
Parsing gigabytes of JSON per second
with parallel bit streams

by

Luiz Fernando Peres de Oliveira

B.Sc., Universidade Anhanguera, 2012

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Luiz Fernando Peres de Oliveira 2023
SIMON FRASER UNIVERSITY

Spring 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Luiz Fernando Peres de Oliveira

Degree: Master of Science

Thesis title: Parsing gigabytes of JSON per second with
parallel bit streams

Committee: Chair: Arrvindh Shiraraman
Associate Professor, Computing Science

Robert Cameron
Supervisor
Professor, Computing Science

Yuepeng Wang
Committee Member
Assistant Professor, Computing Science

Keval Vora
Committee Member
Assistant Professor, Computing Science

Tianzheng Wang
Committee Member
Assistant Professor, Computing Science

Anders Miltner
Examiner
Assistant Professor, Computing Science

ii



Abstract

Studies have shown that it is possible to boost the efficiency of text processing by carefully
eliminating branches as well as reducing branch mispredictions and cache misses, which can
be achieved with a few techniques, such as the use of Boolean algebra to reduce pointer-
chasing in data structures and to abstract branching. With current advances in technology,
vector extensions (SIMD) have been added to commodity processors and have allowed the
creation of new algorithms that are able to accomplish the non-trivial task of parallelly
processing streams in Gigabytes per second. The Parabix framework exploits the concept of
parallel bit streams to take even more advantage of SIMD instructions by transposing and
processing streams in batches. This study focuses on using Parabix to boost the efficiency
of JSON parsing for Big Data.

Keywords: JSON parsing; parallel parsing; Parabix; stream processing; high-performance
text processing; SIMD
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Chapter 1

Introduction

With the advances in technology and Big Data, most out-of-factory commodity processors
(Intel, AMD, ARM, POWER) include vector extensions that can speed up data processing.
Many popular data processing algorithms have become obsolete because they do not scale
well as data grows bigger and, because of that, leveraging vector instructions is becoming
a more active trend [11, 16, 23, 30].

Considering stream processing tasks such as parsing, querying, and data analysis for
Big Data, it is essential that algorithms keep up with the input size as it increases, however
many out-of-the-box algorithms that are in charge of said tasks often fail, for example,
built-in parsers for streams in frameworks, system libraries [6] and data analysis tools for
relational and non-relational DBMSs [13]. This happens because most of these algorithms
are of sequential nature [28, 3, 22] and need to sacrifice efficiency by either (i) processing
one item at a time in a sequential manner or (ii) processing multiple items at a time and
getting penalized with synchronization in a multithreaded manner, for example, querying
for multiple names in a database can easily be done in parallel, however, parsing a JSON
document can be extremely difficult because of its sequential nature.

JSON (JavaScript Object Notation) is a lightweight text format that is able to represent
data that can be interchanged in the Web with a language-independent syntax [7]. It was
first created to represent objects in JavaScript (ECMAScript programming language) but
it has largely been used in the tech industry because of its simplicity. JSON has a very
straightforward grammar and can easily represent structured data as it only has 4 terminal
types {string, number, boolean, null} and 2 composed types {array, object}, where an array
starts with a ‘[‘, ends with a ‘]‘ and can have any number of both terminal and composed
symbols separated by ‘, ‘, and an object starts with ‘{‘, ends with a ′}‘, but differs from array
because they are key-value properties with the key always being a symbol of type string

and the value being any of the other valid symbols (terminal or composed types) separated
by ‘, ‘ and having its keys separated from their respective values with a ‘ : ‘. That is to
say, JSON’s simplicity makes structured data very easy to be abstracted, however, because
its grammar is context-free §2.2, parsing documents written in this format has sequential
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nature and can make the task of parallelizing instructions very difficult, for example finding
an object depth. Despite that, we show in later chapters that we can still parse most of it
in parallel by finding and exploiting regular sub-grammars inside its grammar.

This is where SIMD comes along. SIMD stands for Single Instruction Multiple Data and,
as its name suggests, a SIMD instruction is capable of processing multiple items of data with
a single instruction rather than one individual item per instruction. In this thesis, whenever
not specified otherwise, item means the smallest unit that can be computed by a processor
(a.k.a byte or i8). What this means is that on a 64-bit architecture that includes SSE2 (128-
bit vector extension), we can process 16 items with a single instruction (16 × i8). On the
same machine, we can only process one item at a time using traditional instructions (1× i8,
1×i32, etc). If we were parsing a text byte-by-byte, this is sixteen times more data processing
with a single instruction and, if we were talking about AVX512 (512-bit vector extension),
that would mean sixty-four times (64× i8) more data processing with a single instruction.
The current trend in hardware is to increase the SIMD vector width, which can provide
immediate benefits to vectorized programs that traditional byte-at-a-time programs cannot
leverage. Needless to say, there seems to have a tendency where the best text processing
programs [16, 30, 21, 9, 23] are the ones that are able to leverage both vector extension
instructions and multithreading without adding too much complexity and synchronization
time, and although, solving this efficiency-and-size problem such that algorithms are scalable
can be fairly straightforward to be implemented when these algorithms are of parallel nature,
they can be extremely difficult to be implemented when these algorithms are of sequential
nature. In consequence of that, research has been done around frameworks, such as Parabix
[25], that can be used as transparent as possible by programmers without jeopardizing the
program’s maintenance and parallelism.

Parabix (Parallel Bit Streams) is a framework and toolkit that allows applications to
benefit from modern SIMD instructions. Previous works [1, 3, 4, 6] show that Parabix is
scalable and works well for large-sized data. Its key is based on the transposition of byte-
oriented data into parallel bit streams. This way, in a 64-bit machine, Parabix is able to
process 64 bytes at a time rather than 64 bits (per processor), and as the architecture
block width increases, so does the number of processed bytes at a time, in a linear fashion.
Most existing applications of Parabix are related to text processing, such as XML and CSV
parsing, data compressing and hashing at rates greater than 1 Gigabyte per second. Outside
Parabix, Lemire and Sautot (2018) show that it is also possible to SIMDize operations in
algorithms for database systems and applications for Business Intelligence and Big Data [8],
proposing a new design of an algorithm that maximizes compressed indexes using SIMD.

This research involves the identification of regular sub-grammars within the JSON gram-
mar (§2.1) that can leverage Parabix’s multi-core scaling and full-SIMD-vectorization sup-
port for bitwise data parallelism to improve JSON overall parsing performance. At the end,
we compare and contrast the performance of the solution here proposed against algorithms
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for parsing, such as simdjson, yyjson and RapidJSON, which are, to our knowledge, the
top-3 best parsers that currently exist. Chapter 2 explains the background of this research
and related work, as well as details how we identify regular languages within the JSON
grammar. Chapter 3 goes in depth into the design and implementation of the work here
presented. Chapter 4 evaluates the experiments that were performed and compares their
results. Chapter 5 presents applications that could benefit from this work, and finally, con-
cludes and discusses future works.
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Chapter 2

Background

2.1 Grammars

In language theory [4], a grammar G is defined to be a set of production rules that describe
how to form syntactically valid strings in G with a given alphabet A. To illustrate that,
let grammar G be defined by the set of production rules: G→ cG′ and G→ b or simply
G→ cG′ | b , where G′ is a recursion of G. The alphabet A in this example consists of

only b and c, such that valid strings in G are cccb, cb, b, . . . , ccccccb, etc. Figure 2.1 shows
what a parse tree representation of G looks like for the string cccb. In G, b and c are said
to be terminal symbols, G′ is said to be a non-terminal symbol, since it recurses and, all
strings that are formed with G are valid sentences that define a language L.

According to Chomsky (1959), a grammar can be compared to a device that is able to
enumerate sentences of a language L, where L is a collection of sentences of finite length con-
structed from a finite alphabet A of symbols. Chomsky mentions [3, 4] that the first step in
the linguistic analysis of any language L is to define a finite system that gives the representa-
tion for its sentences and divides grammars in 4 types: type 0 ⊇ type 1 ⊇ type 2 ⊇ type 3
— figure 2.2, where type 0 are essentially Turing machines, both type 1 and type 2 are sys-
tems that can describe phrase structure and type 3 can describe finite automata. In his
famous Theorem 2 (1959), he defines every recursively enumerable set of strings to be a
type 0 language.

G

c G′

c G′

c b

Figure 2.1: Parse tree representation of string cccb for grammar G
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recursively enumerable

content-sensitive

context-free

regular

Figure 2.2: Chomsky hierarchy

In other words, type 0 is a superset that includes all recursively enumerable grammars
G ∈ type 0 that can use a Turing machine [27] to describe and enumerate sentences of any
language Ltype0, type 1 represent the set of all context-sensitive grammars G ∈ type 1 that
can use a linear bounded automaton [19, 14] to describe and enumerate sentences of any
language Ltype1, type 2 is set of all context-free grammars G ∈ type 2, such that a non-
deterministic pushdown automaton [10] can be used to describe and enumerate sentences
of any language Ltype2, and finally type 3, which is the set of all regular grammars G ∈ type

3 that a finite state automaton [24] can describe and enumerate sentences of any language
Ltype3.

That is to say, this research benefits from the fact that every context-free grammar is
a superset of a regular grammar, since type 2 ⊇ type 3 , and further sections explain why
this is relevant to the work here described.

2.1.1 Regular Grammars

Kleene’s Theorem [12] defines regular grammars to be grammars that describe languages
that can be decided by finite state automata and that can be expressed by regular expres-
sions, which is an alternative way to express such regular grammars.

Regular grammars are either right-regular or left-regular. While right-regular grammars
have production rules in which all non-terminal symbols are on the right-hand side of each
of its productions, left-regular grammars have production rules in which all non-terminal
symbols are on the left-hand side of each of its productions, and in case a grammar G has,
at the same time, right-regular and left-regular rules, then this grammar is no longer regular
[4]. For this reason, regular grammar restriction rules require that (1) all production rules
have at most one non-terminal symbol and (2) that this non-terminal symbol is always
the leftmost or the rightmost symbol. G→ aB | b and F → Ba | b are examples of
right-regular and left-regular grammars, respectively.
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Regular expressions

Regular expressions are a sequence of characters that are able to represent regular languages.
They were first described by Kleene (1951) when he created a mathematical notation called
regular events that was used to express regular languages using only mathematical sym-
bols. Nowadays, most string-searching algorithms use regular expressions as a mean to find
patterns in text streams with the POSIX notation, where:

• Individual characters represent themselves unless they are one of the special characters
*+-?[]{}\()|^$. which have to be escaped with a backslash symbol in order to be

treated as literal characters. For example, the regular expression \. represents the
literal character dot whereas the regular expression . represents the wildcard pattern
which matches any single character.

• Character class operators [] can define matching pattern classes that allow any
character of a given class to be matched, for example, class [axZ] matches strings
a , x and Z . Consecutive ranges can use the character hyphen as a shorthand for

a class range, for example [abcdefg] can be written as [a-g] .

• Multiple subpatterns concatenate, for example [ab][cd]e matches strings ace ,
bce , ade and bde .

• Alternation operator | allows patterns to have alternative forms, for example ab|cd

matches strings ab or cd .

• Repetitions operators *+{} can define the number of occurrences of the previous
pattern, where the operator * represents zero-or-more occurrences, the operator +

represents one-or-more occurrences and {} specify a variable number of occurrences,
for example a{3} matches string aaa , a{2,4} matches strings aa , aaa , aaaa

and a{2,} matches strings aa , aaa , aaaa , ...

• Optional operator ? represents zero-or-one occurrence of the previous pattern, for
example a?b matches strings ab and b .

• Parentheses () may be used to change the precedence of elements and to create
subpatterns.

• Characters ^$ may be used to search for patterns in the beginning or end of a line,
respectively, in line-based searches.

With Thompson’s algorithm [26] it is possible to convert a regular expression of length
m into a nondeterministic finite automaton (NFA) with O(m) states making it possible to
search a text of length n in O(mn) time. Converting a nondeterministic finite automaton
(NFA) to a deterministic finite automaton (DFA) can be more efficient for some cases, as
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A

( )
AA

(

A
)

a

b

Figure 2.3: Parse tree representation of string ((a)b) for grammar A

DFAs have only one active state at any time and therefore searching a text of length n only
takes O(n) time, however, this conversion can result in state explosion as the DFA states
may increase exponentially. Because of that, much work has been done around improving
NFAs algorithms, such as Shift-Or algorithm [20] and its variations, which use the bitwise
operations to simulate an NFA and are able to search a text of length n in O(mn

w ) time,
given a w-bit word. Another example is the algorithm described by Cameron et al. [11],
which uses a data-parallel approach to simultaneously process data streams that are viewed
as large integers with bitwise logic, stream shifting and addition, making it more efficient
than the other approaches as they are performed byte-at-a-time.

