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Abstract 

Ecosystems around the world face an increasing frequency and intensity of human 

impacts, meaning that managing multiple co-occurring pressures is imperative. 

Unfortunately, our ability to predict ecosystem responses to multiple pressures is limited. 

Seagrasses are the foundation species of ecosystems that provide services such as 

carbon sequestration and improved water quality. Unfortunately, they are also heavily 

impacted by human activities. With an eye toward management, I use seagrass 

meadows as a model system to understand and predict the effects of multiple pressures 

across scales. First, I reconstructed area trends for 547 meadows. I found that one-fifth 

of the world’s observed seagrass meadow area has been lost since the 1880s. However, 

losses were not consistent across time or space and only 10% of studies rigorously 

tested driver attributions, suggesting that local studies are important for informing 

relevant management actions. I then focused on one species, eelgrass (Zostera marina), 

to identify critical growth-related values that are pragmatic management targets and test 

whether these values change when pressures co-occur. I quantitatively reviewed studies 

of the effects of temperature and light on eelgrass performance. I found that two critical 

performance values, zero-growth rate and maximum growth rate, shifted across 

combinations of light and temperature values, suggesting that fixed thresholds are 

inappropriate targets. Finally, I used surveys of subtidal eelgrass meadows to examine 

the fine-scale (10s kms) variation in two metrics of eelgrass meadow health (shoot 

density and lesion prevalence) and relate this with variation in environmental conditions 

and human impacts. I found that environmental conditions were better predictors of 

eelgrass health than the human impacts considered (overwater structures and riparian 

modification), highlighting the importance of measuring conditions at the fine scale at 

which conservation and restoration efforts occur. As a whole, my research shows that 

although local context is important for seagrass management, there are generalisable 

patterns in how multiple stressors affect seagrass performance, which can be used to 

guide interventions.  

 

Keywords:  Global change; meta-analysis; cumulative impacts; dose-response; 

stressor interactions; threshold-based management 
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Chapter 1. General Introduction 

Ecosystems around the world continue to be transformed at an alarming rate as 

human activities increase in frequency, intensity, and spatial extent (Halpern et al., 2015; 

Williams et al., 2020). As these activities increase, ecosystems are increasingly 

threatened by multiple co-occurring pressures. This includes the presence of global 

pressures such as climate change, which cannot be managed locally and can interact 

with local pressures (e.g., deforestation, sedimentation) to further complicate 

management of ecosystems (Brown et al., 2013; Bruno & Valdivia, 2016). Unfortunately, 

our ability to predict ecological change in response to multiple pressures is limited. 

Moreover, ecosystems under stress can behave non-linearly: human impacts can force 

ecosystems over tipping points beyond which ecosystem structure and function are 

rapidly altered (Barbier et al., 2008; Koch et al., 2009).  

Preservation of intact ecosystems is more affordable and practical than 

recovering degraded ones, particularly when the systems behave non-linearly (i.e., small 

changes in pressure level cause disproportionately large ecosystem responses) (Selkoe 

et al., 2015). One strategy that can improve management outcomes in cases where 

ecosystems behave non-linearly is threshold-based adaptive management (Kelly et al., 

2015). This requires that a specific and manageable pressure be identified (e.g., fishing 

pressure) and that a critical level of that pressure linked to a desirable ecosystem state 

be quantified (Selkoe et al., 2015). Target pressure levels are then set to account for 

uncertainty and guide management actions that will maintain the pressure below this 

value (Carpenter et al., 2017; Selkoe et al., 2015). For example, land use changes in 

South Florida preceded the mass die-off of seagrass in the 1980s. Once the ultimate 

cause of seagrass mortality was identified as high salinity from run-off, direct and 

manageable freshwater thresholds below the salinity tolerance of seagrass were used to 

moderate water diversion (Foley et al., 2015). However, it is often difficult to attribute 

specific drivers to ecosystem change, particularly when multiple pressures co-occur. 

Furthermore, threshold-based approaches typically focus on only a single pressure, and 

it is unknown how multiple pressures affect critical threshold levels (Large et al., 2013). 

Interactions between multiple pressures make predicting ecological change a 

challenge (Crain et al., 2008; Harley et al., 2017) and can have important management 
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implications (Brown et al., 2013; Bruno & Valdivia, 2016). Despite the importance of 

identifying interactions between multiple drivers, we have yet to make accurate 

predictions or identify general patterns in the outcome of interaction impacts (Côté et al., 

2016). Synergies were long thought to be the most common type of interaction, leading 

to a non-linear magnification of cumulative effects (e.g., Brook et al., 2008; Crain et al., 

2008; Harvey et al., 2013), but more recent research has found that synergies are not 

the dominant interaction between drivers (Ban et al., 2014; Côté et al., 2016; Kroeker et 

al., 2013; Stockbridge et al., 2020). Instead, antagonistic interactions might be more 

common than synergies when organisms are exposed to natural or realistic levels of 

impacts (Lange & Marshall, 2017), while in seagrass ecosystems additive interactions 

are the most common (Stockbridge et al., 2020). Predicting interaction types is 

complicated because they depend on context, such as pressure type (Przeslawski et al., 

2015), timing and intensity of pressures (Ostrowski et al., 2022; Wu et al., 2017), and 

level of biological organisation (Côté et al., 2016; Turschwell et al., 2022). Therefore, 

there is a need to translate small-scale experimental studies on multiple pressures up to 

the natural responses of species and communities which occur at the scale of a 

landscape.  

Seagrass meadows are globally distributed in coastal areas and typically 

experience the effects of multiple stressors. These ecosystems provide valuable 

services such as nursery habitat, carbon sequestration, and improving water quality 

(Barbier et al., 2011; Mtwana Nordlund et al., 2016). Seagrasses themselves also serve 

as charismatic ‘umbrella’ species whose conservation indirectly also preserves a host of 

habitat-associated species. In Canada for example, eelgrass (Zostera marina) is 

designated as an Ecologically Significant Species, which enables federal level 

management for the protection of eelgrass meadows (DFO, 2009). However, seagrass 

meadows have suffered extensive losses globally (Waycott et al., 2009) because of 

multiple impacts, which include sediment loading (Cabaço et al., 2008), nutrient loading 

(Connell et al., 2017; Lefcheck et al., 2018), and disease (Bull et al., 2012; Short et al., 

2011). They also show non-linear responses to stressors. Severe degradation or 

complete loss of a seagrass meadow disrupts negative feedbacks that facilitate 

seagrass persistence. This degradation can increase suspended sediment 

concentrations, which reduces light availability (Adams et al., 2016; van der Heide et al., 

2007), can increase sediment anoxia (de Fouw et al., 2016), or can decrease sediment 
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stability and prevent plants from anchoring themselves (Wicks et al., 2009). Once lost, 

recovery of seagrass meadows is often slow or impossible because of low rates of 

successful sexual reproduction, dispersal, and colonization (McGlathery et al., 2012; L. 

K. Reynolds et al., 2013). Furthermore, transplanting is expensive (Bayraktarov et al., 

2015) and to date, successful recovery of highly degraded seagrass systems has been 

low (<37% success rate in Europe, van Katwijk et al., 2016). Restoration success is 

most probable with large-scale planting efforts (e.g., at least 1000 shoots or seeds; van 

Katwijk et al., 2016), which can be expensive and requires care to avoid damaging donor 

meadows (Borum et al., 2004; van Katwijk et al., 2016). Preservation of intact seagrass 

meadows is therefore essential.  

In this thesis I use seagrass meadows as a model ecosystem to improve our 

ability to predict and understand the effects of multiple stressors. I use a combination of 

large-scale meta-analyses and fine-scale field surveys to understand how patterns of 

global change compare with the local scale at which management actions are often 

undertaken. Starting at the global scale, in Chapter 2, I reconstruct historical trends in 

seagrass meadow area extent in seven bioregions, using information from 547 meadows 

from around the world, to determine where, how, and why changes in seagrass meadow 

area have occurred. In Chapter 3, I focus on a single temperate species, eelgrass 

(Zostera marina), and demonstrate how management targets can shift when multiple 

stressors co-occur. I collate data from 20 studies to demonstrate an empirical modelling 

framework that can be used to synthesize data from a range of experiment types. I then 

dive into my own backyard in Chapter 4, where I examine the fine-scale effects of 

environmental conditions and human impacts on eelgrass health. Finally, in Chapter 5, I 

weave the insights obtained from these three chapters and reflect on what I found to be 

some of the key challenges in interpreting and translating multiple stressor effects into 

management applications.  
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Chapter 2.  
 
Long-term declines and recovery of meadow area 
across the world’s seagrass bioregions1 

Abstract  

As human impacts increase in coastal regions, there is concern that critical 

habitats that provide the foundation of entire ecosystems are in decline. Seagrass 

meadows face growing threats such as poor water quality and coastal development. To 

determine the status of seagrass meadows over time, we reconstructed time-series of 

meadow area from 175 studies that surveyed 547 sites around the world. We found an 

overall trajectory of decline in all 7 bioregions with a global net loss of 5602 km2 (19.1% 

of surveyed meadow area) occurring since 1884. Declines have typically been non-

linear, with rapid and historical losses observed in several bioregions. The greatest net 

losses of area occurred in four bioregions (Tropical Atlantic, Temperate Northern Atlantic 

East, Temperate Southern Oceans, and Tropical Indo-Pacific), with declining trends 

being the slowest and most consistent in the latter two bioregions. Losses, however, still 

outweigh gains. Despite consistent global declines, meadows show high variability in 

trajectories, within and across bioregions, highlighting the importance of local context. 

Studies identified 12 different drivers of meadow area change, with coastal development 

and water quality as the most commonly cited. Overall, however, attributions were 

primarily descriptive and only 10% of studies used inferential attributions. Although ours 

is the most comprehensive dataset to date, it still represents only one-tenth of known 

global seagrass extent, with conspicuous historical and geographic biases in sampling. It 

therefore remains unclear whether the bioregional patterns of change documented here 

reflect changes in the world’s unmonitored seagrass meadows. The variability in 

seagrass meadow trajectories, and the attribution of change to numerous drivers, 

suggest we urgently need to improve understanding of the causes of seagrass meadow 

loss if we are to improve local-scale management.  

 

1 A version of this chapter appears as Dunic JC, Brown CJ, Connolly RM, Turschwell MP, Côté IM. 
2021. Long-term declines and recovery of meadow area across the world’s seagrass bioregions. 
Global Change Biology. 27(17): 4096-4109. DOI: 10.1111/gcb.15684 
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Introduction 

Marine ecosystems face an increasing number and intensity of human impacts 

(Halpern et al., 2019). In particular, nearshore ecosystems experience a 

disproportionately high level of disturbance (Halpern et al., 2015; Lotze, 2006) especially 

as human populations are rapidly increasing in coastal areas (Halpern et al., 2019). 

Land-use changes such as agriculture and road development, as well as sewage and 

other land-based pollutants, can reduce water quality by increasing sedimentation and 

nutrient loading in nearshore marine habitats. Meanwhile, coastal development such as 

port infrastructure, aquaculture, and dredging can directly destroy intertidal and subtidal 

habitats (Orth et al., 2006). These cumulative pressures need to be addressed in unison 

to prevent further loss of coastal habitats (Griffiths et al., 2020). 

Seagrass meadows are an important nearshore coastal habitat that provides 

important ecosystem services such as nursery habitat (McDevitt-Irwin et al., 2016; 

Whitfield, 2017) improved water quality (Lamb et al., 2017; Orth et al., 2020), and carbon 

storage (Mtwana Nordlund et al., 2016). However, seagrasses are sensitive to multiple 

human activities taking place in the coastal zone that impact water quality through 

increased sedimentation and nutrient run-off, or cause direct habitat destruction (Grech 

et al., 2012; Holon et al., 2015; Lefcheck et al., 2017; Orth et al., 2006). Furthermore, 

seagrasses often live in embayments that can have long water residence times, which 

can magnify the impact of eutrophic and other unfavourable conditions (Bricker et al., 

2008). As human impacts in coastal environments increase, there is a heightened 

concern that seagrasses will suffer global declines. More than a decade ago, seagrass 

meadow area was being lost at an estimated average global rate of 1.5% per year 

(Waycott et al., 2009). Importantly, this global loss figure belied substantial variation 

among sites in rates and directions of change, with 25% of sites increasing in area and 

17% remaining stable over time (Waycott et al., 2009). Furthermore, for sites that were 

in decline the rate of loss was 7% per year and was accelerating (Waycott et al., 2009). 

Substantial monitoring efforts since then, provide a wealth of additional data that allow 

us to re-assess global patterns of seagrass change in the context of increasing human 

impacts. Recently, seagrass meadow trends in Europe have shown some stabilisation 

and recovery (de los Santos et al., 2019). 
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To improve the management of seagrass ecosystems, we must identify where 

and why seagrass meadows are declining. Despite the ubiquity of seagrass along the 

world’s coastline, our understanding of the global status of seagrass meadows is limited, 

particularly in bioregions such as the Tropical Atlantic, Mediterranean, and Tropical Indo-

Pacific (Unsworth et al., 2018). At the same time, management has fostered seagrass 

recovery over the long term. Notable examples of this include Chesapeake Bay (Virginia 

& Maryland, USA), Tampa Bay (Florida, USA), and the Wadden Sea (Denmark, 

Germany, and the Netherlands). In Chesapeake Bay, 40 years of policy implementation 

to control nutrient loading has led to improved water quality and increased abundance 

and cover of seagrass (Lefcheck et al., 2018; Orth et al., 2020). Similarly, in the Wadden 

Sea and Tampa Bay, seagrass meadow areas previously lost during times of high 

nutrient loading have recovered to pre-damage meadow area following years of 

management that limited nutrient inputs and wastewater run-off (Dolch et al., 2017; 

Sherwood et al., 2017; Tomasko et al., 2018). In addition to management actions, 

restoration projects have increased rapidly in scale and number since the 2000s 

(Saunders et al., 2020), which when coupled with management are an important 

component of restoring large areas of seagrass (Orth et al., 2020; Sinclair et al., 2021). 

However, while both the decline and recovery of seagrass at these locations can be 

attributed relatively unambiguously to specific causes (nutrient loading and run-off 

limitation measures, respectively), this is not the case for most other locations where 

changes in areal extent of seagrass habitat were previously noted (Waycott et al., 2009). 

Further, these examples of recovery may be the exceptions globally, because in many 

other places management of cumulative pressures is likely insufficient to prevent 

seagrass loss (Griffiths et al., 2020). 

Here we assess the current status of seagrass ecosystems globally. We 

examined the peer-reviewed literature to identify studies documenting meadow area 

across multiple time periods, expanding the original meta-analysis by Waycott et al., 

(2009) with new studies from previously under-sampled regions. Our study thus expands 

the geographic scope of recent studies that have documented trends in parts of the USA 

(Lefcheck et al., 2017) and Europe (de los Santos et al., 2019). Our study also extends 

past analyses by using statistical time-series reconstruction techniques to account for 

gaps in data-series and geographic bias in sampling. We aimed specifically to (1) 

quantify trends in seagrass meadow area by major seagrass bioregions, (2) quantify 
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variation in trends across individual meadows across bioregions, (3) identify the primary 

drivers that were cited by authors as potential drivers of change, and (4) identify the 

methods used for causal attribution to those drivers.  

Methods 

Study selection 

We used Web of Science and Scopus to systematically search the peer-reviewed 

literature for studies that resampled seagrass area extent over time. We updated the 

database of seagrass area time-series in Waycott et al., (2009), by performing a search 

on January 18, 2018 using search terms modified from Waycott et al. (2009): 

“(seagrass* OR SAV OR submerged aquatic vegetation OR eelgrass*) AND (loss* OR 

change* OR recovery OR stability OR dynamic* OR impact* OR map* OR decline* OR 

increase* OR gain*) and (cover* OR area* OR distribution OR production OR bed*)”. We 

restricted our search to the years 2006-2018 to avoid overlap with Waycott et al., (2009), 

whose last search year was 2006. We tested our search terms for the time period 

covered by Waycott et al., (2009) and found that our terms captured all of the studies 

found in Waycott et al., (2009) with the exception of Larkum & West (1990), which does 

not have a searchable abstract posted on any database. Our updated search for 2006-

2018 returned 4808 records, which we filtered to 366 studies after reviewing titles, 

abstracts, and full text where necessary, to identify studies that met our three key 

selection criteria: (1) the study measured seagrass meadow area, (2) measurements 

were performed at the same sites over time, and (3) area was measured at a minimum 

of two time points over a period of at least one full year (Figure A1). Note that our 

keywords were in English, which means we predominantly captured literature written in 

English and this may overlook a portion of available published literature (Christie et al., 

2020). Our search terms included ‘submerged aquatic vegetation’, but we only used 

studies that measured area of seagrass species. Two studies included freshwater 

species, i.e., Potamogeton pectinatus (Figueiredo da Silva et al., 2004) and Lepilaena 

sp. (Seddon et al., 2000), but did not provide species-specific cover data. Because 

freshwater species were noted as a minority of the community, we included these 

studies in the analysis. An additional nine studies provided no indication of the species 

but did indicate that they measured seagrass area extent and were thus included. 
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Data acquisition 

We extracted variables that described areal extent over time, species, location, 

sampling methods, primary potential drivers of change as considered by authors, and 

the strength of attribution used to assess potential drivers of change of seagrass area. 

We also assigned each site to a seagrass bioregion according to Short et al., (2007) with 

the modification of the Temperate North Atlantic, which we separated into west and east 

(Figure 2.1). Time-series data on total areal extent were preferably extracted from data 

tables or, when this was not possible, from figures using WebPlotDigitizer 3.12 (Rohatgi, 

2018). We also recorded whether study authors indicated an a priori reason for 

undertaking a study (e.g., ‘because the seagrass bed had been declining’), to account 

for the potential non-random sampling of seagrass meadows when we performed our 

analysis of global change. When a range of years (e.g., 1994-1996) for a single 

measurement were listed, we chose the midpoint. Locations of all sites were recorded 

and were used to identify when a site or area (e.g., Chesapeake Bay) was surveyed 

across studies. To identify sites or areas that were sampled in more than one study, 

sites were tagged with an additional variable called ‘site group’ when the same sites or 

adjacent (e.g., < 5 km apart) were used or when sites in a study were nested within 

another study. Data from studies contained in Waycott et al. (2009) were included in our 

analysis and rechecked where possible to include additional ecological covariate and 

driver attribution data from these studies. When studies could not be accessed (i.e., 2 

cases: (Blake & Ball, 2001; The Massachusetts Department of Environmental Protection 

2006 Eelgrass map), we used the data reported in Waycott et al. (2009; Table S1) for 

the rates of change analysis. Only one study included data on relative abundance of 

seagrass species over time at a site (McKenzie et al., 2014), which precluded a meta-

analysis of change in species composition. 

