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Abstract 

Frequent assessment of motor function would contribute towards personalization of 

therapeutic activities for stroke survivors. This study aimed to propose a pragmatic motor 

assessment tool that could facilitate frequent assessments towards recovery of lost 

function during chronic phase. We focused our investigation on the use of EEG-based 

resting state functional connectivity (FC) for this purpose.  

The first phase investigated the suitability of FC for accurate estimation of motor 

impairment in stroke survivors. We selected phase synchronization as a measure of FC 

and Fugl-Meyer assessment for upper extremities (FMU) as a measure of impairment. We 

used projection algorithms to develop models for estimating FMU from FC. We showed 

cross-validated R2 of 0.97 and an RMS error of 1.9 on FMU scale. The proposed method 

showed promise as a practical tool for frequent assessments of motor function. 

There is diminished incentive for frequent assessments, however, if FC could only 

estimate large changes in function, as is the case with FMU. The second phase of our 

study investigated the ability of the proposed algorithms in estimating small incremental 

changes in motor function. Using objective measures of motor skill in healthy participants, 

we showed 98% accuracy in estimating small longitudinal changes in skill, thereby 

improving the incentive for frequent assessments. 

The high estimation accuracy of our proposed method presented an opportunity to assess 

bidirectional interactions between FC and motor function. The third phase of our study 

investigated the prospects of inducing a change in motor skill by influencing FC. We 

selected mental imagery as the mechanism to influence FC and provided real-time 

neurofeedback on the selected connectivity channels to guide the mental imagery. We 

showed over 20% improvement in motor skill of a healthy individual through 

neurofeedback training alone.  

Our proposed method showed promise in facilitating an individualized approach towards 

improvement of motor function that could complement the conventional therapeutic 

activities. It also showed potential for providing an accurate assessment of motor 

impairment, while addressing the challenges associated with the availability and expertise 

of examiners. It promotes frequent assessments of motor function and personalization of 

therapeutic activities for stroke survivors in chronic phase. 
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Executive Summary 

Overarching goal of our study was to propose a method that had the potential to 

deliver an objective measure of motor impairment, facilitate frequent assessments, and 

provide a mechanism to guide mental imagery towards improving motor function.  

Based on the results from prior studies, we selected neurophysiological measures 

for this purpose but aimed to remove the conventional constraint of selecting the motor 

areas as the focus of our analysis. We opted to use brain functional connectivity measures 

due to their global representation of interactions between different brain areas. For 

pragmatic reasons, we chose EEG-based resting state functional connectivity (rsFC) and 

used the peak phase synchronization index as the neurophysiological measure to 

estimate motor impairment. To the best of our knowledge, peak resting-state 

synchronization index had not been previously used for this purpose.  

Our decision to include global brain interactions, both in location and frequencies, 

introduced other challenges associated with disproportionate dimensionality of the 

features (brain activities) and behavior (motor function), especially for small number of 

observations (participants). Presence of large number of features has a negative impact 

on the prediction performance of the regression models. This compelled us to use 

methodologies that were less sensitive to these conditions. We opted to use algorithms 

based on Projection to Latent Structures, also known as Partial Least Squares (PLS), to 

develop regression models for estimating motor impairment. We used a combination of 

PLS-Correlation and iterative PLS-Regression for dimensionality reduction and 

elimination of unrelated features from the regression models. Again, to the best of our 

knowledge, this combinational approach had not been previously used for feature 

selection and generalization of PLS regression models.  

We selected FMU as a measure of motor impairment in stroke survivors. The first 

phase of our research investigated the performance of the proposed PLS method in using 

rsFC to estimate motor impairment in ten stroke survivors. Performance of the method 

was assessed with respect to its accuracy in estimating FMU scores. Cross-validation 

resulted in R2 of 0.97 and a root-mean-squared-error of 1.9 (~ 2.9%) on FMU scale, which 

was less than the minimum detectable change (3 points or ~ 4.5%). We argued that the 

proposed method eliminated the need for execution of physical tasks during assessments, 
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was cost effective, portable, and simple to use. The proposed method showed potential in 

providing an objective measure of motor impairment, while addressing the challenges 

associated with the availability of trained examiners to carry out the assessments. The 

latter was deemed to be conducive towards more frequent assessment of motor function. 

Accurate and frequent assessment of motor function would facilitate continual 

adjustment of rehabilitation strategies and personalization of therapeutic activities that 

could result in further recovery of lost function. However, there is very little incentive for 

frequent assessments if they can only measure large changes in motor function, which 

might take a long time to achieve. FMU is an example of such assessments, where a point 

change in FMU score would correspond to a large change in function. Since the 

performance of our proposed method was evaluated by its accuracy in estimating FMU 

scores, we needed to extend our analysis to include an evaluation of the performance in 

estimating small incremental changes in function. Small longitudinal changes in motor skill 

of healthy individuals through physical training was considered to be a good candidate for 

this purpose. We designed computer-based tracing tasks for skill training and used the 

spatial error in tracing as an objective measure of skill. We collected resting-state EEG 

data throughout the skill training program and developed regression models using our 

PLS-method and rsFC. Longitudinal data from seven healthy participants yielded an 

average accuracy of 98% (standard deviation of 1.2%) in estimating tracing errors. 

