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Abstract

Motivation: Drug resistance is becoming an increasingly serious risk to human health
around the world. Using techniques that predict drug resistance across different bacterial
species that utilize whole-genome sequencing (WGS) data, doctors may administer the ap-
propriate antibiotics to each patient, reducing the chance of drug resistance. Currently
available machine learning techniques for this purpose transform whole genome sequence
(WGS) data from a specific bacterial isolate into features corresponding to single-nucleotide
polymorphisms (SNPs) or short sequence segments of a defined length K (K-mers). We
present a novel technique for predicting drug resistance in multiple bacterial species based
on gene burden. Our multi-input multi-output network predicts resistance of multiple species
to multiple antibiotic drugs.
Results: On a large dataset of isolates from six species, we find that using these strategies
yields a statistically significant improvement over state-of-the-art methods, and that this
improvement is driven by our method’s ability to account for the order of the genes in the
genome and jointly training on multiple bacterial species.

Keywords: infectious disease, deep learning, antimicrobial resistance, tuberculosis, next-
generation sequencing
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Chapter 1

Multi-task learning without shared
features improves prediction of
drug resistance in pathogenic
bacteria

1.1 Importance of drug resistance

Antibiotics are one of the mainstays of modern medicine. The phenomenon of drug resis-
tance occurs when an infectious organism (also known as a pathogen) develops a mechanism
to bypass the action of one or more medications commonly used for treatment [26]. Fur-
thermore, the transfer of resistance genes between humans and non-human animals may
have exacerbated the situation [27]. As a result, antibiotic resistance has become a global
public health issue, as it can lead to increased disease burden, morbidity, and mortality [11,
13]. This issue has grown in importance given the fact that the rate of generating novel
antibiotic medications has dramatically slowed down over the past four decades [30]. Many
antibiotics lose their treatment effectiveness against organisms that have developed antibi-
otic resistance, necessitating the use of third-line medications that are frequently used as
a last resort. Drug resistance continues to be a barrier to providing targeted and appro-
priate treatment. For instance, despite the global scope of the problem, due to a lack of
laboratory-based resources, only about half of the countries with a high burden of multi-drug
resistant tuberculosis (MDR-TB) have the advantage of innovative diagnostic capabilities
[36]. Tuberculosis (TB), which is caused by the bacteria Mycobacterium tuberculosis, is still
a serious global public health issue, with over 10.0 million people affected and a projected
1.6 million fatalities in 2017. Drug resistance is becoming more common, posing a severe
threat to efficient TB control. Rifampicin (RIF), isoniazid (INH), ethambutol (EMB), and
pyrazinamide (PZA) are the four medications used in first-line anti-TB therapy (World
Health Organization, 2017). Multidrug-resistant tuberculosis (MDR-TB) bacteria are re-
sistant to at least RIF and INH, and there were more than 550,000 new resistant cases in
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2017. Extensive drug resistance (XDR-TB) is defined as resistance to second-line medicines,
such as fluoroquinolones [ciprofloxacin (CIP), ofloxacin (OFL), or moxifloxacin (MOX), as
well as injectables (INJ) amikacin (AMK), kanamycin (KAN), and capreomycin (CAP)]
and injectables (INJ) amikacin (AMK). Traditional TB treatment regimens are lengthy
(>6 months) and involve the use of multiple medications at the same time. Drug-resistant
tuberculosis requires even longer time and medications with severe side effects and reduced
efficacy. Machine learning (ML) methods, try to predict drug resistance by employing mod-
els learned directly on coupled WGS and drug susceptibility testing (DST) data [37, 18, 8,
7]. Machine learning (ML) is the process of machines learning without being explicitly pro-
grammed. It focuses on making data-driven predictions and has a variety of bioinformatics
applications.

Bioinformatics is the study of how to handle biological data using computational and
mathematical methods. In recent years, biological data has risen at an exponential rate,
resulting in two concerns. Two main concerns are gathering efficient amount of data and
also how much meaningful knowledge we can extract from the dataset. The second problem
may be overcome using machine learning, which can produce knowledge from heteroge-
neous data. Deep learning, a machine learning technology, is used to enable feature learning
automatically. By merging various features from the dataset, a new collection of features
is created. Algorithms can now make complicated predictions on vast datasets using this
method. Microarrays, evolution, systems biology, genomics, text mining, and proteomics
are just a few of the bioinformatics subfields where machine learning is now being used.

1.2 A large number of approaches have been developed for
predicting antibiotic drug resistance

A number of approaches have been developed for predicting antibiotic drug resistance. The
most widely-used methods are rule-based methods, rule based machine learning methods are
any algorithm which try to identify and learn the "rules" in data. The defining characteristic
of a rule-based machine learner is the identification and utilization of a set of relational rules
that collectively represent the knowledge captured by the system. This is in contrast to other
machine learners that commonly identify a singular model that can be universally applied
to any instance in order to make a prediction. [3, 25, 20].

