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Abstract 

In recent years, there has been a growing interest in automated tracking and 

detection of sports activities. Researchers have shown that tracking and monitoring the 

workout activities aids in keeping the individuals’ motivation by providing feedback and 

information about their progress and achievement throughout their exercise program. In 

this regard, wearable devices are great tools for monitoring the exercise without 

imposing any additional limitation on users’ performance. This study presents a novel 

multipurpose wearable device for automatic weight detection, activity type recognition 

and count repetition in sports activities such as weight training using various 

classification technique. The autonomous weight detection and activity recognition 

device would maximize workout efficiency and prevent overreaching and overtraining. 

The device monitors weights and activities by using an Inertial Measurement Unit (IMU), 

an accelerometer and three force sensors mounted in the glove and classifies them by 

utilizing developed machine learning models. For weight detection, different classifiers 

including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and Multi-

layer Perceptron Neural Networks (MLP) were investigated. For activity recognition, we 

utilized K Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), and SVM 

models. Experimental results indicate that SVM classifier can achieve the highest 

accuracy for weight detection application and RF can outperform other classifiers for 

activity recognition application. The results reveal that the suggested wearable device 

can provide in-situ accurate information regarding the lifted weight and activity type with 

minimum physical intervention. 

Keywords:  Sport wearable; Force sensor; Inertial measurement unit; Machine 

learning; Support vector machine; Random forest; Neural networks 
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Chapter 1.  
 
Introduction 

1.1 Background 

Weight training has received increasing attention in recent years and has been 

among the top ten activities in fitness trends worldwide surveys since 2007 [1] due to the 

massive benefits providing for human health including movement control, functional 

independence, cognitive abilities, body fat and blood pressure reduction, increasing the 

cross-sectional areas of muscle and connective tissues [2]–[4], prevention and 

management of type 2 diabetes [5], and emotional well-being [6]. 

The popularity of weight training in fitness trends has caused a great market shift in 

wearable devices due to their different sensing capabilities in providing end-user with 

many applications in activity monitoring. The reason for the huge interest to monitor 

weight training activities using wearables underlies the growing need in improving and 

individualizing the design of training and exercise programs to maximize the 

performance progress and efficiency and avoid overtraining and overreaching [7], [8]. 

Besides, studies have shown that visualization of personal data during workout can bring 

motivation and adherence to help users to improve workout plans and consequently the 

state of their health [9], [10]. 

There exist different types of wearable and smart devices with various applications 

and capabilities in sport applications. Wearables can be categorized into embedded 

equipment, smart textiles and body worn devices. Among these types of sport 

wearables, body worn devices are the most popular ones (e.g., fitness trackers, smart 

watches, smart gloves). The goal of these different approaches in wearable technology 

for sport purposes is enabling the users having the best possible way of monitoring their 

performances without hindering any movement. This is dependent on the design factors 

like type of the sensor and its placement on a body [11]. The application of the wearable 

defines what sensor is required to be utilized in the system. Due to the various working 

principles of sensors, sensors position on body is contingent to the assessment of 

finding the body part which can provide the highest number of accurate data for an 

application. The mostly used sensors in sport wearables are accelerometers, 
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gyroscopes, magnetometers, pressure sensors, heart rate sensors and pedometers. The 

working principles, varieties and deployment of these sensors are discussed below.   

1.1.1 Accelerometers 

Accelerometers have been widely accepted as useful and practical sensors for 

wearable devices to measure and assess physical activity. Piezoresistive, piezoelectric 

and differential capacitive accelerometers are the most common types of accelerometers 

that have been used in wearables. An accelerometer works based on a mechanical 

sensing element which produces an output voltage proportional to the acceleration. Any 

change on mechanical element causes a change in an output voltage and measuring the 

voltage is proportional to the value of acceleration. 

Small size, low cost, availability, and sensitivity of the accelerometers have made 

them a prominent choice in sport wearables.  One of the areas that accelerometer has 

been universally used at, is activity classification and posture correction. The recorded 

longitudinal data is suitable for identifying activity patterns and in some studies posture 

patterns [12]–[16]. Another area of accelerometer employment in sport wearables is 

energy expenditure determination. Studies have shown that the magnitude of 

acceleration has some relations with the intensity of measured activities which can be 

used to estimate energy expenditure [17].    

1.1.2 Gyroscopes 

Gyroscope is another common sensor used in wearable technologies. They measure 

angular velocity and acceleration. These sensors are listed as Ring laser gyroscope, 

Fiber-optic gyroscope, Fluid gyroscope, and Vibration gyroscope. MEMS (micro 

electromechanical sensor) gyroscope sensor are the poplar ones in wearable which 

deploys vibration gyroscope in its system. Their working principle is based on a 

combination of mechanical oscillation and Coriolis force. The Coriolis force is the inertial 

force that acts in a direction perpendicular to the rotation axis. The movement produces 

a potential difference that is converted into very low-current electrical signals. 

Gyroscopes mostly are combined with acceleration sensors in inertial measurement unit 

sensors (IMU) to gather the orientation data in a wearable system [18], [19]. 
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1.1.3 Magnetometers 

Magnetometers, as the name suggests, measures the strength and direction of the 

magnetic field. This sensor is fused with accelerometer and gyroscope in IMU sensors to 

complement them in finding the orientation and heading of a system [20]. 

1.1.4 Pedometers 

Pedometers are the simplest sensors in wearable systems which are used to count 

steps. There are two types of pedometers: mechanical and electrical. Modern 

pedometers are partly electronic. There is a metal pendulum inside a pedometer wired 

into an electronic counting circuit by a spring. There is no flow through the circuit while 

the system is at rest. By taking a step, the pendulum swings across and touches a metal 

contact, completing the circuit and allowing current to flow. The current flow activates the 

circuit and adds one to step count. After taking a step, the spring in the system helps the 

pendulum swing back again and makes the circuit open, effectively putting the 

pedometer at rest.  The number of steps during motion will be converted to walking 

distance in miles or kilometers.  

1.1.5 Heart Rate Sensors 

There are two primary types of heart rate sensors in sport wearable, 

electrocardiography (ECG) and photoplethysmography (PPG). ECG sensors are mostly 

used in chest straps. They include electrodes to monitor and measure tiny electrical 

activities of heart when it contracts. The sensor data is then sent to be analyzed and 

used to calculate heart rate. PPG devices are mostly used in wristbands. They contain 

photodiode (a light-sensitive sensor) and some numbers of LEDs. LEDs send light into 

body tissue and the system records the absorbed light by tissue and reflected light to the 

photodiode. The amount of absorbed light is used for measuring a blood flow and further 

hear rate. Heart rate measurement is used to determine the energy expenditure in 

wearables [21], [22]. 
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1.1.6 Pressure Sensors 

The study over the application of pressure sensors in wearables is one of the 

indispensable topics in this industry since these sensors are flexible, lightweight, 

affordable, and sensitive enough that make them suitable for wearable devices. There 

exist a wide range of force and pressure sensors with different characteristics. Many 

variables involve in categorizing all types of pressure and force sensors. The most 

general and common kinds of them are piezoelectric sensors, piezoresistive sensors, 

capacitive sensors, and barometric MEMS. A piezoelectric pressure sensor is a device 

that uses the piezoelectric effect, which causes internal polarization in the piezoelectric 

material of the sensor under pressure. The generated polarization produces electrical 

charge on the crystal of the material proportional to the applied force. These devices are 

applicable for dynamic applications since their sensitivity are extremely high. This 

characteristic of the sensor has made it practical in heart rate monitoring wearables[23]. 

The working principle of piezoresistive sensors are based on piezoresistive effect which 

can cause a change in the electrical resistivity of a semiconductor or metal when 

mechanical strain is applied. The simplicity and robustness of piezoresistive sensor have 

made them very promising in different sport wearables applications such as activity 

recognition [24], [25]. Capacitive pressure sensors work by measuring the changes in 

the material capacitance when a force is applied. They are more accurate than 

piezoresistive sensors however, their sensor conditioning circuit is quite complex. They 

are extensively employed in gesture recognition application of wearables[26]. Barometric 

MEMS are practical in measuring a change in air pressure or inside a liquid when 

hydrostatic pressure differs. Their application is usually when a user goes through a 

different elevation during their activities. There are some other types of force sensors 

which are based on magnetic fields or lights. They mainly work by measuring the 

displacement that the applied force generates on an elastomeric component of the 

device. They are custom-made and just for scientific purposes and literatures [27]. 

1.2 Motivation and Research Objectives 

Keeping up with the regular training and expanding the practice routine are the two 

main challenges in the sport of weight training. It has been seen that the majority of 

individuals do not hold the suggested level of activity due to the lack of motivation after 

https://en.wikipedia.org/wiki/Piezoelectric_effect
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certain amount of time starting the exercise. Researchers have proven that automatic 

exercise tracking can significantly improve the individual’s motivation in maintaining their 

activity program [28], [29]. Beside activity tracking, it is also critical to have control over 

the carried weights in the feedback system during the workout. The free weights carried 

by a user during weight training exercises exerts certain forces on their palm, which can 

affect the musculature near the elbow down to the fingertips. The imposed pressure can 

cause a variety of injuries when the weight is beyond user fitness level. As of these 

issues there is an essential need in developing a wearable platform to recognize the 

type of activity, holding weight and number of repetitions automatically.  

Among all the introduced sensors, inertial measurement units (IMU) and force 

sensors have been utilized in several research studies to produce data for developing 

classifiers to track and monitor human activities. In this respect, many studies have 

focused on recognizing daily activities such as walking, sleeping, standing, and cycling. 

Unfortunately, weight training, which has great health benefits, is mostly excluded in 

products and studies due to the large dataset availability requirement. Since there are 

relatively smaller number of people doing weight training, in comparison with activities 

such as walking and running. There have been handful number of studies aiming weight 

training activity recognition. In one of these studies conducted by Shen C et.al [30], the 

authors explored different machine learning methods using smartwatch sensor data 

attached to participants' arms for collecting 15 types of exercises data to detect both 

cardio and weightlifting workouts from non-workout activities and counting repetition. 

