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Abstract

A Probabilistic Graph Query (PGQ) specifies target components of a graph to be pre-
dicted, given observed components as evidence. For example, a single-link query specifies a
target link, with other links and node attributes as evidence. Previous works have developed
customized models for different PGQ types; this work describes a unified framework for an-
swering various types of PGQs based on an inductively trained probabilistic Generative
Graph Model (GGM). Given a trained GGM and any user PGQ, our approach constructs,
without retraining, a conditional model that outputs the PGQ probability. In this thesis, we
utilize Variational Graph Auto-Encoders (VGAEs) as GGM with Conditional Variational
Auto-Encoders (CVAEs) as conditional models. For evaluation, we apply query answering to
inductive link prediction queries on six benchmark datasets. We find that for most datasets
and query types, the VGAE predictions are better than baseline methods customized for
link prediction.

Keywords: Inductive Link Prediction; Variational Graph Auto-Encoder; Probabilistic Graph
Query; Conditional Variational Auto-Encoder
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Chapter 1

Introduction and Overview

We review basic definitions concerning graphs, link prediction, and graph generative models.
Then we give an overview of how we utilize a trained GGM to answer link prediction queries.

1.1 Definitions

1.1.1 Graphs

An attributed graph is a pair G = (V, E) comprising a finite set of V nodes and E links.
An undirected graph is a type of graph in which the links connecting pairs of vertices have
no direction. In other words, if there is an link between nodes u and v, it is considered to
be the same as the link between nodes v and u. Undirected graphs are often used to model
symmetrical relationships between objects, such as friendships in a social network or roads
in a transportation network. Figure 1.1 is one example of such graph.

Figure 1.1: Example of an undirected graph with six nodes and seven links.

1.1.2 Link Prediction Task

Link prediction is a task in graph analysis that involves predicting missing links in a graph,
based on the relationships between the existing vertices. The goal of link prediction is to
identify which vertices in a graph are likely to be connected by a link, based on the patterns
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of connections and relationships between other nodes. Link prediction is an important tool
in a variety of fields, including social network analysis and recommendation systems.

Inductive Link Prediction (ILP) is made based on the information learned from
the existing graph, and then used to extend the graph to include missing links for the
new nodes. This is in contrast to transductive link prediction, where the goal is to
predict links for a specific set of nodes, given their features and relationships to other nodes
in the graph. Figure 1.2 illustrates the difference between inductive and transductive link
prediction methods.

(a) Training graph (b) Transductive prediction (c) Inductive prediction

Figure 1.2: The comparison of transductive and inductive link predictions.

1.1.3 Variational Auto-Encoders

A Variational Auto-encoder (VAE) is a type of generative model in deep learning that
is used for unsupervised representation learning first introduced by [10]. It learns to map
high-dimensional data, such as images or texts, into a lower-dimensional representation,
called a latent space Z, and then maps the latent representation back to the original high-
dimensional space. This results in a compact and meaningful representation that can be used
for various tasks such as image generation. The variational auto-encoder is a generative
model that can generate new examples by sampling from the learned latent space and
decoding the samples into high-dimensional data.

Variational Graph Auto-Encoders (VGAE)s are a special type of VAE that work with
graph data [6, 11]. A VGAE encoder takes as input a feature matrix X and an adjacency
matrix A and maps them to a lower dimensional distribution Z. The decoder then by using
a variational approximation function outputs the reconstructed adjacency matrix that can
be used for link prediction. Figure 1.3 shows the architecture of the VGAE model.

1.1.4 Conditional Variational Auto-Encoders

A Conditional Variational Auto-Encoder (CVAE) extends the traditional Variational Auto-
encoder (VAE) architecture to incorporate additional conditioning information [20]. The
encoding and decoding process is conditioned on additional information, such as class labels,
that provide context and guide the learning process. In the context of link prediction, the
additional information is going to be the label of the links that we want to predict.
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Figure 1.3: Example of a VGAE structure.

1.2 Background

Many prediction tasks for graph data can be formulated as a probabilistic graph query:
predict a set of target links/attributes, given observed evidence links/attributes of a graph.
For example, Inductive Link Prediction (ILP) involves predicting the existence of one or
more links involving test nodes that are not observed during training. Previous researchers
have developed a separate customized method for each type of graph query. For instance,
different ILP variants have been studied in recent works, including the following evidence
settings for predicting the existence of a single target link. (1) Condition on the attributes
of the disconnected test nodes [8].(2) Condition on links among other test nodes only [21].
(3) Condition on links among training and test nodes [30].

1.3 Overview

1.3.1 Motivation

A query answering system defines a query language (e.g, SQL) provides fast answers for
valid queries. If the observed workload indicates that a particular query type is especially
important for users, the system can be optimized for it. A query answering system is im-
portant for deploying graph learning in a production environment where we do not know
in advance which graph queries will be important, and users may not have the resources to
build a customized machine learning solution for different query types. A query answering
system based on a single model can be seen as a multi-task system.
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1.3.2 Approach

Fig 1.4 shows the proposed system design. Our approach is a form of domain-specific pre-
training: We learn a probabilistic generative model from data in a deployment domain. After
learning a domain model from data, the model is used to answer queries with no further
learning required. The deployment domain can be large, whereas queries are typically small
(e.g., a single-link prediction query may involve two nodes and a k-hop neighborhood around
them).

Specifically, we train a (VGAE) [6,11] inductively, so that the VGAE can be applied to
graphs of different sizes [7]. The joint probabilities over graphs (implicitly) define a condi-
tional probability P(target|evidence) for every PGQ. The VGAE utilizes an encoder-decoder
architecture with a Graph Neural Network (GNN) as an encoder. Our main technical con-
tribution is to show how, given a PGQ specified by the user, the VGAE can be dynamically
transformed to a zero-shot conditional VGAE (CVGAE) for the query. This approach can
be seen as a classic inference from a model [17].

Figure 1.4: After training a single graph generative model, a user query can be answered
by dynamically constructing a zero-shot conditional model.

CVAEs were introduced as neural models for generating structured output given initial
information [20]; to our knowledge, this work is the first application of CVAEs to PGQs. A
CVAE comprises two components: a (conditional) prior network for encoding the evidence
and a recognition network for jointly encoding the evidence and the target. The conditional
probability P (target|evidence) is estimated by sampling using the prior network.

1.3.3 Evaluation

Our evaluation focuses on inductive link prediction because it is a challenging task that
arises frequently in practice. We investigate four versions of the ILP problem (cf. fig. 3.1),
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depending on whether 1) the target is a single-link between test nodes or comprises mul-
tiple links, and 2) the evidence comprises only links among test nodes (fully-inductive),
or also links among training and test nodes (semi-inductive). For a single-link target, well-
established single-link methods are used as baselines. We find that inference from the VGAE
model is competitive with, and for many datasets more accurate than, custom methods for
single-link prediction. For multi-link targets, our baseline is to estimate link probabilities
independently. We find that joint prediction scores are more accurate than independent
prediction, leading to superior performance by the VGAE model.

1.3.4 Contributions

The contributions of this thesis can be summarized as follows.

• Introducing the task of answering probabilistic graph queries.

• A single model approach for answering PGQs: estimate a conditional probability for
a large class of graph queries by inference from a single inductively trained GGM.

• A method for dynamically constructing a conditional prediction model for each given
graph query.

