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Abstract

Due to the phenomenon of metameric mismatching, Logvinenko [PLoS One, 2015 Sept.
10, 10(9)] has pointed out that color is not an intrinsic property of an object. Not only
can a change in the illumination lead to a substantial change in the measured or perceived
color of an object, two objects that are metamers (i.e., their color signals match under one
illuminant) may not match under a different illuminant. This phenomenon is referred to as
metamer mismatching. Given a surface reflectance illuminated by a given light, there can
be many other surface reflectances for which the eye provides an identical LMS cone-triple
response or an identical RGB response in the case of a camera. The tristimulus color values
of these metamer reflectances can disperse into many different tristimulus values under a dif-
ferent illuminant. The set of all such possible tristimulus values defines a convex hull known
as a Metamer Mismatch Body (MMB). Metamer mismatching poses several challenges in
color-based machine vision, such as color prediction, color discrimination variability and the
color accuracy of a digital camera. In this work, a variety of approaches to measuring the
extent of metamer mismatching and partially mitigating its effects are considered.

We begin by investigating the performance of existing color prediction methods in predict-
ing the results of asymmetric color matching experiments (i.e., finding the least-dissimilar
matching pairs of colored papers under different illuminants). Because of the possibility
of metamer mismatching, it is a mistake to interpret one answer as the ‘correct’ answer.
However, we demonstrate that all the computational methods studied are not capturing
some important aspects of the observers’ least-dissimilar matching strategy. MMBs are 3D
volumes that tend to be quite wing-like in shape. By modeling the MMB by its equivalent
(in terms of its inertial moments) ellipsoid, a new metric for evaluating the colorimetric
accuracy of digital color cameras is proposed. The advantage of the new metric is that it
is based on a theoretical principle rather than simply computing the average error over a
chosen set of representative test reflectances. Furthermore, a theory about the inverse re-
lationship between color discrimination ellipsoids and the extent of metamer mismatching
is proposed. Statistical analysis over the existing datasets provides evidence that metamer
mismatching can possibly explain why color discrimination varies throughout color space as
it does. It is shown that the proposed theory paves the way to predict the Just Noticeable
Differences (JNDs) in different regions of a color space.
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Chapter 1

Color Vision

Color vision provides humans with important sensory information that gives the ability to
see the physical environment. We all are intuitively aware of what color is but studying
color theory, its development, the state-of-the-art algorithms and their wide applications in
different fields provide us the material required to overcome some of the current existing
problems.

The biological process of vision uses light reflected from the surrounding world as the
input to interpret the environment. Our knowledge about the very complex process of
human color vision is used to model its behavior which can serve as an insight about how
machine vision can be solved. There are three types of cone cells with different spectral
sensitivities in our major sensory organ (eye) that enable us to see colors. Digital cameras,
monitors, printers and scanners are all attempts to imitate the characteristics of human’s
trichromatic color vision. Trichromacy assumes that only the three types of cones provide a
perception of color and two lights will be indiscriminable when they produce equal rates of
photopigment absorption for each cone type. However, the human color perception is much
more complicated and is only initiated by these receptors in the retina. Although it fails
to explain many phenomena such as visual aftereffects, simultaneous contrast and surface-
based color perception, trichromacy and the opponent process theory are the explanatory
bases that help to describe how our color vision system works.

In this chapter we briefly talk about color image formation, the metamer mismatching
concept and its effect on the measured color under different viewing conditions. The ma-
terial presented here provides some fundamental background knowledge required for this
research. In the next chapter, some of the state-of-the-art color prediction methods are
reviewed and their performance in predicting the asymmetric color matching experiment
results is analyzed. In the third chapter, the existing sensor quality metrics for digital cam-
eras are studied. Also, a novel method for evaluating the colorimetric accuracy of digital
color cameras is proposed. The main advantage of the proposed metric is that it determines
how much color error can arise in principle rather than measuring the error over a set of
sample reflectances. Color discrimination experiments and their applications in the test and
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Figure 1.1: The Normalized spectral sensitivities of human cones, S, M and L types.

the development of new color spaces and color difference formulas are discussed in the fourth
chapter. In addition, a theory of color discrimination based on the uncertainties reflected
in the extent of metamer mismatching is proposed and investigated. The proposed theory
paves the way for predicting the Just Noticeable Differences (JNDs) in color in chapter 5.

1.1 Color Image Acquisition

For many years quantifying color values from a scene has been the main goal of the imaging
technology so that they can be accurately reproduced later. The human visual system is only
sensitive to a part of the electromagnetic spectrum, called the visible spectrum. In other
words, the human eye responds to the wavelengths from about 380 to 780 nanometers.
One way to measure the sensitivities of human photoreceptors, as described in [12], is by
projecting a known amount of light and measuring how much light is absorbed by the
photopigment molecules. Such experiments have yielded response curves for three different
kinds of cones in the retina of the human eye with peaks at long (red, 560 nm – 580 nm),
medium (green, 530 nm – 540 nm), and short (blue, 420 nm – 440 nm) wavelengths. The
concentration of “green” and “red” cones is higher than “blue” cones in the fovea centralis.
The shapes of the curves obtained by these measurements are shown in Figure 1.1. The
relative heights for the three types are set equal for lack of detailed data.

S =
∫ λ=780

λ=380
r1(λ)P (λ) dλ,M =

∫ λ=780

λ=380
r2(λ)P (λ) dλ, L =

∫ λ=780

λ=380
r3(λ)P (λ) dλ (1.1)

The power spectrum of the light P (λ) that reaches our eyes are weighted by the spectral
sensitivity of each cone cell ri(λ) according to Equation 1.1 to render three values of the
stimulus as a specification of the color of that light. All possible tristimulus values denoted
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Figure 1.2: The CIE 1931 color matching functions [19] [92]

“L”, “M”, and “S”, indicate a 3-dimensional space called LMS color space that quantifies
human color vision, where r1(λ), r2(λ) and r3(λ) are the short (S-), medium (M-) and long
(L-) cone sensitivities known as the cone fundamentals.

The tristimulus values, depend on the observer’s field of view due to the distribution
of the cones in the eye. To overcome this problem, in 1931 the Commission Internationale
de l’Éclairage (CIE) [19][92] defined the color-matching functions to represent an average
human’s chromatic response within a 2◦ arc inside the fovea as it was believed that most of
the color-sensitive cones reside within a 2◦ arc of the fovea. These functions, known as the
CIE 1931 x̄ȳz̄ 2◦ Standard Observer, are plotted in Figure 1.2.

Although the trichromatic process is lossy, meaning that we cannot go from the tris-
timulus to the original spectral distribution of the light, the CIE color matching functions
help to numerically specify a color. It is also worth mentioning that it does not attempt to
describe how colors appear to a human observer.

The color of a pixel recorded by a camera is determined as a function of the light
source with spectral power distribution E(λ), the surface reflectance x(λ), and the camera
sensitivity functions ri(λ):

ϕi(x) =
∫ λmax

λmin

E(λ)x(λ)ri(λ)dλ (1.2)

E(λ) defines the radiant power of the light at each wavelength of the visible spectrum.
The CIE also specifies [3] [4] the relative spectral power distributions of typical lights, e.g.,
different phases of daylight and fluorescent illuminants. These standard illuminants provide
a basis for comparing images or colors recorded under different lighting conditions. Some

3



Figure 1.3: The relative spectral power distributions (SPDs) of CIE illuminants D65, F11
and A

Figure 1.4: The sensor response curves for Sony NEX-5N [41]

of these illuminants that are usually named by a letter-number combination are plotted in
Figure 1.3.

x(λ), as a function of wavelength, indicates the proportion of the incoming light that
is reflected off the surface. In other words, it represents the percentage of reflected radiant
energy at each wavelength, where zero and one mean perfect absorption and perfect re-
flection, respectively. Basically, the reflection depends on both the viewing and illumination
direction but here the surface is assumed to obey Lambert’s law; meaning it appears equally
bright from all viewing directions.

ri(λ), the camera’s spectral sensitivity, determines its relative efficiency in detecting the
radiation at each wavelength. It relates the light coming from the scene to the captured
RGB values. The sensor response curves of a Sony NEX-5N camera measured by Jiang et
al. [41] are shown in Figure 1.4 as an instance.
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Figure 1.5: Two balls are placed in a lightbooth [2]. Left: the two balls are metamers under
one light, meaning they produce the same color signals under that light. Right: the color
signals of the balls do not match anymore under a different light. This is called metamer
mismatching.

The set of an illuminant E(λ) and a sensor’s spectral sensitivity ri(λ) is called color
mechanism ϕi with spectral sensitivity si(λ) = E(λ)ri(λ), i = 1, . . . , n [54]. The vector
Φ(x) = (ϕ1(x), ϕ2(x), ..., ϕn(x)) of the sensor responses ϕi(x) defined in Equation 1.2 are
referred to as the ‘color signal’ produced by the sensor set in response to the surface re-
flectance x(λ) illuminated by E(λ) [54].

As is clear from Equation 1.2, different spectral reflectance functions may result in the
same color signal. In that case the reflectance functions are called metamers. Metamerism
will be studied in detail in the next section.

1.2 Metamer Mismatching

Two objects with two different spectral reflectance functions x(λ) and x′(λ) are called
metamers if they produce equal tristimulus values with a given color mechanism. However,
a change in the color mechanisms may cause the color signals of metameric reflectance
functions x(λ) and x′(λ) to mismatch. This phenomenon is known as metamer mismatching.
For instance, the RGB values of two different objects may match when a picture is captured
with a given camera under a given light (Figure 1.5). But the color signals of these two
objects may mismatch if the image is captured under a different illuminant, or with a
different camera. The metamer mismatching resulting from a change either in the illuminant
or the sensor sensitivities is referred to as illuminant-induced and observer-induced metamer
mismatching [54], respectively.

The set of all color signals that can be produced by a set of n color mechanisms
(ϕ1, ϕ2, ..., ϕn) forms a convex hull in Rn, which is known as the object color solid (OCS)
[54].

In general, given the tristimulus values of an object with respect to a given set of color
mechanisms, there can be many other surface reflectances that lead to the same tristimulus
values with respect to the same color mechanisms. The color signals of these metamers may
be dispersed into many different tristimulus values if the color mechanisms change. The set of
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all possible colors forms a convex body [107] which is known as Metamer Mismatch Volume
(MMV) [56] or Metamer Mismatch Body (MMB). We will use the Metamer Mismatch
Body (MMB) terminology proposed by Zhang et al. [97] to avoid the confusion of referring
to a volume’s volume. Many researchers have tried to address the problem of finding the
metamer set or the MMB in different ways. Some of the proposed algorithms are reviewed
in the next section.

1.3 Metamer Set

Wyszecki [104] first concluded that a reflectance function xλ can be decomposed into two
parts, the fundamental and metameric black. Let’s say that the CIE 1931 tristimulus values
XY Z for an object can be approximated by a set of sums as in equations 1.3-1.5:

X =
λ=780∑
λ=380

xλEλr
1
λ (1.3)

Y =
λ=780∑
λ=380

xλEλr
2
λ (1.4)

Z =
λ=780∑
λ=380

xλEλr
3
λ (1.5)

Where xλ, r1
λ, r2

λ and r3
λ are the N-vectors (usually N = 40 with the interval of 10nm

between 380nm and 770nm) showing the object’s spectral reflectance function and CIE
XYZ color matching functions, x, y and z, respectively. Eλ is a N × N diagonal matrix
where the diagonals are the illuminant’s spectral energy distribution. Wyszecki suggested
that xλ can be decomposed into two additive components, one being a particular solution
x

(p)
λ of Equations 1.3 to 1.5, and the other being the solution x(h)

λ of the homogenous part
with (0, 0, 0) as its tristimulus values. Since the tristimulus values of x(h)

λ are equal to zero,
it can be any N-dimensional vector orthogonal to the three vectors Eλr1

λ, Eλr2
λ and Eλr3

λ.
Therefore N−3 linearly independent metameric blacks can be obtained such that any other
metameric black can be represented as a linear combination of them. He also suggested a
systematic algorithm to compute a set of N−3 linearly independent metameric blacks in his
article. It should be pointed out that these spectral reflectances have necessarily negative
values in some parts of the spectrum and consequently cannot be materialized physically.

Cohen and Kappauf [20] then formalized Wyszecki’s decomposition by outlining or-
thogonal projectors. They introduced a projector matrix R that minimizes the distance
between the surface reflectance xλ and its projection to the columns of color formation ma-
trix Λ = [Eλr1

λ, Eλr
2
λ, Eλr

3
λ]. The suggested projector, in what they referred to as matrix-R

theory, is defined as follows:
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R = ΛT (ΛΛT )−1Λ (1.6)

A projector to the orthogonal complement of the space spanned by the columns of color
formation matrix Λ, denoted by R⊥ was also derived via R:

R⊥ = I −R (1.7)

where I is an N ×N identity matrix. Thus, any reflectance function xλ can be written
as:

xλ = Rxλ +R⊥xλ (1.8)

Rxλ is referred to as fundamental component and R⊥xλ as the metameric black. Both
projectors are invariant to linear transformation so a linear change of the color space will
not change its fundamental and metameric black components. The R-matrix operation was
later extended by Burns [16] to multiple metamers, i.e., the reflectance functions that remain
metamers with respect to several different illuminants.

The above algorithm explains how to generate metameric reflectances, but it does not
fully specify the set of all possible metameric reflectances for a given color signal. Schmitt
[84] on the other hand, derived a basis for the entire set of metameric reflectances. Given
the illuminant E and the CIE 1931 color matching functions r1, r2 and r3, the visible
spectrum can be split intoM , not necessarily equal, intervals ∆λi, i = 1, ..,M . The metamer
reflectances x must satisfy the following equations:

Xa = 100∑M
i=1 xi(Era)i∆λi∑M
i=1(Er2)i∆λi

(a = 1, 2, 3),

0 ≤ xi ≤ 1, i = 1, ...,M
(1.9)

where:

X1 = X,X2 = Y,X3 = Z (1.10)

r1 = x, r2 = y, r3 = z (1.11)

The denominator and the factor 100 in the numerator for a = 2 are added to normalize
the color values such that Y = 100. A numerical algorithm is proposed to find all inde-
pendent x elements that satisfy the above equations. These elements, referred to as simple
metamers, are finite and less than the binomial coefficient

(M
3
)
. They build a metameric

ensemble, F , which is described as a hyperpolyhedron volume in M-dimensional space with
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simple metamers as its apexes. Schmitt then demonstrated that this volume is convex and
any other metamer can be defined as a linear combination of these elements.

Finlayson et al. [28] use the original framework of Wyszecki [104] and R-matrix theory to
find all surface reflectances that induce a particular response. They place some constraints
on the reflectances to simultaneously make them physically realizable and statistically repli-
cating natural, measured reflectances.

All the aforementioned algorithms are numerical approaches to the problem. The infinite-
dimensional set of all the object reflectance spectra is usually sampled to build a finite-
dimensional subset and some restrictions will be applied to provide an approximate solu-
tion. However, the algorithm proposed by Logvinenko et al. [54] is the first to precisely
characterize the metamer mismatching volume. They theoretically find the limits of the
MMB for any strictly positive illuminant and sensor sensitivity functions. The boundary
points of the MMB, which are computed without placing any restriction on the reflectance
functions, are sufficient to specify the whole convex volume.

Schrodinger [85] showed that an optimal reflectance function, i.e., a reflectance function
whose color falls on the boundary of the OCS, only takes two values, 0 or 1. He also claimed
that for human color vision, an optimal object reflectance function is a step-like function
with some transitions between zero and one. Such optimal functions, xm or 1 − xm, are
defined below:

xm(λ;λ1, ..., λm) =
m∑
i=1

(−1)i−1x1(λ;λi) (1.12)

1− xm(λ;λ1, ..., λm) (1.13)

where

x1(λ;λ1) =
{

0 if λ < λ1

1 if λ ≥ λ1
(1.14)

Logvinenko [56] showed that an elementary step-like function with transition wave-
lengths λ1,λ2,. . . ,λm is an optimal reflectance function if λ1,λ2,. . . ,λm are the only roots of
the following equation:

k1s1(λ) + k2s2(λ) + ...+ knsn(λ) = 0 (1.15)

Based on the equation above, Logvinenko et al. [54] showed how, in theory, comput-
ing the optimal reflectance function (i.e., reflectance functions whose color signals fall on
the OCS boundary) leads to the computation of the MMB boundary points. They showed
that in a trichromatic world, if the color mechanisms (ϕ1, ϕ2, ϕ3) change to (ψ1, ψ2, ψ3),
the MMBs can be well approximated by optimal reflectance functions with up to five
transitions. In other words, elementary step functions with m = 5 with the color signal
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Figure 1.6: Sample MMB for flat grey induced by going from CIE illuminant A to D65.