2.1.2 Context-free grammars

Context-free grammars describe context-free languages. While every regular grammar is
context-free, not every context-free grammar is regular. A simple way of defining context-free
grammars is to think of the concept of regular grammars and add the fact that in context-
free grammars, we can have non-terminal symbols anywhere in the production rules of a
grammar G. A classic problem that is context-free but not regular is the bracket matching
problem, for example A→ (A) | AA | b | a . See that the production rules (A) and
AA are neither right-regular nor left-regular, but they are still valid CFG production rules.

Figure 2.3 illustrates the tree parse representation of string ((a)b) that can be validated by
grammar A.

The main difference between context-free grammars and regular grammars is that reg-
ular grammars only have access to its current state, and therefore, when it chooses a new
state, all information about past states is lost, however, because CFGs can be recognized
by pushdown automata, a stack may be used to manipulate and save information about
previous states and decide which direction to take. That is to say, regular grammars have
a more straightforward way of validating their production rules state-by-state in parallel,
whereas CFGs are much harder to do the same as they usually compute non-terminal states
depth-by-depth partially by keeping fragments of information in the stack until a terminal
symbol is found and once it does, it recurses so that the partial computation is complete.
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2.2 JSON grammar

JSON [7] stands for JavaScript Object Notation and although it was first intended to be
used as a way to create and represent objects in JavaScript, its popularity has grown quite
a lot as a text format to interchange data in the Web because of how easy it is to represent
structured data with it. Nowadays, if two applications communicate with each other through
the Web, chances are they are communicating through JSON.

JSON has a very simple context-free grammar and can easily represent structured data as
it only has 4 terminal types {string, number, boolean, null}, and 2 composed types {array,
object}.

Below is the context-free grammar for JSON:
Json → Value
Object → { } | { Members }
Members → Pair | Pair , Members
Pair → String : Value
Array → [ ] | [ Elements ]
Elements → Value | Value , Value
Value → Object | Array | string | number | boolean | null

JSON specification requires string values to be defaulted with UTF-8 format, number

values to be any valid long integer or double precision, including scientific notation, boolean

to be represented by keywords {true, false}. Special keyword null can be used to represent
the non-existence of values.

2.2.1 Parallel approach for JSON tokenization

Because JSON’s grammar is simple, its tokenization process can be totally done in parallel
because only a few rules must be followed: (1) we must find strings before any other tokens
as they can be escaped, (2) we must find valid token breaks such as terminal symbols and
whitespace characters so we can find token boundaries, (3) we must find keywords and
numbers, and finally, (4) we must validate if all tokens are valid tokens.

Strings

Strings start and end with double quotation marks (”) and accept any valid printable and
non-printable characters, however in some exceptions those characters must be escaped,
for example, if your string content contains a symbol ” , you must use a backslash char-
acter preceding it \” . Backslash characters can escape themselves with the use of \\ .
Strings are by far the most complex tokens in the JSON grammar because, as mentioned,
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they can include any number of escaped double quotation marks as well as valid symbols
{ } [ ] : , numbers, whitespace and unicode characters.

Although not very intuitive at first, the presence (or absence) of backlash characters
define string delimitations as they may escape double quotes. As well explained by Lemire
(2019), only an odd sequence of backlash characters define an escaped quotation mark:

• ”seq 1 \\\” seq 2 \”” is a valid string because all backslash sequences are odd
and therefore all ” are escaped properly inside the double quotation delimiters.

• ”\\”” is not a valid string because the backslash sequence is an even number – please
remember that backslash characters escape themselves – and therefore this example
contains an extra ” .

After we eliminate all escaped quotes, the remaining quotes are all delimiters and we
can easily mark all string spans in parallel as shown in §3.3.2. Finally, we validate all strings
to make sure they are valid UTF-8 strings and filter them out from the initial input so that
we can find the remaining tokens.

Symbols

Tokenizing symbols is a trivial task as we only need to create one marker for every individual
character { } [ ] : , - that is not contained in a string span. The same happens for
whitespace characters (space, tab and line break). These characters are used later in the
process of tokenizing the remaining tokens.

Keywords

We only have three keywords in JSON: null, true and false. Because the length of these
keywords does not vary, we can create individual markers for every single character ki that is
contained in them, that is, characters truefalsn . We realize that these keywords are also
a concatenation of valid sub-regular expressions formed by some of characters k1, k2, ..., kn.
As described by Cameron et al. (2014), in this case we create a marker stream mi, for each
subexpression ki, where i ∈ 1...n. Set bits in marker mi represent matching positions for
subexpression ki in input stream s. Once every subexpression ki is processed, we apply a
concatenation step in marker streams from left to right (starting from m1), where we shift
stream mi forward by one bit and perform a bitwise-and with stream mi+1. This sub-result
is then used to check marker mi+2 and so on until we check all markers up to mn, thus,
we repeat this process n − 1 times in order to create a final result stream with matching
positions for keyword k. At every step, we also create an error stream emi(mi+1) to help us
identify steps where something may go wrong by applying a bitwise-xor between advanced
stream mi and mi+1. At the end of this step, we join (bitwise-or) all these error streams
as a final error stream. In case of no errors, the current marker stream is shifted forward
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to represent a valid expression, which is an end position of a keyword. Finally, as we know
the length of each of our keywords k ∈ { true, false, null }, we can easily find the begin
position (based on the end position) and create full spans for these tokens.

Numbers

Tokenization for numbers is slightly more complex than the keywords one because the regu-
lar expression for JSON numbers is −?(0|[1− 9][0− 9]∗)(.[0− 9]+)?([Ee][+−]?[0− 9]+)? .
Just like tokenizing keywords, this expression heavily relies on concatenation of subexpres-
sions, however, now we have other subexpressions with repetitions given by symbols * and
+ as well as optional subexpression given by ?. Borrowing Cameron’s algorithm (2014) one
more time, we have:

• Concatenation of subexpressions and generation of error streams for them is done as
described in the previous subsection (Keywords).

• If the expression r is a repetition of a character class expression of form C∗, then we
find the first occurrences of character class C in input stream s and current marker m

(if any) by applying C’ = Advance(∼C, 1) & C & m . Finally, we use the ScanThru
operation [11] to find the immediate valid position that marks the following bit after
the end of pattern C∗ if that pattern exists, or zeroes otherwise, that is, no occurrences
of C found. The new marker m′ is defined by m’ = ScanThru(C’,C) | (C’⊕m) and
represents a new valid marking position for r. Note that because the Kleene star (∗)
operator can have zero or more occurrences, no error streams need to be created for
this case.

• If the expression is a repetition expression of form R+, then it gets converted into the
concatenation of form RR∗. In this case, an error stream is created to make sure the
first R always exists.

• If the expression r is an optional expression of form R?, the output marker stream is
the bitwise-or of the stream with zero occurrences of R matched and the output stream
produced by compiling R with one occurrence of R matched and shifted forward. Note
that we do not create any error streams here as optional expressions always match
the input because they can have zero or one occurrences.

• At the end, we join all error streams that are given by the concatenation of subex-
pressions and + operator. If the final stream has any of its bits set, then s is not a
valid string for G, otherwise, if all bits are zeroes, s is a valid string for G.

It is important to notice that the original algorithm [11] is not intended for tokenization
– it only marks any valid occurrences for a given regular expression, so we had to modify
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it to get number spans: we find all occurrences of a number after a dot . and after one
of eE characters, remove them, and finally, find the first digit b of the number token that
should always be a - or a number [0-9] . We always make sure that the first digit b is
after a token break character. Likewise, we had to mark the last digit e of the number so
we could create a span from begin to end. This was done similarly to the way we find b,
only now we find the last digit e that is followed by a non-number that is not a . , eE or
+- . In the end, we create a span from b to e and any possible errors are marked in error

streams that were described in the steps above.

Token breaks and validation

After excluding string spans from our input, token breaks are generated by the rules de-
scribed below for a pair of consecutive characters:

• Whenever a white space character is followed by non-whitespace or vice versa.

• Any occurrence of the individual tokens { } [ ] : , after any other character.

Previous subsections explain how each type of token is validated and §3.3.3 gives an
overview on how we keep only valid bytes before the tokenization process.

2.2.2 JSON syntactic parsing

Creating parsing algorithms for a context-free grammar G can be done by finding regular
sub-grammars in G that can be SIMDized in parallel (similar to what is described in §2.2.1).
Once we have marked the positions of tokens in a given grammar G, we can either (1) process
the CFG parts sequentially by using a stack, or (2) we can find the total depth dMAX of
G and its regular sub-grammars and, for each depth di, i ∈ (0, dMAX), run the parsing
rules for G in a parallel manner. In the end, the algorithm returns true if every depth di is
valid, and false otherwise. Approach (2) is what we implement in this thesis. The complete
details for this algorithm can be found in §3.4.

2.3 Parabix — Parallel bit streams

Parabix is a highly scalable framework that works very well for text/stream processing [25].
Lin et al. (2012) mention that the fundamental difference between the Parabix framework
and traditional text processing models is how Parabix represents the source data: it trans-
poses k-bit streams into k-separate bit streams. This way, for example, in an SSE machine,
where the block width is equal to 128 bits, Parabix is able to process 128 bytes at a time;
in an AVX2 machine, Parabix is able to process 256 bytes at a time and in an AVX-512
machine, Parabix processes 512 bytes at a time. The reason why Parabix scales well is be-
cause as the block width increases, the more bytes it can process at a time. Table 2.1 shows
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Table 2.1: Tradition models for text/stream processing
hello .11.1... .11..1.1 .11.11.. .11.11.. .11.1111

Table 2.2: Parabix’s model for text/stream processing
h e l l o

b7 . . . . .
b6 1 1 1 1 1
b5 1 1 1 1 1
b4 . . . . .
b3 1 . 1 1 1
b2 . 1 1 1 1
b1 . . . . 1
b0 . 1 . . 1

the representation of the string hello in traditional text processing models and table 2.2
shows the same representation using parallel bit streams in Parabix.

On table 2.2, we see that the byte stream for the source hello was transposed, and
instead of using the traditional one-byte-array model for ASCII characters, the source is
transposed into 8-completely-separate bit streams b0 through b7, representing whether or
not that bit is set for each one of the bytes of the source. This characteristic makes the
Parabix framework very unique if compared with other stream representation models. In
Parabix, for the most part, branching is abstracted using Boolean operations, and because
it handles bits rather than bytes, it uses a large number of Boolean operations which cost
only a few cycles to fully run in parallel in SIMD architectures. It is also built as an LLVM
frontend so the final assembly generated is as fast as the current state-of-the-art techniques
for compilers.

2.3.1 SIMD — Single Instruction Multiple Data

Parabix relies a lot on SIMD instructions and vector extensions as a mean to parallelize
stream processing. SIMD stands for Single Instruction Multiple Data [8] and is a type of
instruction that has been added to various architectures (Intel, AMD, ARM, POWER) in
order to perform parallel processing on multiple data points simultaneously, that is, SIMD
instructions allow processors to process more data at once. While traditional instructions
may not completely use a register, SIMD instructions do not waste space. For example,
when we load 8 bits in a 64-bit register with a traditional instruction, 56 bits of that
register are unutilized, but the same is not true for SIMD. To better picture this, imagine
we have an array with 8× i8 integers arr = [0,10,20,30,40,50,60,70] and we want to
add 2 to each of these integers. Below is how we would do it using traditional versus SIMD
instructions (64-bit architecture):

// Traditional
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1: for each c in arr do
2: arr ← arr + 2
3: end for
4: // result is arr = [2, 12, 22, 32, 42, 52, 62, 72]

// SIMD
1: arr ← simd_add_i8(arr, 2) // every architecture has their own instrisics
2: // result is arr = [2, 12, 22, 32, 42, 52, 62, 72]

As you can see above, while traditional algorithms need eight instructions to add a value
to 8 integers of type i8 in an array, SIMD only uses one instruction as it is able to process
multiple data with a single instruction.

2.3.2 StreamSet

Inside the framework, a StreamSet is a memory buffer that represents a set of bit streams
that can be read/written by kernels for means of data transfer and are abstracted to be
of infinite length. Tables 2.1 and 2.2 have two examples of StreamSets. Table 2.1 can be
defined as a stream set consisting of a single stream of i8 values (1 × i8) and the second
StreamSet, in table 2.2, can be defined as a stream set of eight streams of i1 values (8× i1).

2.3.3 Marker Streams

Marker streams are StreamSets §2.3.2 that mark positions where their bits are set, that is,
a stream that has no matches is comprised of all zeroes (all bits are unset) and a stream
that matches all bytes is comprised of all ones (all bits are set). For example, 1..11.. is
the marker stream for any letter ‘a’ in input abcaaef .

