabricated without support structure 3) structures showing clear 

changes with different printing parameters. Among several miniaturized architectures, 3D 

periodic octet and 3D surface gyroid models have been selected as the test models where 

the octet is one of the most complex 1D strut-based structures and the surface gyroid is 

one of the most complex 2D sheet or curve-based structures [158, 159, 160, 161]. The 

octet was designed by developing a unit cell size of 15mm×15mm and eight cells were 

assembled to create 30mm×30mm×30mm structure, defined as Octet 2×2×2. The gyroid 

was designed based on the mathematical equation representation to create 30mm×30mm 

structure consists of 8-unit cells as well, defined as Gyroid 8 [162]. Developed structures 

are shown in the Figure 3.3. 

 

Figure 3.3.  The CAD rendered image of developed test specimens (a) Octet 
2×2×2 (b) Gyroid 8.  

3.1.2. 3D Printing Parameters  

To enhance the printing quality beyond proper calibration, several printing 

parameters can be modified during the printing process in real-time. These parameters 

include the print bed temperature, z-offset, flowrate, nozzle temperature, and print speed 

[163]. Adjusting these parameters can improve the adhesion, accuracy, and surface finish 

of the object being printed. The print bed temperature and z-offset generally only need to 
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be adjusted at the beginning of the process as they are the most effective parameter to 

ensure the print adhesion on the print bed. The z-offset is key to preventing nozzle grinding 

the print bed or printing on air due to incorrect settings. The effect of the flowrate on the 

printed parts has been investigated previously especially inspecting the effect of underflow 

and overflow issues and their results on the printed parts [110, 164, 165]. The nozzle 

temperature does not show a clear visual effect on the printed part in comparison to 

flowrate, but it has more impact on the printability. With incorrect nozzle temperature, the 

extrusion process can fail as the filament is not able to melt into a liquid form causing the 

filament buckling issue or blobs can build on the nozzle tip causing carbonization inside 

and outside of the nozzle in the long run [165, 166, 167]. 

 

Figure 3.4.  The visual defects of developed on the test specimens (a) Octet 
2×2×2 (b) Gyroid 8 at different flowrate settings. 

For the selection of control parameters, flowrate and nozzle temperature were 

selected and tested. Under the print speed of 15mm/s, the flowrate was tested at 85%, 

100% and 115% at constant temperature as 230°C. Then temperature was varied for the 

printing test at 225°C, 235°C, and 245°C for constant flowrate as 100%. The printed 

models were visually analyzed, and a compression test was conducted to find a non-visual 

effect of the parameters. The visual test result of octet and gyroid with varying flowrate are 

shown in the Figure 3.4. Low flowrate causes gaps in between layers due to insufficient 

amount of extruded material and stringing between the structures. The high flowrate 

causes collapsing of the layers due to an excessive amount of extruded material and 

results in curved edges instead of straight edges. 
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Figure 3.5. The stress-strain curve representation of the compression testing 
results of (a) Octet 2×2×2 (b) Gyroid 8 at varying flowrate and nozzle 
temperature. 

Figure 3.5 show the compression test results of the octet and gyroid models with 

varying flowrate and nozzle temperature settings. The result shows that the octet shows 

an average of 2.436% strength change per flowrate percentage change, and the gyroid 

shows an average of 1.673% strength change per flowrate percentage change. However, 

varying nozzle temperatures showed little to no structural changes as well as compressive 

strength. Gibson and Ashby et al. demonstrate the relationship between the mechanical 

properties of cellular structure and the relative density such as stress and strain [168]. The 

relationships known as the Gibson-Ashby model are represented with the following 

equations below: 

𝐸𝐿

𝐸𝑆
 = 𝐶1 (

𝜌𝐿

𝜌𝑆
)

𝑛
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𝜎𝐿

𝜎𝑆
 = 𝐶2 (

𝜌𝐿

𝜌𝑆
 )

𝑛

 

where 𝐸, 𝜌, and 𝜎 represent the elastic modulus, density, and yield strength respectively; 

cellular structures denoted as 𝐿 and base solid model denoted as 𝑆. Shown in Figure 3.6 

is the Gibson and Ashby plot of relative compressive strength in respect to relative weight 

density. Based on the test of five printed samples, the plot was completed, and one 

interesting phenomenon was found. From the underflow case, the increased flowrate 

enhances the performance of both models closer to the ideal bending-dominated 

behaviour. On the other hand, from the limit of 100% flowrate, the increased flowrate rather 

decreases the performance as the excessive amount of extruded filament increases the 

overall weight of the object without enhancing its performance. As so, flowrate has been 

selected as a primary parameter to control for the in-situ correction system, but the nozzle 

temperature is set to be a secondary parameter as it is a key parameter to ensure the 

printability of flexible material. 

 

Figure 3.6.  The Gibson-Ashby model representation of the relative yield 
strength vs relative weight-density of two specimen at different 
flowrates. 
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3.2. System Workflow 

 

Figure 3.7.  The system flowchart of rapid 3D printing system. (a) The hardware 
setup. (b) The neural network training process. (c) Defect correction 
process. (d) Rapid printing system process. 

The development of the defect detection and correction system is divided into three 

parts: 1) neural network training, 2) in-situ control system, and 3) print speed optimization. 

As the machine learning-based defect detection system is selected for the method of the 

classification algorithm, the image acquisition system is critical. The camera (Logitech 

C270) used in this study was strategically mounted at a 55-degree angle using a 3D 

printed special mount as shown in Figure 3.7a. This angle was chosen based on the 

optimal viewpoint for the 3D printed objects, allowing the acquisition of all important 

information from the image [169]. The neural network training is the first step in developing 

the defect detection and correction system where the properly trained model is crucial for 

the enhanced performance. This step involves collecting images of known good and 

defective models, and it was completed by extracting images frame by frame from the 

recorded video of the printing process as shown in Figure 3.7b. Based on the pre-trained 

CNN model, the in-situ control system was developed as shown in Figure 3.7c. The control 

system monitors the 3D printing process in real-time and controls two parameters, flowrate 

and nozzle temperature as needed to ensure printability and to correct defects. The 
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captured images are processed, and the pre-trained CNN model classifies the adjustment 

that needs to be made. The final step of the system involves print speed optimization 

where the print speed is increased every batch of print along with the applied correction 

as shown in Figure 3.7d. The printability and quality control are completed from the 

previous step, but the print speed limitation is still a problem with the printing of flexible 

materials. The developed speed optimization system logs the correction data and applies 

it to the g-code directly and the updated g-code is used to print the next batch. 