Net change in seagrass area 

To quantify the net change in seagrass meadow area in each bioregion and 

globally, we calculated and summed the observed change in meadow area from the first 

time point to the last time point in each time-series. We calculated the total area 

surveyed as the sum of the maximum observed area at each site. To avoid duplication of 

net area change that could occur, for example, when multiple studies were conducted in 

the same area, we selected the site that had the largest maximum area.  
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Bioregional trends and the status of seagrass meadows over time 

To reconstruct time-series of seagrass meadow area at the site level and to 

estimate trends across bioregions, we fit hierarchical generalized additive models 

(GAMs) to all time-series (including the duplications removed from the net change 

analysis) from each bioregion using the ‘mgcv’ package in R (Wood, 2011). This method 

models the average trajectory of all meadows in a bioregion and allowed for trends to be 

non-linear. Thus, the bioregional trajectories estimated by the GAM were not as strongly 

influenced by change in single very large meadows as the net area analysis was. 

Meadow areas were ln-transformed prior to analysis. To handle zero values, we added 

10% of the minimum, non-zero area detected at a site (zeros were rare, occurring in 4% 

of time points). We fit the following model to each bioregion independently:  

𝑙𝑜𝑔𝑒(𝑎𝑟𝑒𝑎𝑡) = 𝛼 + 𝑓(𝑦𝑒𝑎𝑟𝑡) + 𝑓𝑠𝑖𝑡𝑒𝑖
(𝑦𝑒𝑎𝑟𝑡) + 𝑓(𝑠𝑖𝑡𝑒_𝑔𝑟𝑜𝑢𝑝𝑖) +  𝜀𝑡 , 𝜀𝑡  ~ 𝑁(0, 𝜎2)  

( 2.1 ) 

where f(yeart) is the shared bioregional trend, fsite_i(yeart) is a site-specific trend that 

accounted for site-level deviations from the bioregional trend, and f(site_groupi) is a 

random intercept term that accounted for similarities in mean area between the same, 

adjacent, or nested sites across studies. The method also reconstructs gaps in time-

series by borrowing strength from the bioregional trend that is shared across sites within 

a bioregion. Smooths were fit using thin plate regression splines and using low-order 

penalized derivatives for the site-level smoothers (m = 1 in the ‘mgcv’ package) to 

reduce collinearity between the global smoother and site-level smoothers (Pedersen et 

al., 2019). The random effects and residual errors were assumed to be normally 

distributed with a mean of zero and a variance that was estimated from the data. We 

allowed the maximum number of basis functions, k, to vary by site, i, (k = number of 

years – 2; min = 2, max = 8), to handle the variation in the number of sampled time 

points and data density over time at each site. This improved site-level model fits. In all 

bioregions except for the Mediterranean, there were sufficient data to fit GAMs that 

included sites with two sampled time points. Therefore, to reconstruct the time-series of 

the 16 Mediterranean sites with only two time point sites so that they could be included 

in our analysis of seagrass status by decade, we performed linear imputation using the 

‘imputeTS’ package in R (Moritz & Bartz-Beielstein, 2017). We also performed a 

sensitivity analysis to determine how the GAM reconstructions were affected by decades 
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with fewer than five meadows surveyed (e.g., many of the earliest decades in our 

dataset). We found that in most bioregions there was no substantial change in the 

results and have included this analysis in Appendix A – Sensitivity Analysis. However, 

we believe it is important that we present the full dataset in Figure 2.2, which includes 

the less data-rich decades prior to the 1950’s because omitting them severely shifts the 

baselines of the trends.   

We then used the reconstructed time-series to examine (1) bioregional trends in 

mean seagrass area over time, relative to the mean meadow area in the earliest year of 

each bioregion’s time-series, and (2) the status of seagrass meadows by decade and 

bioregion. We used two metrics to describe the status of each seagrass meadow in a 

given decade: the instantaneous annual rate of change (eqn ( 2.2 )) and the fraction of 

meadow size relative to the maximum area ever observed at a site (eqn ( 2.3 )).  

𝑎𝑛𝑛𝑢𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑒𝑐𝑎𝑑𝑒 =

𝑙𝑛 (
𝑎𝑟𝑒𝑎𝑑𝑒𝑐𝑎𝑑𝑒𝑓

𝑎𝑟𝑒𝑎𝑑𝑒𝑐𝑎𝑑𝑒𝑖

)

𝑦𝑒𝑎𝑟𝑑𝑒𝑐𝑎𝑑𝑒𝑓
− 𝑦𝑒𝑎𝑟𝑑𝑒𝑐𝑎𝑑𝑒𝑖

  

( 2.2 ) 

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑑𝑒𝑐𝑎𝑑𝑒 =  
𝑎𝑟𝑒𝑎𝑑𝑒𝑐𝑎𝑑𝑒𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑟𝑒𝑎 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠
 

( 2.3 ) 

To calculate these metrics, we used the initial, i, and final, f, year of a time-series within 

a decade, decade (e.g., ‘1990’: 1990 – 1999). If a time-series started or ended within the 

decade of interest, we used the first and/or last observed year (e.g., 1992 – 1995). To 

interpret the status of individual meadows, we plotted both metrics against one another 

to examine how annual rate of change (by decades and by bioregions) varied with 

meadow area as a fraction of maximum observed area. We do the same with just the 

sites included in Waycott et al., (2009) to provide a visual comparison between our 

studies.  
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Attributions to drivers 

We identified the studies that attempted to attribute temporal trends in seagrass 

meadow area to specific drivers. To understand the strength of these driver attributions 

used in studies of temporal trends in seagrass meadow area, we categorized attributions 

in order of increasing strength from none, descriptive, visual, and inferential (Table 2.1). 

We identified the primary driver(s) considered in each of these studies, which we defined 

as the driver(s) tested with the strongest level of attribution or if attribution was only 

descriptive, the most discussed driver(s). Many studies identified multiple primary 

drivers. We then examined how the strength of attribution varied across drivers. Note 

that our purpose here was not to measure the specific effects or effect sizes of drivers. 

Table 2.1 Categories of strength of attribution of change in seagrass area to 
specific drivers of change. 

Attribution category Description 

None Study did not attribute change to specific driver(s). 

Descriptive 

Attribution of change was mentioned only in the discussion and no driver data 
was presented, and/or attributions were made from anecdotal descriptions of 
the local context (e.g., increased human population over the time-series, 
assumed declines in water quality, etc.). 

Visual 

Environmental or driver (e.g., human population) data were graphically 
presented and compared visually with temporal trends in seagrass meadow 
area. Alternatively, direct image comparisons (e.g., before and after events 
such as a hurricane or building an aquaculture facility in a seagrass meadow) 
were provided. 

Inferential 

Inferential statistics were used to test for a relationship between a driver and 
temporal trends in seagrass meadow area. These included the use of before-
after-control-impact designs, direct correlations between potential drivers and 
temporal trends in seagrass meadow area, or experiments testing the effect of 
drivers and coupled with temporal trends in seagrass meadow area. 

 

Results 

Data coverage 

Our literature search, including studies from Waycott et al., (2009), resulted in 

547 time-series of seagrass meadow area derived from 175 studies (Figure 2.1). The 

number of time-series has doubled in the 15 years since Waycott et al., (2009) (211 

time-series from 70 studies, reported cut-off year 2006), with a considerable increase in 
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the geographic scope of studies. In particular, data gaps in the Indo-Pacific region have 

begun to be addressed (Figure 2.1). Surprisingly, the new time-series added since 

Waycott et al., (2009) are not only the result of recent monitoring programs. Instead, 

many new studies within the last decade have identified sites in data-poor regions that 

had historical data, often in the form of aerial photography archives or ground surveys.  

 

Figure 2.1 Global distribution of seagrass (green; data from UNEP-WCMC & 
Short (2021), with sites (n = 219) from Waycott et al., (2009) and 
additional sites (n = 323) from this study. Included are the seagrass 
bioregions adapted from Short et al., (2007): 1. Temperate North 
Pacific, 2. Temperate North Atlantic West, 3. Temperate North 
Atlantic East, 4. Tropical Atlantic, 5. Mediterranean, 6. Tropical Indo-
Pacific, 7. Temperate Southern Oceans. 

In our database, study durations ranged from 1 to 128 years (Figure A2), with 

140 studies (70%) containing time-series of 10 years or more (Table A1). Studies with 

the longest durations were typically sampled using aerial photography. However, the 

oldest historical record was from ship surveys in 1891, resulting in a 128-year time-

series in Limfjorden, Denmark (Krause-Jensen et al., 2012). Across studies, meadows 

were usually surveyed during peak growth season (i.e., spring-summer). Most sites 

ranged in maximum observed meadow area from 0.01 km2 to 100 km2.  

In addition to geographic biases in the dataset, we made a coarse evaluation of 

sampling bias with respect to a priori expectations of change in meadow area as 

indicated by author’s in the text. In our database, most studies (61%) had no indication 

of a priori expectations (Table A2). Of the 39% of studies that had statements about a 

priori expectations of trajectories of change, most were expectations of decline (29%). 
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Only 7% of studies had expectations of increase in meadow area over time, and 3% 

expected other (e.g., U-shaped) trajectories.  

Global and bioregional trends in seagrass meadow area 

Globally, 554 km2 of seagrass has been recovered since 1900, which accounts 

for ~1.9% of the total area surveyed (Table 2.1). However, a net loss of 5602 km2 of 

seagrass has occurred since 1884, which represents a 19.1% loss of the total area 

surveyed (i.e., 29 293 km2; Figure A3).  

Table 2.2  Net change, gains, and losses in total area of seagrass surveyed 
around the globe. Net change is expressed as a % of the maximum 
total area surveyed in each bioregion, as well as in absolute area 
(km2). 

Bioregion 
Net change 

(%) 
Net change 

(km2) 
Gain (km2) Loss (km2) 

Maximum total 
area surveyed 

(km2) 
Time span 

Temperate North 
Atlantic East 

-76.5 -420 17 -437 548 1900 - 2016 

Tropical Atlantic -65.0 -3,301 183 -3,485 5,083 1937 - 2016 
Temperate Southern 
Oceans 

-27.2 -326 121 -446 1,195 1930 - 2013 

Tropical Indo-Pacific -16.4 -96 75 -171 583 1945 - 2016 
Mediterranean -9.9 -1,477 25 -1,502 14,953 1922 - 2012 
Temperate North 
Pacific 

0.6 6 75 -69 971 1955 - 2013 

Temperate North 
Atlantic West 

2.6 11 57 -46 440 1960 - 2015 

Global -19.1 -5,602 554 -6,156 29,293 1880 - 2016 
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Figure 2.2 Bioregional trends in seagrass meadow area over time, estimated 
using bioregion-specific generalised additive models (GAM). Mean 
meadow area is expressed as a proportion of the meadow area 
observed in the initial surveys, averaged across sites for each 
bioregion, and on a log10 scale, such that a change from 1 to 0.1 
equals a 10-fold decrease in seagrass area over time. The shaded 
95% confidence intervals reflect the simultaneous confidence 
intervals derived from the GAM fit to meadow area trends of all 
study sites within each bioregion. Note that the y-axis varies across 
bioregions. The number of meadows sampled in each decade are 
shown in grey along the x-axis. The bioregional trend in the 
Mediterranean does not include 16 sites that contained only two 
sampled time points. 
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Seagrass meadows in all bioregions have experienced declines in meadow area 

(Figure 2.2, Figure A4). Most of the bioregions exhibited non-linear trajectories, with the 

exception of the Tropical Indo-Pacific and the Temperate Southern Oceans (Figure 2.2). 

As might be expected when site identities change throughout long-term time-series, 

some of the non-linearities are caused by sampling. For example, the fastest declines 

relative to the earliest measured baselines were observed in Temperate North Pacific 

and the Temperate Northern Atlantic East, with a 1000-fold loss of meadow area from 

the 1950s to the 1970s and a 10-fold loss from the early 1900s to 1940s, respectively 

(Figure 2.2). However, these rapid early declines were inferred from fewer than six sites 

(see number of sites labelled on the x-axis Figure 2.2). In general, by the 1940s more 

sites and total seagrass area were sampled across all bioregions (Figure 2.2, Figure 

A5). Large (~ 40-80%) declining trends were estimated in the Tropical Atlantic and 

Mediterranean from the 1940s until they stabilized by the 1980s to present. Meanwhile, 

the rates of change in seagrass area in the Temperate Northern Atlantic West fluctuated 

from the 1940s to late 1990s, and since 2000 this region has experienced a 40% decline 

in area relative to the earliest surveys. Conversely, the Temperate Northern Atlantic East 

has seen a marked recovery since 2000, although the areal extent remains ~30% below 

that of the earliest surveys.  

Overall, the Tropical Atlantic experienced the largest net loss of seagrass area, 

losing 3485 km2 of seagrass. Most of this loss was driven by one meadow that lost 2700 

km2 of seagrass between 1984-1992 (Table 2.2). Meanwhile the Temperate Northern 

Atlantic East experienced the highest percent loss relative to the maximum total area 

surveyed in this bioregion (76.5%; Table 2.2). Most of this loss was driven by one 

observed loss of more than 100 km2 prior to the 1930s. Meadows in both the Tropical 

Indo-Pacific and the Temperate Southern Oceans also declined markedly, by nearly 

20% compared to the maximum total area surveyed in these bioregions (Table 2.2). In 

absolute terms, the greatest loss of seagrass meadows reported was in the Tropical 

Atlantic and Mediterranean bioregions (Table 2.2). 
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Status of individual seagrass meadows over time 
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Figure 2.3  Status of seagrass meadows over time and across bioregions. Each 
point represents the status of one seagrass meadow in a given 
decade, while point size represents the maximum area observed for 
that meadow. Meadows that have experienced more severe losses 
will be farther on the left of a panel; meadows near their maximum 
size will be on the right (near vertical line, x = 1); and stable/slowly 
changing meadows are near the horizontal line, y = 0. The x-axis 
indicates the size of a meadow at the beginning of a decade (e.g., 
1990), as estimated using the bioregional GAMs, relative to the 
maximum area ever observed at that meadow. The y-axis is the 
instantaneous annual rate of change (%) in meadow area during a 
decade. Note that the y-axis varies in range across the bioregions 
and has been transformed using the signed pseudo logarithm 
(sigma = 0.5, base = 10) to improve visualisation of the high number 
of meadows with rates of change less than 10%. As values increase 
above 10, this axis approximates a log10 scale. 

Despite declines in seagrass meadow area across bioregions, changes in 

individual meadow area were highly variable (Figure 2.3, Figure A6). On average, 

annual rates of change were centred near zero (Figure 2.3, Figure A7) and most sites 

experienced annual rates of change of less than 2%. A greater number of meadows with 

positive rates of change were observed from the 1980s onwards in most bioregions, 

when new sampling methods (primarily remote sensing) were introduced. Many 

meadows in the Temperate North Atlantic East, Mediterranean and Tropical Atlantic 

bioregions shifted towards positive trends post 1990, explaining the recent increasing 

trends in those bioregions (Figure 2.2). However, overall meadow area over the past two 

decades has remained below 90% of maximum for most meadows.  

High, positive annual rates of change (> 10%) were more common in meadows 

that had been reduced to less than half of their maximum area ever observed (Figure 

2.3, Figure A8). Additionally, meadows larger than 1000 ha tended to have slower rates 

of change than smaller meadows (Figure A9), though there was no clear relationship 

between the coefficient of variation across time-series and the maximum observed area 

(Figure A10).  
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Attribution to drivers 

 

Figure 2.4 Proportion of studies in each of the four categories of causal 
attribution method. The methods are described in Table 2.1 and are 
shown in order of strength of attribution. 

Attributions to potential drivers of change were primarily descriptive (> 40%; 

Figure 2.4), while ~15% of studies did not attempt to attribute patterns to a specific 

cause. The latter studies were often demonstrations of survey methods (e.g., satellite 

imaging techniques). Thirty percent of studies attributed change to a specific cause by 

visually examining concurrent trends in driver intensity and seagrass meadow 

characteristics (typically area) or by comparing imagery before and after events such as 

land appropriation. Meanwhile, only 10% of studies used inferential statistics to test the 

association of drivers on the trends observed in seagrass meadow area.  
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Figure 2.5 Frequency of the primary drivers cited as potential drivers of change 
in seagrass meadow area. Examples of specific drivers considered 
in each driver category are detailed in Table A3.  

Poor water quality and coastal development were the most common primary 

drivers identified by study authors (Figure 2.5). Water quality was most often considered 

in study discussions or by visually comparing trends in water quality metrics with trends 

in seagrass meadow area over time (Figure A11). However, water quality was the driver 

most tested using inferential statistics. Meanwhile, coastal development was most often 

noted as a likely driver in study discussions (Figure A11). Coastal development was a 

broad category that included activities and environmental changes ranging from 

watershed land use change to port development (Table A3). Drivers such as hydrology, 

storms, or management/restoration, which were often discrete events, were more 

commonly considered visually or inferentially than other drivers. At nine locations, all in 

the USA, authors specified management or restoration events and their timing relative to 

the time-series of seagrass meadow area. All of these locations experienced net gains in 

seagrass area after the restoration or management actions taken (Figure A12) and at 

five of these nine sites, the interventions were related to water quality (Table A4).  
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Discussion 

We reconstructed time-series of seagrass meadow area that span the last 70 to 

130 years from seven bioregions and filled previous geographical data gaps (Waycott et 

al., 2009). Over this time period, human pressures to the world’s marine ecosystems 

have increased in intensity and spatial extent (Halpern et al., 2019). Correspondingly we 

found that global declines in seagrass meadow area have been widespread and 

substantial over the last century. However, since the 2000s declining trends have 

stabilised or are now on recovery trajectories in some bioregions. These findings align 

with the recent reversal of declines documented at sites from across Europe (de los 

Santos et al., 2019). Despite reduced or reversed trajectories of loss, the absolute area 

lost still outweighs gains in all but two bioregions. Annual rates of change were typically 

less than 2% year-1, but there was high variability in rates at individual sites, indicating 

that local context is important to understanding seagrass dynamics. Interestingly, the 

attribution to causes of seagrass area change is rarely inferential, which makes the 

identification of local contextual drivers difficult.  

