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Abstract 

With the emergence of Industry 4.0 concepts, including digital twins, traditional 

Supervisory Control and Data Acquisition (SCADA) systems impose significant 

restrictions on the interoperable communication between machines that use various 

Industrial Internet-of-Things (IIoT) devices. Also, recent Internet-of-Things (IoT) 

advancements led to the development of the analogous Operator 4.0 concept, which 

focuses on augmenting workers with technology (e.g., using wearable IoT devices that 

can monitor workers’ health conditions) and constructing “human” digital twins. This 

thesis presents a new smart factory concept that consists of integrated and interoperable 

manufacturing machine and human (i.e., worker) digital twin units. First, a new data 

exchange architecture based on Open Platform Communication protocol Unified 

Architecture (OPC UA) was developed and tested to create a digital twin of an IIoT 

device and monitor real-time sensor data. Second, the architecture further incorporated 

a newly developed and tested mental fatigue detection technique based on wearable 

photoplethysmography (PPG) sensor readings to create a human’s digital twin unit that 

monitors a worker’s mental fatigue to mitigate potential safety risks. Such an integration 

facilitates real-time monitoring of both machines’ processing parameters and factory 

workers’ physiological parameters simultaneously. Experimental results demonstrate the 

proof-of-concept of the new data exchange architecture in creating interoperable and 

non-restricted machine and human digital twin units for smart factories. 

  

Keywords:  Industry 4.0; Smart Factory; Digital Twin; Internet of Things; Mental 

Fatigue; Photoplethysmography; Heart Rate Variability; Machine Learning 
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Chapter 1.  
 
Introduction 

Cyber-physical system(s) (CPS) relate to integrated hardware and software 

components that interact with physical processes in real-time [1]. Physical systems that 

require monitoring, coordination, control, and data integration, managed and connected 

by a computing unit, can be referred to as CPS [2]. Moreover, for a system to be 

classified as a true CPS, every possible physical component must have an embedded 

controlling component for monitoring and control purposes, if applicable, alongside a 

central control unit [1]. Wang et al. [3] discussed early applications of CPS such as asset 

identification and tracking by equipping physical objects and components with 

identification devices such as Radio Frequency Identification (RFID) tags. The concept 

of CPS has significantly evolved to connect subsystems that include sensors, actuators, 

and process controllers. This communication between system components within a CPS 

can facilitate real-time system monitoring, fault detection, and troubleshooting. Currently, 

smart manufacturing is considered one of the main applications of CPS technologies [1]. 

Theoretically, Internet of Things (IoT) technologies allow any object to 

communicate with other objects, ”things,” regardless of their location or distance [4]. 

Researchers have investigated methods to incorporate IoT technologies to improve 

production and construct CPS. Dafflon et al. [5] discussed the integration of IoT 

technologies within production plants as one of the applications of Industry 4.0 and 

Industrial Internet of Things (IIoT). Industry 4.0, referred to as the fourth industrial 

revolution, involves digital transformation of factories. A CPS in the context of Industry 

4.0 consists of three elements: (i) physical component, (ii) cyber component, and (iii) 

human component [5]. 

The physical components of CPS, such as robots, material shaping and handling 

machines controlled by industrial controllers that communicate using Machine-to-

Machine (M2M) protocols, are considered a vital component of CPS [6]. This 

interconnectivity allows machine coordination and decouples decision making from the 

central control unit, while complying with the production objectives [7]. Achieving a 

completely decentralized autonomous factory decreases production costs and allows for 
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more customized manufacturing orders [8]. It can significantly decrease troubleshooting 

and maintenance time.  

The cyber component of CPS includes virtualization. It can be defined as forming 

a virtual environment for monitoring, controlling, and simulating physical parts of a CPS 

[7]. A virtual replica that reflects the status, performs simulations, and analyzes the 

behaviour of its physical counterpart is referred to as a digital twin [9], [10]. Zawadzki 

and Żywicki [11] discussed virtual commissioning, which is the simulation of a digital twin 

of a production line or individual machines to be configured, tested, and analyzed 

virtually prior to physical deployment. Additionally, a digital twin can be used to facilitate 

training of machine operators through complex operations, troubleshooting, and 

maintenance. Faults, internal components, and servicing can be interactively displayed 

via augmented reality (AR) or virtual reality (VR). The advancements of human-machine 

interaction in both the cyber and physical world led to the development of Human Cyber-

Physical System(s) (HCPS).  

 HCPS can be defined as systems designed to fit and improve a human or 

worker’s abilities (physical and cognitive) to perform tasks and interact with machines 

[12]. As workers interact with physical machines within a CPS, human-physical and 

human-cyber interactions are the observed types of interactions [13]. The concept of 

Operator 4.0 emerged following the main objective of HCPS, which is enhancing 

operators’ abilities using HCPS to perform tasks.  

In the context of Operator 4.0, human-physical interaction within an HCPS, 

Ansari et al. [14] developed a framework that allows a robot arm to mimic and learn from 

the movement of its operator without pre-programming. Bandala et al. [15] developed a 

teleoperation technique that allows operators to remote-control robots using joysticks 

and remote vision systems. Deng et al. [16] developed a facial expression detection 

algorithm to allow robots to understand its operators’ emotions and health state. As a 

result, emergency protocols can be initiated by announcing alarms to ensure the safety 

of operators in high-risk situations. 

  

 On the Operator 4.0 human-cyber side and, as previously mentioned, AR and 

VR, are emerging technologies that play a vital role in providing operators with an 
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immersive experience to assist in performing complex tasks and mitigate physical risks 

[17]. In this context, Longo et al. [18] developed SOPHOS-MS, an application that 

facilitates operators’ CNC training in a virtual environment. The training involved 

pneumatic and hydraulic system maintenance, an operator panel, tool changing, as well 

as lubrication and coolant systems. A pair of Samsung Gear VR glasses was used for 

visualization alongside Myo Armbands for gesture recognition. In addition, a monocular 

glass with motion capture armbands was utilized in the AR version of SOPHOS-MS. 

Salah et al. [19] conducted an experiment using two groups trained on an Industry 4.0-

reconfigurable manufacturing system. The first group was trained using VR while the 

second received traditional classroom training. The VR group results showed a 

significant improvement in terms of completion time and fewer errors.  

 Another aspect of interest of Operator 4.0 human-cyber interaction is the 

machine operator’s health and safety. Advancements in wearable IoT devices enabled 

health monitoring of machine operators in real-time. Vital signs and activities using 

wearable devices could be measured in addition to position tracking to report incident 

locations in remote or low visibility environments [13], [20]. In this context, Sun et al. [17] 

developed a framework that consisted of multiple layers for modeling and monitoring the 

health conditions of operators, a crane operator in their case. In the sensing layer, 

sensors were designed to monitor the operator’s work environment (e.g., temperature, 

humidity, and noise). Also, an off-the-shelf smart band from HBand was utilized to 

monitor the operator’s heart rate (HR), blood pressure, and steps. Ultra-wide band 

(UWB) anchors and tags were installed to monitor the crane’s exact location and 

movements within a work site. On the integration side, an Android application was 

developed from scratch to integrate and interpret dissimilar data structures generated by 

the sensors. The experimental setup only showed efficacy in monitoring different 

sensors and generating reports from stored data, not in using the data. 

In HCPSs in the context of Industry 4.0, a smart factory consists of connected 

and pervasive systems that provide inputs to the digital twin of the factory floor, which 

can monitor both manufacturing processes and factory floor safety. This thesis explores 

some of the key HCPS concepts within Industry 4.0 by proposing a new data exchange 

architecture and integrating it with fatigue detection to improve factory worker safety as 

part of the Operator 4.0 concept in a smart factory.  
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In our smart factory concept, all machines as well as workers are considered 

physical entities in compliance with the HCPS concept. Every physical entity can be 

represented by a digital twin within the smart factory. For example, a machine digital twin 

simulates, represents, controls, and stores a machine’s parameters such as running 

status and speed in real-time [21]. Hence, our smart factory concept consists of two 

elements: (i) machines’ digital twin units and (ii) workers’ digital twin units. Both digital 

twin elements communicate without any restrictions (i.e., a machine can be connected to 

its operator through a communication channel). Traditionally, on the machine side, 

Supervisory Control and Data Acquisition (SCADA) systems were only capable of 

transferring data between local and vendor-specific equipment, and certain compatible 

hardware and software. Also, SCADA systems restricted the integration of wearable IoT 

devices that are controlled by embedded controllers. Thus, traditional SCADA systems 

lack interoperable machine-to-machine (M2M) communication, which limits the full 

capabilities of digital twins in Industry 4.0, where all digital twin units are connected with 

each other regardless of their manufacturer [10]. With the recent advancements of IIoT 

concepts that focus on interoperable M2M communication and connection to the 

Internet, effective digital twin units can be constructed [6]. 

As mentioned earlier, the utilization of IoT devices in the area of monitoring the 

health conditions of workers within an HCPS as a part of the Operator 4.0 concept. One 

of the key elements of the Operator 4.0 concept is extracting and uploading various 

physiological and pathological signals to the Internet or a cloud service in real-time. For 

example, and similar to Sun et al. [17], Shaikh and Chitre [22] developed a health 

monitoring system using a Raspberry Pi, which is their IoT device of choice that reports 

to the Internet, connected to various physiological sensors for temperature, 

electrocardiography (ECG), HR, and blood pressure. Similarly, Kumar and Rajasekaran 

[23] connected similar physiological sensors (for temperature, respiration rate, and HR) 

with a Raspberry Pi that uploads the patient’s data to a website, which can be accessed 

by the healthcare provider. In these cases, a digital twin unit for an individual that 

monitors, stores, and provides data-driven health-related suggestions is formed. 

Although the machine and human digital twin concepts and technologies provide 

analogous data structures for different objects (i.e., machines’ digital twins in Industry 

4.0 and humans’ digital twins in Operator 4.0), an integration between these two 

concepts has not been explored previously. Such an integration facilitates real time 
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monitoring of both machines’ processing parameters and factory workers’ physiological 

parameters simultaneously. Therefore, when an alarm is triggered to a unit within the 

smart factory based on monitored parameters of either machines or humans, associated 

units can be notified so that an action can be taken. For example, a worker’s digital twin 

unit that predicts and reports potential health issues to other digital twin units as well as 

the supervisory system can mitigate potential safety risks [24], [25]. 

In this thesis, our main health condition of interest as part of the Operator 4.0 and 

Industry 4.0 setting is mental fatigue, considering its adverse effects on workers’ 

productivity and safety that are further discussed in Chapter 1.1.2. Recalling our overall 

smart factory concept introduced above, a wearable IoT device worn by a worker forms 

a worker’s digital twin unit that reports their current fatigue state to the main shop floor 

digital twin. Consequently, the shop floor digital twin may force the corresponding 

physical machine to stop if there is an increased risk of injury due to the worker’s 

fatigued condition. Herein, the integration of both digital twin unit types, machine and 

human digital twins, was enabled using the new data exchange architecture mentioned 

earlier. Furthermore, a novel fatigue detection method was developed, tested, and 

incorporated into the architecture as a proof-of-concept demonstration. 

Chapter 1.1.1 provides a background about the Industry 4.0 concept, evolution, 

and IoT enabled wearable devices. Chapter 1.1.2 provides a background about fatigue 

as the health condition of interest. Chapter 1.2 lists the main objectives of this thesis. 

Chapter 1.3 summarizes the contributions of this work. Finally, Chapter 1.4 lists the 

thesis overview and structure. 

1.1. Background 

Our work presented in Chapter 1.1.1, Chapter 2, and part of Chapter 4 was 

presented and published in IEEE Xplore and can be found in [26].  

1.1.1. SCADA Systems Architecture 

 SCADA was developed to monitor and control plant states from a centralized 

location in real time. This enabled the automation of industrial processes, as well as the 

development of simplified digital representations of those processes for visualizing 
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system states. Židek et al. [27] suggested that all manufacturing systems, including their 

physical components and products, can be digitalized in theory. In this context, as a 

digital bridge between the plant floor and the higher-level systems, new SCADA systems 

have been researched over the years in terms of different bridging connectivity 

architectures [28].  