They utilized a two-stage classifier which automatically segments user’s activities, 

distinguishes workout activity from non-workout activity, and ultimately detects the type 

of workout. They also used the naive peak detection algorithm to count repetitions. The 

average of 90 percent precision and recall for classification problem and average error of 

1.12 reps out of an average of 9.65 for repetition counting algorithm are reported in this 

study. In another study conducted by Qi et al. [31] the authors utilized two 

accelerometers on wrist and chest and an ECG electrode on the chest to gather data 

during three types of activities including aerobics, static postures and ten types of typical 

free weight movements. The framework is divided into two layers based on the free 

weight (anything you can hold in hands and work against gravity such as dumbbells) and 

non-free weight (exercise machines) boundary. In this study, a type of binary SVM, 

called OC-SVM, is applied in the first layer to separate free weight and non-free weight 
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activities, whereas in the second layer, a Neural Network and Hidden Markov Model is 

adopted to classify the non-free-weight and free-weight activities, respectively. Their 

proposed system reached an accuracy of 90 percent in predicting the type of the 

performed activity.  In the study conducted by Akpa A et al [32], a glove prototype has 

been developed with deployment of 16 force-sensitive resistor (FSR) sensors on the 

palm to classify ten types of gym activities and count repetitions. They developed 

decision tree, random forest, SVM and KNN models for the classification study and 

assessed their performances to find the most accurate model. Their developed model 

demonstrated an average accuracy of 82% for activity tracking model. An average 

counting error of 9.85% with a standard deviation of 1.38 with peak detection and 

elimination algorithm for count repetitions was observed. Some commercial products 

have appeared in the market for mobile health devices such as the “Apple HealthKit” and 

“Fitbit”, which exploit both wearable devices and smartphones. However, users requ ire 

to start and stop activities manually since they are not able to segment and identify 

activities automatically. There are some other commercial products like ‘‘Strenx” by 

GymWatch, ‘‘PushBand” by PUSH, and ‘‘Wristband 2” by Atlas that provide feedback 

about used free weights, however they require users to manually enter the weight they 

pick up. Entering weights manually is inconvenient and forgetting to change the weight 

for each exercise can lead to inaccurate feedback. There exists a wide range of force 

transducers to extract information about force in different wearable devices applications. 

Most of the sensors found in literature belong to a sensor group which employs resistive 

polymer-thick-film (RPTF) technology such as force sensing resistors (FSR), Flexiforce® 

sensors, and other customized RPTF sensor arrays and matrixes [33]. As an instant, in 

[34] an arm brace with 8 FSR sensors was developed with the intention of developing a 

wearable which can model gripping force between zero to 20 N and identifies 

physiological changes that happens when weak muscular contractions take place. They 

achieved average RMSE of 5.48 N with a deviation of 2.17 N. [35] introduced a new 

methodology using FSR sensors for controlling robotic prosthesis in practical settings 

such as Cybathlon competition. The accuracy improvement technique was based on 

dividing the 11 different force grips according to their opposed thumb and non-opposed 

thumb direction. The final precision was reported as 89 percent. [36] was dedicated to 

assessing the lower limb movement such as thigh or ankle for gait detection using FSR 

technology. They were able to predict different walking modes and gait events from the 

thigh with high accuracy. FSR sensors are also utilized in the study of automatic 
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detection of dumbbell weights. In [37] a wristband consisted of piezoresistive sensors 

and an IMU sensor has been utilized to develop a machine learning model for detection 

of three dumbbell weights  0.2Ib,3Ib and 8Ib . Participants were recruited and asked to 

perform bicep curl and hammer curl activities and their data were collected while 

performing those activities. LDA classifier was developed to detect these dumbbells 

weight while performing those activities. The model reached an averaged validation 

accuracy of 88%. 

Although there have been studies in the field of activity recognition and weight 

detection, there is a significant lack of capability of simultaneous recognition of weight 

and activity during the exercise by a single smart device. Performing multiple analysis on 

a single glove reduces any arising discomforts from using multiple wearable devices and 

brings wider range of information for the user throughout the exercise without hindering 

activities.  In this study we developed a multitask wearable device which is capable in 

identifying nine common weight training activity types, counting the repetition of each 

activity, and detecting the weight lifted by the user in an automatic manner. The 

proposed system can detect the weight in any common orientation the weight held by 

the user instantly. The activity recognition model can recognize nine different most 

common practices including machine based, upper body and leg exercises by using only 

a single IMU embedded in the wrist of the glove with high accuracy, precision, and 

recall. The proposed platform consisted of three integrated Flexiforce sensors, 

accelerometer and IMU mounted on a glove for taking the signal measures during the 

exercise. To prepare the signal data for the machine learning module, the 

microcontroller unit (MCU) is employed for reading and sampling the sensors data and 

communicating to the mobile app for storing them. The most mainstream machine 

learning models are trained for the two under investigated objectives and their 

performances are assessed by the evaluation metrics to obtain the most practical 

models for the designated applications. The steps that were taken in this thesis to reach 

to the goal of the study are listed as the four objectives in the following:   

Objective 1: Design and development of a multifunctional wearable sensor platform 

using the integration of pressure sensors, an accelerometer and an IMU into a glove to 

create a sensory system. 
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Objective 2: Investigation and evaluation of the performances of different machine 

learning models for automatic weight tracking in sport settings  

Objective 3: Investigation and evaluation of the performances of different machine 

learning models in autonomous recognition of common strength training activities. 

Objective 4: Proposing a method to count the repetition of the recognized activity to 

utilize in the developed glove. 

1.3 Thesis Outline 

The body of this thesis is organized as the following chapters: 

Chapter 2. In this chapter literature review is conducted on advantages and   

shortcomings of the studies over sensory systems. The methods and machine learning 

models employment for human activity recognition, counting activity repetition, and force 

monitoring in wearables have been comprehensively studied and their potentials usage 

for our study has been explored. 

Chapter 3. This chapter describes the design and development of a smart multipurpose 

wearable device for monitoring force and motion at gym using piezoresistive sensors, an 

accelerometer and an IMU.  Further, three common machine learning models have been 

investigated with the purpose of instant weight detection by collecting force sensors data 

from participants while performing designated activities. The models’ performances have 

been evaluated to find the most feasible classifier for the objective of the study. 

Chapter 4. In this chapter, Euler angles data from twelve participants right wrists during 

performing of nine common activities are exploited for training an accurate and reliable 

machine learning model for activity recognition study. Different models are compared, 

and the best model is introduced. Methods such as data segmentation, feature 

extraction, model training and model assessment are explained in this chapter and the 

results are discussed. An algorithm for counting sports repetitions has been investigated 

and its performance has been assessed.      

Chapter 5. This chapter concludes the thesis by discussing how the objectives of the 

thesis were achieved. 
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Chapter 2.  
 
Background 

1.4 Activity Tracking in Wearables 

Activity tracking and recognition is necessary, e.g., in creating context-aware 

conditions and physical therapies. Assessing physical activities intensity and types 

provides better understanding of an individual’s behaviors and habits and expediting 

lifestyle change process. Physical inactivity can be a great risk factor in cardiovascular 

disorders, high blood pressure, diabetes, anxiety and depression and musculoskeletal 

disorders. In the case of senior people, activity tracking can act as a life changing device 

by detection of long-time inactivity periods or fall events [38]. Early detection of fall 

events can prevent enfeeblement and fatal outcomes caused by inactivity due to the 

inability of recovery after the fall. Therefore, sensitive activity recognition systems are 

required for detecting these critical times and events [39]. 

In recent years great attention has been devoted to human activity recognition (HAR) 

research due to the benefits it provides in different fields such as the ones mentioned 

earlier. Wearable IMU sensors have been the pioneer sensors in this field since they are 

very power efficient, non-intrusive, cheap, and compact and they can easily be mounted 

on different parts of a body to measure a wide range of motions during physical activity. 

IMUs can be exploited to extract diverse types of variables such as triaxial acceleration, 

triaxial angular velocity, magnetic field measurements and orientation and position of a 

body. Different combinations of these sensors’ variables have been investigated in HAR 

research. These variables have been collected from many parts of an individual body 

like head, arm, wrist, waist, hip, knee, and ankle. In some studies, multiple sensors have 

been mounted on different parts and combinations of their data have been assessed to 

check if the overall accuracy of the model enhances in this case. In this chapter these 

literatures will be reviewed.   
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1.4.1 Process of Human Activity Recognition 

Study of human activity recognition has a great similarity with pattern recognition 

problems which corresponds to specific stages starting from data collection and ending 

with classification model. This process requires a set of steps of transformations of the 

sensors raw data to create practical human activities classification models. The HAR 

methodologies with wearable IMU can be categorized into two groups of approaches. 

One approach focuses on shallow machine learning algorithms (e.g., SVM, KNN, 

decision tree, random forest). [40] While the other approach focuses on the use of deep 

learning algorithms (e.g., CNN, RNN, RBM, SAE, DFN, and DBM). [41] The main 

difference between them is based one the way how feature extraction is being carried 

out. In conventional approach (shallow algorithms), feature extraction and selection are 

made manually, while in the deep learning approach, feature selection is made by the 

algorithm itself [42]. Figures 1 and 2 show the steps followed in both approaches. [43] 

From the figures, it can be seen that the conventional approach has two extra steps 

segmentation and features. We will be focusing on the conventional approach in this 

thesis since for performing deep learning algorithms a huge amount of data is required 

and lack of enough data can lead to model overfitting. Therefore, for the amount of data 

we were able to gather we concluded conventional models outperform deep learning 

models.   

 

Figure 2-1. Steps in conventional machine learning models 
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Figure 2-2. Steps in deep learning models 

1.4.2 Data Collection 

HAR data collection process involves with gathering data in the form of time series. 

Accelerometer, gyroscope and orientation data for example can be shown with sets of 

vectors like 𝐴𝑐𝑐𝑖={𝑎𝑥𝑖 , 𝑎𝑦𝑖 , 𝑎𝑧𝑖}, 𝐺𝑦𝑟𝑜={𝑔𝑥𝑖 , 𝑔𝑦𝑖 , 𝑔𝑧𝑖}, 𝐸𝑢𝑙𝑒𝑟 𝑎𝑛𝑔𝑙𝑒𝑠={ 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖} where 𝑥, 𝑦 

and 𝑧 represent axes  and 𝑖={1,2,3, … 𝑛} represent number of data samples. 

Generating HAR classification models, considering elements such as time, frequency 

rate, sensor placement and type of data is unavoidable. Studies have performed data 

collection in a wide range of sensor frequency rate. Selecting a right frequency rate 

plays an important role in producing an efficient classification model since proper 

frequency rate provides more relevant and better information about the human activities. 