The global picture: bioregional trends 

Trajectories of change in seagrass area are consistent across bioregions of the 

world; all bioregions show declines relative to the earliest recorded meadow areas. 

However, global losses have not all been linear over time, nor has the timing and rate of 

loss been uniform across bioregions. Some regions, such as the Temperate North 

Atlantic East, experienced rapid, early losses, while others like the Tropical Indo-Pacific 

and Temperate Southern Oceans exhibited slow, steady declines. The differences in 

trends across bioregions may reflect a variety of factors relating to differences in the 

spatial and temporal scales of disturbances affecting seagrass (O’Brien et al., 2018) and 

the ecologies of seagrass meadows (Kilminster et al., 2015; Marbá et al., 1996). For 

example, small-scale and acute disturbances are likely to be associated with faster rates 

of change (O’Brien et al., 2018), or differences in seagrass species diversity could make 

bioregions with higher species richness more resilient to change than bioregions 

characterised by monospecific meadows (Unsworth et al., 2015). Given the variety of 

disturbances observed and likely unobserved within the dataset, it is possible that the 
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variation in disturbances outweighs meadow ecology effects when the data are 

aggregated.  

Bioregional variation in seagrass area trends could also be due to sampling 

differences, including the duration and timing of data series and/or the number and 

identity of sites surveyed. For example, the early record in the Temperate Northern 

Atlantic East is largely influenced by the losses documented in Limfjorden starting at the 

turn of the 20th century, but it is likely representative of trends through much of the 

Temperate Northern Atlantic East given the widespread losses caused by wasting 

disease documented in the region (Godet et al., 2008; Krause-Jensen et al., 2012). The 

observed historical declines in several bioregions remind us to consider recent trends 

with some caution because their interpretation depends on the baseline used. For 

example, in a sensitivity analysis (Appendix A – Sensitivity Analysis) we found that the 

Temperate North Atlantic East showed increasing trajectories in meadow area when 

early sampling points were omitted. In contrast, it is less likely that the rapid decreasing 

trend in the Temperate North Pacific was representative of the bioregion from 1950s to 

the 1970s. The rapid decline observed in the reconstructions was driven by the loss of 

seagrass meadows in Japan (Aioi & Nakaoka, 2003; Hiratsuka et al., 2007) and Elkhorn 

Slough, a small meadow, on the west coast of the United States (Hughes et al., 2013) 

owing to multiple local causes.   

In absolute terms, 19.1% of the 29 000 km2 of seagrass meadow area that has 

been surveyed has been lost in the past 100+ years, although interestingly, the 

reconstructed bioregional trends over time did not always match patterns of net 

seagrass area change. The reason for the mismatch is that the bioregional trends 

represent the expected trajectory of change across all meadows regardless of meadow 

area, whereas the net loss statistic accounts for differences in meadow area. In some 

regions, like the Temperate Northern Atlantic East and the Tropical Atlantic, the loss of a 

single large meadow in each of these two bioregions (Limfjorden for the Temperate 

Northern Atlantic East, and Big Bend for the Tropical Atlantic) had a large influence on 

the net loss statistic, with Big Bend accounting for almost half of the absolute total area 

lost (2700 km2). However, other bioregions (e.g., Temperate Southern Oceans, Tropical 

Indo-Pacific, and Mediterranean) also experienced large losses (~10-22%) over the last 

70 to 90 years, which encompass multiple countries (e.g., Italy, Spain, and Tunisia for 

the Mediterranean; Telesca et al., 2015) and local causes, such as coastal modification 
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(Nayar et al., 2012), poor water quality (Petus et al., 2014) and direct physical damage 

from fishing (Harcourt et al., 2018), in each bioregion. Therefore, it is important to 

consider both the bioregional trajectories, particularly when there are regional drivers of 

change (e.g., disease, climate), and the associated net loss in a bioregion. For example, 

the Tropical Indo-Pacific and Temperate Southern Oceans had the slowest and most 

consistent trends in seagrass area loss over time, yet each have lost close to one-fifth of 

their total surveyed seagrass meadow area.  

The apparent stability in some bioregions may be due to gaps in monitoring and 

limitations of analysing data from peer-reviewed studies. Unlike other bioregions that 

had similar total areas surveyed but experienced large losses, the Temperate Northern 

Atlantic West and Temperate North Pacific have shown little fluctuation in seagrass 

meadow area, with minimal gains and losses. Time-series from the Temperate Northern 

Atlantic West do not cover the period of wasting disease in the early decades of the 20th 

century, which is known to have caused the catastrophic losses observed in the 

Temperate North Atlantic East (Cotton, 1933; Milne & Milne, 1951). The minimal change 

observed in this bioregion might therefore be the result of a downward-shifted, post-

disease baseline. Meanwhile, the Temperate North Pacific is likely one of the most data-

deficient regions, relative to total abundance of seagrass (McKenzie et al., 2020). 

Similarly, the trends we estimated for the Indo-Pacific and Southern Oceans bioregions 

may be underestimates. It is possible that much seagrass was lost underneath port 

developments or through declines in water quality before meadows were even 

monitored. Historical ecological studies, such as with navigational charts (Bromberg & 

Bertness, 2005; McClanahan et al., 2014) could help fill this gap.  

Sampling biases and data deficiencies pose a challenge when estimating global 

patterns of change (Gonzalez et al., 2016) prompting caution in the interpretation of 

reconstructed historical trends. Global syntheses, such as the present study, rely on 

data that do not represent random samples: sampled sites may be chosen for ease of 

access or to monitor the effects of specific disturbances or management actions; 

meadows could have disappeared before monitoring started; or published data can be 

subject to the ‘file-drawer’ problem (Csada et al., 1996; Rosenthal, 1979), meaning that 

sites with no change could be under-represented in our dataset. Including grey literature 

into future reviews is one way to help with the latter concern.  
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Although many geographical data gaps have been filled since Waycott et al. 

(2009), much of global seagrass extent has yet to be documented (McKenzie et al., 

2020; Unsworth et al., 2018). In fact, the cumulative seagrass meadow area surveyed in 

this study represents just one-tenth (29 293 km2) of recent estimates of global seagrass 

extent (266 562 km2; McKenzie et al., 2020). It remains unclear whether the bioregional 

patterns of change documented here, and in previous global reviews, reflect changes in 

unmonitored seagrass meadows. 

The local picture: site-level changes 

The rates of change in seagrass area for individual meadows were generally in 

the order of 1–2% per year. At first glance, this suggests a great improvement in the 

status of seagrass over the 7% per annum decline reported by Waycott et al. (2009). 

However, we caution against making such a direct comparison. We analyzed new data 

and advanced on the linear interpolation method used in Waycott et al. (2009) by 

modelling non-linearity in seagrass trends and accounting for differences in trends 

across bioregions. Interpretation of the status plots of all sites in each dataset (Figure 

A13) suggests the 7% global decline estimate was strongly influenced by declining 

trends in the Temperate North Atlantic West: a trend that we also observe in our updated 

dataset, and which continues into the 2010s. Overall we find that observed declines 

have slowed in several bioregions that have suffered large historical declines 

(Temperate North Atlantic West) and those that have experienced substantial restoration 

efforts (Mediterranean, Tropical Atlantic).  

Persistent declines of 1-2% per year are nevertheless of great concern for two 

reasons. First, consistent declines of this magnitude can still lead to substantial loss. 

Furthermore, this loss could be accelerated as meadow size decreases below a 

threshold size where recovery can be achieved naturally or through management 

(Moksnes et al., 2018; Olesen & Sand-Jensen, 1994; Orth et al., 2012). For example, 

large meadows are more likely to trap sediments in a positive feedback that improves 

water clarity (Adams et al., 2018; van der Heide et al., 2011) and dampens waves that 

are damaging to meadows (Uhrin & Turner, 2018). The fact that low rates of declines, 

although widespread, often affect large meadows (e.g., in the Tropical Indo-Pacific, Fig. 

2.3) offers some reassurance because given the same rate of decline, large meadows 

will take longer to reach the point of no return than smaller meadows. Second, from a 
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human perspective, declines of 1–2% might be imperceptible or attributed to natural 

variation. This sets the stage for the potential problem of shifting baselines (Duarte et al., 

2009; Pauly, 1995), which could delay the recognition of declining trends and onset of 

management intervention. 

Meadows that were small relative to their maximum observed area more 

commonly experienced large annual rates of change when compared to meadows that 

were close to their maximum ever observed area. There are several explanations for this 

pattern. First, it could be caused by sampling bias caused by higher variation in year-to-

year estimates of meadow area when observing smaller meadows in turbid water. 

However, extreme rates of change associated with small relative size tended to occur 

more frequently when meadows increase in size than when they decline. This pattern 

suggests an ecological interpretation: seagrass meadow expansion is dominated by 

vegetative growth at meadow edges, and edge-to-area ratios, and thus the scope for 

large relative areal gains, are higher for small than for large meadows (Olesen & Sand-

Jensen, 1994; Rasheed, 2004). It is also possible that the maximum observed size of a 

meadow approximates the maximum suitable habitat and so the potential for meadow 

expansion is low when meadows are near their maximum size. In contrast, loss 

processes are not strictly limited to the edges of meadows, and extreme rates of loss 

might depend on the type of local drivers, such that large proportional losses can occur 

regardless of meadow size.   

Although the status of individual seagrass meadows generally paralleled 

bioregional trends in seagrass area, there was high variability in individual meadow rates 

of change, with many sites bucking the bioregional trends. This suggests that local 

context is important, particularly when regional-scale factors (e.g., wasting disease, 

storms) are not the primary driver of regional trends in seagrass area. Local factors that 

can be highly variable even within bioregion include the type, frequency, and intensity of 

human impacts.  
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Attributions to drivers of change  

Given the observed declines in seagrass area, the high variability in individual 

meadow change, and large gaps in how meadows are currently managed, it is ever 

more important to understand what is driving change, so the gaps that contribute to 

ineffective seagrass management can be identified and filled (Griffiths et al., 2020). In 

our dataset, most studies attributed observed change in seagrass area to one or more 

drivers, but the strength of attribution was, in general, weak. Inferential tests provide the 

strongest attribution, because they are quantitative and repeatable (O’Connor et al., 

2015), but only 10% of studies identified the causes of change using inferential tests. 

Admittedly, environmental data that coincide with seagrass meadow time-series are 

lacking in most places, which makes inferential attribution of changes in seagrass area 

to specific drivers difficult (Unsworth et al., 2018). Nevertheless, causal links between 

drivers such as water quality or coastal modification and the loss of seagrass meadows 

are well documented by many local studies (Breininger et al., 2017; Dolch et al., 2013; 

Lefcheck et al., 2017, 2018). In some locations water quality management strategies 

have promoted seagrass recovery (e.g., Cunha et al., 2013; Sherwood et al., 2017). For 

example, in Tampa Bay, implementation of water quality management strategies allowed 

seagrass meadow area to recover to a 1950’s baseline, despite a population increase of 

~3 million over that same time period (Sherwood et al., 2017). These unambiguous 

studies of coastal development and water quality on seagrass status might explain why 

these two drivers of change were the most frequently invoked by authors, even without 

local evidence, in the studies we reviewed, albeit with far weaker strength of attribution. 

However, causality is much less clear for most of the other drivers of change invoked in 

the studies considered here. 

Weak attribution strength is a problem for two reasons. First it might artificially 

reinforce confidence in the importance and ubiquity of some drivers of change, such as 

water clarity and coastal development. Second it might lead to overlooking the effects of 

indirect or co-occurring multiple drivers of change. For example, while poor water clarity 

is undoubtedly a problem for many seagrass meadows, this widely acknowledged issue 

can sometimes be a consequence rather than a cause of seagrass loss (e.g., Hiratsuka 

et al., 2007; Kendrick et al., 2019; Krause-Jensen et al., 2012; Nowicki et al., 2017). For 

instance, despite concurrent coastal development/urbanization, water clarity in Lake 

Nakaumi, Japan, declined only after the loss of seagrass beds, which was likely initially 
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driven by herbicides used to eradicate an invasive aquatic plant (Hiratsuka et al., 2007). 

Furthermore, multiple drivers generally co-occur spatially and temporally. Aquaculture 

development, destructive fishing, the introduction of non-native species, and boating are 

all more likely to take place adjacent to or near port development and urban centres. 

Moreover, all of these occur against a background of climate change, which further 

complicates any clear attribution to drivers, especially via non-inferential means.  

Climate change was not a main driver of seagrass area change considered by 

many authors; however, its effects are expected to increase in the future. Marine 

ecosystems are expected to experience a higher frequency and intensity of extreme 

conditions such as heatwaves and increased storm frequency and intensity (Collins et 

al., 2022; Smale et al., 2019). While single extreme events have resulted in immediate 

and drastic loss of seagrass meadows (Kendrick et al., 2019; Oprandi et al., 2020), 

repeated occurrences and/or extreme and catastrophic events can reduce meadow 

resilience to multiple stressors (Kendrick et al., 2019; Krause‐Jensen et al., 2021). 

Conversely, in some bioregions such as the Temperate North Pacific, poleward range 

shifts are expected to occur and may lead to gains outside of historical ranges (Wilson & 

Lotze, 2019). With the increase in high-quality global datasets on pressures and 

environmental change, future efforts can use high-resolution and hindcasted datasets to 

attribute drivers to trends in seagrass meadow area, identify vulnerable sites, and 

identify regions where monitoring of range shifts should be expanded. 

In conclusion, the global outlook for seagrass meadows is that declines are 

continuing, but considerable nature and management driven variability in meadow area 

creates opportunities for recovery. The consistent, global patterns of loss are a concern 

and likely reflect the growing number and intensity of human impacts that threaten 

seagrass meadows. In some regions the loss over the past century has been rapid and 

large, and in others, there is a pattern of slower, less spectacular but more insidious 

loss. Because early data, especially from before the 1940s, are limited, seagrass 

meadows, like many other ecosystems, are likely subject to shifting baselines; we can 

therefore neither estimate nor even conceive the true extent of losses in some 

bioregions. Importantly, we need to improve our attribution of changes in seagrass area 

to specific human activities to understand the local context of trends in seagrass 

meadow area and to improve management. Certainty in attribution will continue to be 

challenging because of the ubiquitous presence of multiple stressors and confounding 
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variables, and the often-unclear causal links between human activities and the 

consequent changes in environmental variables.  
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Chapter 3. Management thresholds shift under the 
influence of multiple pressures: Eelgrass meadows 
as a case study2 

Abstract  

As human activities increase in intensity and extent, ecosystems face growing 

threats from multiple stressors. Successful management requires identifying measurable 

targets, which is challenging because of data limitations, non-linear ecosystem 

responses, and potentially shifting targets under multiple stressors. To identify critical 

management values and determine whether these values shift in the presence of 

multiple stressors, we use eelgrass (Zostera marina) meadows as a model system. We 

reviewed 20 studies that measured the effects of light and temperature on eelgrass 

performance, providing 109 unique study-site-treatment combinations. We modelled the 

interactive effect of temperature and light on eelgrass population growth rate (i.e., lateral 

shoot production rates) using a hierarchical generalised additive model and predicted 

population growth rates across a range of light levels and temperatures. We found that 

two critical performance metrics of population growth, zero-growth and maximum growth 

rates, shifted across a gradient of light and temperature, suggesting that fixed 

management targets linked to population growth rates might be unsuitable for managing 

meadows under multiple stressors. Our approach bridges the gap between data from 

laboratory and field studies and could be developed into an interactive management tool. 

Introduction 

Ecosystems are undergoing drastic change globally as human activities increase 

in frequency, intensity, and extent (Williams et al., 2020). Managing the impacts of 

human activities is critical for the preservation of ecosystem function and services. 

However, ecosystem responses to multiple stressors, which we define as environmental 

conditions that deviate from optimal life conditions and decrease organismal fitness, can 

be difficult to predict, in part because ecosystems can have non-linear responses to 

 

2 A version of this chapter appears as Dunic JC and Côté IM. 2023. Management thresholds shift 
under the influence of multiple stressors: Eelgrass meadows as a case study. Conservation Letters. 
VOL(ISS): PAGES. DOI: 10.1111/conl.12938 
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increasing stressors (Hunsicker et al., 2016). Sometimes this change is reversible, but 

often reversal is costly because of self-reinforcing feedbacks and shifts to alternative 

stable states (Bayraktarov et al., 2015; Selkoe et al., 2015). Avoiding undesirable state 

change is therefore imperative. 

One approach to managing ecosystems that demonstrate non-linear responses 

to increasing stressors is threshold-based management. This approach requires explicit 

stressor thresholds linked to a desired ecosystem state or population performance that 

can trigger management interventions (Cook et al., 2016). Once thresholds are 

identified, management can define a ‘safe-operating space’ to maintain stressors below 

certain levels (Selkoe et al., 2015). Management strategies that use a threshold 

approach are associated with better outcomes than strategies that neither identify nor 

target management actions in relation to stressor threshold values (Kelly et al., 2015). 

Harvest-based thresholds are commonly used to manage populations targeted by 

fisheries (Caddy & Mahon, 1995) and forestry (Päivinen et al., 2022). Threshold-focused 

management is also applied to natural ecosystems. For example, threshold-based 

management targeting stormwater regulations and residential fertilizer restrictions 

enabled the recovery of seagrass to pre-1950s areal extent in Tampa Bay, Florida, USA 

(Greening et al., 2014). However, identifying measurable management targets and 

useful metrics of successful ecosystem state is difficult because of lack of data and 

variability across populations and species (Johnson, 2013). 

Another major impediment to quantifying management thresholds is the co-

occurrence of multiple stressors, which is increasing in both terrestrial and marine 

environments (Bowler et al., 2020). Predicting how multiple stressors interact to affect 

management targets is challenging (Stockbridge et al., 2020). Temporal and spatial 

scales, level of biological organisation (e.g., physiological, population), and stressor type 

can all mediate multiple stressor interactions (Boyd et al., 2018; Turschwell et al., 2022). 

However, current applications of threshold-based management typically do not consider 

the effects of multiple co-occurring stressors, which may have harmful consequences. 

While the use of long-term fixed stressor thresholds is sometimes beneficial (e.g., 

Tampa Bay seagrass), it is associated with declines in fished Walleye (Sander vitreus) 

populations in the USA, which suggests that thresholds should be adapted to changes in 

environmental conditions (Embke et al., 2019). Even if management thresholds are 

identified for a single stressor, they could shift with additional stressors. Therefore, 
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thresholds based on historical or current trends may not hold true under future 

conditions (S. Large et al., 2015).  