Although SCADA systems have been used intensively in the manufacturing 

sector, SCADA concepts and implementations still have major drawbacks. For example, 

traditional SCADA systems lack interoperability that allows different equipment provided 

by various vendors to communicate with each other within the shop floor. Therefore, 

conventional SCADA systems are not capable of performing complex tasks beyond 

simple process monitoring and control. In addition, larger SCADA networks that include 

remote devices are more vulnerable to cyber-attacks and require more cybersecurity 

attention [28]. Another major drawback is the significant capital that needs to be invested 

to purchase and setup the SCADA equipment [29].  

In the context of SCADA systems equipment communication, Ethernet 

technology lacks real-time communication which led to the development of industrial 

Ethernet. Moreover, industrial Ethernet was also proven incompatible with the traditional 

Ethernet standard in numerous cases [30]. Communication standards such as ProfiNET, 

POWERLINK, and EtherCAT are a few standards based on the industrial Ethernet 

concept. ProfiNET has layers analogous to the ISO/OSI model, but also lacks the 

interoperability between devices supporting different industrial Ethernet protocols. This 

major drawback has driven the development of the Open Platform Communication 

(OPC). 

The OPC concept was developed by Microsoft in early 90’s. In 1995, Fisher-

Rosemount, Intellution, Opto 22, and Rockwell Software agreed to start developing a 

standard for data transformation and access based on the OPC, and a year after OPC 

Data Acquisition (DA) version 1.0 was released. A continued development of the new 

protocol followed after that, including the conversion of some of the specifications into 

web-based services and the emergence of the Internet in the late 90’s. In 2006, Open 

Platform Communication Unified Architecture (OPC UA) was introduced and became 

available for all manufacturers. In addition, certification programs and test labs were 
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introduced along with the release. OPC UA now supports connectivity for many different 

platforms including robotics and machine learning. 

To begin with, OPC UA does not necessarily need hardwired Ethernet 

infrastructure contrarily to its industrial Ethernet counterparts. Also, OPC UA is based on 

a Server-Client, Publisher/Subscriber (Pub/Sub) model. This allows for more variability in 

terms of communication between field devices by implementing various network 

architectures as explained in [31]. Also, OPC UA offers the flexibility of being 

incorporated into existing software packages written in a variety of programming 

languages such as C/C++, .NET, Java, and Python without the need for external 

hardware components. In this work, the utilisation of OPC UA communication protocol is 

proposed for the development of our digital twin concept/architecture for smart factories.  

1.1.2. Fatigue Detection 

Fatigue can be described as the periods during which workers’ performance and 

productivity decline due to extended shifts [32], [33]. Cerebrovascular/cardiovascular 

diseases (CVDs) as well as mental fatigue resulting from extreme work conditions are 

shown to be highly associated with workers’ health complications [34]–[36]. Mental (or 

cognitive) fatigue is a state that describes the person’s feeling of tiredness, lack of 

energy, and disrupted ability to perform mental tasks [37], [38]. According to Sarkar and 

Parnin’s survey [39] on 311 software developers, office workers such as programmers 

who experience mental fatigue have lower productivity and a higher risk of code 

malfunctions, which can lead to dangerous conditions (e.g., autopilot or navigation 

system errors). Over the long term, mental fatigue was shown to contribute to 

aggravation of symptoms in certain illnesses or, in extreme cases, cause death. The 

correlation between work-induced stress, mental fatigue, and diseases including CVDs, 

diabetes, and prostate cancer was presented in [40]–[43].  

Researchers have developed different methods to quantify the severity of mental 

fatigue. These methods include the usage of different physiological sensing modalities 

such as electroencephalogram (EEG) [44], ECG [45], HR, and blood oxygen saturation 

level (SpO2) [46]. In this work, a new mental fatigue detection method is proposed 

based on heart rate variability (HRV) features solely extracted from 

photoplethysmography (PPG) data. 
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1.2. Objectives 

The first primary objective of this thesis was to develop a generic smart factory 

architecture that utilizes OPC UA as the main communication protocol. As mentioned in 

the literature, digital twins include many aspects and can be addressed using various 

techniques and platforms. However, this thesis aims to integrate embedded systems 

devices in the generic architecture and incorporate them using the OPC UA protocol. 

Combining embedded device data and traditional industrial controllers enhances smart 

factory features and capabilities. For example, the implementation of embedded sensors 

that can be found in wearable devices enables a continuous monitoring of workers’ 

vitals. Hence, proper actions can be taken in situations of a medical emergency or 

increased safety risks. 

The second primary objective of this thesis was to show the extent to which 

mental fatigue can be detected using PPG sensors, as the target application of the 

proposed generic OPC UA-based Industry 4.0 framework for incorporating embedded 

wearable devices with industrial processes. Wearable sensors such as a PPG monitor 

connected to an embedded controller can enable fatigue detection by extracting HRV 

features from PPG readings. Statistically selected HRV features were labelled and then 

passed to the machine learning models to train them. Trained machine learning models 

were then used to detect the current fatigue status of a human participant, and the class 

detected was then passed from an OPC UA server to a personal computer (PC) with an 

OPC UA client. Such a connection would allow workers’ fatigue status to be monitored 

continuously in real-time, and alarms would be raised if fatigue is detected for proactive 

health and safety assessment in smart factories.  

1.3. Contributions 

The first main contribution of this thesis is the proposed architecture that 

facilitates the transformation of legacy control systems to revolutionized ones. The 

proposed architecture requires minimal to no replacement of the existing operating 

legacy controllers. Hence, faster upgrade periods are achieved. The architecture was 

designed to be generic and non-exclusive to any specific application. To achieve that, 

open communication protocols as well as open software platforms were used. Also, the 

architecture allows for independent yet connected industrial processes, so system failure 
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or security breach damages can be mitigated. The architecture also enhances the 

integration of embedded devices, industrial controllers, cloud computation, and portable 

smart devices [26]. 

The second contribution is the development and validation of a mental fatigue 

detection system using a wearable PPG sensor. The proposed technique utilized the 

HRV features extracted from a commercial PPG sensor reading. The average HR for 

each participant was found to be comparable to its counterpart collected from an FDA-

approved PPG sensor which validated sensor accuracy. In addition, a moving window 

algorithm was developed to automatically detect mental fatigue. Mental fatigue detection 

was performed using a Raspberry Pi controller with an OPC UA server, which were 

integrated with trained machine learning models and the moving window, which allowed 

for continuous monitoring. This study was submitted to the IEEE Access journal and is 

under review at the time this thesis was submitted. 

1.4. Thesis Overview 

This thesis is divided into the following four chapters: 1) Introduction, 2) 

Client/gateway Architecture, 3) Mental Fatigue Detection, and 4) Conclusions and Future 

Work. In Chapter 2, related literature about previously developed digital twin 

frameworks, as well as about the proposed architecture, a case study, and their results 

are presented. Chapter 3 includes a literature review on mental fatigue detection 

technologies as well as the study materials, design, results, discussion, and the 

connection with the architecture proposed in Chapter 2. Chapter 4 concludes the thesis 

and provides recommendations for future work related to the proposed architecture, as 

well as mental fatigue detection techniques.  
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Chapter 2.  
 
Client/Gateway-Based Architecture 

2.1. Literature Review 

A digital twin is the evolution of virtual representation to accurately reflect the 

states of its physical equivalent [47]. A digital twin can be monitoring states of sensors 

and actuators installed on the physical system. The collected data is gathered on a local 

controller (e.g., PLC, Microcontroller, etc.). Then, the data can be forwarded to the digital 

twin via a multitude of communication protocols including OPC UA. The collected data 

can be stored and processed locally or forwarded to the cloud for further processing. 

Cloud platforms can facilitate further storage, big data processing, data mining, 

visualization, and applications of machine learning. 

Leitão et al. [48] predicted that the OPC UA protocol will standardize multi-agent 

communication and solve multi-vendor compatibility challenges. They claimed that the 

protocol has the potential to be one of the key standards of Industry 4.0. OPC UA solves 

the data accessibility challenge between multi-vendor industrial controllers and their 

compatibility with various embedded devices since data and resources are accessible in 

the address space. Chen et al. [10] successfully used OPC UA to connect all compatible 

multi-vendor network nodes and to facilitate integration, troubleshooting, fault detection, 

and automatic correction. 

Since the release of the OPC UA protocol, researchers have applied various 

architecture designs in different applications. Fernbach et al. [49] introduced a multi-

agent architecture as a case study consisting of two layers of OPC UA servers. The first 

layer consisted of two portable OPC UA servers installed in different locations to monitor 

variables, and both servers reported data to an aggregating OPC UA cross-domain 

server in the second layer through a wireless area network (WAN). Haskamp et al. [50] 

presented a different architecture to upgrade traditional programmable logic controllers 

(PLCs)  to be compatible with Industry 4.0 standards using the OPC UA protocol. Four 

PLCs were connected to dataFEED OPC Suite software, which acted as an OPC UA 

server. Variables were then published to Microsoft Azure cloud service. The data stored 



11 

on the cloud could then be fetched and displayed on a custom-designed graphical user 

interface (GUI).  

Melo et al. [51] provided an architecture that complies with RAMI 4.0 

architecture, and a case study on a FESTO MPS (Modular Production System) sorting 

station. The traditional Siemens PLC was replaced by a Raspberry Pi in the context of 

the physical controller, and TIA Portal with OpenPLC for the software. OpenPLC is an 

open-source development software that mimics PLC ladder diagrams, and it is mainly 

used for embedded controllers that employ C or Python, and simulation software. They 

ran both the OPC UA server and OpenPLC program on the Raspberry Pi and connected 

four OPC UA clients to the controller via Wi-Fi. The main drawback of such a system is 

the restrictions imposed by the controller on application flexibility. The migration process 

was also affected since a special external UniPi unit, which is an industrial IO connection 

board, was used for its compatibility with OpenPLC. Also, a dedicated application 

programming interface (API) was developed from scratch for RFID devices and added to 

the OpenPLC project since it was not supported by the software. 

Tao and Zhang [52] presented an architecture for a virtual shop floor and used a 

Computer Numerical Control (CNC) machine to validate their model. They proposed a 

digital twin of the CNC machine using a computer aided design (CAD) model with added 

physical properties (e.g., cutting force, torque, and wear) and loads in order to predict 

faulty behaviors. Zhong et al. [53] developed an RFID-based system to create a digital 

twin to monitor and manage Keda Industrial Group’s mass-communication production 

shop floor. 

Mizuya et al. [54] developed two approaches to build a digital twin of a Selective 

Compliance Assembly Robot Arm (SCARA). The first approach was to connect the robot 

to a Raspberry Pi, which had an OPC UA client with an MQTT publisher running on it. 

Meanwhile, Raspberry Pi was connected to a PC, which had an OPC UA server with an 

MQTT subscriber running on it. The second approach ran an OPC UA server on a PLC 

instead of a traditional PLC, while the MQTT subscriber remained in place but on a 

separate PC. Both approaches had two clients connected to the same server. However, 

a PLC in the second approach was used to control other manufacturing processes in 

addition to robot control.  
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Schleipen [55] established an OPC UA server-client connection to monitor and 

control a virtual industrial robot. They used a UA Sample server and a UA Sample client 

to monitor data and mimic the connection. On the visualization side, they used ProVis 

Visu software with 2D representation of a robot arm to represent the current positions 

and angles of the robot joints. In the context of digital twin creation using an online 

platform, Caiza et al. [56] introduced an architecture where they used AJAX, which is an 

HMI web programming platform, and ran it on a laptop as an OPC UA client. An OPC 

UA server was running on a Raspberry Pi and was connected to the first client. Siemens 

S7-1200 was connected to the server as the second client and was able to read and 

write tags of interest from/to the server. 