(ϕ1(x5), ϕ2(x5), ϕ3(x5)) estimate the boundary of the metamer mismatch volume with high
precision while being computationally efficient. The convex metamer mismatching volume
can be specified by computing sufficient boundary points in different directions.

A sample MMB for a flat grey under CIE illuminant A that is induced by going from
CIE illuminant A to D65 is plotted in Figure 1.6 along with the object color solids of CIE
XYZ 1931 2◦ Standard Observer under illuminants D65 and A.

Logvinenko’s method measures the extent of metamer mismatching in theory. But such
steep, step-like reflectance functions likely never happen in nature. Zhang et al. [110] gath-
ered more than 25 million unique reflectance spectra of man-made, natural and industrial
objects that were obtained using multi-spectral imaging systems and spectrophotometers.
The reflectance functions that have the same CIE XYZ values under the first light are
used to define the empirical MMBs under the second light. They showed that the volumes
of these empirical MMBs are significantly smaller than the theoretical ones computed by
Logvinenko’s algorithm. Moreover, they showed that the volumes vary systematically with
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Munsell [73] value and chroma just as the theoretical ones do. This is illustrated by the plot
in Figure 1.7.

Figure 1.7: The MMB volume averaged over all hues and plotted as a function of Munsell
chroma and value, created by going from illuminant A to D65, and showing how the MMB
volume decreases with distance in Munsell value and/or chroma from grey (value 6, chroma
0) [110]

.
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Chapter 2

Do Computational Color
Prediction Methods Explain
Asymmetric Color Matching?

As pointed out in the previous chapter, a change in the illuminant of the scene can lead to
a change in the object color signal as shown in Figure 2.1. This causes a serious problem
for computer vision applications such as color-based object identification and tracking, im-
age reproduction, color feature extraction and scene understanding [26][111][34]. Therefore,
it is important to be able to predict the color signal of the same object under different
illuminants.

Figure 2.1: The sRGB rendering of the same image from Columbia dataset under different
lighting conditions, the illuminants from left to right: CIE A and CIE D65.

A similar issue arises when a color image recorded by a set of sensors is to be converted
to the output image produced by another set of sensors. Several algorithms are proposed
to answer this question, given a color signal for an unknown surface reflectance under the
first light—what its color signal is likely to be under the second light?
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Figure 2.2: The chromatic stimulus papers used in the L&T experiment [58] with Munsell
notations of 1) 5RP5/12; 2) 10P4/12; 3) 5P4/12; 4) 10PB4/12; 5) 5PB5/12; 6) 10B5/12; 7)
5B5/10; 8) 10BG5/10; 9) 5BG6/10; 10) 10G5/10; 11) 5G5/10; 12) 10GY6/12; 13) 5GY7/12;
14) 10Y8.5/12; 15) 5Y8/14; 16) 10YR7/14; 17) 5YR7/14; 18) 10R5/16; 19) 5R4/14; 20)
10RP5/14.

Logvinenko et al. [54] proposed a theoretical algorithm to compute the boundary of
metamer mismatching volume. They also showed that in theory the extent of metamer
mismatching can be very significant. The existence of such a volume means that given a
color signal under the first illuminant, it can become any one of the color signals within
the metamer mismatch volume under the second illuminant. Therefore, the color signal of
an object under the second light is in fact unpredictable when the MMB is not zero. This
is an ill-posed problem and there is no unique answer for it because there is no obvious
criterion to choose between the possible solutions. Nonetheless, it is natural that one look
for an approximate solution that fits the experimental data best on average.

Logvinenko and Tokunaga [58] (L&T henceforth) conducted an asymmetric color match-
ing experiment in which observers view a Munsell paper under one light (the test illumi-
nant) and then choose the least dissimilar paper from a set of 22 papers (Figure 2.2) under
a second light (the match illuminant). In this section we analyze the performance of the
state-of-the-art color prediction methods in terms of how well they explain L&T’s asym-
metric color matching experiment results. We address three questions: (i) Are observers
generally choosing the physically identical Munsell paper under the match illuminant? (ii)
Which computational method most closely corresponds to the observer average? and (iii)
How does the performance of individual observers compare to the computational methods
in predicting the least-dissimilar matches of the average observer?

This chapter has led to the following publications [80][81]:
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• Emitis Roshan and Brian Funt. Evaluation of color prediction methods in terms of
least-dissimilar asymmetric matching. Electronic Imaging, 2017(14):140–144, 2017.

• Emitis Roshan and Brian Funt. Computational color prediction versus least-dissimilar
matching. JOSA A, 35(4):B292–B298, 2018.

2.1 Color Signal Prediction Methods

Numerous methods for predicting color signal under a change of illumination have been
proposed. Given the color signal of a test paper under the first illuminant, what its color
signal will be under the second illuminant?

The Relit color signal is simply the color signal of the given object’s spectral reflectance
under the second illuminant. Computing it requires the full spectral reflectance function of
the surface as well as the SPD of the second illuminant. For a matte surface, we assume that
the color signal (ϕ1(x), ϕ2(x), ϕ3(x)) resulting from the light impinging on sensors ri(λ), (i =
1, 2, 3) from a surface of spectral reflectance x(λ) illuminated by light with spectral power
distribution E(λ) can be obtained using Equation 1.2. The Relit color signal, of course,
is not really a prediction at all but rather, under the assumption of matte reflectance, a
straightforward calculation of what the actual color signal will be [81].

Derhak and Berns [24] make the distinction between chromatic adaptation transforms
(CATs) and material adjustment transforms (MATs). A CAT is intended to predict what
color signal under the second illuminant will appear the same as under the first illuminant.
Of course, there is the issue of what ‘the same’ means. Derhak and Berns define the goal of
CATs and MATs as “a CAT models appearance constancy via corresponding color experi-
ments, whereas a MAT models material constancy via least dissimilar color matching.” They
consider a MAT as a material constancy prediction, or how sensor excitations for an object
color change with changes in observing conditions [24]. The problem with this definition is,
as established by Logvinenko et al. [55], that as a result of metamer mismatching intrinsic
object colors that are independent of the illuminant simply do not exist—hence material
constancy in the Derhak and Berns sense does not exist either since from such material
constancy, intrinsic object color would immediately follow.

They introduced the Wpt coordinate system, where W represents perceptive lightness,
and p and t represent perceptive chromaticness, that is, a combination of perceptive chroma
and hue at a constant perceptive lightness. They call it “Waypoint” because this color
equivalency representation forms a waypoint between source and destination observing con-
ditions. The orientations of the p and t axes are similar to the a and b axes of the CIELAB
color space. The Wpt coordinates of a training set consisting of 40 Munsell papers with
hues at an intermediate lightness and chroma of Value 5 and Chroma 6, plus a perfect dif-
fuser reflector (PRD), and a vivid yellow are defined such that they achieve orthogonality
between lightness and chromaticness, and if possible have linear loci of constant hue and
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Figure 2.3: The visualization of Wpt coordinates of the 42 Munsell papers [24].

circular contours of constant chroma (Figure 2.3). The PRD is set to have a W value of
100. The color signals of the training set elements under CIE illuminant C and 2◦ standard
observer and also other different observing conditions are mapped to their Wpt coordinates
using 3× 3 linear matrices. Let’s say A1 and A2 are the best 3× 3 transformation matrices
that map the color signals of the training set under the first and second viewing condition to
their Wpt coordinates. Given the color signal Φ1(x) of a test object under the first viewing
condition, the predicted color signal Φ2(x) under the second observing condition can be
computed as:

Φ2(x) = A−1
2 ∗A1 ∗ Φ1(x) (2.1)

The intermediate space of Wpt causes the transformation matrix A−1
2 ∗A1 in Equation

2.1 to be not the optimal 3×3 matrix that relates the color signals under the first and second
viewing conditions. In comparison, the Best Linear Fit method [31] is based on using the
optimal 3× 3 matrix mapping the color signals from the training set (1600 Munsell papers)
under the first illuminant to the second illuminant.

Another approach is the MMB center prediction which is based on computing metamer
mismatch volumes. As indicated before, for a given color signal under the first illuminant,
the set of color signals it could theoretically become under the second illuminant defines
a convex volume in the color signal space called the metamer mismatch body (MMB).
Computing the MMB requires full knowledge of the SPDs of both illuminants. Logvinenko
et al. [54] propose using the color signal at the geometric center of the MMB as a candidate
for what the color signal under the first illuminant is likely to become under the second
illuminant. Here we label that prediction method the “MMB center”.

The above-mentioned algorithms all need the fuIl SPD of the first (test) and second
(reference) illuminants. There is another group of color signal prediction methods that
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requires only the color signals of the illuminants, not their full SPDs. Von-Kries-based
CIECAM02 [69] and KSM2 [68] belong to this group.

CIECAM02 is a color appearance model. Given a set of tristimulus values in XYZ,
a transformation matrix MCAT02 is applied to convert them to the spectrally sharpened
CAT02 LMS space:

L

M

S

 = MCAT02 ∗


X

Y

Z

 ,MCAT02 =


0.7328 0.4296 −0.1624
−0.7036 1.6975 0.0061
0.0030 0.0136 0.9834

 (2.2)

After this sharpening transformation [27] [95], at the heart of CIECAM02 is the chromatic
adaptation transform CAT02, which applies the standard von Kries (diagonal) transforma-
tion. It takes the tristimulus values of the adapting white point, the adapting background,
and the surround luminance as the input to compute the degree of adaptation D. In theory,
the degree of adaptation can vary from 0, for no adaptation, to 1, for complete adaptation.
The values in between can be computed as follows:

D = F (1− 1
3.6e

−(LA+42)
92 ) (2.3)

LA is the adapting field luminance and F is a factor determining the degree of adapta-
tion, and can be assigned certain values corresponding to different surround conditions.

KSM2 developed by Mirzaei et al. [68] is another algorithm in the second group that
only needs the color signal of a PRD. KSM2 uses Gaussian-like functions (called wraparound
Gaussians) to represent both the illuminations and the reflectance. Given the color signal
of a light (its full SPD is not required), a metameric Gaussian SPD can be found that
is fully specified by 3 parameters: K the scaling, S the sigma, M the peak wavelength.
As illustrated in Figure 2.4, to make a color signal prediction, KSM2 finds three Gaussian
functions, one representing an SPD metameric to the first illuminant, a second metameric
to the second illuminant, and a third representing a reflectance metameric to the given test
color signal under the Gaussian SPD metameric to the first illuminant. It then computes
the color signal of that Gaussian reflectance under the second Gaussian illuminant and uses
that color signal as its prediction.

In the next section, the color prediction methods are compared to determine which
one best models the observers’ performance in the L&T least dissimilar asymmetric color
matching experiment.

2.2 L&T Least Dissimilar Asymmetric Matching Experiment

Logvinenko & Tokunaga [58] ran an asymmetric color matching experiment. A set of 22
Munsell papers were shown under two lights (referred to as the test and reference illumi-
nants) simultaneously. A laser pointer was used to indicate one of the papers under the test
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(a) (b)

(c)

Figure 2.4: Solid black curves are the given spectral power distributions and reflectance.
Dashed magenta curves are their Gaussian metamers. (a) Wraparound Gaussian SPD
metameric to the first light. (b) Wraparound Gaussian SPD metameric to the second
light. (c) Wraparound Gaussian reflectance producing the same color signal when lit by
the wraparound Gaussian SPD from (a) as the color signal of the original reflectance (solid
black curve in (c)) under the first light [81]
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Figure 2.5: The asymmetric matching setup used by L&T [58] showing the example of the
left-hand panel in yellowish light and the right-hand panel in bluish light. “Each stimulus
array contained 20 papers from every other page in the Munsell book of maximal Chroma
completed with grey (N5/) and black (N1/) papers (i.e., 22 papers in all). The stimulus
array dimensions were 39 × 55 cm.” [58] The papers are rearranged between trials.

illuminant and the observers were asked to choose the least dissimilar paper from the papers
under the reference (or the match) light. There were 4 observers and 3 repetitions each. See
Figure 2.5 for a photograph of the setup. The papers are rearranged between trials.

Note that these are real papers under real illuminants, not colored patches on a digital
display nor colors obtained using hidden illuminants to simulate reflectance changes [13]
[23]. The experiment involved 6 illuminants of approximately equal illuminance, green (G),
blue (B), neutral (N), yellow (Y), red1 (R1) and red2 (R2), and all 30 possible pairs were
used as test/match illuminant conditions. However, since the two red illuminants are very
similar, here we exclude one of them (R2). Considering only the non-identical pairs of 5 of
the illuminants, there are respectively 5 and 4 possible illuminants as the test and match
lights and so 20 illumination conditions.

The L&T experiment differs from many other asymmetric color matching experiments
in that subjects are not asked to make exact asymmetric matches, but rather to identify
the colored paper that appears least-dissimilar. They argue that the classic asymmetric
matching has a major shortcoming in that the observers who set a match report that color
matches are not always perceptually identical. They point out that the light-color dimension
of object color means that an exact asymmetric color match is impossible in principle. Hence,
they ask their observers not to find an exact match but rather a least-dissimilar match [58]
[57].

There are other types of color matching, but each has its own shortcomings. In memory
matching, the samples under different lights to be compared are shown successively, not
at the same time. When there is a delay between successive views this necessarily involves
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memory [74]. Allowing time for the eyes to adapt to each illuminant, the observers need
to keep the color information in mind, but it is hard to remember it perfectly after a long
delay. In Haploscopic matching, a sample under the first light is shown to the right eye. A
copy of the same sample under a different light is shown simultaneously (or successively)
to the left eye so that each eye becomes adapted to a different light. Haploscopic matching
experiments assume that the two eyes are independent with respect to sensitivities and
chromatic adaptation mechanisms, which may well be valid for the sensory mechanism but
may not hold for cognitive mechanisms. One half of the field of view corresponding to each
eye will be projected into the left brain and the other half will be projected into the right
region and then the signals will be mixed in a way that is not yet fully understood [18].

As L&T point out, a perfect asymmetric match will usually be impossible due to
metamer mismatching (i.e., the fact that two different reflectances may reflect metameric
lights under one illuminant, but non-metameric lights under a second illuminant). Further
analysis of the effect of metamer mismatching in the context of this experiment is provided
by Logvinenko et al. [55].

2.2.1 Do Observers Choose Original Munsell Paper?

Before addressing the issue of how well the various computational methods model the asym-
metric matches made by the L&T observers, we consider the question as to whether or not
observers are generally choosing the physically identical Munsell paper under the match
illuminant as least-dissimilar to the test paper. To answer this question, for each test paper
under the test illuminant, we compute the average XYZ under the match illuminant of
the Munsell papers chosen as least-dissimilar and calculate how far in terms of Euclidean
distance that average is from the actual XYZ of the test paper under the match illuminant,
and finally average the results over all 20 test papers.

For each illumination condition, 4 observers with 3 repeats made least-dissimilar matches.
All 20 chromatic papers were used as test papers. For each of the 20 test papers, therefore,
there are 12 least-dissimilar matches reported, resulting in 240 matches for each illumination
condition. Considering the 20 non-identical pairs of lights used in the asymmetric matching
experiments, we have 20 × 240, or 4800 matches in total. The average Euclidean distance
between the matched paper and the XYZ of the physically identical Munsell paper under
the match illuminant is 6.0. For comparison, the average XYZ difference between a given
Munsell paper and the nearest of the other 19 papers under the Neutral illumination is 6.6.
In other words, the observers are on average choosing as least dissimilar a paper that is
either the physically identical paper or one that is close to it in color.