Studies have employed frequencies among 1𝐻𝑧 to 200 𝐻𝑧 for the IMUs [44]– [49].  

Another important factor with great impact on classification model accuracy and data 

quality is a sensor placement on a body because signal patterns are quite different on 

each body part and some parts can deliver higher quality information about activities. 

Research has been done on hip, ankle, chest and waist [44], [50]– [55] and although 

some of them have gained great accuracy since these measurement sites are less 

compliant, they are not practical solution for real world application. Due to the wide 

availability of wristbands, smartwatches, and armbands because of their user-

friendliness and comfortability they seem feasible solutions for real world 

applications[56]. In a few next following sections, these studies will be reviewed.   
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Finally, the types of data used in data collection is another factor to take care of. 

Studies have used combinations of data to generate classification models including 

acceleration and gyros, IMUs data along with heart rate sensors [57], [58] IMUs along 

with ECGs (electrocardiogram) [59], IMUs with EMG (electromyography) [60]. Some 

studies used just one type of sensor like IMUs in order to provide more comfort for the 

users and to create a more realistic situation in their studies.  

1.4.3 Segmentation 

The first step for performing segmentation is data preprocessing. Preprocessing of 

raw data is required to minimize the noise effects due to changes in the users’ behavior, 

movement, and environmental conditions like malfunctioning of gym equipment. The 

most common noise elimination method are lowpass filters, moving average filter, and 

Kalman filter [61]– [63]. 

The reason for doing segmentation is to divide data into segments that share the 

same characteristics, known as time windows or sliding windows. Sliding window-based 

segmentation is often used to separate sensor signal data into meaningful 

subsequences over time. This process is a prerequisite of the feature extraction process. 

Each segment is analyzed over its time interval. Time intervals or sliding windows can 

be fixed or variable size. This size should be set in a way that can contain sufficient 

characteristics to allow the recognition of a human activity at a given moment. The 

sample size of the variable length windows can be achieved based on changes in the 

signal mean and variance while the main element in defining the window size is the 

frequency rate of the data for the fixed size window. Different frequency rates have led to 

achieve different window sizes in studies [64]–[66]  

Segments may be overlapping or non-overlapping windows. Overlapping means 

segments from the previous window intersect the samples from the next window. For 

example, window with 50 percent overlap contains half of the information of the previous 

window. However, in non-overlapping segments, there is no intersection between each 

data subgroup and segments. 
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1.4.4 Features 

Feature is referred to the useful information each data segment provides. Features 

are quantitative measures that are extracted through the feature extraction process. 

They can be obtained from domains including time and frequency domains. 

Features extracted from time domain employs mathematical functions to gain 

statistical information from the signals however, featured extracted from the frequency 

domain employs mathematical functions to capture repetitive patterns of signals and 

information regarding the natural periodicity of the activities. Common features from the 

two domains have been listed below.  

 

Figure 2-3. Statistical features in Time-domain 
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Figure 2-4. statistical features in Frequency-domain 

 

Feature extraction from time domain is more common than feature extraction from 

frequency domain since extracting features from frequency domain requires some 

computations such as fast Fourier transformation or Wavelet transformation which cause 

the system to spend more time to extract a feature from a signal comparing with 

extracting features from time domain.  

Sometimes in HAR research, dimensionality reduction is required. Dimensionality 

refers to the number of features extracted in feature extraction process, where each 

feature shows a dimension. Having a huge number of features manifests two issues. 

The first problem involves with the data processing cost and computation time to extract 

features and the second with the accuracy of the classification models. High 

dimensionality can create overfitted classification model [67]. In this regard, the data 

dimensionality reduction process must be performed to remove irrelevant features and 

select features which can improve the accuracy of classification models. There are two 

methods for data dimensionality reduction. First, deals with data after feature extraction 

is done while the second method deals with data while feature extraction is being 

performed. 

Methods that are applied to features after extraction are called feature selection 

techniques.  In general, feature selection can be categorized into three groups:  filter 

methods, wrapper methods and hybrid methods [68]. These methods work by 

calculating linear or nonlinear correlation among features and discard features with high 

correlation from dataset. Selection of the right methods depends on the types of inputs 

and outputs data in the classification model. For example, in HAR context since input is 

numerical and output is categorical filter methods are used widely. In this study [30], two 
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filter methods univariate statistical test and the tree-based feature ranking have been 

employed to select the best features. These methods rank a set of selected features 

according to the estimated weights of each feature obtained from a special statistical 

measurement. Methods that work during feature extraction process, utilize combinations 

of features, and compress them to reduce the dimensionality of data. The most used 

techniques in the application of HAR are Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), and Kernel Discriminant Analysis (KDA). These methods 

usually are used in larger dimension of data[43]. 

1.4.5 Classification 

In this section, the most common classification techniques will be introduced and 

discussed.  

1.4.5.1 KNN 

KNN which stands for k nearest neighbors is the most basic algorithm in classification 

problems. In this model, learning phase is not required but considerable amount of 

storage is necessary to store the whole dataset. This algorithm classifies new 

observation based on similarity of the features of new data and the whole dataset. 

Euclidian distance between the new data and training set is determined in this algorithm 

to measure the similarity. This new observation is assigned to a class through a majority 

vote of its k nearest neighbors. In this study [69] KNN algorithm achieved a mean of 88.9 

true positive rate and it outperformed LDA and QDA algorithms in recognition of 30 

different gym activities using two IMU sensors mounted on left wrist and torso. Although 

KNN has done a great job in this study, it had poor results in [57]. It achieved 77 percent 

accuracy in recognition of 7 strength activities using two sensors one smartwatch and 

one heart rate sensor. SVM and DNN outperformed this classifier. 

1.4.5.2 Support Vector Machine 

Support Vector Machines (SVMs) is a well-known machine learning model that is 

generated from statistical learning theory. This model working principal is based on 

minimizing a cost function while maximizing the margin between model hyperplanes that 

separate data classes. Basically, SVMs are linear classifiers and used for binary 

classification problems. Using kernel functions to map the data space to high dimension 



16 

feature space is a common practice for using SVM model in non-linear classification. 

Furthermore, for multiclass classification problem pairwise classification is being used, 

however this can make the process time consuming in applications requiring large 

amount of data.  

SVM model has been used widely in the application of HAR in both sedentary 

activities and gym activities. In [31], SVM was used in a two layers recognition 

framework for distinguishing free weight from non-free weight activities in the first layer 

and detection of the types of activities in the second layer. This study has employed two 

accelerometer sensors on wrist and chest and ECGs to monitor heart rate. SVM has 

been used in the first layer and has achieved the accuracy of 85%. In another study [70], 

SVM model has achieved 99% accuracy in recognition of six physical activities using 

motion sensor on chest in Leave-one-subject-out cross-validation while 86% accuracy 

when using Leave-other-subjects-out cross-validation. This shows SVM model can 

reach high accuracy when using in HAR application. 

1.4.5.3 Decision Tree 

Decision Tree is another extensively used machine learning method in HAR studies 

[71]– [73]. This model has been used widely in recognition of sedentary activities like 

walking, cycling, seating, and standing. Although the performance of this model has 

been never as poor as KNN model, they have a limitation to reach better performance 

without overfitting. This problem lies in the size of a tree when is being trained. The 

deeper the tree, the higher probability of the model to overfit. This drawback of this 

model has been led to emerging of a new type of model called Random Forest (RF) 

which is an ensemble model of decision tree.  

1.4.5.4 Random Forest 

Random Forest is made of a combination of Decision trees. Random Forest uses a 

method called bagging to solve the overfitting problem of decision trees. This method 

selects random subsets of features with replacement each time and train a Decision 

Tree model using that subset and afterward the prediction is made based on a majority 

vote of Decision Tree models results. This makes this model very powerful among 

traditional models. This model has achieved great results in the context of HAR. In a 

study that Mircosoft has performed using arm band motion sensor accelerometer and 
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gyroscope data called RecoFit [74], they achieved accuracies of 99%, 98%, and 96% of 

recognition of 4, 7, and 13 exercises, respectively, and exercises repetition counting 

accuracy of 93%. Despite the great results they have reached, this model uses window 

size of 5 seconds in segmentation which is quiet long time for real life experiences. In 

[75], four sensor’s orientation data from armband, glove, chest strap and one mounted 

on a dumbbell was gathered and random forest model was applied for recognition of 

Unilateral Dumbbell Biceps Curl in five different fashions. This model gained 98.2% 

performance accuracy after applying 10-fold cross validation. Random Forest has 

obtained great accuracy even in sedentary activities with accelerometer, gyroscope, 

heart rate sensor and pedometer data using one smart watch. This model outperformed 

SVM, KNN and Decision Tree with 99% accuracy [76]. The great performance of RF 

model in these studies have made this model countable and promising in HAR context 

and especially in gym exercises recognition.  

1.5 Force Tracking in Wearables 

Beside wearable IMU approach, force sensors have obtained ever-increasing 

attention in wearable studies. Most studies in the context of force tracking have focused 

on an approach called force myography (FMG) which is a non-invasive procedure that 

investigates musculotendinous complex (MC) stiffness changes happen during muscle 

expansion and contraction and interprets the position or movement of a corresponding 

limb.  The study of a position or movement of a limb can be used in physical activity 

monitoring. By placing force transducer on a targeted MC, changes in stiffness can be 

monitored. The targeted MC can be identified by squeezing our hands and using our 

fingers to feel the stiffness of extensor muscles. Then, the fingers can be replaced with 

force transducers [77]. Great results obtained from FMG studies have provided an 

opportunity for utilizing these popular forces transducers in other force tracking studies 

which measure applied direct forces rather than measuring a specific limb movement 

caused by applied force. Both types of research will be reviewed in the following. 

There exists a wide range of force transducers in FMG research. Most of the sensors 

found in literature belong to a sensor group which employs resistive polymer-thick-film 

(RPTF) technology such as force sensing resistors (FSR), Flexiforce® sensors, and 

other customized RPTF sensor arrays and matrixes. Rest of the studies have utilized 



18 

other types which are pneumatic, capacitive-optical fiber, piezoelectric-, and textile-

based sensors.    

