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Abstract

A partition is said to be balanced if the sizes of the sets in the partition differ by at most
one. The size of a graph partition is the number of edges that have their end-vertices in
different parts of the partition. A folklore conjecture claims that, for any planar graph G

on n vertices, a minimum balanced bipartition of G has size at most n. We confirm this
conjecture.

A Hamiltonian graph is one that contains a cycle passing through all its vertices. A pancyclic
graph is one that contains cycles of all possible lengths. In 1971-72, Bondy made the meta-
conjecture that, barring a simple family of exceptions, any nontrivial condition on a graph
that implies that the graph is Hamiltonian also implies that the graph is pancyclic. This
meta-conjecture implies, as a special case, that every 4-connected planar graph is pancyclic.
Identifying 4-connected planar graphs that do not contain a 4-cycle as a family of exceptions,
Malkevitch conjectured that a 4-connected planar graph is pancyclic if it contains a 4-cycle.
We show that every 4-connected planar graph contains at least ⌈n

2 ⌉ + 1 cycles of pairwise
distinct lengths. We also show that every 4-connected planar graph not containing a 4-cycle
contains at least ⌈5n

6 ⌉ + 2 cycles of pairwise distinct lengths.

Keywords: planar graphs; connectivity; planar triangulations; graph partitions; balanced
partitions; outerplanar graphs; Hamiltonicity; pancyclicity
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Chapter 1

Introduction

Planar graphs have attracted mathematicians since decades before they were characterized
by Kazimierz Kuratowksi around 1930. Despite all that is known about them and the
apparent ease of taking a problem to pen and paper, several problems have been found to
be notoriously hard to solve for this class of graphs and those that were have added to the
lot of problems and conjectures that remain unsettled. In this thesis, we attack two of these
conjectures.

We report singificant progress in both cases - one of the conjectures is settled in full,
and for the other we present significant partial results with proofs that draw on techniques
and lemmas of independent interest. In both cases, the proofs are constructive and yield
simple algorithms to find instances of the graph (sub)structure(s) in question that satisfy
the promised optimality bounds. In this chapter, we introduce the two conjectures and
provide details on background and state-of-the-art in each case. The next two chapters
present our findings on the two conjectures in full. We state future research directions and
open problems for both in the conclusion of this thesis.

1.1 Balanced partitions

Graph partitioning problems seek to find a partition of the vertex set that optimizes a
given parameter under some given conditions. Given a partition V (G) = V1 ∪ ... ∪ Vk of the
vertex-set, we indicate the number of edges with both ends in Vi by e(Vi) and the size of

the partition by e(V1, ..., Vk) = |E(G))| −
k∑

i=i
e(Vi).

A classic example of graph partitioning problem is the max-cut problem or the maximum
bipartite subgraph problem which requires one to find a partition V (G) = V1 ∪ V2 that
maximises e(V1, V2). In contrast to this, Bollobás and Scott ([2]) considered the problem of
finding a partition minimizing max{e(V1), e(V2)}. Several other partitioning problems have
been considered under different constraints (see [15], [27], [44]), and not just for graphs but
digraphs (see [18], [20], [26]) and hypergraphs as well (see [19], [21]).
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Graph partitioning comes up naturally in the study and design of complex networks
like social networks, transportation networks, etc., and several real-world problems may
be modeled as graph partitioning problems each with its own specification. More recently,
graph partitioning has been applied extensively in VLSI design.

A partition is said to be balanced if the sizes of the sets in the partition differ by at most
one. Following up on [2], Bollobás and Scott [4] proved that almost every regular graph with
m edges admits a balanced bipartition V (G) = V1 ∪ V2 such that max{e(V1), e(V2)} ≤ m/4.
In [43], Xu, Yan and Yu proved that every graph minimum degree at least 5 admits a
balanced bipartition such that max{e(V1), e(V2)} ≤ m/3. Bollobás and Scott conjectured
in [3] that every graph with minimum degree at least 2 admits such a bipartition. In that
paper, they also posed the following balanced bipartition problem: for a graph G with n

vertices and m edges, what is the maximum and the minimum size of a balanced bipartition?
In [16], Fan, Xu, Yu and Zhou proved that minimum balanced bipartitions of any graph

G with n vertices and m edges have size at most 1
2(m+ ⌈n

2 ⌉− |M |), where M is a maximum
matching in the complement graph Gc. They also proved that if G is planar, then there exists
a corresponding upper bound of n−2 if G is triangle-free, and n+1 if G is Hamiltonian. Of
these, the latter was improved to n for minimum balanced bipartitions of any planar graph
G without separating triangles by Olsen and Revsbæk in [33]. As observed in K4 and an
infinite family of planar graphs given by Fan, Xu, Yu and Zhou in [16], minimum balanced
bipartitions can have size equal to n. In the same paper, Fan, Xu, Yu and Zhou mention
a folklore conjecture which claims that, for the class of planar graphs, we cannot do any
worse. We settle this conjecture in the affirmative in this thesis.

1.2 Pancyclicity

In 1971-72, Bondy (see [5], [6]) proposed his now famed meta-conjecture that any nontrivial
condition on a graph which guarantees the existence of a Hamiltonian cycle (a cycle passing
through all the vertices) also guarantees that the given graph is pancyclic (contains cycles
of all possible lengths), with possibly a simple family of exceptions. This meta-conjecture
has since attracted a considerable amount of research.

On the affirmative side, Bondy himself proved that Ore’s sufficient condition for Hamil-
tonicity also implies pancyclicity, unless the graph is the complete balanced bipartite graph
K n

2 , n
2
. Bauer and Schmeichel ([1]), relying on previous results of Schmeichel and Hakimi

([36]), have shown that the sufficient conditions for Hamiltonicity of Bondy ([7]), Chvátal
([9]) and Fan ([14]) all imply pancyclicity, barring a small family of exceptions. Motivated
by the classical theorem of Chvátal and Erdös ([10]) that a graph with connectivity κ(G)
at least as large as its independence number α(G) must be Hamiltonian, Keevash and Su-
dakov ([25]) proved the weaker result that κ(G) ≥ 600α(G) is sufficient for pancyclicity. On
the negative side, Zamfirescu ([45]) recently showed that Thomassen’s sufficient condition
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for Hamiltonicity in planar graphs ([39]) does not guarantee pancyclicity; in fact, one can
construct (an infinite family of) graphs satisfying the said sufficient condition to make the
number of missing cycle lengths arbitrarily large.

Hamiltonicity is a classic problem that has real applications in diverse fields such as
computer graphics, electronic circuit design, genome mapping, and operations research. For
instance, when mapping genomes scientists must combine many tiny fragments of genetic
code (called “reads”) into one single genomic sequence (a “superstring”). This can be done
by finding a Hamiltonian path or cycle, where each of the reads are considered nodes in a
graph and each overlap (place where the end of one read matches the beginning of another)
is considered to be an edge. Pancyclicity is a natural extension of this classic problem.

In his paper, along with proving Ore’s condition being sufficient for pancyclicity, Bondy
conjectured that Tutte’s result about Hamiltonicity of 4-connected planar graphs could be
similarly strengthened to imply pancyclicity. Malkevitch (see [30]) pointed out a simple
family of exceptions to this conjecture (line graphs of cyclically 4-edge-connected, cubic,
planar graphs of girth 5) no member of which contains a cycle of length 4. However, it is
suspected that that might be the only cycle length absent in a 4-connected planar graph.
Malkevitch then revised Bondy’s conjecture to add the extra condition that the graph
contain a 4-cycle in order to be pancyclic.

It is known that every planar graph with minimum degree δ ≥ 4 must contain cycles of
length 3, 5 ([42]) and 6 ([17]). Using Tutte paths, Nelson ([40]), Thomas and Yu ([38]) and
Sanders ([34]) showed that every 4-connected planar graph on n vertices contains cycles of
length n − 1, n − 2 and n − 3. This was further strengthened by Chen, Fan and Yu. ([8]) to
include the lengths lengths n−4, n−5 and n−6, and by Cui, Hu and Wang. ([11]) to include
the length n−7. Recently, Lo ([28]) showed that every planar Hamiltonian graph with δ ≥ 4
has cycles of lengths ⌊n

2 ⌋, ..., ⌈n
2 ⌉+3. We add to this body of results by showing in this thesis

that every 4-connected planar graph contains at least ⌈n
2 ⌉ + 1 cycles of pairwise distinct

lengths. We also show that every 4-connected planar graph contains at least ⌈5n
6 ⌉ + 2 cycles

of pairwise distinct lengths when it does not contain any 4-cycles. We acknowledge that a
result similar to the former has been obtained independently by Lo ([29]).
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Chapter 2

Minimum balanced bipartitions of
planar graphs

2.1 A folklore conjecture

A partition is said to be balanced if the sizes of the sets in the partition differ by at most
one. Balanced bipartition problems in graphs ask for a balanced partition of the vertex-set
of a graph into two sets with various requirements. In [3], Bollobás and Scott posed the
following balanced bipartition problem: for a graph G with n vertices and m edges, what is
the maximum and the minimum size of (the edge-cut in) a balanced bipartition of V (G)?
While a substantial amount of work has been done on both the maximum and the minimum
balanced bipartition problems, in this chapter, we will focus on the latter.

In [16], Fan, Xu, Yu and Zhou proved that minimum balanced bipartitions of any graph
G with n vertices and m edges have size at most 1

2(m+ ⌈n
2 ⌉− |M |), where M is a maximum

matching in the complement graph Gc. They also proved that if G is planar, then there exists
a corresponding upper bound of n−2 if G is triangle-free, and n+1 if G is Hamiltonian. Of
these, the latter was improved to n for minimum balanced bipartitions of any planar graph
G without separating triangles by Olsen and Revsbæk in [33]. As observed in K4 and an
infinite family of planar graphs given by Fan, Xu, Yu and Zhou in [16], minimum balanced
bipartitions can have size equal to n. In the same paper, Fan, Xu, Yu and Zhou mention
a folklore conjecture which claims that, for the class of planar graphs, we cannot do any
worse.

Conjecture 1. A minimum balanced bipartition of any planar graph G has size at most
|V (G)|.

In this chapter, we prove this conjecture. Our main result is the following theorem ([37]).

Theorem 2. If G is a plane triangulation, then there exists a balanced bipartition (V1, V2)
of V (G) such that both G[V1] and G[V2] are connected near-triangulations, and the total
number of blocks in G[V1] and G[V2] exceeds the total number of internal vertices by at most
2.
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The theorem above makes a stronger statement about balanced bipartitions of planar
triangulations from which the conjecture follows as a direct corollary. Moreover, the proof
that we give is constructive and may be used to derive an algorithm for obtaining a balanced
bipartition which respects the conjectured bound for any planar graph G.

The layout of the rest of the chapter is as follows. In Section 2.2, we define the graph-
terminology used in the chapter and prove some preliminary edge-counting statements. In
the following two sections, we introduce the two key tools used in the proof − the partition-
ing lemmas (Section 2.3) and the separating-triangle-decomposition of planar triangulations
(Section 2.4), and set up the proof infrastructure. In Section 2.5, we describe a basic con-
struction which uses this infrastructure to obtain a balanced bipartition respecting the
conjectured bound for any planar triangulation G barring a special case. Later, in Sec-
tion 2.6, we present variants of the same basic construction which we use to handle the said
special case. Finally, we conclude by putting everything together in Section 2.7.

2.2 Preliminaries

The graphs in this chapter are planar and do not contain loops or parallel edges.
For any graph G, a bipartition (V1, V2) of V (G) is defined as a pair of disjoint subsets

V1 and V2 of V (G) such that V1 ∪ V2 = V (G). A bipartition (V1, V2) of V (G) is said to be
a balanced bipartition if |V1| and |V2| differ by at most 1.

A graph G is said to be connected if, for every pair of vertices u, v ∈ V (G), there exists
a u − v path in G. A single vertex forms a connected graph in the trivial sense. A graph
that is not connected is said to be disconnected.

A graph G is said to be k-connected if it has at least k + 1 vertices and, for every
(k − 1)-subset V ′ of V (G), G − V ′ is connected. A (k − 1)-subset of V (G) which when
removed from the graph leaves the graph disconnected, is called a (k − 1)-vertex-cut (or a
(k − 1)-cut) in G. A 1-cut is also known as a cut-vertex. A k-separation (G1, G2) in G is
defined as a pair of subgraphs G1 and G2 of G such that G1 ∪ G2 = G, E(G1) ∩ E(G2) = ∅,
and |V (G1) ∩ V (G2)| = k. Note that if, for a k-separation (G1, G2), V (G1) ∩ V (G2) forms
a k-cut in G, then both V (G1) − V (G2) and V (G2) − V (G1) must be nonempty.

To simplify the notation in this chapter, we define a graph G to be biconnected if G is
2-connected or G = K2. A biconnected graph is 2-connected if and only if it has 3 or more
vertices.

A block in a graph G is a maximally biconnected subgraph of G.
Two edges in a graph G are said to be disjoint if they are not incident with a common

vertex.
A graph is said to be planar if it can be drawn in the plane in such a way that its edges

intersect only at their endpoints. A graph so drawn in the plane is called a plane graph. For
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any plane graph G, the regions of R2\G are called the faces of G. If G is finite, then exactly
one of its faces is unbounded and is called the infinite face of G.

A closed walk in a graph is defined as a sequence of vertices, starting and ending at
the same vertex, such that every pair of consecutive vertices in the sequence is adjacent to
each other in the graph. Each face of a plane graph G is bounded by a closed walk in G

called the boundary of the face. Any vertex of G not lying on the boundary of the infinite
face of G is said to be an internal vertex of G. Since a planar graph can also be drawn on
a sphere in such a way that its edges intersect only at their endpoints, under a suitably
chosen stereographic projection from the sphere to the plane, any face boundary in a plane
graph G may be “designated” as the infinite face boundary.

A planar triangulation is a graph that is maximally planar. Every face in any drawing
of a planar triangulation in the plane is bounded by three edges. Every planar triangulation
corresponds to a unique plane triangulation upto isomorphism, so the terms are often used
interchangeably.

A near-triangulation is a plane graph G such that every face of G except at most one
is bounded by three edges. Thus, a plane triangulation is also a near-triangulation. In this
chapter, we designate the face not bounded by three edges in a near-triangulation as the
infinite face.

Readers are referred to [13] for any terminology that we may have missed and the
notation used in this chapter.

We now prove a couple of edge-counting statements.

Proposition 3. If G is a connected near-triangulation with |V (G)| ≥ 2, b blocks, and i

internal vertices, then |E(G)| = 2|V (G)| − 2 + i − b.

Proof. The proof is by induction on b. Let G be a connected near-triangulation with
|V (G)| ≥ 2.

If G is a single edge, then 2|V (G)| − 2 + i − b = 4 − 2 + 0 − 1 = 1 = |E(G)|. If G is
2-connected, then the number of edges missing from G is the number of non-intersecting
edges required to triangulate its unbounded face, which is |V (G)| − i − 3, and so |E(G)| =
3|V (G)| − 6 − (|V (G)| − i − 3) = 2|V (G)| − 2 + i − 1. Thus, the proposition holds for the
base case of the induction (b = 1).

Now suppose that G has b ≥ 2 blocks. Consider a leaf block G1 in G which is separated
from the rest of the graph by a cut-vertex u. Then, G2 := G − (V (G1) − u) is a connected
near-triangulation with at least 2 vertices and b − 1 blocks. By the induction hypothesis,
|E(G2)| = 2|V (G2)| − 2 + i2 − (b − 1), where i2 is the number of internal vertices in G2.
Similarly, |E(G1)| = 2|V (G1)| − 2 + i1 − 1, where i1 is the number of internal vertices in

6



G1. This gives us that

|E(G)| = |E(G1)| + |E(G2)|

= 2(|V (G1)| + |V (G2)|) − 4 + (i1 + i2) − b

= 2(|V (G)| + 1) − 4 + i − b

= 2|V (G)| − 2 + i − b,

which concludes the induction.

Corollary 4. If G is a plane triangulation with |V (G)| ≥ 4, and (V1, V2) is a bipartition
of V (G) with |V1|, |V2| ≥ 2 such that both G[V1], G[V2] are near-triangulations together
containing a total of b blocks and i internal vertices, then e(V1, V2) = |V (G)| + b − i − 2.

Proof. Let G be a plane triangulation with |V (G)| ≥ 4, and let (V1, V2) be a bipartition of
V (G) with |V1|, |V2| ≥ 2. For k = 1, 2, let G[Vk] be a near-triangulation with bk blocks and
ik internal vertices, and let i = i1 + i2, b = b1 + b2. Then, using Proposition 3,

e(V1, V2) = |E(G)| − (|E(G[V1])| + |E(G[V2])|)

= 3|V (G)| − 6 − (2(|V1| + |V2|) − 4 + (i1 + i2) − (b1 + b2))

= 3|V (G)| − 6 − (2|V (G)| − 4 + i − b)

= |V (G)| − 2 − i + b.

2.3 Partitioning lemmas

In this section, we prove a set of partitioning lemmas that will be used as “navigation”
and “dissection” tools in the main proof. The first of these applies to 4-connected plane
triangulations and yields as a corollary a proof of the conjecture for 4-connected planar
graphs. This lemma helps in both navigating a plane triangulation in the attempt to find
an “ideal partitioning site” and in affecting the actual partitioning.

Lemma 5. If G is a 4-connected plane triangulation or K4, and e1, e2, are disjoint edges
in G, then for every 2 ≤ k ≤ |V (G)|−2 there exists a bipartition (V1, V2) of V (G) such that

(i) |V1| = k, |V2| = |V (G)| − k,

(ii) e1 ∈ E(G[V1]), e2 ∈ E(G[V2]), and

(iii) both G[V1], G[V2] are biconnected near-triangulations.

7



Proof. The proof is by induction on k. Let G be a 4-connected plane triangulation with
|V (G)| ≥ 4 and disjoint edges e1, e2 ∈ E(G). Let e1 = u1v1, e2 = u2v2, where u1, u2, v1, v2 ∈
V (G).

If k = 2 or G = K4, define V1 := {u1, v1}, V2 := V (G) − V1. Then G[V1] is a bi-
connected near-triangulation and, since G is 4-connected or K4, G[V2] is a biconnected
near-triangulation too (the only possible non-triangular face being the one bounded by
NG({u1, v1}) − {u1, v1}). Thus, the lemma holds for K4 and the base case of the induction.