Our analysis is in agreement with L&T’s analysis: “. . . when the test illuminant was
neutral or yellow the average mismatch was roughly one hue step. The mismatch for the
other four test illuminants was approximately two hue steps. Therefore, while the exact
match rate for these illuminations . . . is quite low (less than 30%) the average mismatch
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does not exceed two hue steps” ([58] p. 415). An “exact match” is defined as the observer
choosing the physically identical paper.

These results suggest, perhaps not surprisingly, that observers generally find the match
paper that is physically identical to the test paper to be the least dissimilar one.

2.2.2 Predicting Observer Average Matches

To determine which method most closely predicts observer least dissimilar matching behav-
ior, we consider the 12 (4 observers, 3 repeats) matches made for each test paper under a
given illumination condition and compute the average-observer-match as the average of the
color signals of the 12 matched papers under the reference illuminant. Each computational
method is used to predict the color signal of the test paper under the reference illuminant.
A method’s prediction error is calculated as the Euclidean distance between the average
observer match color signal and the color signal the method predicts.

We compare the performance of the computational color prediction methods to one
another using the Wilcoxon signed-rank one sided and two sided tests [89]. The Wilcoxon
test is a non-parametric statistical hypothesis test based on the sum of the signed ranks of
a set of paired samples. In the present case, the paired samples are the prediction errors for
the 20 papers under a given illumination condition of the two methods being compared. All
the tests are performed at the 5% significance level.

More specifically, the 20 test papers result in 20 average observer match values for a
given pair of test and match illuminants, along with a corresponding set of 20 predictions
made by each algorithm. Three tests are performed to compare each pair (Method 1 and
Method 2) of methods—one two-sided test and two one-sided tests. The null hypotheses for
these tests are as follows.

Two-sided test: the null hypothesis is that the median prediction errors of the two
methods are equal.

Right-tailed test: the null hypothesis is that the median prediction error of Method 1 is
greater than the median prediction error of Method 2.

Left-tailed test: the null hypothesis is that the median prediction error of Method 2 is
greater than the median prediction error of Method 1.

The results of the three Wilcoxon tests will lead to one of the following cases.
Case I: The null hypothesis of the two-sided test cannot be rejected at the 5% significance

level. In this case the performance of Method 1 and Method 2 can be considered to be
equivalent.

Case II: The null hypothesis of the two-sided test can be rejected and the right-tailed
test cannot be rejected, but the null hypothesis of the left-tailed test can be rejected. In
this case, Method 2 can be considered to be better (lower median prediction error) than
Method 1.
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Table 2.1: Comparison of algorithms in predicting the average observer-match in each of the
20 different illumination conditions. The numbers in columns 3-5 indicate how many times
across the 20 different illumination conditions that each Case (see text for definition of the
Cases) occurs. Informally, Case III indicates Method 1 is ‘better’ than Method 2, Case II
that Method 2 is better than Method 1, and Case I that they perform similarly.

Method 1 Method 2 Case III Case II Case I
Relit KSM2 10 1 9
Relit MMB Center 20 0 0
Relit CIECAM02 10 0 10
Relit Wpt 8 0 12
Relit Best Linear 5 0 15

KSM2 MMB Center 17 0 3
KSM2 CIECAM02 5 2 13
KSM2 Wpt 5 5 10
KSM2 Best Linear 1 6 13

MMB Center CIECAM02 0 18 2
MMB Center Wpt 0 19 1
MMB Center Best Linear 0 20 0
CIECAM02 Wpt 0 6 14
CIECAM02 Best Linear 1 8 11
Best linear Wpt 1 7 12

Case III: The null hypothesis of the two-sided test can be rejected and the left-tailed
test cannot be rejected, but the null hypothesis of the right-tailed test can be rejected. In
this case, Method 1 can be considered to be better (lower median prediction error) than
Method 2.

Note that the results in Table 2.1 show the relative performance of the methods, not their
absolute performance. In other words, the methods might be doing equally poorly rather
than equally well. In terms of absolute performance, Table 2.2 lists the accuracy of each
method’s predictions averaged over the 400 cases. The accuracy is measured in terms of the
Euclidean distance between the prediction and the average XYZ of the 12 least-dissimilar
matches, and similarly for CIE1976 u’v’ coordinates. Although most of the results reported
in this study are in terms of XYZ, almost identical ranking results were obtained using
Euclidean distances in Hunter-Pointer-Estevez LMS space and the CIEDE2000 metric.

The results in Table 2.1 and Table 2.2 are aggregated over all 20 Munsell papers and all
20 illumination conditions. L&T [58] provide a detailed analysis of how the average ‘exact
match’ rate varies both with the illumination condition and with the test paper.
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Table 2.2: Accuracy in predicting average observer matches. Mean and median of the Eu-
clidean distance in XYZ and CIE1976 u’v’ between each method’s predictions and the
average observer match across 400 cases.

Method Mean XYZ Median XYZ Mean u’v’ Median u’v’
Relit 5.21 3.45 0.024 0.015

Best Linear 5.56 4.17 0.040 0.023
Wpt 6.20 4.44 0.096 0.025

KSM2 8.08 4.50 0.043 0.030
CIECAM02 7.61 5.99 0.040 0.030
MMB Center 39.85 23.44 0.072 0.040

2.2.3 Observers Predicting Other Observers

In the previous section the performance comparison is between computational methods.
All those methods might be equally good or bad but how does their performance compare
to that of the observers relative to one another? Clearly there will be variability in the
least dissimilar matches made by the different observers. To what extent do the observers
agree with one another and is a match made by an individual observer any better or worse
a predictor of the average observer match than those made by the various computational
methods?

To answer this question, we used a leave one observer out comparison in which one
observer is excluded and the 9 remaining trials (3 observers, 3 repeats per paper) are
combined to create a 3 observer average for each illumination condition. The mean of the
excluded observer’s 3 trials is then used as a predictor of this 3 observer average. This
process is repeated for each of the 4 observers resulting in predictors Obs1,. . . ,Obs4 of the
4 different, 3 observer averages.

Table 2.3 compares the individual observers to the computational methods in predicting
the 3 observer average. Table 2.3 also includes results based on picking the paper that has
the closest ‘hue’ using M from KSM2 as the hue measure, which interestingly does slightly
better than using all 3 components of KSM2.

From Table 2.3, it is clear that human observers predict the 3 observer average better
than the computational methods do, as indicated by the fact that the numbers in the Case
II column are substantially larger than those in the Case III column.

2.2.4 Results Using The Process Of Elimination

In a discussion concerning the results described above, John McCann [65] suggested that
perhaps the observers were exploiting the fact that there were only 20 chromatic papers from
which to choose and this might in some way be affecting the L&T matching results. In order
to address that concern, in this section we provide the computational methods with this
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Table 2.3: Observers versus Computational Methods. Similar to the Table 2.1 but in this
case comparing via the Wilcoxon test how well each method/observer predicts the 3-observer
average of least dissimilar matches. The numbers in columns 3-5 indicate how many times
across the 20 different illumination conditions that each Case (see text for definition of the
Cases) occurs. Informally, Case III indicates the given method is ‘better’ than the particular
observer, Case II that the observer is better than the method, and Case I that they perform
similarly.

Method Observer Case III Case II Case I

KSM2

Obs1 0 13 7
Obs2 0 15 5
Obs3 0 11 9
Obs4 0 14 6

Relit

Obs1 0 9 11
Obs2 0 11 9
Obs3 2 6 12
Obs4 0 9 11

Wpt

Obs1 0 13 7
Obs2 0 14 6
Obs3 0 9 11
Obs4 0 12 8

CIECAM02

Obs1 0 14 6
Obs2 0 16 4
Obs3 0 13 7
Obs4 0 18 2

Best Linear

Obs1 0 12 8
Obs2 0 10 10
Obs3 0 7 13
Obs4 0 12 8

MMB Center

Obs1 0 20 0
Obs2 0 20 0
Obs3 0 19 1
Obs4 0 20 0

M of KSM2

Obs1 0 11 9
Obs2 0 14 6
Obs3 0 9 11
Obs4 0 13 7

additional information to see if they are then able to predict the observers’ least-dissimilar
matches correctly.

Although the L&T observers were instructed simply to identify the least-dissimilar look-
ing paper, the observers were aware that the same 20 papers were present under both the
test and match illuminants so it is conceivable that they used that extra information to
do an overall best fit of the least-dissimilar matches for of the 20 papers under the match
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Table 2.4: Results corresponding to those in Table 2.3 but allowing the algorithms to include
minimizing the total dissimilarity across all 20 papers simultaneously

Method Observer Case III Case II Case I

KSM2

Obs1 0 9 11
Obs2 0 11 9
Obs3 2 7 11
Obs4 0 12 8

Relit

Obs1 0 9 11
Obs2 0 11 9
Obs3 2 6 12
Obs4 0 9 11

Wpt

Obs1 0 9 11
Obs2 0 11 9
Obs3 2 6 12
Obs4 0 10 10

CIECAM02

Obs1 0 11 9
Obs2 0 12 8
Obs3 0 10 10
Obs4 0 15 5

Best Linear

Obs1 0 10 10
Obs2 0 10 10
Obs3 2 6 12
Obs4 0 10 10

MMB Center

Obs1 0 9 11
Obs2 0 11 9
Obs3 1 10 9
Obs4 0 14 6

M of KSM2

Obs1 0 10 10
Obs2 0 13 7
Obs3 0 9 11
Obs4 0 9 11

illuminant to those under the test illuminant. Although we cannot know what observers
were doing when they made their least dissimilar matches, we can have the computational
methods exploit that extra information.

Table 2.4 shows the results corresponding to those in Table 2.3 but when the algorithms
minimize the overall dissimilarity across all 20 papers before deciding on the match for the
given test paper.

It is clear from Table 2.4 that the extra information does improve the computational
methods’ predictions of the 3-observer average (Case I numbers are larger than those in
Table 2.3); nonetheless, the individual observers still are statistically better roughly half
the time (Case II). In other words, even when the computational methods are modified to
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exploit a process of elimination type strategy they are still are not as good as the human
observers in predicting the other observers’ least-dissimilar matches.

Interestingly, none of the methods is as effective as each individual observer in predicting
the 3 observer average of the other observers’ matches. This implies that all the methods
studied here are not capturing some important aspect of the observers’ least-dissimilar
matching strategy. L&T [58] argue for the existence of both lighting and material dimen-
sions of object color and propose the concept of an across-illuminant color map. Perhaps
once their across-illuminant color map is fully specified it will provide a full model of the
L&T asymmetric matching results. All we can say in the meantime, however, is that the
computational models we tested do not explain those results adequately.

2.3 Discussion

The use of “least-dissimilar” as opposed to “matching” is an important aspect of the asym-
metric color matching experiment by Logvinenko & Tokunaga [58]. Asking the observers to
find a “match” tends to abstract color away from what its purpose might be. It also differs
from many other experiments as they use real papers under real lights.

Their results raise several questions that we tried to answer by evaluating some of the
existing color signal prediction methods. Our analysis shows that observers tend to find
the physically identical test paper to be the least-dissimilar match paper. However, this
does not mean that observers would always consider that paper to be the least-dissimilar if
there were an effectively infinite choice of papers. Note also that because of the possibility
of metamer mismatching it is a mistake to interpret the physically identical paper under
the match illuminant as the ‘correct’ answer. An observer is not wrong to find some other
paper to be least dissimilar.

A leave-one-observer-out comparison shows that individual observers, somewhat sur-
prisingly, predict the average matches of the remaining observers better than any of the
above color prediction methods. This implies that all the computational methods stud-
ied are not capturing some important aspect of the observers’ least-dissimilar asymmetric
matching strategy. Of course, as mentioned before, Best Linear, Wpt, and MMB centers
require the full spectra of the test and match illuminants, while KSM2 and CIECAM02
require only their color signals. In other words, the former ones may or may not predict hu-
man performance, but eventually they cannot provide a computational model of any aspect
of trichromatic color perception.
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Chapter 3

Color Accuracy of Digital Cameras

The desire for accurate color measurement across many fields has led to the development
of various color accuracy metrics for digital cameras. For instance, color imaging plays a
crucial role in early diagnosis of different diseases such as cancer, dermatological, ophthal-
mology and dental disorders to name a few [99] [46] [29] [9] [50] [42] [47]. There are further
applications within medicine such as anemia, pH, protein and glucose tests [88] [71] [40]
[109] [21]. Its application also continues beyond medicine. For example, color is widely used
in intelligent agriculture [22] [51], water test quality [43] and marine monitoring [6].

There are many trade-offs involved in digital color camera design in terms of image noise,
cost, and physical limitations that means that perfect color accuracy is usually sacrificed.
This is especially the case since the usual goal in camera design is to provide good-looking
pictures, not to build an imaging colorimeter. Nonetheless, quantifying the colorimetric
accuracy of commercial cameras and cellphones, even though they are not initially intended
to be used as imaging colorimeters, has become very important due to their image quality,
portability and affordability. So there is a definite need to be able to quantify the degree of
color accuracy/inaccuracy that a given camera possesses.

In this chapter, a novel method for evaluating the colorimetric accuracy of digital color
cameras is proposed based on a new measure of the metamer mismatch body (MMB)
created for a 50% flat grey under D65 illuminant induced by the change from the camera as
an observer to the human standard observer. Unlike the majority of the existing metrics, the
proposed method is based on a theoretical principle rather than a finite set of measurements.

The findings of this chapter has led to the following publications [82][83]:

• Emitis Roshan, Brian Funt, and Hamidreza Mirzaei. Camera color accuracy evaluated
via metamer mismatch moments. In Proceedings of the AIC International Colour
Association Conference, 2017.

• Emitis Roshan and Brian Funt. Color sensor accuracy index utilizing metamer mis-
match radii. Sensors, 20(15):4275, 2020.
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3.1 Sensor Quality Metrics

A camera is said to be colorimetric if its sensor sensitivities can be represented as a linear
transform of the CIE 1931 2◦ observer color matching functions. This is known as the
Maxwell-Ives criterion (also called the “Luther condition”) [61]. If this condition is not
satisfied, colorimetric accuracy cannot be guaranteed. In other words there are some spectra
that our eyes see as matching, but the camera sees as different, and there are some spectra
that the camera sees as matching but our eyes see as different.

The problem with this condition is that if it is not met then it does not determine how
accurately a digital camera is able to capture color information from the scene.

Figure 3.1: The blue crosses show the RMS error between CIE-1931 2◦ color matching
functions (CMF) and the best map of the spectral sensitivities of each camera to the CMFs.
The red bars show the average color difference (CIEDE00) between the XYZ of 1269 Munsell
chips under D65 and the camera’s best estimate of them [41].

Jiang et al. [41] measured the spectral sensitivity functions of 28 digital color cameras
in the visible spectrum (i.e., 400nm to 720nm). To see how closely each of the 28 different
cameras approximates the Luther condition they measured the RMS error in the best linear
fit of the camera sensitivities to the CIE 1931 2◦ observer color matching functions. This
error is zero if the camera perfectly satisfies the Luther condition. They showed that overall
most cameras have a deviation from the Luther condition, and that Canon cameras in gen-
eral have lower RMS than Nikon cameras in this aspect. As an alternative, they calculated
the mean color difference (CIEDE00) between the actual XYZs of the 1269 reflectances of
the Munsell Book [73] illuminated by D65 and those that are predicted based on using the
camera’s spectral sensitivity functions. The camera predictions are made by computing the
resulting RGB values for the given camera’s sensitivity functions and then mapping them to
the corresponding XYZ values based on a best linear fit of the camera sensitivity function
to the CIE 1931 2◦ observer x, y, z color matching functions. The ranking of the cameras
based on their average ∆E and RMS errors is shown in Figure 3.1. Obviously, several of
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these camera rankings based on RMSE differ significantly from those based on the ∆E
measure, which leaves the question as to which ranking to use and why one over the other.

