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Abstract

Guaranteed safe online trajectory planning is becoming an increasingly important topic of robotic

research, due to the need to react quickly in unknown environments. However, as a result of mod-

elling mismatch, some error during trajectory tracking is inevitable. We present Planner-Aware

FaSTrack, or PA-FaSTrack, which provides guaranteed Tracking Error Bounds (TEBs) by solving a

Hamilton-Jacobi (HJ) variational inequality in the tracking error space. PA-FaSTrack improves upon

the state-of-the-art method, FaSTrack [1], by accounting for motion primitives implied by the plan-

ning algorithm in the problem formulation. Our method provides a sequence of TEBs, with each

TEB corresponding to a segment of the planned path. We also propose necessary modifications

to real time tree based planning algorithms in order to make them compatible with the provided

TEB sequence. By integrating planning and tracking more closely together, we greatly decrease the

degree of conservatism compared to the original FaSTrack, allowing the autonomous system to nav-

igate safely through much narrower spaces. We demonstrate our method using two representative

dynamical systems.

Keywords: Guaranteed Safe Online Trajectory Planning; Tracking Error Bound (TEB); Hamilton-

Jacobi Variational Inequaliy; Motion Primitives; TEB Sequence
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Chapter 1

Introduction

Trajectory planning paradigms can be divided into two general categories based on their compu-

tational efficiency and the optimality of the solution they provide. The first category, which can

be easily used online due to high computational efficiency, includes Rapidly Exploring Random

Tree (RRT) [2, 3, 4, 5], Probabilistic Road Map (PRM) [6, 7, 8], and others [9, 10]. These plan-

ning algorithms are usually geometric, which means they do not consider complex dynamics of the

autonomous system, or the effects of external disturbances. So the autonomous system isn’t able

to follow the exact path which is generated by these algorithms. The common practice when using

such geometric methods is to augment the obstacles by a heuristic value to account for any trajectory

tracking error, but there is no guarantee that the assumed value is correct and safe.

On the other hand, a second paradigm of trajectory planning considers all the dynamical con-

straints of the system to find the guaranteed-safe path while avoiding the obstacles. Such planning

algorithms include Model Predictive Control (MPC) [11, 12], and dynamic programming-based

methods such as Hamilton-Jacobi (HJ) reachability [13]. However, these algorithms are less suit-

able for online planning. Some works in the past few years were able to decrease the computation

time [14, 15, 16, 17, 18], but are usually only suitable for a certain class of problems and dynamical

systems.

Recently, the authors in [1] introduced FaSTrack, which combines online planning speed with

guaranteed safety through precompution of a guaranteed tracking error bound (TEB) by defining

a pursuit-evasion game, described in chapter 2, and solving a Hamilton-Jacobi (HJ) variational

inequality or sum-of-squares program [19] for the tracking error dynamics. Any online planning

algorithm’s path is then guaranteed to be safe if one augments the obstacles by the provided TEB

and uses the optimal tracking controller which is derived from a precomputed lookup table. In this

method, the time consuming computation of HJ inequality is done offline and stored as functions or

look-up tables to guarantee safety, and the fast online algorithm can use the precomputation results

for real-time planning.

However, FaSTrack does not account for the planning algorithm’s characteristics, and makes

the worst-case assumption that its behaviour maximizes the TEB. Hence the obtained TEB can be

excessively large and conservative compared to the actual tracking error incurred online. The large
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Figure 1.1: The planned path of a real time planner is not perfectly suitable for the complex track-
ing systems due to modeling errors and simplifications. Hence a tracking error is inevitable. By
using Original FaSTrack a guaranteed TEB ensures the safety of the path. This TEB however is
large and conservative. It can make navigation through cluttered environments impossible. Using
PA-FaSTrack will provide a much smaller TEB for each segment of the path. A sequence of slightly
growing TEBs is provided by PA-FaSTrack algorithm which can be used to navigate safely in nar-
row pathways. The dashed line represnts the planned path by an online planner. The black line rep-
resents the tracking system, and the translucent blue bands are the TEBs provided by PA-FaSTrack

TEB can make navigation in cluttered environments and through narrow pathways hard or even

impossible. As can be seen in Fig. 1.2, there may exist paths that are safe but FaSTrack assumes

unsafe and ignores due to the conservative TEB. From this point of the thesis onward, we will refer

to the work in [1] as “Original FaSTrack” to avoid potential confusion.

We propose Planner-Aware FaSTrack (PA-FaSTrack), which can guarantee a much smaller TEB

that is closer to the actual tracking errors during run time. PA-FaSTrack leverages the fact that

planned paths are often made up of motion primitives [20], such as consecutive segments of lines

or parameterized curves. This prior knowledge allows us to relax Original FaSTrack’s worst-case

assumptions about the planned paths. PA-FaSTrack can be trivially combined with other FaSTrack

variants such as [21]. Having a guaranteed safe and tight TEB instead of a heuristic one can be

useful in applications such as agricultural robotics, human-robot interaction, etc. Robots are used in

agricultural fields to assess the plants’ health and growth among other things. For the assessment to

be accurate, the robot needs to get as close to the plants as possible without colliding with them. In

human interaction applications, the robot may need to navigate among humans and get very close

to them to convey a message or help them with a task. Without a safe and tight TEB, the interaction

can be dangerous and lead to collision.
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Figure 1.2: The conservatism in Original FaSTrack can be problematic when navigating through
cluttered environments or narrow pathways. There may exist safe routes that will be discarded be-
cause the guaranteed bound is not tight enough.