Although these results do not necessarily extend to stroke survivors, they were 

nevertheless indicative of the capability of the proposed method for estimating small 

incremental changes in motor function. We considered this as a foundational work that 

was necessary before future longitudinal research with other populations. The results also 

revealed the potential use of this method to study the impact of targeted brain stimulation 

on motor function through activation of individualized relevant FC networks. 

Mental imagery (MI) is gaining attention as a strategy towards endogenous brain 

stimulation for improving motor skill. Neurofeedback (NF) is commonly used to guide MI 

in order to activate the relevant brain networks. Prior studies had primarily focused on 

generalized models that described the relationship between motor function and 

neurophysiological activities. These models were mostly based on SMR band power or 

FC with motor areas. Involvement of different brain networks and synchronization 

frequencies across subjects, along with differences due to age or existing capabilities, 

motivated us to deviate from the generalized approach and focus on individualized method 
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towards NF training. Our research on skill training with healthy participants showed 

promising results on developing individualized models for estimating small incremental 

changes in motor skill from rsFC. We used the models for identifying contributing EEG 

channels and band frequencies towards changes in skill. The identified channels were 

then used as individualized target candidates for NF training. 

Consistent with the previous phase, we developed digital tracing tasks for physical 

skill training and used the spatial error in tracing to gauge the change in skill of a healthy 

participant. Selection of healthy participants allowed us to monitor small changes in motor 

skill and FC from physical and NF training. We applied our proposed method to identify 

the channels with the largest margin for increasing FC as the candidates for NF training. 

We showed over 20% reduction in tracing error through neurofeedback training alone, 

without any additional physical training. We also showed retention of improvement in skill 

for several days after the completion of neurofeedback training. We are not aware of any 

prior study that used an individualized selection of channels and frequencies for 

application of NF to guide MI towards improving motor skill.  

In summary, we proposed a method based on peak-rsFC between networks that 

were not constrained to interactions with motor areas or any specific synchronization 

frequencies. We used PLS algorithms for both selecting relevant features (channels and 

frequencies) and developing generalized models for estimating motor impairment. We 

also showed that the method exhibited good performance in estimating small longitudinal 

changes in motor skill from individualized models for healthy participants. In the final 

phase of our research and through a case study, we demonstrated that the method had 

potential in identifying individualized channels that could be used for NF training to guide 

mental imagery towards incremental improvements in motor skill. 

This study was limited to the basic introduction of a new method and foundational 

demonstration of concept. The future direction of this study can be divided into two 

categories: 1) Development of a prototype for the generalized model to be used for 

estimating motor impairment. This will require the collection of 2-minutes resting state 

EEG data along with a physical appraisal of motor impairment from as many stroke 

survivors as feasible. We recommend this to be initially limited to individuals in chronic 

phase; 2) Development of an NF prototype that could initially be used with motivated 

healthy participants that are actively involved in personal skill improvement training. A 
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successful demonstration of the prototype with healthy participants could then be 

extended to stroke survivors in chronic phase that might be actively working towards 

regaining specific skills. 
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Chapter 1.  
 
Introduction 

Material in this chapter is extracted, reproduced, and modified with permission from the 

following papers: 

N. Riahi, V. A. Vakorin, C. Menon, “Estimating Fugl-Meyer Upper Extremity Motor Score 

from Functional-Connectivity Measures,” IEEE transactions on neural systems and 

rehabilitation engineering, vol. 28, no. 4, pp. 860-868, Apr. 2020. 

N. Riahi, R. D’Arcy, C. Menon, “A Method for Estimating Longitudinal Change in Motor 

Skill from Individualized Functional-Connectivity Measures,” Sensors 2022, DOI: 

10.3390/s22249857. 

N. Riahi, W. Ruth, R. D’Arcy, C. Menon, “A Method for Using Neurofeedback to Guide 

Mental Imagery for Improving Motor Skill,” IEEE transactions on neural systems and 

rehabilitation engineering 2022, DOI: 10.1109/TNSRE.2022.3218514. 

 

1.1. Chapter Overview 

This chapter explains our motivation, research questions and the resulting objectives. It 

concludes with the potential contributions towards stroke rehabilitation. 

 

1.2. Background and Motivation 

A large percentage of stroke survivors experience motor impairment in upper 

extremities that affects their activities of daily living [1]. An estimated 30% of the survivors 

continue to experience functional inadequacies throughout the chronic phase with 

psychological and financial impact to both the stroke survivors and their caregivers [2]. 