Another approach is the q factor quality measure introduced by Neugebaur [72]. Let
V = [v1, v2, v3] , where vi are the N -vectors that represent the illuminant-times-color-
matching-function product. The space spanned by these vectors vi(i = 1, 2, 3) is called the
human visual subspace (HVSS). If m is a filter, the q factor can be expressed as:

q(m) = ‖Pν(m)‖2

‖m‖2
(3.1)

where Pν(m) is the orthogonal projection of m onto the HVSS and ‖.‖ denotes the
second norm in N -dimensional vector space. Notice that 0 ≤ q(m) ≤ 1, and the closer the
q(m) value of a filter to one, the better the color scanning filter m. The disadvantage of the
q factor is that it is limited to the evaluation of a single filter, and hence is insufficient for
the evaluation of color cameras. Three independent filters each with q(m) = 1 spanning the
HVSS would be perfect; however, the q factor on its own does not indicate whether a set
of filters is independent or not. Thus, a set of three identical filters can be deemed perfect
even though they clearly are not.

The q factor also does not differentiate among imperfect sets of filters. To be able to
handle sets of filters M , Vora et al. [96] extended the q factor to the ν measure which is
defined as:

ν(V,M) =
α∑
i=1

λi
2(OTN) (3.2)

V represents the illuminant-times-color-matching-function product and O is an or-
thonormal basis for the space spanned by V . N is also an orthonormal basis for the subspace
spanned by the set of filters M under a given illuminant (usually CIE D65). Such an or-
thonormal basis can be computed by Gram-Schmidt orthogonalization. λi(OTN) is the ith

singular value of (OTN). This measure represents the distance between the subspaces. The
singular values are related to the principal angles θ1, θ2, . . . , θk ∈ [0, π/2] between two sub-
spaces with λi

2 = cos2(θi). The ν measure is equal to one if the subspaces are identical,
and it is equal to zero if they are orthogonal.

Another extension of Neugebaur’s q factor to multiple filters is the CQF, color quality
factor, by Trussell et al. [94]. The q factor measures the fraction of the camera filter energy
that lies within the HVSS. By reversing the roles of the color matching functions (CMF)
and the camera color filters, one can evaluate the fraction of the energy of each CMF that
lies in the space spanned by the camera filters. The τ measure is the minimum of the three
q factors corresponding to the three CMFs and is defined as:

τ(V,M) = min
i
{‖PM (νi)‖2

‖νi‖2
} (3.3)
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Trussell et al. [94] compare Vora’s ν measure with the τ measure. They generated a large
number of non-perfect filter sets by adding controlled random deviations to a perfect filter
set and then plotted their ν and τ measures versus their average CIE ∆E error. Overall,
their plot shows both measures increase when CIE ∆E error decreases but the CIE ∆E
error has a higher absolute correlation coefficient with Vora’s ν measure than with the
τ measure. This confirms the advantage of the ν measure. On the other hand, high ∆E
variation around the lower values of both metrics indicates the accuracy decreases when the
values of the two metrics decrease.

Sharma et al. [86] criticize the q factor, ν and τ measures, making the point that all the
aforementioned algorithms are directly or indirectly computing the mean squared error in
CIE XYZ color space, which is known to be perceptually non-uniform. They develop a new
figure of merit (FOM) for color scanners/cameras that is based on an error metric in the
linearized CIELAB color space to account for both the nonlinearities in color perception
process and device noise. The mean squared error for a set of filters is presented as:

ε(V,M,B) = E{‖F (t(x))− F (t̂(x))‖2} (3.4)

where t(x), t̂(x), F and E{} denote, respectively: the CIE XYZ tristimulus values of object
reflectance x; the CIE XYZ tristimulus values estimated as a linear transformation (matrix
B) of the scanner/camera measurement plus white noise; a 3×3 transformation of tristim-
ulus values; and the expected value over a set of objects to be scanned. Having the optimal
transformation matrix B, the proposed error metric can be computed for a camera/scanner,
but a closed form expression cannot be defined for a general non-linear transformation func-
tion F (). However, it has been shown that if the transformation function F () is differentiable
with continuous first partial derivatives, the first-order Taylor series can fairly approximate
it locally, and the error metric with optimal transformation matrix B becomes:

ζ(V,M,Bopt) = α(V )− β(V,M) (3.5)

where:

α(V ) = vec(V T )TSxvec(V T ) (3.6)

β(V,M) = vec(V T )TSx(M ⊗ I3)× [(MT ⊗ I3)Sx(M ⊗ I3) + Sη]−1 × (MT ⊗ I3)Sxvec(V T )
(3.7)

Sx = E{(xxT )⊗ (JTF (t(x))JF (t(x)))} (3.8)
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Sη = E{ηηT } ⊗ E{JTF (t(x))JF (t(x))} (3.9)

It can be proved that 0 ≤ β(V,M) ≤ α(V ). Therefore the ratio

qF (V,M,Bopt) = β(V,M)
α(V ) (3.10)

describes a normalized figure of merit that provides a unified framework encompassing the
previous measures as a function of the transformation F (). JF (t(x)) denotes the Jacobian
matrix, and because F () is a linear transformation in Sharma’s proposed measure (i.e.,
they suggested using the linearized CIELAB conversion), the Jacobian matrix is the same
as F () and the above approximation is exact. 424 sample reflectances were chosen as a
representative dataset of which 240 were from the Kodak Q60 Photographic Scanner Target,
64 from the Munsell chart and 120 from the DuPont paint catalog. A set of 251 Gaussian
filters was created to simulate and test the relation between FOM and perceptual error (i.e.
CIE ∆E error).

Quan [77] proposed a unified measure of goodness (UMG) that is basically the same as
Sharma’s FOM. He considers the θ measure for single viewing-recording illuminant pair as:

θ = 1−
√

1− qF (V,M,Bopt) (3.11)

However, because the viewing illuminant can be different from the capture illuminant in
different applications, if the sets of illuminants {Ev1 , Ev2 , . . . , Evn} and {Et1 , Et2 , . . . , Etm}
are used as the viewing and capture illuminants, the quality factor matrixM and the unified
measure of goodness (UMG) is defined as follows:

M =


θ11 θ12 · · · θ1m

θ21 θ22 · · · θ2m
...

... . . . ...
θn1 θn2 · · · θnm

 (3.12)

UMG = 1
nm

n∑
i=1

m∑
j=1

wijθij (3.13)

UMG is a weighted average of the matrix M ’s elements. Quan also argues that dark
and shot noise are equally important, and that the white noise modeled in Sharma’s FOM
is not sufficient for evaluating sensor sensitivities. A representative set of object reflectance
spectra that contains 354 samples, including 120 Dupont paint chips, 64 Munsell chips and
170 natural and man-made object reflectance spectra measured in Situ is considered enough
for designing and testing the camera spectral sensitivities.
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3.2 Proposed Method: Camera Metamer Mismatch Radii In-
dex (CMMRI)

The proposed method here is based on evaluating the degree of metamer mismatching
between the camera sensitivity functions and those of the eye. The intuition behind using
the degree of metamer mismatching to evaluate color accuracy is that if a human observer
sees a pair of lights as matching, then the camera should too, and vice-versa.

For a given camera responding with the value RGB when viewing a given surface re-
flectance illuminated by a given light, there are many other surface reflectances (from the set
of all theoretical surface reflectance functions) for which the camera will record the identical
RGB response. The LMS triples for this set of metameric (to the camera) reflectances can
become very different. All possible LMS triples construct a 3D volume that is convex [54]
and is referred to as the metamer mismatch body (MMB) [110]. The volume of the MMB
is a measure of the degree to which matches by the observer and camera differ. In other
words, it shows how much the LMS triples of those metameric reflectances can be different.
From the fact that they differ it follows that there does not exist a one-to-one mapping
between camera RGB and LMS.

(a) (b)

Figure 3.2: (a) A very thin metamer mismatch body (MMB) found for the Point Grey
Grasshopper2 camera (and similarly for the Hasselblad H2); (b) The same MMB from a
different viewing angle.

The proposed metric must be invariant to any linear transformation of the sensitivity
functions. Previous methods for evaluating MMBs in the context of cameras [39] or light
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sources [30] normalize the volume of the MMB by the volume of the convex hull of the
spectral curve for the second observer (see Equation. 8 of [53] for a formal definition). Since
a linear transformation changes both the MMB and the OCS volumes with the same scaling
factor (both volumes will be multiplied by the determinant of the transformation matrix),
the metric stays unaffected using this normalization step. The normalized volume method
is attractive in that is based on a theoretical measure that considers all possible metameric
pairs and not a finite sample. However, the MMB can be very thin in one direction and
elongated in other directions, which makes the normalized volume an unstable measure. In a
case such as that shown in Figure 3.2, the MMB is wide in two directions but narrow in the
third. This narrowness means that the volume is small even though the degree of metamer
mismatching can be large. To overcome this problem, a measure based on the MMB shape
rather than its volume is proposed. Evaluating the MMBs in terms of aspects of its shape
rather than its volume helps to keep the benefits of this approach while overcoming the
problems created by thin MMBs. Zhang et al. [110] have shown that the MMB of flat
grey (i.e., uniform 50% spectral reflectance) typifies the MMBs of other colors and so using
only this one case is sufficient for our purposes. Thus, we propose to use the MMB of a
50% flat grey illuminated by D65 that results for a change from camera sensitivities to cone
sensitivities. But how can we measure the dimensions of such a wing-like shape? We propose
instead to characterize the shape of the MMB in terms of the radii (suitably normalized)
of its equivalent ellipsoid. We define an “equivalent ellipsoid” as an ellipsoid with the same
principal moments of inertia as the MMB. The advantage of evaluating the MMB in terms
of these radii in contrast to using the MMB’s volume is that, even in the case of a thin
MMB of small volume for which one of the radii will be small, the other two radii may still
be large. In other words, the other two radii correctly indicate the possibility of significant
metamer mismatching.

Equation 3.14 shows the general formula for computing the moment of inertia tensor,
I, of an object Q rotating around a given axis:

I =
∫∫∫

Q
ρ(x, y, z)||r||2dV (3.14)

where ρ(x, y, z) is the mass density function at each point and r is the radius vector from
the points to the axis of rotation. To calculate the MMB’s equivalent ellipsoid, it is treated
as a mass of uniform unit density (ρ = 1). For any mass, there exists an equivalent ellipsoid
having the same moments of inertia (i.e., characteristics when it is spun) about its principal
axes.

An ellipsoid is uniquely characterized by its three principal radii, so they concisely
characterize the dominant aspects of the shape of the MMB. A linear transformation of the
sensor functions, however, will change the MMB, and consequently changes the principal
axes, moments of inertia, and radii of the corresponding equivalent ellipsoid. To obtain radii
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that are independent of linear transformations of the sensor space, the MMB is normalized
relative to the equivalent ellipsoid of the object color solid (OCS) [52] defined by the 2-
transition ‘optimal’ color reflectances. Specifically, the principal moments of the OCS are
used to determine the unique linear transformation, T , that transforms the OCS so that its
equivalent ellipsoid becomes the unit sphere. The details of how T is defined are given in
the section 3.2.1. The same transformation, T , is then applied to the MMB after which the
principal radii of the equivalent ellipsoid of the transformed MMB are computed.

The algorithm of Logvinenko et al. [54] is used here to compute MMBs. The Camera
Metamer Mismatch Radii Index (CMMRI), as explained in details in the next section, is
defined as the mean of these three principal radii. The orientation of the MMB is not
important, so there is no reason to weight one of the radii any more highly than the other
two. Clearly, measures based on the median or the maximum of the radii are alternatives,
but the mean is used here.

3.2.1 Details of CMMRI Computation

To compute the CMMRI, first consider the OCS, O, (determined as the convex hull of points
on its boundary [52]) as a rigid body of a unit density and translate O so that its center
of mass lies at the origin. Second, compute the inertia tensor of this centered mass. The
diagonal elements of the tensor are the moments of inertia about the x, y and z axes. The
off-diagonal elements are the products of inertia. Third, determine the principal moments
of inertia from its inertia tensor by rotating O such that all products of inertia become zero.

Eigenvectors of the inertia tensor are ranked in descending order based on the magnitude
of their corresponding eigenvalues. They form a 3 × 3 orthogonal matrix E. Applying ET

to the boundary points of O rotates O to become O∗. The principal axes of O∗ align with
the coordinate axes, and all its products of inertia are zero. The inertia tensor of O∗ is a
diagonal 3× 3 matrix, where the elements on the diagonal are then the principal moments
of inertia Ia, Ib, Ic. Given the principal moments Ia, Ib, and Ic of an ellipsoid of unit density,
the ellipsoid’s radii a, b and c can be derived from the following equations [101]:

Ia = m

5 (b2 + c2) (3.15)

Ib = m

5 (c2 + a2) (3.16)

Ic = m

5 (a2 + b2) (3.17)

In particular, the mass of an ellipsoid of uniform unit density is:

m = 4
3πabc (3.18)
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Letting

P = Ib + Ic − Ia (3.19)

Q = Ic + Ia − Ib (3.20)

R = Ia + Ib − Ic (3.21)

and solving for a, b and c yields,

a = 5

√
15 ∗ P 2

8π
√
QR

(3.22)

b = 5

√
15 ∗Q2

8π
√
PR

(3.23)

c = 5

√
15 ∗R2

8π
√
PQ

(3.24)

T =


a 0 0
0 b 0
0 0 c


−1

ET (3.25)

If we apply the transformation T to the boundary points of O, its equivalent ellipsoid
will become a unit sphere. Since the columns of E are the eigenvectors ranked in descending

order, a,b and c in the matrix


a 0 0
0 b 0
0 0 c

 need to be ranked in descending order too. Applying

T to the boundary points of the MMB rather than O normalizes the MMB relative to
O. Call the normalized MMB, Mnormalized. Now compute α, β and γ as the radii of the
equivalent ellipsoid of Mnormalized (the ellipsoid having the same principal moments of
inertia asMnormalized) in the same way as the equivalent ellipsoid of the OCS was computed.
The CMMRI is then defined as the mean of these radii:

CMMRI = α+ β + γ

3 (3.26)

As justification for this normalization, suppose a linear transformation matrix A is
applied to the camera’s sensitivity functions. This will result in a new object color solid,
A ∗ OCS, and metamer mismatch body, A ∗MMB. The 3 × 3 transformation matrix, A,
can be decomposed into rotation and scaling matrices using singular value decomposition
(SVD):
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A = U ∗D ∗ V T (3.27)

V T is a 3 × 3 orthogonal matrix that rotates the OCS, diagonal matrix D scales the
principal axes of the OCS, and U rotates the result. Since rotations U and V T preserve
shape, only D will affect the shapes of the OCS and MBB. Calculating ET given A ∗OCS
and applying it to the boundary points of A ∗ OCS results in O∗ with all the rotations

being canceled. The second part of matrix T (i.e.,


a 0 0
0 b 0
0 0 c


−1

) then cancels the scaling by

converting its equivalent ellipsoid to a sphere. The scaling by D may change the order of
the principal axes of A ∗OCS. For instance, instead of ijk, the principal axes may become
aligned with jik. However, the order of the MMB radii is irrelevant since the order does
not affect their mean.

3.2.2 CMMRI Evaluation of 35 Cameras

The sensor sensitivity functions of 28 cameras were measured by Jiang et al. [41]. Prasad et
al. [75] provide the sensor spectral sensitivity functions of an additional 6 cameras (Fujifilm
XM1, Nikon D5200, Olympus EPL6, Samsung NX 2000, Sony A57 and Panasonic GX1).
Their 6 CMMRIs along with those of the previous 28 cameras [41] plus that of an iPhoneX
[103] are reported in Figure 3.3. We also compute the RMS errors of the best linear fit of
the camera sensitivities to the CIE 1931 2◦ observer CMF and the mean CIEDE00 color
difference between the actual XYZs of the 1,950 NCS papers [36] under D65 and the RGB
values of the cameras mapped to the XYZs via a best linear fit.

Figure 3.3 is a combination of three plots of the different metrics. The cameras are
sorted by increasing CMMRI (green bars). Figure 3.4 plots the z-scores for each camera. A
camera’s z-score reflects how many standard deviations it is above or below the mean for
the given metric across all the cameras. For example, the SONY NEX-5N is slightly better
than average in terms of the root mean squared error (RMSE), average in terms of CMMRI,
and worse than average in terms of Mean ∆E.