Now suppose that 2 < k ≤ n − 2. By the induction hypothesis, there exists a bipartition
(V ′

1 , V ′
2) of V (G) such that |V ′

1 | = k − 1, ei ∈ E(G[V ′
i ]) for i = 1, 2, and both G[V ′

1 ], G[V ′
2 ]

are biconnected near-triangulations. For every edge xy on the boundary of the infinite face
of G[V ′

1 ] there exists a vertex z on the boundary of the infinite face of G[V ′
2 ] such that

the vertex-set {x, y, z} bounds a triangular face of G (we say that the vertex z forms a
triangular face of G with the edge xy). Let Z be the set of all vertices on the boundary
of the infinite face of G[V ′

2 ] each of which forms a triangular face of G with an edge on
the boundary of the infinite face of G[V ′

1 ]. Since |V ′
2 | ≥ 3, |Z| ≥ 2 for otherwise one of the

edges on the boundary of the infinite face of G[V ′
1 ] is on the boundary of only one triangular

face in G; Z ̸= {u2, v2}, for otherwise u2 and v2 have a common neighbor (say x′) on the
boundary of the infinite face of G[V ′

1 ] such that {u2, v2, x′} forms a 3-cut in G. Consider a
vertex z ∈ Z −{u2, v2}. If G[V ′

2 −z] is biconnected for any such vertex z, then the bipartition
(V1, V2) := (V ′

1 ∪ z, V ′
2 − z) satisfies (i) − (iii) and the induction is complete.

So we may assume that each such vertex z is contained in a 2-cut {z, z′} in G[V ′
2 ]. Since

G[V ′
2 ] is a biconnected near-triangulation, for every such 2-cut {z, z′}, the vertex z′ also lies

on the boundary of the infinite face of G[V ′
2 ] and is, hence, adjacent to z, but the edge zz′

does not lie on the boundary of the infinite face. Let (Hzz′ , Jzz′) denote the 2-separation in
G[V ′

2 ] corresponding to the 2-cut {z, z′}. Then either V (Hzz′)−V (Jzz′) or V (Jzz′)−V (Hzz′)
contains neither u2 nor v2; without loss of generality, let (V (Hzz′) − V (Jzz′)) ∩ {u2, v2} = ∅.
Note that V (Hzz′) − V (Jzz′) contains one or more vertices that lie on the boundary of the
infinite face of G[V ′

2 ]. As before, if any of these vertices w forms a triangular face of G

with an edge on the boundary of the infinite face of G[V ′
1 ], then it is contained in a 2-cut

{w, w′} ⊂ V (Hzz′) and the corresponding 2-separation (Hww′ , Jww′) is non-crossing with
(Hzz′ , Jzz′), i.e., Hww′ ⊂ Hzz′ and Jww′ ⊃ Jzz′ . In particular, for any such 2-separation
(Hww′ , Jww′), |V (Hww′)| < |V (Hzz′)|.

Consider such a 2-separation (Hw̄w̄′ , Jw̄w̄′) with |V (Hw̄w̄′)| minimal (if none of the ver-
tices in V (Hzz′)−V (Jzz′) forms a triangular face of G with an edge on the boundary of the in-
finite face of G[V ′

1 ], then (Hw̄w̄′ , Jw̄w̄′) = (Hzz′ , Jzz′)). Since no vertex in V (Hw̄w̄′)−V (Jw̄w̄′)
forms a triangular face of G with an edge on the boundary of the infinite face of G[V ′

1 ], there
exists a vertex p on that boundary which is adjacent to every vertex in V (Hw̄w̄′) that lies
on the boundary of the infinite face of G[V ′

2 ] (including w̄ and w̄′). But then the vertex-set
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{p, w̄, w̄′} forms a 3-cut in G, a contradiction to G being 4-connected. This concludes the
induction.

Corollary 6. If G is a 4-connected planar graph or G ⊆ K4, then for every 1 ≤ k ≤
|V (G)| − 1 there exists a bipartition (V1, V2) of V (G) with |V1| = k such that e(V1, V2) ≤
|V (G)|.

Proof. Observe that it suffices to prove the corollary for the cases when G is a 4-connected
plane triangulation or G ⊆ K4. It is easily seen that the corollary holds if G ⊆ K4, so we
may assume that G is a 4-connected plane triangulation.

The corollary is trivially true for k = 1, n − 1 since the maximum degree of a vertex in
G is at most |V (G)| − 1.

Suppose 2 ≤ k ≤ |V (G)| − 2. By Lemma 5, there exists a bipartition (V1, V2) of V (G)
such that |V1| = k, and both G[V1] and G[V2] are biconnected near-triangu-lations. Then,
using Corollary 4, e(V1, V2) = |V (G)| − 2 − i + 2 = |V (G)| − i ≤ |V (G)|, where i is the
number of internal vertices in G[V1], G[V2] taken together.

The next pair of lemmas applies to plane triangulations which may not be 4-connected
and are primarily used for affecting the actual partitioning once an ideal partitioning site
has been located.

Lemma 7. If G is a plane triangulation and the vertex-set {a, b, c} ⊆ V (G) bounds the
infinite face of G, then for every 2 ≤ k ≤ |V (G)| − 1 there exists a bipartition (V1, V2) of
V (G) such that

(i) |V1| = k, |V2| = |V (G)| − k,

(ii) {a, b} ⊆ V1, c ∈ V2,

(iii) G[V1] is a biconnected near-triangulation with the edge ab on the boundary of the
infinite face, and

(iv) G[V2] is a connected near-triangulation with the vertex c on the boundary of the infinite
face.

Proof. The proof is by induction on k and very similar to that of Lemma 5. Let G be a
plane triangulation and let {a, b, c} ⊆ V (G) be the vertex-set that bounds the infinite face
of G.

If k = 2, define V1 := {a, b}, V2 := V (G) − V1. Then G[V1] is a biconnected near-
triangulation with the edge ab on the boundary of the infinite face. Since G is a plane
triangulation and hence 3-connected, G[V2] is a connected near-triangulation too with the
only possible non-triangular face being the one bounded by the vertex-set NG({a, b})−{a, b}
containing c. Thus, the lemma holds for the base case of the induction.
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Now suppose that 2 < k ≤ n − 1. By the induction hypothesis, there exists a bipartition
(V ′

1 , V ′
2) of V (G) such that |V ′

1 | = k − 1, G[V ′
1 ] is a biconnected near-triangulation with the

edge ab on the boundary of the infinite face, and G[V ′
2 ] is a connected near-triangulation

with the vertex c on the boundary of the infinite face. For every edge xy on the boundary of
the infinite face of G[V ′

1 ] there exists a vertex z on the boundary of the infinite face of G[V ′
2 ]

such that the vertex z forms a triangular face of G with the edge xy. Let Z be the set of all
vertices on the boundary of the infinite face of G[V ′

2 ] each of which forms a triangular face
of G with an edge on the boundary of the infinite face of G[V ′

1 ]. Since |V ′
2 | ≥ 2, |Z| ≥ 2 for

otherwise one of the edges on the boundary of the infinite face of G[V ′
1 ] is on the boundary

of only one triangular face in G. Consider a vertex z ∈ Z − {c}. If G[V ′
2 − z] is connected

for any such vertex z, then the bipartition (V1, V2) := (V ′
1 ∪ z, V ′

2 − z) satisfies (i) − (iii) and
the induction is complete.

So we may assume that each such vertex z is a cut-vertex in G[V ′
2 ]. Then there exists

a leaf-block B which does not contain the vertex c, not even as the cut-vertex (say u)
connecting the block to the rest of G[V ′

2 ]. Observe that there exists at least one vertex
v ∈ V (B), v ̸= u, such that v lies on the boundary of the infinite face of G[V ′

2 ]. But since
neither v = c, nor is v a cut-vertex in G[V ′

2 ], v does not form a triangular face of G with an
edge on the boundary of the infinite face of G[V ′

1 ]. This implies that v lies on the boundary
of a face in G that is not a triangle, a contradiction since G is a plane triangulation. This
concludes the induction.

Remark 1. Notice that the proofs of Lemma 5 and Lemma 7 are constructive in nature and
underline the algorithm for achieving the desired biparitition in each case by describing the
next vertex to be included in one of the two parts. Notice that the algorithm underlined
by the proof of Lemma 7, in particular, ensures for any common neighbor v ̸= c of a and b

that all the vertices in the component of G − {a, b, v} not containing c are included in V1 if
v is; it also ensures that v is included in V1 if any vertex of the component of G − {a, b, v}
containing c is.

Lemma 8. Let G be a plane triangulation such that |V (G)| ≥ 4 and the vertex-set {a, b, c} ⊂
V (G) bounds the infinite face of G. If (V1, V2) is a bipartition of V (G) such that

(i) {a, b} ⊆ V1, c ∈ V2,

(ii) |V2| ≥ 2, and

(iii) both G[V1] and G[V2] are connected near-triangulations,

then there exists a vertex v ∈ V2 − c such that both G[V1 ∪ v] and G[V2 − v] are connected
near-triangulations, and the total number of blocks in G[V1 ∪ v] and G[V2 − v] exceeds that
in G[V1] and G[V2] by at most 1.
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Proof. Let G be a plane triangulation such that |V (G)| ≥ 4 and and the vertex-set {a, b, c} ⊂
V (G) bounds the infinite face of G. Let (V1, V2) be a bipartition of V (G) such that {a, b} ⊆
V1, c ∈ V2, |V2| ≥ 2, and both G[V1] and G[V2] are connected near-triangulations.

Consider a leaf-block B of G[V2]. Let u denote the cut-vertex connecting B to the rest of
G[V2] if the latter is not biconnected; if G[V2] is biconnected, let u = c. Then B contributes
a vertex z ̸= u to the boundary of the infinite face of G[V2] such that z forms a triangular
face of G with an edge xy on the boundary of the infinite face of G[V1]; if not, either one
of the edges on the boundary of the infinite face of G[V1] is on the boundary of only one
triangular face in G, or u lies on the boundary of a face in G that is not a triangle.

If there exists such a vertex z ∈ V (B) that is contained in at most a single 2-cut in B,
then we may choose v = z and the additional block (if any) in G[V1 ∪ v] and G[V2 − v]
appears in G[V2 −v]. So we may assume that for each such vertex z ∈ V (B), there exist two
or more distinct 2-separations (H, J) in G[V2] such that z ∈ (V (H) ∩ V (J)) ⊂ V (B) and
z is adjacent to z′ := (V (H) ∩ V (J)) − z but the edge zz′ does not lie on the boundary of
the infinite face of G[V2]. For all but one of these 2-separations, u ̸∈ V (J) ∩ V (H); without
loss of generality, let u ∈ V (J) − V (H) whenever u ̸∈ V (J) ∩ V (H). Let (Hz, Jz) be one
of these 2-separations with |V (Hz)| minimal, one for which z is not contained in a 2-cut in
B with any vertex from V (Hz) − V (Jz). Then, a similar 2-separation (Hw, Jw) for a vertex
w ∈ V (Hz)−V (Jz) is non-crossing with (Hz, Jz), i.e., Hw ⊂ Hz and Jw ⊃ Jz. In particular,
for any such 2-separation (Hw, Jw), |V (Hw)| < |V (Jw)|.

Consider such a 2-separation (Hw̄, Jw̄) with |V (Hw̄)| minimal (if none of the vertices in
V (Hz)−V (Jz) forms a triangular face of G with an edge on the boundary of the infinite face
of G[V1], then (Hw̄, Jw̄) = (Hz, Jz)); let V (Hw̄) ∩ V (Jw̄) = {w̄, w̄′}. Let Q denote the set of
vertices q ∈ V (Hw̄) − V (Jw̄) that lie on the boundary of the infinite face of G[V2]; note that
Q ̸= ∅. Since no vertex in Q forms a triangular face of G with an edge on the boundary of
the infinite face of G[V1], there exists a vertex p on that boundary which is adjacent to every
vertex in Q∪{w̄, w̄′}. Let C denote the cycle formed by the edge w̄w̄′ and the segment of the
boundary of the infinite face of G[V2] formed by the vertex-set Q∪{w̄, w̄′}. Let xx′ denote a
chord of C of minimal length contained in G[V2] (i.e., x, x′ ∈ V (C), xx′ ∈ E(G[V2]) − E(C),
and the smaller of the two x−x′ paths along C has minimal length); if G[V2] does not contain
any chords of C, let xx′ = w̄w̄′. Then there exists a 2-separation (Hxx′ , Jxx′) in G[V2] such
that V (Hxx′)∩V (Jxx′) = {x, x′}, u ∈ V (Jxx′)−V (Hxx′) and (V (Hxx′)−V (Jxx′))∩V (C) ̸= ∅.
Since every vertex in V (C) ∩ V (Hxx′) is adjacent to p and G[V2] does not contain any
chords of the cycle (C − (V (Jxx′) − V (Hxx′))) ∪ xx′, we may choose v to be any vertex
in (V (Hxx′) − V (Jxx′)) ∩ V (C) and the additional block (if any) G[V1 ∪ v] and G[V2 − v]
appears in G[V1 ∪ v].

Corollary 9. Let G be a plane triangulation such that the vertex-set {a, b, c} ⊆ V (G) bounds
the infinite face of G. If (V ′

1 , V ′
2) is a bipartition of V (G) such that {a, b} ⊆ V ′

1 , c ∈ V ′
2, and
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both G[V ′
1 ] and G[V ′

2 ] are connected near-triangulations, then for every 0 ≤ k ≤ |V ′
2 | − 1

there exists a bipartition (V1, V2) of V (G) such that

(i) V ′
1 ⊆ V1, c ∈ V2 ⊆ V ′

2,

(ii) |V1| = |V ′
1 | + k, and

(iii) both G[V1] and G[V2] are connected near-triangulations with the total number of blocks
in G[V1] and G[V2] exceeding that in G[V ′

1 ] and G[V ′
2 ] by at most k.

Proof. The proof is by induction on k. Let G be a plane triangulation such that the vertex-
set {a, b, c} ⊆ V (G) bounds the infinite face of G. Let (V ′

1 , V ′
2) be a bipartition of V (G)

such that {a, b} ⊆ V ′
1 , c ∈ V ′

2 , and both G[V ′
1 ] and G[V ′

2 ] are connected near-triangulations
with a total of b blocks. If k = 0 or |V ′

2 | = 1, then (V1, V2) = (V ′
1 , V ′

2). So we may assume
that |V ′

2 | ≥ 2.
Now suppose that 0 < k ≤ |V ′

2 |−1. By the induction hypothesis, there exists a bipartition
(V ′′

1 , V ′′
2 ) of V (G) such that V ′

1 ⊆ V ′′
1 , c ∈ V ′′

2 ⊆ V ′
2 , |V ′′

1 | = |V ′
1 | + k − 1, and both G[V ′′

1 ]
and G[V ′′

2 ] are connected near-triangulations with a total of at most b + k − 1 blocks. Then,
by Lemma 8, there exists a vertex v ∈ V ′′

2 − c such that both G[V ′′
1 ∪ v] and G[V ′′

2 − v]
are connected near-triangulations with a total of at most b + k blocks, and we may choose
(V1, V2) = (V ′′

1 ∪ v, V ′′
2 − v).

This concludes the induction.

2.4 Setup

In this section, we establish the key elements of the “map” used by the navigation lemma
from the previous section to identify an ideal partitioning site. For such a map to be fea-
sible, we need to get out of our way a pathological case which is handled by the following
proposition.

Proposition 10. If G is a plane triangulation with |V (G)| = n and T ⊆ G is a separating
triangle such that each of the two components of G−V (T ) contains at least ⌊n

2 ⌋−1 vertices,
then there exists a balanced bipartition (V1, V2) of V (G) such that G[V1] is a biconnected
near-triangulation and G[V2] is a connected near-triangulation with the number of blocks
exceeding the total number of internal vertices in G[V1] and G[V2] by at most 1.

Proof. Let G be a plane triangulation with |V (G)| = n and let T be a separating triangle
in G such that each of the two components of G − V (T ) contains at least ⌊n

2 ⌋ − 1 vertices.
Since 2(⌊n

2 ⌋ − 1) + 3 = 2⌊n
2 ⌋ + 1, n is odd and each component of G − V (T ) contains exactly

⌊n
2 ⌋ − 1 vertices.
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Let V (T ) = {a, b, c} and let U1, U2 denote the sets of vertices in the two components
of G − V (T ). Consider the balanced bipartition (U2 ∪ {b, c}, U1 ∪ a) of V (G). Observe that
G[U2 ∪ {b, c}] is a biconnected near-triangulation with exactly |U2| − |U2 ∩ NG(a)| internal
vertices, while G[U1 ∪a] is a connected near-triangulation with exactly |U1 ∩NG(b)∩NG(c)|
blocks. By Corollary 4, if this bipartition does not qualify as the bipartition (V1, V2), then
it must be the case that

|U2| − |U2 ∩ NG(a)| ≤ |U1 ∩ NG(b) ∩ NG(c)| − 2.

Similarly, if none of the analogously defined balanced bipartitions (U2 ∪ {a, c}, U1 ∪ b) and
(U2 ∪ {a, b}, U1 ∪ c) qualifies as the bipartition (V1, V2), we get that

|U2| − |U2 ∩ NG(b)| ≤ |U1 ∩ NG(a) ∩ NG(c)| − 2, and

|U2| − |U2 ∩ NG(c)| ≤ |U1 ∩ NG(a) ∩ NG(b)| − 2.

Observe that every vertex in U2 except at most one is adjacent to at most two of the
three vertices a, b and c. Thus,

2|U2| + 1 ≥ |U2 ∩ NG(a)| + |U2 ∩ NG(b)| + |U2 ∩ NG(c)|

⇒ |U2| − 1 ≤ 3|U2| − (|U2 ∩ NG(a)| + |U2 ∩ NG(b)| + |U2 ∩ NG(c)|). (2.1)

Similarly, none of the common neighbors of a and b in U1 except at most one is adjacent to
c, and likewise for the pairs b, c and a, c. Thus,

|U1 ∩ NG(a) ∩ NG(c)| + |U1 ∩ NG(a) ∩ NG(c)| + |U1 ∩ NG(a) ∩ NG(c)| ≤ |U1| + 2

Then, adding the first three inequalities, we get that

3|U2| − (|U2 ∩ NG(a)| + |U2 ∩ NG(b)| + |U2 ∩ NG(c)|)

≤|U1 ∩ NG(b) ∩ NG(c)| + |U1 ∩ NG(a) ∩ NG(c)| + |U1 ∩ NG(a) ∩ NG(b)| − 6

≤|U1| − 4,

a contradiction to (2.1) above since |U1| = |U2|. Thus, one of the three balanced bipartitions
described above qualifies as the balanced bipartition (V1, V2) described in the proposition
statement.

In the remainder of this section and in the following two sections, we assume that if G

is a plane triangulation with |V (G)| = n, then G does not contain a separating triangle T

such that each of the two components of G − V (T ) contains at least ⌊n
2 ⌋ − 1 vertices.