Eelgrass (Zostera marina) is an ideal model organism to test how multiple co-

occurring stressors might complicate threshold-based management. It is a well-studied, 

widespread species that is the foundation of coastal ecosystems subject to many human 

activities. Thus, eelgrass ecosystems face growing threats from multiple stressors. 

Management of eelgrass would benefit from the identification of stressor thresholds 

clearly linked to population performance because once lost, eelgrass can be difficult to 

recover (van der Heide et al., 2011). The effects of single stressors on various eelgrass 

responses have been previously reviewed (e.g., Lee, Park, & Kim, 2007); however, 

these data have not been combined using a predictive approach that allows the 

forecasting of eelgrass performance in response to common stressors like temperature, 

light, and, most importantly, their joint effect.  

Here we develop an empirical, predictive approach that can help management by 

identifying critical stressor values linked to critical metrics of eelgrass population 

performance and predict how these threshold values change under multiple stressors. 

Using published data, we model the relationship of eelgrass (Zostera marina) lateral 

shoot production rates in response to light and temperature, two critical drivers of 

eelgrass productivity (Lee, Park, & Kim, 2007). Using eelgrass as a model system we (1) 

demonstrate how response surfaces can be used to empirically identify critical 

management targets in a foundation species, (2) test if stressor values linked to critical 

performance metrics vary in the context of multiple stressors, and (3) demonstrate a 

modelling approach that can incorporate species responses to multiple stressors from 

data obtained from a range of study types.  

Methods 

Data compilation 

To find studies that tested the response of Zostera marina to light and 

temperature, we searched the published literature using Web of Science and Scopus on 

9 January 2021. We used search terms that combined Z. marina identifiers: (eelgrass 

OR “Zostera marina” OR “Z. marina”) with keywords related to light and temperature. 
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Our goal was not to perform an exhaustive or systematic review but to obtain sufficient 

data to produce a proof of concept. Ultimately we selected 20 studies (n), which yielded 

a dataset of 109 unique study-site-treatment (k) combinations (Table B1). In studies 

where additional covariates were included, we used data from the control treatments.  

Data extraction and variable standardisation 

Population growth rate 

We extracted four response metrics that could be standardised to a per-capita 

shoot production rate: shoot mortality, shoot survival, lateral shoot production, and shoot 

density. We converted proportional shoot survival to shoot mortality, which was then 

used as a negative shoot production value. Metrics were divided by initial shoot density if 

not already presented as per-capita rates. Once standardised, we converted these 

values into a rate by dividing by the number of days over which the response was 

measured if not already presented as a daily rate. When studies measured shoot density 

over time, we calculated the per-capita shoot production rate, r, as follows:  

𝑟 =

𝑠ℎ𝑜𝑜𝑡𝑠𝑡−𝑠ℎ𝑜𝑜𝑡𝑠𝑡−1
𝑠ℎ𝑜𝑜𝑡𝑠𝑡−1

𝑡
  

( 3.1 ) 

The authors, and thus we, did not differentiate between shoots produced via 

vegetative growth or seedling development. The contribution of sexual reproduction in 

eelgrass is highly variable but in established perennial meadows, it is often low (2 - 20%; 

(Lee, Park, Kim, et al., 2007; Xu et al., 2018) such that lateral shoot production can be 

the primary contributor to population growth. Therefore, for simplicity we refer to per-

capita lateral shoot production as ‘population growth rate’.  

Light 

We used the daily light integral (DLI) to standardise light values across studies. 

The DLI measures the amount of photosynthetically active photons delivered per m2 

over a 24-h period, which is closely related to plant growth (eqn 3.2; Poorter et al., 

2010)). If DLI was not provided, we calculated it by multiplying the mean photosynthetic 

photon flux density (PPFD) by the number of light hours. We used penetrating irradiance 

to calculate the DLI (n = 13, k = 64), which was provided for all field studies. When this 
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was not available, as was the case only for laboratory studies in shallow mesocosms, we 

used surface irradiance instead (n = 7, k = 45).  

𝐷𝑎𝑖𝑙𝑦 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (µ𝑚𝑜𝑙 𝑠−1𝑚−2) ∗ 𝐿𝑖𝑔ℎ𝑡 (ℎ𝑜𝑢𝑟𝑠)   

( 3.2 ) 

In outdoor mesocosms and field studies, where the number of light hours and PPFD 

varied over time (Table B2), studies presented light in one of two ways: a mean PPFD or 

DLI over the experiment duration, or a light time-series that corresponded to a shoot 

density or shoot production time-series (Figure B1). In the latter case, we calculated the 

average DLI between sampling points to improve the temporal link between the light 

data and measured response (Figure B1).  

For cases (n = 4, k = 22) where neither the light hours nor DLI were provided, we 

used the ‘suncalc’ package (Thieurmel & Elmarhraoui, 2019) in R (R Core Team, 2022) 

to estimate the light hours at the study location so that we could calculate the DLI using 

the provided irradiance. 

Temperature 

We used the mean temperature value given, or the midpoint if only a range was 

provided. As with the light values, we calculated the mean temperature between 

response sampling points when a time-series of temperature data was provided (Figure 

B1).  

Modelling the effect of temperature and light on population growth 
rate 

To identify the eelgrass zero-growth isocline (population growth rate = 0) and to 

understand the effect of the interaction between temperature and light on this isocline, 

we fit an unweighted hierarchical generalized additive model (GAMM) to population 

growth rates, r, using the ‘mgcv’ R package (Wood, 2011). We used a GAMM to allow 

the shape of the relationships between population growth rate and the predictors to be 

data-driven instead of making a priori assumptions about the functional forms of the 

relationships. We fit the following model: 
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𝑟 = 𝑓(𝐷𝐿𝐼𝑖, 𝑇𝑒𝑚𝑝𝑖) + 𝑓(𝑠𝑡𝑢𝑑𝑦, 𝑠𝑖𝑡𝑒, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) + 𝜖𝑖  

( 3.3 ) 

where f(DLIi, Tempi) was fitted with a cubic regression spline and is the tensor product 

smooth of the DLI and temperature of a given data point, which allowed us to model two 

predictors that are on different scales (Wood et al., 2013). We included a random effect 

of unique study-site-treatment combinations, f(study, site, treatment), to account for 

studies that contained data from more than one site and/or repeated measures of 

response values; 𝜖𝑖 is a Gaussian error term. We then used the fitted GAMM to identify 

the critical DLI and temperature values where r = 0 and r = rmax and examine how these 

critical values change under different combinations of DLI and temperature.  

Estimating critical values of light and temperature 

To identify the critical DLI and temperature values where r = 0 and r = rmax and 

examine how these critical values change under different combinations of DLI and 

temperature, we used predictions from the fitted, unweighted hierarchical generalised 

additive model (GAMM; eqn. 3.3). First, we extracted the mean expected eelgrass 

performance curves for DLI across a range of temperatures observed in the dataset and 

did the same for temperature performance curves across values of DLI. Next, we 

calculated the first derivative, f’(x), of these mean functions using finite central 

differences. From the performance curves, we extracted the critical DLI and temperature 

values for: the minimum required light, DLIr = 0, where the light performance curve was 

increasing, f’(x) >0, and where r = 0; the maximum tolerable temperature, Tr=0, where the 

thermal performance curve was decreasing, f’(x) < 0, and r = 0; and DLIr=rmax and Tr=rmax 

where the slope of the mean fit was zero, f’(x) = 0 and r = rmax.  

To estimate the uncertainty around the critical values, we used this same method 

on 1000 simulated draws from the posterior distribution of the fitted GAMM to create a 

posterior distribution of critical values and summarized these as the 2.5% and 97.5% 

quantiles of critical values. We chose to use a traditional 95% confidence interval, but 

this can be adjusted by choosing different quantiles. Simulated fits were drawn under the 

assumption that smoothness parameters are estimates and so the confidence intervals 

are marginalized across the random effect. For the DLIr=rmax and Tr=rmax, which were 
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unduly influenced by high uncertainty at the tails of the predictor data ranges, we only 

estimated them for DLI < 26 mol m-2 day-1 and temperature > 8˚C. 

Results 

Description of dataset 

Most of the 20 studies were indoor laboratory experiments (n = 15), but there 

were also outdoor mesocosms (n = 2), and field manipulations or observations (n = 3). 

Most studies had constant light and temperatures throughout the experiments (n = 18), 

but some studies included seasonal/temporally variable light and temperature data over 

the course of observations (n = 5). Vegetative adult shoots were the most tested life-

stage (n = 19). 

Response surface 

Analysis of the combined effects of light and temperature on population growth 

rate showed that there are critical thresholds below which (for light) or above which (for 

temperature) shoot density should decline because growth rates become negative (i.e., 

shoots die). Population growth (i.e., positive growth rates) occurred with light levels 

above 3.75 mol m-2 day-1 and temperatures below 26.9˚C (Figure 3.1a). Maximum shoot 

production occurred at light levels 17.4 mol m-2 day-1 and temperatures of 19.4˚C (Figure 

3.1a).  
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Figure 3.1  Predicted response surface of population growth rate of eelgrass, r, 
(day-1), in response to the combined effect of temperature and light 
availability (measured as daily light integral, DLI). (a) Response 
surface across all values of temperature and light. Shades of blue 
indicate combinations of temperature and light that allow lateral 
shoot growth while shades of red indicate conditions under which 
shoots die. The colour scale has been truncated at -0.1 and 0.1 to 
improve visualisation of the predicted values from a GAMM (i.e., 
three points > 0.1). Points are observed population growth rates 
(shoot density change or lateral shoot production rates) from unique 
study-site-treatments. Population growth rates are given for each 
contour line; the threshold for growth (contour r = 0) is highlighted 
in black. (b) Response surface for a subset of temperature and light 
values to show how the critical value of population growth rate, r = 
0, varies with changing conditions. Population size at current light 
and temperature levels (white circle) cannot be maintained under 
warming scenarios unless accompanied by increases in light 
availability. 

 

Shifting critical thresholds 

The response surface can be used to predict how a given eelgrass meadow will 

respond to changes in light or temperature and to set management targets (Figure 3.1b). 

For example, a meadow that experiences a current-day average of 4.3 mol m-2 day-1 and 

a temperature of 19˚C can maintain shoot density (i.e., population growth rate is zero). 

However, with any increase in temperature, the minimum light required for persistence 

increases. With a 1.5˚C increase in temperature, light must increase by ~ 1.6 mol m-2 

day-1 (37% increase), while with a warming of 4.8˚C light must increase by 4.7 mol m-2 

day-1 (109% increase) for the same meadow to maintain its current shoot density (Figure 

3.1b).  
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Figure 3.2 Light performance curves of eelgrass, Zostera marina. (a) Predicted 
fits of population growth rate by eelgrass, r (day-1), in relation to 
light levels at different temperatures, shown (in ˚C) above each 
panel. The vertical dashed lines denote the minimum daily light 
integral, DLIr=0, at which population growth rate = 0 for a given 
temperature. The narrow temperature bins between 20 and 27˚C 
highlight the temperatures over which DLIr=0 increases rapidly. The 
shaded areas are 95% simultaneous confidence intervals from 
model fits. (b) The relationship between DLIr=0 and temperature and 
(c) between DLIr=rmax and temperature as estimated from mean 
GAMM fits. Uncertainty around the DLIr=0 and DLIr=rmax estimates, in 
grey, indicates the 2.5% and 97.5% quantiles of DLIr=0 and DLIr=rmax 
estimated from simulating 1000 draws of light performance curves 
across from the GAMM posterior distribution. To reduce the 
influence from high uncertainty at the tails of the predictor data 
ranges, we only estimated DLIr=0 and DLIr=rmax for DLI < 26 mol m-2 
day-1 and temperature > 8˚C. Colours in (b) and (c) correspond to the 
temperature bins in (a). 
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Figure 3.3 Temperature performance curves of eelgrass, Zostera marina. (a) 
Predicted fits of population growth rate by eelgrass, r (day-1), in 
relation to temperature at variable daily light integral (DLI) levels. 
The vertical dashed lines denote the critical thermal maximum, Tr=0, 
at which population growth rate, r = 0, for a given light level. The 
narrow light bins between 3 and 9 highlight the light values over 
which Tr=0 increases rapidly. The shaded areas are 95% 
simultaneous confidence intervals from model fits. (b) The 
relationship between Tr=0 and DLI and (c) Tr=rmax and DLI, as 
estimated from mean GAMM fits. Uncertainty around the Tr=0 and 
Tr=rmax estimates, in grey, indicates the 2.5% and 97.5% quantiles of 
Tr=0 and Tr=rmax estimated from simulating 1000 draws of thermal 
performance curves across from the GAMM posterior distribution. 
To reduce the influence from high uncertainty at the tails of the 
predictor data ranges, we only estimated Tr=0 and Tr=rmax for DLI < 26 
mol m-2 day-1 and temperature > 8˚C. Colours in (b) and (c) 
correspond to the DLI bins in (a). 
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The shape of light and temperature performance curves, as well as critical 

growth values, changed across the combinations of light and temperature that eelgrass 

meadows often experience (Figures 3.2, 3.3). Importantly, values of light and 

temperature associated with critical growth values (e.g., r = 0) changed non-linearly. For 

example, the minimum daily light integral, DLIr=0, remained relatively constant at 

temperatures ranging from 5˚C to ~20˚C (with an absolute minimum of 3.8 mol m-2 day-1) 

but increased rapidly as temperatures increased from 20˚C to 26˚C (Figure 3.2a,b). 

Similarly, the maximum temperature, Tr=0, that allows eelgrass persistence increased 

rapidly when light values were less than 10 mol m-2 day-1 but much more slowly beyond 

that point (Figure 3.3a,b). The daily light integral associated with maximum growth, 

DLIr=rmax, increased with increasing temperature, but rmax decreased as temperature 

increased (Figures 2c, S2). Similarly, the pattern with maximum growth temperature, 

Tr=rmax, showed a region of rapid increase over light values between 12-18 mol m-2 day-1, 

and no increase in rmax at temperatures beyond ~19˚C, (Figures 3.3c, B3).  

Discussion  

The responses of eelgrass to light and temperature are well documented, largely 

because these two factors are common proxies for two major stressors of eelgrass 

meadows: turbidity and warming. We combined light and temperature performance 

curves in a novel way to examine the validity of fixed management thresholds for 

eelgrass ecosystems. We found that critical eelgrass performance values, zero and 

maximum population growth rates, shifted across combinations of light and temperature 

values, suggesting that fixed stressor targets are inappropriate to guide the management 

of meadows under co-occurring stressors. Under predicted warming scenarios the 

minimum light required for meadows to persist increases rapidly, suggesting that strong 

management of a local stressor (light availability) could mitigate some of the negative 

effects of a global stressor (warming) on eelgrass population growth. 

Eelgrass population responses to light and temperature 

Three regions of interest emerge from the response surface. First, there were 

absolute limits for the minimum DLI and maximum tolerable temperature beyond which 

population loss occurs. For temperatures less than ~18˚C, the minimum DLI required for 
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population maintenance (r = 0) was 3.8 mol m-2 day-1 (Figure 3.1a), suggesting that at 

these temperatures, light is a limiting resource. This value is comparable to field 

estimates of minimum DLI (e.g., 3 mol m-2 day-1 at 12-14˚C on the US Pacific coast, (R. 

M. Thom et al., 2008); 3.6-3.7 mol m-2 day-1 at 15-20˚C on the US Atlantic coast, 

(Dennison & Alberte, 1985)). Our model may, however, overestimate the DLIr=0 at 

temperatures < 8˚C due to the low sample size (k = 3). Similarly, at temperatures > 

27˚C, increases in DLI did not affect the zero-growth isocline (Figure 1a). Factors such 

as damage to plant tissue and photosynthetic pathways, and sediment condition could 

set an upper limit on the temperature that determines the zero-growth isocline. For 

instance, high temperatures can damage tissues and impair protein synthesis (Hammer 

et al., 2018); however, this typically occurs at temperatures beyond what is represented 

in our dataset (> 30-35˚C).  

Second, maximum growth rate occurs at temperatures ~16-18˚C and irradiance 

between 15-20 mol m-2 day-1. These optimal temperatures match those found across the 

range of eelgrass (Lee, Park, & Kim, 2007). Meanwhile the decrease in population 

growth rate at irradiances > 20 mol m-2 day-1 may reflect photoinhibition (P. J. Ralph et 

al., 2007). For example, in the congener Zostera noltii, photoinhibition begins at 20.4 mol 

m-2 day-1 (Peralta et al., 2002).  

Third, above the absolute minimum light and below the absolute maximum 

temperature, the critical values of light, DLIr=0, and temperature, Tr=0, shift as 

environmental conditions change. Between ~18˚C and 27˚C positive eelgrass growth 

rates were maintained only if DLI increased concurrently with temperature (Figure 3.2). 

Conversely, with declining DLI, eelgrass growth rates remain positive only with declines 

in temperature (Figure 3.3). If high temperature conditions and low light persist, 

populations will decline. In Chesapeake Bay, for instance, eelgrass cover declined, with 

the greatest losses occurring at the deep edge of meadows where light is most limited, 

concomitant with mean temperatures increasing from 24.9 to 26.4˚C and increasing 

pulses of extreme temperatures (> 28˚C; Lefcheck et al., 2017).  

Underlying these general trends was a high variability in growth rates, indicating 

that there are other important covariates to consider. Genetic variation, initial condition, 

variability in stressors, and additional co-occurring stressors are factors that could be 

included with more data. For instance, eelgrass populations demonstrate high levels of 
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genetic variation and phenotypic plasticity, which affect their capacity to withstand 

warmer temperatures (DuBois et al., 2022). In addition, as most data were from 

experiments with static environmental conditions or with predictors averaged over time, 

fluctuating or extreme stressors were not explicitly included. However, they could be, if 

environmental and growth data are provided at a fine enough temporal resolution. Our 

model could then be used to simulate eelgrass performance over time as a meadow 

‘moves’ around the response surface seasonally or as light regimes are affected by 

activities like dredging or algal blooms. At any rate, how critical values shift across 

temperature–light combinations are likely qualitatively similar across populations and 

seagrass species, but critical values will differ.  