• An application of our query answering method to new practically useful link prediction
queries, including joint predictions of multiple links.
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Chapter 2

Related Work

Graph Queries. Powerful (non-probabilistic) graph query languages have been devel-
oped, such as Cypher and SPARQL [4,15]. Graph queries are typically used to retrieve data
that is stored in a graph data model. Such graph queries typically return a set of nodes or
links that satisfy a complex condition [5]. In contrast, probabilistic graph queries return a
probability for a subgraph, conditional on another subgraph. Below we often refer to prob-
abilistic graph queries as "graph queries" for short, although the concept is different from
that used in graph query languages.

Inductive Graph Training. Inductive graph learning has been a major topic in recent
research [7,16,28]. GraphSage [7] learns embeddings for the new nodes in a graph by aggre-
gating information from their local neighborhood and tries to capture the structural prop-
erties of the graph by looking at the nodes and links surrounding each node. DeepGL [16]
uses network motifs as base features for network representation learning. GraphSAINT [28]
uses a sampling strategy to select a small subset of nodes and their neighborhoods for each
training iteration to achieve faster computation and memory efficiency.

The proposed query answering approach can be used with any inductive encoder-decoder
graph neural network architecture, which we train with the variational Evidence Lower
BOund (ELBO) objective described in equation 3.1 below. To our knowledge, this is the
first inductive training with the variational ELBO objective.

Graph Generative Models. Graph generative models are machine learning models that
are designed to generate graphs that exhibit similar properties to a given input graph
or a set of input graphs. GraphGAN consists of two neural networks, a generator and a
discriminator, that are trained together in a game-like manner to generate new graph that
is similar to the training graph [24]. GraphGANs do not provide explicit graph probabilities
for the entire graph, although some designs use local link probabilities to generate the graph.
GraphVAEs generate graphs from a continuous embedding in the context of variational auto-
encoders but cannot be applied to graphs of different sizes from the training graph [19].
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Auto-regressive models like GRAN [12] provide explicit graph probabilities for graphs of
different sizes, and likely admit graph-conditional variants—the target graph links can be
incrementally built up from the evidence subgraph. They typically assume a node ordering
for sequentially generating subgraphs. An interesting research question is how to find an
effective node ordering dynamically for the target nodes in a graph query, conditional on
the evidence subgraph. For graph diffusion, DiGress method is a variant that conditions the
diffusion process on a subgraph [23, Sec.E]. However, the subgraph is restricted to known
nodes. It is not clear whether graph diffusion models support computing explicit graph
probabilities. In general, computing exact data likelihoods in diffusion models is a difficult
problem [25, Sec.4.3].

Link Prediction Methods. SEAL is a transductive link prediction method that extracts
a local subgraph around each target link, and aims to learn a function to map the subgraph
patterns to link existence [29]. GraIL is an inductive extension of SEAL to directed multi-
relational knowledge graphs [21]. One limitation of these method is that they are designed to
do single-link prediction and for a set of target links, a different enclosing subgraph must be
extracted for each target link. DEAL uses two auto-encoder networks to learn embeddings
of the source and target nodes separately [8]. The source and target embeddings are then
combined and passed through a fully connected layer to predict the existence of a link
between them. DEAL’s performance is highly dependent on the node features of the graph
as it does not use any information from the structure of the graph.

CVAE for PGQs. CVAEs are models for generating structured output [20], which makes
them suitable for graph prediction. While they have been extensively applied to visual data,
such as images and video, to our knowledge their application to graph queries is new. These
methods use the conditional ELBO to define a CVAE training objective, for a fixed type
of target and evidence. In our experiments, the CVAE architecture is used for inference but
the conditional ELBO is not used for training.

Inference from a Model. Previous works on graph neural networks have focused on
specific predictive tasks specified by the researcher. To our knowledge, inference from a
generative model to estimate conditional probabilities is a novel application of inductive
neural graph learning. However, general query answering capabilities are a major use case for
non-neural statistical-relational models, such as Markov Logic networks [2] and Probabilistic
Soft Logic [9] which are used for reasoning and learning in domains that involve uncertainty
and incomplete information. The fact that general query answering is a key capability
of previous graph models motivates our goal of adding this capability to neural models.
Statistical-relational models are based on very different assumptions and model classes (e.g.
exponential random graph models) from VGAEs.

7



Chapter 3

Method and Approach

This chapter will define probabilistic graph queries, differentiate different kinds of graph
queries, and propose a method to answer them using CVAE methods with VGAE models.

3.1 Problem Statement

Probabilistic Graph Queries. Graph queries specify a set of links and attributes for the
nodes involving the links. Probabilistic Graph Queries allow users to query over nodes and
structures of graphs and return probabilistic answers to those queries.The specification can
involve a language as complex as first-order logic [2]. In this thesis we introduce a relatively
simple PGQ syntax, consisting primarily of conjunctions of links and/or attributes, which is
powerful enough to express the prediction tasks that have previously been studied in graph
learning.

Data Format. An attributed graph is a pair G = (V, E) comprising a finite set of nodes
V and links E where each node is assigned a k-dimensional attribute xi with k > 0. An
attributed graph can be represented by an N × N adjacency matrix A with {0, 1} Boolean
entries, together with an N × k node feature matrix X.

Definition of Probabilistic Graph Queries. Answering a graph query requires assign-
ing a joint probability to joint values for a set of target relational random variables Y , given
values of evidence random variables E. A relational random variable corresponds to either a
node attribute or a link. Accordingly we define X = {x[u, i] : u ∈ V, 1 ≤ i ≤ k} as the set of
attributed node variables and A = {A[u, v] : u ∈ V, v ∈ V } as the set of link variables.
A probabilistic graph query is of the form P(Y = y|E = e) where the target Y =
(XY , AY ) and the evidence E = (XE , AE) with {XE , XY } ⊆ X and {AE , AY } ⊆ A.
The following types of queries are differentiated:

8



Figure 3.1: Illustration of Semi/fully-inductive and single/multi-link prediction queries. The
dashed red lines represent target links.

• A query is attribute-complete if the following conditions hold. For each node u that
appears in the evidence E or target Y , the evidence contains all attributes of u. That
is, for each u, and attributes 1 ≤ i ≤ k, all x[u, i] must appear in E.

• A link prediction query targets only links (i.e., Y ⊆ A).

• Given a partition of nodes into observed training nodes and unobserved test nodes, a
query is inductive if a test node appears in the target.

Link prediction queries are typically attribute-complete, and node classification queries
are not. In the next section we describe a general procedure for constructing a CVAE for any
attribute-complete link prediction query given a trained VGAE, without further training.
CVAEs can be used to answer both inductive queries and purely transductive link prediction
queries.

3.1.1 Examples of Inductive Link Prediction Queries

Single-link prediction from the remaining graph is the most common link prediction set-
ting, One example of it is in recommendation systems [30]. In a recommendation setting,
neighborhood prediction corresponds to predicting whether a user will select a set of items.
In a social network setting, it corresponds to predicting a group of friends for a user. This
is while Single-link prediction from attributes only is a type of cold-start setting [8].

9



Symbol Semi-Inductive Fully-Inductive

AY (Single)
{A[u, v]}

where u ∈ Vte, v ∈ V

{A[u, v]}

where u ∈ Vte, v ∈ Vte

AY (Multi)
{A[u, v1], ..., A[u, vm]}

where u ∈ Vte, vi ∈ V, m = N

{A[u, v1], ..., A[u, vm]}

where u ∈ Vte, vi ∈ Vte, m = |Vte| − 1)

AE Ain - AY Ate - AY

XE Xin Xte

Table 3.1: Definition of Test Queries for different link prediction methods.