3.3. Design of CNN Model 

CNN training is one of the supervised learning processes where the input images 

are classified by the operator. In this study, four different defect types were classified as 

1) stringing defects, 2) blob defects, 3) normal printing, and 4) no information. The class 

of no information is defined for the first 30 and last 10 layers of the print as it contains no 

useful information and shows low flowrate and nozzle temperature impact to the print 

quality. In the development of a convolutional neural network (CNN) model, various 

hyperparameters can be adjusted to improve the accuracy of the classification results. 

These include the kernel size and filter, convolutional layers, epoch, activation functions, 

and optimizers.  

The kernel size is a parameter that determines the size of the filters used in the 

convolutional layer. The kernel filter is a small matrix that slides across the input image, 

performing a mathematical operation at each location. The kernel size has a direct impact 

on the number of features extracted from the input image, with larger kernel sizes 

extracting more features. However, it is also important to note that a larger kernel size 

increases the total number of parameters in the CNN model, potentially leading to 

overfitting.  

The convolutional layer is responsible for analyzing the input image and extracting 

features from it. The size of the layers in the CNN development process is determined by 

the number of filters used for the feature extraction process from the input image. Each 

filter in the convolutional layer is applied to the input image with the kernel filter across the 

image. A larger number of filters in the convolutional layer extracts more features, but it 

also increases the total number of parameters in the model, which can lead to overfitting.  
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The epoch is the number of times the entire dataset is passed through the CNN 

network during the training process. Each epoch is a complete iteration of the training 

process, where the calculated weights of the network are updated based on the errors. A 

larger epoch size allows for more training, which can lead to better performance. However, 

it also increases training time and can lead to overfitting.  

The activation function is the mathematical function applied to the output of each 

neuron to determine the output. The output of the neuron, known as the activation, is used 

as the input for the next layer in the network. It also introduces non-linearity to the neural 

network, allowing it to learn complex patterns from the input image data. Different types 

of activation functions, such as ReLU (Rectified Linear Unit), Sigmoid, Tanh, and more, 

have different characteristics. The selection of the activation function depends on the 

specific problem or task and personal preference.  

The optimizer is the algorithm used to adjust the weights of the network to minimize 

the loss function. The loss function is a measure of the network's performance on the 

training dataset. The main objective of the optimizer is to find the set of weights that 

minimizes the loss function, leading to the best performance of the network. Different types 

of optimizers, such as SGD (Stochastic Gradient Descent), Adam, Adagrad, and more, 

are available. Similar to the activation function, the best optimizer for a particular problem 

depends on the specific architecture of the network and the dataset.  

For the specific development process for the system, different variations of 

hyperparameters were considered as shown in Table 3.1.  
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Table 3.1. CNN Hyperparameter Variations 

Kernels Setup 
(K1 – K4*) 

16-3 | 32-3 | 256-3 | Avg. Pool 
32-3 | 64-3 | 256-3 | Max. Pool 

64-3 | 128-3 | 256-3 | Max. Pool 
512-1 | Glob. Avg. Pool 

16-5 | 32-3 | 256-5 | Avg. Pool 
32-5 | 64-3 | 256-3 | Max. Pool 

64-5 | 128-3 | 256-1 | Max. Pool 
512-1 | Glob. Avg. Pool 

16-3 | 32-3 | 64-3 | 512-3 | Avg. Pool 
32-3 | 64-3 | 128-3 | 512-3 | Max. Pool 

64-3 | 128-3 | 256-3 | 512-3 | Max. Pool 
1024-1 | Glob. Max. Pool 

16-3 | 32-3 | 64-3 | 512-5 | Avg. Pool 
32-3 | 64-3 | 128-3 | 512-3 | Max. Pool 

64-3 | 128-3 | 256-3 | 512-1 | Max. Pool 
1024-1 | Glob. Max. Pool 

Activations 
Function 

(A1 – A6*) 

Relu Sigmoid Softmax 

Softsign Tanh Selu 

Optimizer 
(O1 & O2*) 

Adam SGD 

Optimizer 
Learning Rate 

0.0001 incremental 

 

3.4. Data Processing and Parameter Controls 

The overall system consists of two computing devices, PC and Raspberry Pi 3+ 

and FDM printer. The USB serial connection was established between Raspberry Pi and 

FDM printer for the parameter control process while PC and Raspberry Pi was connected 

over-the-internet to perform specific communications. The design and programming of the 

system was implemented using Python programming language and CNN was developed 

by utilizing the Keras library. Furthermore, the virtual environment for the programming 

was established through Anaconda (Data Science Platform) where the programming itself 

was completed using PyCharm (Integrated Development Environment). The parameter 

control was completed by transferring the Gcode from Raspberry Pi to the 3D printer 

through USB serial communications. The slicing software for the developed model for 

printing, Cura was used with the specific settings shown in Table 3.2 below: 
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Table 3.2. The Slicer Software Setting 

Nozzle size 0.4 mm 

Layer height 0.2 mm 

Wall thickness 0.8 mm 

Infill 100% Density with Lines Pattern 

Initial Printing Temperature 228 – 230°C 

Retraction Disabled 

Print Speed 15 mm/s 

Support Structure Disabled 

Build Plate Adhesion Support Disabled 

 

Different types of data were analyzed and used for communication between 

devices such as the real-time acquired image data, CNN classification results, and 

parameter control commands. The developed computer vision system provides 720-pixel 

image quality at 30 frames per second, and sufficient time delay was required to stabilize 

the extruder head for the image capturing process. The capturing process was completed 

at a fixed location layer-by-layer providing more consistent dataset for the CNN model. 