Management implications 

Interactions between multiple stressors can have implications for management 

actions, affecting conservation and restoration strategies (Brown et al., 2013; Spears et 

al., 2021). We showed that the eelgrass zero-growth isocline shifted rapidly between the 

absolute minimum value of light required for shoot production (3.8 mol m-2 day-1) and the 

absolute the maximum temperature plants can tolerate (~27˚C). This suggests that 

below 27˚C, focusing management actions towards improving or maintaining water 

quality will be important in a warming world. However, where temperatures are close to, 

or expected to exceed 27˚C, improving water quality is unlikely to be enough and other 

actions, such as identifying refuges or assisting migration, should be prioritized.  

Below the maximum temperature plants can tolerate, the amount of light needed 

to maintain eelgrass populations is temperature-dependent. If plants do not build 

sufficient carbohydrate reserves during peak growing seasons, they may not persist 

through seasonal periods of low light in the winter (Wong et al., 2020). Therefore, it is 

important that light (or turbidity) thresholds, especially during the growing period, be 

revisited in the context of warming. The water-quality and light-based thresholds that 

have been successfully applied to the conservation of seagrass ecosystems in Tampa 

Bay to reduce nutrient loading (Greening et al., 2014) and on the Great Barrier Reef to 

limit dredging (Chartrand et al., 2016) do not account for effects of temperature and 

might become ineffective under warming ocean conditions. Additionally, considering the 

duration and timing of combined stressors could improve management outcomes (Wong 
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et al., 2020; Wu et al., 2017). For example, dredging times and locations can be limited 

to sites and seasons where temperatures are below 20˚C 

Improved understanding of multiple stressor effects could also increase 

restoration success. For example, sites such as low-flow embayments, may be more 

likely in the future to reach temperatures that exceed eelgrass thermal limits and should 

be considered unsuitable for transplants. In cases where water quality management will 

be insufficient to enable population growth, a landscape approach to conserving 

eelgrass where refugia sites are identified may be a more prudent strategy (Morelli et al., 

2016), as is currently done for coral reefs (Andrello et al., 2022) and terrestrial wildlife 

management (Choe et al., 2020). 
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Chapter 4. Fine-scale effects of environmental 
conditions and human impacts on eelgrass health 

Abstract 

Managing multiple stressors is necessary to protect nearshore coastal 

ecosystems from the cumulative effects of human activities. However, identifying 

relevant local-scale management actions is challenging, in part because of the 

contrasting scales at which human activities and impacts are measured and at which 

ecosystem condition is measured. A dearth of high-resolution environmental data has 

meant that most assessments of environmental conditions and/or human impacts are 

done at large spatial scales (e.g., > 100s kms), masking the small-scale variability that 

directly affects ecosystem condition. Here, we characterised fine-scale (10s kms) 

variation in environmental conditions, human impacts, and two metrics of eelgrass 

(Zostera marina) ‘health’ (shoot density and lesion prevalence), across 11 meadows in 

the Salish Sea, northeastern Pacific. To ascertain the link(s) between these predictors 

and eelgrass health, we used Akaike’s Information Criterion to compare generalised 

linear models. We found that environmental conditions, rather than human impacts, were 

better predictors of eelgrass shoot density and lesion prevalence. Two metrics of 

eelgrass meadow health varied widely at a fine-scale, with shoot densities varying 10-

fold and lesion prevalence ranging from 0-75% across sites. Correspondingly, 

environmental conditions were much more variable than the two human impact metrics 

considered (overwater structures and riparian modification). Eelgrass shoot density was 

positively correlated with maximum annual water temperature, meanwhile lesion 

prevalence was negatively correlated with maximum water velocity. This study highlights 

the importance of linking variation in eelgrass meadow responses to environmental 

conditions and human impacts at the fine scale at which conservation and restoration 

efforts occur. It also provides important baseline data on conditions and pressures to aid 

in predictions for the future. 
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Introduction 

Ecosystems around the globe are being altered by the cumulative effects of 

multiple stressors. The co-occurrence of, and interactions between, multiple pressures 

complicate the task of attributing ecosystem state change to specific drivers. This 

problem is magnified because the scales at which cumulative impacts are applied and 

measured often differ from the measurements used to evaluate ecosystem condition 

(Stockbridge et al., 2021). As a result, our ability to make predictions for the fine spatial 

scale at which local management and restoration is done is severely limited. One 

potential avenue to overcome this issue is to combine hypothesis-driven monitoring, 

where response metrics of interest (e.g., biodiversity, condition, performance) are 

sampled across a targeted gradient (e.g., of human impact) at a fine spatial scale, with 

remotely sensed data and scale up the relationship to improve cumulative effects 

assessment (Burton et al., 2014; Sparrow et al., 2020).  

One marine ecosystem that exemplifies the scale mismatch between ecosystem 

condition and cumulative effect monitoring is eelgrass meadows. Globally, large extents 

of eelgrass meadows have been lost (Chapter 2) and are increasingly under threat from 

multiple human activities that reduce water clarity, cause physical damage, and cause 

warming sea temperatures (Grech et al., 2012; Lefcheck et al., 2018; Turschwell et al., 

2021). Global syntheses are undoubtedly useful to generate large-scale pictures of 

change in seagrass ecosystems, but the environmental conditions examined as potential 

drivers of change are considered on similarly large scales (e.g., latitudinal gradients) that 

obliterate the small-scale variation (e.g., gradients over 10s of km) that is likely to 

influence seagrass condition locally. Moreover, only 10% of studies of seagrass 

meadows have inferentially tested attributions of changes in extent to specific drivers 

and pressures (Chapter 2). When multiple pressures act on a meadow and specific 

causes of change are uncertain, it can be difficult to assess the best local management 

actions.  

In this study, we try to ascertain the link(s) between seagrass health and 

potential natural and human-made drivers of change at a small spatial scale. We 

measure ‘health’ using two distinct metrics. The first is shoot density, which is a 

commonly measured metric of habitat complexity that readily responds to environmental 

changes (McMahon et al., 2013) and is often used to assess seagrass restoration 
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success (van Katwijk et al., 2016). Shoot density varies at the within-meadow scale, 

typically with lower shoot densities at deeper depths (Krause-Jensen et al., 2000; R. 

Thom et al., 2014), up to scales across latitudes, and can reflect differences in 

environmental factors such as nutrients (Schmidt et al., 2012; Touchette et al., 2003), 

light (McMahon et al., 2013), and temperature (Krumhansl et al., 2021). Meanwhile, high 

structural complexity (i.e., high shoot densities) can be mediate predator-prey 

relationships (Hovel et al., 2016; P. L. Reynolds et al., 2018) and can increase wave 

dampening and sediment accretion (Ondiviela et al., 2014).  

The second metric is prevalence of disease. Wasting disease is a stressor of 

growing concern for seagrasses globally (Sullivan et al., 2013). In temperate 

seagrasses, wasting disease is caused by the slime mold Labyrinthula zosterae, which 

can result in necrotic lesions on leaf tissue and can compromise plant performance (P. 

Ralph & Short, 2002). The severity of infection (i.e., proportion of leaf area with lesions) 

is associated with decreased leaf growth rates and lower rhizome sugar content 

(Graham et al., 2021). Furthermore, stressors such as high temperatures (Aoki et al., 

2022; Groner et al., 2021; Graham et al., 2023), high nutrients (Kaldy, 2014), and low 

salinity (Brakel et al., 2019) are likely to exacerbate disease prevalence and severity. In 

addition, disease can reduce the capacity of eelgrass to tolerate additional stressors 

such as light limitation (Jakobsson-Thor et al., 2020; P. Ralph & Short, 2002). Therefore, 

the combination of shoot density and disease prevalence are important metrics that can 

reflect the current ‘health’ of a meadow and help us anticipate responses to changing 

conditions.  

Here, we focus specifically on eelgrass (Zostera marina) in the Salish Sea. 

Eelgrass is an important foundation species that provides valuable ecosystem services 

such as water quality improvement and nursery habitat for fishery species (Cote et al., 

2013). It is also the most widely distributed and abundant species of seagrass in the 

Northern Hemisphere and is found through temperate to arctic latitudes (Short et al., 

2007). The Salish Sea is an area of rapid human development and increasing human 

impacts, including global-scale threats such as ocean warming, sea-level rise, and 

ocean acidification (Khangaonkar et al., 2018). These increasing cumulative impacts are 

likely to negatively affect eelgrass ecosystems. While trends in eelgrass meadow extent 

have been variable throughout the Salish Sea, with some areas like Puget Sound 

observing stable meadow extents, recent monitoring suggests that more sites are 
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declining than gaining eelgrass area (Nearshore Habitat Program, Washington State 

Department of Natural Resources, 2022). Meanwhile at other sites, long-term declines 

have been observed in bays associated with increasing human activities (Nahirnick et 

al., 2019). Therefore, it is critical to both establish a baseline of information about 

eelgrass meadows in this rapidly changing region and attempt to better understand the 

links between environmental conditions, human impacts and eelgrass condition to target 

management and ameliorate eelgrass health at a local scale.  

 

Methods 

Study site 

The Saanich Peninsula is located on Southern Vancouver Island, Canada, in the 

Salish Sea (Figure 4.1). Eleven sites were selected along a 31-km span of coastline 

(Figure 4.1) with inter-site distances ranging from 500 m to ~5 km. The west and east 

coasts of the Saanich Peninsula represent contrasting sets of oceanographic conditions. 

On the west coast is Saanich inlet, a deep (~234 m) ~24 km long fjord with a shallow sill 

at the mouth which restricts water flow (Herlinveaux, 1962). On the more exposed east 

coast, conditions are more strongly influenced by strong tidal exchanges and oceanic 

conditions.  
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Figure 4.1 Location of eelgrass study sites on the Saanich Peninsula (white 
box in inset map). The location of the Environment and Climate 
Change Canada weather station at Victoria International Airport is 
indicated by the star. 

 

Environmental data 

To characterize the environmental conditions at each site we extracted water 

velocity, water temperature, and salinity data from the SalishSeaCast model (Soontiens 

et al., 2016; Soontiens & Allen, 2017) and wind data from the historical climate data from 

Environment and Climate Change Canada (Environment and Climate Change Canada, 

2011) (Table 4.1). The SalishSeaCast model is a coupled biophysical model that allows 

high-resolution predictions of oceanographic, physical, and biological fields at hourly 

intervals and at a spatial resolution of ~500 m at 40 depths (between 0.5 m and 441.5 

m) in the Salish Sea. Oceanographic processes, including 3-dimensional water flow, are 

modelled using the Nucleus for European Modelling of the Ocean (NEMO) architecture 
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(Soontiens et al., 2016; Soontiens & Allen, 2017) and biogeochemical fields such as 

temperature and salinity are predicted using the LiveOcean model (Fatland et al., 2016; 

MacCready et al., 2021; Olson et al., 2020). Cross-validation of the modelled 

temperature and salinity values shows that variation in temperature estimates increases 

as mean temperature increases and variation in salinity increases as mean salinity 

decreases; there is no bias in mean temperature and salinity estimates (MacCready et 

al., 2021). For each site, we extracted temperature and salinity from the SalishSeaCast 

model hourly from 1 January 2019 to 31 December 2019 and summarized these values 

into the maximum observed temperature, maximum daily temperature range, and the 

time at low salinity (proportion of time where salinity was below 25 PSU) (Table 4.1). We 

also extracted the hourly water velocities from the SalishSeaCast model for all days in 

August 2019 to calculate the maximum observed water velocity (Table 4.1). We used 

only one month because of computational limitations, but the water velocities obtained 

captured well the magnitude of current differences observed at the sites (JCD, personal 

observations).  

To calculate the relative exposure index (Table 4.1) we used the package 

‘windfetch’ (Seers, 2022) and the Global Self-consistent, Hierarchical, High-resolution 

Shoreline Database (Wessel & Smith, 1996) to estimate the fetch for each site, i.e., the 

distance over water that wind can travel unobstructed to reach a site (Figure C1). We 

combined the fetch data with historical windspeed data from the Environment and 

Climate Change Canada weather station at Victoria International Airport (Environment 

and Climate Change Canada, 2011), which is located on the Saanich Peninsula (Figure 

4.1), accessed using the ‘weathercan’ R package (LaZerte & Albers, 2018).  
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Table 4.1 Descriptions of the environmental predictors used and their data sources. 

Predictor Description of summary value Ecological relevance Data sources 

Temperature Maximum annual temperature (˚C) from 2019-01-
01 to 2019-12-31  

Given that eelgrass is growing near its optimal temperature 
range at this location, high temperatures are more likely to 
impair eelgrass growth and performance in the long-term 
than low temperatures (e.g., Lee et al., 2007, Chapter 3).  

SalishSeaCast, Dataset ID: 
ubcSSg3DTracerFields1hV
19-05 (Temperature field) 

Maximum daily summer temperature range (˚C) 
from 2019-06-01 to 2019-08-31 

Same as above.  
 
Temperature variability is a predictor of genetic structure in 
eelgrass (DuBois et al., 2022) and shoot density 
(Krumhansl et al., 2021) 

SalishSeaCast, Dataset ID: 
ubcSSg3DTracerFields1hV
19-05 (Temperature field) 

Salinity Proportion of the total hours where salinity was 
less than 25 PSU from 2019-01-01 to 2019-12-31 

Salinity below 25 PSU is associated with lower prevalence 
and severity of eelgrass wasting disease (Jakobsson-Thor 
et al., 2018) 

SalishSeaCast, Dataset ID: 
ubcSSg3DTracerFields1hV
19-05 (Salinity field) 

Water 
velocity 

Maximum water speed (ms-1) obtained by 
averaging the modelled u and v water velocity 
components from 0-5 m depth and then 
calculating the magnitude of the 

velocity:√{𝑢̅2 + 𝑣̅2} from 2019-08-01 to 2019-

08-31 

High water velocities can resuspend sediment and limit 
light availability to plants (e.g., Marin-Diaz et al., 2020; van 
der Heide et al., 2007).  
 
Longer water residence times may increase effects of 
nutrient loading (Bricker et al., 2008) or lead to higher 
extreme temperature exposures (e.g., Wong et al., 2013).  

SalishSeaCast Dataset ID: 
ubcSSg3DuGridFields1hV1
9-05 (u component and 
velocity fields) 
SalishSeaCast Dataset ID:  
ubcSSg3DvGridFields1hV1
9-05 (v component & 
velocity fields) 

Exposure Relative exposure index (km2h-1) 

𝑅𝐸𝐼 =  ∑(𝑚𝑒𝑎𝑛 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑{10𝑖˚}

36

𝑖=1

× 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦{10𝑖˚}  

× 𝑓𝑒𝑡𝑐ℎ{10𝑖˚}) 

Over the period of 2019-01-01 to 2019-12-31 

Strong winds and wave action can affect SAV distribution 
in deep waters and lakes (Koch, 2001). The creation of 
wind waves can suspend sediments and decrease light 
availability. 

Historical weather station 
hourly wind speed and 
direction (Environment and 
Climate Change Canada, 
2011) 

Depth Mean plot depth measured in the field and 
standardized to the mean lower low water depth 
using tide data taken from the “Tide Charts” app 

Depth affects light availability and wave action (Koch, 
2001).   

Tide Charts (7th Gear, 
2020) 
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Human impact values 

To quantify human impacts at a scale relevant to the study design, we used the 

local-scale impact metrics described by Murphy et al. (2019) for coastal ecosystems in 

Canada. We obtained data for overwater structures, riparian land alteration, and water 

quality; at our sites there were no near-field or mid-field aquaculture activities and so 

these two metrics were excluded. We calculated the proportion of overwater structures 

(0 – 1) within 1 km of the centre of sites by digitizing overwater structures (docks and 

piers) as polygons using Google Earth imagery from 2016 (clearest image; Figure C2; 

Google Earth Pro, 2022). We then divided the water area within a 1-km radius of each 

site by the area of structures overwater, such that larger values represented more built-

up seascapes. To estimate riparian land alteration (0 – 1), we used Google Earth 

imagery and site notes to classify land as ‘forest’ or ‘residential/commercial/industry’ 50 

– 100 m adjacent to the shoreline within a 1-km radius of each site. We then calculated 

riparian land alteration as the proportion of unmodified (‘forest’) land over the total 

riparian area. As a proxy for water quality, we used data from the Canadian Shellfish 

Sanitation Program (Environment and Climate Change Canada, 2020), which monitors 

fecal coliform at coastal stations across the country. We used data averaged from 2009 

– 2019 at the nearest station within 1 km of the sampling sites. Values were the mean 

‘Most Probable Number’ (MPN; a statistically estimated cell count, Environment and 

Climate Change Canada, 2020) of fecal coliform cells per 100 mL. However, the number 

of sampling sites has decreased since 2005 such that there are recent (2009-2019) data 

for only six of our 11 sites. Therefore, we excluded these data from the site 

characterization and analysis but present a visualisation of the spatial distribution of the 

mean water quality for context (Figure C3).  

Eelgrass response sampling 

All eelgrass (Zostera marina) meadows were completely subtidal with the upper 

edge of meadows being at a minimum depth of 0 m mean lower low water (MLLW). 

Between 6 August and 9 August 2019, we counted shoot densities in four 75 cm x 75 cm 

quadrats at each of the 11 sites. Between 21 August and 21 September 2019, we took 

one eelgrass core that was 25 cm x 25 cm and up to 15 cm deep from 10 of the sites. 

The average depth of the eelgrass samples was ~2.2 m below LLW but ranged in depth 
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from 1.0 m to 4.8 m below MLLW. From each core we counted the total number of 

shoots and noted how many individuals had putative wasting disease lesions.  

Although we were unable to identify the causal agent of lesions, visual 

assessment and consultation with disease experts confirmed that the lesions we 

observed resembled lesions observed at other locations in the Salish Sea (Figure C4). 

The lesions did not appear near the base of the shoot nor were meristems rotted 

(indicative of sulphide toxicity; (Holmer & Bondgaard, 2001); they were also dark regions 

with distinct borders rather than non-pigmented and non-uniform, which indicate heat or 

desiccation stress (Boese et al., 2003). Since our study meadows were subtidal, the 

latter is unlikely. 

Analysis 

Site characterisation 

We used a Principal Components Analysis (PCA) and Pearson correlation 

coefficients to characterize the variation in environmental conditions and human impacts 

across sites and to understand how these predictors covaried across our sites and 

varied between aspects of the peninsula (i.e., east vs west). The PCA allowed us to 

simplify the large (relative to our sample size) number of predictor variables into a linear 

combination (e.g., PC1) of these variables, such that we could include a summary metric 

of the suite of environmental and impact conditions at each site.  