We further distinguish query types according to how much they generalize from the
training data. The input graph is one large graph Gin = (V, E). Suppose the nodes in the
graph are divided into training nodes and test nodes that are unseen during the training
process.

Given a subset of nodes V ′ ⊆ V , the (induced) subgraph G↾V ′ comprises the subset and
all links among them: G↾V ′ = (V ′, E′) where E′ = E ∩ (V ′ × V ′). The train graph Gtr

is the subgraph induced by the training nodes Vtr , that is we remove the test nodes and
their links, so Gtr = G↾Vtr . Similarly the test graph is the subgraph induced by the test
nodes s Vte, so Gte = G↾Vte. We write Ain , Atr , Ate for the set of link variables defined by
the input, train, and test graphs respectively.

In a fully-inductive query, target links are from the test graph only. Evidence links
comprise all test graph links that are not targets. Evidence nodes comprise all the nodes
that are in the test graph.

In a semi-inductive query, target links involve at least one test node. Evidence links
comprise all links that are not targets (both training and test links). Evidence nodes com-
prise all the nodes that are in the input graph. Figure 3.1 illustrates fully and semi-inductive
queries and table 3.1 defines their format precisely using our PGQ language.

3.2 Model Definition

The method can be applied with any encoder-decoder graph neural network architecture
that outputs node representations. As discussed below (Section. 3.2.1), conditional VAE
inference techniques are utilized for query answering. Therefore the VGAE is trained using
the variational ELBO objective [6,11]. In order to answer inductive queries involving unseen
nodes, the VGAE is trained without incorporating node IDs [6, Ch.5.1.1].

Let Z be an N × d matrix that represents latent node embeddings. Like other VGAE
models, links are generated independently given node embeddings:

10



pθ(A|Z) =
∏
u,v

pθ(A[u, v]|Z[u], Z[v]),

where pθ : Rd × Rd → [0, 1] is a trainable decoder.
The graph encoder qφ(Z|X, A) is implemented by a GNN that takes as input an at-

tributed graph and returns latent node embeddings. Existing graph neural networks require
all attribute values to be specified for all nodes, which is why we consider only attribute-
complete queries. The training loss is the variational ELBO for link reconstruction [11]:

L(θ, φ) = EZ∼qφ(Z|X,A)
[
ln pθ(A|Z)] − KL

(
qφ(Z|X, A)||p(Z)

)
. (3.1)

where KL(.||.) is Kullback-Leibler divergence which measures difference between two
probability distributions. p(Z) is prior distribution of Z which is usually taken as a standard
Gaussian distribution. The approximate posterior qφ(Z|X, A) is the graph encoder. The
reconstruction likelihood pθ(A|Z) is computed by the decoder of the VGAE model.

Equation (3.1) is the training objective used in our experiments unless otherwise noted.

3.2.1 Graph Query Answering with Dynamic Conditional VGAEs

Below describes a solution for the following inference problem definition:

• Given a single fixed graph generative model M , trained as in section 3.2, defining a
distribution PM over graphs

• and an attribute-complete link prediction query (Section 3.1) with target Y = y and
evidence E = e, chosen dynamically by the user,

• output an estimate of PM (Y = y|E = e).

The first step is to dynamically convert the generative VGAE M into a CVGAE for the
given query. The second is to apply CVAE prediction methods to estimate the target query
probability.

3.2.2 From VGAE to CVGAE

Sohn et al. introduced the CVAE as the conditional version of VAE for estimating con-
ditional probabilities [20]. Assume that the query target is a list Y = y comprising m

assignments Yi = yi, i = 1, . . . , m where Yi = A[ui, vi] and yi is either 0 or 1. Then the
conditional probability for a VGAE model is given by

P(Y = y|E = e) =
∫

Z
P(Y = y|Z)p(Z|E = e)dZ (3.2)

where we have used the fact that given embeddings for nodes ui and vi, the link A[ui, vi]
is independent of other links and node attributes. P(Y = y|Z) is implemented by the
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Figure 3.2: Example of a query

VGAE decoder pθ. To approximate the conditional distribution of node embeddings given
the evidence, we use the graph encoder

p(Z|E = e) := qφ(Z|AE , XE). (3.3)

In terms of the CVAE model [20], the graph encoding qφ(Z|AE , XE) represents the
prior network. The encoding qφ(Z|AE,Y , XE,Y ) represents the recognition network, which
is used in importance sampling (see Section 3.2.3).

To compute the prior and recognition graph encodings, we construct evidence and target
adjacency/feature matrices as in algorithm 1. For both evidence and target matrices, the
unspecified ∗ link values are translated into into zero. This follows common practice in graph
neural networks [11]. One justification for this approach is that many graph message passing
algorithms propagate information only along existing links, so setting the links to zero means
that the unknown links have no contribution to the final prediction. The attribute matrices
and binary adjacency matrices can be processed by graph neural networks.

• AE =


1 ∗ ∗
∗ 1 1
∗ 1 1



• AE,Y =


1 ∗ 1
∗ 1 1
1 1 1



• XE =


0.2 0.4 0.8 0.21
0.67 0.2 0.34 0.1

∗ ∗ ∗ ∗



• XE,Y =


0.2 0.4 0.8 0.21
0.67 0.2 0.34 0.1

∗ ∗ ∗ ∗
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Algorithm 1 Construct evidence and target adjacency and attribute matrices
Input: Given a query P(Y = y|E = e)
Output: AE , AE,Y , XE , XE,Y

for all the links [u, v] do
if e contains A[u, v] = 1(0) then

AE [u, v] = 1(0)
else

AE [u, v] = ∗
end if
if either e or y contains A[u, v] = 1(0). then

AE,Y [u, v] = 1(0)
else

AE,Y [u, v] = ∗
end if

end for
for All the nodes u in e do

if e contains X[u] = x then
XE [u] = x[u]

else
XE [u] = ∗

end if
if either e or y contains X[u] = x then

XE,Y [u] = x[u]
else

XE,Y [u] = ∗
end if

end for

3.2.3 From CVGAE to Query Probabilities

Sohn et al. describe three methods for applying a given CVAE to compute conditional
probabilities: deterministic, Monte Carlo, and importance sampling [20]. We evaluate the
same methods for graph queries. The following defines the inference methods.

Recall that qφ(Z|AE , XE) computes the prior mean µ[u] and covariance σ[u] for each
node u. So we have p(Z[u]|E = e) ∼ N(µ[u], σ[u]).

Deterministic inference computes the mean of the node embeddings using the prior
network, then applies the decoder to the mean to compute a target probability:

P(Y = y|E = e) ≈
m∏

i=1
p(Yi = yi|µ[ui], µ[vi]). (3.4)

Monte Carlo inference samples S node embeddings from the prior network, then ap-
plies the decoder to each sample. For every target link [u, v] in y, the prior joint distribution
over both node embeddings is given by:
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p(Z[u], Z[v]|E = e) ≈ p(Z[u]|E = e) × p(Z[v]|E = e) ∼ N(µ[u], σ[u]) × N(µ[v], σ[v]).

We now sample from the joint prior distribution to estimate:

P(Y = y|E = e) = 1
S

S∑
s=1

m∏
i=1

p(Yi = yi|Zs[ui], Zs[vi])

where Zs[ui], Zs[vi] ∼ p(Z[ui], Z[vi]|E = e).