For the stabilization time 125ms was allocated in the image capturing process. In addition 

to the stabilization time, LED strip was mounted around the nozzle to allow consistent 

lighting and reduce shadows which possibly eliminates valuable information from the 

collected images. 

During the training process, the camera records the printing process as a time-

lapse video format via an open-source 3D printer interface called Octoprint. After 

recording, the frames are extracted from the video as images and classified before 

uploading to the CNN model. After the training completion of the CNN model, the image 

acquisition system was setup where it includes image transfer and processing. Following 

the image acquisition process, the several steps are designed to transform the raw data 

into CNN model favourable dataset. To minimize size of the raw data, the images were 

captured at 480 × 640 pixels size which is again reduced to 300 × 300 pixels. The smaller 

dataset does not only reduce the image transfer time, but it also reduces CNN 

classification processing time as well. Moreover, the CNN reliance on the colour 

information needed to be eliminated to increase the accuracy of the model and create 

robust classification system capable of identifying different types of defects regardless of 

the filament colour. The simple solution for the issue was to apply greyscale to the image 

data which had additional benefit of reducing the data size. For the final data processing 
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step, digital black bars were added to cover nozzle and heat core to reduce confusion on 

the CNN model. 

 

Figure 3.8.  The system data process map. The data collected during the 3D 
printing process every layer is sent to PC through Raspberry Pi for 
the defect classification process, then sent back to Raspberry Pi for 
parameter control process. 

As shown in the Figure 3.8, the original image was taken by Raspberry Pi then 

transferred to PC through FTP protocol for the image processing and classification 

function. After the CNN classification, the identification representation code for different 

defect class was then sent back to Raspberry Pi through TCP protocol to perform 

parameter control on the printer. All data processing was completed using Python 

programming language.  

Based on the selected printing parameters, the control system was designed. Prior 

to the development of the control system, the minimum and maximum allowed parameters 

needed to be selected. Extrusion test was performed at different parameter settings and 

the results of the extrusion test is as shown in Table 3.3 below: 
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Table 3.3. Minimum and Maximum Allowed Printing Parameters. 

Nozzle Temperature (°C) Flowrate Allowed (% with basis from 15mm/s) 

225 – 227 85 – 97 

228 – 229 85 – 108 

230 – 233 85 – 115 

> 233 Filament Carbonization 

The test results shows that the maximum allowed nozzle temperature is 233°C with 

minimum required temperature of 225°C to allow any extrusion. Furthermore, as the 

increased flowrate requires higher nozzle temperature, the control system was setup in a 

way that both parameters are carefully controlled simultaneously. 

The control system was developed on the simple logic based on four classification 

results. The control system will 

• Increase flowrate and nozzle temperature if the stringing defects are found 

• Decrease flowrate and nozzle temperature if the blobs defects are found 

• Keep the printing settings when the normal printing or no information class is 

identified 

During the correction procedure, the minimum and maximum settings were always 

checked to avoid any printability issue occurrence during the quality control process. 

Furthermore, the maximum correction per layer (per classification process) was kept at 

1% flowrate change as flexible materials are very sensitive to parameter changes. 
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3.5. Experimental Setup 

The performance of the developed intelligent 3D printing system was tested using 

two main methods to confirm that the system met the objectives of the research study. 

These tests were crucial in determining the effectiveness of the developed system and its 

ability to achieve desired results. The first method was the defect control test. This test 

was designed to evaluate ability of the system to identify and correct any defects that may 

occur during the fabrication process. The system was expected to successfully detect and 

correct defects in real-time, ensuring the high quality of the printed model. The second 

method was the compression test. This test was designed to evaluate the mechanical 

strength and durability of the printed models. The models were subjected to increasing 

compression stress and the results were compared. The results of both the defect control 

and compression test were compared to the objectives of the research study. 

3.5.1. Defect Control Test 

The performance of the defect correction system was evaluated by monitoring the 

printing process. The primary goal of the testing was to investigate the efficiency and 

repeatability of the correction algorithm under different conditions. To accomplish this, the 

flowrate of the system was intentionally changed to the minimum (85%) and maximum 

(115%) at specific layers. The test was performed every 25th and 50th layer to repeat the 

process multiple times within a single printing process. One of the key features of the 

correction algorithm is its ability to correct the flowrate to the desired value within a certain 

number of layers. The system is set to determine the minimum required number of layers 

to reach the desired flowrate of 100% to be 15 layers. 

In total, four types of tests were conducted for each model, three samples each 

providing a comprehensive evaluation of the performance of the correction system. The 

results of these tests will be used to improve the algorithm and ensure that the correction 

system works effectively under various conditions. 
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3.5.2. Compression Test 

To further investigate and evaluate the performance of the newly developed 

system, various testing methods were evaluated, such as compression test, impact test, 

tensile test and others. Among the test specimens selected, Octet 2x2x2 and Gyroid 8, 

the compression test was deemed to be the most appropriate method. The stress-strain 

curve was used to compare the consistency of the models printed with a rapid process. 

The compression test was performed on five replicas, all of which were printed with the 

same settings and speed. The test was carried out using a Shimadzu EZ-LX Tester and 

was completed at a compression speed of 2mm/min. The slower compression test speed 

of 2mm/min was chosen for several reasons. Mainly, it provides a more accurate 

representation of the material's behavior under stress, giving a better understanding of its 

properties. A slower compression test also minimizes the risk of damage or failure on the 

test specimen, ensuring the reliability of the results. The slower compression test speed 

is more representative of real-world conditions and loading, making the results more 

applicable and relevant. The test took over 5 minutes to complete for each specimen, 

demonstrating the thoroughness and care taken in performing the tests. 
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 Results and Discussion 

4.1. Defect Detection System 

The final process of developing CNN model for defect detection involves 

classification accuracy testing. The aim was to ensure that the model can accurately 

identify defects from the provided three datasets: training, validation, and testing. To 

achieve this, over 50 different combinations of hyperparameters were considered during 

the development process. These hyperparameters are crucial for determining the 

structure and performance of the model, and a small change can cause accuracy 

variations over 70%. The combinations of hyperparameters included variations in kernel 

size and filter, convolutional layers, epoch, activation functions, and optimizers. Each 

combination was trained and evaluated for its performance on a validation set.  