Lastly, Ala-Laurinaho et al. [57] evaluated the feasibility of creating a digital twin 

on an online API called DataLink. They ran an OPC UA server on a Raspberry Pi to be 

able to control the overhead crane. The Raspberry Pi-API gateway was connected, 

which was GraphQL API in their case, to the crane via a switch. Although they 

implemented Raspberry Pi and connected it to the crane PLC successfully, the quality of 

the crane network was poor with a delayed response, according to them. The latency 

increased significantly as soon as multiple devices were connected to the gateway or 

large quantities of data were requested at the same time. 

Langmann and Stiller [58] proposed an architecture for a server-based mixed 

mode (SMM) of PLC operations where runtime operations were taking place on the 

cloud to take advantage of server stability and to enable system monitoring by portable 

devices. Since their architecture removed physical controllers, which are used by the 

majority of production lines, process control algorithms have to be re-written on the cloud 

via an IoT or IIoT platform. In addition to the fact that this might delay the migration 

process from the physical controllers to the new system, since there is no online 

debugger to test and accurately simulate the code before operation, coding and runtime 

operations on the cloud are more susceptible to cyber-attacks. according to them. They 

employed the Node-Red platform, which has relatively fewer options for secure 

communication, data visualization, and connection to different platforms such as 

smartphones and tablets. 

Some challenges were observed and reported in the literature. Those challenges 

include security concerns associated with internet cloud services [58], the lack of 
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integration of embedded controllers [21], [50], [55], lack of interoperability as various 

equipment that did not support OPC UA were used [21], [53], a slow upgrade process 

from the re-development and reconfiguration of control devices [51], [58], case specific 

frameworks that were only applicable to certain applications [10], [21], and complex 

frameworks as various communication protocols were used [54].  

For example, Langmann and Stillar totally removed the traditional PLC and the 

control code had to be re-written to be executed on the cloud, which delayed the 

migration process due to compatibility issues and imposed various security concerns 

according to them. On the other side, Melo et al. [34] replaced the traditional PLC with a 

Raspberry Pi with OPC UA capabilities enabled. However, as the Raspberry Pi was not 

originally designed to act as an alternative to industrial controllers, external adapters and 

physical equipment, alongside developed software libraries, were added to the 

Raspberry Pi. As a result, the Raspberry Pi CPU utilization and temperature were 

significant and needed a heat sink according to them. Therefore, the Raspberry Pi was 

overloaded and was not able to perform any additional tasks. 

Ala-Laurinaho et al. [57] and Mizuya et al. [54] connected embedded controllers 

with industrial controllers within the same network using OPC UA. However, they 

reported a significant delay in response time as the number of devices increased within 

their networks. Schleipen [55], Chen et al. [10], and Haskamp et al. [50] reported a lower 

latency in communication, but embedded controllers were not connected within their 

frameworks, which can significantly affect the delay as more devices are added to the 

network. As the latency increases, the real time monitoring and control aspect of the 

digital twin cannot be achieved, which results in an inaccurate representation of the 

physical counterpart. 
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2.2. The Proposed Architecture 

Our proposed client/gateway-based architecture is achieved by connecting all 

OPC UA servers to a single client/gateway device. In addition to the gateway, every other 

device is considered a server node (i.e., acts as an OPC UA server). The architecture 

generally consists of server, gateway, cloud service, and end user nodes as depicted in 

Figure 2.1. 

 

 

2.2.1. Client/Gateway Node 

The client/gateway node, shown in the center of Figure 2.1, acts as the point of 

intersection between three dissimilar but intersecting components: industrial controllers, 

embedded system controllers, and cloud services. One of the major benefits that the 

gateway offers lies in its capability of performing complex tasks and functions locally. 

The gateway in our architecture is a high-performance computer, Local Area Network 

(LAN) connectivity, and access to the cloud. As a result, the client/gateway can support 

Figure 2.1.  OPC UA client/gateway-based architecture in a smart factory. 
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multiple digital twin platforms simultaneously. It can exchange data with common cloud 

platforms. As illustrated in Figure 2.1, the gateway reads data shared by OPC UA server 

nodes within the smart factory. Critical data processing is executed locally, before 

decisions are exchanged with other nodes, depending on the application. Further data 

processing performed by the gateway can also contribute to decreasing CPU utilization 

of servers. 

2.2.2. Server Nodes 

Server nodes are the controllers involved in different industrial processes. The 

controllers can be either industrial, such as of PLCs, or embedded, such as Raspberry 

Pi. Running an OPC UA server on every controller within the architecture has the 

following advantages.  

• Data accessibility modes are set on the server end and restrictions on 

publishing specific data can be set. 

• Prioritization of servers collecting critical data can be achieved by 

adjusting their publishing rate. Hence, received data can be scheduled 

accordingly. 

• Redundancy of the system as failure of one server will not result in a full 

system failure. Failure of the gateway will result in disconnection from the 

cloud. However, individual server nodes can maintain local system control 

and status reporting.  

• Replacement or reprogramming of a traditional PLC is not required for all 

devices with OPC UA compatibility. 

• Process operations can be handled locally by the PLC instead of an online 

platform or an embedded system device such as Raspberry Pi. 

• It enables cross-platform, multi-vendor integration between industrial and 

embedded controllers. 
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2.2.3. Cloud Services  

Cloud services such as Microsoft Azure and Amazon Web Services (AWS) 

enable designers to utilize the full range of available functionalities, including machine 

learning algorithms, data storage, monitoring, and visualization. Cloud computing can 

also serve more sophisticated tasks such as coordinating full factory-level digital twins. A 

few common examples of cloud services, both over Internet and intranet, are illustrated 

at the top of Figure 2.1. 

2.2.4.  End-User Nodes 

End-user nodes can include user-specific devices with access to the cloud. End 

users can access cloud services using available consumer electronics with network 

access and common web browsers. Specific application data can be exchanged with the 

cloud by accessing a secure webpage.  Gateway users can be granted distinct levels of 

authorization depending on their respective roles in the process (e.g., machine 

operators, maintenance engineers, sales and marketing, data analysts, etc.). Utilizing 

modern consumer devices (e.g., smartphones and tablets) increases portability, and 

these can be easily upgraded without downtime on the factory floor. The use of these 

devices can augment the use of a stationary Human-Machine Interface (HMI) usually 

installed in close proximity to industrial equipment. 

2.3. Application Case Study 

2.3.1. Case Study: FESTO MPS 

A FESTO MPS processing station, shown in Figure 2.2, was chosen to 

demonstrate the architecture and act as a proof-of-concept. A rotary indexing table 

delivers the disk-shaped part to multiple machining modules. The station has multiple 

inputs and outputs consisting of the rotary indexing table module, an electrical ejector 

solenoid, a geared DC motor, a testing (proofing) solenoid, and a drilling module with 

upper and lower limit switches. A Siemens S7-1516 was used to control process 

parameters. The PLC is connected to the gateway via Ethernet. The focus of the digital 

twin was solely visualization of the current position and angle of the rotating table that 

would reflect the state of the station. The primary rationale behind choosing the 
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processing station was the relatively fast rotary motion. The proposed architecture’s 

performance can then be evaluated by seeing if the digital twin can reliably reflect the 

physical state of the system in real time. 

 

2.3.2. Case Study: Architecture 

In the proposed architecture, a PC (e.g., laptop) acts as the gateway, while a 

PLC and an embedded system act as OPC UA servers. The embedded system consists 

of an Arduino Uno microcontroller board connected to a Raspberry-Pi single board 

computer. The Arduino Uno measures distance using an ultrasonic sensor and voltage 

through a potentiometer. The data is then transferred to the Raspberry Pi using the 

Universal Asynchronous Receiver Transmitter (UART) communication protocol. The 

Raspberry Pi serves as an OPC UA server and reports data to the client/gateway. The 

reported data from both servers is then merged and transferred to the gateway on the 

same LAN. The gateway computer has an HMI/SCADA platform (Ignition by Inductive 

Automation). Ignition Gateway operates as an OPC UA client and is connected to the 

Figure 2.2. FESTO MPS Processing Station. 
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PLC and Raspberry Pi servers. The Ignition Designer module is then utilized to store 

data and create SCADA and HMI screens. Finally, two portable end-user devices, a 

smartphone and a tablet, are connected to the Ignition Designer module to monitor and 

control the data in real time. Figure 2.3 shows the case study architecture with all 

connections.  

2.3.3.  Case Study: Server Nodes 

The PLC OPC UA server addresses can be modified in relation to the existing 

PLC IP address. Originally, only the PLC was running the station’s control program. 

Given correct access credentials, the gateway node was able to access all used 

input/output and memory tags on the server PLC. Properties of tags of interest can be 

modified and set to read and write or to read-only depending on the application. The 

sampling rate is the rate at which the OPC UA server polls the tag values from the 

controller, while the publishing rate is the rate at which the server publishes the tag 

values to all connected clients. The sampling rate was set to the shortest supported 

sampling period of 100 ms (i.e., 10 Hz), while the publishing rate was set to 200 ms (i.e., 

5 Hz).  

Figure 2.3.  Case study architecture with Raspberry Pi and Siemens PLC 
running OPC UA servers. 
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On the embedded system server node, the communication between the 

Raspberry Pi and Arduino Uno was done using UART at 9600 bits/s. The time-stamped 

sensor readings (distance and input voltage) were added to the same address space. A 

method similar to the one used by Melo et al. [32] was used to evaluate latency and 

CPU utilization. We chose to test an extreme scenario by connecting multiple OPC UA 

clients to the same server. Adding more clients will significantly increase the CPU 

utilization, as shown by Melo et al. [32].  Hence, portable devices were connected as 

clients to the server over a Wi-Fi network. A new OPC UA client was connected every 2 

minutes over a total period of 6 minutes. After that, the Raspberry Pi CPU utilization, 

temperature, and latency were measured over the test period. A separate application to 

capture timestamps of the PLC and the Raspberry Pi was employed to evaluate the 

latency. Latency was calculated by subtracting timestamps at which the tag value 

changed at the source (i.e., Raspberry Pi) and the timestamp of the corresponding tag 

on the PLC end after synchronizing both system clocks. 

2.3.4. Case Study: Gateway and Users Nodes  

As mentioned above, a laptop running an OPC UA client acted as the gateway 

node. The gateway node was configured to facilitate secure data communication 

between servers and control user administrative privileges. Ideally, the gateway can 

communicate with cloud services and then to end users. In this research, the connection 

between the gateway and end users was done over intranet as a proof-of-concept.  

A mobile application (Ignition Perspective) was installed on a smart phone to 

emulate an end user. Figure 2.4 illustrates the Ignition Perspective screen on the 

portable device. The HMI design was created using Ignition Designer and was only 

designed for real time visualization of the Processing Station and the Raspberry Pi 

readings, (i.e., no commands were sent from the screen to either device). The gateway 

polling rate was set to 50 ms (20 Hz), a sufficient rate to monitor the station in real time.  

The data flow from portable devices to controllers is as follows: (1) when an 

interaction with the Ignition Perspective screen occurs, a change is reported to Ignition 

Designer, (2) Ignition Designer is connected to an Ignition Gateway  from which all the 

tags are polled, (3) Ignition Gateway was running on a laptop and is connected to the 

Raspberry Pi using the OPC UA communication protocol; hence data were passed to 
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the Raspberry Pi. The communication between portable devices and the gateway is 

established via a secured Wi-Fi network. The gateway can be accessed from any 

browser using the gateway’s IP address and port number. 

 

2.4. Results 

Although an OPC UA server/client communication was successfully established, 

its reliability should be tested on different devices to validate its efficacy. We performed a 

communication reliability test by connecting an additional OPC UA client API, which was 

UaExpert, to the processing station’s PLC (i.e., one of the servers). A memory tag on the 

PLC was then modified according to the ultrasonic readings from the Raspberry Pi (the 

second server). UaExpert captures the source timestamp from the Raspberry Pi and the 

corresponding memory tag timestamp from the PLC and the difference will be 

calculated. 