Importance Sampling inference samples embeddings from the recognition network
and applies importance weights to each sample.

The original CVAE paper proposed as an inference method an importance sampling
scheme that uses the approximate posterior computed from the recognition network as
the proposal distribution [20]. We use the graph encoder qφ(AE,Y , XE,Y ) as a recognition
network to compute the posterior mean and covariance µq[u], σq[u] for each node u. So we
have:

q(Z[u]|E = e, Y = y) ∼ N(µq[u], σq[u]). (3.5)

The posterior joint distribution over both node embeddings is given by:

q(Z[u], Z[v]|E = e, Y = y) = q(Z[u]|E = e, Y = y) × q(Z[v]|E = e, Y = y)

∼ N(µq[u], σq[u])) × N(µq][v], σq[v])).

The importance sampling scheme of Sohn et al. samples from the joint posterior distri-
bution to estimate:

P(Y = y|E = e) ≈ 1
S

S∑
s=1

m∏
i=1

p(Yi = yi|Zs[ui], Zs[vi]) × p(Zs[ui], Zs[vi]|E = e)
q(Zs[ui], Zs[vi]|E = e, Y = y)

where Zs[ui], Zs[vi] ∼ q(Z[ui], Z[vi]|E = e, Y = y).
(3.6)
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Chapter 4

Experiments

We describe benchmark datasets used and the test queries prepared, then the compare
query answering methods and their evaluation metrics.

4.1 Datasets

To evaluate all the methods we utilize 6 datasets used in previous studies of generative
models [8, 11, 26]. Table 4.1 presents statistics of these datasets. Edge density refers to the
number of links in a graph divided by the total number of possible links in that graph. It is
a measure of the connectedness or compactness of the graph. The average node degree in a
graph is the average of the degrees of all the nodes in the graph.

• Cora is a citation dataset that consists of nodes that represent machine-learning
papers divided into seven classes and links that represent citation between them. This
dataset has 5,429 links, 2,708 nodes with an average node degree 3.8. [18].

• ACM is a citation dataset. It has three types of nodes (paper, author, and venue)
and four types of links. This dataset has 18,929 links, 8,993 nodes with an average
node degree 2.209 [27].

• IMDb is a movie dataset with three types of nodes (movies, actors, and directors)
and it uses genre of movies as their labels. This dataset has 19,120 links, 12,772 nodes
with an average node degree 2.9 [27].

• CiteSeer is also a citation dataset which consists of nodes that represent machine-
learning papers divided into six classes and links that represent citation between them.
This dataset has 4,732 links, 3,327 nodes with an average node degree 2.7 [18].

• Photo & Computers are datasets from the Amazon co-purchase graph [13], where
nodes represent goods, links indicate that two goods are frequently bought together,
node features are bag-of-words encoded product reviews, and class labels are given
by the product category. For Photo dataset the number of links is 238,162 links, and
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Dataset Nodes Links Edge Density Average Node Degree
Cora [11] 2,708 5,429 0.00074 3.8
ACM [26] 8,993 18,929 0.00093 2.2
IMDb [26] 12,772 19,120 0.00046 2.9
CiteSeer [11] 3,327 4,732 0.00171 2.7
Photo [8] 7,650 238,162 0.01629 36.7
Computers [8] 13,752 491,722 0.01041 36.7

Table 4.1: Statistics of the datasets.

number of nodes is 7,650 with an average node degree of 36.7. While Computers
dataset has 491,722 links, 13,752 nodes with an average node degree 36.7 [8].

4.2 Data Preprocessing

We define an N × N adjacency matrix A such that its element A[u, v] = 1 if there is
an link from node u to node v and 0 otherwise. We also define a node feature matrix
X, which is of size N by the number of features for each node. Following previous link
prediction studies [11], we add self-loops and make all links undirected (i.e., if the training
data contains an adjacency, v → u, we ensure it also contains u → v).

4.3 Test Query Design

Since our input data are undirected graphs, we enforce the constraint that if a query target
contains a link indicator A[u, v], the evidence does not contain A[v, u]. We split the input
graph nodes into 80% seen nodes and 20% unseen test nodes.

Single-Link Queries. Single-link queries specify a single link target (i.e., m = 1). For
fully-inductive single-link queries, we randomly select 100 positive and 100 negative test
links from the test node graph as targets. Then we predict each test link given all the other
links in the test node graph. In the semi-inductive setting, we select 100 positive and 100
negative links that at least one end of the link in the test set. Then we predict each test
link given all the other links in the input graph.

Multi-Link Queries. Multi-link test queries specify a set of links to be predicted jointly.
In the fully-inductive setting, we predict, for each test node u, which other test nodes v are
its neighbors. We randomly select a set of 100 test nodes as target nodes. For each target
test node, we predict jointly which other test nodes are its neighbors. In the semi-inductive
setting, we predict, for each test node, which other nodes (both training and test) are its
neighbors given all the other links in the input graph.
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Other Test Queries The query language of Section 3.1 is expressive and allows us to
formulate various other types of useful queries. Examples include the following.

• In practice, the goal is often to predict a set of target links from a relatively small set
of relevant evidence links. For example, we may use only observed links in the k-hop
neighborhood of target links as evidence.

• Transductive queries aim to predict links among observed nodes.

• We could predict links based on attributes alone, as in [8].

• We could remove node features (by setting them to a constant value) to assess their
usefulness.

The learning and inference procedures in this thesis support these and other kinds
of queries. We use the inductive test queries described above to limit the scope of our
evaluation, and because they are the most relevant to current link prediction research.
Using inference from a single model for other link prediction queries is a topic for future
research.

4.4 Metrics

For all of our evaluations we report the following metrics:

• Area Under the Curve (AUC) measures the area underneath the Receiver Oper-
ating Characteristic (ROC) curve. This metric measures the performance of the model
across all possible classification thresholds.

• Average Precision (AP) measures the weighted mean of precisions over all possible
classification thresholds.

• Precision measures how many observations predicted as positive are correctly pre-
dicted.

• Recall measures from all positive observations how many of them were classified as
positive.

• Hit-Rate (HR) is computed as follows: (1) For each method, find the set T the of
top 20% links as ranked by the method. (2) Find the number of ground-truth links in
T . (3) Divide by the total number of links in T .

For single-link queries, the ranking metrics become standard classification metrics. The
metrics are computed over all single-link queries. In the case of multi-link predictions, for
each link prediction query, we apply the same metrics, but on a per-query basis, that is,
restricted to the links mentioned in the target query. We report the mean of each metric
over all queries.
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4.5 CVAE-Based Methods

We evaluate CVAE inference based on two VGAE architectures trained with the ELBO (3.1).
As a strong decoder, we utilize a non-linear node transformation function, Stochastic Block
Model (SBM), [14]. SBM is a popular model for community detection tasks, where the
goal is to identify the underlying groups or communities of nodes in a network. It is also
commonly used as a benchmark model for evaluating the performance of graph analysis
algorithms and is defined as:

pθ(Z[u], Z[v]) = Z[u]⊤ΛZ[v], (4.1)

where Λ ∈ Rd × Rd, is the block matrix for d blocks in the Stochastic Block Model [6,
Sec.8.3].

We compare two well-known encoder GNN architectures. The output dimension for both
encoders is 128.