There is limited institutional and governmental support for continuing rehabilitation during 

chronic phase [3]. This has partially been based on the perceived diminished capacity for 

https://www.mdpi.com/1424-8220/22/24/9857
https://doi.org/10.1109/TNSRE.2022.3218514
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improvement, or plateauing, despite existing evidence for further recovery of function from 

application of novel rehabilitation protocols. Continual adjustment of rehabilitation strategy 

and therapeutic activities is conducive towards breaking out of this plateau [4]. Accurate 

and frequent assessment of motor function would contribute towards development of 

rehabilitation strategies and personalization of therapeutic activities [5]. Frequency of 

assessments, however, is hampered by the availability of trained examiners. Cost 

effective assessment tools and complementary therapeutic methodologies may help in 

this regard. 

Fugl-Meyer assessment is an accepted method for evaluation and numerical 

representation of motor function after stroke [6]. It is used to obtain a baseline assessment, 

as well as monitor and quantify longitudinal changes in motor function during rehabilitation 

[7], [8]. Given proper training of the examiners and following standardized approach, the 

minimum detectable change for Fugl-Meyer upper extremity motor score (FMU) can be 

reduced to approximately 3 points, which is just under 5% of maximum scale for FMU 

assessment [9]. This is exacerbated by the subjectivity of the evaluation, when terms such 

as “performed partly” or “limited range” are used to quantify behavior and can cause 

variability in the final assessment scores. Furthermore, every point change in FMU score 

corresponds to large changes in function and as such may not contribute towards 

assessment of small incremental improvements in execution of motor tasks. This would 

further discourage frequent assessments since achieving a minimum detectable change 

in FMU score might take a long time to accomplish. Finding physiological measures that 

can objectively and accurately estimate small changes in motor function may help reduce 

dependency on the skill level and experience of personnel that are tasked with carrying 

out the assessment. Selection of physiological measures, however, should not be solely 

based on the technical challenges associated with how well they can estimate behavior, 

but also on their ability to address pragmatic issues associated with reduced capacity of 

stroke survivors as well as cost and duration of assessment [10]. Addressing the pragmatic 

challenges might help facilitate more frequent assessments, which in turn could be 

conducive towards the development of personalized therapeutic activities and 

rehabilitation strategies. Pertaining to technical considerations and specifically the 

accuracy of assessment, use of physiological measures must result in comparable or 

better accuracy than conventional protocols used for evaluating motor function and require 

minimal expertise to carryout the measurements.  
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Although stroke can cause local structural damage, the dysfunction is generally 

extended to remote sections of the brain that are functionally connected to the damaged 

areas [11]. The ability to perform a broad analysis of network interaction should therefore 

be considered when selecting a physiological measure. Given our focus on brain 

networks, it seems appropriate to concentrate on neurophysiological measures to quantify 

the network interactions. Brain functional connectivity (FC) has shown potential for use as 

such neurophysiological measures, especially due to their ability to analyze global network 

interactions [12], [13]. Taking into account the aforementioned pragmatic challenges 

associated with mobility and feasibility, there is increased interest in using resting state 

FC measures through electroencephalography (EEG) for this purpose [14]. FC is generally 

evaluated in terms of correlation in activities of different brain areas [15]. Empirical 

research with EEG has shown that engagement and communication between brain 

regions are facilitated through neural synchronization at different frequencies [16], [17] 

and that the synchronization parameters can be used as metrics to quantify FC between 

associated brain areas [18]. The high temporal resolution of EEG systems is favourable 

towards accurate measurement of synchronization between different regions of the brain 

and is why EEG systems are commonly used in studies where coherence is selected as 

a measure of FC. Considering the potential for quantifying motor related FC from resting 

state measurements and the suitability of EEG systems in measuring FC through 

coherence, along with its relative low cost and portability, motivates the use of EEG-based 

resting-state FC (rsFC) as the neurophysiological measure of choice for estimating motor 

function. 

Given that FMU is a standard tool for the assessment of motor impairment, it would 

be reasonable to evaluate the performance of methodologies based on rsFC against that 

of FMU. Provided that the use of rsFC can result in comparable accuracy, it could then be 

promoted as an alternative pragmatic assessment tool for the appraisal of motor function 

during rehabilitation. However, while methodologies based on rsFC might show good 

performance in estimating FMU, their accuracy in estimating motor function could only be 

evaluated relative to the accuracy of FMU. Assessment of function based on FMU is 

somewhat subjective in nature and generally quantifies fairly large changes in motor 

function [9]. To promote the use of these new methodologies for frequent assessment of 

function, they need to show potential for evaluating small changes in motor function that 

are not feasible with FMU assessment. To gain a better understanding of the estimation 
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accuracy of the methods based on rsFC, their performance needs to be evaluated against 

a more objective measure of behavior that can be quantified at smaller incremental change 

as compared with conventional assessment protocols. Specific to motor function, 

acquisition of a skill by healthy individuals through physical training is a good candidate 

for this purpose. The ability of the algorithms to accurately estimate modest longitudinal 

changes in motor skill may prove useful in addressing the technical requirements of the 

new assessment tool. It can also motivate using the tool at shorter intervals, thereby 

increasing the assessment frequency and enabling small adjustments in rehabilitation 

strategy accordingly. This can improve the prospects of accomplishing further 

improvements in motor function during chronic phase [4]. 