Specifically, our contributions are as follows: We provide a less conservative guaranteed TEB

by taking into account, in the precomputation, that planned paths are made up of a sequence of

motion primitives. In particular, we consider planners that produce a sequence of line segments

such as RRT. We do this by defining the relative system dynamics in the local reference frame of

the path, which leads to a more accurate path description, and a less conservative pursuit evasion

game compared to Original FaSTrack. Our precomputation step produces a sequence of TEBs cor-

responding to the sequence of motion primitives in the planned path. This sequence of TEBs is taken

into account during online planning by defining a tracking controller-aware collision checker that

considers the correct TEB for each path segment. Our simulations show greatly reduced TEB size,

allowing autonomous systems to pass through narrower pathways with safety guarantees.

In the following chapters the details of the PA-FaSTrack algorithm will be discussed. First a

brief overview of the Original FaSTrack which we are improving upon is provided in chapter 2. The

PA-FaSTrack method will then be explained in chapter 3 along with a running example. Finally the

simulation results are presented in chapter 4.
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Chapter 2

Preliminaries

2.1 Original FaSTrack

The PA-FaSTrack framework builds on the Original FaSTrack method, and tries to improve the

guaranteed TEB. So in this section an overview of the original method is presented [1]. This method

is composed of an offline precomputation of TEB and optimal control inputs, which will then be

applied online to guarantee the safety of the paths that are generated by a fast online planner. The

online planning in Original FaSTrack framework is done by a fast kinematic or dynamic planner

of designer’s choice. Original FaSTrack guarantees that the tracking error will never exceed the

provided TEB, and the agent will never get further from the planned path than this TEB, as long as

the precomputed optimal controller is used whenever the bound is nearly violated.

In order to calculate the guaranteed TEB, Original FaSTrack models the autonomous system us-

ing two separate representations: a planning system and a tracking system. The planning system is

a representative of the online planning method, which implies a simpler dynamical model that typ-

ically has fewer state variables compared to the original autonomous system, and does not account

for external disturbances that may influence how well the system can track the planned path. By

this definition, the planning system is able to follow any path generated by the planning algorithm,

without any tracking error. The tracking system however, represents a higher-fidelity model of the

autonomous system and accounts for disturbances. In order to model the trajectory tracking prob-

lem, the tracking system is assumed to follow the planning system which implies that the agent’s

control input is trying to decrease the distance between the agent and the planned path.

Given the planning and tracking systems, Original FaSTrack defines a relative system, and for-

mulates a pursuit-evasion game with the tracking system being the pursuer, and the planning system

being the evader. The maximum amount of deviation, the guaranteed TEB, is obtained as the solu-

tion to this pursuit-evasion game. So the TEB generated using Original FaSTrack is calculated in a

principled way to make safety guarantees rather than chosen according to some heuristics. We now

present the tracking system, planning system and optimization problem in Original FaSTrack.
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2.1.1 Tracking System Model

Let s be the state of tracking system and the ODE in (2.1) represent system’s dynamics.

ds
dt = ṡ = f (s,us,d) , t ∈ [0, t f ]

s ∈ S ,us ∈ Us,d ∈ D
(2.1)

where us ∈ Us is the control input, and d ∈ D is the disturbance. Let us denote the trajectories of

(2.1) starting from s0 at time t0, with the control function us(·) and disturbance function d(·) applied

until time t as ξ f (t;s0, t0,us(·),d(·)).

2.1.2 Planning System Model

Let us assume the motion along a planned path is modelled using an ODE of the form

d p
dt

= ṗ = h(p,up) , t ∈ [0, t f ] , p ∈ P,up ∈ Up (2.2)

where p ∈ P is the planning system’s state and up is the planning system’s control.

The planning system’s states are typically a subset of the tracking system’s states, since they are

both describing the same system but the former is ignoring some states to enable real-time planning.

2.1.3 Relative System Dynamics

The relative system is represented as a transformation of the difference between the tracking and

planning states, formally defined as follows:

r = Φ(s, p)(s−Qp), ṙ = g(r,us,up,d) (2.3)

where Q is a matrix that matches the common states of s and p, in order to augment the state space

of the planning system to that of the tracking system. The function Φ is a transform, often identity

but possibly a rotation matrix, that simplifies the relative system dynamics. The relative state r now

represents tracking system’s state relative to that of the planning system.

2.1.4 TEB Computation

In order to bound the largest possible tracking error, Original FaSTrack formulates a pursuit-evasion

zero-sum differential game in which the planning system is actively trying to avoid the tracking

system and the tracking system is trying to reach the planning system. The external disturbances

are also assumed to have the worst possible effect to increase the distance between the two system

models. From the perspective of the tracking system, the pursuer, the cost is l(r(t), t), typically

defined to represent the distance from planning system. Therefore, the highest cost that this game

can attain represents the guaranteed TEB, and can be computed by first defining a value function of

the form (2.4) and solving the HJ variational inequality in (2.5) to obtain this value function V (r,T ).