Now, to build the said “map”, we use the separating-triangle-decomposition of a plane
triangulation into 4-connected pieces defined by Jackson and Yu in [22]. It is described as
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follows. Let G be a plane triangulation with |V (G)| = n and let T be a separating triangle
in G. Then we can identify two graphs HT and IT in G such that both HT and IT have at
least 4 vertices, HT ∪ IT = G, HT ∩ IT = T , and each of HT and IT is a plane triangulation
with V (T ) bounding a face in it; for notational convenience, we choose the labels so that
|V (IT )| ≤ |V (HT )|. T is referred to as a marker triangle in HT and IT . This procedure is
now recursively iterated on HT and IT until we obtain a collection T of plane triangulations
each without any separating triangles. These triangulations are referred to as the pieces of
G. Note that each separating triangle in G will occur as a marker triangle in exactly two
pieces of G. Let D be a graph defined on the set T such that T1, T2 ∈ T are joined by an
edge if they have a marker triangle in common. It follows from the decomposition theory
given by Cunningham and Edmonds in [12] that D is a tree, and that the set T and the tree
D are uniquely defined by G. D is referred to as the separating-triangle-decomposition-tree
of G. We will mostly refer to D as the std-tree of G.

For each edge e of D, let Te be the common marker triangle between the pieces joined
by e and let (HTe , ITe) be the subgraph-pair as described above (we will henceforth refer
to Te as e’s marker triangle and to (HTe , ITe) as Te’s (or e’s) std-subgraph-pair). Due to
Proposition 10, we may assume that |V (HTe)| ≥ ⌊n

2 ⌋ + 2 and |V (ITe)| ≥ ⌊n
2 ⌋ + 2 are not

both true. Then, since 2(⌊n
2 ⌋ + 1) − 3 < n, exactly one of HTe and ITe has at most ⌊n

2 ⌋ + 1
vertices, and is thus “smaller” than the other which has at least ⌈n

2 ⌉ + 2 vertices. Recalling
that we choose the labels so that ITe is the smaller subgraph, we orient each edge e in D

away from piece contained in ITe to get the directed std-tree −→
D . It is easy to see that exactly

one piece in −→
D is incident with all edges oriented inward. We call this piece the sink. By

construction, the sink represents a triangulation S ⊆ G with no separating triangles; we call
this triangulation the sink triangulation of G. Due to Proposition 11 below, we may assume
that the sink in −→

D has degree at least 2 (S contains at least 2 distinct triangles that are
separating in G). Since |V (S)| ≥ 4 and there does not exist a plane triangulation without
separating triangles on 5 vertices, due to Proposition 13 below, we may assume that indeed
|V (S)| ≥ 6 and, hence, that S is 4-connected.

The proofs that follow use some additional terminology which is defined as follows. For
any T in G with V (T ) = {a, b, c}, we denote by JT the smaller std-subgraph IT of G if
T is separating in G, and the triangle T otherwise (this latter case represents the unique
“empty” side of T when it is non-separating); we denote the set V (JT ) − {a, b, c} by UT .

For each x ∈ {a, b, c}, the number of internal vertices in JT − x is denoted by iT,x. As
observed earlier in Proposition 10, if T is separating in G then iT,x = |UT | − |NG(x) ∩ UT |.
Since every vertex in UT except at most one is adjacent to at most two of the three vertices
a, b, c, we get that |NG(a) ∩ UT | + |NG(b) ∩ UT | + |NG(c) ∩ UT | ≤ 2|UT | +1; then iT,a + iT,b +
iT,c = 3|UT | − |NG(a) ∩ UT | − |NG(b) ∩ UT | − |NG(c) ∩ UT | ≥ |UT | − 1. Note that this holds
trivially if T is non-separating with UT = ∅ and iT,a = iT,b = iT,c = 0.
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For each x ∈ {a, b, c}, the number of blocks in JT − ({a, b, c} − {x}) containing at
least two vertices is denoted by bT,x, and the leaf block in JT − ({a, b, c} − {x}) containing
x is denoted by BT,x. As also observed in Proposition 10, if T is separating in G then
bT,x = |UT ∩ NG(y) ∩ NG(z)|, where {y, z} = {a, b, c} − {x}. Since each cut-vertex in
JT − {y, z} is contained in exactly two blocks, and the vertex set NG(x) ∩ UT is contained
in BT,x, we get that bT,x − 1 ≤ iT,x and |UT | − |V (BT,x) − x| ≤ iT,x. Again, this holds
trivially if T is non-separating with bT,a = bT,b = bT,c = 0, and BT,a, BT,b and BT,c being
single-vertex graphs containing the vertices a, b and c , respectively. Since, if T is separating
every block in JT − ({a, b, c}−{x}) contains at least two vertices, and if T is non-separating
JT − ({a, b, c} − {x}) is a single-vertex graph (which, in the proofs that follow, is invariably
contained in another block), we will refer to bT,x as just the number of blocks in JT −
({a, b, c} − {x}).

Proposition 11. If G is a plane triangulation with |V (G)| = n such that the sink in its
directed std-tree has degree 1, then there exists a balanced bipartition (V1, V2) of V (G) such
that both V1 and V2 induce biconnected near-triangulations.

Proof. Let G be a plane triangulation with |V (G)| = n such that its directed std-tree −→
D has

a leaf-piece that is incident with an inward-oriented edge e. Let Te be e’s marker triangle with
V (Te) = {a, b, c}, let (HTe , ITe) be e’s std-subgraph-pair where HTe is the 4-connected leaf-
piece towards which e is oriented, and let k = ⌈n

2 ⌉− (|V (ITe)|−1). Since |V (ITe)| ≤ ⌊n
2 ⌋+1,

we get that k ≥ 0; since |V (HTe)| ≥ ⌈n
2 ⌉ + 2, we also get that |V (HTe)| − k ≥ ⌈n

2 ⌉ + 2 − k =
|V (ITe)| + 1 ≥ 5 (since |V (ITe)| ≥ 4).

Choose a vertex d ∈ NHTe
(c) − {a, b}. By Lemma 5, there exists a bipartition (U1, U2)

of V (HTe) such that |U1| = 2 + k, {a, b} ⊆ U1, {c, d} ⊆ U2, and both G[U1], G[U2] are
biconnected near-triangulations. Then G[U1] ∪ (ITe − c) is a biconnected near-triangulation
containing exactly ⌈n

2 ⌉ vertices, while G[U2] is a biconnected near-triangulation containing
exactly ⌊n

2 ⌋ vertices. So we may choose (V1, V2) = (V (G) − U2, U2).

Proposition 12. If G is a plane triangulation with |V (G)| = n such that the sink tri-
angulation S of G contains at least 2 distinct triangles that are separating in G and, for
some triangle T ⊆ S, |V (JT )| = ⌊n

2 ⌋ + 1, then there exists a balanced bipartition (V1, V2)
of V (G) such that G[V1] is a biconnected near-triangulation and G[V2] is a connected near-
triangulation with the number of blocks exceeding the total number of internal vertices in
G[V1] and G[V2] by at most 1.

Proof. Let G be a plane triangulation with |V (G)| = n such that the sink triangulation S

of G contains at least 2 distinct triangles that are separating in G and, for some triangle
T ⊆ S, |V (JT )| = ⌊n

2 ⌋ + 1. Note that, since |V (S)| ≥ 4, |V (G)| ≥ 6 and T shares its edges
with exactly three distinct triangles in S.

Let V (T ) = {u1, u2, u3}. For i = 1, 2, 3, let Ti denote the triangle sharing the vertices
V (T ) − ui with T in S. Consider the balanced bipartitions (Wi, V (G) − Wi), where Wi :=
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V (JT ) − ui, for i = 1, 2, 3. Observe that G[Wi] is a biconnected near-triangulation with
exactly iT,ui internal vertices, while G[V (G) − Wi] is a connected near-triangulation with
at most |UTi | + 1 blocks. By Corollary 4, if none of these three bipartitions qualifies as the
bipartition (V1, V2), then it must be the case that

iT,ui ≤ |UTi | + 1 − 2,

for i = 1, 2, 3. Adding the three inequalities corresponding to i = 1, 2, 3, we get that

iT,u1 + iT,u2 + iT,u3 ≤ |UT1 | + |UT2 | + |UT3 | − 3

≤ |V (G)| − |UT | − |V (S)| − 3,

≤ |V (G)| − |UT | − 7.

Since iT,u1 + iT,u2 + iT,u3 ≥ |UT | − 1, we get that

|UT | − 1 ≤ |V (G)| − |UT | − 7

= n − |UT | − 7,

a contradiction since 2|UT | − 1 = 2⌊n
2 ⌋ − 5 ≥ n − 6. Thus, one of the three balanced

bipartitions described above qualifies as the balanced bipartition (V1, V2) described in the
proposition statement.

Proposition 13. If G is a plane triangulation with |V (G)| = n such that the sink triangu-
lation S of G contains exactly 4 vertices, then there exists a balanced bipartition (V1, V2) of
V (G) such that both V1 and V2 induce connected near-triangulations, and the total number
of blocks in G[V1] and G[V2] exceeds the total number of internal vertices by at most 2.

Proof. Let G be a plane triangulation with |V (G)| = n and let S be the sink triangulation
of G, where V (S) = {s1, s2, s3, s4}. For i = 1, ..., 4, let Ti denote the triangle with the vertex
set V (Ti) = V (S) − si.

If, for some pair i, j ∈ {1, ..., 4}, i ̸= j, |UTi | + |UTj | + 2 = ⌈n
2 ⌉, then V1 := UTi ∪ UTj ∪

(V (S) − {si, sj}) and V2 := V (G) − V1 form a balanced bipartition of V (G) where both
V1 and V2 induce biconnected near-triangulations. So we may assume that |UTi | + |UTj | +
2 ̸= ⌈n

2 ⌉ for all pairs i, j ∈ {1, ..., 4}, i ̸= j. This implies that there exists a bipartition
(UTw , {UTx , UTy , UTz }) of {UT1 , UT2 , UT3 , UT4} such that, either

(i) |UTw | + |UTi | + 2 > ⌈n
2 ⌉ for every i ∈ {x, y, z}, or

(ii) |UTw | + |UTi | + 2 < ⌈n
2 ⌉ for every i ∈ {x, y, z}.

Case (i): Note that in this case, |UTi |+ |UTj |+2 < ⌈n
2 ⌉ for all pairs i, j ∈ {x, y, z}, i ̸= j.

Without loss of generality, let |UTz | ≥ |UTx |, |UTy |.
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Due to Proposition 12, we may assume that |UTw | + 2 < ⌊n
2 ⌋. By Lemma 7, there

exists a bipartition (V ′
1 , V (JTz ) − V ′

1) of V (JTz ) such that |V ′
1 | = ⌈n

2 ⌉ − |UTw |, V ′
1 ∩ V (Tz) =

{sx, sy}, G[V ′
1 ] is a biconnected near-triangulation, and JTz −V ′

1 is a connected near-triangu-
lation with at most |UTz − V ′

1 | ≤ |UTz | − 1 blocks. If iTw,sz ≥ |UTz | − 1, then V1 := V ′
1 ∪ UTw

and V2 := V (G) − V1 form the required balanced bipartition. So we may assume that
|UTz | − 1 ≥ iTw,sz + 1.

Without loss of generality, let bTy ,sz ≥ bTx,sz . By Lemma 7, there exists a bipartition
(V ′

1 , V (JTw) − V ′
1) of V (JTw) such that |V ′

1 | = ⌈n
2 ⌉ − |UTy | − |UTz | − 1, V ′

1 ∩ V (Tw) =
{sx, sy}, G[V ′

1 ] is a biconnected near-triangulation, and JTw − V ′
1 is a connected near-

triangulation. Suppose V ′
1 ∩ V (BTw,sz ) = ∅. Then, by Remark 1, the number of blocks

in JTw − V ′
1 is at most iTw,sz + 1. Then V1 := UTy ∪ UTz ∪ sw ∪ V ′

1 = UTy ∪ UTz ∪ V (Tz) ∪ V ′
1

and V2 := V (G) − V1 form a balanced bipartition of V (G) where G[V1] is a biconnected
near-triangulation with at least |UTz | + bTy ,sz − 1 internal vertices, and G[V2] is a connected
near-triangulation with at most iTw,sz + 1 + bTx,sz ≤ |UTz | − 1 + bTy ,sz blocks. So we may
assume that V ′

1 ∩ V (BTw,sz ) ̸= ∅.
Let k = ⌈n

2 ⌉ − |UTy | − |UTz | − 1 − |UTw − V (BTw,sz )|. By Lemma 7, there exists a
bipartition (V ′′

1 , V (JTx) − V ′′
1 ) of V (JTx) such that |V ′′

1 | = k, V ′′
1 ∩ V (Tx) = {sw, sy}, G[V ′′

1 ]
is a biconnected near-triangulation, and JTx − V ′′

1 is a connected near-triangulation; note
that since k ≥ 3, V ′′

1 includes at least one vertex from UTx so that the number of blocks
in JTx − V ′′

1 is at most |UTx | − 1. Then V1 := UTy ∪ UTz ∪ sx ∪ (UTw − V (BTw,sz )) ∪ V ′′
1 =

UTy ∪UTz ∪V (Tz)∪(UTw −V (BTw,sz ))∪V ′′
1 and V2 := V (G)−V1 form a balanced bipartition

of V (G) where G[V1] is a biconnected near-triangulation with at least |UTz | internal vertices,
and G[V2] is a connected near-triangulation with at most 1 + |UTx | − 1 ≤ |UTz | blocks. This
concludes case (i).

Case (ii): Note that in this case, |UTi |+ |UTj |+2 > ⌈n
2 ⌉ for all pairs i, j ∈ {x, y, z}, i ̸= j.

Without loss of generality, let |UTz | ≥ |UTx |, |UTy |.
Suppose iTx,sz + iTy ,sz ≤ |UTz | − 1. Let k = ⌈n

2 ⌉ − |UTw | − |UTz | − |V (Tz)|. If k ≤ |UTx −
V (BTx,sz )|, then by Lemma 7 and Remark 1, there exists a bipartition (V ′

1 , V (JTx) − V ′
1)

of V (JTx) such that |V ′
1 | = k + 2, V ′

1 ∩ V (Tx) = {sw, sy}, V ′
1 ∩ V (BTx,sz ) = ∅, G[V ′

1 ] is a bi-
connected near-triangulation, and JTx −V ′

1 is a connected near-triangulation containing the
block BTx,sz . Then V1 := UTw ∪UTz ∪V (Tz)∪V ′

1 and V2 := V (G)−V1 form a balanced bipar-
tition of V (G) where G[V1] is a biconnected near-triangulation with at least |UTz | internal
vertices, and G[V2] is a connected near-triangulation with at most iTx,sz +iTy ,sz +2 ≤ |UTz |+1
blocks. If k > |UTx −V (BTx,sz )|, then by Lemma 7 there exists a bipartition (V ′

1 , V (JTy )−V ′
1)

of V (JTy ) such that |V ′
1 | = k − |UTx − V (BTx,sz )| + 2, V ′

1 ∩ V (Ty) = {sw, sx}, G[V ′
1 ] is

a biconnected near-triangulation, and JTy − V ′
1 is a connected near-triangulation. Then,

V1 := UTw ∪ UTz ∪ V (Tz) ∪ (UTx − V (BTx,sz )) ∪ V ′
1 and V2 := V (G) − V1 form a balanced

bipartition of V (G) where G[V1] is a biconnected near-triangulation with at least |UTz | inter-
nal vertices, and G[V2] is a connected near-triangulation with at most 1 + |UTy | − 1 ≤ |UTz |
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blocks. So we may assume that iTx,sz + iTy ,sz ≥ |UTz |, and hence that one of iTx,sz and iTy ,sz

is at least ⌈ |UTz |
2 ⌉. Without loss of generality, let iTx,sz ≥ ⌈ |UTz |

2 ⌉.
Now suppose that iTx,sz ≥ iTz ,sx .
If ⌈n

2 ⌉ − |UTx | ≤ |UTz − V (BTz ,sx)| + 2, then by Lemma 7 and Remark 1 there ex-
ists a bipartition (V ′

1 , V (JTz ) − V ′
1) of V (JTz ) such that |V ′

1 | = ⌈n
2 ⌉ − |UTx |, V ′

1 ∩ V (Tz) =
{sw, sy}, V ′

1 ∩ V (BTz ,sx) = ∅, G[V ′
1 ] is a biconnected near-triangulation, and JTz − V ′

1 is
a connected near-triangulation containing the block BTz ,sx . Then V1 := UTx ∪ V ′

1 and
V2 := V (G) − V1 form a balanced bipartition of V (G) where G[V1] is a biconnected
near-triangulation with at least iTx,sz internal vertices, and G[V2] is a connected near-
triangulation with at most 2 + iTz ,sx − 1 ≤ iTx,sz + 1 blocks. So we may assume that
⌈n

2 ⌉ − |UTx | > |UTz − V (BTz ,sx)| + 2.
If ⌈n

2 ⌉ − |UTx | ≥ |UTz | − ⌈ |UTz |
2 ⌉ + 2, then by Lemma 7 there exists a bipartition

(V ′
1 , V (JTz ) − V ′

1) of V (JTz ) such that |V ′
1 | = ⌈n

2 ⌉ − |UTx |, V ′
1 ∩ V (Tz) = {sw, sy}, G[V ′

1 ]
is a biconnected near-triangulation, and JTz − V ′

1 is a connected near-triangulation. Then
V1 := UTx ∪ V ′

1 and V2 := V (G) − V1 form a balanced bipartition of V (G) where G[V1] is
a biconnected near-triangulation with at least iTx,sz ≥ ⌈ |UTz |

2 ⌉ internal vertices, and G[V2]
is a connected near-triangulation with at most 1 + ⌈ |UTz |

2 ⌉ blocks. So we may assume that
⌈n

2 ⌉ − |UTx | < |UTz | − ⌈ |UTz |
2 ⌉ + 2 = ⌊ |UTz |

2 ⌋ + 2.
Let k′ = ⌈n

2 ⌉ − |UTx | − |V (JTz ) − V (BTz ,sx)|; note that k′ ≤ ⌊ |UTz |
2 ⌋ − 1. Let V ′

1 =
V (JTz ) − V (BTz ,sx) so that G[V ′

1 ], JTz − V ′
1 = BTz ,sx and G[UTx ∪ V ′

1 ] are all biconnected
near-triangulations, while G − (UTx ∪ V ′

1) is a connected near-triangulation with exactly 2
blocks one of which is BTz ,sx . Then, by Corollary 9, there exists a partition (V ′′

1 , V (JTz )−V ′′
1 )

of V (JTz ) such that V ′
1 ⊂ V ′′

1 , sx ∈ V (JTz ) − V ′′
1 ⊂ V (BTz ,sx), |V ′′

1 | = |V ′
1 | + k′, and both

G[V ′′
1 ] and JTz − V ′′

1 are connected near-triangulations with a total of at most k′ + 2 blocks.
Then V1 := UTx ∪V ′′

1 and V2 := V (G)−V1 form a balanced bipartition of V (G) where G[V1]
is a connected near-triangulation with at least iTx,sz ≥ ⌈ |UTz |

2 ⌉ internal vertices and G[V2]
is a connected near-triangulation, and the total number of blocks in G[V1] and G[V2] is at
most k′ + 2 + 1 ≤ ⌊ |UTz |

2 ⌋ + 2 ≤ ⌈ |UTz |
2 ⌉ + 2 blocks.