However, rule-based methods have several drawbacks. First, their sensitivity is restricted
since they use only a few genetic loci every test, ranging from 1-6 loci per test [33, 21]. They
also lack the ability to detect the majority of rare gene variants in the targeted locus, such
as promoter variants, deletions, and insertions[9]. They usually rely just on presents or
absence of variants and fail to uncover interactions between genome variants [10, 23]. These
tests’ limitations highlight the need for more comprehensive drug resistance prediction and
testing.
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1.3 Background on Machine learning and Deep learning

The group of computer algorithms that can be improved by learning patterns of data is
known as machine learning (ML); it is also known as artificial intelligence. Machine learning
algorithms try to construct a model using training data to achieve predictions. Machine
learning algorithms have variety of applications, such as automatic driving, face recognition,
drug resistance prediction in which applications, traditional computer algorithms will not
work. One of the related field of studies is data mining which tries to explore the data.
Deep learning is a kind of machine learning technology that learns patterns in data using
artificial neural networks. Three forms of learning are supervised, unsupervised and semi-
supervised learning. Deep learning architectures, such as deep belief networks, deep neural
networks, deep reinforcement learning, recurrent neural networks (RNN), and convolutional
network are various type of deep learning algorithms which can be used in various types of
applications such as image recognition, computer vision, and etc.

1.4 Machine learning-based methods can learn more accu-
rate rules with complicated interactions between varia-
tions.

The wide-n-deep neural network (WnD) [3], and DeepAMR [37], are examples of contempo-
rary state-of-the-art models. WnD project uses 3,601 strains of Mycobacterium Tuberculosis
(TB) and deep neural network architecture to predict phenotypic drug resistance to 10 anti-
TB drugs. DeepAMR [37] also used 8388 TB isolates from 16 countries on six continents to
develop an end-to-end multi-task model with deep denoising auto-encoder (DeepAMR) for
multiple drug classification. Moreover they used conventional ML models such as Support
vector machine (SVM) [37, 24], Logistic Regression (LR) [3, 17], Random forest (RF) [29,
3] in their works as base-line models. Machine learning methods have been used in the past
to help in digital X-ray analysis, drug development, and assessing anti-TB characteristics of
substances in the context of tuberculosis. Researchers have looked into using random forest
classification and GBT models to predict pathogen drug resistance. In the case of tubercu-
losis, instead of using a single statistical model for all medications, several statistical models
were used to different drugs within the same study.

1.5 Although machine learning models have great perfor-
mance, present machine learning approaches have several
flaws.

While reviewing a wide range of research in this field, we discovered some flaws that we
address in this thesis: They are all based on SNPs or k-mers, and they are all trained on only
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one species. Training models based on SNPs or k-mers includes a number of features that
contribute to overfitting, and as a result, studies are unable to train complicated models.
Existing techniques are also trained separately for each species.
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Chapter 2

Data Pipeline and GEM-DR

We acquired our data from Pathosystems Resource Integration Center (PATRIC) that pro-
vided full genome sequencing of our isolates [12] for researchers. We collected and analysed
for this study, a total of 21,407 isolates from six different species (Streptococcus pneumo-
niae: 5805 isolates, Staphylococcus aureus: 1989 isolates,Salmonella enterica: 2218 isolates,
Acinetobacter baumannii: 1415 isolates, Escherichia coli (E. coli): 2020 isolates, Mycobac-
terium Tuberculosis (TB): 7960 isolates). The PATRIC website has been used to retrieve
all of the aforementioned isolates’ short reads including whole-genome sequencing and their
associated pehontypes. [6]. Different species had various proportion of susceptible isolates
compered to Resistance isolate, varying from 13.0% to 92.0% (Streptococcus pneumoniae:
23.0% to 92.0% , Staphylococcus aureus: 27.0% to 88.0%, Salmonella enterica: 47.0% to
91.0%, Acinetobacter baumannii: 13.0% to 55.0% , Escherichia coli (E. coli): 27.0% to 88%,
Tuberculosis (TB): 55% to 87%)

2.1 Pre-processing

2.1.1 SNPs Dataset

To get SNP information from our downloaded dataset, we first had to remove those sam-
ples with missing phenotype. After that, we mapped the reference genome to each pheno-
type’s raw dataset. The National Center for Biotechnology has provided all of the reference
genomes (NCBI). We also use the Snippy tool to identify the variants.

Snippy was run on each species independently, and SNPs were called using the reference
genome. We utilized .csv file to collect our SNPs as an outcome of the various outputs. As
a result, each read has its own .csv file. We combined all of the.csv files into a single table
that contained all of the readings as well as each read’s SNPs.

As a result, we acquired six datasets for six species. Each dataset comprises the number
of isolates multiplied by the number of unique SNPs variants in all readings). For example,
we have a dataset matrix that includes 2020 isolates (rows) and 314,562 (columns) which
is number of all unique SNPs for E.coli. The advantage of utilising gene burden features
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rather than SNP-based features is that gene burden data decreases the number of features
significantly, alleviating the "curse of dimensionality." When the number of available isolates
is limited in comparison to the number of SNPs, utilising gene load data may result in
more accurate models with less overfitting. When considerably higher sample numbers are
available, the gene burden-based approach may lose this benefit.