Pertaining to diminished potential for improvement during chronic phase and the 

need for continual adjustment of rehabilitation strategy, there is increased interest in brain 

stimulation as a complementary approach along with physical therapy [19]. Specific to 

motor function and use of FC as a neurophysiological measure, the enhanced computing 

power of current electronic devices has facilitated the real-time processing of coherence 

and the subsequent analysis of instantaneous FC [20]. This has presented an opportunity 

to not only monitor changes in FC for the purpose of assessment, but also investigate non-

physical activities that might influence FC for the purpose of inducing change in motor 

function. The effect of these influencing activities on related behavior such as motor 

function may then be examined and if favorable, integrated into relevant training programs 

for improvement of function [21]. Brain FC may be influenced through external stimulation 

[22], [23] or endogenous stimulating activities. The latter is the concept behind operant 

conditioning through neurofeedback (NF), where individuals try to self-regulate and control 

the desired brain activation through mental imagery (MI) in a closed-loop process [24], 

[25], [26]. The low implementation risk associated with MI as a mechanism to influence 

behavior motivates its use as a complementary therapeutic activity to improve motor 

function during chronic phase. 

1.2.1. Summary 

In summary, our motivation for this research includes the following: 
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• Use of neurophysiological measures can reduce the possible subjectivity of motor 

assessments, remove the potential complications associated with language barriers, 

and reduce the need for examiners’ subject matter expertise. 

• Selecting resting state FC as the neurophysiological measure of choice eliminates the 

need for execution of physical tasks as part of the assessment protocol. This can 

address the challenges associated with reduced capacity and mobility of stroke 

survivors as well as duration of assessment. 

• EEG modality is well suited for high resolution evaluation of FC when using coherence 

as a measure of FC. EEG systems can be operated with minimal training and at a 

capital cost that could potentially be recovered after a limited number of assessments 

in a clinical setting or at the point of care. 

• Development of an easy-to-use motor assessment protocol based on the above 

considerations could facilitate more frequent appraisal of motor function, which is 

conducive towards the development of personalized intervention strategy and 

adjustments of therapeutic activities at shorter intervals. 

• Utilization of EEG based FC as predictors of motor function enables the real-time 

application of neurofeedback to guide targeted MI that could influence the pertinent 

FC towards improvement of motor function. Targeted MI could be used as a 

complementary approach to expedite and potentially enhance the efficacy of 

established intervention and rehabilitation activities during chronic phase. 

 

1.3. Research Questions and Objectives 

In this study, we aimed to propose a method that could be used for more frequent 

assessment of motor impairments in stroke survivors, thereby allowing for adjustment of 

rehabilitation strategy towards extending the improvement in function. We also aspired to 

use the proposed method in facilitating a complementary therapeutic activity for improving 

motor function, particularly during chronic phase. For pragmatic reasons, we focused on 

investigating the potential use of EEG-based FC for assessment, monitoring, and 

influencing motor function. As such, our study had to address three research questions: 

1. Is EEG-based rsFC a suitable neurophysiological measure to accurately estimate 

motor impairment in stroke survivors? 
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2. Can rsFC be used to estimate small incremental changes in motor function? 

3. Can we induce a change in motor function by influencing individualized FC channels 

through MI? 

Our goal was to investigate signal processing and analysis algorithms that could 

be used to identify suitable measures of FC towards accurate estimation of motor function. 

We opted to use synchronization at different frequencies as a measure of FC. The signal 

processing algorithms had to deal with non-stationary nature of EEG signals when 

extracting frequency specific features. There was also the complication associated with 

large data sets where the number of features (FC measures) far exceeded the number of 

observations (participants). In summary, the algorithms had to deal with non-stationarity 

of the EEG signals, potential collinearity within the feature set, and presence of large 

number of unrelated features that could compromise the performance of prediction 

models. This led to our first research objective to explore the performance of a combination 

of processing algorithms for estimating motor impairment. 

Objective-1: Propose a method for estimating FMU from rsFC measures. 

Performance of the proposed method could be quantified by its accuracy in estimating 

FMU. This, however, was a subjective assessment of impairment that measured relatively 

large changes in motor function. To gain a better understanding of the estimation accuracy 

of the method, its performance needed to be evaluated against a more objective measure 

of motor function that could be quantified at smaller incremental changes as compared 

with FMU. 

Objective-2: Test the performance of the proposed method in estimating 

small incremental changes in motor function. 

If the proposed method proved suitable for estimating small incremental changes in motor 

function, then it could be used for monitoring the short-term longitudinal interactions 

between FC and function. Our focus this far was on quantifying the change in FC as a 

consequence of change in motor function. The next step was to investigate the reverse 

relationship and assess the impact of changing FC towards inducing incremental change 

in motor function. We opted to use MI as a non-invasive and cost-effective approach 

towards influencing FC.  To address the effect of MI on relevant FC, and its subsequent 

impact on motor function, we needed to develop a real-time processing algorithm that 
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could monitor instantaneous measures of FC. To evaluate the applicability of our proposed 

method for this purpose, we aimed to use the same processing modules from objective-2 

to quantify the FC measures that were selected for estimating the change in motor 

function. This allowed us to monitor the impact of different MI by providing real-time 

feedback to guide volitional control of the pertinent individualized FC measures. 