Observe that since |UTz | ≥ |UTx |, we get that iTx,sz ≥ ⌈ |UTz |
2 ⌉ ≥ ⌈ |UTx |

2 ⌉. Then, a similar
argument can be made if iTz ,sx ≥ iTx,sz instead. This concludes case (ii).

The map is now ready for deploying the partitioning lemmas from Section 2.3.

2.5 Constructing the bipartition

In this section, we develop a basic construction that yields a balanced bipartition of size
at most |V (G)| for any plane triangulation G barring a special case. The construction
essentially outlines the steps of an algorithm which first navigates the 4-connected sink
triangulation S of G to find an ideal partitioning site, partially building the bipartition in
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the process, and then partitions the smaller std-subgraph of a single triangle in S (if needed)
to balance the two parts.

We first describe the said algorithm Construct Bipartition. The input to this algorithm is
a plane triangulation G such that the sink triangulation S of G is 4-connected with at least 6
vertices and contains at least 2 distinct triangles that are separating in G. Roughly speaking,
the algorithm attempts to construct the bipartition from scratch by starting with the smaller
side of one of the two separating triangles with the largest smaller sides in each part, and
then adding more smaller sides to the two parts as it navigates the sink triangulation S of the
graph. The algorithm is guided in its navigation of the sink triangulation by Lemma 5, which
keeps the two parts biconnected until either the algorithm finishes or the split configuration
is reached. The split configuration is reached when none of the two parts can accept any
more smaller sides without going over the prescribed size of ⌈ |V (G)|

2 ⌉, but there remain
vertices which have not yet been added to any part. The algorithm ensures that (in the
split configuration) it partitions the smaller side of at most one triangle Tpar ⊂ S in order
to balance the two parts. In doing so, the parts may not necessarily remain biconnected but
they are still connected near-triangulations. However, at the end of the entire process, the
algorithm has collected enough internal vertices in the two parts so that the total number
of blocks in the two near-triangulations exceeds the number of internal vertices by at most
2. The algorithm ends by returning the required bipartition (V1, V2) of V (G), except for a
special case which we handle separately (the algorithm returns a “null” partition in this
case).

The algorithm uses the following terminology associated with the split configuration.
The split configuration consists of a vertex vlast ∈ V (S) which is the only vertex in V (S)
that has not yet been added to any part of the bipartition, and triangles Tlast1 , Tlast2 ⊆ S

such that V (Tlast1) ∩ V (Tlast2) = vlast. Claim 21 provides a more detailed description of the
split configuration.

Algorithm: Construct Bipartition
Input: A plane triangulation G with |V (G)| = n, such that the sink triangulation S of
G is 4-connected with at least 6 vertices and contains at least 2 distinct triangles that are
separating in G.

(CB1) Pick two distinct triangles T1, T2 ⊂ S such that, for every other triangle T ⊂ S,
|V (JT )| ≤ |V (JT1)|, |V (JT2)|. Choose T1 and T2 with as few vertices in common as
possible. If |V (T1) ∩ V (T2)| = 2, then return (∅, ∅).

Let |V (JT1)| ≥ |V (JT2)|. For i = 1, 2, let V (Ti) = {ai, bi, ci}, and let {bi, ci} ⊆
V (Ti) − V (T3−i). For i = 1, 2, intialize Vi = V (JTi) − ai and VS,i = {bi, ci}.

(CB2) For i = 1, 2, let T ′
i ⊂ S be the triangle that shares the edge bici with Ti in S.
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If |UTi | + |UT ′
i
| + 2 > ⌈n

2 ⌉ for i = 1 or 2, then by Lemma 7 there exists a partition
(V ′

1 , V (JT ′
i
) − V ′

1) of V (JT ′
i
) where |V ′

1 | = ⌈n
2 ⌉ − |UTi |, V ′

1 ∩ V (T ′
i ) = {bi, ci}, G[V ′

1 ]
is a biconnected near-triangulation, and JT ′

i
− V ′

1 is a connected near-triangulation;
update V1 = UTi ∪ V ′

1 , V2 = V (G) − V1, VS,1 = V (S) ∩ V1, VS,2 = V (S) ∩ V2, initialize
Tpar = T ′

i , and return (V1, V2).

Otherwise, for i = 1, 2, update Vi = Vi ∪ UT ′
i
.

(CB3) For i = 1, 2, let Tbi
, Tci ⊂ S be the triangles sharing the edges aibi and aici with Ti,

respsectively.

If |Vi|+1+ |UTbi
|+ |UTci

| > ⌈n
2 ⌉ for some i ∈ {1, 2}, then update V3−i = V (G)−Vi −

ai −UTbi
−UTci

, VS,3−i = V (S)∩V3−i, initialize vlast = ai, {Tlast1 , Tlast2} = {Tbi
, Tci},

and go to (CB5).

Otherwise update V1 = V1 ∪ a1 ∪ UTb1
∪ UTc1

, VS,1 = VS,1 ∪ a1; if |V1| < ⌈n
2 ⌉, then go

to (CB4), otherwise update V2 = V (G) − V1, VS,2 = V (S) ∩ V2, and return (V1, V2).

(CB4) By Lemma 5 there exists a vertex v ∈ V (S)− (VS,1 ∪VS,2) such that both S[VS,1 ∪v]
and S − (VS,1 ∪ v) are biconnected near-triangulations. Let Nv denote the set of
vertices on the boundary of the infinite face of S[VS,1] that are adjacent to v, and
let u, w ∈ Nv be the two vertices such that |Nv ∩ NS(u)| = |Nv ∩ NS(w)| = 1.
Let Tu, Tw ⊂ S be the triangles such that {u, v} ⊂ V (Tu), {v, w} ⊂ V (Tw) and
VS,1 ∩ V (Tu) = u, VS,1 ∩ V (Tw) = w.

If |V1|+1+|UTu |+|UTw | ≤ ⌈n
2 ⌉, then update V1 = V1∪v∪UTu ∪UTw , VS,1 = V (S)∩V1;

if |V1| < ⌈n
2 ⌉, then repeat (CB4), otherwise update V2 = V (G)−V1, VS,2 = V (S)∩V2,

and return (V1, V2).

Otherwise update V2 = V (G) − V1 − v − UTu − UTw , VS,2 = V (S) ∩ V2, and initialize
vlast = v, {Tlast1 , Tlast2} = {Tu, Tw}.

(CB5) G is now in the split configuration.

Without loss of generality, let |UTlast1
| ≥ |UTlast2

|. For some i ∈ {1, 2}, |Vi| + 1 +
|UTlast2

| ≤ ⌈n
2 ⌉. By Lemma 7, there exists a bipartition (V ′

1 , V (JTlast1
) − V ′

1) of
V (JTlast1

) such that |V ′
1 | = ⌈n

2 ⌉−(|Vi|+1+|UTlast2
|)+2, V ′

1∩V (Tlast1) = {vlast, V (Tlast1)∩
VS,i}, G[V ′

1 ] is a biconnected near-triangulation, and JTlast1
− V ′

1 is a connected
near-triangulation. Update V1 = Vi ∪ vlast ∪ UTlast2

∪ V ′
1 , V2 = V (G) − V1, VS,1 =

V (S) ∩ V1, VS,2 = V (S) ∩ V2, initialize Tpar = Tlast1 , and return (V1, V2).
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We will now prove a series of claims which will establish that the algorithm is well-defined
and always returns the required bipartition (V1, V2) of V (G), except when |V (T1)∩V (T2)| =
2. As mentioned earlier, these proofs assume that the input graph G to the algorithm is a
plane triangulation with |V (G)| = n, such that the sink triangulation S of G is 4-connected
with at least 6 vertices and contains at least 2 distinct triangles that are separating in G.

Claim 14. Triangles T1 and T2 exist.

Proof. This follows directly from the assumption that S contains at least 2 distinct triangles
that are separating in G.

Claim 15. Triangles T1, T2, T ′
1 and T ′

2 are distinct.

Proof. This follows directly from the observation that the edges b1c1 and b2c2 have no
vertices in common.

Claim 16. If |UTi | + |UT ′
i
| + 2 > ⌈n

2 ⌉ for some i ∈ {1, 2}, then Algorithm Construct
Bipartition returns a bipartition (V1, V2) of V (G) such that |V1| = ⌈n

2 ⌉, G[V1] is a biconnected
near-triangulation, and G[V2] is a connected near-triangulation with the number of blocks
exceeding the total number of internal vertices in G[V1] and G[V2] by at most 1.

Proof. This follows from the observations that V (T3−i) ⊆ V2 which implies that all the
vertices in UT3−i are internal vertices in G[V2], and that the number of blocks in G[V2] is at
most 1 + |UT ′

i
| ≤ 1 + |UT3−i |.

Claim 17. For any triangle T ⊂ S, S − V (T ) is 2-connected.

Proof. Let T ⊂ S be a triangle with V (T ) = {a, b, c}. Suppose for the sake of contradiction
that S−V (T ) is not 2-connected. Since |V (S)| ≥ 6 and S−{b, c} is 2-connected, we get that
a is in a 2-cut in S − {b, c} and hence has at least three neighbors in the cycle C that forms
the boundary of the infinite face of S − {b, c}. Since V (C) = (NS(b) ∪ NS(c)) − {b, c} and
a ∈ V (C), if a has at least three neighbors in C then either a shares at least two neighbors
with b none of which is c, or a shares at least two neighbors with c none of which is b. In
either case, we get a separating triangle in S, a contradiction to S being 4-connected.

Claim 18. Each of S[VS,1], S − VS,1, S[VS,2] and S − VS,2 is biconnected.

Proof. This follows directly from Claim 17 and Lemma 5, since after the first two vertices
every new vertex added to VS,1 or VS,2 respects one of these.

Claim 19. If v ∈ V (S)−(VS,1 ∪VS,2) is a vertex such that both S[VS,1 ∪v] and S −(VS,1 ∪v)
are biconnected near-triangulations, and if Nv denotes the set of vertices on the boundary
of the infinite face of S[VS,1] that are adjacent to v, then there exist exactly two vertices
u, w ∈ Nv such that |Nv ∩ NS(u)| = |Nv ∩ NS(w)| = 1.
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Moreover, if Tu, Tw ⊂ S are the triangles such that {u, v} ⊂ V (Tu), {v, w} ⊂ V (Tw) and
VS,1∩V (Tu) = u, VS,1∩V (Tw) = w, then Tu and Tw are distinct, and (UTu ∪UTw)∩(V1∪V2) =
∅.

Proof. By Lemma 5, v forms a triangular face of S with an edge on the boundary of the
infinite face of S[VS,1]. If |VS,1| = 2, then the first part of the claim holds trivially. So we may
assume that |VS,1| > 2 which, since S is 4-connected, implies that NS(v) ∩ VS,1 induces a
subpath P of the boundary of the infinite face of S[VS,1]. Then u and w are the end-vertices
of this subpath P .

The triangles Tu and Tw are distinct for otherwise the vertex-set {v, u, w} induces a
separating triangle in S, a contradiction.

The last part of the claim follows from the observation that if VS,1∪VS,2 ̸= V (S), then for
any triangle T ⊂ S and any j ∈ {1, 2}, if UT ∩Vj ̸= ∅ then UT ⊂ Vj and |V (T )∩Vj | ≥ 2.

Claim 20. VS,1 ∩ VS,2 = ∅ = V1 ∩ V2.

Proof. The first equality follows directly from the construction of VS,1 and VS,2. The second
equality follows from the first and the observations that, for any triangle T ⊂ S, (i) if
UT ⊂ Vi for some i ∈ {1, 2}, then |V (T ) ∩ Vi| ≥ 2, and (ii) if UT ̸⊂ Vi for i = 1, 2, then
T = Tpar and UT is partitioned between V1 and V2.

Claim 21. Let vlast ∈ V (S) be the only vertex in V (S) that is not added to any part of the
bipartition when the algorithm is in the split configuration. For i = 1, 2, let NS(vlast)∩VS,i =
{wi,1, ..., wi,di

}, where wi,1, ..., wi,di
are taken in clockwise order around vlast. Then,

(i) |NS(vlast)| = d1 + d2 and w1,1, ..., w1,d1 , w2,1, ..., w2,d2 occur clockwise in that order
around vlast,

(ii) d1, d2 ≥ 2, and

(iii) {V (Tlast1), V (Tlast2)} = {{vlast, w1,1, w2,d2}, {vlast, w2,1, w1,d1}}.

Proof. Since vlast ∈ V (S) is the only vertex in V (S) that is not added to any part of the
bipartition NS(vlast) = ⋃

i=1,2
{wi,1, ..., wi,di

} and hence |NS(vlast)| = d1 + d2. Recall that,

for some j ∈ {1, 2}, vlast ∈ V (S) − (VS,1 ∪ VS,2) is picked so that both S[VS,j ∪ vlast] and
S − (VS,j ∪ vlast) are biconnected near-triangulations, and that NS(vlast) ∩ VS,j induces a
subpath of the boundary of the infinite face of S[VS,j ]. Let C ⊂ S be the cycle that forms
the boundary of the face of S−vlast that contains vlast. Then C[{wj,1, ..., wj,dj

}] is connected
for otherwise vlast is a cut-vertex in S − VS,j , a contradiction to S − VS,j being biconnected.
Thus, C[{wi,1, ..., wi,di

}] is connected for i = 1, 2, and w1,1, ..., w1,d1 , w2,1, ..., w2,d2 occur
clockwise in that order around vlast.

Again, since for some j ∈ {1, 2}, both S[VS,j ∪ vlast] and S − VS,j are 2-connected,
d1, d2 ≥ 2.
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This follows directly from the observation that the algorithm reaches the split configura-
tion when, for some j ∈ {1, 2}, |Vj |+1+|UTlast1

|+|UTlast2
| > ⌈n

2 ⌉, where Tlast1 , Tlast2 ⊂ S are
distinct triangles such that, for some {x, y} = {wj,1, wj,dj

}, {x, vlast} ⊂ V (Tlast1), {y, vlast} ⊂
V (Tlast2) and VS,j ∩ V (Tlast1) = x, VS,j ∩ V (Tlast2) = y.

Claim 22. In the split configuration, for some i ∈ {1, 2}, |Vi| + 1 + |UTlast2
| ≤ ⌈n

2 ⌉.

Proof. Note that the algorithm reaches the end configuration when, for some j ∈ {1, 2},
|Vj | < ⌈n

2 ⌉, |Vj |+1+|UTlast1
|+|UTlast2

| > ⌈n
2 ⌉, and V3−j = V (G)−Vj −vlast−UTlast1

−UTlast2
.

The last two inequalities give us that |V3−j | < ⌈n
2 ⌉, and the first and the third inequalities

give us that |V3−j | + 1 + |UTlast1
| + |UTlast2

| > ⌈n
2 ⌉.

Suppose |Vi| + 1 + |UTlast2
| > ⌈n

2 ⌉ for i = 1, 2. Then |Vi| + |UTlast2
| ≤ |Vi| + |UTlast1

| <

⌊n
2 ⌋ ≤ ⌈n

2 ⌉, a contradiction.

Claim 23. Let G be a plane triangulation with |V (G)| = n, such that the sink triangulation
S of G is 4-connected with at least 6 vertices and contains at least 2 distinct triangles that
are separating in G. If T1, T2 ⊂ S are distinct triangles such that |V (T1) ∩ V (T2)| ≤ 1 and,
for every other triangle T ⊂ S, |V (JT )| ≤ |V (JT1)|, |V (JT2)|, then Algorithm Construct
Bipartition returns a bipartition (V1, V2) of V (G) with |V1| = ⌈n

2 ⌉ such that G[V1] is a
biconnected near-triangulation, and G[V2] is a connected near-triangulation with the number
of blocks exceeding the total number of internal vertices in G[V1] and G[V2] by at most 1.

Proof. Note that, by Claim 20 V1 ∩ V2 = ∅, and by construction V1 ∪ V2 = V (G) and
|V1| = ⌈n

2 ⌉. Moreover, S[VS,1] and S[VS,2] are biconnected near-triangulations at all times,
and before JTlast1

is partitioned (if at all), for every triangle T ⊂ S, T ̸= Tlast1 , and for some
j ∈ {1, 2}, UT ⊂ Vj and |V (T ) ∩ Vj | ≥ 2. This gives us that G[V1] and G[V2] remain bicon-
nected near-triangulations before JTlast1

is partitioned. After the bipartition of V (JTlast1
)

following Lemma 7, by construction, G[V1] is a biconnected near-triangulation, while G[V2]
is a connected near-triangulation with at most |UTlast1

| + 1 blocks. Then to complete the
proof it suffices to show that, for some j, k ∈ {1, 2}, V (Tj) ⊆ Vk, which implies that G[Vk]
contains all the vertices in UTj as internal vertices, and hence that the total number of
internal vertices in G[V1] and G[V2] is at least |UTj | ≥ |UTlast1

|.
Upto the choice of labels, let {bi, ci} ⊂ Vi for i = 1, 2. If |V (T1) ∩ V (T2)| = 1, then

for some i ∈ {1, 2}, a1 = a2 ∈ Vi and hence V (Ti) ⊆ Vi. So we may assume that |V (T1) ∩
V (T2)| = 0 and a1 ̸= a2. But then, by step (CB3) of the algorithm, if |Vi|+1+|UTbi

|+|UTci
| >

⌈n
2 ⌉ for some i ∈ {1, 2}, we get that V (T3−i) ⊆ V3−i, otherwise we get that V (Ti) ⊆ Vi.

This concludes this section.
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2.6 Special case

In this section, we deal with the special case that is “skipped” by the algorithm in the
preceding section. The proof in this section still uses Algorithm Construct Bipartition but
with minor variations based on certain “local” observations. The following remarks describe
these variants of Algorithm Construct Bipartition.