2.1.2 Gene burden features

We developed a gene burden dataset after compiling SNP datasets for each species. In each
isolate, we counted the number of SNPs for each gene. Using the reference genome, there
were at least 10 SNPs in one isolate. in 3,585 genes in Acinetobacter baumannii, 4,140 genes
in E.coli, 4569 genes in Salmonella enterica, 2,659 genes in Staphylococcus aureus, 2,043
genes in Streptococcus pneumoniae, and 3,960 genes in TB. Each species is represented as a
feature matrix with a particular dataset, with every row representing one isolate and each
column representing counted number of SNPs in one gene. As a result, each cell indicates
the number of variations that occurred inside a single gene in a particular isolate.

2.1.3 Defining labels for data

Each isolate from a given species was labelled using available drug labels from the same
species. All of the isolates have labels for just one species, and no drug resistance labels
for the other species are given. Among all of the species, only a few contain all of the drug
labels, and the majority of the isolates are lacking part of the labels.
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Acinetobacter E.coli
Drug # of Resistance Total # Drug # of Resistance Total#

Ciprofloxacin 945 1076 Amikacin 95 836
Gentamicin 913 1052 Amoxicillin 597 989
Imipenem 572 1052 Ampicillin 739 1005

Tobramycin 635 966 Aztreonam 148 531
Amikacin 529 966 Cefalotin 195 366

Ceftazidime 746 803 Cefalotin 179 826
Ceftriaxone 623 780 Cefotaxime 258 1426
Levofloxacin 661 857 Cefoxitin 97 477
Aztreonam 723 763 Ceftazidime 197 1393
Cefotaxime 698 728 Ceftriaxone 84 99
Meropenem 334 543 Cefuroxime 210 1282

Ciprofloxacin 320 1392
Ertapenem 53 461
Gentamicin 149 1392
Meropenem 33 479

Salmonella Staphylococcus
Drug # of Resistance Total# Drug # of Resistance Total#

ampicillin 820 2053 Gentamicin 146 1256
streptomycin 842 2031 Erythromycin 430 1255
tetracycline 1087 2030 Methicillin 689 1481

chloramphenicol 341 2026 Fusidic 74 968
ciprofloxacin 13 1972 Penicillin 876 1016
gentamicin 190 1893 Tetracycline 179 1097

sulfisoxazole 597 1774
ceftriaxone 348 1769 Ciprofloxacin 423 1095
ceftiofur1 342 1760 Rifampin 14 1006
cefoxitin 281 1733 Clindamycin 317 656

trimethoprim 34 257 Trimethoprim 13 467
kanamycin 41 704 Oxacillin 27 168

Streptococcus TB
Drug # of Resistance Total # Drug # of Resistance Total#

Chloramphenicol 220 2097 Amikacin 573 2033
Clindamycin 38 428 Capreomycin 552 1991

Cotrimoxazole 878 1938 Ciprofloxacin 37 443
Erythromycin 912 2514 Ethambutol 1407 6096

Penicillin 1158 2299 Ethionamide 498 1516
Tetracycline 785 2079 Isoniazid 3445 7734

Trimethoprim 1980 2561 Kanamycin 697 2436
Moxifloxacin 129 961

Ofloxacin 800 2911
Pyrazinamide 754 3858

Rifampicin 2968 7715
Streptomycin 2104 5125

Table 2.1: Summary of the number of isolates and the label distribution in our data.
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In this work we tried to share the resistance profile across species and also use multiple
datasets for training our network. Since for each species we have not enough data to effi-
ciently train a neural network, using 6 different datasets help us to solve this challenge. We
implemented gene burden features (that we previously applied to TB [31]). After gathering
SNP datasets for each species, we created a gene burden dataset. We counted the number of
SNPs in each gene for each isolate. The gene structure is what we wanted to include in this
study. Gene burden features decrease the number of factors and increase generalisation. In
this work we trained our model across multiple species. We utilise masked loss to do this,
which allows us to use isolates that lack certain drug resistance response markers. We can
accomplish this despite the fact that we don’t have any features in common with other
species. It turns out that simply sharing logic is beneficial.

2.2 Method

2.2.1 Addressing missing labels in large dataset

The absence of labelling was one of the most significant problems we faced while working
on this project.

We came up a lot of isolates that did not have labels for some of the medicines they were
connected with. We utilized a masked loss function instead of a regular loss function to deal
with this problem and get the most out of the data. This loss function was implemented
to ignore and not compute the loss for missing labels. As a result, we have been informed
that missing labels have no bearing on the network’s weights. The challenge of using the
multi-task model in our dataset is that many isolates lack labels for some of the drugs.
For this reason we replace the usual loss function with a masked loss function. The masked
loss function ignores the missing labels in calculating the loss, and therefore, these missing
labels do not affect the network weights. We use the binary cross-entropy as the loss function.
Specifically, we use the loss function

Loss =
I∑

i=1

D∑
d=1

1(Xi,d is available)H(Xi,d, Yi,d) (2.1)

where I and D are the numbers of isolates and drugs respectively, Xi,d and Yi,d are the
true and predicted resistance values, H is the binary cross-entropy function, and 1 is the
indicator function.