2.3.4 Kernel

A Parabix kernel can be abstracted as a black box (or function) that can be either stateful
or state-free and that has StreamSets as inputs and outputs and can communicate with one
another throughout the Pipeline with the use of StreamSets, but they cannot change the
behavior of external kernels. The example in §2.4 is a Parabix kernel that finds digits [0−9]
for a given StreamSet.

2.3.5 Pipeline

In Parabix, a pipeline is what defines the data flow among kernels in a multi-threaded
linear pipeline manner [17], which guarantees that the flow of data goes from prior to
subsequent kernels as data is available, and divides every kernel’s lifecycle into three stages:
initialization, segment-processing and finalization. Initialization is the stage where kernels
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Input MMapSourceKernel S2PKernel DigitKernel

fileDescriptor codeUnitStream u8Basis digits

Figure 2.4: Pipeline for finding digits [0− 9] in source stream

are allowed to make internal configurations or allocation for the work that will be done,
segment-processing is the stage where the actual work is done, for example finding digits
[0 − 9] in input StreamSet, and finalization is the stage where kernels can release any of
the memory that was allocated during initialization [18]. Figure 2.4 represents a pipeline
for §2.4, where MMapSourceKernel takes a fileDescriptor scalar as input and returns a
stream of code units and passes it as input to kernel S2PKernel, SP = serial to parallel,
that returns the representation of the input as 8-completely-separate bit streams, just like
the representation on table 2.2. Finally, DigitKernel takes an u8basis stream and marks
positions in the stream where the ASCII character is one of the digits [0− 9].

2.4 Parabix character class compiler

The Parabix framework includes a character class compiler that optimizes Boolean oper-
ations for regular expressions. It uses a large number of binary Boolean operations and,
or, xor, and not (which can be expressed by XORing the input expression with ones) as
described in previous works [25, 11, 5].

Within the framework, it is possible to get the least amount of Boolean instructions
necessary for computing a character class. The character class compiler is used to auto-
matically produce bitstream logic for all the individual characters (such as delimiters) and
character classes (digits, letters, etc...) used in a particular application. To illustrate that,
imagine we want to compute the digits character class [0− 9] . With only a few Boolean
operations, it is possible to determine whether or not (ASCII) digits are contained within
a stream:

Input: [0− 9], binary form [00110000− 00111001]

Output:
temp1 = b0 | b1

temp2 = b2 & b3

temp3 = temp2 & ∼temp1

temp4 = b5 | b6

temp5 = b4 & temp4

is_digit = temp3 & ∼temp5
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The code above computes the bit logic necessary to identify whether an ASCII character
is part of the digits character class [0− 9] . In general, we see that the approach used in
Parabix is much faster than conventional ones. Counting all Boolean operations that were
outputted (including two nots), Parabix only needs 8 instructions per block to mark all
the positions of all the digits in the source stream with 1 bits. Note that Parabix processes
block-width-bytes at a time, as mentioned previously. Therefore, in an AVX-512 machine,
with only 8 instructions, Parabix is able to process 512 bytes at a time and output the
marker stream for digits. That is much faster than traditional algorithms that are likely
to only process one byte at a time with the comparison if (c ≥ ’0’ and c ≤ ’9’) . In
better algorithms that use SIMD parallel power, in an AVX-512 machine, you can compare
64 bytes at a time, which is still 8 times less than Parabix at a higher cycle rate and
branch mispredictions. The digit character class is a relatively simple case, but for more
complex cases of character classes, Parabix usually still does much better than traditional
approaches.

2.5 Related works

2.5.1 Parabix icgrep and XML parser

Cameron et al. (2008) prove that using the bit-stream model on SIMD can considerably
improve the parsing of regular language bits within context-free grammars [9]. In their work,
they present an XML parser as a case study, which is prior to the Parabix framework, that
is able to leverage from SIMD capabilities and dramatically improve XML parsing time.
Later in 2015, Cameron et al. write a case study in the Parabix framework named icgrep
[5], which is a tool for searching plain-text data that was created to compete with the
standard Unix grep. icgrep is shown to have a very good performance for regex matching.
It does so by optimizing regular expressions using Parabix’s character class compiler, which
is explained in §2.4.

2.5.2 simdjson

Langdale et al. (2019) created a JSON parser named simdjson that achieves impressive
parsing rates [15]. simdjson uses optimized bit logic that reduces the total number of
cycles and avoids branching mispredictions and cache misses while parsing a JSON file. In
their approach, they are able to improve JSON parsing time by breaking down parsing into
two passes (most traditional algorithms only do one pass). In the first pass, they validate
character encoding and find the starting location of all JSON nodes and, in the second
pass, they process all nodes and structural characters in parallel with the use of SIMD
instructions.
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2.5.3 yyjson

Yyjson is an extremely performative parser for JSON compatible with C89. Lemire (2020)
mentions that yyjson could be used in the future as a fallback for simdjson, since it works
well on operating systems that have access to SIMD instructions as well as on operating
systems that do not support SIMD, and for a few cases, yyjson can be faster than simdjson.
Yyjson relies on a 128-bit tape to keep information of each JSON node in a document, where
the higher 64-bits represent metadata related to the current node and the lower 64-bits keep
the address to the next node. All values for nodes in yyjson are kept in another contiguous
memory area.

2.5.4 Mison

The Mison parser [29] is based on a parallel algorithm using SIMD that leverages the fact
that Data Analytics applications typically only use only a certain number of fields in a
JSON document, removing the need to validate the full document. Mison first builds a
structural index and then speculates on the schema to directly jump to the position of the
requested field, avoiding parsing irrelevant fields. Mison’s design is based on the assumption
that JSON data has limited structural variants and the position of a field can be quickly
determined with SIMD instructions, since finding the exact position of a JSON field in a
JSON record can be done by looking at only a few delimiter characters such as : .

2.5.5 Current research on other data format types

Although the use of parallel algorithms with SIMD in commodity processors has shown
great results in parsing data formats such as JSON and CSV, there seems to exist a lack of
research related to other less popular data formats, such as YAML. It is worth noting that
the creators of simdjson, Geoff Langdale and Daniel Lemire, have also researched a CSV
parser that follows the principles of simdjson. Likewise, Parabix has conducted research on
parallel algorithms for parsing XML and CSV parsers. Aside from these, most papers on
this topic are related to Data Analytics [2, 23, 29]. One reason for the small amount of
research on parsing other data formats is that JSON and CSV parsing are currently hot
topics because of their popularity, however, this presents an opportunity for researchers to
develop and improve parsers for other data formats such as YAML and XML, which could
benefit a range of applications in the industry.
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Chapter 3

Design and Implementation

The JSON parser here presented heavily relies on the use of Parabix’s SIMD extensions
and multithreading support. In this parser, we divide the parsing process into four differ-
ent stages: bitwise transposition of input data, tokenization, syntactical analysis and error
processing:

• In stage one, we prepare and process our input in parallel by receiving a (scalar) file
descriptor and transposing the basis stream, that is, the source input, into 8 separate
bit streams that represent the bits 0 through 7 of every corresponding byte in the
input, as described in §2.3, and feed that to our next group of kernels that are in
charge of validating and classifying bytes.

• Stage two is in charge of validating and tokenizing bytes from the output stream of
stage one. This stage can be broken down into two phases, where phase (1) is respon-
sible for finding string spans starting and ending in double quotes (”) and checking
whether the source stream is contained of only valid UTF-8 characters and phase
(2) is responsible for classifying all other (valid and invalid) symbols and structural
characters that are not inside string spans from phase (1). The output of stage two is
a stream that marks all combined lexemes in the source stream and their respective
spans.

• In stage three, given marking positions of structural characters {, [, ], } and a max
depth constant dMAX , we find the nesting depth of the JSON document and parse
both terminal symbols, objects and arrays in parallel, as shown in §3.4 and §3.6.

• Finally, stage four merges all error streams and checks if the final error stream contains
any errors. If any of the bits in the final error stream is set, we have a parsing error in
the document, for instance, an invalid character, otherwise, the document is a valid
JSON document.
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Figure 3.1 shows what the Parabix pipeline for this solution looks like, where the pipeline
P is a DAG and every kernel k is a node with incoming edges that represent its input streams
and with outgoing edges that represent the output streams it produces.

Further sections explain every kernel’s responsibility and how the pipeline processes
their work in parallel.

3.1 Data parallelism among kernels

As discussed by Medforth (2022) and described in §2.3.5, Parabix’s kernels are encapsulated
in a multi-threaded linear pipeline — figure 3.1 shows the complete pipeline for the JSON
parser —, which means that the data flows from prior to subsequent kernels once per
segment such that the data is processed in parallel and the number of L2 cache misses is
minimized, which means that the fewer data dependencies, the faster it gets.

This characteristic in Parabix differs greatly from other solutions that parse JSON in
parallel, such as simdjson [15], which parses the JSON input in two separate passes, one
after the other. In other words, because the work in Parabix is done segment by segment,
we are able to process kernels in a multi-threaded environment and parallelize data as much
as possible, whereas the same is very hard to do in a solution where data partition is not
well-defined and the pass inputs depend on another pass’ outputs.

3.2 Bitwise transposition of input data

3.2.1 MMapSourceKernel and S2PKernel

Most tools in Parabix need these two kernels as they are in charge to transpose the input
from serial to parallel bitstreams and serve as base input to all other kernels [9]. For a brief
explanation on how that works, check §2.3.

3.3 Input validation and classification

3.3.1 UTF-8 validation

Cameron (2008) shows that with about 0.5 cycles per byte, parallel bit streams instructions
can be used to identify characters that are invalid in UTF-8 [1, 9], so we use that work to
verify whether the input contains only valid UTF-8 characters. In figure 3.1, the kernel in
charge of UTF-8 verification is ValidateUTF8 kernel.

3.3.2 Finding string spans

Because all keys in JSON objects are strings, the majority of nodes in JSON documents
are comprised of strings (both keys and values), thus, finding string spans before processing
other symbols and parsing the JSON document is of extreme importance as we are able
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Figure 3.1: JSON parsing with Parabix
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to filter out most of the document nodes and parse the rest (non-string nodes) as fast as
possible.

In fact, with only a few operations in Parabix, it is possible to create a kernel that finds
all valid string spans in a JSON document in parallel. Take a look at the algorithm below:

Input: basis stream
Output: string markers and spans

1: dQuote← MakeByte( ” )
2: backslash← MakeByte( \ )
3: even← Repeat( 0xAA )
4: odd← Repeat( 0x55 )
5: backslash1st ← Advance( ∼backslash, 1 ) & backslash

6: backslasheven ← backslash1st & even

7: backslashodd ← backslash1st & odd

8: escapedeven ← ScanThru( backslasheven , backslash ) & odd

9: escapedodd ← ScanThru( backslashodd, backslash ) & even

10: strmarker ← dQuote & ∼( escapedeven | escapedodd )
11: strspan ← InclusiveSpan( strmarker )

To find all string spans and markers, first we tell the framework to mark all positions of
valid double quotes (”) and backslashes (\) and to store the results in streams dQuote and
backslash, lines 1 and 2, respectively. After that, we need to find all quotes that are escaped
by backslashes (\”), which can be done by creating even and odd constant streams (0xAA
= 0b10101010 and 0x55 = 0b01010101) that are repeated to have the same length as the
initial basis input. Considering a sequence of backslashes, if an odd-bit starting sequence
ends on an even bit position or if an even-bit starting sequence ends on an odd bit position
(lines 3 − 9), where the next character is a double quote, that double quote is escaped
and therefore we filter it out, creating a final stream of only valid double quotes (line
10), that is double quotes that are not escaped. Finally, with string markers representing
only valid quotes, we are able to create string spans with the inclusive span operator (line
11). Example: inclusiveSpan( .1.1...1...1 ) = .111...11111. Figure 3.2 shows an example of
execution of the StringMarker kernel.

3.3.3 Marking valid bytes

Once we validate our input and have string span positions, with the output of StringMarker
kernel, we are able to filter out our streams, described in §3.3.2, and check for other valid
symbols outside the string spans.
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basis { " \ " e x a m p l e \ \ \ " " : " x D " }
dQuote . 1 . 1 . . . . . . . . . . 1 1 . 1 . . 1 .

backslash . . 1 . . . . . . . . 1 1 1 . . . . . . . .
even . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
odd 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .

backslash1st . . 1 . . . . . . . . 1 . . . . . . . . . .
backslasheven . . . . . . . . . . . 1 . . . . . . . . . .
backslashodd . . 1 . . . . . . . . . . . . . . . . . . .
escapedeven . . . . . . . . . . . . . . 1 . . . . . . .
escapedodd . . . 1 . . . . . . . . . . . . . . . . . .

strmarker . 1 . . . . . . . . . . . . . 1 . 1 . . 1 .
strspan . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 .