Figure 2.4.  Ignition Perspective SCADA screen on a portable device. 
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2.4.1. Latency Results 

 The PLC tags were updated at a rate of 4 Hz on UaExpert. This resulted in a 

maximum latency of 250 ms. OPC UA clients were connected every 2 minutes with the 

first client connected at the launch of the server. Due to the PLC server publishing 

limitations, values of tags were updated in the controller’s memory at a faster rate than 

those of the OPC UA tag subscribers. Table 2.1 shows the differences between the tags’ 

receiving and publishing times. The average difference for all readings was 0.110 ms 

with a standard deviation of 0.072 ms. The results show both consistency and scalability 

independent of the number of clients that are connected because the PLC and 

Raspberry Pi are publishing at a fixed scheduled time. As advanced data processing is 

handled by the gateway, fewer instructions will be performed by the Raspberry Pi 

allowing for faster program execution cycles. Hence, the client/gateway architecture 

contributes to decreasing the publishing rate of the server allowing for more accurate 

real-time communication. 

Table 2.1. Servers Timestamps 

 

 

 

 

 

 

 

 

 

Raspberry Pi 
Publishing 
Timestamp 

PLC Server Publishing 
Timestamp 

Difference 
(s) 

2:56:30.853 2:56:31.017 0.164 

2:59:33.708 2:59:33.767 0.059 

3:00:13.870 3:00:14.017 0.147 

3:00:56.104 3:00:56.267 0.163 

3:01:30.250 3:01:30.267 0.017 

3:01:54.424 3:01:54.517 0.093 

3:02:12.502 3:02:12.517 0.015 

3:02:48.683 3:02:48.767 0.084 

3:03:04.770 3:03:05.017  0.247 
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2.4.2. Raspberry Pi CPU Usage and Temperature 

The experimental results show a significant CPU utilization of the Raspberry Pi 

during the server launch as well as when connecting to the first client. CPU utilization 

showed a consistent increase whenever a new client connection was added to the 

server. However, the consistent utilization increase did not affect the latency as results 

show in the last sub-section. CPU temperature showed a maximum increase of 

approximately 2 ℃ above the nominal operating temperature at server launch and first 

client connection. Figure 2.5 shows the timeline for CPU utilization and temperature with 

impulses during new client connections and a consistent return to normal operating 

temperature after communication is established. Maintaining low operating temperatures 

is a consequence of the proposed architecture as operating temperatures are strongly 

correlated with CPU utilization that, in turn, is significantly reduced, since the Raspberry 

Pi is no longer tasked with high utilization processes. 

Figure 2.5.  Raspberry Pi CPU usage and temperature while in 
operation. Spikes in the CPU usage and temperature occur 
upon establishing a new connection. 
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2.4.3. Limitations 

During the configuration phase, the OPC UA server running on the PLC was 

limited by a minimum 5 Hz publishing rate. Similarly, the sampling rate was restricted to 

a minimum of 10 Hz. On the client side, the tag polling rate was set to 20 Hz. Another 

constraint was the lack of readily available visual components used to design HMI 

control screens. Ideally, 3D physical and dynamic models for the plant (i.e., the FESTO 

station) would adequately represent the digital twin. 

2.5. Summary 

In this chapter, the proposed client/gateway-based architecture was presented.  

The main contributions include showing the benefits of connecting an OPC UA Client to 

multiple servers simultaneously. As a proof-of-concept, an Arduino Uno was connected 

to a Raspberry Pi that ran an OPC UA server. On the other side of the network, a 

Siemens S7-1516 PLC also ran an OPC UA server. Both OPC UA servers, the 

Raspberry Pi and the Siemens PLC, were connected to the client/gateway laptop 

wirelessly (Raspberry Pi) and via an Ethernet cable (Siemens PLC). 

The designed architecture was tested such that a new client was introduced to 

the Raspberry Pi OPC UA server every two minutes. The observed CPU utilization and 

core temperature only showed a substantial rise during initialization before returning to 

nominal steady state. Other minor utilization and temperature spikes were observed 

during the addition of new OPC UA clients. 

In the next chapter mental fatigue is discussed as an application of the proposed 

Client/gateway architecture integrated with a human digital twin. Similar to the case 

study presented in this chapter, embedded sensors such as wearable HR sensors and 

microcontrollers such as Arduino Uno and Raspberry Pi were used to detect mental 

fatigue within the proposed smart factory concept.  
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Chapter 3.  
 
Mental Fatigue Detection 

3.1. Literature Review 

In this section, pertinent works on mental fatigue detection are reviewed by 

dividing them into three physiological sensing categories: EEG, ECG. and PPG. 

3.1.1. EEG 

EEG is a test that allows brain activity signals to be recorded and monitored 

using metal electrodes and a conductive medium. Conventional non-invasive EEG 

sensors typically require a low-pass filter and a signal amplifier depending on the 

application [59]. The various frequency bands of EEG data are delta (0.5-4 Hz), theta (4-

8 Hz), alpha (8-12 Hz), and beta (14-30 Hz). Changes in the power spectrum of the theta 

and alpha bands were reported to denote mental fatigue induced by a mental workload. 

For example, the power spectrum in the alpha frequency band decreased while 

performing cognitive tasks according to  [60]. Also, a significant increase in the power 

spectrum of the theta band during sustained workload was observed in [61]. 

EEG is considered the gold standard for mental fatigue detection, where EEG 

electrodes are attached to the scalp. The direct contact with the scalp allows brain 

signals to be monitored. Hence, different patterns of brain activities during rest and 

fatigue mental states can be observed. Electrodes must be placed at specific locations 

on the scalp – called brain regions – to ensure stable signals. Those regions are 

standardized as the International 10-20 System for electrode placement [62]. As an 

example, Jain et al. [63] used a helmet-based EEG system with 8 electrodes to collect 

brain signals from various regions of interest (ROIs) to detect mental fatigue. EEG 

signals were transformed into sources using advanced matrix properties to extract 

meaningful features. Trejo et al. [64] followed a similar approach to detect mental fatigue 

using EEG. In their study, a Quik-CapTM 32-electrode system and a Neuroscan 

SynampsTM  64-channel system were used to amplify brain signals. Although EEG 
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provides an accurate representation of brain activities, a few drawbacks exist including 

invasive and time-consuming installation as well as complex signal interpretation [65]. 

3.1.2. ECG 

ECG graphs represent cardiac activities through measured electrical signals. 

Small metal plates known as electrodes are attached to the patient’s skin. Electrodes 

gather signals to create the QRS complex. The QRS complex provides the essential 

information required for detecting heart rhythm and associated abnormalities [66]. Ten 

electrodes must be placed on several areas on the skin to collect electrical signals 

forming the QRS complex [67]. The variation of the electric potential in 12 directions is 

known as leads (three bipolar and nine monopolar). Bipolar leads signify electric 

potential between the right and left arms, called Lead I. Subsequently, the potential 

between the right arm and left foot is named Lead II, while the potential between the left 

arm and left foot is named Lead III. For monopolar leads, artificial reference points are 

established. These points are the left arm (aVL), the left foot (aVF), the right arm (aVR), 

and six chest electrodes, V1 to V6, with the right foot as a ground. Figure 3.1. shows the 

QRS complex, obtained with permission [68]. 

Figure 3.1. QRS complex for three consecutive 
heartbeats [48].  
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ECG has been investigated as a less complex alternative than EEG to detect 

mental fatigue. According to the literature, HRV features were used to accurately detect 

mental fatigue. HRV features consisted of time-domain and frequency-domain features 

to indicate the interference levels of the sympathetic nervous system (SNS) and 

parasympathetic nervous system (PSNS) [69]. Shaffer and Ginsberg [69] and Kim et al. 

[70] showed that PSNS and SNS regulate the heart activities at rest and under stress 

conditions, respectively. A number of features particularly strongly correlated with PSNS 

activation including the number of interval differences of successive normal-to-normal 

intervals (NNI) greater than 50 ms (NNI_50), the proportion of NNI_50 to the total NNI 

(pNNI_50), and high frequency (HF) [71].  

Huang et al. [24] showed the feasibility of mental fatigue detection using a 

wearable ECG sensor, “LaPatch” from Texas Instruments. In time-domain, the mean 

value of NNI decreased, indicating a faster HR during the mental fatigue state. In 

frequency-domain, low frequency (LF), high frequency (HF), as well as the ratio between 

them (LF/HF) all increased in the fatigue state compared to the non-fatigue (i.e., rest) 

state. The highest classification accuracy obtained was 75.5% using the k-nearest 

neighbour (KNN) machine learning model. He et al. [72] showed that mental fatigue is 

detectable from HRV features extracted by a convolutional neural network (CNN). The 

CNN deep learning algorithm was applied to a 10-second ECG reading time frame, 

which allows for a real-time detection. Tsunoda et al. [73] also demonstrated that ECG-

based HRV features could be affected by mental fatigue. ECG signals were collected 

during an Advanced Trail Making Test (ATMT) of 45 male participants. Their results 

showed an accuracy of 84.4% for detecting cognitive fatigue using the Support Vector 

Machine (SVM) algorithm.  

Based on previous works, HRV features such as mean NNI and LF/HF ratio have 

been proven as an effective and efficient ECG-based mental fatigue detection tool. 

Despite continuous improvements in the implementation and accuracy of wearable ECG 

devices [74], [75], challenges in terms of users’ comfort and relatively complex setup still 

exist as explained in [67], [76]. Those drawbacks have led to further research into the 

association between PPG and ECG in order to extract similar HRV features from PPG 

readings. 
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3.1.3. PPG 

PPG technology uses light reflection to detect changes in blood volume in the 

microvasculature. PPG sensors consist of a light emitter and a receiver that use near-

infrared light wavelength. PPG sensors are traditionally placed on a fingertip or an 

earlobe as signal amplitude is less noisy and less invasive compared to other locations 

[77]. Hence, light intensity fluctuations resulting from changes in blood volume can be 

captured by the receiver [78]. One drawback is that PPG sensors are highly influenced 

by motion-induced noises since PPG sensors use light intensity to detect blood volume 

[77], [79], [80].  

PPG sensors are increasingly widely being adopted in both research-grade and 

commercial wearable devices. In 2009, Lu et al. [78] proved that HRV features can be 

extracted using PPG and compared the results with ECG. PPG was employed in this 

study for the following reasons [81],  [82]: (i) HRV features are extractable and highly 

comparable to ECG counterparts, (ii) implementation simplicity and users’ level of 

convenience and comfort, and (iii) significantly lower cost compared to ECG devices.  

As previously discussed, PPG can be effectively used to generate HRV features 

leading to a classification result highly comparable to ECG [78]. The correlation between 

SNS and PSNS with heart rhythm patterns presented by HRV features was 

demonstrated in [69], [70]. This pilot study shows that wearable PPG sensors are 

sufficient for providing an accurate detection of mental fatigue. An experiment was 

conducted to measure mental fatigue levels of 11 volunteer participants using a PPG 

sensor. The experimental setup and protocol are discussed in the following section. 

3.2. Study Materials and Methods 

3.2.1. Participants 

In total, 11 volunteer participants were recruited for this study: 5 males and 6 

females, with a mean age of 25.8 years and a standard deviation of 3.28 years. The 

study was approved by SFU Research Ethics Board (REB), and all participants 

submitted their informed consent.  As part of the exclusion criteria, any participants who 

had recent mental or cardiac disorders were excluded from the study, similar to [24], 
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[72]. Participants who reported having overwork-related conditions were also excluded 

as transient state (between rest and fatigue) changes over time [24].  