Objective-3: Investigate the prospects of influencing the individualized FC 

measures through MI for improving motor function. 

 

1.4. Thesis Structure 

This section describes the outline of the thesis. 

Chapter 2 covers the prior work related to the use of FC for baseline assessment of motor 

function, patient stratification, and prediction of longitudinal change in motor skill. It 

continues with a review of prior studies on the application of neurofeedback to influence 

motor function. Common algorithms for signal processing, feature extraction, and analysis 

are introduced. The chapter concludes with a list of equipment and materials used in this 

study. 

Chapter 3 details the specifics of the methodology used towards selection of features for 

estimating motor impairment in stroke survivors. Results pertaining to the performance of 

the methodology along with some limitations of the approach are presented. 

Chapter 4 presents the performance of the proposed methodology in estimating small 

longitudinal change in motor skill. Focus is on individualized approach as a precursor 

towards application of neurofeedback for skill improvement. 

Chapter 5 builds on the results from estimating change in motor skill. It details a process 

for selection of pertinent features that could be used for neurofeedback. A method for 

utilization of neurofeedback to guide mental imagery as an endogenous brain stimulation 

is then presented. The chapter concludes with the results of applying the proposed 

individualized method for improving motor skill in a healthy participant. 
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Chapter 6 lists the potential approach for implementation of proposed methodology as well 

as future work to address the limitations and areas for improvement. 

 

1.5. Contributions 

We proposed a method that could be used for both assessment and intervention, 

and consequently contribute towards continual adjustment of rehabilitation strategies and 

facilitate complementary therapeutic activity for improving motor function.  

As an assessment tool, it could provide an objective measure of motor function 

that limits the dependence on the availability and expertise of trained examiners. It is easy 

to use, and economical to implement. It could improve the feasibility of carrying out more 

frequent assessments, which should help manage the therapeutic activities and overall 

rehabilitation strategy. Resting state analysis is a preferential approach due to its least 

dependence on the physical abilities of individuals with stroke. Furthermore, use of 

neurophysiological measures can reduce the possible subjectivity of assessments and 

remove the potential complications associated with language barriers and cognitive 

abilities. When considering these factors, then our proposed method (if proven consistent 

through further research with a larger number of participants) would provide considerable 

incentive for clinical use. The EEG system can be operated with minimal training and at a 

capital cost that could potentially be recovered after a limited number of assessments in a 

clinical setting or at the point of care. Depending on the accuracy and resolution of these 

neurophysiological measures in estimating motor function, they may also act as early 

indicators of the impact of therapeutic activities before any discernable change in motor 

function, thereby facilitating the opportunity to finetune and personalize rehabilitation 

strategies at shorter intervals. 

As an intervention tool, it could assist in guiding individuals with their mental 

imagery that would stimulate relevant networks of the brain to improve motor function. It 

would contribute towards a complementary mechanism to expedite and potentially 

enhance the efficacy of physical therapy. Collecting resting state EEG data before (or 

after) the NF sessions may also facilitate a progressive identification of newly available 

contributing brain areas as motor function improves. A continuous development of 
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alternative prediction models as new data samples become available may help extend 

further improvements in behavior. This is especially relevant to stroke survivors in chronic 

phase with historically low expectations for additional recovery of lost function. 
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Chapter 2.  
 
Literature Review, Materials and Method 

Material in this chapter is extracted, reproduced, and modified with permission from the 

following papers: 

N. Riahi, V. A. Vakorin, C. Menon, “Estimating Fugl-Meyer Upper Extremity Motor Score 

from Functional-Connectivity Measures,” IEEE transactions on neural systems and 

rehabilitation engineering, vol. 28, no. 4, pp. 860-868, Apr. 2020. 

N. Riahi, R. D’Arcy, C. Menon, “A Method for Estimating Longitudinal Change in Motor 

Skill from Individualized Functional-Connectivity Measures,” Sensors 2022, DOI: 

10.3390/s22249857. 

N. Riahi, W. Ruth, R. D’Arcy, C. Menon, “A Method for Using Neurofeedback to Guide 

Mental Imagery for Improving Motor Skill,” IEEE transactions on neural systems and 

rehabilitation engineering 2022, DOI: 10.1109/TNSRE.2022.3218514. 

 

2.1. Chapter Overview 

This chapter covers the prior work related to the use of brain functional connectivity for 

baseline assessment of motor function, patient stratification, and prediction of longitudinal 

change in motor skill. It continues with a review of prior studies on the application of 

neurofeedback to influence motor function. Common algorithms used for signal 

processing, feature extraction, and analysis are then introduced. The chapter concludes 

with a list of equipment and materials used in this study. 