Figure 3.2: Creating string spans with StringMarker kernel

As mentioned before, after filtering out string spans, only a few characters are valid
outside these spans, where they can only be either structural characters (curly braces,
square brackets, colon and comma) or part of valid lexemes of keywords and numbers
(§3.3.4), for example, ’t’, ’r’, ’u’, ’e’, that together represent the keyword true. Thus, this
kernel (ClassifyBytes) is a very simple kernel that uses Parabix to mark the positions of
single characters by using built-in function makeByte as shown on §3.3.2 and has only two
tasks: (1) to mark all valid characters that are not inside string spans and (2) to find any
characters that are neither structural characters nor part of valid lexemes.

3.3.4 Finding keyword and number spans

Immediately after we classify the rest of the bytes (§3.3.3) that are outside the string spans,
we are able to mark the span positions of keywords true, false and null, as well as to find
numbers that are matched with regex −?(0|[1− 9][0− 9]∗)(.[0− 9]+)?([Ee][+−]?[0− 9]+)?
(§2.2.1). At the end of this step (kernels keywordEndMarker, NumberSpan and FindKwAn-
dExtraChars), we have all stream markers and spans that are needed to represent JSON
symbols (structural characters, strings, numbers and keywords) and we are able to proceed
to the next stage, syntactical analysis, which is discussed in §3.4.

3.4 Syntactical analysis

As mentioned in §2.2, JSON has a very straightforward grammar, and in fact, depending on
the language, a byte-by-byte parser for it can be easily done with around 100 lines of code,
however, when done in parallel, it can be quite challenging. That is to say, we break down
the syntactical analysis in two steps: (1) finding the nesting depth of the JSON document
with a given max depth dMAX and (2) parsing JSON nodes given the nesting depth of
characters in the document. Further subsections demonstrate how the kernels are divided
for both steps (1) and (2).
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Bracket Stream . . . [ . . { . } . . { . . . [ . [ . ] . . ] . . } . . . ] . . .
Nesting Depth 0 0 0 1 1 1 2 2 2 1 1 2 2 2 2 3 3 4 4 4 3 3 3 2 2 2 1 1 1 1 0 0 0

L . . . 1 . . 1 . . . . 1 . . . 1 . 1 . . . . . . . . . . . . . . .
R . . . . . . . . 1 . . . . . . . . . . 1 . . 1 . . 1 . . . 1 . . .

ND BixNum[2] . . . . . . . . . . . . . . . . . 1 1 1 . . . . . . . . . . . . .
ND BixNum[1] . . . . . . 1 1 1 . . 1 1 1 1 1 1 . . . 1 1 1 1 1 1 . . . . . . .
ND BixNum[0] . . . 1 1 1 . . . 1 1 . . . . 1 1 . . . 1 1 1 . . . 1 1 1 1 . . .

Figure 3.3: NestingDepth kernel example

3.4.1 Finding nesting depth

The NestingDepth kernel is a Parabix kernel, explained in §3.6, that can compute the nesting
depth of characters in an input stream, given two character class bit streams L identifying
all the left or opening delimiters and R identifying all the right or closing delimiters and
a parameter dMAX identifying the maximum nesting depth expected for an input source.
The nesting depth is encoded with BixNum, where the number of streams for NestingDepth
BixNum must be equal to ceil(log2(dMAX + 1)). Figure 3.3 is an example of what the
output of NestingDepth looks like for considering JSON delimiters {, }, [ and ] for json
bracket stream ...[..{.}..{...[.[.]..]..}...]... .

3.4.2 Syntax validation using nesting depth

Consider the problem of validating JSON array syntax, where whitespace characters (space,
tab, new line) may be freely included between tokens:

array ::= ’[’ [value {’,’ value}] ’]’
object ::= ’{’ string : [value {’,’ value}] ’}’
value ::= object | array | number | string | ’true’ | ’false’ | ’null’

Validating non-nested JSON

A JSON grammar is given by JSON ::= value, meaning that not all JSON documents
have nesting if they are of type number | string | ’true’ | ’false’ | ’null’ , for
example string "This is valid JSON" is a valid JSON by itself if it is the only node in
the JSON document. What this means is, if a document does not start with a opening curly
brace { or an opening square bracket [, that document must have depth zero, thus when
we apply the NestingDepth kernel, the result returned must be 00000000000000000000 .

With this in mind, assume that EOFbit is the last bit of the source input (EOF), ND
is a stream set that represents the nesting depths of nodes of a given JSON document and
valueToken is a bit stream that marks the end position of any legal JSON numeral, string
or keyword. The example below shows what this would look like if the JSON document was
the string "This is valid JSON".
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ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

valueToken . . . . . . . . . . . . . . . . . . . 1 .

EOFbit . . . . . . . . . . . . . . . . . . . . 1

Now that we know what the streams look like, it is possible to check whether or not we
have valid non-nesting values by running the algorithm below:

Input: valueToken, nesting depths ND, BixNum compiler bnc
Output: error stream with set bits in case of parsing failure

1: otherND ← bnc.UGT( ND, 0 )
2: zeroND ← bnc.EQ( ND, 0 )
3: begin ← ∼Advance( <1>, 1 )
4: valueAtZero ← valueToken & zeroND
5: stopAtEOF ← ∼EOFbit
6: firstValue ← ScanTo( begin, valueAtZero )
7: nonNestedValue ← ScanTo( Advance( firstValue, 1 ), anyToken )
8: errValue ← ScanThru( Advance( nonNestedValue, 1 ), stopAtEOF )
9: firstSymbol ← ScanTo( begin, symbols )

10: valueAtZeroAfterSymbol ← ScanTo( Advance( firstSymbol, 1 ), valueAtZero )
11: errSymbol ← ScanThru( Advance( valueAtZeroAfterSymbol, 1), stopAtEOF )
12: errEOF ← EOFbit & otherND
13: errSimpleValue ← errValue | errSymbol | errEOF

To validate whether or not valid the JSON document has non-nesting valid values, we have
to verify three rules:

• If we have a non-nested value at depth zero, we can only have one (terminal) node
in the whole document, lines 6 − 8. This happens because according to the JSON
grammar, only one value can be the root element, thus, if a root element is also a
terminal node, only that node can exist.

• If we have any structural character, we cannot have any terminal node at depth zero,
lines 9 − 11. This is because in that case, a JSON document must have started in
either an object or array and all nodes would have to be in depth d > 0. By definition,
arrays and objects make the JSON structure a nested structure.

• EOF bit is always at depth zero, otherwise we have unmatched parentheses, line 12,
for example, a valid stream .{..}. would have ND as 011110 (EOF bit is zero),
whereas an invalid stream .{.... would have ND as 011111 (EOF bit is one).
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Validating arrays

Assume we have two bitstreams for tokens: valueToken, a stream that marks the positions
of all values we may have, and anyToken, a bitstream marking the end position of any legal
or illegal token. Assume also that LBrak, RBrak, RBrace, and Comma are streams marking
the position of JSON [, ], }, and ’,’ tokens respectively. Suppose that a BixNum ND has
been computed as the nesting depth involving the left and right delimiter sets consisting of
square brackets and braces. Then the validation of array syntax at each nesting depth d can
be determined as follows: each array will be a span from an opening [ to its corresponding
closing ]. Between these brackets will be other tokens as well as nested arrays and objects.
However, nested arrays and objects can be easily computed as those spans of elements
having a nesting depth greater than d. Using a BixNum compiler bnc, the spans may be
computed as bnc.UGT( ND, d ). Tokens at depth d can be identified as those at positions
identified by the stream bnc.EQ( ND, d ). The following code can be used to validate all
arrays at depth d, determining whether there are any errors after the opening LBrak or
after any value or Comma.

Input: LBrak, RBrak, RBrace, Comma, nesting depths ND, BixNum compiler bnc
Output: error stream with set bits in case of parsing failure

1: zeroND ← bnc.EQ( ND, 0 )
2: validEndValues ← ( valueToken | RBrak | RBrace ) & ∼zeroND
3: afterToken ← Advance( validEndValues, 1 )
4: tokenNext ← ScanThru( afterToken, whitespace )
5: errAfterValue ← tokenNext & ∼( Comma | RBrak | RBrace | zeroND )
6: advComma ← Advance( Comma, 1 )
7: validBeginValues ← ( valueToken | LBrak | LBrace ) & ∼zeroND
8: errAfterComma ← ScanTo( advComma, anyToken ) & ∼validBeginValues )
9: for every d in parallel, d ∈ 1...dMAX do

10: atDepth ← bnc.EQ( ND, d )
11: nested ← bnc.UGT( ND, d )
12: arrayStart ← atDepth & LBrak
13: arrayEnd ← ScanThru( arrayStart, nested | ( atDepth & ∼( RBrak | RBrace )))
14: errorAtEnd ← arrayEnd & RBrace
15: sArrAnyToken ← ScanTo( Advance( arrayStart, 1 ), anyToken )
16: errAfterLBrak ← sArrAnyToken & ∼( nested | ( valueToken & atDepth ) | RBrak )
17: end for

To check whether the arrays in a JSON document are valid, we need to validate the following
rules:
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• Every value in an array must be followed by either a comma, RBrak, lines 2− 5. The
sub-production rule of arrays in the JSON grammar (§2.2) defines every value in an
array to be followed by a comma or RBrak, but the reason why we allow the value
to be followed by a RBrace in the code above is because, at this point, this step is
done completely in parallel and that way we do not have to check whether that value
belongs to an array or an object, thus, in practice this rule allows us to partially
validate values in objects as well.

• Every comma must be followed by a value, lines 6 − 8. This rule is always valid for
any value in a JSON document, whether that value is inside an array or object. This
is because arrays have the form [value, value, ...] and objects have the form
{ string : value, string : value, ... } and because a string is a value, this

rule holds true for all values, and again, just like the previous rule, we do not have to
check whether a particular value belongs to an array or object to apply this rule.

• Every LBrak must have a matching RBrak, lines 10−14. Every array in a given depth
d must have an opening bracket at the beginning of its span with a closing bracket at
the end of this span. §3.6 explains how that is done in parallel.

• Every LBrak must be followed by a value or RBrak, lines 15 − 16. Here we validate
whether, within its span, an opening bracket is followed by a value or a RBrak, in case
it is empty. This rule requires us to know which nesting depth d that array is because
it could be that the next value would be nested (therefore not at the same depth). In
case the array is empty, this rule overlaps with the brackets matching rule.

• As a final and important rule, all values must be in nesting depth d > 0, lines 2, 5 and
7. This happens because we already validated d = 0 when we validate if the JSON
document has non-nested nodes.

Validating objects

Assume we have two bitstreams for tokens: valueToken, a stream that marks the positions
of all values we may have, and anyToken, a bit stream marking the end position of any legal
or illegal token. Assume also that LBrace, RBrace, DQuote, Colon and Comma are streams
marking the position of JSON {, }, ”, : and ’,’ tokens respectively. Just like we did when
validating arrays, assume that a BixNum ND has been computed as the nesting depth in-
volving the left and right delimiter sets consisting of square brackets and braces. Validating
the object syntax at each nesting depth d can be determined as follows: each object will
be a span from an opening { to its corresponding closing }. Between these braces will be
other tokens as well as nested arrays and objects. As before, nested arrays and objects can
be computed as those spans of elements having a nesting depth greater than d with the
built-in function bnc.UGT( ND, d ) and tokens at depth d can be computed with built-in
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function bnc.EQ( ND, d ) included in the BixNum compiler. The following code can be
used to validate all objects at depth d, determining whether there are any errors after the
opening LBrace or after any value or Comma.