Identifying predictors of eelgrass responses 

To determine which of the environmental or human impact metrics of interest 

were key predictors of the variation in our two response metrics (shoot density and 

disease prevalence, i.e., the proportion of shoots with lesions on blades) observed 

across our sites, we developed a set of 36 candidate models (Table C1). These 

candidate models included a null model that estimated the mean response only (i.e., 

intercept only), and tests of the individual predictors alone and in additive pairwise 

combinations. We also included models that used the first two principal components. To 

avoid overparameterization due to the low sample size, we limited candidate models to 

include a maximum of two predictors; interactions were not considered. We also 

excluded models that contained both maximum temperature and salinity because of the 
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high correlation (Pearson’s r = 0.87) between these two predictors. To identify the best 

predictive model from our set of candidate models, we used Akaike’s Information 

Criterion corrected for small sample sizes (AICc; Burnham & Anderson, 2002). We 

considered models that were within 2 AICc units of the top model to be equally 

supported (Burnham & Anderson, 2002). 

To model shoot density at each site, we fit negative binomial generalised linear 

models (GLMs) to account for overdispersion in the variance of shoot densities. We 

visually inspected the residuals of all 36 candidate models (and compared these to 

Poisson GLMs, which showed that almost all models demonstrated overdispersion) to 

check model assumptions. To model disease prevalence at each site, we fit a logistic 

regression with the same 36 candidate model combinations.  

Results 

Site characterisation 

The first principal component axis (PC1) of the PCA described 47.2% of the 

variability in the eight environmental predictors considered (Figure 4.2, Table 4.1). It 

describes a gradient of increasing open ocean influence, i.e., increasing water velocity, 

depth, and relative exposure, and decreasing maximum temperature, temperature 

variability, and low salinity. It is also associated with increasing riparian modification 

(Figures 4.1, 4.2). As expected, sites on the more sheltered west coast of the Saanich 

Peninsula were warmer, experienced more time at low salinities, generally had higher 

temperature variability within a day, and had lower wind exposure than sites on the east 

coast (Figures 4.2a, 4.3). Maximum annual temperature, salinity, and daily temperature 

variability were highly correlated with aspect (Figures 4.2b, 4.3, Figure C5) and so these 

environmental characteristics are likely to drive the differences between aspects.  

The second principal component (PC2) explained 19.7% of the variation in 

conditions across sites. It represents mainly a gradient of increasing human impact, 

primarily increasing cover of overwater structures (Figure 4.2a). The ranges of the 

human impact predictors, i.e., proportion of overwater structures (values: 0 - 0.19) and 

proportion of modified riparian area (values 0.63 - 1), were limited. Almost all sites had 

highly or completely modified/urbanised riparian areas, except for site W5 (Figures 4.2a, 
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4.3 Figure C2). Similarly, most sites had a very low proportion of overwater structures 

except for site E1 and W6 (Figures 4.2a, 4.3 Figure C2).  

Eelgrass meadow depths were similar across sites; however, deeper meadows 

were found on the east coast (Figure 4.3, Figure C6). In particular, E4 was exceptionally 

deep at 4.8 m MLLW, and it is the inclusion of depth that separates sites E3 and E4 in 

the PCA (Figure 4.2a).  
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Figure 4.2 Characterisation of the environment and human impacts at 11 
eelgrass meadow sites around the Saanich Peninsula. (a) Principal 
components of the environmental and human impacts at the 11 
sites. Point shape and colour indicate on which coast of the Saanich 
Peninsula the sites are found. Loadings of the environmental 
variables are shown at the end of the arrows (see Table 4.1 for 
abbreviations). (b) Correlation of the environment characteristics 
and human impacts across the 11 sites; red indicates negative 
correlation, blue indicates positive correlation, and the values in the 
cells are the Pearson correlation coefficient. N = 11 in all cases. 
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Figure 4.3 Spatial variation in environmental characteristics and human impact 
associated variables across 11 eelgrass meadows around the 
Saanich Peninsula. Sites E3 and E4 have been jittered to improve 
visualisation of predictor values. 
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Best predictors of eelgrass response metrics 

Shoot density 

Shoot density was consistently higher on the west than on the east aspect of the 

peninsula (Figure C7). Three candidate models predicting shoot density were equally 

well supported (Table 4.2) and all three of these models contained maximum annual 

temperature. The second-ranked model, which contained only maximum annual 

temperature, was equally likely to the top model (maximum temperature + overwater 

structures) (evidence ratio = 1; Table 4.2). Meanwhile, these top two models were 1.5 

times more likely to be the best models than the third-ranked model (maximum 

temperature + maximum velocity) (Table 4.2).  

In all models, shoot density increased with increasing maximum annual 

temperature, and temperature had a variable importance (VI) of 0.98, suggesting that it 

was the most important predictor tested compared to overwater structures (VI = 0.32) 

and maximum velocity (VI = 0.22). An increase in maximum temperature from 19˚C to 

23˚C predicted a ~4.3-fold increase in shoot density, from 42 shoots to 180 shoots per 

m2 (Figure 4.4). For a given temperature, shoot density is expected to be lower as the 

proportion of overwater structures increases (Figure C8b) and is expected to increase 

with higher water velocities (Figure C8c). The effect of overwater structures as a 

predictor appears to be driven largely by site E1 (Figure C8b), which had the highest 

cover of overwater structures (value = 0.2, Figure 4.3).  
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Figure 4.4 Relationship between shoot density (m-2) and maximum annual 
temperature (˚C), predicted by simplest top model in the AICc 
analysis (Table 4.2). Points are shoot densities observed at each of 
11 sites (see Figure C7). The fitted model lines and 95% confidence 
intervals are shown.  

 

Table 4.2  Shoot density model selection results using Akaike’s Information 
Criterion for small samples sizes (AICc). Shown are the models that 
represent the minimal subset of models for which the cumulative 
weight (Cumul wi) ≤ 0.95 (i.e., approximate 95% confidence that the 
best model considered is contained herein (Burnham & Anderson, 
2002; Symonds & Moussalli, 2011), with the best-supported models 
in bold. All 36 candidate models are presented in Table C1. K is the 
number of parameters in each model; ∆AICc is the difference in AICc 
and the model with the minimum AICc; wi is the interpreted as the 
probability that model i is the best model of the candidate set; LL is 
the log-likelihood of model i; and Dev is the percent deviance 
explained by the model.  

i Shoot density model K AICc ΔAICc AICc wi LL Cumul wi Dev (%) 

1     ~ Overwater structures + Max temp 4 128.14 0.00 0.32 -56.74 0.32 91.44 
2     ~ Max temp 3 128.18 0.04 0.32 -59.38 0.64 86.08 
3     ~ Max velocity + Max temp 4 128.89 0.75 0.22 -57.11 0.86 90.83 
4     ~ Daily temp var + Max temp 4 132.30 4.15 0.04 -58.81 0.90 87.45 
5     ~ Riparian mod + Max temp 4 132.89 4.75 0.03 -59.11 0.93 86.74 
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Lesion prevalence 

Lesion prevalence varied from 0 to 80% (Figure C7). Four candidate models 

predicting lesion prevalence were equally well supported and all four of these models 

contained maximum water velocity (Table 4.3). The top two models (maximum velocity + 

time at low salinity; maximum velocity + maximum temperature) were equally likely 

(evidence ratio = 1) and were twice as likely to be the best models compared to the third-

ranked model (maximum velocity) and fourth-ranked model (maximum velocity + depth) 

(Table 4.3). In all models, lesion prevalence decreased as maximum water velocity 

increased (Figure 4.5, Figure C9) and maximum velocity had a variable importance of 

0.98, suggesting that it was the most important predictor tested compared to time at low 

salinity (VI = 0.24), maximum temperature (VI = 0.24), and depth (VI = 0.11). The 

combined variable importance of models containing time at low salinity and maximum 

temperature was only 0.48, reflecting the strong correlation between these two variables.  

An increase of maximum water velocity from 0.06 ms-1 to 0.46 ms-1 predicted a 58% 

reduction in lesion prevalence (Figure 4.5).  

For a given maximum water velocity, lesion prevalence was predicted to 

decrease with more time spent at low salinity, increase at lower maximum temperatures, 

and increase with depth (Figure C9). These latter two results are contrary to 

expectations. However, the effect size of time spent at low salinity, maximum annual 

temperature, and depth were all small compared to the estimated effect of maximum 

velocity on lesion prevalence (Figure C9). For a maximum water velocity of 0.25 ms-1, 

each of these three predictors was associated with an ~25% change in lesion 

prevalence.  
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Figure 4.5 Relationship between lesion prevalence (%) and maximum water 
velocity (ms-1), predicted by the simplest top model in the AICc 
analysis (Table 4.3). Points are the lesion prevalence observed 
across 10 sites (see Figure C7). The fitted logistic regression model 
lines and 95% confidence intervals are shown. 
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Table 4.3 Disease prevalence model selection results using Akaike’s 
Information Criterion for small samples sizes (AICc). Shown are the 
models that represent the minimal subset of models for which the 
cumulative weight ≤ 0.95 (i.e., approximate 95% confidence that the 
best model considered is contained herein (Burnham & Anderson, 
2002; Symonds & Moussalli, 2011), with the best-supported models 
in bold. All 36 candidate models are presented in Table C1. K is the 
number of parameters in each model; ∆AICc is the difference in AICc 
and the model with the minimum AICc; wi is the interpreted as the 
probability that model i is the best model of the candidate set; LL is 
the log-likelihood of model i; and Dev is the percent deviance 
explained by the model. 

i Disease prevalence model K AICc ΔAICc AICc wi LL Cumul wi Dev (%) 

1     ~ Max velocity + (Salinity < 25) 3 123.13 0.00 0.24 -58.44 0.24 14.10 

2     ~ Max velocity + Max temp 3 123.13 0.00 0.24 -58.44 0.48 14.09 

3     ~ Max velocity 2 124.45 1.32 0.12 -60.16 0.61 11.56 

4     ~ Depth + Max velocity 3 124.70 1.57 0.11 -59.23 0.72 12.94 

5     ~ REI + Max velocity 3 125.28 2.15 0.08 -59.51 0.80 12.52 

6     ~ Riparian mod + Max velocity 3 125.54 2.41 0.07 -59.65 0.87 12.32 

7     ~ Max velocity + Daily temp var 3 126.06 2.92 0.06 -59.90 0.93 11.95 

  

Discussion 

Understanding the scale at which environmental and human activities affect 

eelgrass meadows can enable us to make predictions relevant to the scale of 

management. The contrasting oceanographic conditions around the Saanich Peninsula 

presented an opportunity to examine variation in eelgrass meadow condition at a fine 

geographic scale that can be used to inform conservation and restoration of eelgrass 

meadows in this region of the Salish Sea. Over a small distance, within tens of 

kilometres, we found substantial variation in environmental conditions and also high 

variation in shoot density and lesion prevalence, our two indicators of health. Of the 

environmental and human impact predictors tested, maximum annual water temperature 

was the best predictor of shoot density while maximum water velocity was the best 

predictor of lesion prevalence. The two human pressures considered, overwater 

structures and riparian alteration, had little effect on eelgrass health. These results, 

particularly the high variation in response metrics despite the small inter-site distances, 

suggest that it is important to incorporate studies that consider fine-scale variation to link 

seagrass condition to predictors such as environmental conditions and human impacts.  
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Predictors of eelgrass health 

Shoot density 

We found that, of the predictors tested, maximum annual water temperature was 

the best-supported predictor of eelgrass shoot density. Warmer temperature regimes 

(e.g., > 23˚C), which also had high short-term temperature variability, were also 

associated with higher density shoots in intertidal and subtidal meadows sampled across 

~200 km in Nova Scotia, Canada (Krumhansl et al., 2021, Wong et al., in prep). Similar 

to our study, the Nova Scotian meadows did include some fine-scale comparisons of 

within-site sampling locations (e.g., sampling at different depths or in different 

substrates). In contrast, across latitudes throughout the Northern Hemisphere, there is 

no relationship between shoot density and mean summer temperature (Clausen et al., 

2014). The conflicting results could arise for a number of reasons. Mean summer 

temperatures and maximum annual water temperatures might be poorly correlated, 

although this is not the case, at least in our dataset (Figure C5). Additionally, mean 

summer ocean temperatures estimated from satellite-derived, interpolated air 

temperatures might not accurately reflect meadow-scale in-water temperatures, as seen 

in Figure C5. In addition, the inclusion of both intertidal and subtidal meadows could 

mask effects that are specific to the latter. 

Intertidal eelgrass meadows that experience high temperatures, assumed to lead 

to desiccation stress, can exhibit ‘facilitation-maximizing’ traits, which include smaller 

shoots and higher shoot densities (Boyé et al., 2022). It is unclear whether such a set of 

traits is also associated with high temperatures in fully subtidal meadows. It is possible 

that temperatures that approach thermal tolerances of subtidal eelgrass trigger an 

adaptive response for high shoot production. Alternatively, bays with warmer 

temperatures are often associated with oceanographic conditions that allow for better 

light penetration, particularly at shallow sites with limited water flow (Krumhansl et al., 

2021) — conditions similar to the sites observed on the west coast of the Saanich 

Peninsula. Light, rather than temperature, may therefore be the factor controlling shoot 

density at these sites.   

Overwater structures and maximum water velocity were two predictors that were 

also included in the top models tested. The effect of overwater structures was driven by 

a single site (E1), which is a meadow at the mouth of a bay that contains eight large 
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marinas (Figure C2). Although there were no overwater structures within 400 m of the 

sampling site to create a direct shading effect, it is possible that the high proportion of 

overwater structures is associated with additional activities like dredging and boating 

traffic, which could be affecting shoot density. These are activities that could reduce light 

by altering sediment accumulation or causing sediment resuspension (Erftemeijer & 

Robin Lewis III, 2006).  

For a given water temperature, the third-ranked model showed that high shoot 

densities were associated with higher water velocity. Shoot density was negatively 

correlated with water velocity across eelgrass meadows in Nova Scotia (Krumhansl et 

al., 2021); however, in our analysis water velocity was only an important predictor in 

combination with temperature. High water velocities can promote oxic conditions with 

improved gas diffusion at the leaf-water interface (Noisette et al., 2020) and can 

increase flushing rates to decrease eutrophic conditions (Lemley et al., 2015). Therefore, 

for a given temperature, higher water velocities may alleviate stressful conditions and 

increase shoot densities.  

Light is in important covariate that we were unable to include in our analysis. 

Light can be correlated with other variables we measured like depth, velocity, overwater 

structures, and temperature, as alluded to above. Shoot density typically decreases with 

depth, likely due to low light levels (Lee, Park, & Kim, 2007; McMahon et al., 2013; R. M. 

Thom et al., 2008), because eelgrass compensates by producing longer, wider blades 

and reducing shoot density to minimize shading. However, in our analysis, depth was 

not an important predictor of shoot density: most sites on the east coast were at similar 

depths as those on the west coast yet had much lower shoot densities. Interestingly, 

photosynthetically active radiation (PAR) was not a top predictor of various measures of 

eelgrass productivity in a large-scale analysis of Nova Scotia meadows (Krumhansl et 

al., 2021).  

Disease 

Water temperature is an important predictor of wasting disease prevalence and 

severity that has been particularly well documented along the Pacific coast of North 

America (Aoki et al., 2022; Groner et al., 2021; Graham et al., 2023). However, in our 

analysis, water velocity was identified instead as the best predictor of lesion prevalence 

across our sites. High water velocities can affect the microclimate around eelgrass 
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leaves and are associated with more favourable conditions by improving gas diffusion 

and reducing leaf tissue warming (Noisette et al., 2020). The high correlations between 

predictors and low sample size mean that it is difficult to tease out the causal links. 

Nevertheless, our results suggest that further consideration of water velocity in field 

studies of disease prevalence is warranted, particularly given the large effect size of 

water velocity relative to maximum annual temperature, time at low salinity, and depth.  

Disease prevalence is lower in subtidal than intertidal meadows, possibly driven 

by lower temperatures (Graham et al., 2023). In intertidal meadows, positive 

temperature anomalies are associated with higher disease prevalence and severity (Aoki 

et al., 2022; Groner et al., 2021) and higher-resolution metrics of disease severity, such 

as total lesion area and proportion lesion area, tend to show a stronger signal of 

predictors like temperature compared to site-level disease prevalence (Aoki et al., 2022; 

Graham et al., 2023). Consequently, subtidal meadows, with less short-term variability in 

environmental conditions and cooler temperatures, have the potential to be refuges from 

disease (Graham et al., 2023). We observed the opposite effect of maximum annual 

temperature in our analysis – lower prevalence of lesions at higher maximum 

temperatures. Given the importance of positive temperature anomalies for disease 

prevalence, we might have expected maximum daily temperature variability to predict 

lesion prevalence, but this was not the case. Our counter-intuitive results might be due 

to limited sample size, or because cumulative temperature anomalies cause a specific 

physiological stress that maximum temperature or maximum temperature variability do 

not. Other factors that were not considered here but are possibly important include the 

eelgrass microbiome and controlling factors, light limitation, hydrogen sulphide stress, 

and genetic variability (DuBois et al., 2022; Jakobsson-Thor et al., 2020; Sullivan et al., 

2013). 

Conflicting scales of effects of environmental conditions and human 
impacts 

At global and regional scales, human pressures, and hence their cumulative 

impacts, are associated with (or assumed to be linked to) declines in ecosystem 

condition (Turschwell et al., 2021; Williams et al., 2020). In contrast, recent analyses 

have shown that at small spatial scales, cumulative impact scores do not correlate with 

empirical measurements of seagrass ecosystem condition (e.g., Stockbridge et al., 

2021). We also found that the two human impacts that we examined (i.e., overwater 
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structures and riparian area modification) appeared to explain little variation in eelgrass 

meadow health compared to environmental conditions like temperature and water 

velocity. This is perhaps not surprising when we consider the magnitude of variation in 

environmental characteristics, human impacts, and eelgrass response observed at a fine 

scale. In the meadows we examined, the two metrics of meadow health varied 

substantially, with shoot densities varying 10-fold and lesion prevalence ranging from 0-

75%. Meanwhile, the range of environmental conditions across these meadows varied 

much more than did the human impact metrics. Our results therefore highlight a conflict 

of scales in the study of cumulative impacts. Fine-scale variation in environmental and 

response metrics suggests that variation from meadow to meadow may be overlooked in 

analyses at larger scales. Conversely, variation in human impacts and cumulative effects 

might be variable enough only at scales much larger than we should collect specific 

stressor data and ecosystem condition information. The result is a lack of causal link 

between large-scale cumulative impacts and ecosystem responses, which limits the 

applicability of large-scale cumulative impact scores as predictors of small-scale 

ecosystem condition (Stockbridge et al., 2021). 