4.1.1. Design of Neural Networks  

 

Figure 4.1.  The overall flowchart of the developed CNN model. The model uses 
300x300x1 (Greyscale) input image data and consists of three 
convolutional layers utilizing 1,024 filters in the dense layer. 



36 

After evaluating all the combinations, one particular set of hyperparameters was 

selected that showed the best performance. The selected combination showed a training 

accuracy of 98.97%, which means that the model was able to accurately identify defects 

in the data it was trained on 98.97% of the time. The validation accuracy was also 

measured, which was 97.82%. This indicates that the model was able to generalize well 

to new, unseen data and accurately detect defects in that data as well. The shown in the 

Figure 4.1 is the structure of developed CNN showing 98.97% training accuracy. As 

shown, the model consists of three convolutional layers and one dense layer with 1,024 

filters. The key to the model is the connection between the pooling results from the 

previous pooling and the new pooling. This procedure is also known as Residual module 

and it provides higher accuracy [169]. 

4.1.2. Classification Accuracy 

 

Figure 4.2.  (a) The training and validation loss graph during the CNN  model 
traning process (b) The confusion matrix representation of the 
developed CNN model. 

The result of CNN is usually represented in terms of training and validation loss 

graph and confusion matrix [170, 171]. To further explain the performance of CNN, the 

prediction process needs to be explained. The CNN model identifies the input image 

based on the possibility chance of the defined classes. Then, the class with highest 

possibility chance is selected as a result. The training and validation loss graph is shown 

in the Figure 4.2a, and the final training accuracy was 98.97% with validation accuracy of 
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97.82%. This further proves that the overfitting issue was not present in the designed CNN 

model. The confusion matrix shown in the Figure 4.2b shows that the accuracy of 

classifying no information and blobs classes is relatively better than other classes. This is 

mainly because the images used does not provide enough resolution to detect all 

microscopic strings present in the sample. Specifically, the classification of the stringing 

defect is relatively less accuracy for the gyroid model compared to octet model. 

4.2. Defect Control 

 

Figure 4.3.  The correction timeline from the defect control test of (a) Octet 
2×2×2 (b) Gyroid 8   
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The results of the performance test of the defect correction system were highly 

informative and provided valuable insights into the efficiency and repeatability of the 

correction algorithm as well as the effect of different printing styles. The correction timeline 

for the flowrate and nozzle temperature of gyroid in Figure 4.3a, and that of octet in Figure 

4.3b. The test results were compared, intentional decrease in the yellow box and an 

intentional increase in the green box in the Figure 4.3. It is found that the underflow 

correction of the octet is more efficient than that of the gyroid model where the overflow 

correction is similar in both cases. The underflow error is detected based on the 

classification of stringing defects found in the print, and the difference in the detection 

accuracy comes from the structural difference between the two models. 

4.2.1. Discontinuous vs Continuous Printing 

 

Figure 4.4.  The printing layer view of (a) Octet 2×2×2 (b) Gyroid 8. The 
corresponding discontinuous and continuous layers are highlighted 
in red. 

The research study compared the differences between continuous and 

discontinuous printing in the 3D printing process. The results of the study were shown in 

Figure 4.4, which provided a visual representation of the printing layer view of two different 

structures: Octet 2×2×2 and Gyroid 8. In the figure, a single layer (Layer 52 of 151) is 

highlighted in red, demonstrating a clear difference in printing styles.  
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The octet structure exhibits a discontinuous printing style characterized by distinct 

and separated structures. On the other hand, the gyroid structure can be described as 

having a continuous printing style, as seen in the sliced layer representation. This 

difference in printing style leads to different challenges in the printing process. For 

example, in the study, the discontinuous printing of octet was found to increase the 

occurrence of stringing defect, a common issue that arises during the nozzle travel 

between separated structures or when an underflow error is present. Considering the 

limitation of the hardware for collected images for the process, the system is not able to 

detect microscopic stringing defects in the print. The results of the study demonstrate the 

importance of considering the printing style in the 3D printing process. The discontinuous 

printing style of octet presents additional challenges compared to the continuous printing 

style of gyroid, which can impact the quality and consistency of the fabricated 3-

dimensional objects. Understanding these differences is crucial in optimizing the printing 

process and ensuring high-quality results.  

4.3. Rapid Printing Quality 

 

Figure 4.5.  The correction timeline from the rapid printing test of (a) Octet 
2×2×2 (b) Gyroid 8. 

In the final part of the study, the focus was on maximizing the print speed while 

maintaining the printability and quality of the printed samples. To achieve this, the printing 

speed was incrementally increased, and the resulting models were evaluated for their 

mechanical properties with a compression test. The tests were conducted by increasing 
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the print speed by 15% and 30% and the results were compared to models printed at the 

standard print speed of 15mm/s. The goal was to adjust the printing parameters to save 

fabrication time without sacrificing the structural integrity. Figure 4.5 show the correction 

timeline of test models with 15% and 30% increased print speed, octet and gyroid 

respectively. In the slicing stage of the 3D printing process, the flowrate increases to 

maintain a consistent amount of filament extrusion and to ensure the printing process. 

However, as previously mentioned, the increase in flowrate increases the chances of the 

filament buckling failure occurrence with flexible materials. As so, the nozzle temperature 

control is crucial to increase the filament melting speed to reduce the stress applied on 

the nozzle with extrusion. For both cases of octet and gyroid, it is shown that the flowrate 

is generally decreased after around 30 layers of print with the detection of blobs which 

also ensures printability.  