2.2.2 GEM-DR Input and output

In GEM-DR , there are six separate input sections, each of which is assigned to a differ-
ent species. Furthermore, each input section contains a set number of nodes equal to the
species’ number of genes. Throughout this procedure, GEM-DR makes use of all six species
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Figure 2.1: Model architecture of GEM-DR.

gene burden base features for learning. The GEM-DR output layers have six separate parts
of input, each of which includes multiple drug resistance prediction nodes. Streptococcus
pneumoniae input layer section had 2043 neurons, Staphylococcus aureus input layer section
had 2659 neurons, Salmonella enterica input layer section had 4569 neurons, Acinetobacter
baumannii input layer section had 3585 neurons, E. coli input layer section had 4140 neu-
rons, and Tuberculosis input layer section had 7960 neurons. As a result, a total of 20,956
neurons were used in six separate section in GEM-DR input layer.

2.2.3 Model Architecture

Furthermore, as the following hidden layer, we have merged all of the input layers together,
followed by a batch normalisation layer. All of the species’ resistance profiles are shared
in this hidden layer, which aids our model in learning drug resistance patterns in diverse
species. As the following layer, we utilized the reshape layer to prepare the data and input
it into two CNN layers. We utilized 96 filters, a kernel size of 21, two strides, the same
padding, and a random uniform as the kernel initializer for the first CNN layer, which
was followed by a relu activation layer. We use CNN layers to take into account all of the
interactions between gene neighbours. After each CNN layer, we utilized average pooling as
well. Except for the number of filters, which is 121, we utilized the identical settings for the
second CNN layer. The information was then fed into Dense layers using the flatten layer.
We utilized two Dense layers, each with 128 and 169 neurons. Kernel and bias initializers
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Hyperparameter Optimal Value
CNN: Number of Layers 96

CNN: Kernel Size 21
CNN: Number of Filters 121

CNN: Pooling Size 2
Dense: Number Layers 128
Dense: Number Units 169

Optimizer SGD
Learning rate 0.394

Table 2.2: Optimized hyper-parameters that has been used in GEM-DR

for dense layers are random uniform and Truncated normal. There is a relu activation layer
in both dense layers.

We used the binary cross-entropy loss function since our job was multi-task classification
and each label had a binary value of being resistant (one) or susceptible (zero):

LOSS =
I∑

i=1

D∑
d=1

1(Xi,d is present)H(Xi,d, Yi,d) (2.2)

2.2.4 Bayesian hyper-parameter optimization

To choose the optimal values for several hyperparameters involved in building the model,
Bayesian optimization approach was applied. In the process of Bayesian optimization, a
probabilistic model is formed to map combinations of hyperparameters (H) to probability
values of achieved score on the objective function (AUC-ROC) [32]. For this purpose, a
surrogate function (Gaussian Process Regression) was used to compute P (AUC-ROC|H)
and maximize the objective function in an iterative manner. Hyperparameter optimization
was implemented through the Scikit-optimize Python package [14]. In this procedure we
used 10-fold cross validation in order to cross validate our data. We split data into %70
train data, %20 test data and %10 validation data. Also for validation of our method we
used optimized base-line models which have been optimized with same fractions of data.
The difference between optimizing our original model and othe base-line models is we could
cross-validate GEM-DR with all 6 species at once yet for the other base-line models we
should cross validate each model with one species at a time. Table 2.2 presents chosen
optimal hyperparameters that were ultimately used to build the final model.

2.2.5 Evaluation

We compared our GEM-DR model against a wide number of current approaches that are
considered to be state-of-the-art. We didn’t include catalog techniques or other methods
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that have been shown to perform considerably worse than the ones described here. For the
comparison, the following approaches were used: (1) WnD (Wide-n-Deep neural network)
[4], This method is optimized for predicting drug resistance in TB. (2) SVM (Support Vec-
tor Machines)[24] are a widely used ML model for binary classification, with applications in
many areas. (3) LR (Logistic regression) [17] using this method recent studies have demon-
strated that it is superior in predicting treatment resistance in tuberculosis. (4) Gaussian
Naive Bayes(GNB) [19, 39] since it has been widely used in a variety of bioinformatics ap-
plications. (5) Random Forest (RF) [29], in bioinformatics, RF has a variety of applications
for dealing with large data and whole genome sequences. In this work for the aim of com-
paring our model performance with the state-of-the-art models we have implemented and
trained the widendeep neural network , support vector machine (SVM), logestic regression
(LR), and also Random forest (RF) [38, 17]. As we mentioned in the optimization section,
we used same procedure and dataset for training and testing the base-line models. We also
ran the Bayesian hyperparameter Optimization to choose the best parameters for all the
models. We used the following parameters for each model. logistic regression: C = 0.1 and
f2 penalty. Random forest: 120 estimators, a minimum sample split of 4, and a maximum
depth of 30. Support vector machine: C = 0.1 and linear kernel have been used. WnD model
we used five layers, 490, 529,571,617,666 nodes have been used respectively for the five lay-
ers. Also each layer has been followed by a dropout layer with 0.12 rate. All of the layers
have L1 kernel regularizer as well. To evaluate the accuracy of our predictions, we used
the AUC-ROC and AUC-PR values. The AUC-ROC metric is the area under the plot of
the true positive rate (TPR) against the false positive rate (FPR) at different classification
thresholds. The AUC-PR is similar to AUC-ROC, but the plot is that of precision ( T P

T P +F P )
against recall ( T P

T P +F N ) at different classification thresholds.