5



V (r,T ) = sup
γp∈Γp(t),γd∈Γd(t)

inf
us(·)∈Us(t)

{
max

t∈[0,T ]
l (ξg (t;r,0,us(·),γp [us] (·),γd [us] (·)))

} (2.4)

max
{

∂V
∂ t +minus∈Us maxd∈Dmaxup∈UP∇V ·g(r,us,up,d) ,

l(r)−V (r, t)}= 0
(2.5)

where t ∈ [−T,0] and V (r,0) = l(r) is the cost at time 0. ξg (t;r,0,us(·),γp [us] (·),γd [us] (·)) is the

trajectory of (2.3) starting from r at time 0, with the control function us(·), disturbance and planning

input mappings γd [us] (·) and γp [us] (·), respectively, applied until time t.

The above formulation involves a non-anticipative strategy for planning model defined as the

mapping γp : Us → Up that determines a planning control based on the history of tracking control.

Similarly the disturbance strategy is defined as γd : Us →D ,γd ∈ Γd(t). For brevity, we omit details

related to non-anticipative strategies. The reader is encouraged to refer to [22, 23] for more details

on the formulation and solution of HJ PDEs over some time horizon. The complexity of solving

(2.5) is exponential with respect to the relative state space dimension. Equation (2.5) is solved via

finite difference methods commonly used for Hamilton-Jacobi equations such as the Lax-Friedrichs

method [24] implemented in toolboxes such as [25].

By definition, V (r,T ) is the maximum cost l(r(t), t) that the pursuit-evasion game will ever

attain, if all players act optimally. If l(r(t), t) is defined as the relative distance between the tracking

and planning systems, then given initial relative state r(0), V (r,T ) would represent the maximum

tracking error. Original FaSTrack proves that every level set of V (r,T ) is invariant as long as the

optimal control input in (2.5) is used. In other words, if r(0) ∈ {r : V (r,T ) ≤ ρ} for some ρ , then

r(t) ∈ {r : V (r,T ) ≤ ρ} if the tracking control, planning control, and disturbance are all optimal.

The smallest value of V , Vmin = minr V (r,T ), is the minimum guaranteed TEB.

A summary of the offline framework is provided in Fig. 2.1. The grey boxes represent the parts

that will be used online.

2.1.5 Online Planning

The real-time framework of Original FaSTrack is shown in Fig. 2.2. First the sensors receive in-

formation about the obstacles’ location. These obstacles are then augmented by the amount of the

precomputed TEB in section 2.1.4, and fed to the planning algorithm along with initial state of the

planning system. Augmenting the obstacles by the amount of TEB, which is a guaranteed bound

for the maximum possible tracking error, ensures the safety of the system despite worst case distur-

bances.

The planning system’s state and the augmented obstacles will be considered by the planning

algorithm in order to output the next desired state of the planning system. A control input is chosen

for the planning system to reach the desired state provided by the planning algorithm. This control

input was represented as up in (2.2).
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Figure 2.1: A summary of Original FaSTrack precomputation; The dynamics of tracking system
(2.1) and planning system (2.2) will be used to obtain the relative dynamics based on (2.3). This
relative dynamics will be used to form a cost function. The maximum value of the cost will be
calculated by formulating a HJ PDE. The value function which gives the maximum value of the
cost is the solution to the formulated PDE, and will be used to calculate TEB and optimal tracking
controller.

Figure 2.2: A summary of Original FaSTrack’s online framework; The tracking system’s and plan-
ning system’s states are used to calculate the relative state. The relative state is used to calculate the
TEB and optimal control input from the precomputed value function. TEB will be used to augment
the sensed obstacles at the time of planning. Optimal tracking control input will be used to control
the robot’s trajectory and bring it as close as possible to the planned path.

The states of planning system and tracking system are used to calculate the relative state. The

optimal tracking control input and TEB can then be easily calculated in real-time using the relative

state and the value function. The control input was represented as us in (2.5).

The extracted TEB is later used to augment the obstacles when new information is received

from the environment or the planning algorithm needs to generate a new path for any other reason.

It should be noted that only the tracking system’s control input, which is also the agent’s optimal

control input, comes from (2.5). The planning system’s control input is selected in a way that makes

it possible for the planning system to reach the desired state generated by the planning algorithm.
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2.2 PA-FaSTrack Problem Statement

It was explained in the previous section that only the tracking system’s control input is chosen opti-

mally and according to (2.5). The planning system selects the best control input to follow the path

generated by the planning algorithm, regardless of the tracking system’s behaviour. This implies

that the planning system is not trying to avoid the tracking system. So the maximization over up,

which can majorly increase the cost, seems too conservative.

The goal of this project is to decrease the level of conservatism in the Original FaSTrack paper

by introducing motion primitives into the formulation of pursuit-evasion problem in (2.5), in which

the planning system was assumed to be adversarial. In PA-FaSTrack, the proposed algorithm, we

make a more realistic assumption that the planning system always moves using a set of motion

primitives. The use of known planning system input in (2.4), which comes from our knowledge of

motion primitives that are used, will simplify the formulation of the pursuit-evasion game.