Input: LBrace, RBrace, DQuote, Colon and Comma, nesting depths ND, BixNum com-
piler bnc
Output: error stream with set bits in case of parsing failure

1: str ← valueToken & DQuote
2: zeroND ← bnc.EQ( ND, 0 )
3: validStr ← str & ∼zeroND
4: afterTokenStr ← Advance( validStr, 1 )
5: tokenNextStr ← ScanThru( afterTokenStr, whitespace )
6: errAfterValueStr ← tokenNextStr & ∼( Comma | Colon | RBrace | RBrak | zeroND )
7: validBeginValues ← ( valueToken | LBrak | LBrace ) & ∼zeroND
8: advColon ← Advance( Colon, 1 )
9: errAfterColon ← ScanTo( advColon, anyToken ) & ∼validBeginValues )

10: for every d in parallel, d ∈ 1...dMAX do
11: atDepth ← bnc.EQ( ND, d )
12: nested ← bnc.UGT( ND, d )
13: objStart ← atDepth & LBrace
14: objEnd ← ScanThru( objStart, nested | ( atDepth & ∼( RBrak | RBrace )))
15: objAtEnd ← objEnd & RBrak
16: objSpan ← ExclusiveSpan( objStart, objEnd )
17: errColonAtDepth ← ( Colon & atDepth ) & ∼objSpan
18: strAtDepth ← str & atDepth
19: advComma ← Advance( Comma & atDepth & objSpan, 1 )
20: errAfterComma ← ScanTo( advComma, anyToken ) & ∼strAtDepth
21: errorAtEnd ← objEnd & RBrak
22: sObjStartAnyToken ← ScanTo( Advance( objStart, 1 ), anyToken )
23: errAfterLBrace ← sObjStartAnyToken & ∼( nested | valueToken | RBrace )
24: end for
To check whether the objects in a JSON document are valid, we need to validate the
following rules:

• Every string in an object must be followed by either a comma, colon or RBrace, lines
3 − 6. This rule is similar to the first rule of array validation, however, here we only
validate strings (both as keys and values) because all other types of values have been
already processed when we validated arrays, as explained in previous subsection.
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• Every colon must be followed by a value, lines 7− 9. This rule can be applied to the
whole JSON document without knowledge of the nesting depth d because colons are
only valid for objects, and therefore, a colon must be inside an object as guaranteed
by further rule.

• Every colon in nesting depth d must be inside an object span, line 17. This rule is
simple, if a colon is not within an object span, then it is outside of it and therefore it
does not belong to an object, and if that is the case, that colon is invalid.

• Every comma at nesting depth d inside an object span must be followed by a key
string, lines 18− 20. This rule is straightforward as a JSON key is always a string in
the form { string : value, string : value, ... } , thus, if any other value is
after a comma at depth d, then that value is invalid.

• Every LBrace must have a matching RBrace, line 21. Every object in a given depth d

must have an opening brace at the beginning of its span with a closing brace at the
end of this span. §3.6 explains how that is done in parallel.

• Every LBrace must be followed by a value or RBrak, lines 15− 16. This rule requires
us to know which nesting depth d that object is because the next value could be in a
different depth. In case the object has no properties, this rule overlaps with the braces
matching rule.

• Lastly, all values must be in nesting depth d > 0, lines 3, 6 and 7. This happens
because we already validated d = 0 when we validate if the JSON document has
non-nested nodes.

3.5 Error processing

Processing errors can be done by merging all error streams into one final error stream and
checking whether or not any of the bits are set. If there is a bit set in position i of the final
error stream, one or more kernels found an error in character of position i while processing
the source input and an error is returned to the user. Otherwise, if the final error stream
contains only zeroes, then the JSON document is valid and no errors are displayed.

3.6 More on solving bracket matching problem in parallel

The most important contribution of this research is how we solve the bracket-matching
problem in parallel for every nesting depth d with a given max depth dMAX .

The bracket-matching problem deals with parentheses (), square brackets [], braces {}
and other syntactic elements that provide for nested syntactic structures with balanced
sets of delimiters that traditionally can be solved with pushdown automata, as explained

27



in §2.1.2. In Parabix, a key concept that is used in the NestingDepth kernel to tackle the
bracket-matching problem is BixNum, which is a stream set with ceil(log2(dMAX + 1))
streams, that are used to represent the nesting depth of syntactic elements at each posi-
tion in a source stream. Other than dMAX , the NestingDepth kernel also takes two input
streams LBrak and RBrak, where LBrak represents all opening delimiters in the source
stream and RBrak represents all closing delimiters in the source stream. After processing
the input streams, NestingDepth kernel outputs two stream sets encDepth and depthErr,
where encDepth is a BixNum that encodes the depth of each individual character in the
source and depthErr marks the positions of characters that were not valid during encoding,
which means that we are able to identify exactly where errors occurred by checking the bits
that are set in stream depthErr, if a file has an invalid nesting depth. The algorithm we
use to find the nesting depth of a source stream is as follows:

Input: LBrak, RBrak, max depth dMAX , BixNum compiler bnc
Output: nesting depths encDepth and error stream depthErr with set bits in case of failure

1: encDepth ← create ceil(log2(dMAX + 1)) streams
2: all_brackets ← LBrak | RBrak
3: bscan ← AdvanceThenScanTo( LBrak, all_brackets )
4: closed ← bscan & RBrak
5: errs ← bscan & atEOF
6: pendingL ← bscan & LBrak
7: span ← InclusiveSpan( LBrak, bscan )
8: encDepth[0] ← BixNum(span)
9: while pendingL do

10: unmatchedR ← RBrak & ∼closed
11: inPlay ← pendingL | unmatchedR
12: bscan ← AdvanceThenScanTo( pendingL, inPlay )
13: span ← InclusiveSpan( pendingL, bscan )
14: encDepth ← bnc.AddModular( encDepth, BixNum(span) )
15: atMaxDepth ← bnc.EQ( encDepth, BixNum(dMAX) )
16: closed ← closed | ( bscan | RBrak )
17: nextPending ← bscan & LBrak
18: tooDeep ← nextPending & atMaxDepth
19: errs ← errs | tooDeep | ( bscan & atEOF )
20: pendingL ← nextPending & ∼tooDeep
21: end while
22: errs ← errs | ( RBrak & ∼closed )
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The way the algorithm above works is by initially (lines 1−8) finding the outermost brackets
and setting the initial value of the stream encDepth[0], where the bit is set if nesting depth
is the outermost node and unset otherwise. After that, on lines 9−21, the algorithm iterates
and repeats the process depth-by-depth, and while doing so, it increments the inner elements
that are matched in every iteration through the pendingL stream. The process is repeated
until all depths are satisfied or the depth is greater than dMAX . Please note that both
bnc.AddModular and bnc.EQ are built-in functions inside the BixNum compiler that allow
us to perform modular addition (the results have the same length as the first argument)
and check for equality on bit streams, respectively.

For illustration purposes, same as figure 3.3, imagine we have bracket stream S where
S = ...[..{.}..{...[.[.]..]..}...].. . Because the max depth of this particular case

is dMAX = 4, we need encDepth stream set to have ceil(log2(dMAX + 1)) = 3 streams
to represent all respective bracket depths, as per line 1 in the algorithm. It is impor-
tant to notice that in a real scenario we only have an estimation of what the max depth
is, which can be done by analyzing various files or by setting an unrealistic number for
it, dMAX > 15 for JSON, for example. Because we want to keep this example simple,
let dMAX = 4 and our bracket stream be S. In that case, the algorithm starts on the
depth d = 1, identifying the first span positions (up to second to last brace) and have
pendingL = ......1........1.1.............. , which will allow the loop to re-iterate

and increment the inner depths that are remaining. As per the encoding of encDepth, figure
3.3 shows a set of 3 parallel bit streams (giving a 3-bit number at each character position)
for S with the corresponding nesting depth of each element in the data stream and the
nesting depth BixNum (labeled as ND).

3.6.1 Solving nested structures with nesting depths

Once we have computed the nesting depth for every character in the source stream, we can
process every depth in parallel, since now we know where the nesting begins and ends. For
example, the nesting for characters of figure 3.3 is 000111222112222334443332221111000

and the source input is S = ...[..{.}..{...[.[.]..]..}...].. . If we are trying to
validate all objects (curly braces only) for this simple example in parallel, all we need to do
is:

• Find if there are any opening braces at current depth d.

• Find all nesting depths within d. The span of 0011221100 is ..111111.. if we are in
depth d = 1 and ....11.... if we are in depth d = 2.
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• Find where the object ends and check if the object ends on a brace. If so, this object
is valid, otherwise we have a parsing error.

See algorithm below:

Input: S, LBrace, RBrace, RBrak

Output: error stream with set bits in case of failure
1: for every d in parallel, d ∈ 1...dMAX do
2: atDepth ← bnc.EQ( ND, d )
3: nested ← bnc.UGT( ND, d )
4: objStart ← atDepth & LBrace
5: objEnd ← ScanThru( objStart, nested | ( atDepth & ∼( RBrak | RBrace )))
6: errorAtEnd ← objEnd & RBrak
7: end for

Claim

Every depth d is independent and therefore can be fully parallelized.

Proof

By means of contradiction, assume that depth di has a dependency on depth dj , where
i ̸= j. We have two cases:

• i > j: If i is greater than j, it means that di is at least one level deeper than dj ,
thus, since every nested element is expected to be of valid syntactic structure, di does
not depend on dj because it is possible to process all nested elements in di without
processing all nested elements in dj . Therefore, assuming that di is dependent on dj

contradicts the fact that di can be processed independently from dj as an individual
syntactic structure.

• i < j: If j is greater than i, then it is possible to find and isolate di span with the
output from NestingDepth kernel, for example by creating a stream that takes the
output of bnc.UGT(ND, di). This way, at all times, depth dj only needs to validate
itself and expect that all other inner depths validate themselves on separate passes,
but if that is ever the case, then dj does not depend on di and, on its turn, di does
not depend on dj , as first assumed, which proves this to be a contradiction.

How the actual implementation looks like?

Because we know beforehand the max depth dMAX that is expected, we implement the
actual code in a very simple manner: we copy the code for every separate depth d so that
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1: atDepth1 ← bnc.EQ( ND, 1 )
2: nested1 ← bnc.UGT( ND, 1 )
3: objStart1 ← atDepth1 & LBrace
4: objEnd1 ← ScanThru( objStart1, nested2 | ( atDepth2 & ∼( RBrak | RBrace )))
5: errorAtEnd1 ← objEnd1 & RBrak

6: atDepth2 ← bnc.EQ( ND, 2 )
7: nested2 ← bnc.UGT( ND, 2 )
8: objStart2 ← atDepth2 & LBrace
9: objEnd2 ← ScanThru( objStart2, nested2 | ( atDepth2 & ∼( RBrak | RBrace )))

10: errorAtEnd2 ← objEnd2 & RBrak

11: finalError ← errorAtEnd1 | errorAtEnd2

Figure 3.4: Transformation of algorithm in §3.6 without branching for dMAX = 2.

branching and data dependency is avoided, and let both Parabix and LLVM parallelize the
instructions as needed. For dMAX = 2, the algorithm above would be transformed into two
blocks of code, as shown in figure 3.4, one for depth d1 and one for depth d2. At the end,
the errors are merged and if no bits are set, then no parsing errors were found, otherwise,
something is wrong in one of the depths.
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Chapter 4

Evaluation

4.1 Experiments

This thesis separates its evaluation into three experiments: two experiments (§4.2 and §4.3)
comparing our algorithm with the various parsing tools described in §2.5 and how they
scale as file size and complexity increase and one experiment (§4.4) that shows how well our
algorithm performs using different SIMD instructions with different block widths. We ran
these experiments in two different SIMD machines (§4.1.1): one SSE4.2 with a 128-bit block
width and one AVX-512, where we tried block widths of 256 bits with AVX-2 instructions
and 512 bits with AVX-512 instructions. We compiled Parabix including our JSON parser
as one of its tools with LLVM version 12 and the third-party parsers (simdjson, RapidJSON
and yyjson) with their most up-to-date versions. In our own experiment — Parabix with
different instruction sets, we run tests with one, two, three and four threads. In all other
experiments, we only run tests on Parabix with 4 threads, which is the default number
for that tool, and with 1 thread so we have a baseline comparison against the third-party
parsers. It is important to notice that all third-party tools used in this evaluation only use
one thread and do not add support for AVX-512 instructions; they use AVX and AVX-2
intrinsics in their code.

In this evaluation, we did not use the JSON test files that are used in previous works
[15] because Parabix is focused on Big Data and those files did not exceed 3 megabytes,
thus we would not be able to properly compare how the parsers scale as JSON file size and
complexity increases, as explained in §4.5. Instead of that, we use a large range of randomly
generated files, where the largest file has a size of 96MB and the smallest file has a size
of 1.7MB. The contents of these files are a mix of randomized data with composed types
{array, object} and terminal types {string, number, boolean, null}. In those randomized
JSON files, we believe that we cover all cases for JSON parsing: small versus large files,
dense versus sparse files and shallow versus deep nesting depths.

To accomplish this, we added three constraints p, d, and s to the script RandomJson(p, d, s)

that generates random JSON objects, where (1) a JSON object file must have exactly p
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properties at depth 1, (2) a JSON nesting must not exceed depth d at any point, and (3)
a JSON file must have a size of at least s ± (s ∗ 0.15) megabytes. For example, calling
RandomJson(10, 2, 6) would create a random JSON object with 10 key-value proper-

ties, where none of these values would have nesting depth greater than one and the final
size of the file, would be between 5.1 and 6.9 megabytes. These constraints allowed us to
keep only files with similar characteristics for a fair comparison among the different tools
used in this evaluation. The details on these randomly generated files and experiments can
be found as appendices at the end of this thesis.