3.2.3 Effect of the Noise

The CMMRI measures the colorimetric accuracy of a digital color camera. Sharma [86]
criticized Vora’s measure for considering the camera sensors noiseless and proposed com-
bining the filter properties and noise statistics into the single FOM measure. In particular,
he takes white noise into account. The Gaussian white noise in FOM is assumed to be
signal-independent and zero-mean. The noise variance is determined based on SNR values
of 40, 50 and 60 dB. Quan [77] considered this as a drawback of FOM and proposed using
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Figure 3.3: A Plot of the camera color accuracy measures. Camera Metamer Mismatch Radii
Index (CMMRI), mean ∆E and root mean squared error (RMSE) for each camera sorted
by increasing CMMRI. Lower scores are preferred. Note that this figure consists of three
plots overlaid on one another. The scales of the ordinate axes of the plots are all different
and they are also shifted from zero.

Figure 3.4: Plot of the corresponding z-scores of each of the three accuracy measures for
each camera plotted in Figure 3.3. Low (including negative) z-scores are preferred.

the sum of the dark current and shot noise in the signal covariance matrix instead of white
noise.

The problem with these two approaches is that in dim light the dark current noise will
be the dominant noise factor while in conditions with ample light the shot noise becomes
more important. This means that to select the appropriate camera for a certain application
these parameters must be specified separately. Hence, a single metric combining colorimetric
accuracy with noise is not particularly desirable. Colorimetric accuracy and noise need to be
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Figure 3.5: Relative spectral power distributions of CIE illuminants A, F11, D65, IES illu-
minants #221 (LED Phosphor Blue Pump (53)) and #317 (Tri-band Gaussian).

treated as independent variables when evaluating a camera. The focus here is on colorimetric
accuracy.

3.2.4 Effect of the Illuminant Choice

As described in the previous sections, the MMB for a change from camera to cone sensi-
tivities is calculated for the case of the flat grey reflectance illuminated by D65. However,
will the proposed CMMRI measure change significantly if some other illuminant is used in
place of D65? Clearly, a camera is likely to be used under a variety of different illuminants,
so it is important that the CMMRI not be limited to one particular illuminant. To evaluate
the effect of the choice of light on the results, CMMRIs are calculated using CIE standard
illuminants A and F11; and Illuminating Engineering Society (IES) [5] illuminants #221
(light-emitting diode (LED) Phosphor Blue Pump) and #317 (Tri-band Gaussian). Their
spectral power distributions are plotted in Figure 3.5. The correlation coefficients between
the CMMRIs obtained using the different illuminants are reported in Table 3.1. There is a
very strong linear correlation (correlation coefficient 0.97 or greater) between CMMRIs for
the ‘smooth’ illuminants (D65, A, IES 221) (null hypothesis rejected with P-values less than
10−10 at the 5% significance level). There is a lesser correlation for the spiky illuminants
(F11 and IES 317) but this is of little importance since it is not logical—no matter what
the camera is—to evaluate colors under spiky spectra, especially spectra with zero power
across a wide range of wavelengths.
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Table 3.1: Correlation coefficients between the CMMRIs calculated under different illumi-
nants.

Illuminants A D65 F11 IES 221 IES 317
A 1.0 0.97 0.92 0.98 0.86

D65 1.0 0.91 0.97 0.85
F11 1.0 0.96 0.92

IES 221 1.0 0.9
IES 317 1.0

3.3 Camera Accuracy Conclusion

A new color camera accuracy metric based on the degree of metamer mismatching is pro-
posed. The rationale for using the degree of metamer mismatching to assess the color accu-
racy is that if a human observer sees a pair of lights as matching, then the camera should
too, and vice-versa. If a camera sees two objects as the same color but the human observer
sees them as different, the greater the difference the poorer the color accuracy. The MMB of
50% flat grey reflectance for a change from color camera sensors to the human cones is com-
puted as it typifies the MMBs of other colors and so using only this one case is sufficient for
our purposes. This type of metamer mismatching is referred to as ‘observer metamerism’
(for a change of observer) and is analogous to ‘illuminant metamerism’ (for a change of
illuminant). The principal radii of the MMB’s equivalent ellipsoid, normalized relative to
the object color solid, describe the overall shape of the MMB and the mean of the radii is
shown to be more stable than its volume. The normalization relative to the OCS makes the
method independent of any linear transformation of the sensor space. A key advantage of
the proposed method is that it shows how much color error can arise in principle. Moreover,
unlike most of the existing metrics (e.g., Jiang’s DE measure and Sharma’s FOM), it is not
dependent on a finite, and necessarily incomplete, set of test reflectances.
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Chapter 4

Color Discrimination

Color difference sensitivity as represented by the size of discrimination ellipsoids is known
to depend on where the colors reside within color space. Various color spaces and color
difference formulas have been developed trying to establish a color coordinate system in
which equally discriminable colors are equal distances apart. While fits to the data are
valuable in the development of new uniform color spaces and color difference formulas, they
do not explain the data. In this chapter, a theory of color discrimination based on the
uncertainties reflected in the extent of metamer mismatching is proposed.

The proposed hypothesis explains why color discrimination varies in the way it does.
Specifically, the greater the degree of metamer mismatching for a color, the wider the range
of spectral reflectances that could have led to it; and, hence, the more finely a color needs to
be discriminated in order to reliably identify materials and objects. Available color discrim-
ination datasets for surface colors are gathered and analyzed to test this hypothesis. The
strong correlation between color discrimination and metamer mismatching shows metamer
mismatching provides an explanation of the variability of color discrimination. The results
presented in this chapter have appeared in the following publications [32][33]:

• Brian Funt and Emitis Roshan. Colour discrimination ellipses explained by metamer
mismatching. In Proceedings of the AIC International Colour Association Conference,
2018.

• Brian V Funt and Emitis Roshan. Metamer mismatching underlies color difference
sensitivity. Journal of Vision, 21(12):11–11, 2021.

4.1 Background

In the study of color perception, one question that usually comes to mind is that given two
color signals, how different they are. This question is usually followed by another question
of does the distance in 3D color space represent the perceived color difference or not?
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Figure 4.1: MacAdam ellipses plotted in xy-chromaticity plane (enlarged 10 times) showing
the non-uniformity of CIE XYZ color space [1]. Figure licensed under CC BY-SA 3.0.

MacAdam [62] set up an experiment in which he asked the observer to change the test
color in one side of a colorimeter by adjusting the intensity of three primary lights until
it matches the reference color on the other side of the instrument. Then he plotted the
matches on the xy-chromaticity plane and fitted ellipses to them. The ellipses are shown in
Figure 4.1.

These chromaticity discrimination ellipses describe the set of colors surrounding a given
color in CIE xy-chromaticity space that were indistinguishable to the observer. The variation
in the ellipses’ sizes reveals the non-uniformity of the CIE 1931 color space. In other words,
Euclidean distance in CIE XYZ color space does not reflect the perceived color difference
between two given colors for a human observer.

Silberstein and MacAdam [91] showed that the distribution of the matches in their
color matching experiments were statistically normal with different standard deviations
and covariances in different directions about different colors. From this they posit that the
surfaces of standard deviation in 3D color spaces can be represented by ellipsoids. Silberstein
[90] devised formulas determining the coefficients and the axes of color matching ellipsoids
from the experimental data. Subsequently other researchers performed similar experiments
aimed at measuring the standard deviation of color matches made in different regions of
color space. The experimental data is later used in testing and modification of different
color spaces.

CIECAM02 is a color appearance model (CAM) introduced by the CIE that provides a
description of how a color stimulus appears to a human observer. It models different aspects
of human color perception based on the context in which a color sample is observed, includ-
ing viewing conditions such as the surrounding colors and the color of the ambient light.
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Luo et al.[59] employed a combination of different datasets based on surface color samples
and CRT colors to test the performance of the CIECAM02 color appearance model. They
introduced three modified versions known as CAM02-SCD, CAM02-LCD and CAM02-UCS
to respectively fit what are known as the SCD (small color difference) dataset, LCD (large
color difference) dataset, and the combination of both. While all these modifications have
the same structure as the original CIECAM02 version, Li et al. [49] [48] derived a new color
appearance model named CAM16 by performing both chromatic and luminance adapta-
tion in the same space rather than two different spaces. The proposed model avoids the
unexpected problems that may occur in CIECAM02 lightness computation and at the same
time outperforms it in predicting the corresponding color datasets and color appearance
datasets.

Different color discrimination experiments have been carried out to gather new datasets.
In the next section, some of the light-based and surface-color-based experiments will be
reviewed.

4.1.1 Experiments with A Mixture of Primary Lights or Display Colors

Brown et al. [15] investigated the color discrimination for the general case of combined
chromaticity and luminance differences. They followed Silberstein’s method to derive the
coefficients of 39 ellipsoids in one color space and presented the methods to transform the
results to other coordinate systems such as CIE X, Y, Z and x, y, log Y. Their investigation
involved a 2-degree monocular field of view with dark background. In another study Brown
[14] used a 10-degree binocular colorimeter with white broad surrounding field. Different
apparatuses utilizing a mixture of primary lights as the test or reference colors are used to
gather the data which are later used in modification of the color spaces or color difference
formulas [105] [106] [79] [108].

Sharma et al. [87] provided a data set for additional tests of the CIEDE2000 formula.
CIEDE2000, introduced by International Commission on Illumination (CIE), is a color
difference formula based on the CIELAB color space that models the color difference be-
tween any two CIELAB color values. Subsequent testing by Sharma et al. [87] revealed 3
sources of discontinuity in the CIEDE2000 equations. Wen [100] proposed calculating the
color difference by counting the number of just noticeable differences between two colors
and showed that it outperforms CIEDE2000 in predicting threshold color differences. The
proposed algorithm is described in more detail in Chapter 5. Pridmore and Melgosa [76]
analyzed four different data sets and observed that the difference between colors appears
smaller at lower luminance levels. Wyszecki and Fielder [106] state that their results “. . .
show remarkable discrepancies between ellipses obtained by the same observer at different
occasions (separated by weeks or months) under otherwise identical observing conditions.”
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4.1.2 Experiments with Colored Surface Samples

While the majority of the experiments have been conducted using mixtures of lights, there
are a few that have used colored surfaces. Cheung et al. [17] prepared one standard pair
along with 59 to 82 sample pairs made of dyed wool fabric for each of the five CIE reference
color centers Grey, Red, Yellow, Green and Blue [78] and asked the observers to express
the color difference for each of the sample pairs as a ratio of the perceived color difference
to that of a fixed standard pair. The fitted ellipsoid parameters are reported in xyY color
space. The results obtained from ratio assessments with two illuminants D65 and A were
shown to be in agreement with CMC (1:1) color difference formula.

Witt [102] used painted samples around four of the five CIE reference color centers:
Yellow, Red, Blue and Grey. Observers were asked if the color difference was perceptible
in the sample pairs or not. The correlation between the perceptibility of color differences
and the colorimetric measures, and also the inter-observer and inter-group variabilities were
investigated. The coefficients of the fitted ellipsoids are reported in xyY color space.

Huang et al. [38] prepared 446 pairs of printed color patches surrounding 17 color centers
for a greyscale psychophysical experiment to scale the color differences of the sample pairs.
Although the parameters of the fitted ellipsoids in CIELAB color space are reported in Table
VII of their article, Huang et al. considered the ellipsoid’s parameters less reliable than the
ellipses’ parameters because their research was focused on chromatic differences and the
sample pairs were selected such that, compared to the variations in chromatic directions
(axes a and b), they had small variations in the lightness direction (axis L). The results
were later used to evaluate 10 color difference formulas.

Berns et al. [11] prepared a grey anchor pair with a color difference of 1.02 ∆Eab unit
in CIELAB color space using color coated aluminum panels and asked the observers to
compare the magnitude of the sample color difference pairs to that of the anchor pair.
Probit analysis was then used to compute 156 median tolerances around 19 color centers in
different directions. Melgosa et al. [66] then used the 156 median tolerances reported in the
RIT-DuPont dataset [11] to compute the ellipsoid parameters in x, y, Y/100 color space.
In another study, Luo and Rigg [60] combined the data from different sources to produce a
consistent set of ellipses.

Many researchers have repeated similar experiments, trying to quantify and model the
color discrimination pattern. The varying sizes and orientations of the ellipses and ellipsoids
show that the threshold for discriminating one color from a very similar one varies as
a function of the color involved. Data obtained from these experiments are usually used
in the development and testing of various new uniform color spaces and color difference
formulas but no explanation is provided regarding the underlying cause. The hypothesis
investigated here is that it is due to metamer mismatching.
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All of the models and uniform color spaces derived from the above experiments are
based on fits to the experimental data. Many provide good fits to the data, but they remain
data models. Smet et al. (2016) argue that the existing algorithms for specifying the basic
structure of color appearance “. . . are designed only by describing empirical measurements of
color discrimination or similarity ratings, and not by asking what causes color appearances
to be as they are.” In line with our goal here, they derive a color appearance model by making
general assumptions about the physiological and neural mechanisms of color encoding. While
their model predicts an organization of color experience that is qualitatively similar to
that of the Munsell system, no quantitative analysis is provided nor is color discrimination
explicitly addressed; and, in particular, it does not explain the fundamental underlying
reason as to why color discrimination thresholds vary as they do. The Smet et al. (2016)
model and the earlier models by Eskew (1994) and Stockman and Brainard (2010) build
upon the three-stage Müller zone model (1930) that describes cone-opponent and color-
opponent pathways and model additional factors such as noise and signal compression.
These studies aim to explain how neural mechanisms implement the computation of color
discrimination. In contrast, the metamer mismatching hypothesis aims to help explain why
the visual system computes the differences between colors the way it does.

4.2 Hypothesis

Metamer mismatching refers to the extent to which two physically distinct reflectances that
match (i.e., lead to identical color signals) under one light fail to match under a second
light. In general, given the color signal of an object with respect to a given illuminant, there
can be many other surface reflectances that lead to the same color signal with respect to
the same illuminant. Metamer mismatching arises from the fact that normal trichromatic
color vision is based on only 3 weighted sum measurements of the reflected light’s spectrum
impinging at any given point on the retina, whereas that spectrum—the product of the
illuminating light’s spectrum and the surface’s underlying spectral reflectance function—is
much more complex. This lack of information allows two reflectances that induce the same
color signal (i.e., cone response triple) under one light, and hence are a metameric match,
to differ in their color signals (i.e., mismatch) under a second light.

The proposed hypothesis is that in order to be able to reliably discriminate physically dis-
tinct surfaces from one another observers must be more sensitive to the differences between
colors for which metamer mismatching creates significant uncertainty (i.e., when metamer
mismatching is extensive), and least sensitive for colors for which metamer mismatching
creates little uncertainty.

MMB for a given color signal is a measure of the possible variability in the nature of
the underlying physical response under a given light. The larger the MMB, the larger and
more varied is the set of reflectances that are all metameric (i.e., create the same LMS cone
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response) under a given light. Hence, for colors with large MMBs there is more uncertainty
as to the exact nature of the underlying surface reflectance function. Intuitively, it is clear
that there are likely more reflectance functions that lead to a mid-grey where the entire
range of the visible spectrum is likely to be involved than there are to a saturated red,
for example, where mainly the long-wave portion of the spectrum is likely to be involved.
For an observer wishing to identify a given physical surface by its color, it is therefore
more important to distinguish the shade of a gray surface as precisely as possible and
less important to distinguish the exact tint of a red one. Similarly, there are very few
reflectances leading to pure white, with the limit being the ideal white created by a uniform
100% reflectance. In fact, for any color signal on the boundary of the object color solid, in
contrast to the grey, which is at the center of the OCS, there is only one possible reflectance
creating it, so the volume of the MMB drops to zero for such color signals.

Metamer mismatching is usually discussed from the point of view of two physically dis-
tinct surfaces that appear identical under some illuminant. From the reverse perspective,
however, the degree of metamer mismatching can be considered as the likelihood that two
different color signals corresponding to two different reflectances under one illuminant could
become indistinguishable under some other illuminant. Since the degree of metamer mis-
matching varies throughout color space, to reliably identify similarly colored, but physically
different surfaces, from one another the visual system needs to be more discriminating in
some regions of color space than others.