The majority of FMG research have focused on the detection of upper limb 

movements to predict hand gestures. In these studies, an array of FMG sensors around 

forearm or wrist muscles have been placed and the sensor signals during performing 

variety of hand gestures have been gathered. In the study of [78] recognition of three 

sets of 48 gestures including 16 grasping tasks, 16 sign language hand gestures and 16 

hand and fingers movement were investigated using an array of 16 FMG sensors on 

either the forearm or the wrist. The study achieved 96.7% and 89.4% in cross-validation 

and cross-trial accuracies. Although great results have been obtained from gesture 

recognition studies, there existed an ambiguity in the optimal sensor location and the 

number of sensors for the application. In [79] this problem has been investigated. The 

results represented that the high accuracy gained by a large spatial coverage of FMG 

sensors can be approximated by lower spatial coverage by placing sensors on an 

optimal location. These great results in application of human computer interaction drew 

researchers’ attention to explore this method in rehabilitation application by making a 

wearable that can be useful for motor function improvement after injury. In [80]  an arm 

brace with 8 FSR sensors were developed with the intention of developing a wearable 

which can model gripping force between zero to 20 𝑁 and identifies physiological 

changes that happens when weak muscular contractions take place. They achieved 

average RMSE of 5.48 𝑁 with a deviation of 2.17 𝑁. In other studies, in rehabilitation 

application the deployment of FMG sensors in prosthetic were explored. [35] introduced 

a new FMG methodology for controlling robotic prosthesis in practical settings such as 

Cybathlon competition. The accuracy improvement technique was based on dividing the 

11 different force grips according to their opposed thumb and non-opposed thumb 

direction. The final precision was reported as 89 percent. Other studies of FMG 

methodology were dedicated to assessing the lower limb movement such as thigh or 

ankle for gait detection. [36] were able to predict different walking modes and gait events 

from the thigh with high accuracy. 

Great results obtained from FMG sensors made these sensors practical in other 

studies for force tracking and analysis. In one of the studies carried out by Komi et al 

[25]. Three types of thin, flexible force sensor were examined for grip force 

measurement during a golf shot under different loading conditions. The comparison of 
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three sensors revealed that the Flexiforce sensor showed a durable and repeatability 

capability in golf grip force measurement application. In [81], force sensors are used for 

creating a backpack with pressure sensors which can measure and predict forces that 

are applied on shoulders and back to avoid excessive forces and their corresponding 

injuries. They encountered repeatability issue for long-time measurement. In [24], they 

built a smart glove consisted of sixteen Flexiforce sensors on hand palm. Their purpose 

was to detect 10 common fitness activities by reading pressure distribution on a palm. 

They were able to gain 88.90% of the F score for overall activity recognition and average 

counting error of 9.85%, with a standard deviation of 1.38 for repetition count system. 

Other types of studies that have employed FMG sensors in direct force measurement 

include gait cycle detection and gait assessment based on insole foot pressure 

measurement [82]. 

1.5.1 Force Sensors Processing  

The processing technique in force sensor wearables is the same as the technique 

use in IMU wearables. It consists of the data collection, segmentation, feature extraction, 

feature selection and machine learning model development. Classification method in 

machine learning is used for discrete states predictions and regression method in 

machine learning is used for continuous hand movement detection. 

1.5.1.1 Classification 

 Linear discriminant analysis (LDA), support vector machine (SVM) are the two most 

common classification models used in force sensing application. LDA classifies a new 

observation data by estimating the probability of the data belonging to a class. The class 

with the highest probability will be chosen as the output of the observation. The 

probability is calculated based on Bayes Theorem. In short, Bayes Theorem can 

determine the probability of given input (x) belonging to output class (k) using the 

probability of each class and the data belonging to that class. The popularity of LDA is 

generating from its straightforwardness and efficiency that makes it practical for 

utilization in real time control applications. Also, some publications concluded that LDA 

had remarkable or comparable performance when it’s compared with more complicated 

machine learning models. In [83] for example, LDA reached 5% higher accuracy than 

ANN in prediction of six hand gestures. In these studies, [35], [84], [85], it is approved 
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that LDA and SVM can have a comparable performance in prosthesis control 

applications. Another common model in this application is SVM which is often 

represented higher performance comparing to other models [35], [84], [85], [86]. Despite 

the high accuracy of this model, fine-tuning the model can exceed the computation 

costs. There are some other types of classifiers in this application which have been used 

based on application constraints [87], [88].  

1.5.1.2 Regression 

Support vector regression (SVR), linear regression (LR) and artificial general 

regression neural network (GRNN), are the most used regression technique. Principal 

working of SVR is the same as the principal of SVM but in regression domain. The 

supported vector is identified from input data and then the model can be created. The 

utilization of this technique is mostly in prediction of exerted force by fingers [89], [90] 

.This method has also been used in prediction of fingers dynamic movements [91], [92].  

LR is a simplest regression method which is learned based on the least square error. 

This method associates with continuous inputs and outputs. This method has been 

employed in prediction of different fingers movement and grip force [34], [93]. 

GRNN is the third most popular model used in this domain. This model consists of 

three layers, which are called input, hidden, and output layers. Adjacent layers are 

connected to each other with a certain number of nodes that are located on each layer.  

The corresponded weight for each node requires to be trained iteratively using 

optimization technique called gradient decent. This study [92] has exploited GRNN to 

predict wrist toque based on force sensor signals and they achieved high accuracy. [91] 

has utilized this method to predict continuous fingers movement with the aim of gesture 

prediction. 

1.6 Conclusion 

The previous works in gym activities recognition have mostly combined multiple types 

of wearable sensors to achieve high accuracy. Although great performances of machine 

learning models have been achieved, utilization of multiple wearable sensors is not the 

best practical solution in real life situation. This method can interfere with users’ 

comfortability and restrain users’ movement. In this study, the performance of a single 
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wrist worn IMU wearable integrated in a glove in detection of common gym exercises 

have been assessed to find an optimal way of wearable sensor utilization in real life 

scenario.  

Previous works in force tracking have been mostly dedicated to rehabilitation 

application. Although great achievements have been obtained in these studies, there is 

very limited studies focusing on the application of wearable force sensors in preventing 

injuries due to lifting excessive forces during different sport activities. In this research, 

we investigated the application of one of the most common force sensors in detection of 

lifted forces during gym activities with the aim of preventing injuries in sports and 

increasing effectiveness.   
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Chapter 3.  
 
Evaluation of a Force tracking method in strength 
training 

1.7 Introduction 

This chapter is toward the first and second objectives of the thesis. In following, the 

design steps and development process of a smart glove device to meet the objectives of 

this study are explained. Then, the applications of three machine learning models for 

weight detection are investigated. The performance of these algorithms in a study with 6 

participants performing movements which could provide necessary information for all the 

common hand orientations when holding dumbbells in real application scenarios are 

evaluated. After performance assessment of the models, the most practical model has 

been selected. In section 2, we start with describing the methodology and the system 

used in this study including the design and development of the glove, data collection 

experiments, data processing and classifiers development. In section 3, results of the 

evaluation of the classifiers performances are represented and discussed. Conclusion of 

the study is expressed in the section 4. 

1.8 Methodology and System Description  

1.8.1 Smart Glove Platform 

The simplicity, low price, and comfortability of force sensitive resistor (FSR) sensors 

make them favorable for grip force measurement, pressure distribution and weight 

detection in wearable devices. The proposed glove consists of three Flexiforce A401 

FSR model sensors which are located on the palm, ring and middle fingers’ fingertips 

based on experiment. Each sensor has an active sensing area of 2.5cm diameter, with 

0.203 mm thickness and can sense forces up to 111 N. The applied force to the sensors 

results in the variation of the electrical resistive values, this variation generates voltages 

which are corresponded to the applied force. These voltages values are not constant in 

all the orientations since the sensor’s surfaces are not able to sense the surface of the 

weight fully in some orientations. Therefore, ADXL335 accelerometer was utilized in the 
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system to measure hand orientations along with the force sensors data. An IMU (MPU 

6050) unit which is a low power, low cost and high-performance motion tracking device 

was also placed in the glove’s wrist to measure wrist Euler angles’ data for activity 

recognition purpose. The data sampling and communication process was performed 

through Arduino Nano. Adafruit Bluefruit LE module was employed to transfer sensors 

data to BlufruitConnect mobile application developed by Adafruit. The Arduino board 

was powered up by a rechargeable 400 mA/h Li-Po battery. The proposed system is 

depicted in: 

 

Figure 3-1. Smart glove with all the mounted electronic components 

 

1.8.2 Circuit Design and Signal Conditioning  

The FlexiForce QuickStart Board, which is an interface between FlexiForce sensor 

and data acquisition system, is an analog signal conditioning circuit that amplifies the 

sensor output according to the two variables 𝑅𝑓  and 𝑉𝑅𝑒𝑓 shown in Eq. 1. The output 

voltage is given by  Eq. 1: 
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𝑉𝑜𝑢𝑡 = −𝑉𝑅𝑒𝑓 ∗ (
𝑅𝑓

𝑅𝑠
)                                                                                 

Eq. 1 

 

 

We designed the output voltage to be in the range of zero to five volts. Based on the 

manufacturer charts, this voltage range can provide the sensor capability of measuring 

up to 25𝐼𝑏 force range. The force range can be set by defining different variables 

including voltage reference and resistor reference. Sensor resistance (RS) decreases to 

30𝐾𝛺 at the maximum load therefore, to get the maximum voltage, which is 5𝑣𝑜𝑙𝑡 in this 

application, we require to find out optimal value for the reference voltage. Then, we 

determined the required reference resistor from the formula and obtained 40𝐾𝛺 value.  