Remark 2. Note that Algorithm Construct Bipartition does not depend on the assumption
that triangles T1 and T2 have the largest subgraphs JT1 and JT2 , respectively, in its operation.
Thus, it can be run for any pair of distinct triangles T̄1, T̄2 ⊂ S such that |V (T̄1)∩V (T̄2)| ≤ 1.
Similarly, since the proofs of Claim 15 and Claims 17-22 do not make that assumption either,
they hold if the algorithm is run for the triangles T̄1 and T̄2 described above. Then, the
bipartition (V1, V2) of V (G) returned by the algorithm satisfies the conclusions of Claims
16 and 23 if either both G[V1] and G[V2] are biconnected, or the two together have at least
|UTpar | internal vertices, where Tpar ⊂ S is the triangle for which the subgraph JTpar is
partitioned by the algorithm.

Remark 3. Note that if T̄1, T̄2 ⊂ S are distinct triangles such that V (T̄i) = {p1, p2, qi} for
i = 1, 2, then Algorithm Construct Bipartition can be run for T̄1 and T̄2 by replacing steps
(CB1)-(CB3) with the following steps:

(CB1’) For i = 1, 2, intialize Vi = V (JT̄i
) − p3−i, VS,i = {pi, qi}.

(CB2’) For i = 1, 2, let T̄ ′
i ⊂ S be the triangle that shares the edge piqi with T̄i in S.

If |UT̄i
| + |UT̄ ′

i
| + 2 > ⌈n

2 ⌉ for i = 1 or 2, then by Lemma 7 there exists a partition
(V ′

1 , V (JT̄ ′
i
) − V ′

1) of V (JT̄ ′
i
) where |V ′

1 | = ⌈n
2 ⌉ − |UT̄i

|, V ′
1 ∩ V (T̄ ′

i ) = {pi, qi}, G[V ′
1 ]

is a biconnected near-triangulation, and JT̄ ′
i

− V ′
1 is a connected near-triangulation;

update V1 = UT̄i
∪ V ′

1 , V2 = V (G) − V1, VS,1 = V (S) ∩ V1, VS,2 = V (S) ∩ V2, initialize
Tpar = T̄ ′

i , and return (V1, V2).

Otherwise, for i = 1, 2, update Vi = Vi ∪ UT̄ ′
i
.

Moreover, Claim 15 and Claims 17-22 hold in this case as well, and the bipartition returned
by the algorithm satisfies the conclusions of Claims 16 and 23 if either both G[V1] and G[V2]
are biconnected, or the two together have at least |UTpar | internal vertices, where Tpar ⊂ S

is the triangle whose std-subgraph JTpar is partitioned by the algorithm.

The next lemma settles the special case.

Lemma 24. Let G be a plane triangulation with |V (G)| = n, such that the sink triangulation
S of G is 4-connected with at least 6 vertices and contains at least 2 distinct triangles that
are separating in G. If |V (T1) ∩ V (T2)| = 2 for every pair of distinct triangles T1, T2 ⊂ S

with the property that |V (JT1)|, |V (JT2)| ≥ |V (JT )| for every triangle T ⊂ S, T ̸= T1, T2,
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then there exists a balanced bipartition (V1, V2) of V (G) such that both G[V1] and G[V2] are
connected near-triangulations with the total number of blocks in G[V1] and G[V2] exceeding
the total number of internal vertices by at most 2.

Proof. Let G be a plane triangulation with |V (G)| = n, such that the sink triangulation
S of G is 4-connected with at least 6 vertices and contains at least 2 distinct triangles
that are separating in G; also, let |V (T1) ∩ V (T2)| = 2 for every pair of distinct triangles
T1, T2 ⊂ S with the property that |V (JT1)|, |V (JT2)| ≥ |V (JT )| for every triangle T ⊂ S, T ̸=
T1, T2. Let T1, T2 ⊂ S be one such pair of distinct triangles; note that both T1 and T2 are
separating in G. Let V (T1) ∩ V (T2) = {p, q}, and for i = 1, 2, let V (Ti) − V (T3−i) = ri. If
|UT1 | + |UT2 | + 2 = ⌈n

2 ⌉, then V1 := UT1 ∪ UT2 ∪ {p, q} and V2 := V (G) − V2 form a balanced
biparition of V (G) where both G[V1] and G[V2] are biconnected near-triangulations. So we
may assume that either

(i) |UT1 | + |UT2 | + 2 < ⌈n
2 ⌉, or

(ii) |UT1 | + |UT2 | + 2 > ⌈n
2 ⌉.

Let Tp1 , Tq1 ⊂ S be the triangles that share the edges pr1, qr1 with T1 in S, respectively.
Similarly, let Tp2 , Tq2 ⊂ S be the triangles that share the edges pr2, qr2 with T2 in S,
respectively. Note that since S is 4-connected, the triangles Tp1 , Tq1 , Tp2 and Tq2 are all
distinct.

Case (i): Since S is a 4-connected triangulation with at least 6 vertices, S does not
contain the edge r1r2 and the boundary of the infinite face of S − {p, q} contains at least 4
verties. Then there exists a triangle T3 ⊂ S distinct from T1, T2, Tp1 , Tq1 , Tp2 and Tq2 such
that V (T3) ∩ {p, q} = ∅ and |V (T3) ∩ {r1, r2}| ≤ 1. Let xy be an edge of T3 such that
{x, y} ∩ {p, q, r1, r2} = ∅.

Now, we may assume that |UT1 | + |UT2 | + 3 + min{|UTp1
|, |UTq1

|} > ⌈n
2 ⌉ for otherwise,

by Remark 2, running Algorithm Construct Bipartition for triangles T̄1 := T1 and T̄2 := T3

with b1c1 := pq and b2c2 := xy leads to a solution (V1, V2) with V (JT1) contained in
one of the two parts, and hence at least |UT1 | internal vertices (say |UTp1

| ≤ |UTq1
|; if

|UT1 | + |UT2 | + 3 + |UTp1
| + |UTq1

| ≤ ⌈n
2 ⌉, then the algorithm includes UT2 followed by

r1 ∪ UTp1
∪ UTq1

in the part initialized with V (JT1) − r1, otherwise it includes UT2 followed
by r1 ∪ UTp1

in that part, and then partitions UTq1
between the two parts). Similarly, we

may assume that |UT1 | + |UT2 | + 3 + min{|UTp2
|, |UTq2

|} > ⌈n
2 ⌉.

Without loss of generality, let |UTp1
| ≤ |UTq1

|. By Lemma 7, there exists a partition
(V ′

1 , V (JTp1
) − V ′

1) of V (JTp1
) such that |V ′

1 | = ⌈n
2 ⌉ − |UT1 | − |UT2 | − 1, V ′

1 ∩ V (Tp1) =
{p, r1}, G[V ′

1 ] is a biconnected near-triangulation, and JTp1
−V ′

1 is a connected near-triangu-
lation. If |UT1 | ≥ |UTp1

|+|UTq1
|, then V1 := UT1 ∪UT2 ∪q∪V ′

1 , V2 := V (G)−V1 form a balanced
bipartition of V (G) where G[V1] is a biconnected near-triangulation with at least |UT1 |
internal vertices and G[V2] is a connected near-triangulation with at most |UTp1

|+ |UTq1
|+1
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blocks. So we may assume that |UT1 | < |UTp1
| + |UTq1

|. Similarly, we may assume that
|UT2 | < |UTp2

| + |UTq2
|. Adding these two inequalities, we get that

|UT1 | + |UT2 | ≤ |UTp1
| + |UTq1

| + |UTp2
| + |UTq2

| − 2. (2.2)

Let V (Tp1) = {p, r1, t1} and V (Tq2) = {q, r2, t2}; note that t1 ̸= t2. By Remark 3, if
the algorithm is run for triangles T̄1 := T1 and T̄2 := T2 with p1q1 := pr1 and p2q2 :=
qr2, then when the algorithm first executes step (CB4), it includes either t1 in the part
containing UT1 ∪ UTp1

∪ {p, r1} or t2 in the part containing UT2 ∪ UTq2
∪ {q, r2}. Say it does

the former and the part containing t1 is V1. Then V1 cannot include t2 for otherwise q or
r2 would be a cut-vertex in VS,2, unless VS,1 includes V (S) − {q, r2} entirely in which case
⌈n

2 ⌉ ≤ |UT2 | + |{q, r2}| + |UTq2
| ≤ |UT2 | + 2 + |UT1 |, a contradiction. Thus, V (JTp1

) and
V (JTq2

) are entirely contained in different parts of the bipartition (V1, V2) returned by the
algorithm, and together G[V1] and G[V2] have at least |UTp1

| + |UTq2
| internal vertices. If

|UTp1
| + |UTq2

| ≥ |UT2 |, then by Remark 3, this bipartition satisfies the conclusion of the
lemma. So we may assume that |UTp1

| + |UTq2
| < |UT2 |. Similarly, we may assume that

|UTp2
| + |UTq1

| < |UT2 |. Adding the two inequalities, we get that

|UTp1
| + |UTq2

| + |UTp2
| + |UTq1

| ≤ |UT1 | + |UT2 | − 2,

a contradiction to (2.2).
Case (ii): We first prove the following claim.

Claim 25. Either |UT1 | + |UTp1
| + 2 > ⌈n

2 ⌉ or |UT1 | + |UTq1
| + 2 > ⌈n

2 ⌉.

Proof. Suppose for the sake of contradiction that neither is true. If |UT1 |+ |UTp1
|+2 = ⌈n

2 ⌉,
then V1 := UT1 ∪ UTp1

∪ {p, r1}, V2 := V (G) − V1 form a balanced bipartition of V (G)
where both G[V1] and G[V2] are biconnected near-triangulations. So we may assume that
|UT1 | + |UTp1

| + 2 < ⌈n
2 ⌉. Similarly, we may assume that |UT1 | + |UTq1

| + 2 < ⌈n
2 ⌉.

Let V (Tp1) = {p, r1, t1} and V (Tq1) = {q, r1, s1}; note that the vertices r2, s1 and t1 are
all distinct. Recall that bTp1 ,t1 denotes the number of blocks in JTp1

− {p, r1}. Without loss
of generality, let bTp1 ,t1 ≥ bTq1 ,s1 . By Lemma 7, there exists a bipartition (V ′

1 , V (JT2)−V ′
1) of

V (JT2) such that |V ′
1 | = ⌈n

2 ⌉ − |UT1 | − |UTp1
| − 1, V ′

1 ∩ V (T2) = {p, q}, G[V ′
1 ] is a biconnected

near-triangulation, and JT2 −V ′
1 is a connected near-triangulation with at most |UT2 | blocks.

If bTp1 ,t1 + |UT1 | ≥ bTq1 ,s1 + |UT2 |+1, then V1 := UT1 ∪UTp1
∪r1 ∪V ′

1 , V2 := V (G)−V ′
1 form a

balanced bipartition of V (G) where G[V1] is a biconnected near-triangulation with at least
|UT1 |+bTp1 ,t1 −1 ≥ |UT2 |+bTq1 ,s1 internal vertices and G[V2] is a connected near-triangulation
with at most 1+ |UT2 |+bTq1 ,s1 blocks. So we may assume that bTp1 ,t1 + |UT1 | ≤ bTq1 ,s1 + |UT2 |,
and hence that bTp1 ,t1 = bTq1 ,s1 and |UT1 | = |UT2 |.

Now, if |UT1 | + |UTp1
| + |UTq1

| + 3 ≤ ⌈n
2 ⌉, then by Lemma 7 there exists a biparti-

tion (V ′
1 , V (JT2) − V ′

1) of V (JT2) such that |V ′
1 | = ⌈n

2 ⌉ − |UT1 | − |UTp1
| − |UTq1

| − 1, V ′
1 ∩

26



V (T2) = {p, q}, G[V ′
1 ] is a biconnected near-triangulation, and JT2 − V ′

1 is a connected near-
triangulation with at most |UT2 | blocks. Then V1 := UT1∪UTp1

∪UTq1
∪r1∪V ′

1 , V2 := V (G)−V1

form a balanced bipartition of V (G) where G[V1] is a biconnected near-triangulation with
at least |UT1 | internal vertices, and G[V2] is a connected near-triangulation with at most
1 + |UT2 | = 1 + |UT1 | blocks. So it must be the case that |UT1 | + |UTp1

| + |UTq1
| + 3 > ⌈n

2 ⌉.
Similarly, it must be the case that |UT2 | + |UTp2

| + |UTq2
| + 3 > ⌈n

2 ⌉. But then |V (G)| ≥
|UT1 | + |UTp1

| + |UTq1
| + |UT2 | + |UTp2

| + |UTq2
| + |V (S)| ≥ 2(⌈n

2 ⌉ + 1) ≥ |V (G)| + 2, a
contradiction.

Without loss of generality, let |UT1 |+ |UTp1
|+2 > ⌈n

2 ⌉. Then |UT2 |+ |UTp2
|+ |UTq2

|+3 <

⌈n
2 ⌉. Recall that iT1,r1 denotes the number of internal vertices in JT1 −r1, and BT1,r1 denotes

the leaf-block in JT1 − {p, q} that contains r1. By Lemma 7, there exists a bipartition
(V ′

1 , V (JT2)−V ′
1) of V (JT2) such that |V ′

1 | = ⌈n
2 ⌉−|UT1 |, |V ′

1 | ≥ 3, V ′
1 ∩V (T2) = {p, q}, G[V ′

1 ]
is a biconnected near-triangulation, and JT2 − V ′

1 is a connected near-triangulation with at
most |UT2 | − 1 blocks; here |V ′

1 | ≥ 3 follows from Proposition 12. If iT1,r1 ≥ |UT2 | − 1, then
V1 := UT1 ∪ V ′

1 , V2 := V (G) − V1 form a balanced bipartition of V (G) where G[V1] is a
biconnected near-triangulation with at least iT1,r1 internal vertices and G[V2] is a connected
near-triangulation with at most 1 + |UT2 | − 1 ≤ iT1,r1 + 1 blocks. So we may assume that
iT1,r1 ≤ |UT2 | − 2.

If |UT2 | + |UTp2
| + |UTq2

| + 3 + |UT1 − V (BT1,r1)| ≥ ⌈n
2 ⌉, then by Lemma 7 and Remark 1

there exists a bipartition (V ′
1 , V (JT1)−V ′

1) of V (JT1) such that |V ′
1 | = ⌈n

2 ⌉− |UT2 |− |UTp2
|−

|UTq2
|−1, V ′

1 ∩V (T1) = {p, q}, V ′
1 ∩V (BT1,r1) = ∅, G[V ′

1 ] is a biconnected near-triangulation,
and JT1 − V ′

1 is a connected near-triangulation with at most 1 + iT1,r1 − 1 = iT1,r1 blocks
(since |UT1 |+ |UTp1

|+2 > ⌈n
2 ⌉, we get that |UT2 |+ |UTp2

|+ |UTq2
|+3 < ⌊n

2 ⌋ ≤ ⌈n
2 ⌉, and hence

|V ′
1 | ≥ 3). Then V1 := UT2 ∪UTp2

∪UTq2
∪r2∪V ′

1 , V2 := V (G)−V1 form a balanced bipartition
of V (G) where G[V1] is a biconnected near-triangulation with at least |UT2 | internal vertices
and G[V2] is a connected near-triangulation with at most 1 + iT1,r1 ≤ |UT2 | − 1 blocks. So
we may assume that |UT2 | + |UTp2

| + |UTq2
| + 3 + |UT1 − V (BT1,r1)| < ⌈n

2 ⌉.
If |UTp1

| + |V (BT1,r1)| ≥ ⌈n
2 ⌉, then by Lemma 7 there exists a bipartition (V ′

1 , V (JTp1
) −

V ′
1) of V (JTp1

) such that |V ′
1 | = ⌈n

2 ⌉−|V (BT1,r1)|+1, (V (JTp1
)−V ′

1)∩V (Tp1) = {p, t1}, JTp1
−

V ′
1 is a biconnected near-triangulation, and G[V ′

1 ] is a connected near-triangulation with at
most |UTp1

| blocks. Then V1 := V (BT1,r1) ∪ V ′
1 , V2 := V (G) − V1 form a balanced bipartition

of V (G) where G[V2] is a biconnected near-triangulation with at least |UT2 | internal vertices
and G[V1] is a connected near-triangulation with at most 1 + |UTp1

| ≤ 1 + |UT2 | blocks. So
we may assume that |UTp1

| + |V (BT1,r1)| < ⌈n
2 ⌉.

Now run Algorithm Construct Bipartition for triangles T̄1 := T1 and T̄2 := Tp1 with
p1q1 := pq and p2q2 := r1t1 as explained in Remark 3 with the following modification:
in step (CB1’) initialize V1 = V (JT1) − V (BT1,r1), V2 = (V (JTp1

) − p) ∪ V (BT1,r1), VS,1 =
{p, q}, VS,2 = {r1, t1}. Observe that V2 cannot include r2 for otherwise p or q would be
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a cut-vertex in VS,1, unless VS,2 includes V (S) − {p, q} entirely in which case |UT2 | + 2 +
|UT1 − V (BT1,r1)| ≥ ⌈n

2 ⌉, a contradiction; indeed V1 includes every vertex in UTp2
∪ UTq2

∪
UT2 ∪ V (T2) ∪ (UT1 − V (BT1,r1)). Then the bipartition (V1, V2) returned by the algorithm
leads to a total of at most b + 3 blocks and at least |UT2 | internal vertices in G[V1] and
G[V2], where b ≤ |UTpar | ≤ |UT2 | (recall that Tpar ⊂ S is the triangle whose std-subgraph
JTpar is partitioned by the algorithm). We may assume that equality holds throughout, i.e.
b = |UTpar | = |UT2 |, for otherwise (V1, V2) already satisfies the conclusion of the lemma.
Then Tpar = Tq1 , since all pairs of triangles with the largest smaller std-subgraphs share
an edge and Tpar ̸= T2, Tp1 ; also, since Tq1 does not contain the edge pq or r1t1, it is
partitioned in the split configuration so that vlast = s1 and Tlast1 = Tq1 . Following the
description in Claim 21, let Tlast2 ⊂ S be the other triangle in the split configuration with
|UTlast2

| ≤ |UTlast1
|. Then |UTlast2

| ≤ |UTlast1
| − 1 as Tlast2 does not share an edge with

T1. Since the partition of V (JTlast1
) leads to exactly b = |UTlast1

| blocks, it must be the
case that the vertex-set UTlast2

∪ vlast is included in one part of the bipartition and the
vertex-set UTlast1

in the other; without loss of generality, let UTlast1
⊂ V1. We also get that

NG(vlast) ∩ NG(r1) ∩ UTlast1
= UTlast1

. Since |UTlast1
| ≥ |UTlast2

| + 1, an alternative solution
is to include UTlast2

∪ vlast in V1 and then partition V (JTlast1
) (in the split configuration,

if |Vi| + 1 + |UTlast2
| ≤ ⌈n

2 ⌉ for i = 1, 2, then the algorithm chooses the part to include
vlast ∪ UTlast2

in arbitrarily). If the new partition of V (JTlast1
) leads to |UTlast1

| − 1 or
fewer blocks, then the resulting bipartition (V1, V2) satisfies the conclusion of the lemma,
otherwise we get that |UTlast1

| = |UTlast2
| + 1. Since JTlast1

− {q, vlast} forms a biconnected
near-triangulation, we get that 1 = |UTlast1

| = |UT2 | (since, even in the alternative solution,
the partition of V (JTlast1

) leads to |UTlast1
| blocks). This implies that ⌈n

2 ⌉ < |UT1 |+|UT2 |+2 =
|UT1 | + 3, and hence that |V (JT1)| > ⌈n

2 ⌉. Since V (JT1)| ≤ ⌊n
2 ⌋ + 1, we get that n is even

and |V (JT1)| = ⌊n
2 ⌋ + 1. But then the required bipartition exists by Proposition 12. This

concludes case (ii).