Our results do not mean that human impacts have no effect on eelgrass 

meadows around the Saanich Peninsula. Water quality and light availability are two 

important drivers of eelgrass productivity and health that we could not include due to 

data limitations. Activities that pose the greatest threat to seagrass meadows include 

coastal development, dredging, and agriculture (Grech et al., 2012), all of which 

decrease water quality and clarity. Thus, human activity as a proxy for expected 

negative effects can be an important heuristic, particularly when data on environmental 

conditions are limited. For example, eelgrass meadows elsewhere in the Salish Sea 

have contracted in areal extent since 1930, a phenomenon that is associated with 

increasing coastal development and boating activity in and around these meadows 

(Nahirnick et al., 2019). Understanding of the drivers of fine-scale variation in eelgrass 

meadows will, however, require improvements in nearshore coastal environmental data 

collection to provide baselines against which change can be measured. 
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Chapter 5. General Discussion 

Eighteen years ago, I was blasting music from a little silver radio as I planted 

eelgrass in aquaria in my parents’ basement. Bright growlights glinted off the water and 

there I was, squealing whenever I peeled eelgrass blades apart to discover thin red 

worms that made a little nest between the blades. The project never panned out, but the 

original plan had been to cover one aquarium with green cellophane to mimic an algal 

bloom and compare eelgrass growth with an aquarium that had full light. The motivation 

for the project came from Nikki Wright, who took me on a tour of SṈIDȻEȽ (pronounced 

sngeet-kwith; Tod Inlet in English) and explained some of the local impacts (e.g., boats 

pumping and dumping in the low flow embayment, nutrient run-off from a nearby display 

garden). SṈIDȻEȽ was—is—a special place, and Nikki is part of a community working 

to restore the inlet and the eelgrass meadow that was once found there.  

I share this story because this thesis was a lot of synthesis; data points—

meadows—from around the world all plunked onto a single plot. Synthesis is powerful. It 

allows us to make decisions based on the data at hand and to make generalisations that 

help us predict how changing conditions could affect ecosystem responses into the 

future (Chapter 3). There is, however, a balancing act between global averages (Chapter 

2) and fine-scale variation (Chapter 4) that should be considered, particularly when 

global averages belie high variability. However, using empirical models to understand 

the effects of multiple stressors will improve our ability to reconcile these differences 

across scales and to be explicit about the conditions/context that can affect predicted 

outcomes. Identifying these general trends can allow us to take management actions 

when information is lacking, but also helps us identify knowledge gaps to prioritise future 

research and quantify uncertainty. 

A balancing act 

Global summaries can gloss over a lot of details, but they are an important 

starting point. They help us identify large-scale trends, likely driven by large-scale 

changing factors like increasing sea surface temperatures; inform high-level (e.g., 

international) policy and mandates, which support conservation and restoration actions 

even at the local scale; and help us to identify knowledge gaps. In writing Chapter 2, I 
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wrestled with how to present a global status update. Trends in seagrass meadow extent 

were highly variable across bioregions and were non-linear. How do you present the 

information, knowing that a single number can be taken out of context, especially when 

trends are variable over across regions and non-linear? Little to no change between two 

time points can miss changes while an average of little to no change can obscure high 

underlying variability (e.g., Dornelas et al., 2014).  

A key take-home value from Chapter 2 was that almost 20% of the world’s 

observed seagrass meadow area has been lost: a useful number for grabbing the 

attention of global policy makers and helping keep seagrasses on the map in terms of 

being an important ecosystem in need of protection. Additionally, using a bioregional 

breakdown helped to discuss more regional context and to focus on the context 

occurring in the background that could be driving trends. In a follow-up analysis based 

on the data I compiled, we showed that declining trajectories of meadow area are 

associated with bottom fishing and poor water quality. Importantly, using an empirical 

modelling approach to reconstruct seagrass meadow trends allowed us to make 

generalisations and determine where meadows might be at risk of decline across the 

globe, including places lacking long-term data (Turschwell et al., 2021). 

In the end, however, even using the bioregional models/summaries felt like the 

importance of local context was downplayed. Figure 2.3 in Chapter 2 (status of all 

meadows over time) is complex, possibly overly complex. But for me, it was important 

that the reader see an overview of the trends at every meadow. I wanted it to serve as a 

reminder that global trend be damned, what might be happening in your backyard could 

be completely different and, at the end of the day, that is what you will care about as a 

manager or community member.  

Every meadow is special, or is it? 

Although local context matters, because this is the scale at which management is 

often performed (e.g., a single meadow or network of meadows), there are two reasons 

why we should be careful to avoid thinking any given meadow is ‘too’ special. First, 

global pressures act on local sites but are not under the control of local managers. 

Furthermore, it is important to identify the effects of these global-scale pressures as they 

may overwhelm the effects of or interact with local stressors. Second, if each site is ‘too’ 
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special, we can fall into the trap of thinking that there is no common ground to make 

generalisations that will apply across sites. Waiting for more data is not a prudent 

strategy for habitats at high risk of loss/destruction. Chapter 3 highlights the value of 

leveraging the wealth of data that has been gathered at meadows throughout the range 

of eelgrass. Empirically based, predictive modelling approaches can help managers 

make decisions, even in data-limited situations.  

One of the most exciting things about Chapter 3 is the potential represented by 

the response surface; it focuses discussion and can help prioritise research that answers 

specific management questions. We can take this figure beyond a static image, and 

imagine an interactive tool that managers can use, where they either add their local 

meadow conditions, or slide a dial changing one of the stressors and watching how 

critical values change. Interactions are likely to be highly site-specific, being determined 

by the combination of specific pressures, their relative magnitudes, timing, dominance 

patterns, and are likely to vary even within a habitat (e.g., the deep edge of a meadow 

compared to the shallow edge of a meadow). Until I used a model to visualize the 

response surface (Figure 3.1), I could recount what individual studies found, but it was 

difficult to talk to local managers and colleagues about how I thought light and 

temperature changes might would specifically affect other meadows.  

Factors like local adaptation will mean that different meadows may have different 

critical threshold values (e.g., higher maximum temperature limits) but the general trend 

of shifting thresholds is likely robust. This means that it is a useful tool for managers 

when data are limited. For example, managers could avoid activities that limit light (e.g., 

dredging), in a poorly flushed embayment that experiences high temperatures. Although 

management decisions should not be delayed until we have perfect information, it is 

important to prioritise future data collection to inform adaptive management strategies. It 

can be challenging to identify appropriate management actions in an ecosystem that 

demonstrates highly variable responses to environmental conditions (e.g., Chapter 4). 

Initially, the high variability in meadow characteristics at a fine-scale, as seen in Chapter 

4, can seem insurmountable. When I was diving in those meadows, I couldn’t get over 

how a meadow just one bay over could seem so different. The response surface in 

Chapter 3 provides us with a framework/anchor to add data to, such as the data 

collected in Chapter 4.  
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Advancing multiple stressor research 

Given the ubiquity of non-linear ecosystem responses (Hunsicker et al., 2016) 

and prevalence of pressure interactions (Côté et al., 2016; Crain et al., 2008), shifting 

thresholds are likely to occur and have implications for management targets across 

many populations and ecosystems. Meanwhile, there is a growing awareness of the 

importance of considering harvest thresholds as climate change increases 

environmental stochasticity and warms habitats (Cameron et al., 2016; Gamelon et al., 

2019; Shelton & Mangel, 2011; Souther & McGraw, 2014). Therefore, it will be important 

to address questions like: How do threshold shifts vary based on the nature of the 

pressures? Can we predict where and when shifts will be more extreme? How do we link 

expectations across scales of biological organization? 

When a stressor isn’t stressful 

Attempts to identify patterns in the multiple stressor literature have not yielded 

any clear pattern in when and why we observe different interaction types between 

stressors (Côté et al., 2016; Crain et al., 2008; Przeslawski et al., 2015; Stockbridge et 

al., 2020). However, the approach used so far, has been a vote-counting style of 

interaction type which limits the inferences that can be made from comparing these 

studies. For example, many studies (physiological up to community levels) compare the 

difference in effect of a driver or stressor between ambient conditions that are currently 

observed in the field, with either ‘high’ or ‘low’ treatments (e.g., Breitburg et al., 1999; 

Lange & Marshall, 2017; Strain et al., 2014). Similarly, researchers may choose to use 

stressor levels that are predicted to occur with increasing human impacts. For example, 

researchers may design an experiment using a 2-3 ˚C warming scenario with 0.5 unit 

reduction in pH as these values are projected by the Intergovernmental Panel on 

Climate Change (Kroeker et al., 2013; Pachauri et al., 2015). This is a useful strategy to 

limit the range of stressors that is tractable for an experiment. But when we compare 

interaction types across studies in a vote-counting style are we lose important context 

about the levels of other ‘stressors’. 

As seen in Chapter 3, ‘stressful’ conditions (i.e., conditions under which fitness of 

an organism declines) are dependent on current conditions of other ‘stressors’. I initially 

wrote Chapter 3 with the word ‘pressure’ in place of ‘stressor’ because I was hesitant 

that the word stressor implied something that caused stress. Ultimately, I think that 
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research that hopes to management, ‘pressure’ or ‘driver’ is more apt (i.e., following a 

Driver-Pressure-State-Impact-Response, (DPSIR) or Driver-Activities-Pressure-State-

Impact-Response- DAPSI(W)R(M) framework; Elliott et al., 2017), but I kept ‘stressor’ to 

be consistent with the current literature. Moving forward, we should shift the focus of 

multiple stressor syntheses from categorising stressor interaction types and instead 

aspire to create driver-response curves. This will improve our predictive capacity and will 

be important for managing across a landscape that is likely to experience a gradient of 

drivers/stressors.   

The trouble with attribution 

Attributing drivers of change is challenging but is an important step to guiding 

management actions to avoid undesirable ecological states/impacts. Without a doubt, 

coastal development and poor water clarity are important factors that cause declines in 

seagrasses around the world (Chapter 2). Yet, only 10% of studies rigorously attribute 

pressures to observed changes in seagrass meadow area, whereas most attributions 

were descriptive (Chapter 2). Importantly, there is a suite of additional pressures such as 

storms, damage from boating propellors, grubbing, trawling, changing climate, and 

aquaculture that affect seagrasses. These often co-occur meaning we don’t always 

know how much is from a single pressure rather than the combination of many. 

Furthermore, blanket barring of ‘coastal development’ is not a realistic management 

strategy in most cases. Instead, by improving attributions of pressures to undesirable 

ecological states/impacts, we are more likely to be able to define and advocate for 

specific actions (e.g., ensuring that riparian areas are maintained, using sediment traps 

to reduce run-off from development). 

This does not preclude action before activities or pressures have been attributed 

to changes in ecosystem responses. For example, we know that more specifically, 

activities and pressures associated with coastal development, such as dredging and 

sedimentation, are threats to seagrass (Chapter 2). If a meadow is in a low flushed 

embayment and already experiences high summer temperatures, proactive 

management actions, based on current knowledge, would suggest reducing activities 

like dredging and boat mooring, and restoring riparian areas to maintain or improve 

water clarity (Chapter 3). However, for a given site, observations may deviate from 

modelled predictions (e.g., Chapter 3) or follow-up monitoring may identify other factors 
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affecting meadows more than any of the human activities considered (e.g., Chapter 4). 

Such results would then allow management actions to be revised.  

Concluding thoughts 

The pace at which ecosystems around the world are threatened and changing is 

overwhelming. Management of even local-scale threats is challenging, let alone with 

global threats like climate change. But I am hopeful. I spent a lot of time asking 

questions and listening to anyone who was willing to share. There is a lot of passion and 

will towards protecting our coastal ecosystems, especially in the Salish Sea. There is 

also a desire to share our knowledge and stories. To me, synthesis is a celebration of 

local-scale research—an anthology of what is happening in meadows around the world 

(in the sea or on land!). I hope that in this thesis I have shown that despite the 

complexity of ecosystem management, there are generalisable patterns in how multiple 

pressures/stressors affect ecosystem responses that can guide interventions. I look 

forward to seeing the development of more tools that will help us translate small-scale 

experimental studies on multiple pressures up to the natural response of species and 

communities at the scale of landscapes.  
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Appendix A.   
 
Supporting Information for Chapter 2 

Supplementary Tables and Figures 

Table A1.  Frequency of time-series with short, moderate, and long time-series. 
The proportion of total time-series and studies (%) is show next to 
the count in parentheses. 

Duration  
(years) 

Number of time-series 
(proportion %) 

Number of studies 
(proportion %) 

 10 157 (29) 60 (30) 

10 - 40 271 (50) 89 (44) 
> 40 119 (22) 51 (26) 

 

 

Table A2.  Distribution of a priori expectations of studies, as indicated by 
authors, across bioregions. Categories of ‘none’, ‘decrease’, 
‘increase’, and ‘other’ were made from author statements in the 
introduction of studies. The category ‘other’ captured U-shaped 
trajectories of declines then recovery. 

Bioregion 
A priori category 

None Decrease Increase Other 

Temperate North Pacific 10 4 1 1 
Temperate North Atlantic West 9 7 2 0 
Temperate North Atlantic East 20 9 3 1 
Tropical Atlantic 15 9 5 2 
Mediterranean 15 4 1 0 
Tropical Indo-Pacific 17 9 1 0 
Temperate Southern Oceans 24 9 0 1 

All regions 110 51 13 5 
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Table A3.  Examples of the types of activities and environmental states 
assigned to the driver categories used in Figure 2.5. 

Driver Examples 

Aquaculture Oyster farming, fish farming 
Boating Mooring, propellor scarring 

Climate 
Precipitation, temperature, drought, warming, above average wet seasons, El 
Niño, ice cover 

Coastal development 
Land appropriation, shoreline armouring, coastline construction, land use 
change (e.g., logging, agriculture), dredging, port construction, urbanisation 

Disease Wasting disease (e.g., Labyrinthula zosterae) 
Fishing Bait grubbing, bivalve trawling, recreational bivalve harvesting 

Hydrology 
Coastal erosion, flood, sea level, sediment deposition patterns (e.g., sand 
banks), water velocity 

Invasive species Syringodium isoetifolium (seagrass) 

Management/restoration 
Removal of dikes/coastal armouring, storm water run off regulations, 
relocation of wastewater outfalls 

Pollution Herbicides, oil spills, land based pollution (non-nutrient) 
Storms Hurricanes/typhoons, flooding, storm swell, wind velocity 

Water quality 
Algae blooms, chlorophyll, depth, nutrients (nitrogen, phosphorous), oxygen, 
ocean acidification, salinity, sedimentation, turbidity, water quality metrics 

 

 

 

Figure A1.  PRISMA flow diagram documenting the study selection criteria and 
process. 
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Figure A2.  Distribution of study durations. Study durations ranged from one to 
128 years. 
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Figure A3.  Global size distribution of net losses (red, left) and net gains (blue, 
right). Net change in meadow extent (y-axis) is log10-scaled and 
number of meadows is on the x-axis. Each point represents the net 
change in a meadow over its entire time series (areafinal – areainitial). 
To demonstrate the difference in magnitude of net change between 
small and large extents, point size corresponds to net change in 
area in a near-linear fashion. 
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Figure A4.  Bioregional trends in seagrass areal extent over time, estimated 
using bioregion specific generalised additive models. The shaded 
areas represent 95% confidence intervals of the GAM fits. The same 
data are presented as in Figure 2 but axes are fixed across 
bioregions to highlight differences in magnitude of trends in 
seagrass areal extent and the length of time-series. Mean proportion 
of change is scaled to the initial values estimated for each bioregion 
and on a log10 scale, such that a change from 1 to 0.1 equals a 10-
fold decrease in seagrass area over time. 
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Figure A5.  Total area of seagrass surveyed over time. Total area surveyed in 
each decade was calculated using the observed maximum areal 
extent for all sites sampled in a given decade. 
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Figure A6.  Size distribution of net losses (red, left) and net gains (blue, right) 
across bioregions. Net change in meadow area (y-axis) is log10-
scaled and number of meadows is on the x-axis. Each point 
represents the net change in a meadow over its entire time series 
(areafinal – areainitial). To demonstrate the difference in magnitude of 
net change between small and large areas, point size corresponds 
to net change in area in a near-linear fashion. 
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Figure A7.  Status of all seagrass meadows in all decades. Each point 
represents one seagrass meadow in a decade and point size 
represents the maximum area ever observed for that meadow. The 
x-axis indicates the size of a meadow at the beginning of a decade 
(e.g., 1990), as estimated using the bioregional GAMs, relative to the 
maximum area ever observed at that meadow. The y-axis is the 
instantaneous annual rate of change (%) in meadow area during a 
decade. This axis has been transformed using the signed pseudo 
logarithm (sigma = 0.5, base = 10) to improve visualisation of the 
high number of meadows with rates of change less than 10%. As 
values increase above 10, this axis approximates a log10 scale. 
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Figure A8.  Comparison of the relationship between the absolute annual rate of 
change (%) and fraction of maximum ever observed area between 
meadows that experienced losses and those that experienced gains. 
Each point represents one seagrass meadow in a decade and point 
size represents. 
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Figure A9.  Status of seagrass meadows split into four size bins of maximum 
observed meadow size (< 10 ha, 10 – 100 ha, 100 – 1000 ha, > 1000 
ha). Each dot represents one seagrass meadow, with size 
representing the maximum areal extent observed at that meadow 
over its entire time series and colour indicating the bioregion. The x-
axis indicates the size of a meadow in a decade, as estimated using 
the bioregional GAMs, relative to the maximum size ever observed 
in the time series of that meadow. Rate of change (%) in meadow 
areal extent, shown on the y-axis, has been transformed using the 
signed pseudo logarithm (sigma = 0.5, base = 10) 
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Figure A10.  Relationship between coefficient of variation of each meadow extent 
time-series and the maximum observed meadow size. The 
coefficient of variation was calculated for each meadow as the 
standard deviation of observed meadow sizes divided by the mean 
observed meadow size. 
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Figure A11.  Frequency of the consideration of potential drivers of change in 
seagrass meadow area and attribution method used in these 
considerations. Examples of specific drivers considered in each 
driver category are detailed in Table A3. 
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Figure A12.  Management actions. After management or restoration actions (grey 
lines), most sites experienced an increase in areal extent over time. 
Management and restoration actions are described in Table A4. 
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Table A4.  Management and restoration actions taken in Figure A12. 