 

2.2. Prior Work 

Prior studies with stroke survivors, using functional Magnetic Resonance Imaging 

(fMRI), showed neural network reorganization and formation of compensatory functional 

https://www.mdpi.com/1424-8220/22/24/9857
https://doi.org/10.1109/TNSRE.2022.3218514
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networks between different areas of the brain to recover the lost motor function [7], [8], 

[11]. Their results indicated correlation between resting state FC measures and motor 

function, concluding that resting state FC could be a relevant neurophysiological measure 

to represent the extent of impairment after stroke. This was based on prior observations 

that lack of physical activity associated with resting state does not imply a silent brain. 

There is evidence of resting state network activities between motor regions of the brain 

while a person remains motionless but awake [27].  

Application of FC analysis has not been limited to understanding the current state 

of individuals’ motor impairment. Correlation between baseline FC measures and future 

improvements in motor function has been proposed for patient stratification [12]. 

Longitudinal studies have also investigated the correlation between change in FC 

measures and ongoing improvement in motor function after stroke [13]. Interestingly, the 

authors showed the relationship between changes in FC and treatment-induced 

improvement in motor function was contingent on the baseline status. For patients with 

more sever baseline impairment, increases in FC between ipsilesional and contralesional 

areas were beneficial towards achieving better treatment-induced motor gains. Whereas 

the reverse relation (decrease in FC) was associated with larger gain in motor function for 

patients with less sever baseline impairment. Use of FC as neurophysiological measures 

for assessment, monitoring, and prediction of change in motor function has therefore 

gained attention for developing and finetuning rehabilitation strategies.  

The modality, however, is not constrained to fMRI. Given the challenges 

associated with mobility of stroke survivors and operational cost of modalities, there is 

increased interest in using resting state FC measures through EEG for this purpose [14]. 

EEG-based FC measures were shown to correlate with motor status after stroke [28]. The 

authors focused on the correlation between global connectivity measures and behavioral 

assessments such as FMU. Estimates of correlation with FMU was evaluated from the FC 

with the primary motor cortex as the seed location. Individual connectivity measures 

between the seed network and all other locations around the brain were then assessed to 

generate an overall map of interacting networks [8], [28], [29]. This approach has also 

been extended to produce a single functional connectivity index reflecting the spatial 

average value of functional connectivity between all inter or intra-hemispheric brain 

regions [30]. In one study, connectivity with ipsilesional primary motor cortex (M1) 

accounted for an impressive 78% of variance in motor impairment of stroke survivors [28]. 
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The authors used coherence at specific canonical frequency bands as a measure of FC. 

Partial Least Square (PLS) algorithms were applied to estimate motor function from FC 

measures. However, addition of other measures such as corticospinal tract injury into the 

model were recommended to increase performance in estimating impairment. The need 

to include other measures than connectivity alone in explaining the variance with motor 

function may have been due to the exclusion of other relevant connectivity measures 

between areas that did not include M1. The authors also restricted connectivity analysis 

to beta-bands which further constrained the contribution of other FC measures towards 

correlation with motor function. 

Although FC related studies showed good results in estimating motor function, the 

accuracy of the algorithms was evaluated against subjective measures that quantify 

relatively large changes in motor function [9]. To gain a better understanding of the 

estimation accuracy of these algorithms, their performance needed to be evaluated 

against a more objective measure of behavior that could be quantified at smaller 

increments as compared with conventional assessment protocols. Incremental 

improvement in motor skill by healthy individuals through physical training was considered 

to be a good candidate for this purpose.  

Longitudinal motor learning studies with fMRI showed that some areas of the brain 

exhibit a transient change in FC while other areas showed a more lasting change towards 

consolidation and long-term retention [31]. The authors observed an initial increase in 

resting state FC in right postcentral gyrus and supramarginal gyrus during the early stages 

of skill acquisition, reflecting the integration of sensorimotor and visuospatial attention. 

This was followed by a decrease in FC in the same areas later in the motor learning 

process, indicating a reduced recruitment of these areas. They also observed a consistent 

increase in FC within the left supramarginal gyrus throughout the motor skill learning, 

which they interpreted as evidence of persistent FC change towards retention of learned 

skill. In another motor skill training study, the reduction in FC was interpreted as an 

indication that some networks may have become less important or conversely, developed 

specialized neuronal circuits for efficient performance of motor tasks [32]. These persistent 

changes in FC were shown to have potential for quantifying, and subsequently estimating 

the change in motor skill.  
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Investigations of relationship between change in FC and motor skill has not been 

constrained to fMRI modality. Prior work using EEG modality showed correlation between 

motor learning and FC in specific frequency bands [33] [34]. Several studies focused on 

the ability of global configuration of FC to predict skill acquisition in healthy participants. In 

a study with 3D visuomotor learning using movement smoothness as a measure of skill, 

the authors showed that the acquired skill could be predicted by the strength of alpha-

band FC before the motor training tasks [35]. In a similar study with mirror drawing tasks, 

the authors concluded that the resting state alpha-band FC could be implicated in 

providing the optimal resources necessary for performing an upcoming task and that the 

FC measures could predict how well the skill could be learnt [36]. Analysis of FC measures 

were not limited to alpha-band alone. In a study with healthy participant the authors 

predicted subsequent degree of motor adaptation from resting state beta-band FC 

between primary motor cortex and anterior prefrontal cortex [37]. There was also variability 

in the areas of brain for which connectivity measures were evaluated. Prior work using 

PLS analysis showed the ability to predict skill acquisition from beta-band FC between 

primary motor cortex and left parietal cortex [38]. The need for broader analysis of network 

interactions that were not limited to primary motor cortex was further reinforced through a 

motor adaptation study that showed involvement of parieto-occipital and fronto-parietal 

cortical component [39]. These studies point towards manifestation of wide-ranging 

frequencies and brain areas towards correlation between FC and change in motor skill. 