2.2.6 Implementation

For training we used Python 3.7 for implementing our neural network and all of the state-
of-the-arts methods as well. We utilized Keras [5] and Tensorflow on top of that. We also
used Scikit-learn [28] library to implement other machine learning methods.
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2.3 Results

2.3.1 Does GEM-DR outperform state-of-the-art ML models in most of
the drug labels prediction?

Figure 2.2: Overall performance comparison between GEM-DR and state-of-the-art ML
models (WnD [4], SVM [24], LR [17], GNB [19, 39], and RF [29]); The GEM-DR AUC is
compared to the AUC of the other baseline ML models in terms of overall performance.
Each shape reflects drug resistance prediction AUC performance of GEM-DR in the X axis
and the other model AUC performance in the Y axis. If GEM-DR outperforms the baseline
models in that particular drug, the shape placement is above the Y = X line, but if the
baseline model exceeds GEM-DR in AUC-ROC performance, the shape placement is below
the Y = X line.
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2.3.2 GEM-DRoutperformed state-of-the-art baseline models

In this work we assessed the model by putting in comparison with the state-of-the-art mod-
els which have been achieved great results as our best knowledge so far.

Figure 2.3: The outcomes of GEM-DR and WnD performance in predicting drug resistance
are shown in these graphs. In comparison to feeding all the species at once to GEM-DR, we
tried training WnD on each species.

To train and test these baseline models, we used the same data that we used to train
and test our model. We utilized WnD, SVM, RF, and LR for comparison and assessment
of our work outcomes, using the AUC-ROC measure for this comparison.
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GEM-DR outperformed in 59 drugs out of 68 drugs. In most cases, GEM-DR produces
significantly better results than the WnD approach (Figure 2). For 9 of the 11 drugs tested in
Acinetobacter baumannii, GEM-DR outperformed the Wide and Deep Model. Wnd model,
Amikacin and Gentamicin performed better in terms of AUC . We got improved AUC ratings
in E.coli for 15 of the 17 medications; Cefalotin and Ertapenem did slightly better with the
WnD model. Our approach outperformed the WnD model in Salmonella enterica for 8 out
of 10 medications, including chloramphenicol and sulfisoxazole. Moreover, our perdition for
8 out of 10 drugs in Staphylococcus aureus, was better. Using WnD model Erythromycin,
Fusidic had better predicted results. In Streptococcus pneumoniae we outperformed WnD
model in all of the drugs. Finally, our model performed substantially better than WnD
model in all of the drugs.

2.3.3 Training multiple species together comes with better prediction
performance

Further, we determined the reason for the AUC-ROC improvement to be sharing drug
resistance profiles across species. After co-training with other species, GEM-DR average
performance increased for 5 out of 6 species. We first trained GEM-DR with one species
at a time to show the effect of co-training species and drug resistance profile sharing, then
compared our findings to the GEM-DR results after co-training six species together, and
presented the average results. After adding other species to Salmonella enterica, GEM-DR
performance did not increase (Fig 3.4).
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Figure 2.4: We initially trained GEM-DR with one species at a time to illustrate the effect
of co-training species and drug resistance profile sharing among them, and then compared
those findings with the GEM-DR results after co-training 6 species together, and displayed
the average results in this figure.

Which co-training species partner specifically helps the improvement of training
procedure?

To select the best co-training partner for each species, we ran an experiment in which
we co-trained every two species together and compared the results to solo training perfor-
mance results. We keep track of the AUC-ROC scores of joint species training to learn more
about the influence of sharing several species’ resistance profiles on model performance.
We hypothesized that using a multi-task model could improve the accuracy of our model,
especially for drugs with relatively limited labeled data available, driven by shared mech-
anisms of resistance. If true, this hypothesis would imply that the patterns learned from
one drug can compensate for the lack of training data for another drug. We observed that
using the multi-task model improved the performance of the gene burden-based GEM-DR.
Furthermore, we see that the gene burden-based GEM-DR trained on a multiple-species
displays good performance and can accurately predict drug resistance to that specific drug.
Acinetobacter baumannii improves performance the most when combined with Streptococ-
cus pneumoniae(Fig 5). Many species have improved the E. coli drug resistance prediction
profile, with Acinetobacter baumannii being the best combination. When co-trained with
Streptococcus pneumoniae and Acinetobacter baumannii, Salmonella enterica outperformed
solo training.
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Figure 2.5: We conducted an experiment in which we co-trained every two species together
and compared the outcomes to solo training performance results in order to determine the
optimum co-training partner for each species.