 

Figure 4.6.  The rapid printing compression test results of (a) Octet 2×2×2 (b) 
Gyroid 8. 
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Figure 4.6 show the compression test results of the printed octets and gyroid with 

increased print speed, and the result shows that the yield strength found in all three cases 

lies within the error range. Table 4.1 shows the comparison of the printing time and 

compressive yield strength of the printed samples: 

Table 4.1. Printing Time and Compressive Yield Strength of the Printed Models  

Model Printing Time Compressive Yield Strength 

Octet 2×2×2 4hrs 24mins – 112.55 kPa – 

3hrs 44mins – 15% 110.45 kPa – 1.87% 

3hrs 5mins – 30% 104.21 kPa – 7.41% 

Gyroid 8 3hrs 46mins – 149.35 kPa – 

3hrs 12mins – 15% 146.31 kPa – 2.04% 

2hrs 38mins – 30% 144.60 kPa – 3.18% 

The results revealed that for the octet model, the printing time was reduced by 30 % from 

4 hours to 1 hour and 19 minutes, but at the cost of a 7.41% decrease in compressive 

strength. Similarly, for the gyroid model, the printing time was saved by 30% from 4 hours 

to 1 hour and 8 minutes, however, the compressive strength was only reduced by 3.18%. 

This shows that the flexible material can still be fabricated faster but with little change of 

mechanical property within the error range. 
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 Conclusions and Future Work 

5.1. Conclusions 

The motivation, background, development process, and results of an intelligent 

rapid 3D printing system were demonstrated. The system was developed to address 

challenges associated with the flexible material, TPU, printing process using FDM, which 

was the main objective. Specifically, the defect occurrence and filament buckling 

phenomenon were investigated to enhance the fabrication process, particularly for TPU 

filaments. Test results showed that the developed system was able to adjust its flowrate 

and nozzle temperature based on in-situ data to reduce the occurrence of blobs or 

stringing defects. Furthermore, the system maintained sustained mechanical properties 

even at increased print speed without leading to printing failure for flexible material 3D 

printing process. The printing time was reduced by up to 30%, while maintaining 

mechanical properties within an error range of 3.18%. 

In this research study, the primary objective was to design and develop the 

intelligent 3D printing assistant system with computer vision where it can control printing 

parameters to improve flexible material printing quality at an increased printing speed. 

Several achievements were accomplished in this thesis. 

1. Selection of Primary and Supporting Printing Parameters 

There are many different parameters that can be adjusted in-situ and ex-situ to 

improve quality of the 3D printed objects. The printing parameters that can be adjusted 

real-time during the fabrication process are printing speed, flowrate, nozzle temperature, 

print bed temperature, fan speed, and z-offset. Not only limited to the printing parameters, 

parameters such as layer height, wall thickness, infill settings, retraction, support 

structures, etc. can be adjusted prior to the printing process. In this study, the printing 

parameters that can be controlled along with the fabrication process were investigated 

and flowrate and nozzle temperature was found to have effect on the printing quality. 

Through the visual and compression tests, flowrate is selected to be the primary 

parameter and nozzle temperature to be supportive parameter. The flowrate shows the 

most effect on the printing process and the results where the nozzle temperature is 

required to be considered to ensure printability from the process. 
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2. Development of an Autonomous Parameter Control System 

The autonomous parameter control system requires three main processes: 1) data 

acquisition 2) status identification 3) parameter control. The data acquisition process was 

completed by implementing the computer vision system to the commercial FDM printers. 

The acquired data is then passed to the status identification where CNN was utilized. The 

CNN was developed from scratch based on more than 50 combinations of 

hyperparameters such as kernel size and filter, number of convolutional layers, number of 

epochs, activations function, and optimizers and its learning rate. Based on the selected 

combinations showing the best results, the training accuracy showed 98.97% with the 

lowest classification accuracy for stringing defect. The output of the CNN model is 

provided as the percentage possibility of the pre-defined classes, in this case, stringing 

defect, blobs defect, normal print, and no information. The parameter control system was 

developed to control both flowrate and nozzle temperature based on the classification 

results to minimize defects while ensuring the printability. 

3. Demonstration of the System 

The performance of the developed system was validated through two types of 

testing methods, defect control test and rapid printing test. Throughout the study, two 

different types of structures are considered, 1D strut-based octet and 2D curve-based 

gyroid. The defect control test was performed by intentionally increasing or decreasing the 

flowrate every 25th and 50th layers to create blobs and stringing defects accordingly. During 

the demonstration, interesting phenomenon was observed which proves the correction 

accuracy between the models. Two different architectures showed continuous and 

discontinuous printing style where the octet showed discontinuous printing style and vice 

versa. The difference in printing style led to different changes in the printing process. 

Specifically in this research, the discontinuous printing of octet has higher occurrence rate 

of stringing defects as it is a common issue that arises during the nozzle travel between 

separated structures. The result demonstrated the importance of consideration in the 

printing style in the 3D printing process for the complex structures to minimize occurrence 

of defects. 

The other test, rapid test was completed by incrementally increasing the print 

speed in between the batch of printing. From the first batch, the correction data was 
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recorded then mathematical correction was applied to the next batch of printing process. 

Throughout the test, the developed system led to sustain mechanical properties 

(compressive yield strength) at increased printing speed without leading to any printing 

failure. The printing time was reduced up to 30% while keeping the mechanical properties 

difference in the error range of 3.18% 

5.2. Future Work 

In this study, an autonomous 3D printing system for flexible materials was 

developed, which addresses the printability issue of flexible materials in 3D printing. The 

intelligent 3D printing system has the potential to be an affordable assistance system for 

optimizing the additive manufacturing process and can serve as the basis for future 

intelligent systems in the field. The system's ability to increase printing speed while 

minimizing defects and ensuring printability can be applied to various structures, making 

it a versatile solution.  