Specific to motor function, analysis of FC as a neurophysiological measure has 

been focused on predicting or monitoring the changes in function as a consequence of 

physical training or therapeutic activities. There is, however, an increased interest in 

investigating the impact of influencing these neurophysiological measures through brain 

stimulation to induce change in function. Brain stimulation can be through external sources 

[40], [41], or endogenous stimulation through MI [42], [43], [44]. The latter is generally 

guided through NF in the form of visual, audio, or tactile feedback to help individuals select 

the appropriate MI that impacts the neurophysiological measures of interest.  

Selection of neurophysiological measures for the purpose of NF is not limited to 

connectivity measures. In a review paper by Jeunet et al. [45], the authors listed several 

studies on volitional self-regulation of sensory-motor rhythms (SMR) through NF training 

to trigger neuroplasticity. Results showed promise towards acquisition of motor skill. SMR 

covers a broad range of frequencies within alpha and beta bands that are selected based 
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on the research objectives. In a case study with a stroke survivor in chronic phase, 

increasing the alpha-band power over CZ electrode was shown to improve motor function 

in terms of gait speed [46]. The authors speculated that improvement in function was due 

to NF training alone, since there was no change to the exercise routine and the individual 

was many years into chronic phase. In a controlled study to improve shooting 

performance, the authors provided NF on SMR (12–15 Hz) over C3, CZ, and C4 areas 

with the goal of enhancing power through MI [47]. The sham group received instruction to 

increase alpha power over T3 and reduce power over T4. The control group did not receive 

NF training. Shooting performance was not improved in the sham or control group. 

Application of MI using NF has also been extended towards indirect control of motor skill. 

In a recent study by Sidhu et al. [48] on dual-task performance, the authors showed 

improvement in performance of both single and dual-task motor activity by decreasing the 

alpha-power over the supplementary motor area. They reasoned that movements are 

automized through repetition but can be compromised through illness or external 

constraints. These can result in conscious control of motor activities that reduces 

movement proficiency with adverse effects on dual-task performance. They argued that 

NF resulted in improvement in cognitive performance, which in turn reduced conscious 

control of motor tasks, thereby improving dual-task performance.  

Regarding the use of NF to influence FC or SMR spectral power, investigations 

have been expanded to observations of auxiliary impact of NF on other parts of the brain 

that were not the target of NF. Experiments with healthy participants indicated a 

progressive reduction in FC within associative areas that were not the focus of the NF 

training [49]. Participants were asked to perform MI of grasping with their right hand. They 

were provided  feedback on the spectral power over C3 and CP3 by adjusting the position 

of a moving visual target. The authors showed that learning to control the target position 

was accompanied with a progressive reduction in functional integration of the associative 

areas including fronto-occipital, parieto-occipital, fronto-central, and bilateral temporal. 

They concluded that the changes in FC were associated with the increasing automaticity 

and were the ancillary effect of NF training on the spectral power over the motor areas.  

Impact of regulating spectral power in motor areas through NF is not limited to 

changes in FC of associative areas. In a recent study using bi-modal EEG-fMRI 

experiment with stroke survivors in chronic phase, the authors showed a decrease in inter-

hemispheric connectivity between premotor and primary motor areas and a reduction in 
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ipsilesional self-inhibitory connections [50]. They argued that the impact of NF training that 

target localized motor areas should be broadened to assess FC changes throughout the 

brain. Other studies using fMRI modality have shown that motor imageries result in 

overlapping activation of areas including primary motor, premotor, supplementary motor, 

and parietal areas that include sensorimotor and posterior parietal lobe [19]. It has 

therefore been argued that analysis of network interactions might be a more wholistic 

approach for NF implementation [42], [51].  Allaman et al. [52] took this one step further, 

proposing that the performance in motor sequence tasks were directly related to the 

strength of spontaneous FC and less related to classical task induced activations such as 

Event Related De/Synchronization (ERD/ERS). The authors concluded that the latter was 

more of a compensatory mechanism for lower global connectivity states which enabled 

“low-performing subjects to accomplish a task despite unfavorable neural states”. In a 

related study with both healthy participants [53] and stroke survivors [54] the authors 

showed that an NF protocol based on increasing the global alpha-band FC of the primary 

motor cortex resulted in improvement in motor function. These are significant findings and 

encouraging results in favor of using NF to facilitate an endogenous self stimulation of 

brain towards improving motor skill. Restriction of analysis to a priori selection of specific 

frequency band and brain areas, such as alpha-band and motor cortex, is conducive 

towards generalization and subsequent standardization of approach, but might be limiting 

in terms of performance [55], [56], [57]. 