Further sections give a detailed explanation of the results obtained in this experiment.

4.1.1 Hardware Configuration

Two machines were used to evaluate and compare our work against the third-party tools’:
one SSE4.2 machine, where we evaluated AVX instructions generated by the tools presented
using a 128-bit block width and one AVX-512 machine, which was used to test block widths
of 256 and 512 bits using AVX-2 and AVX-512 instructions, respectively. The details and
hardware specifications of these machines are listed in the table below:

Machine Name Ubuntu_AVX512 Ubuntu_SSE4.2
Operating System Ubuntu 18.04.4 LTS Ubuntu 20.04.3 LTS
Architecture X86_64 X86_64
CPU Model Intel Xeon W-2102 Intel Core i7-3770
CPU MHz 2900 3400
CPU Max MHz 4000 3900
CPU Cores 4 4
L1 Cache 32KB 128KB
L2 Cache 1MB 1MB
L3 Cache 8MB 8MB
Memory 8GB 2666MHZ 4GB 1600MHZ
SIMD AVX-512 SSE4.2

4.2 Performance as JSON file size increases

The intuition behind this experiment is to test how well our algorithm performs against
simdjson, RapidJSON and yyjson as the file size increases with a fixed maximum depth.
For that, we created JSON files with an average size of {2.3, 7, 16.3, 25.6, 40.2, 61.4, 83.6}
megabytes with maximum depth d = 13, that is, no file could have a nesting depth greater
than 13. Figures 4.1, 4.2 and 4.3 represent the comparison for the results from tables in
appendices A, B and C, which represent the tests that were performed using SSE4.2, AVX-
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Figure 4.1: JSON parsing on SSE4.2 as file size increases

2 and AVX-512 instructions, respectively. Below is the formula for the contents of the
randomly generated JSON files that were used in this experiment:

• 5 × RandomJson(p = 5, d = 13, s = 2.5)

• 5 × RandomJson(p = 10, d = 13, s = 7)

• 5 × RandomJson(p = 25, d = 13, s = 16)

• 5 × RandomJson(p = 50, d = 13, s = 26)

• 5 × RandomJson(p = 100, d = 13, s = 39)

• 5 × RandomJson(p = 150, d = 13, s = 70)

• 5 × RandomJson(p = 200, d = 13, s = 85)

4.2.1 SSE4.2 performance as file size increases

In figure 4.1, the third-party tools as well as Parabix with 1 thread did not improve
past the sixteen-megabytes-in-average mark, while Parabix with 4 threads only reaches
a plateau at around the eighty-three-megabytes-in-average mark. One important thing to
notice is that all tools included in this experiment reach a plateau at some point, however,
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Figure 4.2: JSON parsing on AVX-2 as file size increases

Parabix takes longer to get there as the number of threads increase. Although taking too
long to reach a maximum throughput is generally taken as a downside, Parabix with 4
threads performs much better than the other tools even for the smallest file with a size of
1.7 MB with a throughput of 252.68 MB/s against yyjson with 193.25 MB/s, simdjson with
177.81 MB/s and rapidjson 158.17 MB/s. This is more than a thirty percent speed up for
a relatively small file, and if we compare its throughput against simdjson for the largest
file (96 MB), we get a ninety-five percent speed up making Parabix almost twice as fast as
simdjson on that case. Other than that, only simdjson reached a throughput of over 400
MB/s. In other words, although Parabix with 4 threads performed well, Parabix with 1
thread could not achieve a great performance as its throughput is extremely dependent on
the depth of a JSON structure as shown in figures 4.4 and 4.7. What that means is that
although Parabix running on a single thread did not perform very well for depth d = 13 on
this case, it would generally not be the case had the maximum depth d been smaller, since
our algorithm improves as d gets smaller but simdjson always performs the same for any
depth d.

4.2.2 AVX-2/AVX-512 performance as file size increases

Checking figures 4.2 and 4.3, we realize that the performance for the third-party tools
here compared do not improve as they do not support AVX-512 instructions, what results
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Figure 4.3: JSON parsing on AVX-512 as file size increases

in them using AVX-2 instructions for both cases. This happens because their code has
been manually written and optimized with AVX-2 intrinsics, thus, it is non-trivial to add
AVX-512 intrinsics to their codebase. The same is not true for Parabix as explained in
§2.3, since as the block width increases, so does the capacity of processing more data at
once in Parabix. Moreover, the final optimized code is done by the Parabix framework and
LLVM, making it easier to add support to new SIMD architectures as needed. In other
words, simdjson, RapidJSON and yyjson have no benefits from AVX-512, however, Parabix
has almost a twenty-five percent speed improvement only by the fact that the block width
increased from 256 bits on AVX-2 to 512 bits on AVX-512.

For large files on AVX-2, Parabix with 4 threads is 2.4 times faster than simdjson, 3.6
times faster than RapidJSON and 3 times faster than yyjson, and on AVX-512, it is 3 times
faster than simdjson, 4.6 times faster than RapidJSON and 3.8 times faster than yyjson,
which represents a trend in domination against its competitors.

In fact, Parabix is never worse than RapidJSON and yyjson when the average file size
is greater than seven megabytes and it is only worse than simdjson when it is running on
AVX-2 with one thread. The same is not true on AVX-512 because simdjson always uses
AVX-2 intrinsics in both AVX-2 and AVX-512 cases. Had simdjson used AVX-512 intrinsics
in its code, it could be that figure 4.3 would depict an improvement against Parabix on 1
thread, however, it is likely that Parabix with 4 threads would still dominate simdjson as
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Figure 4.4: JSON parsing on AVX-512 as nesting depth increases

its parallel nature simply makes it able to process more data at once than its competitor,
especially when depth d is not a very large number.

4.3 Performance as JSON nesting depth increases

This experiment focuses on how well the tools simdjson, yyjson and RapidJSON perform
against our approach as the JSON file gets more complex in respect of its maximum depth.
For this, we fix the randomly generated files to have a size of 75± 11.25 MB and define the
constraint d of each one of these files to have a value in the inclusive range 1...10. Moreover,
this experiment was only executed on the AVX-512 machine because we believe that running
it in different architectures would not change how the parsers here compared behave, thus,
only figure 4.4 is taken into consideration here. The details about these randomly generated
files can be found in appendix D. Below is how we generated them:

• 3 × RandomJson(p = 3× 106, d = 1, s = 75)

• 4 × RandomJson(p = 1.26, d = 2, s = 75)

• 3 × RandomJson(p = 5.5× 105, d = 3, s = 75)

• 3 × RandomJson(p = 2× 105, d = 4, s = 75)
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• 3 × RandomJson(p = 105, d = 5, s = 75)

• 3 × RandomJson(p = 5× 104, d = 6, s = 75)

• 3 × RandomJson(p = 2.5× 104, d = 7, s = 75)

• 3 × RandomJson(p = 104, d = 8, s = 75)

• 3 × RandomJson(p = 5× 103, d = 9, s = 75)

• 3 × RandomJson(p = 103, d = 10, s = 75)

Considering figure 4.4, we can easily identify that the third-party tools only have some
variation between depths 1 and 2. This happens because their algorithm is of sequential
nature and therefore, a JSON file with depth 1 can be parallelized using their approach by
excluding first and last characters of the stream and checking that they are an open bracket
and its corresponding closing bracket, respectively. After that, the remaining characters can
be totally parallelized as discussed in §3.4. However, after depth 2, these third-party parsers
plunge and reach throughputs that do not change as the depth increases; this is expected
in algorithms that solve the bracket-matching problem sequentially.

On the other hand, the algorithm described in our approach in §3.6 has a direct impact
on the depth of a JSON file representation. This occurs because that algorithm (1) checks
whether a nesting depth exists and (2) only executes that nesting depth in parallel in case
it exists. Clearly then, the higher the number of depths, the more data our algorithm needs
to process and synchronize and the slower it becomes, however, this also means that it can
leverage more than the sequential algorithms when we consider shallow structures and it is
important to point out that most JSON datasets are shallow, for example, a list of objects
is around no more than depth d = 3. Furthermore, JSON files do not usually exceed nesting
depth d = 15, although there is no rule on how deep a JSON file can be.

Finally, when we compare our parallel approach with the other parsers here presented,
we notice that Parabix can be up to 3.76 times faster than simdjson, 5 times faster than
yyjson and 8.59 times faster than RapidJSON. Figure 4.4 shows that Parabix is faster than
the other JSON parsers even when it only uses 1 thread and the nesting depth d is in
inclusive range 1...10. For larger d, for example d ≥ 13, we expect it to be at least as fast
as simdjson when single-threaded, but still always faster than simdjson with four threads.
Please note that we did not try d > 15 for any cases as this is not realistic for JSON
datasets.
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Figure 4.5: Parabix’s performance on different architectures as file size increases

4.4 Parabix’s performance

Previous experiments in §4.2 and §4.3 indicate that Parabix performs better than the top-
performance parsers here presented. Nevertheless, this experiment focuses on how well Para-
bix scale on different architectures with different block widths.

That is to say, in this section we compare and contrast the values displayed in appendices
E, F and G for figures 4.5, 4.6 and 4.7, respectively.

4.4.1 Parabix’s performance on different architectures

Figure 4.5 illustrates how Parabix scales when we run our algorithm in different archi-
tectures using the randomly generated files described in §4.2. Our SSE4.2 machine has a
block width of 128 bits and, by default, our AVX-512 machine has a block width of 512 bits,
however in compile-time we can reduce its block width to 256 bits by passing compiler’s
flag -BlockSize that allows us to generate AVX-2 code.

Although two different machines were used in this evaluation, we notice that both SSE4.2
and AVX-512 machines have similar performance for files with sizes up to 8MB but as file
size increases, the throughput of the SSE4.2 reaches a plateau 750MB/s against 819MB/s
on AVX2 and 928MB/s on AVX-512. It is easy to notice that as we increase the block
width, so does Parabix’s throughput, but as shown in §4.4.3, the throughput also depends
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Figure 4.6: Parabix’s performance on AVX-512 as file size increases

on the nesting depth of the JSON file. In fact, the files that were used in figure 4.5 have
a maximum nesting depth d = 13, making the throughput slower than it should be in the
average case because JSON files are usually not very deep, thus, considering figure 4.7, we
could easily assume that in the average case, our throughput is around 1GB/s on SSE4.2,
1.2GB/s on AVX-2 and 1.4GB/s on AVX-512.

A major benefit displayed in figure 4.5 is that as computer architectures continuously
improve and as their block width increase, so will Parabix’s ability to process more and
more data at once.

4.4.2 Parabix’s performance on AVX-512 as JSON file size increases

This section discusses figure 4.6 and how the number of threads used in Parabix affects
its overall performance as JSON file size increases – these files are described in §4.2. Here
we are only interested in the results obtained from the AVX-512 machine because the
throughput curve on different architectures is very similar as inferred from figure 4.5, thus,
showing for one architecture should suffice.

It is to be noted that Parabix running on a single thread is usually at least as performant
as the state-of-the-art parsers compared in this thesis (§4.2 and §4.3). However, things get
more interesting as we increase the number of threads used by our algorithm, for example,
when we consider very large files, running Parabix with one versus two threads gives a
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Figure 4.7: Parabix’s performance on AVX-512 as nesting depth increases

huge difference in the performance, whereas we seem to have no much improvement when
we go from three to four threads. That is, on AVX-512, Parabix on one thread only has
a throughput of 357MB/s on a file with an average size of eighty-three megabytes and
a maximum nesting depth of d = 13 against a throughput of 632MB/s on two threads,
867MB/s on three threads and 928MB/s on four threads. What that means is that our
algorithm performs better as the number of threads increase, however, because of thread
synchronization, only a little can be leveraged when the thread count gets high. There seems
to exist a trend in Parabix’s performance as the number of threads increase. It is possible
to notice that when we run Parabix with 4 threads, we generally have an improvement of
2.5 ∼ 3 times its own throughput on a single thread.

4.4.3 Parabix’s performance on AVX-512 as JSON nesting depth in-
creases

As mentioned in §4.3, Parabix does much better than the state-of-the-art parsers com-
pared in this thesis when we consider the nesting depth of a JSON structure. This happens
because while our algorithm uses the parallel approach described in §3.6 for the bracket
matching problem, all the other ones (simdjson, RapidJSON and yyjson) solve it sequen-
tially, which gives them no gain in performance in shallow structures. As a matter of fact,
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even Parabix on a single thread is better than the other parsers when the maximum nesting
depth d ≤ 5.