The limitation of the developed system is the resolution of computer vision system 

which does not allow detection of microscopic defects on the print surface. By improving 

the computer vision system with higher resolution and optimized location, increasing the 

data size, and diversifying the CNN dataset to classify different types of defects, the defect 

control performance will be improved. Overall, this study provides a promising solution for 

advancing the additive manufacturing process with flexible materials. 
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Appendix A. CNN Training Process 

Table A.1. CNN Training Results with Different Hyperparameter Combinations 

Hyperparameter Combinations Training Accuracy 

K1A1O1-001 [EP-24] 86.50% 

K1A1O2-001 [EP-22] 43.00% 

K1A2O1-001 [EP-19] 42.00% 

K1A2O2-001 [EP-25] 25.00% 

K1A3O1-001 [EP-25] 25.00% 

K1A3O2-001 [EP-25] 25.00% 

K1A4O1-001 [EP-22] 64.75% 

K1A4O2-001 [EP-17] 40.00% 

K1A5O1-001 [EP-24] 75.00% 

K1A5O2-001 [EP-23] 40.00% 

K1A6O1-001 [EP-22] 66.50% 

K1A6O2-001 [EP-23] 58.25% 

K2A1O1-001 [EP-25] 85.00% 

K2A1O2-001 [EP-17] 44.00% 
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Hyperparameter Combinations Training Accuracy 

K2A2O1-001 [EP-25] 25.00% 

K2A2O2-001 [EP-25] 25.00% 

K2A3O1-001 [EP-25] 25.00% 

K2A3O2-001 [EP-25] 25.00% 

K2A4O1-001 [EP-24] 76.00% 

K2A4O2-001 [EP-22] 41.25% 

K2A5O1-001 [EP-24] 72.00% 

K2A5O2-001 [EP-24] 44.50% 

K2A6O1-001 [EP-25] 86.00% 

K2A6O2-001 [EP-20] 53.50% 

K3A1O1-001 [EP-25] 64.75% 

K3A1O2-001 [EP-22] 54.00% 

K3A2O1-001 [EP-25] 25.00% 

K3A2O2-001 [EP-25] 25.00% 

K3A3O1-001 [EP-25] 25.00% 

K3A3O2-001 [EP-25] 25.00% 
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Hyperparameter Combinations Training Accuracy 

K3A4O1-001 [EP-25] 25.00% 

K3A4O2-001 [EP-25] 25.00% 

K3A5O1-001 [EP-03] 38.25% 

K3A5O2-001 [EP-25] 62.50% 

K3A6O1-001 [EP-23] 82.00% 

K3A6O2-001 [EP-25] 93.50% 

K4A1O1-001 [EP-25] 93.00% 

K4A1O2-001 [EP-23] 55.25% 

K4A2O1-001 [EP-25] 25.00% 

K4A2O2-001 [EP-25] 25.00% 

K4A3O1-001 [EP-25] 25.00% 

K4A3O2-001 [EP-25] 25.00% 

K4A4O1-001 [EP-25] 25.00% 

K4A4O2-001 [EP-25] 25.00% 

K4A5O1-001 [EP-25] 25.00% 

K4A5O2-001 [EP-25] 68.00% 
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Hyperparameter Combinations Training Accuracy 

K4A6O1-001 [EP-19] 73.25% 

K4A6O2-001 [EP-22] 95.50% 
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Appendix B. CNN Development Code (Python) 

 

   

  

import os, itertools, shutil, random, glob,  
import numpy as np 
import tensorflow as tf 
from tensorflow.keras.models import Model 
from tensorflow.keras.layers import Dense, Conv2D, Input, MaxPooling2D, 
add, AveragePooling2D, GlobalMaxPooling2D 
from tensorflow.keras.optimizers import Adam, SGD, RMSprop 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from sklearn.metrics import confusion_matrix 
import matplotlib.pyplot as plt 
from pathlib import Path 
 
#### GPU ONLY #### 
physical_devices = tf.config.experimental.list_physical_devices('GPU') 
tf.config.experimental.set_memory_growth(physical_devices[0], True) 
 
#### Data Size Definition #### 
train_datasize = 300 
valid_datasize = 100 
test_datasize = 20 
 
#### Data Organization (Train, Valid, Test) #### 
os.chdir('data/ExtrusionTest') 
if os.path.isdir('train/normal') is False: 
    os.makedirs('train/noinfo') 
    os.makedirs('train/under') 
    os.makedirs('train/normal') 
    os.makedirs('train/over')  
    os.makedirs('valid/noinfo') 
    os.makedirs('valid/under') 
    os.makedirs('valid/normal') 
    os.makedirs('valid/over') 
    os.makedirs('test/noinfo') 
    os.makedirs('test/under') 
    os.makedirs('test/normal') 
    os.makedirs('test/over') 
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    for i in random.sample(glob.glob('normal*'), train_datasize): 
        shutil.move(i, 'train/normal') 
    for i in random.sample(glob.glob('noinfo*'), train_datasize): 
        shutil.move(i, 'train/noinfo') 
    for i in random.sample(glob.glob('over*'), train_datasize): 
        shutil.move(i, 'train/over') 
    for i in random.sample(glob.glob('under*'), train_datasize): 
        shutil.move(i, 'train/under') 
    for i in random.sample(glob.glob('normal*'), valid_datasize): 
        shutil.move(i, 'valid/normal') 
    for i in random.sample(glob.glob('noinfo*'), valid_datasize): 
        shutil.move(i, 'valid/noinfo') 
    for i in random.sample(glob.glob('over*'), valid_datasize): 
        shutil.move(i, 'valid/over') 
    for i in random.sample(glob.glob('under*'), valid_datasize): 
        shutil.move(i, 'valid/under') 
    for i in random.sample(glob.glob('normal*'), test_datasize): 
        shutil.move(i, 'test/normal') 
    for i in random.sample(glob.glob('noinfo*'), test_datasize): 
        shutil.move(i, 'test/noinfo') 
    for i in random.sample(glob.glob('over*'), test_datasize): 
        shutil.move(i, 'test/over') 
    for i in random.sample(glob.glob('under*'), test_datasize): 
    shutil.move(i, 'test/under') 