1.8.3 Sensor Fabrication 

Placing the pressure sensor directly on the glove palm can flex the sensor and create 

certain problems in terms of sensor’s functionality. In the long term, this flexion will lead 

to sensor failure. To prevent these problems, a silicone rubber substrate built out of 

ECOFLEX 00-30 was designed and Finite Element Method (FEM) was employed for 

finding the practical size of it. The pressure sensor was then embedded inside the 

substrate at its bottom. The design contains an upper rectangular part and a lower base 

cylindrical part as demonstrated in Figure 3-2. The substrate would allow forces to be 

distributed uniformly on the sensitive area on the sensor. When a dumbbell is placed on 

the rectangular part, force will be transformed through cylindrical base to the active 

sensor area( Figure 3-3-C). To meet the two major critical design factors for the 

substrate, comfort, and elasticity, ECOFLEX 00-30 was utilized due to its hyper-elastic 

characteristics and widespread utilization in biomedical applications [94]. According to 

[95], inserting a tiny disc at the bottom of the proposed sensor in body and device 

interface can increase the accuracy of the sensor because the contact surface area will 

be increased. Thus, a tiny robber disc with the same diameter as the sensor sensitive 

area was put below the sensor to increase its accuracy.  
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Figure 3-2. Silicon rubber substrate 

 

 

 

Figure 3-3. A) Glove prototype. B) Flexiforce force sensors. C) Layers of 
prototype in the glove, which   are shown with the colors as gray 
tiny rubbery disk, light blue as substrate, black as fabric and dark 
blue as sensor 

To determine the optimal size of the substrate under the maximum applied force 

(10 𝑙𝑏 in this application) we performed Finite Element Analysis (FEA) in ANSYS 2021 
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R1. We used ECOFLEX 00-30 silicon rubber and obtained its mechanical characteristics 

from [96].To find out the practical size of our Silicon rubber substrate we required to 

solve an equation which related strain and stress of the hypeelastic material. In These 

types of materials there is no direct relationship between stress and strain, hence they 

do not follow Hook’s law which explains the direct relationship between stress and strain. 

Hyperelatic materials behaviors can be explained with different mechanical term called 

strain energy density function as represented in Eq. 2. 

𝑆𝑖𝑗 =
𝜕𝑊

𝜕𝐸𝑖𝑗
 

Eq. 2 

 

In Eq. 2, 𝑆𝑖𝑗 represents components of the second Piola-Krichhoff stress tensor. 

where 𝑊 is strain energy function per unit undeformed volume and 𝐸𝑖𝑗  represents the 

components of the Lagrangian strain tensor. The general strain energy function for an 

hyperelastic isotropic material is defined as Eq. 3. 

𝑤(𝐼1 , 𝐼2 , 𝐼3) = ∑ 𝐶𝑚𝑛𝑘((𝐼1 − 3)𝑚

∞

𝑚+𝑛+𝑘=1

(𝐼2 − 3)𝑛(𝐼3 − 1)𝑘 
Eq. 3 

 

 

where 𝐼𝑖 is called strain invariants and can be determined from Eq. 4 to Eq. 6. 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2
 

 

Eq. 4 

 

𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆3
2𝜆1

2 

 

Eq. 5 

 

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2
 

 

Eq. 6 

 

where 𝜆 in above equations is stretch ratio and is defined as Eq. 7. 
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𝜆 =
𝐿

𝐿0
    

Eq. 7 

 

where 𝐿 represents a length of the material under load and 𝐿0 illustrates initial length 

of it. There exist divers hyperplastic strain energy density models that can be used in 

different applications represented in Figure 3-4. 

 

Figure 3-4. Types of hyperplastic strain energy density models 

 

Selection of the hyperplastic model depends on conditions such as type of elastomer, 

loading conditions and material test data availability. Generally, a model which can 

provide closest stress-strain curve fit to test data is considered as a best model for a 

specific application. To meet the mentioned criteria, the Yeoh 3rd order solid model Eq. 3 

was fitted to the test data to determine the model parameters Figure 3-5. Next, the 3D 

model of substrate under maximum force was investigated in ANSYS 2021 R1. 
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Figure 3-5. Yeoh 3rd order model fitted to the experimental uniaxial data of 
ECOFLEX 00-30. 

 

The density function of this model is shown as Eq. 8. 

 

𝑊 = ∑ 𝐶𝑖0(𝐼1̅ − 3)𝑖

𝑁

𝑖=1

+ ∑ 𝐶𝑘1

𝑁

𝑘=1

(𝐽 − 1)2𝑘 

Eq. 8 

 

 

In this equation, term 𝑊 stands for strain energy, 𝑁 is the order of the model, which is 

3 here, 𝐶𝑖0 and 𝐶𝑘1 are material constants that are obtained from test data, 𝐼1̅ is the first 

invariant of Cauchy-Green strain tensor and J is the volume ratio which is equal to one 

for incompressible materials. After performing finite element method (FEM) on the 

substrate, model parameters are obtained as Table 3-1. 
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Table 3-1. Optimal parameters of the substrate. 

Parameters Value 

A 6 cm 

B 4.3 cm 

C 0.6 cm 

D 0.4 cm 

 

 

Figure 3-6. Total displacement(deformation) under maximum force (10𝐼𝑏 based 
on the weight of the heaviest dumbbell) 

 

After calculating the optimal size of the substrate by utilizing FEM, we produced the 

elastomeric parts by casting uncured ECOFLEX 0030 silicone rubber into 3D printed 

mold and placing the sensor at the aforementioned place after the sensor was cured 

under ambient conditions for approximately 4 hours. Then the sensor was sandwiched 

between the substrate and the produced rubber disc and placed into the glove palm. 
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Figure 3-7. 3D printed mold. 

 

1.8.4 Experiments  

Two separate experiments were designed to collect force sensors and orientation 

data to analyze the proposed system’s capability of recording and classifying dumbbell 

weights. One hour and a half workout session experiment was designed and ran for the 

weight detection objective. Six healthy participants for weight detection study (two men 

and four women) in a range of 20-35 years old were recruited to perform the designated 

activities. Activities for weight detection were selected in a manner that could cover most 

of the possible hand orientations that one may hold a dumbbell with to detect a weight 

instantly after holding it (Figure 3-8). In both experiments, activities with minimum 

possible of injuries are prioritized. 
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Figure 3-8. A) Rotating hand while roll angle is changing from 0 to 180. B) 
Rotating hand while pitch angle is changing from 0 to 180 

 

Before starting any experiments, participants were asked to provide the informed 

consent form. Next, the two activities for weight detection were introduced to each group 

of the participants. The weight detection activities involved holding different dumbbells 

and rotating the hand in a way that roll and pitch angles varied from 0° to 180°. Three 

dumbbell weights were selected for the weight detection study, 2𝐼𝑏, 5𝐼𝑏 and 8𝐼𝑏. By 

considering the capability of all the participants who were not experts in weight training 

exercises 8𝐼𝑏 was selected as the heaviest dumbbell. All the activities were asked to be 

performed for three sets of fifteen repetitions. Hand Euler angles along with force 

sensors data for weight prediction were gathered with sampling rate of 100𝐻𝑧 through 

the mobile app. The data were then sent to the researcher’s computer after the 

experiment session was done. As this was the first prototype that we developed for this 

application, only a glove for right-hand is developed, therefore all of the data are 

corresponded to the right-hand orientations. 

1.8.5 Data Preprocessing and Feature Extraction 

In the study of weight detection, the aim is finding the associated force sensors value 

with hand orientation. In this regard, the following steps were taken. Once the sensors’ 

signals were collected, the moving average filter (Eq. 9) was applied to the data to 
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smooth the signals and eliminate noises. In Eq. 9,  𝑘 is half of the number of data points, 

𝑥𝑖 is the data point 𝑖, 𝑡 is time, and  𝑦𝑡 is the filtered data. Moving average with a window 

size of 50 points was obtained empirically. The magnitudes of force signals associated 

with each hand orientation were then identified and stored in a data frame (see Figure 

3-9). The mean value of all the three force sensors were computed and added to the 

data frame to contain more features for the machine learning models development. 

Eventually, a data frame consisted of the magnitude of the three sensors, their mean 

value and their corresponding pitch and roll angles were fed into the models.   

  𝑦𝑡  = (2𝑘 + 1)−1 ∑ 𝑥𝑖 

𝑡+𝑘

𝑖=𝑡−𝑘

 

 

Eq. 9 

 

 

Figure 3-9. An example of one repetition of three force sensors with their 
corresponding pitch and roll angles during the second data 
collection step. A) Force sensor and orientation signals for 2Ib 
weight. B) Force sensor and orientation signals for 5Ib weight. C) 
Force sensor and orientation signals for 8Ib weight. 
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1.8.6 Classification 

Three mainstream classification algorithms, Linear Discriminant Analysis (LDA), 

Support Vector Machine (SVM) and Multilayer Perceptron Neural Network (MLP) that 

have been widely used in the application of force studies analysis were trained to 

classify the dumbbell’s weights. LDA classifier was developed by using Sklearn package 

in Python. This classifier seeks a linear combination of inputs to characterize different 

classes based on different distributions and form a decision boundary between them. 

SVM classifier and MLP were also developed with the Sklearn package in Python. SVM 

algorithm works by defining optimal hyperplanes called decision boundaries among 

classes of features to make them separable so that any future observations could be 

identified, which classes they fall into. SVM method uses Kernel tricks to create decision 

boundaries among classes. In this study, Radial Basis Gaussian (RBF) kernel function 

was chosen to develop a SVM model. The internal parameters of the SVM, (i.e., C and 

Gamma) were optimized by performing grid search. Due to the superiority of artificial 

neural networks in modeling the extremely complex functions and data relationships, the 

MLP consisted of one hidden layer comprising 100 neurons were designed with the Relu 

activation function and gradient decent solver for this study. 70 percent of the data were 

used for training and 30 percent of them were utilized as the test set. A 10-fold cross 

validation method was used in which data was split into 90 percent for training set and 

10 percent as the validation set. 10-fold cross validation method was applied to avoid 

overfitting and to assess the performance of the developed machine learning on new 

subsets of data. The accuracy of the model was then determined out of the average of 

accuracies of the 10-fold cross validated models. Other evaluation metrics such as 

precision, recall and f-score were also determined to find the most practical classifier in 

this application. 

1.8.6.1 LDA 

LDA is the simplest machine learning model in the classification problems. In 

multiclass classification problems, this model assumes that the data are drawn from a 

multivariate Gaussian distribution 𝑁(𝜇𝑘 , Ʃ), where 𝜇𝑘 is the average of the 𝑘𝑡ℎ class and 

Ʃ is the common covariance to all the classes. This algorithm incorporates these values 

into the likelihood function (Eq. 10) to characterize and separate observations linearly 
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(Figure 3-10. LDA classifier). To classify new data, the model computes the likelihood 

and then it assigns them to the class with maximum likelihood score. 