3.2.2. Hardware and Software 

An off-the-shelf wearable PPG sensor (DFRobot Gravity) was used in this study 

as shown in Figure 3.2A. Sensor data was read using an Arduino Uno microcontroller 

board, then forwarded to a host PC. Sensor data was then stored in a text file before 

conversion to a Comma Separated Values (CSV) file. This particular PPG sensor was 

chosen for the study for the following reasons. Firstly, the sensor has built-in signal noise 

filtering. Secondly, its compact size (2824 mm) makes it convenient for subjects to 

wear with a Velcro strap. Thirdly, its reliability and usability have been shown in previous 

research studies. For instance, Liao et al. [83] used the same sensor in their experiment 

to monitor physiological sleep signals. It was also utilized to measure HRs of participants 

during intense physical activities in [84], [85]. In our study, in order to validate the 

sensor’s accuracy, a comparison against the FDA-approved wireless VitalStream 

continuous hemodynamic vital signs monitor (Caretaker Medical®, USA) was performed. 

Figure 3.3 shows a 3-second sample of the recorded PPG readings collected by the 

DFRobot sensor for a participant showing the peak detection algorithm results. 

Differences in duration between successive peaks were used to extract all HRV features 

in time and frequency-domains. 

The Psychomotor Vigilance Test (PVT) used in this study was originally 

developed by NASA to measure reaction time and the difference between rest and 

fatigue reaction times [86], [87]. In addition, an Advanced Trail Making Test (ATMT) was 

utilized as the mental workload. Mizuno et al. demonstrated that ATMT can be utilized to 

induce mental fatigue [88], [89]. The PVT and ATMT were installed as mobile 

applications on a tablet. Both tests are shown in Figure 3.2B and Figure 3.2C, 

respectively.  
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Figure 3.2. A) PPG sensor attached to the index finger, which is connected to 
the Arduino Uno. B) Advanced Trail Making Test session running on 
a commercial tablet. C) NASA Psychomotor Vigilance Test session 
with a reaction timer (in ms) shown in the bottom box. 

      

Figure 3.3. Three seconds of PPG readings with peaks detected. 
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3.2.3. Experimental Design 

The time of the experiment was chosen by participants to ensure they were in a 

rested (non-fatigued) state. The participants were asked not to consume caffeinated 

drinks, alcohol, or medication that may affect their concentration or attention level at 

least two hours before the experiment [90], [91]. At the start of the experiment, each 

participant was asked to fill in the Chalder Fatigue Scale (CFS) questionnaire [24], [92]. 

The questionnaire consisted of 14 survey items with answers on a 1-5 scale (lowest 1 

indicates least fatigue, highest 5 indicates most fatigue) as shown in Table 3.1. The CFS 

questionnaire provides a self-reported numerical indication of the participants’ fatigue 

levels. After concluding the questionnaire, PPG readings, PVT, and ATMT were 

performed. 

Next, the participants were asked to perform the PVT to measure their resting 

reaction time. Upon completion, they were asked to perform the ATMT for a duration 

between 20 and 40 minutes, depending on the time at which mental fatigue state was 

self-reported by the participants. After that, PPG readings were again collected for an 

additional 10 minutes before repeating the PVT to measure their reaction time in fatigue 

state. At the conclusion of the experiment, each participant was asked to complete the 

CFS questionnaire again for comparison with the rest state results. The timeline of the 

experiment is illustrated in Figure 3.4. The participants performed the experiment in a 

sitting position with the chair adjusted to their comfort level. 

 

Figure 3.4. Experiment timeline starting with self-report questionnaire at rest 
state and ending with a second round of the survey at fatigue 
state. 
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Table 3.1. Chalder Fatigue Scale Questionnaire 

Item Description Scale 

1 Do you have any problems with tiredness now? 1-5 

2 Do you need to rest more now? 1-5 

3 Do you feel sleepy now? 1-5 

4 Do you have problems starting things now? 1-5 

5 
Do you start things without difficulty but get weak as you go on 
now? 

1-5 

6 Are you lacking in energy now? 1-5 

7 Do you have less strength in your muscles now? 1-5 

8 Do you feel weak now? 1-5 

9 Do you have difficulties concentrating now? 1-5 

10 Do you have problems thinking clearly now? 1-5 

11 Do you make slips of tongue when speaking now? 1-5 

12 Do you find it more difficult to find the correct word now? 1-5 

13 How is your memory now? 1-5 

14 Have you lost interest in the things you used to do now? 1-5 

3.2.4. Data Preprocessing 

PPG signals were collected using the wearable sensor placed on a participant’s 

finger of choice, with the index finger as the recommendation [83]. HRV features in both 

time and frequency-domains were extracted using the Python programming language 

[93]. A few prominent features in the time-domain were selected, including the mean of 

NNI (Mean_NNI), the standard deviation of HR (Std_HR), the number of interval 

differences of successive NNI greater than 50 ms (NNI_50), and pNNI_50. The selected 

time-domain features are further discussed in Sec. IV. Other time-domain features 

include standard deviation of normal-to-normal (SDNN), root mean square of successive 

differences between normal heartbeats (RMSSD), standard deviation of successive 

normal-to-normal interval differences (SDSD), the number of interval differences of 

successive NNI greater than 20 ms (NNI_20), and pNNI_20. In the frequency-domain, 

low frequency bands (LF) from 0.04 Hz to 0.15 Hz, high frequency bands (HF) from 0.15 

Hz to 0.4 Hz, and the ratio between them (LF/HF) were analyzed where f (λ) is the 

power spectrum.  
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According to Huang et al. [24], since the sampling frequency was fixed at 250 Hz, 

PPG recordings should last at least 10 cycles of the lowest frequency (e.g., 0.04 Hz) to 

accommodate it. A single cycle at 0.04 Hz takes approximately 25 seconds and 10 

cycles take 4.16 minutes to complete. The HRV features were extracted from 10-minute 

PPG intervals instead of 5-minute intervals used in [93] to increase the robustness and 

resilience of the readings [94]. HRV features were also analysed using the HRV analysis 

Python library. Formulas used to obtain time and frequency-domain HRV features were 

as follows: 

𝑆𝐷𝑁𝑁 =  √
1

𝑛−1
∑ (𝑁𝑁𝑖 − 𝑁𝑁𝑚𝑒𝑎𝑛)𝑛

𝑖=1               (1) 

where SDNN is highly correlated with SNS and PSNS activity in longer recording 

periods, and it is measured in ms. SDNN is considered the gold standard to detect 

cardiac risks when monitored in longer periods, typically over 24 hours [69].  

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑛−1
∑ (𝑁𝑁(𝑖+1) − 𝑁𝑁𝑖)2𝑛−1

𝑖=1               (2) 

where RMSSD indicates the variation of HR and is highly correlated with the PSNS 

activity compared to SDNN. Similar to SDNN, recordings over 24 hours are related to 

pNN50 and HF [69].  

𝑀𝑒𝑎𝑛_𝑁𝑁𝐼 =  
1

𝑛
∑ 𝑁𝑁𝑖

𝑛
𝑖=1        (3) 

where Mean_NNI is calculated by summing all NNI within a time frame and dividing 

them by the number of intervals. The Mean_NNI is measure in ms and is used to 

calculate Mean_HR. Large values of Mean_NNI indicate slower Mean_HR and vice 

versa. 

𝑀𝑒𝑎𝑛_𝐻𝑅 =  
60∗1000

𝑁𝑁𝑚𝑒𝑎𝑛
                                              (4) 

where Mean_HR is calculated by dividing 60,000 by the Mean_NNI to convert from ms 

to beats per minute (bpm). Generally, slower Mean_HR indicates minimum physical or 

mental activity and faster Mean_HR indicates more physical or mental activity. Rest HR 

over 90 bpm is correlated with higher risks of cardiac failure [95]. 
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𝑆𝐷𝑆𝐷 =  √
1

𝑛−1
∑ (|𝑁𝑁𝑖 − 𝑁𝑁𝑖+1| − 𝑁𝑁𝑑𝑖𝑓𝑚𝑒𝑎𝑛)2𝑛

𝑖=1               (5) 

where SDSD was found to efficiently represent short-term HRV as reported in [69]. 

McNames and Aboy [96] showed a high correlation between SDSD, RMSSD, and HF, 

which can be used to determine the level of PSNS interference in regulating heartbeats. 

𝑁𝑁𝑑𝑖𝑓𝑚𝑒𝑎𝑛 =
1

𝑛−1
∑ (|𝑁𝑁𝑖 − 𝑁𝑁𝑖+1|)𝑛−1

𝑖=1            (6) 

where the mean difference of consecutive NNI is called NNdifmean and is used to calculate 

SDSD. 

 ∑ {
𝑁𝑁𝐼_50 =  𝑁𝑁𝐼_50 + 1,                  |𝑁𝑁𝑖+1 − 𝑁𝑁𝑖| > 50 𝑚𝑠 

𝑁𝑁𝐼_50 =  𝑁𝑁𝐼_50,                         |𝑁𝑁𝑖+1 − 𝑁𝑁𝑖| < 50 𝑚𝑠
𝑛
𝑖=1  (7) 

where the number of consecutive intervals in which the difference in NNI duration is over 

50 ms is called NNI_50. According to the literature, lower NNI_50 counts are highly 

interconnected with the activation of SNS and deactivation of PSNS and vice versa [45], 

[69].  

∑ {
𝑁𝑁𝐼_20 =  𝑁𝑁𝐼_20 + 1,                  |𝑁𝑁𝑖+1 − 𝑁𝑁𝑖| > 20 𝑚𝑠 

𝑁𝑁𝐼_20 =  𝑁𝑁𝐼_20,                         |𝑁𝑁𝑖+1 − 𝑁𝑁𝑖| < 20 𝑚𝑠
𝑛
𝑖=1  (8) 

where the number of consecutive intervals in which the difference in NNI duration is over 

20 ms is called NNI_20. Similar to NNI_50, lower NNI_20 counts are highly 

interconnected with the activation of SNS and deactivation of PSNS and vice versa [45], 

[69].  

  𝑝𝑁𝑁𝐼_50 =  
𝑁𝑁𝐼_50

𝑁
∗ 100     (9) 

where the proportion of NNI_50 to the total number of intervals during a time frame is 

called pNNI_50. This metric indicates the level of interference of PSNS in regulating 

heartbeats, similar to NNI_50. If the pNNI_50 value is significant, it denotes PSNS 

activation. Hence, the rest state can be identified and vice versa [45], [69].   

 𝑝𝑁𝑁𝐼_20 =  
𝑁𝑁𝐼_20

𝑁
∗ 100     (10) 
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where the proportion of NNI_20 to the total number of intervals during a time frame is 

called pNNI_20. This metric indicates the level of interference of PSNS in regulating 

heartbeats, similar to NNI_20. If the pNNI_20 value is significant, it denotes PSNS 

activation. Hence, the rest state can be identified and vice versa [45], [69].    

  

    𝑅𝑎𝑛𝑔𝑒_𝑁𝑁𝐼 =  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑁𝐼 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑁𝑁𝐼                               (11) 

where Range_NNI is calculated by obtaining the difference between the maximum and 

minimum values of NNI during a specific time frame. In general, a large Range_NNI 

value indicates significant differences between heartbeat intervals, which can be 

interpreted as high HRV (i.e., rest state) and vice versa. 

   𝑆𝑡𝑑_𝐻𝑅 =  √
∑ (𝐻𝑅−𝑀𝑒𝑎𝑛_𝐻𝑅)2𝑛

𝑖=1

𝑛−1
                                         (12) 

where Std_HR measures the deviation in HR within a specified time frame. Higher 

Std_HR values indicate variation within heartbeat intervals, which denotes PSNS 

dominance or rest state.  

 𝑀𝑒𝑑𝑖𝑎𝑛_𝑁𝑁𝐼 = {
𝑁𝑁 [

𝑛

2
] ,                         𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

(𝑁𝑁[
𝑛−1

2
]+ 𝑁𝑁[

𝑛+1

2
])

2
,            𝑛 𝑖𝑠 𝑜𝑑𝑑

                   (13) 

where, similar to Mean_NNI, Median_NNI is measured in ms. Large Median_NNI values 

indicate slower Mean_HR and vice versa.  