Staphylococcus aureus was a suitable training partner for Staphylococcus aureus. Pair
training with Staphylococcus aureus enhanced the AUC-ROC performance of Streptococ-
cus pneumoniae, and lastly, combined training of TB with Acinetobacter baumannii and
Salmonella enterica improved the performance of GEM-DR. As a result, we can conclude
that exchanging resistance profiles between species and training will enhance prediction
(Fig 3.5).
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Chapter 3

Drug resistance prediction in E.coli
using pathways-based approach

3.1 Background

Escherichia coli, also known as E. coli is a Gram-negative, facultative anaerobic, rod-shaped,
coliform bacterium of the genus Escherichia that is commonly found in the lower intestine
of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes (EPEC,
ETEC etc.) can cause serious food poisoning in their hosts, and are occasionally responsible
for food contamination incidents that prompt product recalls. The harmless strains are part
of the normal microbiota of the gut, and can benefit their hosts by producing vitamin K2,
and preventing colonisation of the intestine with pathogenic bacteria, having a mutualistic
relationship. E. coli is expelled into the environment within fecal matter. The bacterium
grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers
decline slowly afterwards.

E. coli and other facultative anaerobes constitute about 0.1% of gut microbiota, and fe-
cal–oral transmission is the major route through which pathogenic strains of the bacterium
cause disease. Cells are able to survive outside the body for a limited amount of time, which
makes them potential indicator organisms to test environmental samples for fecal contam-
ination. A growing body of research, though, has examined environmentally persistent E.
coli which can survive for many days and grow outside a host.

The bacterium can be grown and cultured easily and inexpensively in a laboratory
setting, and has been intensively investigated for over 60 years. E. coli is a chemoheterotroph
whose chemically defined medium must include a source of carbon and energy. E. coli is the
most widely studied prokaryotic model organism, and an important species in the fields of
biotechnology and microbiology, where it has served as the host organism for the majority
of work with recombinant DNA. Under favorable conditions, it takes as little as 20 minutes
to reproduce.
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The majority of E. coli are harmless and even beneficial for the digestive system. How-
ever, some of them can cause serious food poisoning and diarrhea, not to mention enormous
economic losses due to contaminated food that came into contact with E. coli [35, 34]. E.
coli is normally used as an indicator for anti-microbial resistance in animal and meat in-
dustry . E. coli can transfer their DNA using bacterial conjugation or transduction, which
means they can spread horizontally across an existing population. One type of E. coli that
leads to diarrhea is the Shiga toxin-producing E. coli (STEC). The transduction of STEC
can be used to produce Escherichia coli O157:H7 (E. coli O157:H7). E. coli O157:H7–the
Shiga toxin-producing strain of E. coli– has been identified for the first time as a human
pathogen in 1982 [2, 22]. E. coli O157:H7 is responsible for kidney failure and hemorrhagic
diarrhea which can be deadly in children younger than five years old [15]. E. coli O157:H7,
has been estimated to cause trouble for three to eight of every 100,000 people. The main
source of bacteremia in England was E. coli in 2011, for which an incidence of 50.7 cases
per 100,000 population [1].
Given the availability of DNA sequenced data from PATRIC database from E. coli, we
developed three machine learning models for 2020 isolates gathered from PATRIC online
database to classify E. coli. resistance against 17 drugs. Further, we proposed a pathways-
based multi-task learning method to use all the information about genes in E.coli, comparing
its results and the other ML methods we found that due top the lack of data in this area we
cannot use just this information to train our network and it does not improve the results of
drug resistance prediction in E. coli.

3.2 Materials and Methods

3.2.1 Data and Data Prepossessing

The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics
Resource Center (BRC) (http://www.patricbrc.org). This impressive work has been made
by the cumulative effort of two institutions of the original National Institute of Allergy and
Infectious Diseases-funded BRCs. They have provided variety type of bioinformatics data for
researchers [e.g. transcriptomics,three-dimensional protein structures and sequence typing
data, and protein–protein interactions (PPIs)]. This source currently includes more than
100,00 sequenced genomes.Moreover, these genomes has been annotated Strongly with the
Rapid Annotations using Subsystems Technology (RAST). Further, There are also Multiple
versions of annotations provided for sequenced genomes. One of the most important features
of PATRIC is Availability of online comparison between various annotations. For the aim
of comparative transcriptomic analysis, researchers can use both private and public data
in the same time using provided online tools on PATRIC. All of these data and associated
visualizations tools are freely available online. All of the data which have been used in this
work are based on resources available on PATRIC 2020 webasite version. Using PATRIC
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FTP server, we have downloaded over 2000 E. coli sequenced genomes associated with E.
coli and their annotations. Furthermore, we have used snippy tool. Using snippy tool we
have extracted SNPs from all of the sequenced genomes we have gathered before. Associated
annotation table contains variety of annotations such as taxon id, the antibiotic which has
been tested for reaction of isolate to it, resistant phenotype, MIC measurement value, etc.
We have used clinical breakpoints of EUCAST (European Committee on Antimicrobial
Susceptibility Testing) v. 10.0 (2020). Some of the isolates do not have resistant phenotype
and instead they have measured value of MICs. Hence, we have used EUCAST clinical
breakpoints table to identify their resistance phenotype.
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Figure 3.1: Availability of 17 drugs which have been used in this work.