 

�̂�𝑘(𝑥) =  𝑥𝑇Ʃ−1�̂�𝑘 −
1

2
 �̂�𝑘

𝑇Ʃ−1 − �̂�𝑘 + log (�̂�𝑘)  

 

Eq. 10 

 

In Eq. 10, �̂�𝑘(𝑥) is called likelihood or discriminant score that defines if the input 𝑥 will fall 

in the 𝑘𝑡ℎ class. �̂�𝑘 is the prior probability that expresses if an observation belongs to the 

𝑘𝑡ℎ class and it is obtained from the training data.   

 

Figure 3-10. LDA classifier 

1.8.6.2 SVM 

Support Vector Machine (SVM) is one of the most feasible machine learning models 

in the application of pattern recognition. SVM algorithm works by defining optimal 

hyperplanes called decision boundaries among classes of features to make them 

separable so that any future observations could be identified, which classes they fall 

into. SVM method uses Kernel tricks to create decision boundaries among classes. That 

means, this algorithm deploys different kernel functions based on the application to 

achieve this. There exist diverse kernel functions to use for SVM classifier. In this study,  
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Radial Basis Gaussian (RBF) kernel function has been utilized to make the features 

linearly separable. The RBF kernel model follows the mathematical equation 

represented in Eq. 11. The equation measures the Euclidean distance between the 

origin of the RBF function illustrated in Figure 3-11 and observed data. Then, the 

distance value will be multiplied to a constant coefficient called gamma which is obtained 

through grid search. Next, the observed data will be classified based on the computed 

threshold by the algorithm and the output of the Gaussian function. It can be seen from 

the RBF kernel that if the observed data is close to the origin, data point will belong to a 

higher section of the kernel and if it is located far away from the origin, it will belong to a 

lower section of the kernel. Different colors in the Figure 3-11 represent decision 

boundaries created for the classes.  

 

 

Figure 3-11. Radial Basis Gaussian function 

 

 

𝐾(𝑋, 𝐿) = 𝑒−ɣ‖(𝑋−𝐿)‖2
   

Eq. 11 
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𝑋 and 𝐿 represent the observed data point and origin of the RBF kernel (Eq. 11), 

respectively. The impact of the gamma value on SVM model is in the way that if this 

value increases it can lead to the overfitting of the model and if it decreases it can lead 

to the underfitting of the model. Therefore, finding the appropriate value of the gamma 

plays an important role on the model performance. After finding the right parameters of 

the SVM model by preforming grid search, the model was trained with the training data 

and its performance was investigated with the appropriate metrics that are discussed in 

the following section.  

 

1.8.6.3 MLP 

Due to the superiority of artificial neural networks (ANN) in modeling the extremely 

complex functions and data relationships, a class of ANN approach called multi-layer 

perceptron (MLP) is considered for constructing the prediction model. The three main 

layers in artificial neural network structure are input layers, hidden layers, and output 

layers (Figure 3-12. MLP network). The nodes of each layer are fully connected with 

certain weights to every node in the following layer. Except the input layer, all the layers 

utilize an activation function. Weighted inputs from previous layers are summed together 

and feed into the activation function in the next layer. The weights are obtained with an 

optimization algorithm called gradient decent. 
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Figure 3-12. MLP network 

The training steps of the two-layer feed-forward backpropagation algorithm is 

described as follow: 

• 𝑆𝑡𝑒𝑝 1: Initializing all the weights’ function and bias for the training data. 

• 𝑆𝑡𝑒𝑝 2: Using the Eq. 12 and Eq. 13 for neurons output computations in the hidden 

layer and output layer are as follows: 

 

ℎ𝑗(𝑥) =  𝑓(∑ 𝑤𝑗𝑖 𝑥𝑖 + 𝜃𝑗)     Eq. 12 

 

  

𝑜𝑘(𝑥) = 𝑓(∑ 𝑤𝑘𝑗ℎ𝑗(𝑥) + 𝑤𝑘)     Eq. 13 

 

  

𝑓(𝑥) = max (0, 𝑥)     Eq. 14 
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where 𝜃𝑗 represents the bias, the term 𝑤𝑗𝑖  and 𝑤𝑘𝑗 correspond to the weights for node 𝑗 

to 𝑖 and 𝑗 to 𝑘, ℎ𝑗 and 𝑜𝑘 are the output values of the hidden and output layers, and 𝑓(𝑥) 

is the Relu activation function.  

 

• 𝑆𝑡𝑒𝑝 3: Calculation of the error and updating the weights by utilizing the Eq. 15 

and Eq. 16. The weight and bias variables are updated by utilizing the stochastic 

gradient decent method. 

 

 

𝑤∗ = argmin
𝑤

∑ 𝑙𝑜𝑠𝑠(𝑜(𝑛), 𝑡(𝑛))

𝑁

𝑛=1

 

 

Eq. 15 

 

  

𝑤𝑘𝑖  ←  𝑤𝑘𝑖 −η
𝜕𝐸

𝜕𝑤𝑘𝑖
 

Where 𝑤∗ stands for a weight that makes the error between output value 

of the network and target value minimum. 𝑤𝑘𝑖 is a weight between node 

𝑘 to 𝑖. 𝐸 is the error between the target value and output value.  

Eq. 16 

 

 

• 𝑆𝑡𝑒𝑝 4: Updating all the weights functions and bias. Repeating the steps 2 and 3 

for all training data. 

• 𝑆𝑡𝑒𝑝 5: Repeating steps 2-4 until reaching to an acceptable error convergence. 

 

1.8.7 Evaluation Metrics 

To assess a machine learning model functionality, evaluation metrics are required to 

quantify its predictive performance. Selecting a practical model for an application is 
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highly dependant on these quantities. There are standard evaluation metrics that are 

utilized widely to evaluate classifiers such as accuracy, precision, recall and F-score.  As 

represented in Eq. 17, accuracy is a measurement that determines the number of 

correct predictions out of the total number of the predictions. Two other important factors 

beside accuracy are precision and recall. Precision (Eq. 18) measures the fraction of 

samples assigned the positive class that belong to the positive class while recall (Eq. 19) 

represents how well the prediction of positive class has been performed. Also, these two 

factors reflect the performance of the model in false positive and false negative 

predictions. It can be seen from Eq. 18 and Eq. 19 that smaller number of false positive 

predictions results in higher precision value and similarly, the smaller number of false 

negative predictions results in higher recall value. Precision and recall metrics can be 

combined together to make a single metric that can balance both scores. This single 

metric is called F-score. Eq. 20 expresses that the higher value of recall and precision 

will lead to the higher value of F-score. It can be concluded from the equations that a 

model which has the highest values of evaluation metrics can be selected for a 

prediction application. Confusion Matrix is another type of evaluation metrics which 

compares the real target values with the predicted target values by the ML model in a 

𝑁 ∗ 𝑁 Matrix in which 𝑁 shows the number of classes. The performances of the 

developed models in this study are evaluated in the following section. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correct predictions

Total Number of predictions
 

Eq. 17 

 

       𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    

Eq. 18 

 

       𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Eq. 19 

 

      𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
    

Eq. 20 
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1.9 Results & Discussions 

The average of accuracies, recall, precision and F-score of the models obtained from 

the 10-fold cross validation method over training data are represented in Figure 3-13 and 

Figure 3-14. As demonstrated in Figure 3-13, the averaged accuracy of the MLP and 

SVM models over training data are quite the same and they both have achieved a high 

accuracy in recognition of the different free weights. However, as Figure 3-14 illustrates 

the SVM model has slightly higher precision and F-score values compared to MLP 

model.  

 

 

 

Figure 3-13. Average accuracies of 10-fold cross validation over training data 
and their standard deviation for three developed models 
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Figure 3-14. Average precisions, recalls and fscores of 10-fold cross validation 
over training data and their standard deviation for three developed 
models 

 

The models’ performances over test data are shown in Figure 3-15,Figure 3-16, Figure 

3-17, and Figure 3-18. It is shown in Figure 3-16 and Figure 3-17 that MLP and SVM 

models have reached higher accuracies than LDA model over test data. It can also be 

seen from Figure 3-18 that SVM model accuracy 99.8% is slightly higher than MLP 

model accuracy 99.6%. Confusion matrices of the models show that all the models have 

difficulties in recognizing 8𝐼𝑏 dumbbell. LDA confusion matrix Figure 3-15 illustrates that 

this model has the highest misclassification error in detection of 2𝑙𝑏 in comparison with 

other weights. Overall, all the performances of all models in this study were significant 

and did not have considerable differences in detecting any weights. As a result, LDA 

model was selected for this part of study since is very simple and computationally 

efficient when compared to models such as SVM and MLP. 
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Figure 3-15. Confusion matrices for LDA model 

 

 

 

Figure 3-16. Confusion matrices for MLP model 
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Figure 3-17. Confusion matrices for SVM model 

 

 

 

 

Figure 3-18. Accuracy of the models over test data 
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1.10 Conclusion  

A smart glove prototype deploying an IMU, an accelerometer and three piezoresistive 

sensors integrated into fabric was developed in this study. The detailed design of this 

prototype was discussed, and its performance in tracking force sensors was investigated 

in a study with six healthy participants. Three machine learning classifiers, LDA, SVM 

and MLP were trained, validated, and tested using Sklearn package in Python for the 

purpose of weight prediction. Comparing the performances of the developed models by 

using evaluation metrics including accuracy, precision, recall and f-score, revealed that 

SVM algorithm works better than the other classifiers for this application with an average 

accuracy of 99.67% over 10-fold cross validated models and 99.8% accuracy over test 

data. It can be concluded that this developed wearable system can provide automatic 

feedback to gym users about lifted weight to increase the efficiency and progress of 

workouts.   
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Chapter 4.  
 
Evaluation of Supervised Learning Algorithms for 
Autonomous Recognition of Gym Activities 

1.11 Introduction 

This chapter is toward step 3 and 4 of the thesis’s objectives to compare the 

performance of four common machine learning models for the recognition of common 

gym activities based on single wrist worn IMU data. 

Inertial measurement units (IMUs) have been utilized in several research studies for 

developing classifiers to track and monitor human activities, however many studies have 

focused on recognizing daily activities such as walking, sleeping, standing, and cycling. 

The studies that have been performed on recognition of gym activities usually rely on 

multiple wearables data that a user requires to wear while doing workouts. Although this 

solution can provide more data and consequently higher accuracy recognitions, wearing 

multiple wearables can cause user discomfort and interfere with normal physical activity 

routines. Thus, in this section we investigate the performance of decision tree (DT), k 

nearest neighbors (KNN), support vector machine (SVM) and Random Forest (RF) 

machine learning models in autonomous detection of nine common strength training 

activities using a single wrist worn IMU data. At the end of the chapter a method for 

counting activity repetitions is also proposed.  