𝑀𝑎𝑥_𝐻𝑅 = {
𝐻𝑅𝑛 > 𝐻𝑅𝑛−1,                         𝑀𝑎𝑥_𝐻𝑅 = 𝐻𝑅𝑛

𝐻𝑅𝑛 < 𝐻𝑅𝑛−1,                      𝑀𝑎𝑥_𝐻𝑅 = 𝐻𝑅𝑛−1
  (14) 

𝑀𝑖𝑛_𝐻𝑅 = {
𝐻𝑅𝑛 > 𝐻𝑅𝑛−1,                         𝑀𝑖𝑛_𝐻𝑅 = 𝐻𝑅𝑛−1

𝐻𝑅𝑛 < 𝐻𝑅𝑛−1,                              𝑀𝑖𝑛_𝐻𝑅 = 𝐻𝑅𝑛
  (15) 

where Max_HR represents the highest heart rate interval obtained within a specific time 

frame. On the other hand, Min_HR represents the lowest heart rate obtained within a 

specific time frame. Both features are measured in bpm. 

𝐻𝐹 =  ∫ 𝑓(λ)𝑑𝜆
0.40

0.15
                                            (16) 



35 

where the HF or the respiratory band frequency ranges from 0.15 Hz to 0.4 Hz and the 

result unit is ms2. The HF reflects the PSNS activity in regulating the heart activity based 

on the respiration cycles. Normally, heartbeats accelerate during inhalation and 

decelerate during exhalation. As HF is correlated with both pNNI_50 and RMSSD, high 

HF levels indicate PSNS activation, detecting the presence or absence of mental fatigue. 

To calculate HF, a minimum data recording of one minute is required [45], [69]. 

𝐿𝐹 =  ∫ 𝑓(λ)𝑑𝜆
0.15

0.04
                                (17) 

where the LF frequency ranges from 0.04 Hz to 0.15 Hz and the result unit is ms2. The 

LF reflects both SNS and PSNS activities in regulating the heart activity, primarily SNS. 

Therefore, lower LF values indicate SNS activation, hence mental fatigue and vice 

versa. To calculate LF, a minimum data recording of two minutes is required [45], [69]. 

𝐿𝐹 𝐻𝐹⁄ =  
∫ 𝑓(λ)𝑑𝜆

0.15

0.04

∫ 𝑓(λ)𝑑𝜆
0.40

0.15

                               (18) 

where LF/HF indicates the extent to which SNS and PSNS are regulating heart activities. 

Generally, a low LF/HF denotes that PSNS is dominant in the context of regulating 

heartbeats, which indicates rest state, whereas a high LF/HF indicates SNS dominance, 

which implies mental fatigue [45], [97]. 

                                𝑉𝐿𝐹 =  ∫ 𝑓(λ)𝑑𝜆
0.04

0.0033
                                (19) 

where the very low frequency (VLF) power spectrum ranges from 0.0033 Hz to 0.04 Hz 

and the result unit is ms2. According to Pham et al. [97] and Bouzida et al. [98], VLF is 

highly associated with body temperature regulation and vasomotor activities.  

  𝐿𝐹𝑛𝑢 =  
𝐿𝐹

(𝐿𝐹+𝐻𝐹+𝑉𝐿𝐹)
                                                       (20) 

where the normalized value of LF is calculated by dividing the LF power spectrum by the 

total power spectrum of the recorded data. Similar to LF, LFnu is highly correlated with 

the activation of SNS, which indicates a mental fatigue state [99]. As SNS interference in 

regulating heartbeats becomes more significant, LFnu increases.  

  𝐻𝐹𝑛𝑢 =  
𝐻𝐹

(𝐿𝐹+𝐻𝐹+𝑉𝐿𝐹)
                                                       (21) 
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where the normalized value of HF is calculated by dividing the HF power spectrum by 

the total power spectrum of the recorded data. Similar to HF, HFnu is highly correlated 

with the activation of PSNS, which indicates a mental rest state [99]. As PSNS 

interference in regulating heartbeats becomes more significant, HFnu increases.  

 

3.3. Results  

3.3.1. Feature Selection 

In this section, HRV features with the highest correlation with the classification 

output were selected based on a p-value significance test. The statistically significant 

HRV features are listed in Table 3.2. Performing a statistical analysis on the dataset 

allowed the use of reduced-order machine learning models. The objective of the feature 

selection step was to eliminate HRV features that do not significantly indicate different 

mental states. P-value significance testing was used to select the most salient HRV 

features. The HRV analysis library generated 16 time-domain features and 7 frequency-

domain features. The HRV features with the lowest p-value scores, with the significance 

level α set to 0.05, were retained for further calculations. 

Table 3.2 shows the selected HRV features. Eight of these features were used in 

[65] and four of them in [24]. One advantage of keeping the number of features as low 

as possible was to decrease the CPU utilization required to classify an unknown sample. 

This approach will significantly affect power consumption and improve feasibility for real 

time monitoring using wearable devices. Also, irrelevant features can negatively affect 

classifiers’ weights and accuracy. The Gini index was used to perform importance 

evaluation, in addition to significance testing [45], [100]. A decrease in Gini index 

indicates the purity of the node in the random forest feature selection. A higher Gini 

index of a feature increases its contribution to the output. Table 3.3 shows the Gini index 

as well as ANOVA scores for HRV features. Features with the highest Gini index were 

passed to machine learning models for additional noise filtering as suggested by [45]. 

The Pearson correlation coefficients were calculated for the mean and median NNI, as 

well as between mean and maximum HR due to their correlation [69]. Median_NNI had a 

Pearson’s r value of -0.982, and -0.821 for the mean and maximum HR, respectively; 
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and 0.995 for the Mean_NNI. This indicated high positive and negative linear 

correlations. Hence, Median_NNI was selected due to its higher Gini index and 

correlation with the remaining features. The overall feature selection process is 

illustrated as a flow chart in Figure 3.5, resulting in the following four features being 

selected: NNI_20, NNI_50, Std_HR, and Median_NNI. 

 

Table 3.2. Statistically Significant HRV Parameters 

Number Description 
Rest State 

Mean 
Fatigue State 

Mean 
P-Value 

1 
NNI_20: Number of interval 
differences of successive NN-
intervals greater than 20 ms. 

513.91 466.09 0.00062 

2 
NNI_50: Number of interval 
differences of successive NN-
intervals greater than 50 ms. 

283.55 231 0.00085 

3 
Std_HR: Standard deviation of 
heart rate. 

7.28 5.96 0.0116 

4 
Mean_NNI: The mean of NN-
intervals. 

790.55 827.08 0.0170 

5 
Mean_HR: The mean Heart 
Rate. 

77.53 73.87 0.0195 

6 

Median_NNI: Median absolute 
values of the successive 
differences between the NN-
intervals. 

792.59 828.36 0.0249 

7 
Max_HR: Maximum value for 
heart rate. 

109.44 100.03 0.0479 
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Table 3.3.  Gini Index and ANOVA Scores For Statistically Significant Features 

Feature Order Description Gini Index ANOVA 

1 NNI_50 0.130 3.795 

2 Std_HR 0.121 2.398 

3 NNI_20 0.085 3.281 

4 Median_NNI 0.079 0.702 

5 Mean_NNI 0.060 0.801 

6 Mean_HR 0.024 0.956 

7 Max_HR 0.017 0.912 

 

Figure 3.5.  Flowchart of the proposed feature selection process from the 
collection of participants' data to feeding extracted HRV features into 
the machine learning models. 
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Figure 3.6 shows the difference in NNI durations between the rest state and the 

fatigue state for a participant. The plot shows the first 40 HR intervals, which correspond 

to approximately 30 seconds of PPG readings. A noticeable difference between the two 

states can be clearly observed. The red color represents the NNI duration after the 

experiment (i.e., mental fatigue state), while the blue color represents the NNI duration 

at rest. The Mean_NNI for the participant was 719.91 ms at rest and 814.59 ms after the 

test, denoting a slower HR in the fatigue condition. Consequently, this participant’s HRs 

were 84.34 and 74.36 bpm, at rest and fatigue, respectively. 

3.3.2. Machine Learning Classifiers 

The machine learning models (classifiers) evaluated in this study were Logistic 

Regression (LR), Artificial Neural Network (ANN), Support Vector Machine (SVM), 

Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), Stochastic 

Gradient Descent (SGD), Naïve Bayes (NB), and Extreme Gradient Boosting (XGBoost). 

These models were used in previous studies and were proven to detect mental fatigue 

effectively [45], [65], [101].  

Figure 3.6.  NNI durations for a participant at rest and fatigue states for 
the first 40 intervals which approximately correspond to the 
first 30 seconds. 
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The machine learning hyperparameters were tuned using the GridSearchCV tool 

provided in the Scikit learn library to obtain the optimum hyperparameters values. 

Classifiers’ hyperparameters were as follows: 

• LR (penalty: L1, C: 10) 

• ANN (activation function: ReLu, number of nodes: 256, number of hidden 

layers: 5) 

• SGD (loss: squared hinge, penalty: L1)  

• SVM (C:1, kernel: RBF)  

• DT (min_samples_leaf: 5, max_depth: 100) 

•  RF (no _estimators: 30, min_samples_split: 4) 

• XGBoost (lambda: 2, n_estimators: 500, max_depth: 10)  

• NB (priors: None, var_smoothing: 1e-09)  

• KNN (n_neighbors: 4, weights: uniform) 

The available dataset was divided into a 70% training set and a 30% test set. 

Several coefficients were calculated including classification accuracy (CA), precision, 

recall, and F1 score to evaluate model performance. Coefficient parameters were true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). All 

coefficients were calculated in compliance with the 10 k-fold cross-validation to increase 

model reliability and robustness. The formulas used were calculated in compliance with 

the 10 k-fold cross-validation technique, which added more reliability and confidence to 

the results. Formulas used to calculate the coefficients are shown in equations (13) 

through (16): 

CA =      
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                  (22) 

Precision =    
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                     (23) 
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Recall =        
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                         (24) 

F1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                    (25) 

 

Table 3.4. Comparison of Machine Learning Classifiers’ Performance 

Model CA % F1 Precision % Recall % 

ANN 93.8 0.937 94.4 93.8 

LR 93.8 0.937 94.4 93.8 

SGD 93.8 0.937 94.4 93.8 

SVM 87.5 0.875 90.0 87.5 

Tree 87.5 0.875 87.5 87.5 

RF 81.2 0.812 81.7 81.2 

XGBoost 81.2 0.812 81.7 81.2 

NB 81.2 0.812 81.7 81.2 

KNN 75.0 0.746 76.7 75.0 

 

3.3.3. Automatic Detection via a Moving Window 

 To incorporate the proposed mental fatigue detection method in wearable 

devices, a moving window was implemented. The moving window automatically detects 

mental status based on the HRV features extracted from the most recent 10 minutes of 

PPG readings, with a 1-minute increment between successive rolling windows.  
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 As a proof-of-concept demonstration, an additional healthy participant (22 years 

old, female) was recruited. The participant was asked to wear the PPG sensor and to 

remain as static as possible as PPG readings were recorded for the total duration of the 

experiment. To eliminate the need for an extended duration of the experiment and the 

participants’ inconvenience associated with the extended period, the PVT was utilized as 

the alternative mental workload. The PVT is a mentally demanding test that showed 

effectiveness in inducing mental fatigue in shorter periods, typically between 10 and 20 

minutes [102] compared to the 20~40 minutes reported by the participants using the 

ATMT. In the literature, the PVT was the sole mental workload used in [103], [104], and 

was combined with a driving simulator in [105]. In our experiment, the PVT started after 

collecting 10 minutes of PPG readings at rest. The participant self-reported mental 

fatigue after 11 minutes into the PVT, at which point the test was terminated. PPG 

readings were recorded continuously for an additional 10 minutes. Figure 3.7 shows the 

results of the moving window with LR, ANN, NB, and KNN. LR and ANN were the 

models that showed the best accuracies (in Table 3.4), whereas the last model (KNN) 

was included for comparison purposes. The LR, ANN, and NB models showed different 

mental fatigue thresholds, while the KNN model showed a fluctuation in the prediction. 