As an illustrative case, let us consider the uncertainty with which a color identifies
a particular surface S of unknown reflectance. For example, suppose that under D65, S
has color CD65. The MMB of CD65 for a change of illumination to CIE A, for example,
represents the set of all colors that could result when S is lit by CIE A instead of D65.
From the reverse perspective, under CIE A, any color CA in that MMB is a candidate for
matching CD65 under D65. Now suppose that we observe CA, does it correspond to S? The
answer is “Almost certainly not.” because CA could have arisen from any one of an infinite
set of metameric reflectances, only one of which is reflectance S. Hence, the MMB represents
the ‘uncertainty’ in being able to identify a specific surface such as S by its color under some
other illuminant (i.e., CIE A in this example).

The MMB itself represents the minimum degree uncertainty. When inaccuracy in the
matching a specific color is added then the uncertainty increases. For example, suppose that
under D65, color C ′D65 is similar enough to CD65 that it ‘matches’ CD65. The uncertainty
then becomes the union of the MMB of CD65 and the MMB of C ′D65 along with the MMBs
of all colors in between. In other words, it is the set of all colors that either CD65 or C ′D65
(or those in between) could become under CIE A. Given a threshold for an acceptable level
of uncertainty (keeping in mind that metamer mismatching means that some uncertainty
is unavoidable), how does the tolerance for error in color discrimination vary as a function
of color? To provide some further intuition, Figure 4.2 shows the trend from grey to both
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Figure 4.2: Example illustrating how the distance between two points in XYZ needs to
increase in order to keep the volume of the convex hull of their MMBs equal to a constant.
(Top) The two-dimensional projection of the MMB pairs showing their fixed-volume convex
hulls containing MMBs that get progressively smaller as the color is moved from grey on
the left to blue Munsell 5B 5/6 on the right. The distance between the two samples making
up each pair is adjusted to make all the convex hull volumes the same. (Bottom) Plot of
the distance between colors in a pair for flat grey (i.e., uniform 50% spectral reflectance) to
blue (solid blue curve) corresponding to the MMBs (top), and in addition grey to Munsell
red 5R 5/8 (dashed red curve).

blue and red (Munsells 5B 5/6 and 5R 5/8). The figure is based on keeping the volume of
the convex hull of the two MMBs fixed. That choice of volume is quite arbitrary other than
needing to be a somewhat larger than the volume of the MMB for flat-spectrum grey under
a change in illuminant from D65 to CIE A. The convex hull of the two MMBs provides
a good approximation to the union of the infinite set of MMBs for all points between the
two colors. The qualitative upward trend in the Figure 4.2 (bottom) is unaffected by the
precise number. Note that this example is only an illustration, not a complete model (e.g.,
it models distance, not volume; and it will fail for colors approaching the boundary of the
object color solid where in the limiting case the volume of the MMB tends to zero). The
figure is intended to provide some intuition as to how the uncertainty reflected in metamer
mismatching could affect the size of discrimination ellipsoids, but intuition only. A formal
statistical analysis of the evidence of the relationship between metamer mismatching and
ellipsoid volume is presented in the next section.
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4.3 Statistical Analysis

Since the proposed hypothesis is based on the MMB volumes, only the datasets that are
based on colored surface samples and report the parameters of color discrimination ellip-
soids, not just ellipses, are useful for evaluation. Since the existing datasets use a variety of
different color spaces, they are first converted to a common color space, and their ellipsoid
coefficients are updated correspondingly. Details of the conversion are provided in Appendix
A. The 4 datasets explained in section 4.1.2 that are useful for our study are described in
more detail below.

Cheung et al. [17] mounted dyed wool samples and standard pairs on a stiff card and the
differences were assessed against a grey background with x, y, and Y coordinates of 0.299,
0.322 and 13.1 under D65. The samples around five color centers were chosen such that the
color differences within each set range from 1 to 9 ∆Eab in CIELAB units. The coordinates
of the five color centers are reported in Table 4.1. The sample pairs were selected so as
to give a good coverage in each of the three planes x-y, x-Y and y-Y. The fitted ellipsoid
parameters for the 5 color centers were reported in x, y, Y color space.

Table 4.1: Color coordinates of the five color centers in Cheung’s dataset [17]

Color Center x y Y
Grey 0.314 0.331 30.0
Red 0.484 0.342 14.1

Yellow 0.388 0.428 69.3
Green 0.248 0.362 24.0
Blue 0.219 0.216 8.8

Witt [102] prepared 50 to 64 sample pairs around four of the five CIE color centers
Yellow, Red, Blue and White (light grey), with color differences ranging from near zero
to just clearly perceptible. The sample pairs were put on a circular shape card with 10◦

viewing field under the illuminant D65. The background was grey with a lightness of about
Y=20. The question to be answered was “Is a color difference perceptible in the sample
pair?” The coefficients of the fitted ellipsoids for the 4 color centers reported in Table 4.2
were measured in x, y, Y color space .

Table 4.2: Color coordinates of the color centers in Witt’s dataset [102]

Color Center x y Y
Yellow 0.3865 0.4274 69.53
Red 0.4845 0.3427 14.35
Blue 0.2185 0.2146 8.68
White 0.3143 0.3310 31.15
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Huang et al. [38] conducted a greyscale psychophysical experiment in which they pre-
pared 20 to 30 color samples around each of the 17 widely spread color centers in CIELAB
color space. This study was done with a D65 simulator on a grey background with CIE L,
a, b coordinates of 50.3, 0.2 and 1.3. Each sample pair had small contribution of lightness
difference as the focus of this research was on chromatic differences. The observers were
instructed to assess the chromatic differences in the sample pairs using the five greyscale
pairs as the references. The XYZ coordinates of the color centers are reported in Table
4.3. In their study, rather than the ellipsoids’ gij coefficients, the semimajor axes of the
ellipsoids along with their orientations in CIELAB color space are reported. Nevertheless,
we compute the boundary points of the ellipsoids using the given parameters in CIELAB
color space and then transform them to CIE XYZ to be consistent with other datasets.

Table 4.3: XYZ coordinates of the color centers, Huang’s dataset [38]

Color Center X Y Z
Grey 30.1 31.8 33.9
Red 22.1 15.7 8.2

High Chroma Red 24.9 14.4 4.2
Orange 35.4 33.3 21.1

High Chroma Orange 38 29.9 4.7
Yellow 62.7 69 28.6

H-Yellow 60.7 68.4 14.9
Yellow-Green 31.1 36 28.3

High Chroma Yellow-Green 25.5 35.2 13.3
Green 17.7 25.9 27.1

High Chroma Green 17.4 26.7 28.3
Blue-Green 15.6 19.6 27.2

High Chroma Blue-Green 14.7 20.9 33.8
Blue 10.2 10 26

High Chroma Blue 9.6 9.4 33.2
Purple 17 16 24

High Chroma Purple 19.8 15.8 32.6

Berns et al. [11] on the other hand prepared only one greyscale anchor pair with CIELAB
coordinates of (L = 49.53, a = −0.08, b = −5.65) and (L = 48.89, a = 0.17, b = −4.90).
Showing the test pairs next to the anchor pair, the observers were instructed to judge
whether the color difference magnitude of the test pair was larger or smaller than that
of the anchor pair. 19 color centers were selected such that they included the 5 colors
recommended by the CIE, 5 colors above (higher L values) and 5 colors under them (lower
L values) and some near white and black colors. The Probit analysis was then used to
compute 156 median tolerances around the color centers. The 19 color centers are reported
in Table 4.4.
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Table 4.4: XYZ coordinates of the color centers, RIT-DuPont dataset [11]

Color Center X Y Z
Moderate blue 8.1 8.7 21.2

Moderate greenish blue 14.8 18.6 26.5
Medium grey 25.8 27.4 28.7

Moderate bluish green 16.8 23.5 23.8
Light brown 33.3 31.5 20.7

Greyish purple 16.8 15.6 23.5
Dark reddish orange 18 12.8 6.7
Moderate yellow 51.2 53.2 27.1

Greyish yellow green 29.5 33.9 27
Black 1.6 1.7 1.8

Light bluish green 28.3 38.9 46.2
Moderate reddish brown 7.5 5.8 2.8

Dark bluish green 3.8 6.9 8.9
Brilliant greenish blue 23.4 28 51.7

Very dark red 3.7 2.4 2.1
Moderate purplish pink 32.8 26 28.1

Dark blue 6.6 6.3 18.2
Light grey 59.9 63 67.4

Strong orange yellow 54.2 49.9 6.6

No ellipsoid coefficients are reported in this study. Melgosa et al. [66] used the 156 median
tolerances reported in the RIT-DuPont dataset [11] to compute the ellipsoid parameters in
x, y, Y/100 color space. By putting a11 = a22 = 1, a33 = 0.01 and aij = 0 for i 6= j in the
conversion equations 3.2 to 3.4 the ellipsoid parameters in x, y, Y can be obtained. Then
the Equations 3.10 to 3.15 can be applied to compute the ellipsoid parameters in XYZ color
space. The 4 datasets explained above are summarized in Table 4.5.

To test the metamer mismatching hypothesis the volumes of both the discrimination
ellipsoids and the MMBs are needed. The discrimination ellipsoids’ coefficients from all
four datasets converted to XYZ color space are used to compute the volumes of the color
discrimination ellipsoids, Evol, in XYZ as described in Appendix A.

For each color center, the volume, M , of the corresponding MMB for a change in illu-
minant from CIE D65 to CIE A is computed directly in XYZ space using the algorithm of
Logvinenko et al. [54]. M is then normalized by C3, the cube of the Euclidean distance,
C, from the origin to the given color center. This normalization eliminates the effect of the
intensity/luminance on the volumes. If the hypothesis that metamer mismatching underlies
the variability in color discrimination as a function of color center is correct, then there
should be a high correlation between Evol and C3/M .
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Table 4.5: The summary of the four datasets used in our statistical analysis

Sample Type Number of
Color Centers

Number of
Observers

Number of
Samples

Witt Painted samples 4 22 to 24 50 to 64 per
color center

Cheung Dyed plain
wool serge

5 20 59 to 82 per
color center

Huang Samples produced
using EPSON
Stylus PRO 7800
ink-jet printer

17 9 20 to 30 per
color center

Melgosa Acrylic-lacquer
automotive coating
sprayed on primed
aluminum panels

19 50 642 pairs in
total

(a) (b)

Figure 4.3: Plots of the volumes, Evol, of the color discrimination ellipsoids in XYZ space
as a function of the inverse of the normalized volume M of the corresponding metamer
mismatch bodies, (i.e., C3/M), for the two color discrimination datasets having samples
with a minimum of 17 color centers. Left: C3/M fit to the Melgosa dataset, r = 0.83, mean
jackknife estimate of r = 0.83, bias=0.03, STD=0.13. Right: C3/M fit to the Huang dataset,
r = 0.9, mean jackknife estimate of r = 0.9, bias=-0.05, STD=0.11.

Note that C3/M is dimensionless. The Jackknife method is used to examine the accuracy
of the correlation coefficient estimates. Jackknife uses a leave-one-out strategy to derive the
bias in an estimator, resulting in a bias-corrected estimate of the original statistic. The
correlations between Evol and C3/M for the Melgosa (i.e., 19 color centres based on the
Berns et al. data) and Huang (17 color centres) datasets are shown in Figure 4.3. The
figure caption includes the Pearson correlation coefficient (r), mean jackknife estimate of
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r, bias and standard error (STD) in jackknife replicates. A y-intercept is included in the
linear regression model. The null hypothesis is rejected at the 5% significance level, with
P-values in all cases being less than 10−5. The results for the Melgosa dataset are: r = 0.83
with mean jackknife estimate of r = 0.83, bias = 0.03, STD = 0.13; and for the Huang
dataset r = 0.9 with mean jackknife estimate of r = 0.9, bias = -0.05, STD = 0.11. The
correlation between Evol and C3/M includes the non-linearity of the inverse 1/M . The
corresponding, simpler (negative) linear correlation results between 1/Evol and M/C3 are
significantly weaker: -0.52 and -0.7 respectively.

4.4 Combining the datasets

In the previous section, the statistical analysis is conducted separately for the two color
discrimination datasets that contain at least 17 color centers each. Two of the other datasets
include discrimination ellipsoids for only 4 color centers, in one case, and 5 in the other. The
goal of this section is to combine the data from all four different datasets into one larger
dataset. The difficulty in doing so is that the datasets are all based on different experimental
protocols resulting in different scales. For instance, in a paired-comparison experiment the
color difference of a test pair is compared to an anchor pair. Grey patches with different
units of ∆E color difference are prepared as the standard pairs. The observers are asked
to express the difference of the test pairs as a ratio of the standard pair. Clearly different
anchor pairs will result in ellipses or ellipsoids with different sizes.

We combine the ellipsoid measurements from the various datasets following the basic
strategy that Luo and Rigg [60] used when combining ellipse data. Luo and Rigg [60]
measured color discrimination ellipses (not ellipsoids, unfortunately) for 70 color centers
and plotted the discrimination ellipses from their experiment along with those from 13
other datasets (all measurements are based on physical samples, not lights) and observed
that the main discrepancy was in the relative sizes of the ellipses. They introduced the
Individual Set Factor (referred to as R ) as a scaling factor for each ellipse, and the mean of
R values for each group (referred to as S) to adjust the ellipses onto a common scale. They
showed that adjusting the individual ellipses with R values results in a more consistent plot
than using the group mean for each dataset.

Following the basic approach of Luo and Rigg [60], but modified for ellipsoids rather
than ellipses, we use scaling factors to bring the different datasets onto a common scale. To
combine different color discrimination datasets, we use the ratio of the ellipsoid volumes for
the color centers that the datasets have in common. For each pair of datasets, we find the
color centers that exist in both, average the ratios of their ellipsoid volumes, and then use
that average ratio to normalize the datasets with respect to one another. As one example,
the xyY coordinates of the color centers that are in common in the Cheung et al. and
Melgosa et al. datasets are listed in Table 4.6.
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Table 4.6: xyY coordinates of the common color centers in the Cheung and Melgosa datasets.

Cheung et al. Melgosa et al.
x y Y x y Y

Grey 0.314 0.331 30.0 0.315 0.335 27.4
Red 0.484 0.342 14.1 0.481 0.341 12.7
Green 0.248 0.362 24.0 0.263 0.367 23.53

Figure 4.4 shows a linear fit for the data in the merged dataset derived from the Che-
ung, Melgosa, Witt, and Huang datasets. The null hypothesis is again rejected at the 5%
significance level with r = 0.88 and P-value 7e-16.

Figure 4.4: Linear fit of the ellipsoid volume (Evol) versus the inverse of the normalized
metamer mismatch volume (i.e., C3/M) for the merged dataset of 45 color centres, with
the null hypothesis again rejected at the 5% significance level with P-value 7e-16, r = 0.88,
mean jackknife estimate of r = 0.88, bias=-0.01, STD=0.06.

4.5 Ellipsoid Volume prediction Using Normalized MMB vol-
ume

The statistics reported in the two previous sections show that there is a strong correlation
between the volumes of the color discrimination ellipsoids reported in the literature and the
inverse of the normalized MMB volumes. Overall, the statistics do not reject the hypothe-
sis that the uncertainty introduced by the presence of metamer mismatching explains the
variation in color discrimination thresholds. In other words, for a given color, the inverse of
the normalized MMB volume predicts the volume of that color’s discrimination ellipsoid.
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(a) (b)

(c)

Figure 4.5: Plots of the ellipsoid volumes, Evol, of the experimental color discrimination
ellipsoids in XYZ space versus the ellipsoid volumes, ECAM16, of the unit CAM16-UCS ∆E
spheres, for both the individual and combined color discrimination datasets. The statistics
for the linear fits (summarized in Table 4.7) are very similar to those in Figures 4.3 and
4.4. (4.5a): CAM16 prediction of Melgosa dataset, r = 0.84, mean jackknife estimate of
r = 0.85, bias=0.04, STD=0.11. (4.5b): CAM16 prediction of Huang dataset, r = 0.89,
mean jackknife estimate of r = 0.89, bias=-0.014, STD=0.07. (4.5c): CAM16 prediction of
merged dataset, r = 0.87, mean jackknife estimate of r = 0.87, bias=0.0001, STD=0.04.