2.7 Proving the conjecture

In this final section, we give a proof of Theorem 2 and show that the conjecture follows as
a corollary.

Proof of Theorem 2. Let G be a plane triangulation with |V (G)| = n. Then we may make
the following assumptions, in that order, for otherwise the required bipartition (V1, V2) of
V (G) exists by the parenthesised statement.

(i) There exists a separating triangle in G (Corollary 6).

(ii) There does not exist a separating triangle T ⊂ G such that each of the two components
of G − V (T ) contains at least ⌊n

2 ⌋ − 1 vertices (Proposition 10).
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(iii) The sink in the directed std-tree of G has degree > 1, i.e., the sink triangulation S of
G contains at least 2 distinct triangles that are separating in G (Proposition 11).

(iv) S has at least 6 vertices and, hence, is 4-connected (Proposition 13).

(v) For every pair of distinct triangles T1, T2 ⊂ S, if |V (JT1)|, |V (JT2)| ≥ |V (JT )| for every
triangle T ⊂ S, T ̸= T1, T2, then |V (T1) ∩ V (T2)| = 2 (Claim 23).

By Lemma 24, there exists under assumptions (i)-(v) a balanced bipartition (V1, V2) of V (G)
satisfying the conclusion of the theorem.

Corollary 26. If G is a planar graph, then a minimum balanced bipartition (V1, V2) of
V (G) has e(V1, V2) ≤ |V (G)|.

Proof. It suffices to prove the corollary for all planar triangulations G, and that follows
directly from Theorem 2 and Corollary 4.
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Chapter 3

Pancyclicity in 4-connected planar
graphs

3.1 A special case of Bondy’s meta-conjecture

The cycle spectrum of a simple graph G on n vertices, denoted C(G), is the set of distinct
lengths of cycles in G. G is said to be Hamiltonian if n ∈ C(G); it is said to be pancyclic
if |C(G)| = n − 2. In 1971-72, Bondy (see [5], [6]) proposed his now famed meta-conjecture
“Almost any nontrivial condition on a graph which implies that the graph is Hamiltonian
also implies that the graph is pancyclic”. Bondy further allowed that “There may be a simple
family of exceptional graphs”. He provided several results in support of his meta-conjecture
starting with the extension of Ore’s condition which states that any graph G on n vertices
satisfying dG(u) + dG(v) ≥ n for every pair of nonadjacent vertices u and v is Hamiltonian.
In this case, the complete bipartite graphs K n

2 , n
2

form the family of exceptions (see [5]).
In the same paper, Bondy conjectured that Tutte’s result about Hamiltonicity of 4-

connected planar graphs may be similarly extended. Malkevitch (see [30]) pointed out a
simple family of exceptions to this conjecture (line graphs of cyclically 4-edge-connected,
cubic, planar graphs of girth 5) no member of which contains a cycle of length 4. It is
suspected that that might be the only cycle length absent in a 4-connected planar graph.
Malkevitch then revised Bondy’s conjecture to the following form.

Conjecture 27 (Malkevitch, [31]). A 4-connected planar graph is pancyclic if it contains
a cycle of length 4.

In joint work with Bojan Mohar, we obtain the following partial results in this chapter
in relation to the conjecture by Malkevitch.

Theorem 28. If G is a 4-connected planar graph on n vertices and e is an edge in G, then
G contains at least ⌈n

2 ⌉ + 1 cycles of pairwise distinct lengths each containing e.
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Theorem 29. For any integer k ≥ 1, there exists a 4-connected planar graph Gk on 3k + 3
vertices containing an edge e such that Gk contains at most 2k+2 cycles of pairwise distinct
lengths each containing e.

Theorem 30. If G is a 4-connected planar graph not containing any 4-cycles, then G

contains at least ⌈5n
6 ⌉ + 2 cycles of pairwise distinct lengths.

Our proofs for the above theorems are constructive and yield simple algorithms for finding
the promised set of cycles.

The layout of the rest of the chapter is as follows. In Section 3.2, we define the graph-
terminology used in the chapter and introduce two analogous weight functions to be used in
the proof of Theorem 30. In Section 3.3, we prove Theorems 28 and 29. In the following two
sections, we prove an upper bound pertaining to large faces in 4-connected planar graphs
not containing any 4-cycles (Section 3.4) and prove Theorem 30 by relating the size of the
cycle spectrum of such graphs to this bound (Section 3.5). Finally, in Section 3.6, we prove
some results that provide additional evidence/motivation towards a proof of the existence
of an almost complete cycle spectrum in 4-connected planar graphs not containing any
4-cycles.

3.2 Preliminaries

All graphs in this chapter are planar and do not contain loops or parallel edges. Readers
are referred to [13] for any terminology that we may have missed and the notation used in
this chapter.

A graph G is said to be k-connected if it has at least k + 1 vertices and, for every
(k − 1)-subset V ′ of V (G), G − V ′ is connected.

A graph is planar if it can be drawn in the plane in such a way that its edges intersect
only at their endpoints. A graph so drawn in the plane is called a plane graph. For any plane
graph G, the regions of R2\G are called the faces of G, the set of them denoted F (G). If G

is finite, then exactly one of its faces is unbounded and is called the infinite face of G.
Given a plane graph G, its dual graph G∗ is defined as follows. Corresponding to each

face F of G there is a vertex F ∗ of G∗, and corresponding to each edge e of G there is
an edge e∗ of G∗. Two vertices F ∗

1 and F ∗
2 are joined by the edge e∗ in G∗ if and only if

their corresponding faces F1 and F2 are separated by the edge e in G. It is easy to see
that (G∗)∗ = G. For the sake of conveninence, we will use df(·) and dv(·) to indicate dual
elements, e.g. F ∗ = dv(F ) and F = df(F ∗).

A closed walk in a graph is defined as a sequence of vertices, starting and ending at the
same vertex, such that every pair of consecutive vertices in the sequence is adjacent to each
other in the graph. Each face of a plane graph G is bounded by a closed walk in G called
the boundary of the face. A face F of G whose boundary consists of k vertices (including
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repetitions) is said to be a face of size |F | = k, or simply a k-face. We also refer to 3-faces
as triangular faces.

Since a planar graph can also be drawn on a sphere in such a way that its edges intersect
only at their endpoints, under a suitably chosen stereographic projection from the sphere
to the plane, any face boundary in a plane graph G may be “designated” as the infinite
face boundary. Any vertex of a plane graph G not lying on the boundary of its infinite face
is said to be an internal vertex of G. An outerplanar graph is a planar graph that can be
drawn in the plane with no internal vertices. A chord of a plane outerplanar graph is an
edge not contained in the boundary of its infinite face.

A planar triangulation is a graph that is maximally planar. Every face in any drawing
of a planar triangulation in the plane is bounded by three edges. Every planar triangulation
corresponds to a unique plane triangulation up to isomorphism, so the terms are often used
interchangeably.

A plane Hamiltonian graph G with a Hamiltonian cycle C can be thought of as a union
of two 2-connected plane outerplanar graphs G0 and G1, each with C bounding one of its
faces, such that G0 ∩ G1 = C. Let F0 and F1, respectively, be the faces of G0 and G1

bounded by C that are not in F (G); we designate these as the infinite faces of G0 and G1.
For any plane Hamiltonian graph G with a Hamiltonian cycle C, we define the quadruple
(G, C, G0, G1) distinguishing G0 from G1 using the assumption that |E(G1)| ≥ |E(G0)|. For
each i ∈ {0, 1}, let ci be the number of chords in Gi.

The internal dual of a plane graph G with dual graph G∗ and outer face dual to the
vertex v∗ ∈ V (G∗) is the graph G∗ − v∗. It is easy to see that the internal dual of a 2-
connected outerplanar graph is a tree. Let T0 and T1 be the internal duals of the graphs G0

and G1, respectively, in (G, C, G0, G1). Since (F (G0) − F0) ∪ (F (G1) − F1) = F (G), we get
that V (T0) ∪ V (T1) = V (G∗).

We now introduce two analogous weight functions and establish an easy identity for each.
For each i ∈ {0, 1}, v ∈ V (Ti), let df(v) be the corresponding dual face in G. Analogously,
for each Q ∈ F (G), let dv(Q) be the corresponding dual vertex in T0 or T1. For each
v ∈ V (T0) ∪ V (T1), let w : V (T0) ∪ V (T1) → Z be defined as w(v) = |df(v)| − 2.

Proposition 31. Let G be a plane Hamiltonian graph on n vertices and C be a Hamiltonian
cycle in G. Then for (G, C, G0, G1), for each i ∈ {0, 1},

∑
v∈V (Ti)

w(v) = n − 2.
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Proof. Let G be a plane Hamiltonian graph on n vertices and C be a Hamiltonian cycle in
G. Then for (G, C, G0, G1), for each i ∈ {0, 1},

∑
v∈V (Ti)

w(v) =
∑

v∈V (Ti)
|df(v)| − 2|V (Ti)|

= 2|E(Gi)| − n − 2|V (Ti)|

= 2(n + |E(Ti)|) − n − 2|V (Ti)|

= n − 2.

For each e ∈ E(G) and the faces Qe, Q′
e ∈ F (G) incident with e, let w′ : E(G) → R

be defined as w′(e) = w(dv(Qe))
|Qe| + w(dv(Q′

e))
|Q′

e| . Then the following is an easy corollary of
Proposition 31.

Corollary 32. If G is a plane Hamiltonian graph on n vertices, then
∑

e∈E(G)
w′(e) = 2(n−2).

Proof. Let G be a plane Hamiltonian graph on n vertices and C be a Hamiltonian cycle in
G. Then for (G, C, G0, G1),

∑
e∈E(G)

w′(e) =
∑

e∈E(G)

∑
Q∈F (G);
e∈E(Q)

w(dv(Q))
|Q|

=
∑

Q∈F (G)

∑
e∈E(G);
e∈E(Q)

w(dv(Q))
|Q|

=
∑

Q∈F (G)
w(dv(Q))

=
∑

v∈V (T1)∪V (T2)
w(v)

=
∑

v∈V (T1)
w(v) +

∑
v∈V (T2)

w(v)

= 2(n − 2),

where the last equality follows from Proposition 31.

3.3 The general case

In this section, we prove Theorem 28 as a corollary of the following lemma and then provide
a construction for the family of graphs described in Theorem 29.
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Lemma 33. If G is a 2-connected plane outerplanar graph on n vertices containing c chords
and e is an edge contained in the boundary of its infinite face, then G contains at least c+1
cycles of pairwise distinct lengths each containing the edge e.

Proof. Let G be a 2-connected plane outerplanar graph on n vertices containing c chords,
and let e be an edge contained in the boundary of its infinite face F . Let F ′ be the face of
G sharing the edge e with F , and let T be the internal dual of G.

Consider a sequence of subtrees T 0 ⊊ ... ⊊ T c of Ti such that T 0 = dv(F ′) and, for
each i ∈ {1, ..., c}, |T i| = |T i−1| + 1. For each i ∈ {0, ..., c}, let Gi be the plane subgraph of
G with T i as its internal dual and let Ci be the boundary of its infinite face; it is easy to
see that Gi is a 2-connected plane outerplanar graph on 2 + ∑

v∈T i

(|df(v)| − 2) vertices and

e ∈ E(Ci). Thus, the cycles C0, ..., Cc each contain the edge e and have pairwise distinct
lengths.

We need a weak form of the following result by Sanders ([35]) to prove Theorem 28. The
result will be used in full in Section 3.5.

Theorem 34 (Sanders, [35]). If G is a 4-connected planar graph and e1, e2 ∈ E(G), then
there exists a Hamiltonian cycle in G containing both e1 and e2.

Proof of Theorem 28. It suffices to prove the theorem for any 4-connected plane graph.
Let G be a 4-connected plane graph on n vertices and let e be an edge in G.

By Theorem 34, there exists a Hamiltonian cycle C in G containing the edge e. Since
G contains at least 2n edges, in the quadruple (G, C, G0, G1), G1 is a 2-connected plane
outerplanar graph with at least ⌈n

2 ⌉ chords. Then, by Lemma 33, G1 contains at least ⌈n
2 ⌉+1

cycles of pairwise distinct lengths in G1 each containing the edge e.

Remark 4. Note that even though Theorem 34 is used in a weak form in the proof above,
G must be 4-connected for a bound linear in n. As evidence of this fact, one might consider
the planar triangulations constructed by Moon and Moser ([32]) where the length of the
longest cycle is sublinear in n (O(nlog3 2)).

Proof of Theorem 29. For any integer k ≥ 1, consider the graph Gk on 3k + 3 vertices
constructed as follows. Let Pu = u1u2...uk, Pw = w1w2...wk and Pv = v1v2...vk+1 be three
disjoint paths of lengths k − 1, k − 1 and k respectively. For each i ∈ {1, ..., k}, connect both
ui and wi to each of vi and vi+1 with edges. Now take two additional vertices v0 and vk+2

and connect v0 to u1, v1 and w1, and vk+2 to uk, vk+1 and wk with edges. Finally, connect
v0 to vk+2 with an edge; label this last edge e. It is easy to see that Gk is 4-connected and
can be embedded in the plane (see Fig. 3.1).
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Figure 3.1: 4-connected planar graph Gk on 3k + 3 vertices. Each of the two faces incident
with the edge e has size k + 2.

The shortest path between the vertices v0 and vk+2 in Gk − e is of length k + 1, so any
cycle in Gk containing e has length ≥ k + 2 (in fact, for every l ≥ k + 2, there exists a cycle
of length l in Gk containing e; to see this, take a Hamiltonian cycle C in Gk containing
e and enumerate the cycles in the plane outerplanar graph formed by any one side of C

starting with the (k + 2)-face as described in the proof of Lemma 33). Thus, Gk contains at
most (3k + 3) − (k + 1) = 2k + 2 cycles of pairwise distinct lengths each containing e.

3.4 Excluding C4

Let G be a plane Hamiltonian graph and C be a Hamiltonian cycle in G. For every i ∈
{0, 1}, j ∈ {5, 6}, we define the following in the quadruple (G, C, G0, G1).

• f≥j
i : the number of faces of size ≥ j in F (Gi) − Fi;

• s>j
i : the sum ∑

F ∈F (Gi)−Fi;
|F |>j

|F | − j = ∑
F ∈F (Gi)−Fi;

|F |≥j

|F | − j;

• f≥j : the number of faces of size ≥ j in F (G);

• s>j : the sum ∑
F ∈F (G);
|F |>j

|F | − j = ∑
F ∈F (G);
|F |≥j

|F | − j.

Note that f≥j = f≥j
0 + f≥j

1 and s>j = s>j
0 + s>j

1 .
In a plane graph G, for any vertex v ∈ V (G), we define a 5-fan incident with v as a

maximal set ∅ ̸= J ⊂ F (G) of 5-faces each incident with v such that, in the cyclic list
enumerating all faces incident with v in clockwise order, all the faces in the set appear
together.
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We define a 5-block as a maximal set ∅ ̸= J ⊂ F (G) of 5-faces such that G∗
J :=

G∗[{dv(Q) : Q ∈ J}] is connected; we refer to G∗
J as the dual 5-block of J . A 5-block

is said to be trivial if it is a singleton set, and non-trivial otherwise; a 5-block J is said to
be acyclic if its dual 5-block is acyclic. A shared edge of a 5-block is an edge that is shared
between two members of the said 5-block; an unshared edge of a 5-block is an edge that is
incident with only one member of the said 5-block. We also define some special 5-blocks
(note that a 5-fan may or may not be a 5-block).

We define a 5-flower as a 5-block consisting of six members {P0, P1, ..., P5}, where P0

shares an edge with every other member of the set and all members of the set except P0

are pairwise edge-disjoint. Alternatively, a 5-flower is a 5-block for which the dual 5-block
is a K1,5.

Finally, we define a 5-tree as an acyclic 5-block J such that, for each vertex u in the dual
5-block G∗

J , dG∗
J
(u) ∈ {0, 1, 2, 5}, each of the three degree classes forms an independent set

in G∗
J , and no vertex of degree 1 is adjacent to a vertex of degree 2 in G∗

J . Note that every
trivial 5-block and every 5-flower is a 5-tree. A simple calculation shows that a 5-tree for
which the dual 5-block contains p vertices of degree 5 (and hence p − 1 vertices of degree 2)
contains p+(p−1)+(5p−2(p−1)) = 5p+1 members and 3(p−1)+4(5p−2(p−1)) = 5(3p+1)
unshared edges.

In this section, we provide an upper bound for s>5 when the said graph G has minimum
degree 4 and does not contain any 4-cycles. We use the discharging method to do that.

Lemma 35. If G is a plane Hamiltonian graph on n ≥ 5 vertices with δ(G) ≥ 4 and not
containing any 4-cycles, then s>5 ≤ n

3 − 10.

Proof. Let G be a plane Hamiltonian graph on n ≥ 5 vertices not containing any 4-cycles.
For each vertex v ∈ V (G), set the initial charge c(v) to be dG(v)−4. For each face Q ∈ F (G),
set the initial charge c(Q) to be |Q|−4. A rearrangement of Euler’s formula |V (G)|−|E(G)|+
|F (G)| = 2 gives us that

∑
v∈V (G)

(dG(v) − 4) +
∑

Q∈F (G)
(|Q| − 4) = −8.

In other words, the total charge on all the vertices and faces is −8.
We now use a discharging procedure defined by the rules R1-R5 below, leading to a

final charge distribution where we will compare the total charge with −8 to conclude some
information about the structure of G.

(R1) Each triangular face receives 1/3 charge from every face it is adjacent to.

(R2) Each face of size ≥ 6 donates 1/3 charge to every 5-face it is adjacent to.