Figure 4.7 shows that, as expected, the higher the thread count, the faster Parabix can
process JSON files. On AVX-512, while Parabix on one thread for nesting depth d = 1 has
a throughput of around 665MB/s, it reaches over 1GB/s on two threads, 1.3GB/s on three
threads and 1.6GB/s on four threads, that is, the throughput on four threads is nearly 3
times its own throughput on a single thread.

Although the results of this research are exceptional, we need to draw attention to
the fact that Parabix’s throughput decreases as the maximum nesting depth increases, for
example, when d = 10, its performance reduces to around 400MB/s on a single thread and
1GB/s on four threads. This could be a problem for its performance on deeply nested JSON
files, however, because we do not expect JSON datasets to have a very high nesting depth
d, it is safe to say that, in the average case, Parabix with 4 threads (default) always have
a performance greater than 1GB/s on AVX-512, where the shallower a JSON file is, the
faster Parabix can process it.

4.4.4 Parabix’s microarchitecture performance

While investigating the performance of Parabix for parsing JSON structures of different
sizes, we found out that the throughput rates for smaller files were inferior to the ones for
larger files, which is demonstrated in figure 4.6. Upon closer examination of the data given
in appendix I, we identified that the rate of cache misses for smaller files could surpass 50%;
moreover, the rate of branch mispredictions for these files could reach 3%. However, for
larger files, the performance of Parabix is less affected, with significantly lower percentages
of cache misses and branch mispredictions. For example, a 246 MB file size showed only
13% cache misses and 0.53% branch mispredictions, resulting in a high throughput of 960
MB/s. In contrast, a much smaller file with a size of 1.7 MB had a lower throughput of 240
MB/s. Overall, this performance trend happens over and over as displayed in figures 4.3
and 4.6 and suggests that the early stages of our solution are causing these cache misses and
branch mispredictions, which can impact the overall performance of smaller files. That is
to say, it may exist an initial overhead in our parser such that smaller files may experience
these performance issues, while larger files are not greatly impacted. Further investigation
and improvements should be considered in future works.

4.4.5 Parabix’s performance ceiling

As discussed in previous sections, Parabix’s parsing performance can vary depending on
the depth of the document. Nonetheless, there exists a trend, such as shown in figure 4.3,
that indicates that Parabix’s performance reaches a ceiling as the file size increases. With
this intuition in mind, we performed experiments on files of size between 200 MB and 1.6
GB (appendix H), which helped us to verify that in fact these large files all had a similar
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throughput confirming then that a plateau had been reached. For example, on SSE4.2,
Parabix’s throughput ceiling for shallow files is 1.46 GB/s, while for deeply-nested files, it
is 780 MB/s. On AVX-2, Parabix’s ceiling for shallow files is 1.6 GB/s, and for deep files it
is 840 MB/s. Finally, on AVX-512, Parabix reaches impressive throughput rates of around
1.75 GB/s for shallow files and 966 MB/s for deep files. In these experiments, we only
needed to check the throughput of JSON files with a nesting depth of 1 and 13 because we
know that every depth di has a worse performance than depth di−1, for i > 1, as shown in
figure 4.7, thus, we know that the ceiling performance for depths di, i ∈ [2..12] is somewhere
between the performance of parsing very shallow versus very deep files.

4.5 Simdjson’s performance

Simdjson is reported to have an excellent performance on Skylake (Intel i7-6700) [15], and
when we ran its built-in evaluation scripts on a subset of the files used by Langdale and
Lemire (2019), its performance on our AVX-512 machine was only around fifteen percent
slower than what was reported and thirty-five percent slower on our SSE4.2 machine (table
4.1). The reason why we achieved closer results on AVX-512 is because that machine has
a similar hardware configuration to Skylake’s, making us believe that the use of different
machines did not have a negative impact on the evaluation described in previous sections.

Although we would need to run our solution in a machine with the same hardware
configuration as Skylake to prove that Parabix is in fact faster than simdjson as the JSON
complexity increases, we may still infer that this is true given the trend that can be identified
in figures 4.1, 4.2, 4.3 and 4.4. Moreover, we ran the scripts for performance evaluation that
were provided in their benchmarks folder against larger files and we had similar results to
the ones shown in appendices A, B, C and D.

Still in table 4.1, we see that the rationale behind not including small files in the evalua-
tion of this thesis is simply because that is not the main focus of Parabix. Parabix is meant
to solve Big Data problems, for instance, while simdjson parsed a 1.7 MB file at a rate of
2.26 GB/s on AVX-512, Parabix parsed the same file at a rate of 280 MB/s, which is over
eight times slower. In spite of that, as explained in previous sections, Parabix scales well as
the file size and complexity increase and simdjson does not do very well in that matter, for
example, if we compare the results for larger files in appendix B, we will see that simdjson
only reached a maximum rate of 353 MB/s.

This difference in rates raised a few questions about simdjson and once we dove into the
implementation of the benchmark files for simdjson, we discovered that the high performance
reported, which is over 2 GB/s in some cases, is due to the fact that they leave memory/page
allocation and OS-related tasks out during their evaluation. Nevertheless, the evaluation
described in §4.2 and §4.3 does not ignore them; it only ignores the time taken for loading a
file. That being said, to make sure the comparison among Parabix, simdjson and the other
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tools was as fair as possible, we included memory/page allocation and OS-related tasks as
part of our evaluation. That allowed us to focus on the real performance of simdjson and
the other tools.

In conclusion, simdjson should only be chosen over Parabix when the file size is very
small but since it does not scale very well, Parabix is still the best choice for most cases.

Table 4.1: Simdjson’s performance vs Parabix’s performance on small files

filename filesize
MB

simdjson
Skylake [15]
MB/s

simdjson
SSE4.2
MB/s

simdjson
AVX-512
MB/s

Parabix
SSE4.2
MB/s

Parabix
AVX-512
MB/S

apache_builds 0.125 2200 1521 2195 22 26
citm_catalog 1.7 2500 1882 2261 255 280
gsoc-2018 3.2 3000 2110 2561 427 476
instruments 0.216 2000 1478 1777 38 44
twitter 0.617 2200 1599 1993 101 118
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis shows that there is still a lot that can be improved regarding the efficiency of
JSON processing tools in commodity processors. Although some tools such as simdjson,
yyjson and RapidJSON do an excellent job in parsing JSON files, we present here a new
approach that is often better than these top-notch tools that are known for their formidable
performance and have been largely used in the tech industry.

With the use of parallel bit streams, our approach can frequently be three times faster
than the current state-of-the-art when JSON files are large enough. That is to say, our results
are outstanding and should inspire new research around validating and parsing input for
context-free grammars, since the major contribution in this research is solving the bracket
matching problem in parallel (§3.6), which should not be taken as an easy task because
multithreading and synchronization tend to be challenging when implemented as a mean
to solve problems of sequential nature.

Despite our promising results, much still can be done around this solution alongside
Parabix. Further sections outline what kind of applications could benefit from this research
as well as what we would hope to accomplish in future works.

5.2 Applications

Below are a few examples of how related research could benefit from the concepts studied
in this thesis:

• As mentioned in §2.2, JSON is one the most popular ways to interchange data through
the Web, and, the more technology advances, the more and more data is transferred
at once. Therefore, algorithms for encoding/decoding to/from JSON need to start
taking advantage of parallel processing.
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• The field of Big Data benefits from it especially because many datasets are stored in
either JSON or CSV because of their simple and yet effective grammar, for example
public government datasets and etc.

• NoSQL databases are non-relational databases that do not require a fixed schema
and that are stored in JSON format. Because their data schema is flexible and is used
mostly in scenarios where the data is semi-structured and unstructured, many times
indexing does not work well or is not a viable option. This type of database could
benefit from this research, that is, we could parallelize its parsing with rates of over 1
GB/s — querying JSON files is mentioned as a future research in §5.3.

• Converting JSON to other text formats, such as CSV or XML, could be even faster.

• Many CFG algorithms could benefit from solving the bracket-matching problem in
parallel such as what is described in §3.6.

• simdjson’s solution is very similar to ours. It would be beneficial to them to consider
starting a research on multithreading (similar to what we do in this thesis).

5.3 Future Work

This work is to be considered only as a starting point for a future research since it is far from
being done. For reference, below are a few suggestions for future work that could improve
this project even further:

• This solution only checks if a JSON file is valid, thus, further work on this parser
should be considered, for example adding support for querying and conversion to
other formats, such as CSV, YAML, etc.

• At the moment our solution is part of the tools folder in the Parabix project. In the
future, we could make it a standalone library that could be used by other programs.

• In our algorithm, we could research a better way to work in multiple nesting depths in
parallel in order to improve its overall performance since at the moment our algorithm
depends a lot on the maximum depth of a JSON structure, which is clearly our biggest
performance bottleneck.

• We could research the other parsing tools that were mentioned in this project and
implement AVX-512 instructions on them in order to have a better idea on how they
scale. This would allow us to have a better performance overview of this solution.

• Currently in Parabix, any algorithms that are based in CFGs need to be implemented
manually, so a Parabix kernel that takes a grammar G and generates a parser for it
would be a great contribution.
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Appendix A

Comparison on SSE4.2 - Properties

#properties filesize
MB

Parabix 1T
MB/s

Parabix 4T
MB/s

simdjson
MB/s

rapidjson
MB/s

yyjson
MB/s

5 1.7 164.01 252.68 177.81 158.17 193.25
5 1.8 163.64 258.36 424.93 262.39 183.37
5 2.4 182.43 320.73 248.29 337.51 154.36
5 2.7 184.49 339.88 411.40 326.64 338.60
5 3 189.11 358.51 187.06 325.24 340.68
10 7.51 224.09 558.45 326.24 324.10 265.04
10 7.5 223.45 567.62 431.88 328.37 345.00
10 7.7 223.36 511.76 408.57 326.67 338.66
10 6.2 216.27 522.77 217.82 322.58 227.30
10 6.3 217.93 523.95 305.85 323.43 259.24
25 15 208.76 678.06 327.53 330.62 315.29
25 16.1 244.74 617.90 427.35 339.05 349.38
25 16.2 246.19 684.99 425.76 341.00 317.80
25 16 238.31 683.21 442.00 333.42 351.05
25 18 216.00 686.03 345.69 324.59 307.05
50 23 247.21 745.52 324.35 333.54 279.02
50 24 241.07 732.27 336.00 323.23 274.29
50 26 242.44 745.93 407.24 322.73 338.00
50 27 239.16 772.58 381.67 332.10 268.91
50 28 230.55 756.53 453.93 339.26 305.22
100 38 230.62 704.43 411.02 325.25 275.93
100 39.1 244.73 763.88 409.07 323.97 322.35
100 39 244.59 780.03 439.22 326.31 346.48
100 42 235.99 767.56 378.07 322.24 336.41
100 43 245.78 752.34 348.36 324.82 338.18
150 47 249.28 794.19 391.90 328.38 296.20
150 58 248.65 809.33 443.35 318.82 354.09
150 60 247.49 803.38 412.46 324.68 321.85
150 70 248.37 799.81 394.74 311.17 339.75
150 72 249.61 808.00 398.47 326.13 323.94
200 75.1 248.95 819.26 412.94 323.60 320.69
200 75 247.24 800.23 387.69 324.44 328.42
200 85 240.72 810.06 426.04 327.30 313.87
200 87 247.15 816.83 393.26 322.77 314.71
200 96 247.32 797.65 408.74 322.50 336.72
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Appendix B

Comparison on AVX-2 - Properties

#properties filesize
MB

Parabix 1T
MB/s

Parabix 4T
MB/s

simdjson
MB/s

rapidjson
MB/s

yyjson
MB/s

5 1.7 167.24 206.56 324.61 216.20 258.20
5 1.8 166.84 226.84 329.55 212.82 248.69
5 2.4 193.31 290.00 352.79 215.40 267.26
5 2.7 195.71 310.17 322.85 207.09 250.44
5 3 203.57 324.32 314.99 208.41 248.30
10 7.51 251.23 510.26 312.33 206.35 248.58
10 7.5 250.20 503.49 342.42 207.01 258.01
10 7.7 249.31 508.18 314.11 205.73 248.36
10 6.2 240.20 467.29 314.16 205.65 246.98
10 6.3 241.18 469.03 315.68 205.51 246.55
25 15 273.98 626.44 320.47 208.20 251.69
25 16.1 279.17 644.26 329.98 213.44 255.53
25 16.2 282.95 647.79 330.44 214.99 258.22
25 16 270.46 624.71 345.83 206.50 255.29
25 18 271.50 582.68 316.37 206.35 245.85
50 23 283.44 685.42 326.58 210.47 254.48
50 24 276.60 668.15 315.94 204.84 244.20
50 26 277.89 680.91 315.97 204.18 247.47
50 27 286.92 699.57 325.31 210.25 251.48
50 28 287.01 704.24 354.62 214.65 265.40
100 38 283.21 717.09 319.66 206.01 249.03
100 39.1 283.09 715.66 318.13 204.43 248.01
100 39 282.75 708.02 345.66 207.32 257.15
100 42 280.69 713.05 318.46 204.28 245.59
100 43 281.75 721.34 319.96 206.38 248.52
150 47 288.76 737.23 322.18 208.30 251.73
150 58 288.51 742.25 350.42 208.81 260.63
150 60 285.42 737.13 319.47 205.27 248.95
150 70 287.80 747.93 319.20 204.52 250.01
150 72 289.93 756.56 320.67 206.53 250.67
200 75.1 290.43 754.49 319.59 204.58 251.07
200 75 286.54 728.64 318.40 205.53 247.94
200 85 286.45 750.37 345.54 206.78 255.60
200 87 283.56 728.05 317.29 204.66 244.97
200 96 284.90 749.87 316.41 204.26 245.91
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Appendix C