Our study includes 2020 sequenced genes of E. coli isolates. As it is shown in Fig.1 we
have Used 17 drugs resistance testing labels for our work. Of the 2020 isolates were have
been tested against 17 drugs, Gentamicin has the biggest number of labels available with the
number of 2020. Further, Ampicillin has the biggest number of resistance isolates against
it with number of 849 of 1144 and Imipenem has the biggest number of Susceptible isolates
against it with the number of 1257.

3.2.2 Methods

Our study includes 2020 sequenced isolates. It worth to mentioned that not every isolate
was tested against all drugs. We performed three different machine learning models in
order to explore the variety of structures within the genomics variations in our isolates. We
have applied Logistic Regression, Random Forest, and Support Vector Machine with L2
regularisation (SVM) models in our work.
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While the evaluation procedure we have considered the same distribution for each set of
evaluation of each drug which means we tried to hold the same portion of resistance isolates
with susceptible ones in terms of individual drugs. As we mentioned before our feature set
includes all of the SNPs which have been extracted form sequenced data with snippy tool.
This feature set contains 956000 SNPs which have been occurred in 2020 isolates.

3.2.3 Pathways-based method

We proposed a pathways based network to use all the available information exist in E.coli.
In the input all the genes associated with specific pathway are connected to one neuron in
the following hidden layer and the input layer is not fully connected with the first hidden
layer. After that the neurons in the first hidden layer are fully-connected to the next shared
layer. and then we have 17 neurons representing 17 drugs labels in E. coli.

Figure 3.2: Multi-task learning using pathways background in E. coli genome

3.2.4 Architecture

368 In this study, there are total of 4140 separate input sections regarding the number of
genes we have in E. coli, each of which is assigned to a genes with a different number SNPs
associated with. Furthermore, each input section contains a number of SNPs occured in
that. Throughout this procedure, this model makes use of all of 368 pathwyas based fea-
tures for learning. This model output layers have 17 separate parts, each of which indicates
the resistance/susceptibility of the specific drug to E. coli( Amikacin, Amoxicillin, Ampi-
cillin, Aztreonam, Cefalotin, Cefepime, Cefotaxime, Cefoxitin, Ceftazidime, Ceftriaxone,
Cefuroxime, Ciprofloxacin, Ertapenem, Gentamicin, Imipenem, Meropenem, Tetracycline).
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Furthermore, as the following hidden layer after input section, we have 368 nodes each of
them associated to a specific pathway. Each of the nodes in this layer is connected to the
input nodes which are associated to that specific pathway. This layer is followed by a batch
normalisation layer. After this layer all the information is merged in the following concate-
nation layer. The information was then fed into Dense layers using the flatten layer. We
utilized two Dense layers, each with 256 and 128 neurons. Kernel and bias initializers for
dense layers are random uniform and Truncated normal. There is a relu activation layer in
both dense layers.

We used the binary cross-entropy loss function since our job was multi-task classification
and each label had a binary value of being resistant (one) or susceptible (zero):

LOSS =
I∑

i=1

D∑
d=1

1(Xi,d is present)H(Xi,d, Yi,d) (3.1)

For the aim of training and optimization, we used 10-fold cross validation in order to
corss validate our data. We split data into 70% train data, 20% test data and 10% validation
data. Also for validation of our method we used optimized base-line models which have been
optimized with same fractions of data.

3.3 Results

After applying Logistic Regression we have the best AUC for Imipenem with 100%, and
the lowest AUC is for Amoxicillin with 68%. This result has been slightly improved in (B)
Random Forest with the lowest amount of AUC for Amoxicillin with 70%. And lowest results
was for (c) SVM with 66% AUC for Amoxicillin. Hence, Random Forest had the overall
performance in predicting susceptibility/ resistance against 17 drugs. We have separated
our data into three exclusive sections (training, testing, validation) data with 70% , 20%,
10% portions accordingly. It is worth to mentioning that we have not used validation set in
our either training, testing procedure.

21



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

amikacin (area = 0.83)
Amoxicillin (area = 0.68)
Ampicillin (area = 0.77)
Aztreonam (area = 0.88)
cefalotin (area = 0.71)
Cefepime (area = 0.84)
Cefotaxime (area = 0.90)
Cefoxitin (area = 0.90)
Ceftazidime (area = 0.84)
ceftriaxone (area = 0.89)
Cefuroxime (area = 0.79)
Ciprofloxacin (area = 0.94)
ertapenem (area = 0.91)
Gentamicin (area = 0.86)
imipenem (area = 1.00)
meropenem (area = 0.99)
tetracycline (area = 0.74)

Figure 3.3: Logistic Regression

Using Logistic regression we achieved best prediction result with Imipenem, Meropenem,
and Ciprofloxacin respectively with 100%, 99% and 94% AUC-ROC.
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Figure 3.4: Random Forest