Since CAM16-UCS is one of the most uniform color spaces developed thus far, it is
natural to consider whether or not it predicts the color discrimination ellipsoid volumes
of data sets that were not used in its development any better than the proposed MMB
hypothesis. CAM16-UCS describes color appearance in terms of six attributes: lightness,
brightness, chroma, colorfulness, saturation, and hue. Its coefficients are based on a direct fit
to experimental data. In an ideal uniform color space, the color discrimination thresholds
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would be equal in all directions and about all colors; and color discrimination ellipsoids
would become spheres. Therefore, we consider spheres of unit ∆E in CAM16-UCS around
each of the color centers included in the 4 datasets, convert them to XYZ coordinates, and fit
the volumes of the resulting ellipsoids in XYZ to those of the color discrimination ellipsoids.
Figure 4.5 shows the Pearson correlation coefficient (r) between the unit ∆E spheres in
CAM16-UCS color space (ellipsoids in XYZ space) and the discrimination ellipsoid volumes
reported in the datasets, the mean jackknife estimate of r, the bias and standard error
(STD) in jackknife replicates.

The CAM16-UCS fits can be compared to those shown in Figures 4.3 and 4.4 obtained
using the inverse of normalized MMB volume. The results are also summarized in Table 4.7.
The reported statistics are very close to the ones calculated with normalized MMB volumes.
Given that the CIE CAM16-UCS model is optimized to fit experimental data that includes
the RIT-DuPont dataset [11] (i.e., the same experimental data as the Melgosa dataset), it
is significant that the normalized MMB volume performs equally well, based as it is, on an
underlying theoretical principle rather than a fit to psychophysical data.

Table 4.7: Correlation coefficients between the experimental ellipsoids and (1) the ellipsoid
volumes predicted by the inverse of the normalized MMB volume; and (2) the ellipsoid
volumes predicted by CAM16-UCS.

Inverse of Normalized CAM16-UCS
MMB Volume

Melgosa dataset 0.83 0.84
Huang dataset 0.9 0.89

Merged 4 datasets 0.88 0.87

4.6 Discussion

Zhang et al. [110] showed that metamer mismatching is most significant for ideal grey, high
for colors of low saturation, decreases with increasing saturation, and tends to zero for
colors on the boundary of the object color solid. The volume of the color discrimination
ellipsoids obtained through different experiments are shown to have an inverse trend. In
particular, as the extent of metamer mismatching increases, color discrimination thresholds
decrease. A hypothesis is proposed that the uncertainty created by metamer mismatching
underlies color discrimination thresholds. In other words, the need for the visual system
to overcome the uncertainty due to metamer mismatching is the reason why there is more
precise discrimination between colors in some regions of color space than others.

Four sets of experimental data measuring color discrimination ellipsoids are available
for testing. The results shown in Figures 4.3 and 4.4 indicate a strong correlation between
color discrimination and metamer mismatching. The fits shown are not perfect, but they
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do indicate the hypothesized relationship. Of course, the experimental data contains noise,
but other unaccounted factors need to be considered and investigated. Furthermore, as the
results in Table 4.7 and Figure 4.5 show, CAM16-UCS, even though based on direct fits
to similar experimental data, is no better a predictor of color discrimination than metamer
mismatching. The strong correlation found between the experimental data and the inverse
of the metamer mismatch volumes, while not proof, is evidence supporting the idea that
metamer mismatching provides an explanation for as to why color discrimination varies
in the way it does. It correctly predicts that color discrimination is finest near grey and
becomes coarser and coarser for more and more saturated colors.
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Chapter 5

Color Discrimination Ellipsoid
Prediction

Color discrimination thresholds and suprathresholds are usually represented by ellipses in
2D chromaticity planes or ellipsoids in 3D color spaces. A hypothesis was investigated in the
previous chapter that the Metamer Mismatching can be a primary cause for the color dis-
crimination threshold variations throughout the color space. The statistical analysis showed
that the normalized MMB volume is inversely correlated with the color discrimination el-
lipsoid volume. In other words, the normalized MMB volume can be used to predict the
discrimination ellipsoid volume. In this chapter we investigate if the normalized MMB can
be utilized to predict not only the discrimination ellipsoid volume, but also its shape and
orientation as well.

5.1 Background

Over the years, numerous experiments have been conducted to measure color discrimination
thresholds for different colors. MacAdam [62] showed that the Just Noticeable Differences
(JNDs) in color are proportional to the standard deviation of color matchings, meaning the
ellipsoids fitted to the discrimination data represent the JNDs in different directions. A Just
Noticeable Difference, also referred to as the difference threshold, is the minimum amount
of change required in a stimulus to be detected by 50% of the observers. Macadam [62]
measured the noticeable chromaticity differences at constant luminance value. Desjardin et
al. [25] measured the JNDs in luminance for the red, green, and blue primaries of a particular
display to find the number of effective levels for each channel. Bedford et al. [10] measured
the JNDs as a function of wavelengths. In other words, they measured the wavelength
change needed in a monochromatic stimulus, while keeping the brightness level fixed, to
elicit the least noticeable difference in the hue space. Surface materials such as painted
ceramic, fabric, printed samples, paint, and also CRT or LCD display colors were used in
the various experiments. Huang et al. [37] measured two sets of discrimination ellipses, one
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with printed reflective samples and one with self-luminous color samples displayed on a
CRT monitor. They observed that the ellipses obtained using self-luminous color pairs were
generally bigger than the ones measured with the printed samples.

Many researchers have tried to explain the neural mechanisms in color discrimination.
Kuehni [45] argues that the threshold color difference perception functions at the cone level
but the supra-threshold color difference perception operates at the opponent-color level
of the human visual system. Alleysson et al. [8] [7] propose a three-layer model of the
retina that includes photoreceptors’ nonlinear adaptive sensitivity, opponent encoding that
provides normalization and contrast gain control, and the adaptive nonlinearity of ganglion
cells. The adaptation factor in Naka-Rushton function used in their model accounts for the
chromatic adaptation. The parameters of the proposed model are then optimized for each
observer and each experimental condition to fit the experimental ellipsoids.

The discrimination data obtained from different experiments has broad application in
displays quality tests and visual artifact detection created by different image processing
methods. The Spatial Standard Observer (SSO) is an algorithm developed by NASA [98] to
describe display mura on a JND scale. It starts with a test and a reference image (usually
the low-pass filtered version of the test image). The difference between the test and the
reference images is filtered by a contrast sensitivity function (CSF) and multiplied by a
border aperture function to correct the visibility estimate. A JND image is then generated
that relates to the percentage of human observers who will notice a difference and reflects
the visibility of artifacts around a pixel. Kostal et al. [44] proposed a system for automated
repeatable measurements to grade the visual quality of the displays in a way that directly
correlated with human perception using SSO algorithm. Wandell [97] conducted an experi-
ment and concluded that if the observer’s state of adaptation is held fixed and the test lights
a and b do not disturb the state of adaptation, in the absence of luminance component,
their discriminability can be predicted from their vector difference.

Another widespread use of the discrimination data is the test and development of new
color spaces and color difference formulas. CAM16 [49] [48] is one of the most recent color
appearance models, obtained by optimizing a 3x3 matrix to replace the CAT02 and HPE
matrices of the CIECAM02 model to better fit the experimental data. The Lightness, Col-
orfulness and Hue attributes have been modified in a nonlinear fashion in the definition of
an improved CIELAB-like Uniform Color Space called CAM16-UCS. CIELAB is a device-
independent color space based on the opponent color model of human vision. Unlike CAM16-
UCS, it does not take any of the appearance phenomena into account other than the white
point. Nevertheless, it is extensively used in the industry as it is less complicated and com-
putationally simpler than CAM16-UCS. Stone et al. [93] conducted a study and observed
that the smaller color samples look less colorful. They also observed that the discriminabil-
ity threshold changes with the stimuli size and proposed to modify the distance in CIELAB
color space as a function of size. Wen [100] proposed a color difference metric by counting
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the number of just noticeable differences on a vector V that connects two color points. Start-
ing from the first color center, it finds the intersection of the chromaticity discrimination
ellipse of the first color center and vector V. The distance between the first color center
and the intersection point is considered as 1 JND. Then the discrimination ellipse for the
new point on V is estimated, the method explained is repeated and the number of JNDs
will be counted until it reaches the second color point. The discrimination ellipse parame-
ters for each color are estimated using polynomial regression over MacAdam’s chromaticity
discrimination ellipses.

Color discrimination thresholds (or JNDs) are usually measured in very time-consuming
psychophysical experiments. Limited available experimental data lead the 1∆E distance in
different uniform color spaces to be used as a method to predict the experimental ellipsoids
for different colors. Despite the advances in color appearance models, and the uniformity in
their corresponding color spaces, the Euclidean distance in CIELAB color space is widely
used as the JND in several studies. Mahy et al.’s [63] evaluation of uniform color differences
offered an average value of DEab = 2.3 for the JND in CIELAB space. Martin et al. [64]
utilize color information in scan matching, a particular aspect of mapping in Simultaneous
Localization and Mapping (SLAM) problem. A change in the orientation between scans
causes failure in the matching process for mobile robots. A DEab of 2.3 is used in their
study to detect a noticeable color transition. Hao et al. [35] introduced a method to hide a
binary image in the gradient domain of a host image. They considered a DEab of 2.3 as the
JND to make sure the embedded data is imperceptible. Zhang et al. [112] proposed a real-
time rendering scheme for laser-beam-scanning-optical see-through head mounted displays,
enhancing the color contrast between rendered images and the physical environment, while
saving the power consumption of the display. The colors of the virtual content on the
display are optimized based on the background color while keeping the difference between
the original and optimized color under 2.3 DEab.

It will be shown, in the next section, that the inverse relationship between the normalized
MMB volume and the experimental ellipsoid volume shown in the previous chapter can be
used to predict the shape and orientaion of discrimination ellipsoids for different colors.

5.2 Color Discrimination Ellipsoid Prediction

It is shown in the previous chapter that for the color centers with larger normalized MMBs,
the color discrimination ellipsoids are smaller and vice versa. The MMB for each color signal
is created by going from illuminant D65 to illuminant A, and is normalized by C3, the cube of
the Euclidean distance, C, from the origin to the given color center. The inverse relationship
between the normalized MMB volume (M

C3 ) and the discrimination ellipsoid volume (Evol)
is demonstrated by the strong correlation coefficients between C3

M and Evol. To model the
general shape of an MMB, we use its equivalent ellipsoid as described in Section 3.2. An
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MMB’s equivalent ellipsoid is an ellipsoid that has the same moments of inertia (i.e., inertia
tensor) as the MMB. The moments of inertia are calculated based on the MMB being a
3-dimensional solid of uniform density and they describe the radii and principal axes of
the equivalent ellipsoid representing its dimensions and orientation, respectively. A typical
MMB and its equivalent ellipsoid are shown in Figure 5.1.

(a) (b)

Figure 5.1: (a) A sample MMB for the Grey color center induced by going from CIE D65
to CIE A and (b) its equivalent ellipsoid.

Given an MMB, let the radii of its equivalent ellipsoid be r1, r2 and r3. Because of the
strong correlation coefficients between C3/M and Evol it is reasonable to expect an ellipsoid
with the radii C/r1 , C/r2 and C/r3, to be similar to the discrimination ellipsoid in terms of
their relative magnitudes. However, the orientation of the MMB, and consequently its EE,
depends on the choice of the second illuminant. So how can this orientation dependence be
modelled?

The MMBs are computed for the CIE 10◦ standard observer for a shift from CIE illu-
minant D65 to CIE A. D65 is used as the first illuminant because the color centers and the
color discrimination thresholds in the available experimental datasets useful for our study
are all measured and reported under D65. However, how should the second illuminant be
chosen? In terms of predicting ellipsoid volumes, the second illuminant has little effect on
the results as shown in Table 5.1.

However, the choice of the second illuminant does affect the MMB’s orientation, and
hence the prediction of the corresponding ellipsoid’s orientation. Figure 5.2 shows the equiv-
alent ellipsoids of 3 MMBs computed by going from (i) D65 to Horizon; (ii) D65 to U30;
and (iii) D65 to CWF. The ellipsoids are translated to the origin and their sizes are nor-
malized. The long, medium, and short axes of each ellipsoid are shown with red, green, and
blue lines, respectively. It is clear from Figure 5.2 that the orientation of the MMB, and
consequently its equivalent ellipsoid, changes considerably with the second light, so it is
necessary to redefine the orientation.
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Table 5.1: The correlation coefficients between C3/M and Evol, and the mean Jackknife
estimates as a function of the second illuminant used in predicting ellipsoid volumes.

Second Illuminant Pearson Correlation Coefficient Mean Jackknife Estimate
Horizon 2300K 0.84 0.84

A 2800K 0.83 0.83
U30 3000K 0.90 0.90
TL84 3800K 0.91 0.91
CWF 4100K 0.89 0.89
F2 4230K 0.89 0.89
F8 5000K 0.90 0.90
F11 4000K 0.90 0.90
C 6774K 0.88 0.88

Figure 5.2: Three ellipsoids representing the MMB orientations computed by going from
D65 to Horizon; D65 to U30; and D65 to CWF.

The hypothesis proposed in the previous chapter is that metamer mismatching volume
reflects the ambiguity in the nature of the underlying surface reflectance function. But how
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does it relate to discrimination threshold variations in different directions about a color
center? The proposed hypothesis implies that the MMB volume reveals how varied the
reflectances are that result in the same color signal under a given illuminant. If it holds true,
then given two color signals, the larger the intersection of their corresponding MMBs, the
more varied is the set of reflectances that are metameric to both color signals. Therefore, the
intersection of the MMBs indicates the degree of uncertainty, i.e., the possibility of confusing
their underlying surface reflectances. As a result, given a color center P , a human observer
must be more sensitive when the colors in one direction create significant uncertainties with
P , and less sensitive to the colors in other directions with little chance to be confused with
the color center P .

Although the intersection of the MMBs of 2 color signals signifies how likely it is to
confuse their surface reflectances, the MMB orientation, and hence its overlap with other
MMBs, varies with the choice of the second illuminant and needs to be normalized with
respect to it. Also, the wing-like shape of the MMB can make the overlap computation very
sensitive to the boundary point computation, especially near the tips. So, to compute the
MMBs intersection volumes, we suggest: 1. Use the equivalent ellipsoid of the MMB, and
2. Rotate the equivalent ellipsoids of the MMBs to be aligned with D65 OCS to cancel the
rotation created by the second illuminant.

To integrate the above idea in our ellipsoid orientation prediction, we define 14 vector
directions about each color center. The vector directions are selected in the same way that
Berns et al. [11] selected the vectors to measure the color difference tolerance in their
experiment. The only difference is that the vectors are defined in CIE XYZ space in our
case, as opposed to CIELAB that was used in Berns et al. experiment. The vectors are
plotted in Figure 5.3.

Figure 5.3: The 14 vector directions (vectors A, B, C, D, E, F and G, and their reverse
directions) are defined in CIE XYZ color space. Specifically, A=[1,0,0], B=[0,1,0], C=[0,0,1],
D=[1,1,1], E=[1,-1,1], F=[-1,-1,1], G=[-1,1,1].
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Assuming the norm of the vector directions to be equal to 0.1 with their tails on a color
center P , the tips/heads of the vectors define 14 neighboring colors around P . The MMBs
for these 14 color neighbors plus one for the color center P are computed by going from
D65 to illuminant A. The equivalent ellipsoids of the 15 MMBs are computed and rotated
to be aligned with D65 OCS. The length of each of these vectors will then be set equal
to the volume of the intersection of the two equivalent ellipsoids corresponding to the two
colors at the tail and head of each vector. The tips of the new vectors (the same vector
directions but with lengths equal to the overlap volumes) are used to fit an ellipsoid around
P using the algorithm explained by Brown and MacAdam [15]. The 3 principal axes of the
computed ellipsoid are used as the principal axes of the predicted discrimination ellipsoid,
but in the reverse order. The rationale for using the reverse order is that a larger MMB
overlap volume means there are likely more reflectance functions that may lead to P or the
neighbor color signals in that direction, so a human observer must be more sensitive in that
direction to be able to distinguish the colors, and consequently the discrimination threshold
becomes smaller.