The fluctuation occurred between the 25th and 27th minutes, meaning further 

investigation and optimization are required before this particular classifier can be utilized. 

The fatigue state stabilized at around 29 minutes for the KNN model, which was only two 

minutes before data recording had been completed. Varying thresholds for the machine 

learning models depend highly on fine tuning of the models’ hyperparameters, which 

were optimized using the GridSearchCV method. NB detected mental fatigue at around 

5 minutes before mental fatigue had been reported by the participant. ANN detected 

mental fatigue at around 2 minutes before actual mental fatigue had been reported by 

the participant, and then the PVT was concluded. LR detected mental fatigue at 22 

minutes, which was 1 minute after mental fatigue was reported by the participant. For 

this particular case study and the models’ hyperparameters, ANN outperformed all other 

classifiers in terms of the speed of mental fatigue detection and accuracy. NB showed a 

better performance than LR and KNN in terms of the speed of mental fatigue detection. 
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3.4. Discussion 

3.4.1. Main Findings 

Mental fatigue was predicted using HRV features obtained from an off-the-shelf 

PPG sensor, with a resulting accuracy comparable to ECG sensors used in similar 

studies [45], [72]. SGD, ANN, and LR were found to be the best classifiers with an 

accuracy of 93.8%. Results from all classifiers are listed in Table 3.4. 

Several HRV features that contribute to differentiating between mental states 

were identified. NNI_50 and NNI_20 had the most significant influence on the classifiers. 

NNI_50 and NNI_20 indicate the extent to which the SNS and PSNS are involved with 

heartbeat regulation [69], [101]. The results show that the NNI_50 and NNI_20 values 

were significantly greater before the ATMT test than afterwards. This indicates more HR 

variation, PSNS dominance, and, in-turn, a mental rest state. 

Figure 3.7.  Automatic fatigue detection via moving window using LR, ANN, 
NB, and KNN machine learning models. 
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After the ATMT test, the NNI_20 and NNI_50 values were significantly lower for 

each participant, indicating more consistent heartbeats. This implies the SNS was 

dominant in regulating the heartbeats, indicating a mental fatigue state. Figure 3.8A 

shows the NNI_20 count of all participants, while Figure 3.8B shows the comparison of 

the NNI_20 count between males and females at both mental states. All participants 

experienced a significantly lower NNI_20 count at the fatigue state compared to rest 

state, except for participant 10 as shown in Figure 3.8. Box plots for the most significant 

features for both genders can be found in Appendix C. Also, the complete ANOVA 

calculations for both genders at both mental states can be found in Appendix D.  

Figure 3.8. A) NNI_20 count for all participants with the blue bar 
representing the rest state and the orange bar representing the 
fatigue state. B) Box plot showing the difference in NNI_20 
between males and females at rest state (left side) versus 
fatigue state (right side) with the orange bar representing the 
median. 
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Similar to the NNI_20 and NNI_50 values, Std_HR followed the same trend. As 

shown in Table 3.2, the mean value of Std_HR was 7.29 bpm at rest and 5.96 bpm at 

fatigue states, indicating a more significant deviation in HR when the participants were at 

rest. The Median_NNI value increased from 792.59 ms at rest to 828.26 ms at fatigue, 

which implies a drop of HR. The complete HRV parameters for all participants before 

and after the experiment can be found in Appendix E. 

Furthermore, the PVT results supported the above HRV results that indicated a 

significant difference between the fatigue and non-fatigue mental states. Figure 3.9A 

shows the participants’ mean reaction times obtained from the NASA PVT application, 

while Figure 3.9B shows the differences between the two mental states as well as 

between males and females in both states. The figure shows a significant difference in 

reaction time between the two states, the p-value was 0.00035. The mean reaction time 

was 337.64 ms at rest and 465.55 ms at the fatigue state.  

It is noticeable that female participants had a generally higher NNI_20 count at 

the rest state, compared to males. This observation was also true at the fatigue state 

over a significantly narrower range compared to males. The mean Std_HR at the rest 

state was 8.425 bpm for females compared to 5.901 bpm for males, indicating more 

variability in HR for females in the rest state. 
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As mentioned before, a comparison between the DFRobot PPG sensor and the 

FDA-approved VitalStream was performed. According to VitalStream’s datasheet, the 

device is capable of detecting NNI with an accuracy up to 6 ms between peaks. To 

compare both sensors, data were recorded simultaneously for a period of two minutes, 

and then the HR was analyzed. Regarding the results, the mean HR for all participants 

Figure 3.9.  A) The reaction times of all participants with the blue 
bar representing the rest state and the orange bar 
representing the fatigue state. B) Box plot showing 
the difference in reaction time between males and 
females at rest state (left side) versus fatigue (right 
side) with the orange bar representing the median. 
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obtained from VitalStream was 72.477 bpm, while the mean was 73.103 bpm for the 

DFRobot PPG sensor with a p-value of 0.30475 (i.e., no significant difference) and a 

mean square error (MSE) of 2.259 bpm. Table 3.5 shows the detailed error calculations 

for both sensors. However, the table only shows seven participants out of 11 due to data 

corruption of either one of the sensors during the recordings. Hence, four participants’ 

data were excluded. Figure 3.10 shows the VitalStream sensor displaying the HR and 

the blood pressure using the finger cuff attached to a participants’ finger. 

 

Table 3.5.  VitalStream Vs DFRobot Error Comparison 

Participant Number VitalStream DFRobot Error % 

1 76.53 76.82 0.3775 

2 77.31 79.21 2.3987 

3 78.66 87.59 3.5852 

4 68.22 69.42 1.7591 

5 80.57 80.41 0.1990 

6 N/A N/A N/A 

7 59.66 58.26 2.4030 

8 N/A N/A N/A 

9 N/A N/A N/A 

10 66.39 66.02 0.5624 

11 N/A N/A N/A 
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3.4.2. Comparison with Relevant Work 

The results show that the NNI_20 and NNI_50 counts significantly dropped due 

to the activation of SNS. This aligns with the ECG-based work of Huang et al. [45], 

where pNNI_50 was lower in the mental fatigue state compared to the non-fatigue (or 

rest) state. Std_HR in the mental fatigue state was lower than the non-fatigue state, a 

similar result obtained by Yue et al. [101]. Median_NNI increased and the HR decreased 

at the fatigue state aligning with results obtained in [91] and [106]. 

Frequency-domain features were excluded in this study based on the 

significance testing for feature selection. For instance, Huang et al. [45] obtained higher 

LF, HF, and LF/HF ratio in the fatigue state compared to the non-fatigue state, whereas 

those features decreased in [101] and [90]. 

Multiple features are required to obtain a higher classification accuracy. Huang et 

al. [45] obtained the highest accuracy when Mean_NNI, pNNI_50, total power (TP), and 

LF were combined and fed into the classifiers. In our study, the proposed combination of 

features (NNI_20, NNI_50, Std_HR, and Median_NNI) was accomplished through a 

Figure 3.10. VitalStream device in the calibration mode. 
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multiple stage feature selection process by employing p-value and Gini index scores to 

eliminate any irrelevant features. 

3.4.3. Limitations and Proposed Solutions 

The relatively small number of participants was the main limitation in this pilot 

study. It is recommended that future studies recruit a higher number of participants. 

Participants were mainly young healthy individuals with no reported chronic health 

challenges or mental disabilities. Participants from different backgrounds as well as 

different age groups will be considered in our future study. In addition, this study utilized 

ATMT as a mental stressor to induce mental fatigue within a controlled short period, 60 

to 80 minutes for the entire experiment. A longer duration should be considered in 

further studies to emulate typical workplace environments (e.g., eight hours).  

Consistently attaching an off-the-shelf PPG sensor to participants proved to be a 

challenge. Participants were asked to refrain from movement to the best of their abilities 

to minimize motion-induced data inaccuracies. This can be inconvenient for long-term 

experiments or continuous monitoring for extended periods of time. Attaching sensors to 

the wrist is recommended. A comparative study between PPG sensor locations (e.g., 

index fingers and wrist) should be further investigated. Lastly, a customized compact 

casing can be designed and manufactured to facilitate the sensor placement and 

minimize motion-induced noises. 

3.5. Application Case Study: A Connection with The 
Proposed Client/Gateway Architecture 

3.5.1. Integration within Smart Factory 

As previously mentioned, the developed client/gateway architecture enables the 

connection of microcontrollers with industrial controllers. In the previous case study 

mentioned in Chapter 2.3, a potentiometer and an ultrasound sensor were connected to 

an Arduino Uno and then an OPC UA server (Raspberry Pi). In the current case study, 

the PPG sensor replaced the ultrasound and the potentiometer. Since the developed 

moving window algorithm (Chapter 3.3.3), the machine learning classifiers, and the OPC 

UA server were programmed in Python, they were all integrated and deployed to the 
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Raspberry Pi. After the connection between the OPC UA server and the main OPC UA 

client/gateway had been established, the machine learning classifiers’ decisions were 

reported to the client/gateway. Hence, a human digital twin unit was effectively created 

to simulate the monitoring of a worker’s mental fatigue state. Figure 3.11 shows the 

updated proof-of-concept architecture on the right side of the figure as the left side (the 

machine digital twin) has already been evaluated in Chapter 2.3. When the machine 

learning classifier indicated a mental fatigue state, an alarm would be raised on the 

Alarms screen of the Ignition Perspective interface (see Figure 3.12). The blue color 

indicates acknowledged alarms, while the red color indicates active unacknowledged 

alarms. In real-life scenarios, Ignition Perspective provides an option to acknowledge 

alarms only with a comment to ensure those alarms have been properly addressed.  

 

 

Figure 3.11. Human digital twin unit to monitor mental fatigue status. 



51 

 

3.5.2. Raspberry Pi CPU Utilization and Temperature 

The Raspberry Pi CPU utilization and temperature were recorded similarly to 

Chapter 2.4.2 while running the algorithm. The ANN model was deployed to the 

Raspberry Pi and a simulation was performed using 31 minutes of pre-recorded PPG 

readings. As a proof-of-concept, the moving window was moving at a rolling rate of one 

minute of PPG readings per program loop. The processing speed remained constant as 

the code length and Raspberry Pi clock frequency remained unchanged. 

The initialization phase consisted of OPC UA server initialization and data and 

classifier loading. During each iteration, the moving window extracted the last 10 

minutes of PPG recordings, preprocessed them, and then the ANN classifier predicted 

the mental state. Subsequently, the ANN prediction was passed to the OPC UA server 

and published to all OPC UA clients connected (e.g., using Ignition). The classifier’s 

prediction along with publishing to the OPC UA server resulted in spikes as can be 

observed in Figure 3.13. During the initialization phase, the CPU utilization peaked to 

Figure 3.12. The alarm screen on Ignition Perspective. 
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80%, followed by an expected increase in temperature, which, in turn, gradually 

increased and peaked at 44 °C. Then CPU utilization and temperature dropped to 

approximately 45% and 42 °C, respectively. 

In conclusion, the Raspberry Pi CPU utilization remained approximately 45% with 

some minor spikes. Hence, the Raspberry Pi was not overloaded. Also, CPU 

temperature remained within the idle range, which is 40 to 50 °C, throughout the 

simulation, which can be considered as average power consumption. The Raspberry Pi 

CPU utilization and temperature are demonstrated in Figure 3.13.  

 

Figure 3.13 Raspberry Pi CPU Temperature and Utilization with ANN 
Classifier. The CPU utilization is presented by the blue color and 
the temperature is represented by the orange color. 
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3.5.3. Potential Real-Life Implementation Scenarios 

As explained earlier, mental fatigue can have serious repercussions on workers’ 

safety. Fang et al. [107] studied the effects of mental fatigue on construction workers. In 

their pilot study, 20 construction workers were recruited and split into two groups (A and 

B) with different tasks assigned to induce mental fatigue in a controlled environment. 