This simplified pursuit-evasion game is defined in the planning system’s local frame, which

removes the maximization over planning system control in (2.4) and (2.5). Also, since the computa-

tion of the value function is done with respect to the segment’s body frame, we need to address the

fact that the computed value function is only valid for the path segments and not when the tracking

system travels from one segment to the next. Because it is at the intersection of consecutive seg-

ments that the local frame changes instantly from that of one segment to the next. The mathematical

treatment of this transition is described in chapter 3, section 3.3. As a result we provide a limited set

of TEBs and then adjust the online planning algorithms to account for a sequence of TEBs and not

a single constant one. The sequence of TEBs is then taken into account by real-time planning algo-

rithm to guarantee safety. Each TEB in the sequence represents the guaranteed maximum amount

of deviation from each corresponding segment of the planned path; therefore, the collision checker

of the planning algorithm is modified on a per-segment basis to account for these margins of error.

Using the optimally computed TEBs instead of a heuristic bound is what guarantees the tracking

system’s safety.

A summary of precomputation and online framework of PA-FaSTrack is provided in Fig. 2.3

and 2.4, respectively.

In Fig. 2.3, the dynamic model of tracking system and planning system is used to form the

relative dynamics which is later employed in formulation of HJ PDE together with the motion

primitive information. The solution is computed as a function of relative state and saved to be used

online to extract the sequence of TEBs and optimal control input.

It can be observed that the difference between this figure and Fig. 2.1 is threefold; The use of

motion primitives, the value function being specific to segments of the path, and the output which

is a sequence of TEBs instead of just one. Feeding the information about motion primitives to

the HJ inequality solver, makes the final computed TEB a lot less conservative by omitting the

maximization over up and replacing it with a known function or value for up.
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Figure 2.3: A summary of PA-FaSTrack precomputation; The dynamics of tracking system and
planning system will be used to obtain the relative dynamics. This relative dynamics will be used
along with a model of motion primitives to form a cost function. The maximum value of the cost
will be calculated by formulating a HJ PDE. The section value function which gives the maximum
value of the cost is the solution to the formulated PDE, and will be used to extract a sequence of
TEBs and optimal tracking control input.

In Fig. 2.4 the real-time framework of PA-FaSTrack is presented. As in Original FaSTrack,

first the sensors receive information about the obstacles’ location and pass them to the modified

planning algorithm. These obstacles are then augmented by one of the values in the TEB sequence.

The modified planning algorithm selects the proper TEB form the sequence based on the depth of

the nodes in the planning tree. The decision process will be explained in chapter 3.

The planning system’s state and the augmented obstacles will be considered by the planning

algorithm in order to output the next desired state of the planning system. A control input is chosen

for the planning system to reach the desired state provided by the planning algorithm.

The states of planning system and tracking system are used to calculate the relative state. The

optimal tracking control input and the sequence of TEBs can then be easily calculated in real-time

using the relative state and the section value function.

The TEB sequence is later used to augment the obstacles when new information is received

from the environment or the planning algorithm needs to generate a new path for any other reason.
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Figure 2.4: A summary of PA-FaSTrack’s online framework; The tracking system’s and planning
system’s states are used to calculate the relative state. The relative state is used to extract a TEB
sequence and optimal control input from the precomputed value function. the sequnce of TEBs will
be used to augment the sensed obstacles at the time of planning. Optimal tracking control input will
be used to control the robot’s trajectory and bring it as close as possible to the planned path.
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Chapter 3

PA-FaSTrack

Original FaSTrack provides the guaranteed TEB by assuming that the planning system is actively

trying to avoid the tracking system, causing the TEB to be conservative. However, in reality, the

planning system, whose state evolution coincides with the trajectory produced by the planning al-

gorithm, does not actually try to avoid the tracking system. Typically, the planned trajectory is made

up of a sequence of motion primitives such as straight lines. We makes use of this knowledge to

greatly decrease the guaranteed TEB.

We assume line segments to be the planning system’s motion primitive, which is the case for

well-known planning algorithms such as RRT. We also assume that the planning system moves

along this straight line with constant velocity. These assumptions allow us to focus on the benefits

of making the planning and tracking systems “aware” of each other. Generalization to other dynamic

motion primitives is conceptually simple and left as future work.

In our mathematical formulation, the tracking system also evolves according to (2.1). However,

the planning system’s dynamics in (2.2) are now assumed to be in the reference frame of the plan-

ning system itself, and are greatly simplified to be trivial. Therefore the relative system dynamics

now represents the dynamics of the tracking system in the reference frame of the planning system.

3.1 Running Example

Consider the 5D extended Dubins car model as the tracking system, with dynamics given by (3.1).

ṡ =


ẋ

ẏ

θ̇

v̇

ω̇

=


vcosθ +dx

vsinθ +dy

ω

a+da

α +dα

 (3.1)

where (x,y,θ) represents the pose (position and heading), and (v,ω) represents the linear and angu-

lar velocities. The control inputs are the linear and angular accelerations (a,α), and the disturbances
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are (dx,dy,da,dα). The first two elements of disturbance (dx,dy) can model wind effects, and the

second two (da,dα) represent control input noise.

The dynamics of the planning system in the global reference frame is a 2D single integrator

defined in (3.2).