Comparison on AVX-512 -
Properties

#properties filesize
MB

Parabix 1T
MB/s

Parabix 4T
MB/s

simdjson
MB/s

rapidjson
MB/s

yyjson
MB/s

5 1.7 188.41 240.66 333.86 211.29 253.35
5 1.8 189.51 248.04 322.06 210.38 257.88
5 2.4 216.49 311.24 353.67 217.39 265.93
5 2.7 222.37 330.11 318.47 206.34 251.72
5 3 231.27 357.06 316.19 207.51 249.75
10 7.51 295.90 577.60 316.32 205.56 245.27
10 7.5 297.93 575.73 340.03 207.44 252.67
10 7.7 297.23 575.87 314.30 206.23 245.11
10 6.2 287.49 521.62 313.43 204.34 245.78
10 6.3 290.54 536.54 312.75 204.64 244.62
25 15 332.42 649.72 319.02 208.51 247.52
25 16.1 343.88 755.12 327.12 213.17 256.91
25 16.2 347.48 779.56 329.64 214.40 257.74
25 16 331.63 727.67 342.14 208.86 256.08
25 18 334.83 768.80 314.63 204.29 245.27
50 23 347.40 825.59 322.05 209.52 251.84
50 24 339.00 803.56 311.91 203.58 243.90
50 26 344.76 823.57 312.11 203.21 244.17
50 27 351.05 841.04 320.03 207.38 250.65
50 28 353.91 856.40 350.12 211.91 261.72
100 38 346.72 863.52 314.13 203.98 244.02
100 39.1 349.64 870.40 312.40 203.22 244.92
100 39 349.17 814.38 338.73 204.81 250.36
100 42 348.43 848.19 312.02 202.95 243.64
100 43 348.49 874.11 313.31 204.55 244.59
150 47 354.96 891.60 316.37 206.54 245.61
150 58 356.65 906.89 342.16 208.13 254.22
150 60 355.21 878.95 313.53 204.16 245.28
150 70 354.52 915.32 314.08 203.66 242.43
150 72 356.58 922.15 314.72 204.98 245.08
200 75.1 356.79 922.45 313.73 203.53 242.84
200 75 354.21 920.86 312.18 203.55 244.54
200 85 357.40 928.54 338.49 205.69 252.73
200 87 352.99 896.16 310.10 202.36 242.80
200 96 354.53 928.94 310.87 202.54 240.93
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Appendix D

Comparison on AVX-512 - Depth

depth filesize
MB

Parabix 1T
MB/s

Parabix 4T
MB/s

simdjson
MB/s

rapidjson
MB/s

yyjson
MB/s

1 66 661.02 1564.02 424.71 185.43 317.42
1 77.1 666.13 1585.51 427.96 188.11 318.37
1 77 665.68 1607.18 426.65 187.58 317.71
2 82.1 616.36 1470.64 355.38 197.75 272.76
2 82.2 621.18 1535.99 359.52 198.49 273.58
2 82.3 620.37 1546.00 359.83 199.17 275.15
2 82 615.88 1539.44 356.61 198.13 273.09
3 70 567.39 1438.20 333.38 194.65 256.99
3 70.1 568.96 1444.68 333.21 193.87 254.09
3 70.2 560.86 1435.76 333.54 193.51 256.82
4 73.1 537.78 1400.30 326.17 203.35 251.98
4 73.2 539.92 1413.29 328.48 203.93 253.22
4 73 538.10 1407.58 326.78 203.72 252.70
5 78.1 506.16 1294.48 319.41 204.65 249.63
5 78.2 507.22 1356.30 321.33 204.75 249.95
5 78 505.08 1360.00 319.94 203.05 248.74
6 72.1 470.49 1274.62 319.13 203.82 245.23
6 72.2 473.16 1275.26 319.25 204.38 246.11
6 73 476.71 1293.29 321.58 205.49 247.99
7 81.1 453.32 1255.05 320.30 205.62 249.08
7 81.2 460.04 1273.11 324.53 207.68 251.85
7 81 452.07 1251.76 319.52 204.99 248.08
8 77 432.50 1200.24 319.71 205.46 246.27
8 78 428.06 1189.04 317.30 203.14 245.65
8 79 430.42 1198.04 318.68 204.44 246.15
9 79 416.86 1154.50 319.30 205.05 248.42
9 82 415.78 1155.42 319.72 205.02 248.14
9 83 416.57 1158.13 321.99 205.65 248.75
10 80 397.30 1092.75 320.72 205.77 247.43
10 78 397.00 1082.27 319.59 204.78 247.10
10 74 396.56 1080.84 320.65 205.76 247.67
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Appendix E

Parabix - Architecture comparison

#properties filesize
MB

SSE
MB/s

AVX-2
MB/s

AVX-512
MB/s

5 1.7 206.56 252.68 240.66
5 1.8 226.84 258.36 248.04
5 2.4 290.00 320.73 311.24
5 2.7 310.17 339.88 330.11
5 3 324.32 358.51 357.06
10 6.2 467.29 522.77 521.62
10 6.3 469.03 523.95 536.54
10 7.51 510.26 558.45 577.60
10 7.5 503.49 567.62 575.73
10 7.7 508.18 511.76 575.87
25 15 626.44 678.06 649.72
25 16.1 644.26 617.90 755.12
25 16.2 647.79 684.99 779.56
25 16 624.71 683.21 727.67
25 18 582.68 686.03 768.80
50 23 685.42 745.52 825.59
50 24 668.15 732.27 803.56
50 26 680.91 745.93 823.57
50 27 699.57 772.58 841.04
50 28 704.24 756.53 856.40
100 38 717.09 704.43 863.52
100 39.1 715.66 763.88 870.40
100 39 708.02 780.03 814.38
100 42 713.05 767.56 848.19
100 43 721.34 752.34 874.11
150 47 737.23 794.19 891.60
150 58 742.25 809.33 906.89
150 60 737.13 803.38 878.95
150 70 747.93 799.81 915.32
150 72 756.56 808.00 922.15
200 75.1 754.49 819.26 922.45
200 75 728.64 800.23 920.86
200 85 750.37 810.06 928.54
200 87 728.05 816.83 896.16
200 96 749.87 797.65 928.94

54



Appendix F

Parabix - Comparison on AVX-512
- Properties

#properties filesize
MB

Parabix 1T
MB/s

Parabix 2T
MB/s

Parabix 3T
MB/s

Parabix 4T
MB/s

5 1.7 188.41 226.27 237.70 240.66
5 1.8 189.51 232.65 249.48 248.04
5 2.4 216.49 271.65 307.97 311.24
5 2.7 222.37 294.28 326.72 330.11
5 3 231.27 307.19 351.33 357.06
10 6.2 287.49 421.91 520.27 521.62
10 6.3 290.54 430.62 519.89 536.54
10 7.51 295.90 450.65 557.04 577.60
10 7.5 297.93 454.79 556.38 575.73
10 7.7 297.23 448.38 563.69 575.87
25 25 332.42 539.24 635.97 649.72
25 16.1 343.88 558.33 728.08 755.12
25 16.2 347.48 561.00 741.69 779.56
25 16 331.63 540.76 706.53 727.67
25 18 334.83 548.86 603.72 768.80
50 23 347.40 573.35 731.74 825.59
50 24 339.00 556.75 751.60 803.56
50 26 344.76 572.37 776.28 823.57
50 27 351.05 585.57 792.09 841.04
50 28 353.91 596.42 802.27 856.40
100 38 346.72 586.68 809.68 863.52
100 39.1 349.64 592.13 817.17 870.40
100 39 349.17 597.33 804.95 814.38
100 42 348.43 592.55 805.79 848.19
100 43 348.49 588.78 815.86 874.11
150 47 354.96 610.25 828.34 891.60
150 58 356.65 615.67 849.64 906.89
150 60 355.21 618.44 848.86 878.95
150 70 354.52 611.26 843.91 915.32
150 72 356.58 626.56 849.14 922.15
200 75.1 356.79 618.80 860.28 922.45
200 75 354.21 619.25 855.83 920.86
200 85 357.40 632.35 867.54 928.54
200 87 352.99 623.50 857.58 896.16
200 96 354.53 621.73 859.86 928.94
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Appendix G

Parabix - Comparison on AVX-512
- Depth

depth filesize
MB

Parabix 1T
MB/s

Parabix 2T
MB/s

Parabix 3T
MB/s

Parabix 3T
MB/s

1 66 661.02 1011.20 1338.31 1564.02
1 77 665.68 1018.86 1354.08 1607.18
1 77.1 666.13 1014.13 1362.89 1585.51
2 82.1 616.36 938.17 1298.58 1470.64
2 82.2 621.18 963.99 1305.03 1535.99
2 82.3 620.37 983.90 1306.95 1546.00
2 82 615.88 974.51 1296.28 1539.44
3 70 567.39 922.13 1214.67 1438.20
3 70.1 568.96 899.94 1214.40 1444.68
3 70.2 560.86 912.70 1204.20 1435.76
4 73.1 537.78 873.38 1170.95 1400.30
4 73.2 539.92 863.23 1173.51 1413.29
4 73 538.10 850.68 1170.28 1407.58
5 78.1 506.16 844.49 1132.06 1294.48
5 78.2 507.22 827.36 1138.30 1356.30
5 78 505.08 825.01 1120.51 1360.00
6 72.1 470.49 773.61 1065.70 1274.62
6 72.2 473.16 778.45 1063.50 1275.26
6 73 476.71 789.27 1078.30 1293.29
7 81.1 453.32 765.08 1051.96 1255.05
7 81.2 460.04 788.95 1065.10 1273.11
7 81 452.07 775.04 1048.45 1251.76
8 77 432.50 732.36 1012.27 1200.24
8 78 428.06 729.93 1000.59 1189.04
8 79 430.42 738.88 1012.26 1198.04
9 79 416.86 722.81 985.62 1154.50
9 82 415.78 718.71 987.25 1155.42
9 83 416.57 724.84 988.42 1158.13
10 74 396.56 684.36 943.76 1080.84
10 80 397.30 690.55 947.43 1092.75
10 78 397.00 681.12 942.75 1082.27
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Appendix H

Parabix - Performance ceiling

filesize MB depth SSE MB/s AVX-2
MB/s

AVX-512
MB/s

218 1 1457.5992 1663.7030 1753.5110
435 1 1459.3936 1672.4625 1766.3683
870 1 1477.1268 1669.1319 1754.6761
246 13 771.8833 827.2160 960.1911
756 13 773.1310 835.5298 960.1267
1200 13 799.7787 850.6319 968.8812
1600 13 787.9355 851.4632 975.6471
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Appendix I

Parabix - Microarchitecture
performance

filesize
MB

# cache
references

% cache
misses

# branches %
branch
misses

AVX-512
MB/s

1.7 915,530 51.087 24,673,562 2.98 240.66
3 1,125,234 43.934 26,997,273 2.77 357.06
6.2 1,561,654 35.161 34,671,912 2.24 521.62
18 3,233,982 23.779 60,234,555 1.47 768.80
28 4,575,608 20.351 79,825,800 1.21 856.40
42 6,768,514 18.094 111,639,786 0.99 848.19
60 9,272,712 16.422 154,626,018 0.82 878.95
87 13,437,823 14.994 212,065,519 0.72 896.16
246 36,899,367 13.062 558,646,062 0.53 960.19
756 111,310,619 12.247 1,810,997,879 0.42 960.12
1200 170,510,176 12.165 2,666,138,896 0.43 968.88
1600 232,565,492 12.232 3,691,515,010 0.41 975.64
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