os.chdir('../../') 

train_path = 'data/ExtrusionTest/train' 
valid_path = 'data/ExtrusionTest/valid' 
test_path = 'data/ExtrusionTest/test' 
img_pix_size = 300 

train_batches = 
ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilen
et.preprocess_input).flow_from_directory(directory=train_path, 
target_size=(img_pix_size,img_pix_size), classes=['noinfo', 'normal', 
'under', 'over'], batch_size=10) 

valid_batches = 
ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilen
et.preprocess_input).flow_from_directory(directory=valid_path, 
target_size=(img_pix_size,img_pix_size), classes=['noinfo', 'normal', 
'under', 'over'], batch_size=10) 

test_batches = 
ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilen
et.preprocess_input).flow_from_directory(directory=test_path, 
target_size=(img_pix_size,img_pix_size), classes=['noinfo', 'normal', 
'under', 'over'], batch_size=5, shuffle=False) 

 

imgs, labels = next(train_batches) 
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#### Convolutional Neural Network Model Creation #### 
CNN_Input = Input(shape=(img_pix_size,img_pix_size,1)) 
kernel_size = [16, 32, 64, 128, 256, 512,1024] 
activations_func = 'selu' 
total_types = 4 # Number of classes 
epoch_num = 22 # Epoch number (Updated after the test) 
opt_type = SGD 
opt_learning_rate = 0.001 
 
cnn_struct = Conv2D(kernel_size[0],5,activation=activations_func, 

 padding = 'same')(CNN_Input) 
cnn_struct = Conv2D(kernel_size[1], 3, activation=activations_func, 

 padding = 'same')(cnn_struct) 
cnn_struct = Conv2D(kernel_size[2], 3, activation=activations_func, 

 padding = 'same')(cnn_struct) 
cnn_struct = Conv2D(kernel_size[5], 5, activation=activations_func, 

 padding = 'same')(cnn_struct) 
block1_output = AveragePooling2D(pool_size=(2,2),strides=2)(cnn_struct) 
 
cnn_struct = Conv2D(kernel_size[1], 5, activation=activations_func, 

 padding = 'same')(block1_output) 
cnn_struct = Conv2D(kernel_size[2], 3, activation=activations_func, 

 padding = 'same')(cnn_struct) 
cnn_struct = Conv2D(kernel_size[3], 3, activation=activations_func, 

 padding = 'same')(cnn_struct) 
cnn_struct = Conv2D(kernel_size[5], 3, activation=activations_func, 

 padding = 'same')(cnn_struct) 
block2_output = add([cnn_struct, block1_output]) 
block2_output = MaxPooling2D(pool_size=(2, 2),strides=2)(block2_output) 
 
cnn_struct = Conv2D(kernel_size[2], 5, activation=activations_func, 

 padding = 'same')(block2_output) 
cnn_struct = Conv2D(kernel_size[3], 3, activation=activations_func, 

 padding = 'same')(cnn_struct) 
cnn_struct = Conv2D(kernel_size[4], 3, activation=activations_func, 

 padding = 'same')(cnn_struct) 
cnn_struct = Conv2D(kernel_size[5], 1, activation=activations_func, 

 padding = 'same')(cnn_struct) 
block3_output = add([cnn_struct, block2_output]) 
block3_output = MaxPooling2D(pool_size=(2, 2),strides=2)(block3_output) 
 
cnn_struct = Conv2D(kernel_size[6], 1, activation=activations_func, 

 padding = 'same')(block3_output) 
cnn_struct = GlobalMaxPooling2D()(cnn_struct) 
cnn_struct =  

Dense(kernel_size[6],activation=activations_func)(cnn_struct) 
CNN_Output = Dense(total_types, activation='softmax')(cnn_struct) 
 
model = Model(CNN_Input, CNN_Output) 
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model.summary() 

 

model.compile(optimizer=opt_type(learning_rate=opt_learning_rate),  

  loss='categorical_crossentropy', metrics=['accuracy']) 

 

model.fit(x=train_batches, 

    steps_per_epoch=len(train_batches), 

    validation_data=valid_batches, 

    validation_steps=len(valid_batches), 

    epochs=epoch_num, 

    verbose=2 

) 

 

test_imgs, test_labels = next(test_batches) 

 

predictions = model.predict(x=test_batches, steps=len(test_batches), 

  verbose=0) 

 

print(np.round(predictions)) 

 

cm = confusion_matrix(y_true=test_batches.classes,  

y_pred=np.argmax(predictions, axis=-1)) 

 

cm_plot_labels = ['noinfo', 'normal', 'under', 'over'] 

plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion 

Matrix') 

 

#### Neural Network Model Exportation #### 
# Model 
model_structure = model.to_json() 

file_path = Path("model_structure.json") 

file_path.write_text(model_structure) 

# Trained weight  

model.save_weights("model_weight.h5") 
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Appendix C. Autonomous System PC Code  

import os 

import time 

import socket 

from ftplib import FTP 

 

from PIL import Image, ImageDraw 

from pathlib import Path 

import numpy as np 

 

from tensorflow.keras.models import model_from_json 

from tensorflow.keras.preprocessing import image 

from tensorflow.keras.applications.mobilenet import preprocess_input 

 

TCP_IP = '192.168.137.1' 

TCP_PORT = 5005 

TCP_CONNECTION = (TCP_IP,TCP_PORT) 

 

#### Image Retrieval from Pi #### 
def Take_snapshot(): 

    server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

    server.bind(TCP_CONNECTION) 

    server.listen(1) 

    conn, addr = server.accept() 
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while True: 

        data = conn.recv(1024) 

        if data == b"1": 

            #### FTP Connection #### 

            ftp = FTP('192.168.137.19') 

            ftp.login('pi','raspberry') 

            ftp.cwd('~/scripts/cnn_application') 

            with open('snapshot.jpg', 'wb') as fp: 

                ftp.retrbinary('RETR snapshot.jpg', fp.write) 

            ftp.quit() 