• VGAE-GCN Graph Convolutional Neural Network(GCN) is a popular encoder [11].
GCNs use convolutional operations, similar to those in image processing, to aggregate
information from a node’s neighbors and update the node’s representation. This makes
them especially useful for tasks such as node classification and link prediction in graph-
structured data.

• VGAE-GAT Graph Attention Network(GAT) is based on the idea of attention mech-
anisms, where each node in the graph attends to its neighbors with different levels of
importance during message passing [22]. GATs use multi-head attention to compute
the importance of each neighbor based on learned weights. GATs have been shown
to achieve state-of-the-art performance on various graph-related tasks, such as node
classification and link prediction.

4.6 Importance Sampling With the Recognition Network

While both approximate posteriors and proposal distributions are traditionally denoted
by the symbol q, using the posterior as a proposal is problematic because it can lead to
information leakage. For PQGs, if we sample embeddings from q(Z[u], Z[v]|E = e, Y = y),
they will incorporate the information from Y = y, making it easy for the decoder the
predict that Y = y, the ground-truth value. We used 30 samples for both normalized and
unnormalized methods.

To confirm this diagnosis further, we evaluated a normalized importance sampling
scheme for single-link queries without information leakage: first estimate a probability
score for Y = 1, and another for Y = 0. Then we apply softmax to normalize the scores
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for a final probability prediction. In symbols, the normalized IS estimates are computed as
follows.

P0 = 1
S

S∑
s=1

p(Y = 1|Zs[u], Zs[v]) × p(Zs[u], Zs[v]|E = e)
q(Zs[u], Zs[v]|E = e, Y = 0)

P1 = 1
S

S∑
s=1

p(Y = 1|Zs[u], Zs[v]) × p(Zs[u], Zs[v]|E = e)
q(Zs[u], Zs[v]|E = e, Y = 1)

P(Y = 1|E = e) = softmax(P0, P1)

(4.2)

4.7 Experimental Setup

We used the same VGAE implementation as the original VGAE paper [11]. We trained our
models using 100 epochs, which was sufficient to ensure convergence of the training loss.
The latent embedding dimension was set to 128 [11]. We reported results using GCN and
GAT encoders. The GCN encoder is a two-layer GCN[64, 128]. The GAT encoder is also a
two layer GAT with dimensions [32,128]. For each GAT layer, we used 4 heads as suggested
by the original paper [22]. GAT layers concatenate embeddings for each head so we chose a
smaller initial embedding dimension.

4.8 Baselines

1. SEAL is a well-known method which was introduced for transductive link prediction
[29]. We train SEAL inductively which is similar to the approach of GraIL [21], used
for attribute graphs rather than knowledge graphs.

2. DEAL was introduced for both transductive and inductive cold-start link prediction
tasks [8]. Since this method only takes the attribute matrix as input, we apply it only
in the fully-inductive setting.

3. Classifier methods use an inductive encoder, then train an SBM link prediction
model that takes the trained node embeddings as input. Comparing classification
methods with deterministic CVAE inference evaluates the importance of end-to-end
training of the link predictor.

• Classifier-GraphSage Uses the well-known GraphSage embeddings, trained
with the unsupervised objective [7].

• Classifier-GAT Uses the GAT embedding system, trained with the same micro-
F1 score as in the original paper [22].
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Figure 4.1: Predicting multiple links by computing independent link probabilities for each
target link.

4.8.1 Baseline Setup

For all hyper-parameters, we apply the same settings as reported in their original paper.
We also use the same split for a better evaluation for training, validation, and test nodes in
all experiments.

We extend the single-link prediction methods to predict multi-links by computing inde-
pendent link probabilities for each target link given the evidence, then multiplying them to
approximate the multi-link joint probability. Figure 4.1 shows this process or in symbols:

P(A[u, v1], . . . , A[u, vm]|E) ≈
m∏

i=1
P(A[u, vi]|E). (4.3)

where u is a target node and v1 . . . vm are all the possible neighbors of u.
To compute ranking metrics for neighborhood queries, we require a score to each po-

tential neighbor u of a test node v. For the baseline methods, we use the probability of the
link A[u, v], computed either by independent prediction. For the VGAE sampling methods,
we use the link probability averaged over all samples (cf. Section 3.2.3).

20



Chapter 5

Results

We report five Area Under Curve (AUC), Average Precision (AP), precision, recall, and
Hit-Rate (HR) metrics [1] for VGAE and our baselines on six datasets. The results were
computed with a classification threshold of 0.5 for precision, recall, and HR. In all the
tables, the first best result for each setting is indicated in bold, and the second best result
is underlined.

5.1 Single-Link Queries

AUC and AP. Tables 5.1 and 5.2 show the results for single-link prediction results on
AUC and AP respectively. All the VGAE models perform better than the baselines in almost
all the datasets. They all get 0.8 or higher performance in both AUC and AP. There is no
clear distinction between deterministic and Monte Carlo sampling methods. We believe this
is because we used 30 as the number of samples for Monte Carlo due to the limitations of our
resources while it has been suggested to use at least 1000 samples [3]. We can also observe
that VGAE models with GAT encoder perform better than or at least as good the VGAE
models with GCN encoders. This is because GAT encoders have an attention mechanism
that puts more weight on the important links. We can see that GAT encoders perform
slightly worse for the ACM and CiteSeer datasets compared to the GCN encoders. This is
because while GAT encoders are designed to handle graphs with varying node degrees, but
if the degree distribution is highly skewed or if the graph has a high degree of sparsity, the
GAT encoder may not be able to effectively capture important patterns in the data. As
shown in table 4.1, ACM and CiteSeer have the smallest average node degree. As expected
the embed+classify methods perform much worse than all the other methods which shows
the value of end-to-end training. It is also noticeable that while SEAL performs better than
the Embed+Classify methods, it cannot generalize well to the fully-inductive link prediction
settings and its performance drops by a lot in almost all the datasets. Its performance is
also dependant on the density of the graphs. For example, it performs much better with the
Photo and Computers dataset which have a higher edge density. As with single-link queries,

21



AUC
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 0.855 0.957 0.850 0.937 0.942 0.954
VGAE-GCN (Monte Carlo) 0.863 0.961 0.857 0.941 0.952 0.948
VGAE-GAT (Deterministic) 0.894 0.906 0.860 0.940 0.944 0.950
VGAE-GAT (Monte Carlo) 0.892 0.900 0.857 0.935 0.968 0.960
Extended SEAL 0.756 0.666 0.854 0.627 0.924 0.972
Classify (GAT) 0.667 0.870 0.796 0.731 0.796 0.835
Classify (GraphSage) 0.561 0.593 0.492 0.504 0.552 0.444

Fully

VGAE-GCN (Deterministic) 0.765 0.984 0.885 0.910 0.859 0.923
VGAE-GCN (Monte Carlo) 0.765 0.976 0.887 0.904 0.898 0.961
VGAE-GAT (Deterministic) 0.792 0.935 0.865 0.917 0.973 0.935
VGAE-GAT (Monte Carlo) 0.790 0.947 0.859 0.923 0.965 0.954
Extended SEAL 0.695 0.645 0.636 0.579 0.840 0.939
Classify (GAT) 0.525 0.764 0.671 0.700 0.802 0.733
Classify (GraphSage) 0.695 0.564 0.440 0.521 0.572 0.515
DEAL 0.733 0.957 0.948 0.828 0.861 0.829

Table 5.1: AUC results for single-link prediction.