(R3) Each vertex of degree d ≥ 6 donates 2/3 charge to every 5-fan incident with it.
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(R4) Each vertex of degree 5 donates 2/3 charge to the 5-fan of size ≥ 2 incident with it
(if any), and 1/3 charge to every 5-fan of size 1 incident with it.

(R5) This rule is executed after each of (R1)-(R4) has been executed. Each 5-block accumu-
lates the charge from all its members at a single arbitrarily chosen member, resetting
the charge at every other member to zero.

For every z ∈ V (G) ∪ F (G), let c′(z) denote the new charge after the execution of the
discharging procedure. For any Z ⊆ V (G)∪F (G), let c(Z) = ∑

z∈Z
c(z) and c′(Z) = ∑

z∈Z
c′(z).

Claim 36. For each v ∈ V (G), c′(v) ≥ 0.

Proof. For any vertex v ∈ V (G), there can be at most ⌊dG(v)
2 ⌋ 5-fans incident with v. If

dG(v) ≥ 6, then c′(v) = dG(v) − 4 − 2
3⌊dG(v)

2 ⌋ ≥ 2
3dG(v) − 4 ≥ 0 by (R3). If dG(v) = 5,

then either there are no 5-fans of size ≥ 2 and at most two 5-fans of size 1 incident with v,
or there is one 5-fan of size 2 and at most one 5-fan of size 1 incident with v; so, by (R4),
c′(v) ≥ dg(v)−4−max{2 · 1

3 , 2
3 + 1

3} = 0. If dG(v) = 4, then c′(v) = c(v) = dG(v)−4 = 0.

Claim 37. Let Q be a face of G. Then

(i) c′(Q) = 0 if |Q| = 3, and

(ii) c′(Q) ≥ mQ

3 + 2
3(|Q| − 6) if |Q| ≥ 6 and mQ of Q’s edges are shared with other faces

of size ≥ 6.

Proof. (i) follows directly from (R1). By (R1) and (R2), a face Q of size ≥ 6 with mQ

of its edges shared with other faces of size ≥ 6 donates at most |Q|−mQ

3 charge so that
c′(Q) ≥ |Q| − 4 − |Q|−mQ

3 = mQ

3 + 2
3 |Q| − 4 = mQ

3 + 2
3(|Q| − 6), which gives us (ii).

Claim 38. Let J ⊂ F (G) be a 5-block in G and let U ⊂ V (G) be the set of vertices that
are each incident with a member of J . If c′(J) < 0 then all of the following are true:

(i) J is a 5-tree,

(ii) each unshared edge of J is shared with a triangular face of G, and

(iii)
∑

u∈U
dG(u) ≤ 4|U | + 1.

Moreover, either c′(J) = −2/3 and
∑

u∈U
dG(u) = 4|U |, or c′(J) = −1/3 and

∑
u∈U

dG(u) =

4|U | + 1 with the vertex of degree 5 in U incident with a single member of J .

Proof. Let J ⊂ F (G) be a 5-block in G with c′(J) < 0 and Q ∈ J be a 5-face in G. Let
G∗

J be the dual 5-block of J with a = |J | = V (G∗
J) and b = E(G∗

J); note that b denotes
the number of shared edges of J . Let l be the number of unshared edges of J that are each
shared with a face P ∈ F (G) − J such that |P | ≥ 6. Then, by (R1)-(R4), the members of
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J donate 5a−2b−l
3 charge, and receive l

3 + cv charge, where cv is the total charge received
by the members of J from the all the vertices they are incident with. This gives us that
c′(J) = c(J) − 5a−2b−l

3 + l
3 + cv = a(5 − 4) − 5a−2b−l

3 + l
3 + cv = 2

3(b − a + l) + cv. Since
c′(J) < 0 and G∗

J is connected, we get that b = a − 1 and l = 0 (i.e., J is acyclic, and each
unshared edge of J is shared with a triangular face of G) so that c′(J) = cv − 2

3 .
Suppose that J is non-trivial. Let xy be an edge that is shared between two members

P1 and P2 of J , where x, y ∈ V (G). Since c′(J) = cv − 2
3 ≥ −2/3, if either x or y has degree

≥ 5 then, by (R4), c′(J) ≥ 0, a contradiction; additionally, since J is acyclic, not all faces
incident with x (or y) are 5-faces. So each of x and y has degree 4 and is incident with one
triangular face and three 5-faces. Let P3 and P4 be the 5-faces incident with, respectively,
x and y in addition to P1 and P2. Then P3 shares an edge with one of P1 and P2 that is
adjacent to the edge xy at x; similarly, P4 shares an edge with one of P1 and P2 that is
adjacent to the edge xy at y. Thus, every shared edge of J is adjacent at each of its ends
to exactly one other shared edge of J and, consequently, all shared edges in J form a set of
disjoint cycles in G. Further, since every pair of adjacent shared edges belongs to a member
of J , the corresponding pair of dual edges is also adjacent; as a result, for any cycle formed
by shared edges of J , the set of edges dual to those in the cycle forms either a star (i.e., the
cycle forms the boundary of a member of J) or a graph containing a cycle. Since J is acyclic
it must be the case that every cycle formed by shared edges of J forms the boundary of a
member of J .

Let C be the set of disjoint cycles formed by the shared edges of J . If |C| = 1, then J

is a 5-flower. So we may assume that |C| > 1. Since the cycles in C are disjoint, the edges
of the dual 5-block G∗

J can be partitioned so that each part forms a K1,5. To ensure that
G∗

J is connected, each part contains an edge that is adjacent to an edge in another part.
If u is a vertex in G∗

J at which edges from distinct parts are adjacent to each other, then
DG∗

J
(u) = 2 because the corresponding dual edges are contained in distinct cycles in C and

must, therefore, be pairwise disjoint. Thus, in this case, J is a 5-tree.
Let U ′ ⊂ V (G) be the set of vertices that are each incident with a member of J but not

with a shared edge of J . We have shown above that ∑
u∈U−U ′

dG(u) = 4|U − U ′|. By (R3)

and (R4), ∑
u∈U ′

dG(u) ≤ 4|U ′| + 1, for otherwise cv ≥ 2/3 and c′(J) ≥ 0, a contradiction; if∑
u∈U ′

dG(u) = 4|U ′|, then cv = 0 and c′(J) = −2/3, and if ∑
u∈U ′

dG(u) = 4|U ′|, then cv = 1/3

and c′(J) = −1/3. Thus, we get that ∑
u∈U

dG(u) ≤ 4|U − U ′| + 4|U ′| + 1 = 4|U | + 1; we also

get that c′(J) = −2/3 if ∑
u∈U

dG(u) = 4|U |, and c′(J) = −1/3 if ∑
u∈U

dG(u) = 4|U | + 1 in

which case the vertex of degree 5 in U is incident with a single member of J . This is true
in each case whether J is trivial, a 5-flower or a 5-tree.

We focus on faces in G of size ≥ 6. By (ii) in Claim 37, such faces hold a total charge
of c+ = 2

3(s>6 + m), where m is the number of edges in G that are each shared between

38



two such faces. By Claims 36-38 above, negative charge may occur only within 5-trees that
share each of their unshared edges with a triangular face of G; such a 5-block may have a
charge of −2/3 or −1/3, if at all negative, depending on the degree sum of the vertices its
members are incident with. Since the total charge held by G is −8, we may assume that
there are at least r = c++

2/3 = s>6 + m + 12 such 5-trees for otherwise c′(G) > −8. Let p̄ be
the average number of vertices of degree 5 contained in the dual 5-block of each of these
5-trees.

Let W ′ = ∑
e∈E(G)

w′(e). We will now estimate the contribution towards W ′ by edges of

G based on their incidence with faces of different sizes and then invoke Corollary 32. We
start with the edges in E(G) incident with faces of size ≥ 6. The contribution of all of such
edges towards W ′ due to the faces of size ≥ 6 is given by W ′

1 = 4f≥6 + s>6. Since only m

of these edges are each shared between two faces of size ≥ 6, the other face incident with
each of the remaining m′ = 6f≥6 + s>6 − 2m edges is either a triangular face or a 5-face;
as a result, the contribution of these m′ edges towards W ′ due to the faces of size ≤ 5 is at
least W ′

2 = min{1
3 , 3

5} · m′ = m′

3 . The edges in E(G) that are not incident with faces of size
≥ 6 are incident with either 5-faces and triangular faces or just 5-faces. Since there are at
least r 5-trees with an average of p̄ vertices of degree 5 per dual 5-block, the contribution
of these edges due to the 5-faces is at least W ′

3 = 3 · r(5p̄ + 1). The same r 5-trees lead to a
contribution of at least W ′

4 = 1
3 · r(5(3p̄ + 1)) by their unshared edges due to the triangular

faces they are incident with. Then, by Corollary 32, we get that

2(n − 2) = W ′

≥ W ′
1 + W ′

2 + W ′
3 + W ′

4

= 4f≥6 + s>6 + m′

3 + 3 · r(5p̄ + 1) + 1
3 · r(5(3p̄ + 1))

= 4f≥6 + s>6 + m′

3 + r(20p̄ + 14
3 )

≥ 4f≥6 + s>6 + m′

3 + 14r

3 (3.1)

= 4f≥6 + s>6 + 6f≥6 + s>6 − 2m

3 + 14
3 (s>6 + m + 12)

= 6f≥6 + 6s>6 + 4m + 56

≥ 6f≥6 + 6s>6 + 56 (3.2)

= 6s>5 + 56, (3.3)

where (3.1) follows from the observation that each of the r 5-trees may be trivial and hence
contain no vertices of degree 5 in its dual 5-block (p̄ = 0), (3.2) from the observation that
m ≥ 0, and (3.3) from the observation that f≥6 +s>6 = s>5. The final inequality then gives
us that
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s>5 ≤ n
3 − 10.

3.5 Generating the cycle spectrum

In any plane Hamiltonian graph G with a Hamiltonian cycle C, we define a leaf-triangle of
(G, C) as a triangular face of G whose boundary contains exactly two edges of C, and its
tip as the vertex shared between the said pair of edges. Such a face is then contained in
either G0 or G1 in (G, C, G0, G1), and is dual to a leaf vertex of either T0 or T1.

In a plane graph, we define a well-triangulated vertex as one of even degree d and incident
with at least d/2 triangular faces.

In this section, we provide a lower bound on the size of the cycle spectrum of a 4-
connected planar graph G in terms of the number of vertices. We do that by identifying a
well-triangulated vertex v in G and enumerating cycles of pairwise distinct lengths starting
with one of the faces incident with the said vertex. In doing so, we keep a count of the
lengths skipped and relate it to bound obtained in the preceding section which, in turn,
gives us the lower bound we seek.

We start with the enumeration lemma and follow it up with a corollary that uses The-
orem 34 to identify a special Hamiltonian cycle C with respect to v. In (G, C, G0, G1), the
enumeration lemma uses faces predominantly from a single side of C and relates the lower
bound to the corresponding s>5

i , which the corollary replaces with s>5. Theorem 41 then
establishes the final result in a much stronger form, drawing on the proof of Lemma 35 in
the preceding section to confirm the existence of the said vertex v as well as translate the
bound to in terms of the number of vertices. For the sake on consistency, we still state a
formal proof of Theorem 30 towards the end of the section.

Lemma 39. Let G be a plane Hamiltonian graph on n ≥ 5 vertices with δ ≥ 4 and not
containing any 4-cycles and C be a Hamiltonian cycle in G. If, for (G, C, G0, G1), for some
i ∈ {0, 1}, there exists a face Qi ∈ F (G) ∩ F (Gi) of size ≥ 5 that is adjacent to two leaf-
triangles of (G, C), then there exists a set of cycles Ci in G of pairwise distinct lengths, each
of size at least |Qi| and containing all the vertices in V (Qi) that are not the tips of the said
leaf-triangles, such that |Ci| ≥ n − 5 − s>5

i .

Proof. Let G be a plane Hamiltonian graph on n ≥ 5 vertices with δ ≥ 4 not containing any
4-cycles and C be a Hamiltonian cycle in G. Suppose, for (G, C, G0, G1), for some i ∈ {0, 1},
there exists a face Qi ∈ F (G) ∩ F (Gi) of size ≥ 5 that is adjacent to two leaf-triangles L

and L′ of (G, C). Let e ∈ E(L) and e′ ∈ E(L′) be the edges of these leaf-triangles that are
not contained in C, y ∈ V (L) and y′ ∈ V (L′) be the vertices that are not contained in Qi,
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and x ∈ V (L) and x′ ∈ V (L′) be the tips. Note that if x = y then e ∈ E(Gi) and if x ̸= y

then e ∈ E(G1−i) (likewise for x′, y′ and e′).
Suppose e, e′ ∈ E(Gi). Consider a sequence of subtrees T 0

i ⊊ T 3
i ⊊ T 6

i ⊊ ... ⊊ T 3ci
i of

Ti such that T 0
i = dv(Qi), {dv(L), dv(L′)} ⊂ V (T 6

i ), T 3ci
i = Ti and, for each j ∈ {1, ..., ci},

|T 3j
i | = |T 3j−3

i | + 1. For each j ∈ {0, ..., ci}, let G3j
i be the plane subgraph of Gi with T 3j

i

as its internal dual and let C3j
i be the boundary of its outer face; it is easy to see that

G3j
i is a 2-connected outerplanar graph on ∑

v∈T 3j
i

w(v) + 2 vertices and, whenever j ≥ 2,

E(C3j
i )∩E(L) = E(C)∩E(L) and E(C3j

i )∩E(L′) = E(C)∩E(L′). For each j ∈ {3, ..., ci},
let G3j−1

i = G3j
i − x and G3j−2

i = G3j
i − x − x′; note that G3j−1

i and G3j−2
i too are

both 2-connected outerplanar graphs on, respectively, |G3j
i | − 1 and |G3j

i | − 2 vertices.
For the sake of completeness, let G1

i = G2
i = G3

i and G4
i = G5

i = G6
i . Thus, for each

j ∈ {3, ..., ci} and z = V (T 3j
i ) − V (T 3j−3

i ), if w(z) > 1, then |G3j−1
i |, |G3j−2

i | > |Gk
i | for all

k ∈ {0, 1, ..., 3j − 3}; in other words, between |G3j−3
i | and |G3j

i |, we skip at most w(z) − 3
sizes. Let G := {Gk

i : 0 ≤ k ≤ 3ci}. Since each graph H ∈ G gives us a cycle of length
|H|, and G invariably contains cycles of length 3 and 5 (which makes the number of cycle
lengths missing up to |G0

i | = |G3
i | − 1 = |G6

i | − 2 at most w(dv(Qi)) − 2), the number of
cycle lengths that are not present in any graph in G is at most

∑
v∈Ti;

w(v)>1

(w(v) − 3) + 1 =
∑

v∈Ti;
w(v)>1

(|df(v)| − 5) + 1

=
∑

F ∈F (Gi)−Fi;
|F |>3

(|F | − 5) + 1

=
∑

F ∈F (Gi)−Fi;
|F |≥5

(|F | − 5) + 1

= s>5
i + 1.

Now suppose e ∈ E(Gi) and e′ ∈ E(G1−i). Let Ri ∈ F (G)∩F (Gi) be the other face that
is adjacent to L′. Consider a sequence of subtrees T 3

i ⊊ T 6
i ⊊ ... ⊊ T 3ci+3

i of Ti such that
T 3

i = dv(Qi), dv(L) ∈ V (T 6
i ), T 3ci+3

i = Ti and, for each j ∈ {1, ..., ci}, |T 3j+3
i | = |T 3j

i | + 1.
Let r ∈ {4, ..., ci+1} be such that V (T 3r

i )−V (T 3r−3
i ) = dv(Ri). For each j ∈ {1, ..., ci+1}, let

G3j
i be the plane subgraph of Gi with T 3j

i as its internal dual and, for each j ∈ {0, ..., ci +1},
let H3j

i be the plane subgraph of G given by

H3j
i =


G3

i if j = 0,

(V (G3j
i ) ∪ y′, E(G3j

i ) ∪ {e′, x′y′}) if 0 < j < r,

G3j
i if j ≥ r;

let C3j
i be the boundary of the outer face of H3j

i . Then, for each j ∈ {0, ..., ci + 1}, H3j
i is a

2-connected outerplanar graph where E(C3j
i ) ∩ E(L) = E(C) ∩ E(L) and E(C3j

i ) ∩ E(L′) =
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{e′, x′y′} with |C3j
i | = ∑

v∈T 3j
i

w(v)+3 whenever 2 ≤ j < r, and E(C3j
i )∩E(L) = E(C)∩E(L)

and E(C3j
i ) ∩ E(L′) = E(C) ∩ E(L′) with |C3j

i | = ∑
v∈T 3j

i

w(v) + 2 whenever j ≥ r. For each

j ∈ {3, ..., ci + 1}, let H3j−1
i = H3j

i − x and H3j−2
i = H3j

i − x − y′ whenever j < r, and let
H3j−1

i = H3j
i − x and H3j−2

i = (H3j
i − x) ∪ e′ whenever j ≥ r; let the outer face boundaries

of H3j−1
i and H3j−2

i be, respectively, C3j−1
i and C3j−2

i , where |C3j−1
i | = |C3j

i | − 1 and
|C3j−2

i | = |C3j
i | − 2. For the sake of completeness, let H1

i = H2
i = H3

i and H4
i = H5

i = H6
i .