 

#### Image Process #### 

with Image.open('snapshot.jpg') as im: 

               image_size = (20, 100, 320, 400)  # x1 y1 x2 y2 

 

               top_cover = [(0, 0), (22, 640)] 

               nozzle_cover = [(22, 215), (22, 285), (52, 250)] 

 

               ImageDraw.Draw(im).rectangle(top_cover, fill="black", 

         outline="black") 

               ImageDraw.Draw(im).polygon(nozzle_cover, fill="black", 

 outline="black") 

 

                   

im.crop(image_size).transpose(Image.Transpose.ROTATE_270

).save('snapshot.jpg', format='jpeg') 

 

            break 

    conn.close() 

    server.close() 

 

 

ftp://ftp.quit()/
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#### Image Classification #### 

    image_path = "snapshot.jpg" 

 

    file_path = Path("9700accuracy/model_structure.json") 

    model_structure = file_path.read_text() 

    model = model_from_json(model_structure) 

    model.load_weights("9700accuracy/model_weight.h5") 

    img = image.load_img(image_path, target_size=(300, 300)) 

 img_array = image.img_to_array(img) 

    img_batch = np.expand_dims(img_array, axis=0) 

    img_preprocessed = preprocess_input(img_batch) 

    predictions = model.predict(img_preprocessed) 

    class_number = np.argmax(predictions[0]) 

    likelihood = np.max(predictions[0]) 

 class_names = { 

        0: "No Information Found", 

        1: "Normal Extrusion", 

        2: "Stringing Defect", 

        3: "Blobs Defect" 

 

#### Classification Data Transfer #### 

def Result_Transfer(defect_class): 

 

    if defect_class == 2: 

        message = b"String" 

    elif defect_class == 3: 

        message = b"Blob" 

    else: 

        message = b"NA" 

 

    server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

    server.bind(TCP_CONNECTION) 

    server.listen(1) 
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    conn, addr = server.accept() 

 

    conn.sendall(message) 

    data = conn.recv(1024) 

 

    if data: 

        conn.close() 

  server.close() 

 

#### Main #### 

if __name__=='__main__': 

while True: 

Take_snapshot() 

   time.sleep(2) 

   defect_class = Defect_Detection() 

   Result_Transfer(defect_class) 

   time.sleep(10) 
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Appendix D. Autonomous System Pi Code 

  

import os 
import socket 
import serial 
import time 
 
TCP_IP = '192.168.137.1' 
TCP_PORT = 5005 
TCP_ADDR = (TCP_IP, TCP_PORT) 
Data_Tracking = 0 
 
Flowrate = 100 
Temperature = 228 
 
FILENAME = 'snapshot.jpg' 
BUFFER_SIZE = 4096 
 
#### Image Data Transfer to PC #### 
def Image_Send_PC(): 
 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
 client.connect(TCP_ADDR) 
 
 client.sendall(b'1') 
 time.sleep(2) 
 client.close() 
 
 os.system("sh remove_snapshot.sh") 
 
#### Connection-over-internet Establishment #### 
def Test_Connection(): 
 
 if os.path.exists('/dev/ttyUSB0') == True: 
  signal = serial.Serial( 
  port='/dev/ttyUSB0', 
  baudrate=250000, 
  timeout=10000) 
 else: 
  signal = 0 
 
 return signal 
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#### Printer Control #### 
def Printer_Control(): 
 global Data_Tracking, Flowrate, Temperature 
 
 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
 client.connect(TCP_ADDR) 
 
 data = client.recv(1024) 
 
 if data: 
  client.sendall(b'1') 
  client.close() 
 
 signal = Test_Connection() 
 
 print("Data Recevied") 
 while signal == 0: 
  signal = Test_Connection() 
 
 if signal != 0: 
  print("Signal Established") 
 
 control_update = open('control_data.txt', 'a+') 
 
 if Data_Tracking%FORCE_LAYER == 0: 
  if Data_Tracking == 0 or Data_Tracking == 125: 
   control_update.write(f'{Data_Tracking}, Flowrate, 
{Flowrate}, 

   Temperature, {Temperature}\n') 
   signal.write(bytes(f"M221 S{Flowrate}\r\n", 'utf-8')) 
   signal.write(bytes(f"M104 S{Temperature}\r\n", 'utf-
8')) 
  else: 
   Flowrate = 85 
   Temperature = 228 
   signal.write(bytes(f"M221 S{Flowrate}\r\n", 'utf-8')) 
   signal.write(bytes(f"M104 S{Temperature}\r\n", 'utf-
8')) 
   control_update.write(f'{Data_Tracking}, Flowrate, 
{Flowrate}, 

   Temperature, {Temperature}\n') 
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 else: 
  if data == b"String": 
   Flowrate += 1 
   Temperature += 1 
   if Flowrate > 115: 
    Flowrate = 115 
   if Temperature > 233: 
    Temperature = 233 
 
   signal.write(bytes(f"M221 S{Flowrate}\r\n", 'utf-8')) 
   signal.write(bytes(f"M104 S{Temperature}\r\n", 'utf-
8')) 
 
  elif data == b"Blob": 
   print("Over extrusion detected") 
   Flowrate -= 1 
   Temperature -= 1 
   if Flowrate < 85: 
    Flowrate = 85 
   if Temperature < 227: 
    Temperature = 227 
 
   signal.write(bytes(f"M221 S{Flowrate}\r\n", 'utf-8')) 
   signal.write(bytes(f"M104 S{Temperature}\r\n", 'utf-
8')) 
 
  else: 
   control_update.write(f'{Data_Tracking}, Flowrate, 
{Flowrate}, 

   Temperature, {Temperature}\n') 
 
 Data_Tracking += 1 
 control_update.close() 
 
 
#### Main #### 
if __name__=='__main__': 
 while True: 
  # os.system("sh take_snapshot.sh") 
  if os.path.exists(FILENAME) == True: 
   Image_Send_PC() 
   Printer_Control() 
  else: 
   time.sleep(5) 