DEAL is highly accurate on the node-heterogeneous datasets ACM and IMDb where nodes
can have different types.

Precision. Table 5.3 shows the result of precision performance of the models for single-link
prediction. Same as AUC and AP, precision is high in all the VGAE models with the lowest
value being 80.2% for Computers in the VGAE-GCN (Monte Carlo) semi-inductive case and
the highest being 100% for VGAE-GAT (Deterministic) fully-inductive case . SEAL and
the embed+classify methods perform much worse, specifically ranging from 40 to high 70s
except for SEAL in photos and Computers. As explained before, this is because these two
datasets are denser and SEAL is very dependent on the existence of edges. DEAL reports
100% for all datasets in the case of fully-inductive single-link prediction.. This means that
all the links that DEAL predicts to be one, actually exist.

Recall. Table 5.4 shows the result of recall performance of the models for single-link
prediction. Compared to precision, recall is lower in almost all the models. Especially when
generalized from semi-link prediction to fully-link prediction.. Table 5.4 confirms that DEAL
is conservative and only predicts the links that are highly likely positive, with recall of under
20% in most of the datasets. The VGAE methods show higher variability on recall, and thus
appear to be sensitive to the 0.5 classification threshold. Their recall scores are generally
competitive with SEAL and score higher than the embed+classify methods.
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AP
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 0.891 0.965 0.827 0.953 0.911 0.940
VGAE-GCN (Monte Carlo) 0.897 0.968 0.836 0.955 0.952 0.925
VGAE-GAT (Deterministic) 0.912 0.923 0.851 0.953 0.938 0.942
VGAE-GAT (Monte Carlo) 0.908 0.917 0.844 0.951 0.964 0.956
Extended SEAL 0.829 0.737 0.851 0.748 0.931 0.976
Classify (GAT) 0.676 0.866 0.786 0.754 0.800 0.837
Classify (GraphSage) 0.526 0.605 0.527 0.511 0.551 0.481

Fully

VGAE-GCN (Deterministic) 0.790 0.983 0.900 0.932 0.870 0.912
VGAE-GCN (Monte Carlo) 0.775 0.973 0.901 0.922 0.886 0.951
VGAE-GAT ( Deterministic) 0.806 0.944 0.882 0.932 0.969 0.941
VGAE-GAT (Monte Carlo) 0.812 0.956 0.878 0.932 0.952 0.955
Extended SEAL 0.787 0.701 0.647 0.697 0.897 0.959
Classify (GAT) 0.534 0.781 0.667 0.695 0.799 0.757
Classify (GraphSage) 0.486 0.554 0.471 0.532 0.627 0.549
DEAL 0.780 0.967 0.957 0.861 0.852 0.844

Table 5.2: AP results for single-link prediction.

Hit-Rate. Based on table 5.5, we find that DEAL achieves a very high HR through
conservative link prediction. On single-link queries, both VGAE methods and SEAL achieve
a high HR. The classification methods score worse than either the VGAE methods or SEAL.
Comparing semi-inductive and fully-inductive link prediction methods, the VGAE methods
tend to generalize better than SEAL. For example on CiteSeer single-link queries, VGAE-
GCN(Deterministic) stays the same at 100% , while SEAL declines from 97.4% to 83.8%.

5.2 Multi-Link Queries

AUC and AP. Based on tables 5.6 and 5.7, all VGAE methods do very well, with both
AUC and AP ranging from 0.7 to above 0.9 on almost all the datasets for both semi and
fully inductive multi-link predictions. The Embed+Classify methods again do much worse,
typically below 0.6. The VGAE methods also outperform SEAL on every dataset except
for AUC on Cora fully inductive multi-link prediction. The AUC of SEAL is exceptionally
high on Cora and exceptionally low on ACM, which shows that its multi-link is highly
data-dependent. Similarly its generalization ability depends strongly on the data: excellent
on Cora and good on Photo and Computers, and very poor on ACM, IMDb, and CiteSeer.
This spread likely arises because test graphs vary in their density, and SEAL does best with
highly dense graphs. The VGAE models are performing better than DEAL in both AUC
and AP in all the datasets except for IMDb.
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Precision(%)
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 95.0 97.6 85.2 93.0 90.1 85.6
VGAE-GCN (Monte Carlo) 96.7 98.5 84.6 93.9 87.8 87.9
VGAE-GAT (Deterministic) 96.9 91.7 92.2 93.0 85.2 80.2
VGAE-GAT (Monte Carlo) 94.1 92.0 93.7 92.7 86.2 86.6
Extended SEAL 67.2 55.9 57.1 69.8 97.0 90.7
Classify (GAT) 65.2 76.1 76.4 69.4 73.4 76.7
Classify (GraphSage) 48.3 75.0 54.8 45.4 55.5 42.8

Fully

VGAE-GCN (Deterministic) 93.9 97.7 92.6 94.7 90.3 86.3
VGAE-GCN (Monte Carlo) 88.6 96.3 88.5 90.9 81.4 95.2
VGAE-GAT (Deterministic) 90.3 97.3 100.0 94.4 88.0 88.7
VGAE-GAT (Monte Carlo) 93.5 96.1 97.6 91.7 86.2 89.7
Extended SEAL 72.0 58.8 57.6 75.7 99.5 97.8
Classify (GAT) 50.0 79.3 71.1 72.9 88.4 78.9
Classify (GraphSage) 53.3 47.6 38.4 55.5 73.3 52.7
DEAL 100.0 100.0 100.0 100.0 100.0 100.0

Table 5.3: Precision results for single-link prediction.

Recall(%)
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 57.0 81.0 46.0 80.0 64.0 89.0
VGAE-GCN (Monte Carlo) 59.0 79.0 44.0 77.0 87.0 87.0
VGAE-GAT (Deterministic) 63.0 66.0 47.0 80.0 92.0 97.0
VGAE-GAT (Monte Carlo) 64.0 69.0 45.0 77.0 99.0 97.0
Extended SEAL 69.9 81.1 99.3 54.6 78.5 95.2
Classify (GAT) 47.0 83.0 65.0 50.0 61.0 66.0
Classify (GraphSage) 15.0 12.0 17.0 10.0 15.0 15.0

Fully

VGAE-GCN (Deterministic) 31.0 84.0 50.0 71.0 65.0 69.0
VGAE-GCN (Monte Carlo) 35.0 70.0 44.0 68.0 63.0 85.0
VGAE-GAT (Deterministic) 28.0 72.0 43.0 67.0 95.0 81.0
VGAE-GAT (Monte Carlo) 29.0 73.0 40.0 66.0 94.0 87.0
Extended SEAL 56.0 69.5 83.7 41.8 54.1 84.2
Classify (GAT) 14.0 46.0 42.0 27.0 46.0 45.0
Classify (GraphSage) 16.0 10.0 10.0 10.0 22.0 19.0
DEAL 03.0 60.0 52.0 03.0 17.0 10.0

Table 5.4: Recall results for single-link prediction.
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Hit-Rate(%)
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 100.0 100.0 90.0 100.0 100.0 97.5
VGAE-GCN (Monte Carlo) 97.5 100.0 92.5 100.0 100.0 95.0
VGAE-GAT (Deterministic) 97.5 100.0 92.5 100.0 97.5 100.0
VGAE-GAT (Monte Carlo) 97.5 100.0 92.5 100.0 100.0 97.5
Extended SEAL 98.1 84.3 90.2 97.4 98.1 99.5
Classify (GAT) 65.0 90.0 82.5 85.0 73.4 76.7
Classify (GraphSage) 48.3 61.9 56.6 45.4 55.5 42.8

Fully

VGAE-GCN (Deterministic) 93.9 100.0 97.5 100.0 95.0 92.5
VGAE-GCN (Monte Carlo) 88.6 100.0 100.0 100.0 95.0 97.5
VGAE-GAT (Deterministic) 90.3 97.5 100.0 100.0 97.5 97.5
VGAE-GAT (Monte Carlo) 93.5 100.0 100.0 100.0 97.5 100.0
Extended SEAL 99.2 77.7 77.3 83.8 99.6 99.7
Classify (GAT) 50.0 82.5 77.5 75.0 88.4 78.9
Classify (GraphSage) 53.3 47.6 38.4 55.5 73.3 52.7
DEAL 100.0 100.0 100.0 100.0 100.0 100.0

Table 5.5: Hit-Rate @ 20% results for single-link prediction.