 

1.12 Methods and System Architecture 

In this section we present the methods and experimental works conducted in this 

study as presented in  Figure 4-1. 
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Figure 4-1. Activity recognition steps 

                        

1.13 Experiment Setup and Data Collection 

In this study we have gathered Euler angles of the right wrist to investigate if they can 

be used to reach higher accuracy when using machine learning models to identify nine 

different common workout activities including standing triceps extension, standing 

dumbbell hammer curls, seated cable back rows, wide stance squat, overhead shoulder 

press, straight arm pullover, single arm dumbbell bench rows, dumbbell bent-over raise, 

side shoulder dumbbell raises and dumbbell bent over lateral rear delt raises (Figure 

4-2). The reason for choosing wrist data is the popularity of the wristband in wearable 

devices, user comfortability and a wide range of information that can be provided from 

the sensors located on wrist [56] . Therefore, the best sensor placement for activity 

recognition in a smart glove was figured to be the wrist of a user.  
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Figure 4-2. Illustration of 9 common strength training workouts used in this 
study. [97], [98]A) Seated cable back rows. B)Hammer curl. C)Side 
shoulder dumbbell raises. D)Dumbbell bent-over raises. E)Overhead 
shoulder press. F)Single arm dumbbell bench rows. G)Straight arm 
pullover. H)Wide stance squat. I) standing triceps extension 

 

Nine workouts as depicted in Figure 4-2 were designed to collect orientation data of 

the wrist to analyze the proposed system’s capability of recording and classifying 

activities and counting activities repetitions. One hour and a half workout session 

experiment was designed and ran for activity detection objective. Twelve healthy 

participants for the study (five men and seven women) in a range of 20-35 years old 

were recruited to perform the designated activities. Activities for activity recognition were 
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selected based on a personal trainer’s suggestion. These activities include common 

workouts which target basic set of muscles including shoulders, forearms, triceps, chest, 

legs, and abs that are practical for both amateurs and professionals to practice.  

Before starting any experiments, participants were asked to provide the informed 

consent form. Next, the nine activities detection were introduced to each of the 

participants. All the activities were asked to be performed for three sets of fifteen 

repetitions. Wrist Euler angles were gathered with sampling rate of 100𝐻𝑧 through the 

mobile app. The data were then sent to the researcher’s computer after the experiment 

session was done.  

 

1.14 Data Preprocessing 

Before applying preprocessing method to the raw data, by observing the Yaw raw 

signals we figured that due to the noises that signals contained, they were not practical 

to be used in the application and we continued with Pitch and Roll signals.  

Preprocessing of raw data is required to minimize the noise effects due to changes in 

the users’ behavior, movement, and environmental conditions like malfunctioning of gym 

equipment. The most common noise elimination method are lowpass filters, moving 

average filter, and Kalman filter. Gaussian-smoothing filter for time series data is a slight 

adoption of the moving average filter. The difference is in the moving average method 

each data point is replaced by the average of previous and following data points, 

whereas in the Gaussian smoothing method, previous and following data points are 

weighted according to a Gaussian function. In our study, this filter outperformed 

conventional moving average filter. 

The formula of Gaussian smoothing filter is represented in Eq. 21 and Eq. 22 . 

 

   𝑦𝑡 = ∑ 𝑥𝑖 𝑔𝑖

𝑡+𝑘

𝑖=𝑡−𝑘

 

Eq. 21 
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𝑔 = 𝑒
−4𝑙𝑛(2)𝑡2

𝑤2      
Eq. 22 

 

In the above mathematical formula, k is number of data points in the filter kernel, t is 

time, x is the data point, and g is the Gaussian function. The w term shown in g function 

is called full width at half maximum (FWHM). If we consider the filter kernel as a gain 

function, this term shows the width of the function when gain is equal to half of the 

maximum. The purple line in Figure 4-3 illustrates FWHM. This parameter is particularly 

important when designing a Gaussian filter because it defines how much smoothing has 

to be applied to the signal.  

 

Figure 4-3. Gaussian filter kernel 

 

Another important factor in designing this filter is the number of data points in the filter 

kernel represented by k. Choosing an appropriate value for k requires two 

considerations:  First, k should be sufficiently large so that the Gaussian function is close 

to zero on both sides and the other one is that k should be set to a value that does not 

make the filter kernel to go too far from zero. This is because a too long filter can cause 

edge effects.  
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In this project, we set the value of k to 40 and w to 25, respectively. The last step 

involves normalizing the g function values. Figure 4-4 illustrates the implementation of 

Gaussian filter on one of the sport’s raw data. 

 

Figure 4-4. Implementation of Gaussian filter on raw data- black is raw data and 
red is filtered data 

 

1.15 Data Segmentation and Feature Extraction 

As described in chapter 2, to generate the inputs for machine learning models, it 

is necessary to divide the data into segments which can share common 

distinctive characteristics. For this purpose, a non overlapping sliding window 

having fixed window size interval of two seconds was used over the filtered data. 

The window length was determined empirically by implementing a grid search 

method over windows with length 500 𝑚𝑠 to 3𝑠 to find the best performance of 

the machine learning models.  

Next, the feature extraction was executed in the time domain with eight types of 

statistical features derived from data segments (e.g., mean, root mean square, 

maximum, minimum, standard deviation, variance, skewness, and 

kurtosis.(Table 4-1)). Sixteen different features were gathered in total from Pitch 

and Roll sensor signals.  
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Table 4-1. Extractable statistical features formula from time series data 

Statistical Features Formula  

Mean 
�̅� =

∑ 𝑥𝑖
𝑁
𝑖=0

𝑁
 

Eq. 23 

 

Root Mean Square 

𝑅𝑀𝑆 = √1
𝑛⁄ ∑ 𝑥𝑖

2

𝑛

𝑖=0

 

Eq. 24 

 

Standard Deviation 

𝜎 = √
∑(𝑥𝑖 − �̅�)2

𝑁
 

Eq. 25 

 

Variance 
𝜎2 =

∑(𝑥𝑖 − �̅�)2

𝑁
 

Eq. 26 

 

Kurtosis 

𝐾𝑢𝑟𝑡 =
∑

(𝑋𝑖 − �̅�)
𝑁

𝑁
𝑖=1

𝜎4
 

Eq. 27 

 

Skewness 
𝑆𝑘𝑒𝑤 =

∑ (𝑋𝑖 − �̅�)3𝑁
𝑖=1

(𝑁 − 1)𝜎3
 

 Eq. 28 

 

 

1.16 Feature Selection 

To address the high processing cost arising from many features, Univariate feature 

selection algorithm from Scikit-learn Python package was applied on our data to find the 

most relevant and high-quality features.  The algorithm works by ranking the best 

features based on the scores gained from a univariate statistical measure. The 

univariate statistical measure used in our application, was F-score which works only for 

categorical targets and numerical inputs and is based on the Analysis of Variance 

(ANOVA) statistical test. ANOVA checks the variance between the groups of features 
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and variance within the groups of features. The one-way analysis of variance includes 

the following steps: 

 

• Collecting the samples 

• Calculation the variance between the samples 

• Calculation the variance within the samples 

• Calculation the ratio of the variance between to within the samples 

• Calculation the F-score 

Table 4-2 represents the required mathematical equations for ANOVA calculation. 
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Table 4-2. ANOVA mathematical equations 

Source of 
variation 

Sum of squares 

(𝑆𝑆) 
Degrees of 

freedom 

(𝐷𝐹) 

Mean squares 

(𝑀𝑆) 
𝐹 𝑠𝑐𝑜𝑟𝑒 

 
Within samples 𝑆𝑆𝑊 = ∑ ∑(𝑋

𝑙

𝑗=1

𝑘

𝑗=1

− �̅�𝑗)2 

 
𝑑𝑓𝑤

= 𝑘 − 1 

 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑤
 

 
 

 

𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝑊
 

 
Between 
samples 

𝑆𝑆𝐵 = ∑(

𝑘

𝑗=1

�̅�𝑗 − �̅� )2 

 

𝑑𝑓𝑏

= 𝑛 − 𝑘 

 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝑏
 

 
Total 𝑆𝑆𝑇 = ∑(

𝑛

𝑗=1

�̅�𝑗 − �̅� )2 
 
𝑑𝑓𝑡 = 𝑛 − 1 

 

 

Where, p is the total number of populations, n is the total number of samples in a 

population, s is the standard deviation of the samples and N is the total number of 

observations. The larger the measure, the more contribution a group feature has to the 

targets. The algorithm then chose the best 10 features for the ML models including Pitch 

standard deviation, Pitch root mean square, Pitch minimum, Pitch maximum, Pitch 

mean, Roll mean, Roll maximum, Roll minimum, Roll standard deviation and Roll root 

mean square.  

1.17 Classification 

After extracting features and selecting the practical ones, the next step is to find the 

right classifier to generate a machine learning model. To train a machine learning model, 

a set of training data is required. Therefore, the data was split into two groups: training 

data and test data. Generated classifiers performances were then assessed using the 

test data. 70 percent of the data were considered as a training set and 30 percent of 

them as a test set. Most of the common shallow classifiers that have been employed in 

different activity recognition tasks were utilized in this study. Further, their performances 

were compared and investigated using accuracy, precision, recall, and f scores 

evaluation metrics to find the most practical model in this application. All models are fine-

tuned using grid search approach. A 10-fold cross validation method was used in which 

data was split into 90 percent for training set and 10 percent as the validation set. 10-fold 
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cross validation method was applied to avoid overfitting and to assess the performance 

of the developed machine learning on new subsets of data. The accuracy of the model 

was then determined out of the average of accuracies of the 10fold cross validated 

models. 

1.17.1 Decision Tree 

Decision tree model as the name suggests, creates a tree like structure for prediction 

purposes.  A Decision tree starts by analyzing the whole dataset and then it splits it into 

subgroups or features that are called nodes. There exist three different nodes in this 

model which are Root node, Decision node and Terminal node or Leaf node as 

illustrated in Figure 4-5. Root node is the first node in the Decision tree model that 

splitting process starts from it. Decision node is a node that splits into further sub nodes 

until it reaches to a leaf node. Leaf node is a terminal node that splitting process is 

terminated at this node. The algorithm splits the nodes at the most informative features 

using the Gini Index measure Eq. 29.  