ṗ =

[
˙̂x
˙̂y

]
=

[
v̂cos θ̂

v̂sin θ̂

]
=

[
v̂cosup

v̂sinup

]
(3.2)

where (x̂, ŷ) represent the position of the 2D model. Speed which is represented by v̂ is constant,

and velocity direction θ̂ = up is the planning system’s input.

The relative state in the global frame can then be represented as (3.3). This representation is a

form of (2.3), and is taken from Original FaSTrack [1].

ṙ =


ẋr

ẏr

θ̇

v̇

ω̇

=


−v̂cosup + vcosθ +dx

−v̂sinup + vsinθ +dy

ω

a+da

α +dα

 (3.3)

The first and second elements of the relative state vector (xr,yr) are the difference between x

and y positions of tracking system and planning system, but the other relative state variables are just

those of the tracking system.

In contrast, we express the dynamics of the planning system in its own reference frame, leading

to trivial dynamics:

ṗ = ˙̂x = v̂ (3.4)

where we have taken the convention that the positive x-axis is the “forward" direction. Also, since

the planning system moves on a straight line, the velocity along the local y coordinate is 0; thus,

there is no need to include ŷ in (3.4).

This yields the relative dynamics in (3.5), which is no longer in the global reference frame, but

in the local reference frame of the planning system, as we will now discuss.

3.2 Precomputation: Each Line Segment Motion Primitive

In Original FaSTrack, the angle of the path, or equivalently, the planning system’s heading could

change arbitrarily at every time instant to maximize the tracking error, but in reality the planning

system moves in piecewise straight lines in popular algorithms like RRT.

Consider first the case in which the planning system moves along a single straight line at a

constant speed forever. We also assume the tracking system dynamics are represented with respect

to the planning system’s body frame. With the relative state defined to be in the local frame of the

planning system, the relative dynamics for the 5D extended Dubins Car in our running example
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would become

ṙ =


ẋr

ẏr

θ̇

v̇

ω̇

=


−v̂+ vcosθ +dx

vsinθ +dy

ω

a+da

α +dα

= ĝ(r,us,d) . (3.5)

In the above relative dynamics, the planning system no longer has a control input since the angle

of the path in its own local frame is always 0. Thus, Eq. (2.5) now becomes

max
{

∂V
∂ t +minus maxd

∂V
∂ r · ĝ(r,us,d) ,

l(r)−V (r, t)}= 0,
(3.6)

where crucially, the maximization over planning system’s input up in (2.5) can be omitted, thereby

greatly reducing the conservatism of the resulting value function and TEB which is the smallest

sublevel set of V containing the initial state. As stated in (2.5), t ∈ [−T,0] and V (r,0) = l(r). Fig.

3.1 shows a slice of the computed value function V (r) as the colored solid contours and initial cost

l(r) as the dashed red ones.

Figure 3.1: An example of a computed value function; Left: The contour map of a slice of value
function has been plotted in (xr,yr) subspace. The value function has been sliced at (θ ,v,ω) =
(0,1.6,−2.1). Since speed is faster than the planning system’s speed of v̂ = 1 and angular velocity
is negative, the autonomous system will move in positive x direction and negative y direction with
respect to planning system’s frame. So contours of V (r) “shrink” away from the positive relative x
and negative relative y directions. Right: The surface plot of the same slice as the left figure.

Note that since in (3.5) the relative states are represented in planning system’s body frame, the

computation of the value function in (3.6) does not involve the angle of the path, as long as the initial
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relative states are given and the path does not change direction. Next, we expand our discussion to

include multiple straight line motion primitives.

3.3 Precomputation: From One Segment to the Next

When the planning system reaches the end of a line segment and the beginning of the next one, the

tracking system’s state with respect to the global frame would not change. However, since the path

segment and the planning system change directions by some amount of ∆θ , the relative position

in the local frame of the planning system would change via multiplication by the rotation matrix

R(−∆θ) in the (xr,yr) subspace, which rotates the relative position by −∆θ to compensate for the

direction change. Also, the heading θ in the frame of the planning system changes by −∆θ . The

rotation puts the tracking system in the new local frame of the planning system, in which the x

axis becomes parallel to the new path segment. Note that the tracking system’s distance from the

planning system stays constant. So, although the relative state changes discontinuously during a

turn, its norm remains finite, which means that the system does not become unstable during sharp

turns.

Now let us analyze the change in value function and guaranteed TEB as a result of the change

in relative state. Suppose that initially, at the beginning of the first line segment, the relative state r

is such that V (r)≤ ρ1. By the invariance property of the value function in [1], we have V (r(t))≤ ρ1

until the path changes directions. Let this set of states be denoted P1 = {r : V (r) ≤ ρ1}, with the

index 1 indicating that the planning system is on the first line segment. Right before the path changes

directions, the relative state must be within the set P1.

Immediately after the planned path – and the planning system – change directions by some

amount ∆θ1, the relative state must now be in the set of relative states in P1 rotated by −∆θ1.

We denote this rotated set of relative states as c2. Formally, the general relationship between the

invariant sets ci+1 and Pi are as follows:

ci+1 = {r : R(−∆θi)[xr yr]
⊤ ∈ Pi} (3.7)

where R(·) is the rotation matrix and ∆θi is the angle between the ith line segment and the (i+1)th

line segment.