Precision. Table 5.8 shows the result of precision performance of the models for multi-link
prediction. All methods do worse on the harder multi-link problems compared to single-link
prediction specially on the Cora and IMDb datasets. This could be because the link density
of these datasets are very small and removing all the neighbors of a node can impact the
performance of the models by a lot. As before the VGAE methods perform better than
SEAL and embed+classify methods. This is while DEAL gets 100% precision on all the
datasets due to being very conservative with predicting links.

Recall. Based on table 5.9, recall is also lower in comparison to the single-link prediction
setup. Missing a lot of links in the multi-link prediction makes the methods much weaker
in predicting all the positive links. We can see that VGAE methods are performing better
than the baselines on most of the datasets while SEAL is performing better for Cora, ACM,
and IMDb. Recall for DEAL is also very low (below 5% in 3 datasets) which means it misses
a large proportion of actual positive links.

Hit-Rate. Table 5.10 shows the result of Hit-Rate for multi-link prediction methods. The
VGAE methods still perform well in the multi-link setup. We find that DEAL achieves a
very high HR through conservative link prediction. SEAL tends to deteriorate much more
for multi-link queries in comparison to single-link prediction. The embed+classify methods
score worse than both the VGAE methods and SEAL. Comparing semi-inductive and fully-
inductive methods, the VGAE methods tend to generalize better than SEAL.
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AUC
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 0.721 0.958 0.827 0.951 0.757 0.761
VGAE-GCN (Monte Carlo) 0.711 0.959 0.836 0.930 0.802 0.841
VGAE-GAT (Deterministic) 0.737 0.925 0.814 0.932 0.759 0.615
VGAE-GAT (Monte Carlo) 0.749 0.937 0.815 0.925 0.812 0.775
Extended SEAL 0.693 0.681 0.830 0.679 0.506 0.450
Classify (GAT) 0.491 0.699 0.632 0.470 0.453 0.380
Classify (GraphSage) 0.543 0.535 0.467 0.512 0.528 0.507

Fully

VGAE-GCN (Deterministic) 0.639 0.959 0.860 0.923 0.783 0.786
VGAE-GCN (Monte Carlo) 0.631 0.960 0.835 0.929 0.817 0.858
VGAE-GAT ( Deterministic) 0.670 0.946 0.830 0.898 0.749 0.683
VGAE-GAT (Monte Carlo) 0.691 0.967 0.830 0.922 0.799 0.822
Extended SEAL 0.821 0.260 0.336 0.375 0.657 0.687
Classify (GAT) 0.394 0.621 0.587 0.450 0.537 0.468
Classify (GraphSage) 0.557 0.513 0.459 0.532 0.554 0.541
DEAL 0.678 0.953 0.935 0.837 0.759 0.757

Table 5.6: AUC results for multi-link prediction.

In conclusion, our empirical results show that VGAE inference from a single model
provides accurate probabilities and good generalization for inductive link prediction queries.

5.3 Importance Sampling Results

Unnormalized Importance Sampling (UIS) uses the estimation formula of Equation (3.6).
Normalized Importance Sampling (NIS) uses the estimation formula of Equation (4.2).

For Importance sampling, we report AUC and AP results both for normalized and
unnormalized methods for single-link prediction. Normalizing multi-link predictions is a
much more complex task which requires to set the value of all the target links to zero and
one independently and run the model separately for all the possible combinations. This
process of running the model multiple times is going to be costly. Future work can focus on
developing more efficient and effective methods for normalizing the importance sampling
inference for multi-link predictions.

Table 5.11 shows that unnormalized importance sampling method performs very well on
AUC and much higher compared to table 5.1 where deterministic and Monte Carlo sampling
methods were used. For unnormalized importance sampling the performance on AUC for
both GCN and GAT encoders on all the datasets are above 0.90 (except for VGAE-GAT
semi-link prediction on Computers). Comparing the unnormalized importance sampling
to normalized importance sampling shows that importance sampling does in fact has some
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AP
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 0.759 0.963 0.849 0.954 0.735 0.743
VGAE-GCN (Monte Carlo) 0.755 0.964 0.861 0.941 0.788 0.824
VGAE-GAT (Deterministic) 0.757 0.938 0.837 0.943 0.705 0.590
VGAE-GAT (Monte Carlo) 0.764 0.947 0.841 0.945 0.778 0.721
Extended SEAL 0.761 0.502 0.849 0.711 0.658 0.627
Classify (GAT) 0.599 0.748 0.708 0.584 0.481 0.458
Classify (GraphSage) 0.643 0.652 0.619 0.642 0.566 0.542

Fully

VGAE-GCN (Deterministic) 0.718 0.969 0.893 0.949 0.781 0.787
VGAE-GCN (Monte Carlo) 0.711 0.971 0.877 0.952 0.848 0.851
VGAE-GAT ( Deterministic) 0.747 0.962 0.875 0.930 0.732 0.687
VGAE-GAT (Monte Carlo) 0.756 0.974 0.875 0.946 0.790 0.802
Extended SEAL 0.748 0.545 0.577 0.544 0.741 0.775
Classify (GAT) 0.628 0.737 0.743 0.655 0.583 0.534
Classify (GraphSage) 0.723 0.678 0.659 0.707 0.622 0.616
DEAL 0.651 0.968 0.952 0.864 0.836 0.844

Table 5.7: AP results for multi-link prediction.

information leakage. The normalized version of importance sampling avoids the information
leakage, but performs slightly worse in comparison to the other sampling methods.
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Precision(%)
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 44.5 88.8 73.3 81.1 70.6 69.2
VGAE-GCN (Monte Carlo) 40.5 91.0 70.3 82.6 81.6 94.4
VGAE-GAT (Deterministic) 45.0 81.8 64.7 80.6 74.3 76.7
VGAE-GAT (Monte Carlo) 44.6 83.7 65.3 74.3 98.8 58.0
Extended SEAL 50.3 42.6 38.5 50.1 04.5 11.0
Classify (GAT) 28.7 52.4 39.7 11.4 26.0 28.7
Classify (GraphSage) 33.1 31.2 35.6 26.2 54.2 52.0

Fully

VGAE-GCN (Deterministic) 34.3 88.6 61.3 71.8 72.6 69.2
VGAE-GCN (Monte Carlo) 30.9 83.7 62.4 69.8 87.1 96.2
VGAE-GAT ( Deterministic) 28.2 83.0 54.6 66.5 83.4 80.3
VGAE-GAT (Monte Carlo) 28.7 78.5 55.0 67.0 99.9 64.0
Extended SEAL 29.5 37.5 42.3 18.8 05.0 11.5
Classify (GAT) 13.3 36.2 29.4 08.9 36.2 34.8
Classify (GraphSage) 27.2 21.3 19.3 21.5 61.2 62.4
DEAL 100.0 100.0 100.0 100.0 100.0 100.0

Table 5.8: Precision results for multi-link prediction.