Study id Location Site name Event Year 

11* 
Tampa Bay, 
Florida, USA 

Tampa Bay 
Advanced wastewater treatment 
begins 

1980 

11* 
Tampa Bay, 
Florida, USA 

Tampa Bay Stormwater regulations enacted 1985 

11* 
Tampa Bay, 
Florida, USA 

Tampa Bay El Nino heavy rains 1994 

11* 
Tampa Bay, 
Florida, USA 

Tampa Bay 
Advanced wastewater treatment 
begins 

1996 

11* 
Tampa Bay, 
Florida, USA 

Tampa Bay Extreme El Nino event 1997 

11* 
Tampa Bay, 
Florida, USA 

Tampa Bay Air emissions reduced 2003 

11* 
Tampa Bay, 
Florida, USA 

Tampa Bay 
Residential fertilizer restrictions 
enacted 

2010 

207 
Gloucester Harbor, 
Massachusetts, USA 

Gloucester Harbor Outfall relocation 2000 

207 
Boston Harbor, 
Massachusetts, USA 

Boston Harbor Sewage sludge sent to landfills 1991 

207 
Boston Harbor, 
Massachusetts, USA 

Boston Harbor Wastewater upgrades begin 1991 

207 
Boston Harbor, 
Massachusetts, USA 

Boston Harbor Wastewater outfall relocated offshore 2000 

218 
Mumford Cove, 
Connecticut, USA 

Mumford Cove Waste water treatment facility 1945 

218 
Mumford Cove, 
Connecticut, USA 

Mumford Cove 
Waste water treatment outfall 
diverted 

1987 

242 
Virginia Coastal Bays, 
Virginia, USA 

Virginia Coastal 
Bays 

Seeding 2001 

242 
Virginia Coastal Bays, 
Virginia, USA 

Virginia Coastal 
Bays 

Seeding 2007 

W1 
Virginia Coastal Bays, 
Virginia, USA 

Southern Delmarva 
Coastal Bays 

Seeding 2001 

142 
Elkhorn Slough, 
California, USA 

Elkhorn Slough Sea otter recolonisation 1984 

W8 
Hillsborough Bay, 
Florida, USA 

Hillsborough Bay - 
test plantings 

Shoot plantings 1987 

41 
Point-aux-Pins, 
Alabama, USA 

Pairs 1 & 2 Oyster reef construction 2009 

41 
Point-aux-Pins, 
Alabama, USA 

Pairs 3 & 4 Oyster reef construction 2009 

14 
Nisqually River Delta, 
Washington 

Nisqually River Delta Dikes removed 2009 

*Event data from study 87. 
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Figure A13.  Status of seagrass meadows over time and across bioregions 
comparing the sites found in this study (green) and sites first 
included in Waycott et al. (2009; orange). Each point represents the 
status of one seagrass meadow in a given decade, while and point 
size represents the maximum area ever observed for that meadow. 
Meadows that have experienced more severe losses will be farther 
on the left of a panel; meadows near their maximum size will be on 
the right (near vertical line, x = 1); and stable/slowly changing 
meadows are near the horizontal line, y = 0. The x-axis indicates the 
size of a meadow at the beginning of a decade (e.g., 1990), as 
estimated using the bioregional GAMs, relative to the maximum area 
ever observed at that meadow. The y-axis is the instantaneous 
annual rate of change (%) in meadow area during a decade. Note 
that the y-axis varies in range across the bioregions and has been 
transformed using the signed pseudo logarithm (sigma = 0.5, base = 
10) to improve visualisation of the high number of meadows with 
rates of change less than 10%. As values increase above 10, this 
axis approximates a log10 scale. 

 

Sensitivity Analysis 

To perform a sensitivity analysis and test the effect of decades with fewer than five 

meadows, we re-fit the GAMs for datasets beginning in decades with the number of 

meadows >= 5. Three bioregions show notable differences (Figure A14: Temperate 

North Pacific, Temperate North Atlantic East, and Tropical Indo-Pacific). However, these 

despite these differences the complete dataset is generally a better representative of 

trends and minimizes the effect of shifting baselines.  

(1) The rapid loss in the Temperate North Pacific is no longer present. 
This is unsurprising as this was driven by one study. The trend from 
1980 onward is essentially unchanged and matches what has recently 
been observed in the TNP (e.g., Shelton et al., 2017). The influence of 
only a few meadows surveyed pre-1980 is however already 
addressed in the discussion.  

(2) The Temperate North Atlantic East now shows an increasing trend in 
recent decades. However, this reflects a shifted baseline and the 
overall trend is quite similar to when early time-series were included. 
When early studies are omitted, the reconstruction gives the 
appearance of meadow expansions (e.g., potentially range 
expansions) in the TNAE, but given the well-documented history of 
wasting disease causing catastrophic losses, it is most likely that 
meadows are continuing to recover from large, historical losses. 
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(3) Rapid increases were observed in the Tropical Indo-Pacific. When the 
early studies are omitted, the initial trend shows a rapid increase. 
However, this is the result of rapid gains in a set of small meadows 
(Figure A15. Cuvillier et al. 2017). These meadows were all less than 
one hectare at their maximum size. The raw data (Figure A16) 
indicate that the GAM reconstructions capture the overall trend in the 
Tropical Indo-Pacific bioregion. 
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Figure A14.  Bioregional trends in seagrass meadow area over time, estimated 
using bioregion-specific generalised additive models when decades 
with fewer than five meadows were excluded. Mean meadow area is 
expressed as a proportion of the meadow area observed in the initial 
surveys, averaged across sites for each bioregion, and on a log10 
scale, such that a change from 1 to 0.1 equals a 10-fold decrease in 
seagrass area over time. The shaded areas represent 95% 
confidence intervals of the GAM fits. Note that the y-axis varies 
across bioregions. The number of meadows sampled in each 
decade are shown in grey at the bottom of each panel. The 
bioregional trend in the Mediterranean does not include 16 sites that 
contained only two sampled time points. 
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Figure A15.  Meadow time-series from a subset of studies in the Tropical Indo-
Pacific, to identify the meadows driving the rapidly increasing trend 
observed in the sensitivity analysis that used decades containing at 
least 5 meadows and generalized additive models to model trends in 
seagrass area over time for the Tropical Indo-Pacific (Figure A1). 
Point and line colours indicate different studies. Some lines are 
omitted because only samples taken in 1980 or prior are shown 
here.  
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Figure A16.  Meadow time-series from all studies in the Tropical Indo-Pacific. 
Line colours indicate different studies.  
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Appendix B.    
 
Supporting Information for Chapter 3 

Supplementary Tables and Figures 

 

  

Figure B1.  Example of the ways in which data were extracted when (a) shoot 
density time-series were provided, (b) a single value of the 
predictors (temperature and/or light) was provided over the duration 
of all response measurements, and (c) raw data time-series were 
provided for predictors. The data were then summarised over the 
time-scale corresponding to the duration over which responses 
were measured. In all cases rates of per-capita shoot production 
were standardised to per day. 

 

 

 



123 

 

Figure B2.  Predicted fits of population growth rate by eelgrass, r (day-1), in 
relation to light at different temperatures, shown (in ˚C) above each 
panel. The vertical dashed lines denote the daily light integral, 
DLIr=rmax, at which population growth is maximal for a given 
temperature. The narrow temperature bins between 25 and 30˚C 
highlight the temperatures over which DLIr=rmax increases rapidly. 
The shaded areas are 95% simultaneous confidence intervals from 
model fits. Colours corresponds to temperature bins. 
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Figure B3.  Predicted fits of population growth rate by eelgrass, r (day-1), in 
relation to temperature at different light levels, shown (in mol m-2 
day-1) above each panel. The vertical dashed lines denote the 
temperature, Tr=rmax, at which population growth is maximal for a 
given light level. The narrow light bins between 10 and 15 mol m-2 
day-1 highlight the light bins over which Tr=rmax increases rapidly. The 
shaded areas are 95% simultaneous confidence intervals from 
model fits. Colours corresponds to light level bins. 
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Table B1. Data sources from which data were extracted for the analysis. IDs 
correspond with IDs used in the supplemental code and data 
associated with this manuscript. 

ID Source 

15 Moreno-Marín, F., Brun, F. G., & Pedersen, M. F. (2018). Additive response to multiple 
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1528–1544. https://doi.org/10.1002/lno.10789 

24 Eriander, L. (2017). Light requirements for successful restoration of eelgrass (Zostera marina L.) in 
a high latitude environment – Acclimatization, growth and carbohydrate storage. Journal of 
Experimental Marine Biology and Ecology, 496, 37–48. https://doi.org/10.1016/j.jembe.2017.07.010 

47 Castorani, M. C. N., Glud, R. N., Hasler-Sheetal, H., & Holmer, M. (2015). Light indirectly mediates 
bivalve habitat modification and impacts on seagrass. Journal of Experimental Marine Biology and 
Ecology, 472, 41–53. https://doi.org/10.1016/j.jembe.2015.07.001 

57 Kim, Y. K., Kim, S. H., & Lee, K.-S. (2015). Seasonal growth responses of the seagrass Zostera 
marina under severely diminished light conditions. Estuaries and Coasts, 38(2), 558–568. 
https://doi.org/10.1007/s12237-014-9833-2 

78 Villazán, B., Pedersen, M., Brun, F., & Vergara, J. (2013). Elevated ammonium concentrations and 
low light form a dangerous synergy for eelgrass Zostera marina. Marine Ecology Progress Series, 
493, 141–154. https://doi.org/10.3354/meps10517 

97 Höffle, H., Thomsen, M. S., & Holmer, M. (2011). High mortality of Zostera marina under high 
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Estuarine, Coastal and Shelf Science, 92(1), 35–46. https://doi.org/10.1016/j.ecss.2010.12.017 

103 Martínez-Lüscher, J., & Holmer, M. (2010). Potential effects of the invasive species Gracilaria 
vermiculophylla on Zostera marina metabolism and survival. Marine Environmental Research, 
69(5), 345–349. https://doi.org/10.1016/j.marenvres.2009.12.009 

107 Ochieng, C. A., Short, F. T., & Walker, D. I. (2010). Photosynthetic and morphological responses of 
eelgrass (Zostera marina L.) to a gradient of light conditions. Journal of Experimental Marine 
Biology and Ecology, 382(2), 117–124. https://doi.org/10.1016/j.jembe.2009.11.007 

116 Biber, P. D., Kenworthy, W. J., & Paerl, H. W. (2009). Experimental analysis of the response and 
recovery of Zostera marina (L.) and Halodule wrightii (Ascher.) to repeated light-limitation stress. 
Journal of Experimental Marine Biology and Ecology, 369(2), 110–117. 
https://doi.org/10.1016/j.jembe.2008.10.031 

123 Vinther, H. F., & Holmer, M. (2008). Experimental test of biodeposition and ammonium excretion 
from blue mussels (Mytilus edulis) on eelgrass (Zostera marina) performance. Journal of 
Experimental Marine Biology and Ecology, 364(2), 72–79. https://doi.org/10.1016/j.jembe.2008.07.003 

127 Nejrup, L. B., & Pedersen, M. F. (2008). Effects of salinity and water temperature on the ecological 
performance of Zostera marina. Aquatic Botany, 88(3), 239–246. https://doi.org/10.1016/j.aquabot.2007.10.006 

152 Lee, K.-S., Park, S. R., & Kim, J.-B. (2005). Production dynamics of the eelgrass, Zostera marina 
in two bay systems on the south coast of the Korean peninsula. Marine Biology, 147(5), 1091–
1108. https://doi.org/10.1007/s00227-005-0011-8 

186 Worm, B., & Reusch, T. B. H. (2000). Do nutrient availability and plant density limit seagrass 
colonization in the Baltic Sea? Marine Ecology Progress Series, 200, 159–166. 
https://doi.org/10.3354/meps200159 

192 Kamermans, P., Hemminga, M. A., & de Jong, D. J. (1999). Significance of salinity and silicon 
levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, 
The Netherlands). Marine Biology, 133(3), 527–539. https://doi.org/10.1007/s002270050493 

205 Katwijk, M. M. van, Vergeer, L. H. T., Schmitz, G. H. W., & Roelofs, J. G. M. (1997). Ammonium 
toxicity in eelgrass Zostera marina. Marine Ecology Progress Series, 157, 159–173. 
https://doi.org/10.3354/meps157159 

https://doi.org/10.1002/lno.10789
https://doi.org/10.1016/j.jembe.2017.07.010
https://doi.org/10.1016/j.jembe.2015.07.001
https://doi.org/10.1007/s12237-014-9833-2
https://doi.org/10.3354/meps10517
https://doi.org/10.1016/j.ecss.2010.12.017
https://doi.org/10.1016/j.marenvres.2009.12.009
https://doi.org/10.1016/j.jembe.2009.11.007
https://doi.org/10.1016/j.jembe.2008.10.031
https://doi.org/10.1016/j.jembe.2008.07.003
https://doi.org/10.1016/j.aquabot.2007.10.006
https://doi.org/10.1007/s00227-005-0011-8
https://doi.org/10.3354/meps200159
https://doi.org/10.1007/s002270050493
https://doi.org/10.3354/meps157159


126 
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https://doi.org/10.1007/BF00317683 

310 Kaldy, J. E., Brown, C. A., Nelson, W. G., & Frazier, M. (2017). Macrophyte community response 
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Supporting Information for Chapter 4 

Supplementary Tables and Figures 

 

Figure C1. Relative exposure index calculated for 11 eelgrass meadow sites 
around the Saanich Peninsula. Sites E3 and E4 have been jittered to 
improve visualisation. Lines indicate the unobstructed overwater 
distance calculated using ‘windfetch’ (Seers 2022) and point size 
indicates the relative exposure index (Table 4.1). 
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Figure C2.  Mosaic of Google Earth sites with 1 km buffer circle around each 
eelgrass meadow site (small inner circle).  
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Figure C3.  Spatial variation in mean coliform counts (cells per 100 mL) across 
11 eelgrass meadow sites around the Saanich Peninsula; grey 
points indicate no data. Mean values were calculated using 
Canadian Shellfish Sanitation Program data averaged from 2009 – 
2019 at the nearest station within 1 km of the sampling sites.  

 

 

 

Figure C4.  Example of lesions found on a shoot from site W3.  
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Figure C5.  Comparison of the (a) temperature and (b) salinity time-series of all 
sites combined along each aspect of the Saanich Peninsula. Data for 
lines in orange and purple were taken extracted from the 
SalishSeaCast model (Soontiens et al. 2016, Soontiens and Allen 
2016) from 1 January to 31 December 2019. The grey data shown in 
(a) is the hourly air temperature measured at Victoria International 
Airport, extracted from the Environment and Climate Change 
Canada historical climate data (ECCC 2011). Smooth lines show the 
mean trend, as calculated using a generalised additive model 
smoother. The black horizontal line in (b) shows the 25 PSU 
threshold used as the cut-off for the ‘time at low salinity’ used in the 
analysis of environmental predictors.  

 



131 

 

Figure C6.  Schematic of plot depths (brown lines) and position of eelgrass 
canopy in the water (green bars) standardized to MLLW = 0 (blue 
lines).  

 

 

Figure C7.  Spatial variation in eelgrass response metrics across 11 meadows 
around the Saanich Peninsula. Sites E3 and E4 have been jittered to 
improve visualisation. Note the logarithmic colour scale for shoot 
density. 
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Figure C8.  Relationship between shoot density (m-2) and maximum annual 
temperature (˚C), predicted by the top three models in the AICc 
analysis (Table 2). The fitted model lines and 95% confidence 
intervals are shown for (a) the relationship between shoot density 
and maximum temperature, (b) the same relationship for the 
minimum (dark blue) and maximum (light blue) proportion of 
structures overwater observed in the dataset, and (c) the same 
relationship for the minimum (dark blue) and maximum (light blue) 
maximum water velocity observed in the dataset. Points are the 
shoot densities observed at each of 11 sites (see Figure C7). 
Colours of the points in (b) indicate the proportion of structures 
overwater at each site or (c) maximum velocity (see Figure 4.2). Note 
the log scale of the y-axis. 
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Figure C9.   Relationship between lesion prevalence (%) and maximum water 
velocity (ms-1), predicted by the top 1, 2, and 4 models in the AICc 
analysis (Table 4.2). The fitted model lines and 95% confidence 
intervals are shown for the relationship between lesion prevalence 
and maximum water velocity at the (a) minimum (small, dark blue) 
and maximum (large, light blue) time at low salinity observed in the 
dataset, (b) minimum (small, yellow) and maximum (large, purple) 
maximum annual temperature (˚C) observed in the dataset, and (c) 
minimum (small, dark blue) and maximum (large, light blue) depth 
observed in the dataset. Points are the lesion prevalence (%) 
observed at each of 10 sites (see Figure C7). 

 

Table C1. Candidate models evaluated in the AICc analysis.  

ID            Model 

1   ~ Intercept 
2   ~ Max temp 
3   ~ (Salinity < 25) 
4   ~ Daily temp var 
5   ~ Max velocity 
6   ~ REI 
7   ~ Overwater structures 
8   ~ Riparian mod 
9   ~ Depth 

10   ~ Daily temp var + Max temp 
11   ~ Max velocity + Max temp 
12   ~ REI + Max temp 
13   ~ Overwater structures + Max temp 
14   ~ Riparian mod + Max temp 
15   ~ Depth + Max temp 
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ID            Model 
16   ~ Daily temp var + (Salinity < 25) 
17   ~ Max velocity + (Salinity < 25) 
18   ~ REI + (Salinity < 25) 
19   ~ Overwater structures + (Salinity < 25) 
20   ~ Riparian mod + (Salinity < 25) 
21   ~ Depth + (Salinity < 25) 
22   ~ Max velocity + Daily temp var 
23   ~ REI + Daily temp var 
24   ~ Overwater structures + Daily temp var 
25   ~ Riparian mod + Daily temp var 
26   ~ Depth + Daily temp var 
27   ~ REI + Max velocity 
28   ~ Overwater structures + Max velocity 
29   ~ Riparian mod + Max velocity 
30   ~ Depth + Max velocity 
31   ~ Riparian mod + Overwater structures 
32   ~ Depth + Overwater structures 
33   ~ Depth + Riparian mod 
34   ~ PC1 
35   ~ PC2 
36   ~ PC1 + PC2 

 

 

 

 

 

 

 