Consequently, when going from line segment i to line segment i+1, the resulting relative state

r is guaranteed to lie within some ρi+1 level set of V that contains ci+1, with the value of ρi+1 being

the largest value that V attains over the set ci+1. This gives us the following relationship between

the invariant sets in terms of the level set of V :

Pi+1 = {r : V (r)≤ ρi+1}

where ρi+1 = max
r′∈ci+1

V (r′) (3.8)
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In general, by the invariance property of the level sets of V , we have that r must be in Pi when

the planning system is on the ith line segment along the path. The sequence {ρi} forms the sequence

of TEBs corresponding to the sequence of line segments in the path.

Fig. 3.2 summarizes what has been explained in this section. The value function and initial level

Pi have been plotted in dashed grey and dashed blue, respectively. One can also see the set ci+1

in green, which is the rotation of Pi, by −∆θ . The smallest level set of the value function which

contains ci+1 is chosen as the next set Pi+1, the red set, which contains the relative states after an

applied rotation by amount of −∆θ .

Figure 3.2: A sample slice of the value function in (xr,yr) subspace; One level with a value of
ρi is chosen randomly to demonstrate the set Pi . The angle of the path changes by an amount of
∆θ = −90, the negative of which is applied on Pi to create set ci+1. −∆θ = 90 degrees in this
example, is shown to clarify the set’s rotation. Various levels of value function are also plotted and
the smallest one which contains set ci+1, or equivalently the largest value of V attained by the points
in ci+1, is chosen as the next segment’s level set Pi+1. The new set will then have a cost value of
ρi+1.

It should be noted that the modified algorithm yields a smaller error bound for a given relative

state, regardless of the jumps, compared to the TEB in Original FaSTrack. In particular, the TEBs
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in the sequence {ρi} still satisfy the Original FaSTrack’s worst-case assumptions about the control

policy of the planning system. Therefore, the TEBs obtained from PA-FaSTrack must be contained

in the TEB obtained from Original FaSTrack.

3.4 Online Planning

Many fast online planners, including RRT, generate a path from start to goal every time they are

called. To account for the list of TEBs {ρi}, the ith line segment must have at least a distance of

ρi to any obstacle. Practically, this can be implemented by changing the collision checker in the

planning algorithm to account for the list of TEBs.

For incremental, tree-based planning algorithms such as RRT, a sequence of TEBs is assigned

for each path from the root of the tree to leaf nodes. One possible simplification in the implemen-

tation is to use the worst list of TEBs for all of these paths in the tree; this is the approach taken in

chapter 4. Since the algorithm is uncertain about the future relative positions and changes in direc-

tion, and assumes the worst possible scenario at the end of each linear segment, every TEB is larger

than the ones with smaller index in the list.

Algorithm 1 provides an example of an online planning algorithm, adjusted to work with a

provided TEB sequence. Algorithm 2 then summarizes the whole online planning and navigation

process.

Algorithm 1 Online Planning Algorithm Example (RRT)
1: Function Plan:
2: Given:
3: start, goal and a sequence of TEBs {ρi}
4: start and goal are safe
5: Initialization:
6: define Check(path,D) as the collision checker which declares collision when path has a dis-

tance less than D from the obstacle
7: define a tree and add start as the first node
8: while goal is not reached do
9: generate a random point i.

10: find its nearest neighbor point j
11: d( j) = tree depth of node j
12: initPath = linear path from i to j
13: check initPath to be collision free using a call to Check(initPath,ρd( j))
14: if initPath is safe then
15: add i to the tree and connect i and j with a line
16: end if
17: end while
18: return tree

Furthermore we can improve the performance and have strictly smaller TEBs, by replanning

along the path, since the predicted TEB is at its lowest value in the first line segments.
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Algorithm 2 Online Trajectory Tracking
1: Given:
2: V (r), gradient ∂V

∂ r from (3.6), and initial tracking system’s state s0
3: Initialization:
4: choose the planning system’s global state p0 which is equal to body frame’s state to induce as

little relative distance as possible
5: compute the relative state r0 in planning system’s body frame using p0 and (3.3)
6: calculate the sequence of TEBs {ρi} for r0 using (3.7) and (3.8)
7: call function Plan in Algorithm 1 and assign the returned tree to a variable called path
8: while planning goal is not reached do
9: Planning System Block:

10: update planning system state, pk for a time step ∆t
11: Controller Block:
12: compute optimal control based on rk−1 and ∂V

∂ r |rk−1

13: Tracking System Block:
14: apply control from line 11 to vehicle for a time step ∆t
15: the control and disturbance bring the system to a new state sk
16: TEB Block:
17: compute the relative state rk
18: update the sequence of TEBs {ρi} for rk
19: Replanning Block:
20: given {ρi} from line 16
21: if the current path is not safe then
22: call function Plan and assign the returned tree to path
23: end if
24: k = k+1
25: end while
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In addition to the better performance, PA-FaSTrack can easily be imbued with the extensions of

Original FaSTrack, such as [26, 21]. It should be noted that the online computational time complex-

ity of PA-FaSTrack is same as that of the selected online planning algorithm.
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Chapter 4

Simulation Results

We now demonstrate PA-FaSTrack in simulation on two different dynamical systems: a 5D car

model and a 4D double integrator. The first system is the running example. Precomputation of the

value function was done using level set methods implemented in the optimized_dp toolbox [25].