The proposed method, illustrated in Figure 5.4, is described in detail as follows:

1. Given a color center, P , in CIE XYZ space compute the MMB induced by an illumi-
nant change from D65 to A.

2. Compute the equivlent ellipsoid of the MMB as described in Chapter 3. Call it EEP .
The radii (r1, r2, r3) from the longest to the shortest, and their corresponding axes
V = [V1, V2, V3]) of the equivlent ellipsoid represent the lengths and directions of the
principal axes of the MMB, respectively.

3. Compute the CIE D65 OCS for the standard observer (2◦ or 10◦, depending on the
test dataset) and CIE illuminant D65 using the 2-transition optimal color reflectances
as defined by Logvinenko [54]. Modelling the CIE D65 OCS as a rigid body of unit
density, compute its equivlent ellipsoid and principal axes.

4. Compute the 14 color signals around P using the 14 vector directions plotted in Figure
5.3. Call these 14 neighbor color signals N1 to N14. Compute the MMB for each color
signal for a change from D65 to A.

5. Compute the equivlent ellipsoids of the 14 MMBs. Call them EEN1, . . . , EEN14.

6. Rotate each of the 15 ellipsoids, EEN1, . . . , EEN14 and EEP to align with the principal
axes of the D65 OCS.

7. Set the length of each vector equal to the volume of the intersection of the two ellipsoids
for the two colors P and Ni at the tail and head of the vector.
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8. Considering the 14 color signals at the tips of the length-adjusted vectors from the
previous step, use the algorithm described in Brown and MacAdam [15] to fit an
ellipsoid to them. Call the axes of the new ellipsoid (V ′1 , V ′2 , V ′3) from the longest to
the shortest.

9. Compute C as the Euclidean distance between the color center P and the origin.
Adjust the size of EEp such that its radii (r1, r2, r3) become (C/r1, C/r2, C/r3), re-
spectively. Now the order is reversed, with C/r1 being the shortest and C/r3 being
the longest.

10. Rotate the size-adjusted ellipsoid such that (C/r1, C/r2, C/r3) radii will become aligned
with (V ′1 , V ′2 , V ′3) respectively. The new size-adjusted and rotated ellipsoid is our pre-
dicted discrimination ellipsoid for color center P .

The algorithm explained above is illustrated in Figure 5.4.

5.3 Ellipsoid Similarity Measures

To evaluate the proposed method, an ellipsoid similarity measure is needed to compare the
predicted ellipsoids to those derived from the psychophysical data. Moshtaghi et al. [70]
proposed an ellipsoid similarity metric, referred to as “compound similarity”, for ellipsoid
clustering and anomaly detection in wireless sensor networks. The proposed metric consists
of three exponential factors, representing the difference in the location, orientation, and
dimensions of the ellipsoid pair:

CS = e−‖µ1−µ2‖e−‖sinθ‖e−‖α
∗−β∗‖ (5.1)

The first component represents the positional similarity, where the exponent ‖µ1 − µ2‖
measures the Euclidean distance between the centers of the ellipsoids. The sinθ =
(sinθ1, sinθ2, sinθ3) in the second term measures the sin of the angles between the as-
sociated eigen vector pairs. The α∗ = (α∗1, α∗2, α∗3) and β∗ = (β∗1 , β∗2 , β∗3) represent the radii
of the ellipsoids, from the longest to the shortest. Since both predicted and experimental
ellipsoids are centered at the same point, the first exponential component is always equal
to 1; hence, it is only the angles between their major axes and the difference between their
lengths that matter. The value of the compound similarity (CS) metric can vary between 0
and 1, with 1 indicating two identical ellipsoids.

Another metric, proposed by Merritt [67], is based on computing the overlap integral
between two Gaussian distributions. Since both the experimental and predicted ellipsoids
are centered at the same color center, only the shape and rotational similarities are relevant.
Each ellipsoid can be described by a symmetric 3× 3 matrix, U , such that its eigenvectors
represent the axes, and the inverse of the square root of the eigenvalues represent their
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Figure 5.4: Illustration of the proposed algorithm: Top left: D65 OCS and an arbitrary
color center P within the OCS. Top middle: The MMB for color center P for a change from
illuminant D65 to A. The MMB is located inside the OCS for CIE illuminant A. Top right:
The equivalent ellipsoid (EE) of the MMB is calculated and then translated such that its
centroid coincides with color center P within D65 OCS. Bottom left: The 14 vectors defined
in Figure 5.3 are centered at P within the EE of the MMB. The tips of the vectors (shown
as black asterisks) show the N1 to N14 color signals around P . Bottom middle: The EE of
the MMB for P is shown in grey, with the EEs of the MMBs for two example color centers
N2 and N10 shown as the red and blue ellipsoids. The length of N2 vector is adjusted to
be equal to the overlap volume of the N2 EE and the P EE. The length adjusted vector is
shown in red. The length of N10 vector (the blue line) is also adjusted to be equal to the
overlap volume of the N10 and P EEs. Bottom right: The length adjusted vectors (black
lines centered at P ) are then used to fit an ellipsoid. The principal axes of the fitted ellipsoid
are used as the principal axes of the predicted discrimination ellipsoid.

lengths. Matrix U can be regarded as the covariance matrix of a Gaussian distribution. Let
U and V be the covariance matrices corresponding to two ellipsoids. The Merritt correlation
coefficient for these ellipsoids can then be computed since the Merritt correlation coefficient
between two Gaussian distributions U and V is defined as:
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Merritt(U, V ) = [det(U−1)det(V −1)]1/4

[(1/8)det(U−1 + V −1)]1/2 (5.2)

The closer the value to 1, the more similar the ellipsoids. Sample pairs of ellipses with their
similarity measures are plotted in Figure 5.5.

Figure 5.5: Sample pairs of ellipses with their corresponding CS and Merritt similarity
measures.

5.4 Summary

Since the predictions follow from MMBs based on reflectances, only the discrimination
ellipsoids that were measured using physical color patches (i.e., not colors on a display or
created from mixture of primary lights) are useful for testing. The datasets summarized in
Table 4.5 (Melgosa et al. [66], Huang et al. [38], Witt [102] and Cheung et al. [17]) are useful
for the test.

Table 5.2: Ellipsoid similarity measures between the experimental ellipsoid versus MMB-
based ellipsoid prediction, and experimental ellipsoid versus CIELAB-based ellipsoid pre-
diction.

MMB-Based Prediction CIELAB-Based Prediction
Merritt CS Merritt CS

Melgosa et al. 0.83 0.41 0.85 0.44
Huang et al. 0.82 0.36 0.77 0.33
Cheung et al. 0.81 0.37 0.82 0.38

Witt 0.82 0.55 0.83 0.62
Mean Over All Datasets 0.82 0.40 0.81 0.41
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The algorithm of Logvinenko et al. [54] is used to compute the MMBs for the 45 color
centers for the change from illuminant D65 to A. The equivalent ellipsoids of the MMBs
are then calculated, and the algorithm explained in Section 5.2 is used to predict the ex-
perimental ellipsoids. For comparison, a unit ∆Eab sphere is computed in CIELAB color
space around each color center and converted to XYZ, where it becomes an ellipsoid. The
mean similarity measures between the MMB-based predicted ellipsoids and the experimen-
tal data, along with the mean similarity between the ellipsoids resulting from unit ∆Eab
spheres in CIELAB and the experimental data for each dataset are reported in Table 5.2.

From Table 5.2, it is interesting that MMB-based prediction that is only based on a
principle —the hypothesis that the uncertainty created by metamer mismatching underlies
the variation in difference thresholds— is as accurate as CIELAB-based prediction which is
based on a model constructed from a simple fit to experimental data. It is worth mentioning
that we do not claim that the proposed hypothesis is the sole cause for the color discrimi-
nation variations. However, considering noise and possibly some other unaccounted factors,
the strong correlation coefficients between the shape and orientation of the predicted ellip-
soids and the experimental data demonstrate further evidence for the proposed hypothesis
and reinforce the idea that the uncertainty created by metamer mismatching underlies the
color difference thresholds.
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Chapter 6

Conclusion

Color is not an intrinsic and independent feature of an object, but rather is an attribute of
the combination of light and surface reflectance pair [55]. In other words, object color can
change as a result of a change in the illumination. One of the most important phenomena
that can pose big challenges in that regard is “metamer mismatching”. Metamer mismatch-
ing shows that the color of an object is not a stable and can disperse into many different
colors under different illuminants. An algorithm was proposed by Logvinenko et al. [54] to
compute the extent of this effect by finding the boundary points of the metamer mismatch-
ing body (MMB). The convex metamer mismatching volume that can be fully described
by its boundary points has interesting features that can be used to overcome some of the
existing problems in color vision.

This thesis makes several contributions to the implications of metamer mistmatching.
The thesis represents joint work involving extensive collaboration with my thesis supervisor.
The author order given on the jointly published papers reflects the relative contribution of
each author.

The first contribution is an analysis of the results of an asymmetric color matching
experiment done by Logvinenko & Tokunaga. [58]. The performance of the existing color
prediction methods is compared in terms of how well they explain the results of that ex-
periment. The discrepancy between the matches made by the human observers and the
computational methods reveals that human’s asymmetric matching strategy is not yet well-
understood. This work can serve as a foundation for further research in the field.

A color accuracy metric for digital cameras based on the MMB dimensions is introduced
in the third chapter. The moments of the MMBs are used to quantify the dimensions of their
wing-like shapes, and to define a new metric that is invariant to the linear transformations
of the sensor space. The advantage of using MMB’s shape rather its volume is that it is not
subject to instability in cases in which the MMB is very narrow. In contrast to the existing
methods, the proposed metric is founded upon a theoretical approach and hence does not
need to measure the average error over a finite representative and necessarily incomplete
set of reflectances.
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A theory about the underlying reason for variations in color discrimination is explored
in the fourth chapter. We showed that the greater the extent of metamer mismatching,
the more finely a color needs to be discriminated. In other words, a larger MMB for a
given color means more varied is the set of reflectances that are all metameric. Therefore,
people become more sensitive in order to reliably discriminate physically distinct surfaces
from one another, and the corresponding color discrimination ellipsoid becomes smaller.
Since Zhang et al. [110] showed that metamer mismatching is greatest for grey, high for
colors of low saturation, and decreases with increasing saturation, the hypothesis correctly
predicts that color discrimination is finest near grey and coarsest for the saturated colors
near the object color solid boundary. It is worth mentioning that the proposed theory is not
intended to serve as a comprehensive model of color discrimination. Instead, it is shown to
be a dominant underlying reason.

In the last chapter, the inverse relationship between the normalized MMB volume and
discrimination ellipsoid volume presented in the fourth chapter is extended to predict the
shape of color discrimination ellipsoids. The volume of the MMBs overlap is considered as
the likelihood that two distinct colors under one illuminant will become indistinguishable
under another illuminant. The greater the overlap volume in one direction, the greater
the likelihood, and so a human observer become more sensitive in that direction. Thus
metamer mismatching is shown to predict not only the volume, but also the shape and
orientation of these ellipsoids as well. Thereby further demonstrating that the inherent
uncertainty resulting from metamer mismatching underlies color discrimination thresholds.
The proposed method can be utilized to predict the just noticeable color differences in
different directions about a color signal that are not measured in the existing data sets.
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Appendix A

Ellipsoid Parameters Conversion
Equations

In general, given gik; the ellipsoid parameters in one coordinate system such as the instru-
ment R, G, B; the following relation recommended by Brown et al. [15] can be used in order
to obtain the parameters in another color space such as X, Y, Z:

Gjl = (∂xi
∂x′j

)(∂xk
∂x′l

).gik, i, j, k, l = 1, 2, 3 (A.1)

where xi, xk = R,G,B and x′j , x′l = X,Y, Z , (i.e. x1 = R, x2 = G, etc)

Gjl values are the ellipsoid parameters in XYZ color space, and the partial derivatives are
obtained using the transformation equations:

R = a11X + a12Y + a13Z (A.2)

G = a21X + a22Y + a23Z (A.3)

B = a31X + a32Y + a33Z (A.4)

For instance
∂x1
∂x′1

= a11,
∂x1
∂x′2

= a12 (A.5)

and writing one equation in full gives

G11 =(∂x1
∂x′1

)(∂x1
∂x′1

)g11 + (∂x1
∂x′1

)(∂x2
∂x′1

)g12 + (∂x1
∂x′1

)(∂x3
∂x′1

)g13+

(∂x2
∂x′1

)(∂x1
∂x′1

)g21 + (∂x2
∂x′1

)(∂x2
∂x′1

)g22 + (∂x2
∂x′1

)(∂x3
∂x′1

)g23+

(∂x3
∂x′1

)(∂x1
∂x′1

)g31 + (∂x3
∂x′1

)(∂x2
∂x′1

)g32 + (∂x3
∂x′1

)(∂x3
∂x′1

)g33

(A.6)

The transformation between x, y, Y and XYZ is given by:
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x = X

X + Y + Z
(A.7)

y = Y

X + Y + Z
(A.8)

Y = Y (A.9)

Proceeding similar to the example above, we find that

G11 = A2g11 + 2ACg12 + C2g22 (A.10)

G12 = ABg11 + (AD +BC)g12 +Ag13 + CDg22 + Cg23 (A.11)

G13 = ABg11 + (AC +BC)g12 + C2g22 (A.12)

G22 = B2g11 + 2BDg12 + 2Bg13 +D2g22 + 2Dg23 + g33 (A.13)

G23 = B2g11 + (BC +BD)g12 +DCg22 +Bg13 + Cg23 (A.14)

G33 = B2g11 + 2BCg12 + C2g22 (A.15)

where
∂x

∂X
= (X + Y + Z)−X

(X + Y + Z)2 = A (A.16)

∂x

∂Y
= ∂x

∂Z
= −X

(X + Y + Z)2 = B (A.17)

∂y

∂X
= ∂y

∂Z
= −Y

(X + Y + Z)2 = C (A.18)

∂y

∂Y
= (X + Y + Z)− Y

(X + Y + Z)2 = D (A.19)

∂Y

∂X
= ∂Y

∂Z
= 0, ∂Y

∂Y
= 1 (A.20)

The ellipsoids’ coefficients converted to XYZ color space are then used to compute
the discrimination ellipsoids’ volumes in the same color space. Silberstein [90] and
Brown et al. [15] suggested that the radii of the discrimination ellipsoid defined by
G11, G12, G13, G21, G22, G23, G31, G32, G33 coefficients are equal to 1√

σi
when σi(i = 1, 2, 3)

are the roots of the following equation:

σ3 −G2σ
2 +G1σ −G0 = 0 (A.21)

where

G2 = G11 +G22 +G33 (A.22)

G1 = G22G33 −G2
23 +G33G11 −G2

31 +G11G22 −G2
12 (A.23)
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G0 = det(Γ),Γ =

G11 G12 G13
G21 G22 G23
G31 G32 G33

 (A.24)

To compute the ellipsoid’s volume, we need to compute the product of its radii ( 1√
σ1
∗ 1√

σ2
∗

1√
σ3

= 1√
σ1∗σ2∗σ3

). This is equivalent to finding the product of the roots of the Equation
A.21 (σ1 ∗σ2 ∗σ3). The roots of Equation A.21, σi, are in fact the eigenvalues of the matrix
Γ. The product of the eigenvalues of a matrix is equal to the determinant of that matrix.
Therefore, rather than solving the Equation A.21, the determinant of matrix Γ can be used
in the ellipsoid volume calculations:

det(Γ) = σ1σ2σ3, radii =
[

1√
σ1

1√
σ2

1√
σ3

]
→ Ellipsoidvol = 4

3Π 1√
det(G)

(A.25)
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