Results showed a significant increase in the number of errors committed by each worker 

with an increase from 6.4 to 9.9 mistakes per worker in Group A, and 4.5 to 6.9 mistakes 

in Group B. The study concluded that early detection of mental fatigue can potentially 

decrease the risk of errors on a construction site and prevent injuries. In the previous 

case, mental fatigue detection can be employed to the construction workers to detect 

mental fatigue and trigger alarms to supervisors to take preventative measures. 

 Bowen et al. [108] conducted a survey of quality and process control technicians 

in the forestry industry (a lumber mill plant) in New Zealand. The study concluded that 

both mental and physical fatigue adversely affect the reaction time of workers, which 

was correlated with a significantly higher injury risk and accident probability. In this case, 

our algorithm can trigger alarms within the SCADA system of the plant and perform 

emergency stops to specific segments of the plant if required. 

3.6. Summary 

In this chapter, mental fatigue detection using PPG technology was presented. 

The technique involved the extraction of HRV parameters from PPG readings and 

various calculation were performed. An experiment was performed on 11 healthy human 

subjects without any recent mental or cardiac conditions. All participants performed the 

experiment within 60-80 minutes until mental fatigue was reported by the participant. To 

provide a numeric basis for different mental fatigue states, a PVT application developed 

by NASA was utilized to measure the participants’ reaction time before and after the 

experiment. To select the relevant features, a statistical significance test using p-value 

was performed. Then Gini index and ANOVA tests were performed on the statistically 

significant features resulting from the first step. The final features selected were: 

NNI_20, NNI_50, Std_HR, and Median_NNI.  
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The selected features were used to train the machine learning models to detect 

mental fatigue. The highest obtained accuracy on any machine learning classifiers were 

LR, ANN, and SGD with an accuracy of 93.8%. Also, an additional healthy participant 

was recruited to perform the experiment with the PPG sensor recording during the entire 

duration of their session. The machine learning classifiers were then integrated with an 

automatic moving window for automatic fatigue detection. The results indicated different 

thresholds for the machine learning classifiers, which was expected as all models’ 

hyperparameters were set to default. Subsequently, the developed machine learning 

models and the automatic moving window were integrated within the proposed 

client/gateway architecture. A case study of a mental fatigue alarm on Ignition 

Perspective was presented, which was triggered whenever a mental fatigue state had 

been detected.  
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Chapter 4.  
 
Conclusions 

4.1. Conclusions  

This thesis proposes a smart factory concept in which digital twin units are 

constructed for machines and workers. In our proposed concept, machine and worker 

digital twin units are all interconnected forming the overall shop floor digital twin. This 

concept leverages the advancements in both Industry 4.0 and Operator 4.0 by 

connecting wearable devices that monitor health conditions with machines in the shop 

floor via an OPC UA client/gateway-based architecture. In our demonstrated case study, 

the health condition of interest was the worker’s mental fatigue, in order to mitigate 

safety risks. To integrate the wearable IoT (used in Operator 4.0) with IIoT devices (used 

in Industry 4.0), a new data exchange architecture was developed along with a novel 

mental fatigue detection technique.  

The first part of this work proposed and evaluated an OPC UA client/gateway-

based architecture on a FESTO MPS Processing Station. The proposed architecture 

simplified system connectivity while reducing the computation cost of process controllers 

by utilizing a gateway device for more demanding processing tasks. The main 

contributions of this work can be summarized as follows:  

• Creation of HMI screens with digital twin capabilities (real-time visualization) for 

existing systems without modification of existing PLC programs.  

• Enabling user-nodes (e.g., portable devices) to locally or remotely monitor and 

control processes through secure connections. 

• Low latency communications between industrial and embedded controllers. 

• Decreasing CPU utilization on embedded controllers (e.g., Raspberry Pi) and, in 

turn, core temperature. This decreases power consumption, especially for battery-

powered applications. 

Cross-platform protocols such as OPC UA allow communication between multi-vendor 

devices. This facilitates the design of smart factories and provides designers additional 
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flexibility in choosing system components. Our research directions include (i) the 

integration of wearable devices for monitoring workplace safety, data storage, and 

processing on available cloud platforms; and (ii) the implementation of machine learning 

algorithms to predict machine parameters. Data visualization and analysis is also 

proposed to support business decision-making. As a proof-of-concept, the proposed 

architecture was utilized in Chapter 3 to enable mental fatigue detection by employing 

embedded microcontrollers and sensors.  

Mental fatigue is a problem that negatively affects the productivity of workers of 

all ages. Mental fatigue’s main detection techniques include EEG signals and HRV 

features derived from ECG signals. The main contribution of this study was showing the 

feasibility of deriving HRV features from PPG signals in a technique which is a more 

convenient, simpler, yet effective way to detect mental fatigue in 11 participants. An 

ATMT installed on an off-the-shelf tablet was utilized to induce mental fatigue. Also, the 

NASA PVT application installed on a commercial smartphone was utilized to measure 

participants’ reactions. PPG signals were recorded before and after the ATMT using a 

PPG sensor produced by DFRobot.  

After performing a statistical analysis on HRV features extracted from PPG 

signals, only statistically significant features were retained. The results indicate that 

NNI_20, NNI_50, and Std_HR significantly decreased in the mental fatigue state due to 

prolonged activation of SNS. On the other hand, Median_NNI increased, which implied a 

slower HR at fatigue state, consistent with previously conducted ECG-based studies. 

Regarding the performance of the tested machine learning classifiers, the highest 

accuracy obtained was LR, ANN, and SGD at 93.8%, followed by DT and SVM at 

87.5%. A multiple stage feature selection process used p-value, Gini index, and Pearson 

coefficients to eliminate any irrelevant features. An automatic moving window that 

incorporated machine learning models was developed and tested on an additional 

participant. The results indicate different thresholds for the top performing models, LR 

and ANN, and a slight fluctuation for the least accurate models such as KNN. Also, the 

developed automatic moving window and machine learning classifiers were integrated 

into an OPC UA server (Raspberry Pi) forming a human digital twin unit that 

continuously monitored and detected mental fatigue. Finally, the constructed human 
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digital twin unit was connected to the overall smart factory through the developed 

client/gateway architecture as a proof-of-concept. 

4.2. Future Work 

Future work for the proposed client/gateway-based architecture includes 

connecting additional embedded and industrial devices within the same network. 

Connecting more devices implies more generated data that leads to the utilization of 

cloud computation and storage. Cloud services providers offer a handful of tools which 

can be used for data visualization, business analysis, statistical analysis, machine 

learning, simulations, and more. Those tools can be extremely beneficial in fields such 

as predictive maintenance, failure prediction, production planning, inventory 

management, etc. Furthermore, the deployment of the developed architecture in an 

actual production facility should be explored to assess the architecture’s performance in 

real-life scenarios. 

For the mental fatigue detection experiment, future work includes recruiting more 

participants to generalize the research outcomes. Also, investigating other, more 

convenient sensor attachment locations, such as the wrist and ear, is highly 

recommended to enhance users’ level of comfort and sensor wearability for continuous 

monitoring. To achieve that, a custom-designed case should be manufactured along with 

various hardware and software filters to eliminate motion-induced noises. Regarding the 

developed automatic mental fatigue detection algorithm, a real-time version of the 

algorithm must be validated. Furthermore, fine-tuning the machine learning models 

should be explored to boost their performance even further and avoid over-fitting 

problems.  

Currently, a mental fatigue detection technique was integrated and successfully 

connected to Ignition. However, to ensure scalability and achieve the full potential of the 

smart factory concept, a full implementation in a real-life facility will be carried out. The 

full implementation will include multiple workers’ digital twin units that are capable of 

detecting mental fatigue, connected with machines’ digital twin units within the shop floor 

through the proposed communication bridge. 
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Appendix C. 
 
Significant Features Box Plots  

 

Figure C.1. NNI 50 count for both genders (left males and right females) 
before and after the ATMT 

Figure C.2.  Standard deviation of heart rate for both genders (left males 
and right females)  before and after the ATMT 
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Figure C.3.  Maximum heart rate in (bpm) for both genders (left males and 
right females) before and after the ATMT 

Figure C.4.  Mean NNI in milliseconds for both genders (left males and right 
females) before and after the ATMT 
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Figure C.6. Median NNI in milliseconds for both genders (left males and right 
femalesss) before and after the ATMT 

Figure C.5. Mean heart rate for both genders (left females and right males) 
before and after the ATMT 



78 

Appendix D. 
 
ANOVA Scores 

 

 

 

Figure D.1. NNI 20 count at rest for both genders. Group 1 represents females 
and group represents males 

Figure D.2. NNI 20 count at fatigue for both genders. Group 1 represents 
females and group 2 represents males    
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Figure D.3. NNI 50 count at rest for both genders. Group 1 represents females 
and group 2 represents males 

Figure D.4. NNI 50 count at fatigue for both genders. Group 1 represents 
females and group 2 represents males 
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Figure D.5. Standard deviation of heart rate at rest state for both genders. 
Group 1 represents females and group 2 is males 

Figure D.6. Standard deviation of heart rate at fatigue for both genders. Group 1 
is females and group 2 is males. 
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Figure D.7. Median NNI at rest state for both genders. Group 1 represents 
females and group 2 represents males. 

Figure D.8. Median NNI at fatigue for both genders. Group 1 represents females 
and group 2 represents males. 
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Figure D.9. Mean NNI at rest for both genders. Group 1 represents females and 
group 2 represents males. 

Figure D.10. Mean NNI at fatigue for both genders. Group 1 represents females 
and group 2 represents males 
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Figure D.11. Mean heart rate at rest for both genders. Group 1 represents females 
and group 2 represents males 

Figure D.12. Mean heart rate at fatigue for both genders. Group 1 represents 
females and group 2 represents males 
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Figure D.13. Maximum heart rate at rest for both genders. Group 1 represents 
females and group 2 represents males 

Figure D.14. Maximum heart rate at fatigue for both genders. Group 1 represents 
females and group 2 represents males 
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Appendix E. 
 
HRV Features for All Participants 

Table E.1. Complete selected HRV features for all participants at both states 

Data 
Index 

NNI_20 NNI_50 Std_HR Mean_NNI Mean
HR 

Median_NNI Max_HR 

Participant 
1 After 

476 234 5.81 785.35 76.81 800 101.35 

Participant 
2 After 

461 195 6.99 763.11 79.21 750 100.67 

Participant 
3 After 

518 301 7.54 814.59 74.36 824 100.84 

Participant 
4 After 

384 191 6.77 770.58 78.43 778 100.67 

Participant 
5 After 

453 234 6.72 738.04 81.83 741 146.69 

Participant 
6 After 

588 325 7.80 715.92 84.52 700 125 

Participant 
7 After 

390 155 2.73 1034.25 58.14 1049 65.57 

Participant 
8 After 

400 135 2.98 961.76 62.52 962 77.12 

Participant 
9 After 

500 228 5.47 800.89 75.30 800 96 

Participant 
10 After 

464 246 5.94 897.86 67.32 900 85.71 

Participant 
11 After 

493 297 6.78 815.52 74.16 808 100.67 

Participant 
1 Before 

521 263 7.87 795.11 76.11 800 143.88 
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Data 
Index 

NNI_20 NNI_50 Std_HR Mean_NNI Mean
HR 

Median_NNI Max_HR 

Participant 
2 Before 

511 193 7.65 716.43 84.41 701 109.28 

Participant 
3 Before 

551 328 9.47 719.91 84.34 712 120.24 

Participant 
4 Before 

463 205 8.04 754.58 80.28 750 120 

Participant 
5 Before 

472 339 6.58 715.34 84.36 712 143.88 

Participant 
6 Before 

674 358 12.40 637.39 95.72 649 131.29 

Participant 
7 Before 

450 260 4.16 959.80 62.78 957.5 74.62 

Participant 
8 Before 

500 185 5.24 899.89 67.06 916 81.96 

Participant 
9 Before 

526 324 6.24 837.75 72.14 850 87.33 

Participant 
10 Before 

452 296 5.46 837.18 72.06 854 91.32 

Participant 
11 Before 

533 368 6.90 822.69 73.55 817 100 

 

 