The offline computation time, using an AMD Ryzen 9 3900X processor, was approximately 6 hours

for a 50×50×18×40×100 grid in the first simulation, and 10 minutes for a 100×100×60×60

grid in the second simulation. The online planning algorithm in the first simulation is RRT∗ [5],

and in the second RRT. So the online time complexity of both simulations is the same as that of

RRT which is O(n logn), with n being the number of random sample points. The online planning

algorithms in the following examples are sampling based algorithms. These algorithms are very fast

but generate paths which are not necessarily optimal. In order to generate shorter paths one can

increase the number of random samples at the expense of online computation time. The designer of

course is free in choosing a more optimal online planning algorithm to be used with our computed

TEB.

A 60 by 60 meters planar environment was chosen. The simulation was done in MATLAB. Both

systems are equipped with a range sensor and none of them are aware of the obstacles before they

are in range. The robot’s dimension is ignored here, but it can easily be accounted for by adding its

value to the TEB.

4.1 5D Car Model

The tracking system in this example has 5D extended Dubins Car dynamics of the form (3.1) and

the planning system is modeled as the 2D single integrator as in (3.2) in the global frame, and as in

(3.4) in the local frame. This implies the relative system dynamics in (3.5).

The initial cost function is defined as l(r) = x2
r + y2

r . The parameters are chosen to be a ∈
[−0.5,0.5], |α| ≤ 6, |dx|, |dy|, |dα | ≤ 0.02, |da| ≤ 0.2. The planning system’s speed is equal to 1

m/s and the range sensor in this example is able to detect obstacles from 10 meters away.
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Fig. 4.1 shows a slice in the (xr,yr) subspace of value functions computed using Original FaS-

Track and PA-FaSTrack, on the left. It can be observed that PA-FaSTrack generates a smaller cost at

every state: the value function from PA-FaSTrack is entirely lower than that from Original FaSTrack.

The right contour map in Fig. 4.1 shows 4 representative slices of the left figure. Here, the

contours’ levels are chosen to be the minimum possible TEB from PA-FaSTrack (1.2), the minimum

possible TEB from Original FaSTrack (4.8), and another arbitrary level (3.2).

The smallest TEB from the Original FaSTrack was decreased in the planner aware version by

about 3.6 meters, from 4.8 to 1.2, a practically significant improvement.
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Figure 4.1: Comparison between value functions generated from Original FaSTrack and PA-
FaSTrack; The tracking system is a 5D Dubins Car and the planning system is a single integrator of
the form (3.1). Left: 3D representation of a slice in (xr,yr) subspace. From this figure it can be ob-
served that PA-FaSTrack always generates a lower cost for any given relative state. Right: Contour
map of the left figure. Three representative levels are shown among which are the minimum TEBs
from both methods. Values are rounded up.

Fig. 4.2 shows the behaviour of the tracking system, from start to goal in an unknown environ-

ment. Undetected obstacles are shown in dark red. Every time a new obstacle (or part of one) is

detected, it is marked light red, and the first 2 segments of the path are checked for safety to avoid

omitting paths that are safe once the system makes more progress toward the goal and senses more

of the environment. As long as the path is safe, the planning system follows the previous planned

trajectory. When the path is deemed unsafe, a new list of TEBs is extracted from the precomputed

lookup table. The TEBs in the list grow by index. Planning for a new safe path is done using this new

list. Note that the planned paths are not optimal due to the random nature of RRT and the relatively

few samples used.

In this example it can be observed that the tracking system is able to navigate safely between the

obstacles. Whereas for a system using the Original FaSTrack’s TEB, the path between the obstacles

would be impossible to pass.
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Figure 4.2: Planned and tracked path for the 5D extended Dubins car. The translucent blue bands
represent the TEB which is pre-determined for each segment when planning. These bands grow
each time a line segment ends. Every time the algorithm replans, the bands are calculated anew and
assigned to the following segments. When a new obstacle is detected, PA-FaSTrack checks the first
2 segments of the rest of the path with their respective bands for safety, and replans if any of them are
unsafe. Top Left: The robot is not aware of any obstacle. Top Right: Part of the bottom obstacle has
been detected, the planned path is validated, the previous path is no longer safe, replanning produces
the new blue dashed path. This process is then repeated in every figure, when new detected parts of
the obstacles make the previous path unsafe. Bottom Right: The completed path is shown. This path
can not be found using Original FaSTrack’s TEB. For brevity, only some of the replanning stages
are presented.
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In order to demonstrate the difference between Original FaSTrack’s TEB and that of the PA-

FaSTrack, Fig. 4.3 presents the guaranteed safe TEB extracted at every time instant. For the purpose

of better comparison, the actual realized tracking error is also shown in the figure. The TEB pre-

sented in this figure is different from the worst list of TEBs which the algorithm uses for replanning.

The worst list was shown by the blue bands in Fig. 4.2. The TEB in Fig. 4.3 can be interpreted as

the first in the list when replanning at every given time. The jumps in the TEB values are due to

sudden direction changes which can be mitigated using curved motion primitives in future works.