Thus, for each j ∈ {3, ..., ci + 1} − {r} and z = V (T 3j
i ) − V (T 3j−3

i ), if w(z) > 1, then
|C3j−1

i |, |C3j−2
i | > |Ck

i | for all k ∈ {0, 1, ..., 3j−3}; in other words, between |C3j−3
i | and |C3j

i |,
we skip at most w(z) − 3 sizes. Since |C3r−3

i | = ∑
v∈T 3r−3

i

w(v) + 3 and |C3r
i | = ∑

v∈T 3r
i

w(v) + 2,

between the two of them we skip sizes (at most w(dv(Ri)) − 4 many of them) only if
w(dv(Ri)) > 4. Then, similar to the previous case, we get that the number of cycle lengths
missing up to |H0

i | = |H3
i | − 1 = |H6

i | − 2 is at most w(dv(Qi)) − 2), and the number of
cycle lengths that are not present in any graph in G := {Hk

i : 0 ≤ k ≤ 3ci + 3} is at most
s>5

i + 1.
Finally, suppose e, e′ ∈ E(G1−i). Let Ri, Si ∈ F (G) ∩ F (Gi) be the other faces that are

adjacent to, respectively, L′ and L. Consider a sequence of subtrees T 6
i ⊊ T 9

i ⊊ ... ⊊ T 3ci+6
i

of Ti such that T 6
i = dv(Qi), T 3ci+6

i = Ti and, for each j ∈ {2, ..., ci +1}, |T 3j+3
i | = |T 3j

i |+1.
Let r, s ∈ {4, ..., ci +2} be such that V (T 3r

i )−V (T 3r−3
i ) = dv(Ri) and V (T 3s

i )−V (T 3s−3
i ) =

dv(Si). Since δ ≥ 4, r ̸= s; without loss of generality, we may assume that r < s. For each
j ∈ {2, ..., ci + 2}, let G3j

i be the plane subgraph of Gi with T 3j
i as its internal dual and, for

each j ∈ {0, ..., ci + 2}, let H3j
i be the plane subgraph of G given by

H3j
i =



G6
i if j = 0,

(V (G6
i ) ∪ y′, E(G6

i ) ∪ {e′, x′y′}) if j = 1,

(V (G3j
i ) ∪ {y′, y}, E(G3j

i ) ∪ {e′, x′y′, e, xy}) if 2 ≤ j < r,

(V (G3j
i ) ∪ {y}, E(G3j

i ) ∪ {e, xy}) if r ≤ j < s,

G3j
i if j ≥ s;

let C3j
i be the boundary of the outer face of H3j

i . Then, for each j ∈ {0, ..., ci + 2}, H3j
i

is a 2-connected outerplanar graph where E(C3j
i ) ∩ E(L) = {e, xy} and E(C3j

i ) ∩ E(L′) =
{e′, x′y′} with |C3j

i | = ∑
v∈T 3j

i

w(v) + 4 whenever 2 ≤ j < r, E(C3j
i ) ∩ E(L) = {e, xy}

and E(C3j
i ) ∩ E(L′) = E(C) ∩ E(L′) with |C3j

i | = ∑
v∈T 3j

i

w(v) + 3 whenever r ≤ j < s,

and E(C3j
i ) ∩ E(L) = E(C) ∩ E(L) and E(C3j

i ) ∩ E(L′) = E(C) ∩ E(L′) with |C3j
i | =∑

v∈T 3j
i

w(v) + 2 whenever j ≥ s. For each j ∈ {3, ..., ci + 2}, let H3j−1
i = H3j

i − y and

H3j−2
i = H3j

i − y − y′ whenever j < r, let H3j−1
i = H3j

i ∪ e and H3j−2
i = (H3j

i − y′) ∪ e

whenever r ≤ j < s, and let H3j−1
i = H3j

i ∪ e and H3j−2
i = H3j

i ∪ {e, e′} whenever j ≥ s;
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let the outer face boundaries of H3j−1
i and H3j−2

i be, respectively, C3j−1
i and C3j−2

i , where
|C3j−1

i | = |C3j
i |−1 and |C3j−2

i | = |C3j
i |−2. For the sake of completeness, let H1

i = H2
i = H3

i

and H4
i = H5

i = H6
i . Thus, for each j ∈ {3, ..., ci +2}−{r, s} and z = V (T 3j

i )−V (T 3j−3
i ), if

w(z) > 1, then |C3j−1
i |, |C3j−2

i | > |Ck
i | for all k ∈ {0, 1, ..., 3j − 3}; in other words, between

|C3j−3
i | and |C3j

i |, we skip at most w(z) − 3 sizes. Since |C3r−3
i | = ∑

v∈T 3r−3
i

w(v) + 4 and

|C3r
i | = ∑

v∈T 3r
i

w(v) + 3, between the two of them we skip sizes (at most w(dv(Ri)) − 4 many

of them) only if w(dv(Ri)) > 4; similarly, between |C3s−3
i | and |C3s

i | we skip sizes (at most
w(dv(Si)) − 4 many of them) only if w(dv(Si)) > 4. Then, similar to the previous cases,
we get that the number of cycle lengths missing up to |H0

i | = |H3
i | − 1 = |H6

i | − 2 is at
most w(dv(Qi)) − 2), and the number of cycle lengths that are not present in any graph in
G := {Hk

i : 0 ≤ k ≤ 3ci + 6} is at most s>5
i + 1.

Thus, in each case, the number of missing cycle lengths is at most s>5
i +1. Also, for each

length ≥ |Qi| noted as present in some member of G, we have a cycle that passes through
all the vertices in V (Qi) which are not the tips of L or L′ (we start with the boundary of
Qi as a cycle of size |Qi|, and all the subsequent outer face boundaries retain the vertex-set
V (Qi) with the exception of possibly one or both of the vertices x and x′). This excludes the
lengths 3 and possibly 5 (when |Qi| ≥ 6). Thus, we have a set of at least n−2−(s>5

i +1+2)
cycles as claimed in the theorem statement.

Corollary 40. Let G be a 4-connected plane graph on n ≥ 5 vertices not containing any
4-cycles. If there exists a well-triangulated vertex v of degree 4 in G incident in cyclic order
with faces Q0, R, Q1 and R′ where R and R′ are triangular faces, then, for some i ∈ {0, 1},
there exists a set of cycles C in G of pairwise distinct lengths, each of size at least |Qi| and
containing all the vertices in V (Qi) − NQi(v) such that |C| ≥ n − 5 − s>5/2.

Proof. Let G be a 4-connected plane graph on n ≥ 5 vertices not containing any 4-cycles,
and let v be a well-triangulated vertex v of degree 4 in G incident in cyclic order with faces
Q0, R, Q1 and R′ where R and R′ are triangular faces. Let e and e′ be the edges of R and
R′, respectively, that are not incident with v.

Since G is 4-connected, by Theorem 34, there exists a Hamiltonian cycle C in G contain-
ing both e and e′. This cycle contains v and, hence, exactly two of the edges incident with
it, one from each of R and R′, which makes both R and R′ leaf-triangles of (G, C). Addi-
tionally, the faces Q0 and Q1 lie on different sides of C and each of them is adjacent to both
R and R′. Without loss of generality, we may assume that Q0 ∈ F (G0) and Q1 ∈ F (G1)
in (G, C, G0, G1). Since, for (G, C, G0, G1), s>5 = s>5

0 + s>5
1 , either s>5

0 or s>5
1 is at most

s>5/2. The corollary then follows from Lemma 39.

Theorem 41. Let G be a 4-connected plane graph on n ≥ 5 vertices not containing any
4-cycles. Then there exists a set U ⊂ V (G) of at least three vertices and a set of cycles C
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in G of pairwise distinct lengths, each of size at least |U | + 2 and containing all the vertices
in U , such that |C| ≥ 5

6(n − 2) − 2. Moreover, the number of pairwise distinct cycle lengths
present in G is at least ⌈5

6(n − 2)⌉.

Proof. Let G be a 4-connected plane graph on n ≥ 5 vertices not containing any 4-cycles.
By the proof of Lemma 35, there exist at least twelve 5-trees in G each of which shares its
unshared edges with triangular faces in G and has its members incident with vertices all
but one of which are of degree 4. Of these degree 4 vertices, every vertex not incident with a
shared edge of the corresponding 5-tree is a well-triangulated vertex with a 5-face for at least
one of the non-triangular faces incident with it. Let v be one such vertex with faces Q0, R, Q1

and R′, where R and R′ are triangular faces and Q0 is a 5-face. Then, by Corollary 40, for
some i ∈ {0, 1}, there exists a set of cycles C in G of pairwise distinct lengths, each containing
all the vertices in U := V (Qi) − NQi(v) and of size at least |Qi| = |U | + 2 and such that

|C| ≥ n − 5 − s>5

2
≥ n − 5 − n

6 + 5

= 5n

6 ,

where the second inequality follows from Lemma 35. Note that since |Qi| ≥ 5, we get that
|U | ≥ 3.

Moreover, by the proof of Lemma 39, this bound assumed exclusion of cycle lengths 3
and 5 which are clearly present in G. Thus, the number of pairwise distinct cycle lengths
present in G is at least ⌈5n

6 ⌉ + 2.

Proof of Theorem 30. Since every 4-connected planar graph has a unique embedding in
the plane, it suffices to prove the theorem for any 4-connected plane graph not containing
any 4-cycles. The proof then follows directly from Theorem 41.

3.6 Some additional results

In this section, we prove some additional results that were discovered in trying to establish
an almost complete cycle spectrum for 4-connected planar graphs not containing any 4-
cycles. In view of the proof of Theorem 30, we believe that these results may lead to a proof
strategy that is not too far from the one already used.

Proposition 42. If G is a plane graph on n ≥ 5 vertices not containing any 4-cycles then
|E(G)| ≤ 15

7 (n − 2), with equality achieved if and only if every face of G has size 3 or 5 and
every edge of G is incident with one of each.
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Proof. Let G be a plane graph on n ≥ 5 vertices not containing any 4-cycles, and let
G′ be a plane triangulation obtained by adding edges to the faces of G arbitrarily. Let
ē = |E(G′)| − |E(G)| = 3n − 6 − |E(G)| be the total number of edges added. A face of G of
size f > 3 contributes f − 3 to ē and is replaced by f − 2 triangular faces; in other words,
each edge added to this face increases the number of triangular faces by f−2

f−3 on average.
Since f ≥ 5, every edge added to G increases the number of triangular faces by at most 3

2 on
average. Thus, in constructing G′ from G as described above the number of triangular faces
added is at most 3

2 ē which makes the number of triangular faces in G at least 2n − 4 − 3
2 ē.

Since every edge in G can be in at most one triangular face, the number of triangular
faces in G can be at most |E(G)|

3 . Thus, |E(G)|
3 ≥ 2n − 4 − 3

2 ē = 2n − 4 − 3
2(3n − 6 − |E(G)|).

Rearranging, we get that

3
2 |E(G)| − |E(G)|

3 ≤ 9
2(n − 2) − 2n + 4 ⇐⇒

7
6 |E(G)| ≤ 5

2n − 5 ⇐⇒

|E(G)| ≤ 15
7 (n − 2).

To achieve equality, G must have exactly 2n − 4 − 3
2 ē = |E(G)|

3 triangular faces, which
makes every non-triangular face of size 5 and every edge incident with exactly one triangular
face. In the other direction, if G is a plane graph with every face of size 3 or 5 and every
edge incident with one of each, then Euler’s formula gives us that

n − |E(G)| + ( |E(G)|
3 + |E(G)|

5 ) = 2 ⇐⇒

|E(G)| = 15
7 (n − 2).

Leaf-path decomposition of a tree: We define this as a decomposition of a tree T

into a set of paths P(T ) = {P1, ..., Pk} such that:

•
k⋃

i=1
V (Pi) = V (T ),

k⋃
i=1

E(Pi) ⊂ E(T ),

• at least one leaf of every path in P(T ) is also a leaf of T , and

• exactly one path in P(T ) ends in leaves which are (possibly identical and) both leaves
of T as well.

Proposition 43. There exists a leaf-path decomposition for every tree T .
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Proof. Let T be a tree. We prove this by induction on the number of leaves k in T . If k ≤ 2,
then P(T ) = {T}, so we may assume that k > 2. Let v be a leaf of T , and let Pv be the
maximal path in T with v as one end and with every vertex other than v of degree 2 in
T . Let T ′ = T − V (P ). T ′ has one less leaf than T and, by the inductive hypothesis, there
exists a leaf-path decomposition P(T ′) for T ′. Then P(T ) = P(T ′) ∪ {Pv} is a leaf-path
decomposition for T .

Proposition 44. Let G be a plane Hamiltonian graph on n ≥ 5 vertices not containing any
4-cycles and C be a Hamiltonian cycle in G. Then for (G, C, G0, G1), for any i ∈ {0, 1}, ci ≤
5
7(n − 3), with equality achieved if and only if every face of Gi except its outer face has size
3 or 5 and every edge of Gi is incident with a triangular face.

Proof. Let G be a plane Hamiltonian graph on n ≥ 5 vertices not containing any 4-cycles
and C be a Hamiltonian cycle in G. For any i ∈ {0, 1}, consider the plane outerplanar graph
Gi in (G, C, G0, G1). Since each edge in Gi is incident with at most one triangular face of
Gi (also a triangular face of G), the number of non-triangular faces of Gi not including its
outer face is at least ci + 1 − n+ci

3 . Since each of these faces is also a face of G and has size
at least 5, we get that

ci ≤ n − 3 − 2(ci + 1 − n + ci

3 ) ⇐⇒
7
3ci ≤ 5

3n − 1 ⇐⇒

ci ≤ 5
7(n − 3).

To achieve equality, Gi must have exactly ci+1− n+ci
3 non-triangular faces (not including

its outer face) each of size 5, which makes every edge incident with exactly one triangular
face. In the other direction, if Gi is a plane outerplanar graph not containing any 4-cycles
such that every face except its outer face has size 3 or 5 and every edge is incident with a
triangular face, then Euler’s formula gives us that

n − (n + ci) + (n + ci

3 + ci

5 + 1) = 2 ⇐⇒

ci = 5
7(n − 3).

Note that c0 and c1 cannot both equal 5
7(n − 3) as then |E(G)| = 10

7 (n − 3) + n =
17
7 (n − 2) + 4

7 , a contradiction to Proposition 42

Recall from Section 3.5 that for any plane Hamiltonian graph G with a Hamiltonian
cycle C, a leaf-triangle of (G, C) is defined as a triangular face of G whose boundary contains
exactly two edges of C. For each i ∈ {0, 1}, let ti be the number of leaf-triangles of (G, C)
contained in Gi.
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Lemma 45. Let G be a plane Hamiltonian graph on n ≥ 5 vertices not containing any 4-
cycles and C be a Hamiltonian cycle in G. Then for (G, C, G0, G1), for each i ∈ {0, 1}, ti ≥
s>5

i + 2ci − n + 4.

Proof. Let G be a plane Hamiltonian graph on n ≥ 5 vertices not containing any 4-cycles
and C be a Hamiltonian cycle in G. For any i ∈ {0, 1}, consider the internal dual Ti of Gi

in (G, C, G0, G1). In any leaf-path decomposition of Ti into P(Ti), if we remove the vertices
dual to the leaf-triangles of (G, C) each path in P(Ti) is reduced to one with at least one
leaf that is dual to a face of G of size ≥ 5. Since no two triangular faces in G share an edge,
we get that f≥5

i ≥ 1
2(|V (Ti)| − ti) = 1

2(ci + 1 − ti). Then, by Proposition 31,

n − 2 = (f≥5
i (5 − 2) + s>5

i ) + (|V (Ti)| − f≥5
i )(3 − 2)

= 3f≥5
i + s>5

i + ci + 1 − f≥5
i

= 2f≥5
i + s>5

i + ci + 1

≥ s>5
i + 2ci + 2 − ti ⇐⇒

ti ≥ s>5
i + 2ci − n + 4.

Corollary 46. Let G be a plane Hamiltonian graph on n ≥ 5 vertices containing at least
2n edges but not containing any 4-cycles and C be a Hamiltonian cycle in G. Then for
(G, C, G0, G1),

(i) t1 ≥ s>5
1 + 4, and

(ii) t0 + t1 ≥ s>5 + 8.

Proof. Let G be a plane Hamiltonian graph on n ≥ 5 vertices containing at least 2n

edges but not containing any 4-cycles and C be a Hamiltonian cycle in G so that, for
(G, C, G0, G1), c0 + c1 ≥ n, and c1 ≥ n/2. Then, by Lemma 45,

t1 ≥ s>5
1 + 2c1 − n + 4 ≥ s>5

1 + 4, and

t0 + t1 ≥ s>5
0 + s>5

1 + 2(c0 + c1) − 2n + 8 ≥ s>5
0 + s>5

1 + 8 = s>5 + 8.

Remark 5. Observe that in Propositions 42 and 44, equality is achieved under conditions
which imply that either s>5 = 0 or s>5

i = 0 for some i ∈ {0, 1}. Similarly, Corollary 46
establishes a substantial lower bound on the number of leaf-triangles in (G, C). In contrast,
the proof of Theorem 30 we provide makes use of only two such triangles to enumerate all
but roughly min{s>5

0 , s>5
1 } ≤ s>5/2 lengths.
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Chapter 4

Conclusion

In the course of research done for this thesis, we were met with several open problems (some
of them new) as compelling avenues for follow-up research. We mention some of them here.

Observe that the bound in the Conjecture 1 about minimum balanced bipartitions im-
proves on the more general tight bound obtained by Fan, Xu, Yu and Zhou in [16] by a factor
of roughly 3

2 . This prompted us to think whether it is possible to refine the latter based on
the (orientable) genus of the graph. We pose this possibility as the following question.

Question 47. Given a graph G on n vertices and of (orientable) genus g, does there exist
a function f(n, g) linear in n such that a minimum balanced bipartition of G has size at
most f(n, g)?

A possible first step could be to obtain/prove a tight bound for toroidal triangulations,
possibly by trying to extend the proof for the planar case to the torus. That together with
the planar bound might be indicative of what the said function f might look like.

Concerning pancyclicity, there are the conjectures pertaining to 4-connected planar
graphs that are still unsettled − a complete cycle spectrum in 4-connected planar graphs
containing a 4-cycle, and an almost complete cycle spectrum in the ones not containing any
4-cycles (with 4 being the only length missing). However, in light of the proof technique
used, the following questions might make worthy intermediate steps.

Question 48. Given a 4-connected planar graph G on n vertices, there exist in G at least
λn + c cycles of pairwise distinct lengths containing any given edge e of G, where c is a
constant. We know from Theorems 28 and 29 that λ ∈ [1

2 , 2
3 ]. We conjecture that λ = 2

3 .

Question 49. Given a 2-connected plane outerplanar graph on n vertices with exactly n
2

chords, there exist in G at least n
2 + c cycles of pairwise distinct lengths (where c is a

constant) such that these lengths form a continuous interval in 3, ..., n

Additionally, there are some other sufficient conditions for Hamiltonicity that are close
to the problem tackled in this thesis and thus make reasonable candidates to be inspected
for pancyclicity. We mention one which concerns a popular subclass of planar graphs below.
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Question 50. Every 3-connected planar cubic graph with faces of size at most 6 is Hamil-
tonian ([23]). Is such a graph also pancyclic?

The class of graphs in Question 50 refers to comprises of Barnette-Goodey graphs and con-
tains as a subclass the more popular Fullerene graphs. Fullerene graphs have long been con-
jectured to be Hamiltonian and [23] verifies that as a special case. In light of Bondy’s meta-
conjecture, one could either examine either Fullerene graphs or Barnette-Goodey graphs for
pancyclicity, or try to replace the computer-assisted proof in [23] with a combinatorial (and
possibly simpler/shorter) one.

Then there are some other not-so-close sufficient conditions for Hamiltonicity that could
be verified and/or checked for implying pancyclicity. We conclude this thesis by stating two
of these below.

Theorem 51 (Kawarabayashi, Ozeki, [24]). Every 5-connected toroidal graph is Hamiltonian-
connected.

Conjecture 52 (Thomassen, [41]). Every 4-connected line graph is Hamiltonian.
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