Using Random Forres we achieved best prediction result with Imipenem, Meropenem,
and Ciprofloxacin respectively with 100%, 99% and 96% AUC-ROC.
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Figure 3.5: Support Vector Machine with L2 regularisation

Using Support Vector machine (SVM) we achieved best prediction result with Imipenem,
Meropenem, and Ciprofloxacin respectively with 99%, 97% and 91% AUC-ROC.
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3.4 Drug resistance prediction in E. coli using pathway in-
formation

In this section we used all the known pathways background which have been gathered
from EcoCyc [16]. In this model all the genomes which are associated to a pathways are
connected to just one neuron in the first hidden layer, which represents all the pathways
in our datasets. This hidden layers is followed bye two more hidden layer which are fully
connected.

We have trained and tested our pathway-based model with over 2020 E. coli isolates
which have been gathered form PATRIC database.
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Figure 3.6: Overall comparison of drug resistance prediction in E. coli between pathways
based mode, fully connected feedforward model, Logistic regression, and Support vectore
machine

Using this comparison we found that since there is not enough of knowledge in path-
ways available yet, we can not use this approach as the main approach for predicting dug
resistance in E. coli. In conclusion we found that the baseline models perform similarly or
better than the pathways based model. In CTZ, CXM, CET, TBM, and TMP all the tested
models have been performed similarly. We had a better results in TZP with pathways absed
model comparing to baseline models. Baseline models ahve been also peformed similarly in
CTZ, CTX, AMP, AMC, TZP, CXM, CET, TMP, and CIP.
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Chapter 4

Conclusion

We suggest a unique application of GEM-DR, a deep learning architecture, for predicting
drug resistance in six distinct species in this study (Acinetobacter baumannii, Salmonella
enterica, Staphylococcus aureus, Streptococcus pneumoniae, and TB). For each of the infor-
mative species, we additionally presented 6 Gene burden base feature data sets. This design,
which combines CNN and fully linked hidden layers, has the benefit of taking into account
both gene mutation load and gene neighbouring. In a number of situations, GEM-DR sur-
passes existing state-of-the-art techniques. We discovered that when we utilise the gene
burden, which is defined as the amount of mutations in each gene, rather than the complete
SNP data, GEM-DR performs best. The gene burden allows us to examine the relevance of
individual genes, while the model architecture allows to learn about how they are arranged
in the genome. GEM-DR exceeded other state-of-the-art models in solo species training
by introducing a new design. We demonstrated that co-training species and exploiting the
advantage of sharing drug resistance profiles across species assist the model in identifying
novel non-linear patterns that may be utilized to predict various types of drug resistance
labels. This method also makes advantage of the masking loss function, which allows us to
utilise the majority of the data, even if part of the drug labels are missing across species.
Finally, we presented a unique state-of-the-art approach for predicting drug resistance that
incorporates gene order and gene burden information. Our findings show that utilising the
GEM-DR structure, gene burden-based prediction is highly effective. Apart from achieving
good results on prediction, it is equally important to study the trained models and un-
derstand resistance-associated markers, something that seems to be a limitation of most
previous work. One key challenge is to construct a reliable feature importance extraction
method, preferably from a machine learning perspective, but possibly involving expertise-
based feature engineering, to eliminate SNPs that may contribute to irrelevant genes being
identified as important. By effectively eliminating noise, we are also able to include more
relevant SNPs, which will potentially amplify the advantage of training models on a diverse
dataset.
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Our work can be seen as an exploratory study. To the best of our knowledge, it is the
first one to investigate the issues of sparse and imbalanced dataset and the identification
of drug resistance markers at different resolutions by analyzing machine learning models
trained on 6 major datasets.

We hope that this study will inform future work on drug resistance in pathogenic bac-
teria and the application of machine learning to the drug resistance problem. Another
Challenge of this work is identifying exact SNPs contributed to the prediction. Since the
nature of our model has been trained by gene burden features, using interpretation models
we are potentially able to find the significant contributed genes to the prediction; yet we
are unable to identify the exact SNPs in identified genes. To do that, we may change the
model architecture in a different manners in the future.
Because GEM-DR has been trained by different drug resistance patterns, this study may also
be utilized as a transform learning task in other areas or drugs. The goal of this study was
to develop the most accurate drug resistance prediction model possible. However, the lack
of interpretability, as well as the absence of interpretability in most other neural network-
based techniques, is an area that can be improved in the future. As a result, we want to
add information to the GEM-DR technique in the future to make it more interpretable.

We Also conducted a study on E. coli pathways. In that work we utilized 368 pathways
which include 4140 genes in E.coli. We used the shared information between the associated
gens in each pathway to predict drug resistance for 17 drugs in E. coli. Comjparing our
results with 3 baseline models ( feedforward multi task learning, LR, SVM) we found that
our model performed similarly to the base line model and in some cases lower than them.
Our results indicates that due to the lack of information in this area we could not achieve
better performance than our baseline models. We believe having more information in this
area we can conduct more powerful studies and achieve better performance using pathways
information in E. coli.
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