The guaranteed TEB from PA-FaSTrack is very close to the actual error, whereas the Original FaS-

Track’s TEB, while being a valid bound, is much larger than the actual incurred error and therefore

much more conservative.
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Figure 4.3: Tracking error bounds of Original FaSTrack, PA-FaSTrack, and the actual tracking error.
The tracking system is a 5D Dubins Car and the planning system is a single integrator of the form
(3.1). In case of Original FaSTrack, a single TEB is extracted and it remains constant throughout
the time. The PA-FaSTrack algorithm’s TEB demonstrates jumps in value when the path changes
direction. For small angles of rotation, this jump will be insignificant or even equal to 0. The differ-
ence between TEBs from the two methods can reach to more than 3 meters.

4.2 4D Double Integrator Model

The second example showcases PA-FaSTrack algorithm’s performance with the planning system in

(3.2), and a Double Integrator tracking system as in (4.1).
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ṡ =


ẋ

ẏ

v̇x

v̇y

=


vx

vy

ax +dx

ay +dy

 (4.1)

where (x,y) and (vx,vy) are position coordinates and velocities in x and y directions, respectively.

(ax,ay), the acceleration components, are the control inputs. The relative dynamics with respect to

the local frame are as follows:

ṙ =


ẋr

ẏr

v̇x

v̇y

=


vx − v̂

vy

ax +dx

ay +dy

 (4.2)

Model parameters are chosen to be a2
x +a2

y ≤ 0.5, |dx|, |dy| ≤ 0.02. The planning system’s speed

v̂ is 1 m/s.

In this example, the sensor that the autonomous system is equipped with has a range of 20

meters. When a new obstacle is detected, only the first line segment is checked for safety. Fig. 4.4

shows the behaviour of the tracking system.

In this example it can be observed that the tracking system is able to navigate safely between

the obstacles. Whereas for a system using the Original FaSTrack’s generated TEB (4.8 meters), the

space between the bottom obstacles would be deemed unsafe, and the planning algorihtm would not

be able to find any safe path.

Fig. 4.5 shows the TEB from the original and modified methods at every instance of time.

The actual tracking error is also shown in the figure. The same observation as the first example is

repeated here: there is a great difference between the Original FaSTrack’s predicted TEB and the

actual error, while the PA-FaSTrack’s TEB is very close to it. The jumps that are visible in both

actual error and PA-FaSTrack’s TEB are due to the sharp turns in the path. For small changes in

path angle, this jump can be very small or even close to 0. But sharp turns induce a large initial error

which will be immediately controlled by the optimal controller and the TEB decreases quickly. The

first jump in this figure does not represent a turn. It represents the time which the tracking system’s

acceleration takes to bring the speed of the tracking system close to that of the planning system.
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Figure 4.4: Planned and tracked path for the 4D double integrator tracking system. Translucent blue
bands represent the worst list of TEBs for each segment. The band grows with every segment change
because at the time of replanning relative states and direction changes in the future are not known.
When replanning, the algorithm uses all the bands. But for validating the path when a new obstacle
is detected, it only uses the band of its current line segment. At Time = 0 which is not shown here
the robot is not aware of any of the obstacles. Top Left: The 2 bottom obstacles are detected, the first
line segment of the planned path is validated and deemed safe so there is no need for replanning. Top
Right: The third obstacle is detected, the immediate line segment is not safe, replanning produces
the new blue dashed path. Bottom: The tracking system follows the path to the goal safely.

24



0 10 20 30 40 50 60

Time (s)

0

1

2

3

4

5

T
ra

ck
in

g
 E

rr
o
r 

B
o
u

n
d

 (
m

) FaSTrack Error Bound

PA-FaSTrack Error Bound

Actual Error

Figure 4.5: Tracking error bound of Original FaSTrack and PA-FaSTrack vs the actual realized
tracking error; The tracking system is a 4D double integrator. This figure shows the values extracted
from the value function at every given time. In case of Original FaSTrack, a single TEB is extracted
at the beginning and it remains constant throughout the time. The difference between TEBs from
the two methods can reach to more than 3 meters. The jumps visible in the PA-FaSTrack TEB and
the actual error are an indication of the turns. The first jump however corresponds to the required
sync of velocity and represents the time it takes for the tracking system’s acceleration to increase
the velocity from 0 to the desired value.
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Chapter 5

Conclusion and Future Works

We provided a framework for computing a sequence of TEBs which can be used in conjunction

with real time planning algorithms with line segments as motion primitives. These TEBs were cal-

culated by defining relative dynamics between a tracking and a planning system, which represent

the autonomous system and motion along a planned path respectively, in the local frame of the

planning system. By expressing the tracking system’s state in this coordinate frame, and assuming

the planned paths consist of a sequence of line segments, the guaranteed TEB computed through the

associated pursuit evasion game formulation is much smaller compared to previous formulations of

the same problem. We demonstrated the improvement of our algorithm compared to previous works

using two numerical examples with different tracking system dynamics.

The precomputation time complexity, which is exponential with respect to the dimensions, the

use of only linear motion primitives, and the assumption of known agent dynamics can be among

the current method’s limitations. Future work includes the study of other motion primitives, such

as curves and dynamic primitives, and providing a general framework for other classes of planning

algorithms. It is also left for future works to combine the PA-FaSTrack algorithm with methods such

as [21, 27].
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