 

 

Figure 4-5. Decision tree structure 
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Gini index determines impurity of the subset of data in each splitting process. Impurity is 

used to assess the homogeneity of data. Data is considered pure or homogenous if it 

includes an only single class. The greater number of classes in the data, the more 

impure it is, and the splitting is not considered practical. Gini index value is between the 

range of zero to 0.5 Figure 4-6. The closer the outcome of the Gini index function to 0.5, 

the more impurity exists within the data.  

 

𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑝𝑖)2𝐶
𝑖=1    

Eq. 29 

 

 
 

 

Figure 4-6. Gini index curve 

 

 The training steps in Decision tree algorithm are explained as follow: 

• Select Root node based on the lowest Gini index value 

•  On each iteration of the algorithm Gini index is calculated and the lowest value is 

used for selecting a decision node 
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• Set D is split to produce the subsets of data 

• The algorithm continues to recur on each subset until it reaches a leaf node 

Decision tree was applied to the training data and its performance was investigated and 

reported in the next section. 

1.17.2 KNN 

𝐾 nearest neighbours is a simple machine learning model that does not require any 

learning. This model stores all the dataset and classifies a new observation based on a 

similarity measurement between the new observed data and its k nearest neighbours 

Figure 4-7. This model often exploits Euclidean distance Eq. 30  to determine the 

similarity of the data points. The majority vote algorithm is then applied to the outputs 

obtained from Euclidean distance to classify the new data point. In the KNN algorithm 

finding the right value for the 𝐾 hyperparameter plays an important role in the 

development process. Selecting a smaller value for the 𝐾 will lead to overfitting of the 

model and inversely, selecting a large value for that will lead to underfitting of the model. 

After setting an appropriate value for this hyperparameter empirically, this model was 

applied to the training set and its performance was investigated using evaluation metrics.  

 

     𝑑 (𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1    

Eq. 30 
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Figure 4-7. KNN performance over two classes of the data 

 

1.17.3 SVM Model 

Support Vector Machine (SVM) is one of the most feasible machine learning models 

in the application of activity recognition. As mentioned previously, there exist diverse 

kernel functions to use for SVM classifier development. Since Our application is 

nonlinear and we require a kernel function that makes the features linearly separable, 

we chose Radial Basis Gaussian (RBF) kernel function in our SVM  model. Practical 

parameters of the SVM model were obtained by preforming grid search. Next the model 

was trained with the training data and its performance was investigated with the 

appropriate metrics that are discussed in the following section.  

1.17.4 Random Forest Model 

Random Forest machine learning model is an ensemble learning model which applies 

the technique of bootstrap aggregating, or bagging, to a set of weak learners to achieve 

better predictive performance. The weak or base learners that Radom Forest (RF) 

https://en.wikipedia.org/wiki/Bootstrap_aggregating
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utilizes, is decision tree models which suffer from overfitting if it is used individually. In 

the bagging technique shown in Figure 4-8, random samples of data with 

replacement are selected repeatedly from the training set and decision trees model are 

fitted to these samples. After training the classification model, a new observant is 

classified by taking a majority vote from the outputs generated from the trees. Optimal 

number of the trees, maximum depth of the tress and number of the splits in the data are 

obtained empirically in this model.  

 

Figure 4-8. Bagging ensemble method 

Step by step of a RF model is: 

• Picking random K data points with replacement from a training set based 

on grid search 

• Building the decision tree associated to these K data points 

• Choosing the N number of trees by doing grid search and repeating steps 

1 & 2 

•  Applying the majority voting to predict the output of an observation 

https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
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After training the model with the training dataset, the model  was evaluated with the 

same statistical measures as the ones used for other ML models. The results are 

discussed in the following section. 

1.18 Repetition Counting 

For precise repetition counting, the peak detection algorithm was used in which 

initially the type of sport activity was detected from the ML model.  The signal peak 

values of each activity were counted based on their minimum peak height, minimum 

peak distance, and the signal width and height range characteristics. The plots for the 

repetition counting model for certain sports repetitions are presented in Figure 4-9.  

 

Figure 4-9. Sample of a repetition counting model on specific sports repetitions. 
A) Hammer Curl. B) Squat. C) Pullover 
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1.19 Results 

1.19.1 Activity Recognition 

Classifiers’ performances are evaluated and validated with 10-fold cross validation 

algorithm. The average values of accuracies, precisions, recalls and F-scores are 

determined from cross validated models over training data. As represented in Figure 

4-10 and Figure 4-11, random forest model can make the most accurate prediction with 

the highest values of accuracy, precision, recall and F-score. It can be observed that, 

although SVM and DT classifiers have reached higher accuracies than KNN model, 

these models have lower recall values. This results in more numbers of false negative 

predictions. The high value of false negative can significantly  exert a negative influence 

on the machine learning performance and should be considered as one of the major 

criteria in model selection. 

 

Figure 4-10. Average accuracies of 10-fold cross validation over training data 
and their standard deviation for the four developed models 
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Figure 4-11. Average precisions, recalls and fscores of 10-fold cross validation 
over training data and their standard deviation for the four 
developed models 

 

 

The overall comparison of model performances over test data also demonstrated that Rf 

model outperforms other models in recognition of sport activities. It can be seen from 

models’ confusion matrices in Figure 4-12,Figure 4-13,Figure 4-14 and Figure 4-15 that 

some sports like seated cable back rows, shoulder press and triceps can be recognized 

by all the developed models accurately while an activity like pullover is not easy to be 

identified even with the most accurate developed model such as random forest. 

Moreover, it can be observed that SVM, KNN and DT models have difficulties in 

distinguishing two similar activities, dumbbell bent over, and side shoulder raises. 

However, it is illustrated that random forest model can recognize dumbbell bent over, 

and side shoulder raises without any error. The overall accuracies of the models over 

test data are illustrated in the Figure 4-16. As this figure expresses, the KNN model 

demonstrates the least accuracy while Rf reached the highest score.  
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Figure 4-12. Confusion matrix for the Decision Tree model 
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Figure 4-13. Confusion matrix for the KNN model 
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Figure 4-14. Confusion matrix for the SVM model 
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Figure 4-15. Confusion matrix for the RF model 

 

 

Figure 4-16. Accuracy of the models over test data 
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1.19.2 Repetition Counting 

By selecting the RF model for the activity recognition application, repetition counting 

was developed in the next step. This algorithm finds the signal peaks based on the 

signal characteristics of a specific sport activity. In the first step, RF detects the activity 

type and sends the class label of the activity to the repetition counting algorithm, then 

the algorithm will search for the peaks. This developed technique was able to find 

activities repetitions with the overall average accuracy of 96% over all types of sports. As 

illustrated in Figure 4-17, the algorithm has a weak performance in finding the repetitions 

of arm bench rows and pullover while has a great performance in finding the peaks of 

the other sport activities.  

 

Figure 4-17. Accuracy of repetition counting algorithm over each sport type 
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1.20 Conclusion  

In this study, four common machine learning models were investigated for gym 

activities recognition application using Euler angles data from a single wrist-worn inertial 

sensor. Data from nine different gym activities were collected from twelve healthy 

individuals and exploited in this experiment. Evaluation factors showed that the Random 

Forest model can predict sport activity with high accuracy, precision, and recall. It can be 

concluded that although certain activities such as dumbbell bent over and side shoulder 

rises are extremely similar, our model is accurate enough to distinguish these sports 

from each other. Moreover, our system is capable of recognizing a leg exercise such as 

Squat as well as arm exercises. A repetition counting method was developed which 

works by leveraging finding signal peaks algorithm. When an activity is recognized by 

the RF model, this algorithm finds peaks based on the specific characteristics of the 

identified activity signal such as width, height, minimum peak height, and minimum peak 

distance. The accuracy of 96% was achieved from this algorithm. The developed model 

for activity recognition and repetition counting can be exploited in gym fitness wristbands 

or wrist of a smart glove to report what sport activity has been done with its number of 

repetitions to users or personal trainer of the users to let them evaluate their 

performances at gym and maximize their performance efficiency by providing practical 

feedback. 
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Chapter 5. Conclusion  

The current widespread wearables mostly focus on daily activities monitoring and 

calories measurement. They cannot provide information and feedback regarding weights 

used during workouts or monitor activities throughout the exercise automatically. In this 

study, we introduce a novel multifunctional wearable sensor-based platform for 

automatic recognition of weight training activities, weights utilized during training and 

numbers of activities repetitions. The main goal of this paper is to assist individuals in 

maximizing the performance progress, efficiency and avoid overtraining and 

overreaching by providing feedback in weight training activity. The proposed wearable 

glove consists of force sensors, IMU and accelerometer for monitoring forces, hand and 

wrist orientations. To reach the highest accuracy for the objectives of the study, weight 

prediction and activity recognition, most of the commonly used classifiers in this context 

were developed and their performances were investigated. Machine learning algorithms 

including random forest, k nearest neighbors, support vector machine and decision tree 

were studied for activity recognition purpose and, three other classifiers including 

support vector machine, neural network, and linear discriminant analysis were assessed 

for weight detection objective. The classifiers performances were compared and 

evaluated by evaluation metrics, accuracy, recall, precision and f-score over both 

training and test data. In activity recognition study, random forest outperformed other 

classifiers with the average accuracy of 98.89% over 10-fold cross validated models and 

99.8% accuracy over test data. In weight detection study, SVM outperformed other 

classifiers with the average accuracy of 99.67 % over 10-fold cross vali-dated models 

and 99.8% accuracy over test data. Also, repetition counting model based on peak 

finding algorithm reached an average accuracy of 96% over all the exercises.  

Due to the wide range of gym sport activities, it can be impossible to collect data for 

all types of sports. In future, different learning methods such as transfer learning can be 

implemented and evaluated on this wearable to include as many activities as possible 

for the end users. Besides, the system capability to detect higher weights in different 

forms from dumbbells requires to be investigated in future studies to provide better 

feedback system and richer information for the trainees. One of the limitations of the 

current force sensory system is the drift caused by long term usage of it. This study has 

not covered any solution regarding this issue and it is highly recommended for the future 
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studies to consider this problem when conducting experiments over wider range of the 

free weights.  
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