Recall(%)
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 22.5 74.7 42.5 76.1 40.0 37.6
VGAE-GCN (Monte Carlo) 21.2 77.2 41.9 74.9 39.6 27.9
VGAE-GAT (Deterministic) 25.3 63.1 39.8 73.4 20.9 02.7
VGAE-GAT (Monte Carlo) 24.0 62.8 38.5 67.5 13.6 01.9
Extended SEAL 47.3 82.4 21.0 53.3 02.5 11.2
Classify (GAT) 16.9 44.6 36.7 05.9 10.1 13.7
Classify (GraphSage) 11.8 13.6 13.1 08.1 19.2 20.1

Fully

VGAE-GCN (Deterministic) 21.3 84.0 44.5 65.7 44.6 41.0
VGAE-GCN (Monte Carlo) 20.2 79.0 44.6 65.1 40.8 30.7
VGAE-GAT ( Deterministic) 18.1 70.5 40.2 61.5 23.6 12.3
VGAE-GAT (Monte Carlo) 18.1 68.7 37.8 60.5 13.2 05.7
Extended SEAL 17.0 70.6 79.4 16.3 13.3 05.1
Classify (GAT) 11.8 32.3 29.3 06.0 11.2 15.5
Classify (GraphSage) 18.8 14.8 10.9 13.2 24.0 24.4
DEAL 06.0 67.8 50.0 04.0 09.8 12.5

Table 5.9: Recall results for multi-link prediction.
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Hit-Rate(%)
Cora ACM IMDb CiteSeer Photo Computers

Semi

VGAE-GCN (Deterministic) 46.3 90.4 74.0 83.3 75.6 71.8
VGAE-GCN (Monte Carlo) 42.1 93.2 71.1 84.6 84.7 95.8
VGAE-GAT (Deterministic) 45.9 83.3 65.6 83.3 74.6 76.7
VGAE-GAT (Monte Carlo) 45.7 84.7 66.4 77.4 99.0 58.0
Extended SEAL 52.0 11.5 38.0 48.0 04.0 10.0
Classify (GAT) 34.2 52.3 36.9 5.9 26.0 24.0
Classify (GraphSage) 32.9 31.9 35.2 27.0 55.1 52.0

Fully

VGAE-GCN (Deterministic) 34.7 91.7 61.1 73.8 77.6 71.8
VGAE-GCN (Monte Carlo) 31.6 87.8 63.0 71.3 89.7 97.4
VGAE-GAT ( Deterministic) 28.9 84.8 54.5 68.3 84.1 80.2
VGAE-GAT (Monte Carlo) 29.1 80.0 55.3 68.0 99.8 64.0
Extended SEAL 29.0 23.6 30.0 14.0 05.5 11.5
Classify (GAT) 14.1 28.4 29.7 08.7 36.2 34.5
Classify (GraphSage) 27.6 19.9 19.7 21.0 61.8 62.9
DEAL 100.0 100.0 100.0 100.0 100.0 100.0

Table 5.10: Hit-Rate @ 20% results for multi-link prediction.

AUC
Cora ACM IMDb CiteSeer Photo Computers

Semi VGAE-GCN (UIS) 0.985 0.986 0.940 0.970 0.926 0.924
VGAE-GCN (NIS) 0.824 0.888 0.820 0.947 0.891 0.865
VGAE-GAT (UIS) 0.987 0.984 0.968 0.969 0.913 0.879
VGAE-GAT (NIS) 0.855 0.910 0.798 0.930 0.924 0.914

Fully VGAE-GCN (UIS) 0.973 0.980 0.979 0.969 0.925 0.962
VGAE-GCN (NIS) 0.651 0.818 0.821 0.860 0.938 0.689
VGAE-GAT (UIS) 0.985 0.980 1.00 0.962 0.954 0.955
VGAE-GAT (NIS) 0.654 0.756 0.806 0.923 0.920 0.914

Table 5.11: AUC results for Normalized Importance Sampling (NIS) and Unnormalized
Importance Sampling (UIS).
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AP
Cora ACM IMDb CiteSeer Photo Computers

Semi VGAE-GCN (UIS) 0.952 0.954 0.844 0.898 0.812 0.808
VGAE-GCN (NIS) 0.865 0.902 0.792 0.959 0.900 0.930
VGAE-GAT (UIS) 0.955 0.951 0.899 0.897 0.790 0.735
VGAE-GAT (NIS) 0.706 0.699 0.788 0.937 0.900 0.911

Fully VGAE-GCN (UIS) 0.918 0.926 0.944 0.897 0.818 0.890
VGAE-GCN (NIS) 0.691 0.804 0.827 0.858 0.891 0.928
VGAE-GAT (UIS) 0.953 0.926 1.00 0.895 0.878 0.872
VGAE-GAT (NIS) 0.706 0.699 0.788 0.937 0.900 0.911

Table 5.12: AP results for Normalized Importance Sampling (NIS) and Unnormalized Im-
portance Sampling (UIS).
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

A probabilistic graph query (PGQ) is a type of query that asks for the probability of a
specific subgraph, given an evidence subgraph. Answering PGQs is a new and challenging
task for generative graph models, as it requires modeling the joint probability distribution
of the graph and the query subgraph. This is important because such models can be used
in a production environment where multiple users pose a range of queries to be answered.

We showed how a trained VGAE model can be used to construct a Conditional Varia-
tional Auto-encoder (CVAE) to answer a given user’s PGQ in a zero-shot manner, without
retraining the model.

This thesis evaluated the proposed approach on six benchmark datasets and a range of
link prediction queries. It was found that inductive link prediction from a single VGAE was
more accurate than methods customized for single-link prediction on most datasets and
queries, even for single-link queries. This demonstrates the effectiveness of the proposed
PGQ answering system based on VGAE models and the potential for its application in
real-world scenarios where multiple users pose diverse graph queries.

6.2 Future Work

An important direction for future research is to explore other generative graph models
that can be used to answer PGQs. While VGAE models have shown promising results
in the current study, other generative graph models such as auto-regressive models could
be explored. Auto-regressive models have the advantage of being able to model dynamic
changes in the graph over time. These models can be trained to model the probability
distribution of the graph at each time step, conditioned on the graph at the previous time
step.

Another valuable direction for future research is to improve the way the model distin-
guishes links that are specified as absent in the query from unspecified links. In the current
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study, the model sets absent links to non-existing, which can result in lower accuracy for
PGQs that involve absent links. A more promising approach is to distinguish between ab-
sent links and unspecified links, by representing the unspecified links as missing values in
the adjacency matrix.

Another promising direction for future research is to utilize the CVAE model for other
prediction targets, such as node labels and features, and edge types and features. It would
even be possible to generate a complete graph, which defines the graph completion task
analogous to image completion. The CVAE model can be used to generate new graph
structures that complete missing or unknown components of a graph, especially in scenarios
where some or all of the attributes of the test nodes are missing or unknown. This has
practical applications in areas such as recommendation systems and drug discovery.
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