 

2.3. Methodologies 

2.3.1. Assessment of Motor Function 

Assessment of motor impairment for stroke survivors were carried out by trained 

examiners as part of another study [58] and shared with us to carry out this research.  

Pertaining to motor learning and acquisition of motor skill by healthy individuals 

that could be quantified at small incremental change, we used a computer-based tracing 

task and evaluated the spatial error in tracing as an objective measure of skill. Python 3.7 

was used to create our experimental track patterns on a computer screen. We opted for 

elliptical trajectories instead of straight lines [36] to increase the degree of difficulty for 
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tracing tasks. The track was constructed from eight quarter-ellipses that were arranged to 

form a four-section curved-pattern as shown in Figure 2.1(a). In this figure, the green dot 

represents the starting point for the placement of the mouse pointer, before tracing the 

corresponding track towards the red dot. Selection of the active track section was 

controlled through the program. We adjusted the pointer speed so that the distance 

between opposing tips of the track pattern corresponded to approximately 35 cm of mouse 

travel across the torso (x-axis: left to right) and 25 cm away from the torso (y-axis: top to 

bottom). The rationale was to promote large enough physical movements to engage 

multiple arm joints without the need to move the torso. We also disabled the driver option 

that allowed a non-linear relation between the pointer’s speed and the mouse acceleration. 

The objective was to maintain relational consistency between the mouse and pointer 

coordinate systems. The horizontal area in physical space was thus represented by pixels 

on the computer screen, and time was measured through the computer’s real-time clock. 

Total position-error while tracing a track section was determined by the area (in pixels) 

between the actual pointer trajectory (Trace) and the desired track path (Track) as shown 

in Figure 2.1(b). 

 

Tracing Performance 

Position-error between the participants’ tracing trajectory and the intended track 

pattern was selected as one of the performance indicators. Time taken to trace each 

section (trial) was selected as another indicator. Total position-error during a trial was 

determined by the area between the trace and track trajectories (Figure 2.1(b)). To 

discourage participants’ attempt to reduce position-error by tracing slower, we used each 

trial time as a penalizing (multiplication) factor to inflate the respective position-error. 

Conversely, to discourage participants’ attempt to reduce trial time by moving the mouse 

too quickly to stop at the destination vertex, we accumulated positional offsets from the 

track endpoint until the pointer came to rest at the destination vertex. 

We used both accumulated position-error as well as the accumulated product of 

position-error and its corresponding tracing time from each trial, as two separate indictors 

of tracing performance. Improvement in motor skill through training reduces the magnitude 

of one or both these measures. Participants were updated on their tracing performance 

after each training session. Position-error was measured in units of pixels-squared, 
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representing the area between the track and trace trajectories, and converted to spatial 

units of squared-centimetres (cm2) based on an estimated coverage of 0.25 mm2 per pixel. 

The product of position-error and its associated tracing time was measured in units of 

cm2seconds.  

Each training session consisted of 90 tracing trials, generating 90 intermediate 

performance values. We used two different approaches to produce a measure of tracing 

performance for each session: First, a single value corresponding to the median of all 90 

trials (single-median option), and second, the median of the first 30 trials as a measure of 

performance before training, and the median of the last 30 trials as a measure of 

performance after training (dual-median option). The two measures allowed for separate 

evaluation of consolidated and short-term learning. 
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Figure 2.1 (a) General shape of the track pattern to be traced by participants. (b) 
An example of the tracing trajectory over a single-track section. The 
position-error is the total area between the trace (red) and track (blue) 
pattern. Axes for (b) are in units of screen pixels. 
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Trace 
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2.3.2. Band Separation 

We used complex Morlet wavelets for bandpass filtering of EEG signals from each 

electrode. Morlet wavelet is a sinusoid wave within a Gaussian envelope. The center 

frequency of the wavelet is determined by the frequency of the sinusoid and the bandwidth 

is determined by the standard deviation of the Gaussian envelope [59]. For a given 

sinusoid frequency, increasing the number of sinusoid cycles within the wavelet increases 

the standard deviation of the Gaussian envelope, resulting in a narrower frequency 

bandwidth of the bandpass filter. The wavelet filter characteristics can therefore be 

adjusted by the center frequency and the number of cycles of the sinusoid within the 

wavelet [60]. The actual filtering process can be implemented by multiplying the Fourier 

Transform of the wavelet and EEG data from each electrode and then applying Inverse 

Fourier Transform to convert back to time domain. The resulting frequency-specific 

amplitude and phase information of the filtered EEG data can be used to compute 

instantaneous coherence between activities at different electrodes [60]. 

 

Morlet Wavelets 

This section uses material from [59] and [62]. 

Fourier decomposition is an established mechanism by which spectral information 

within a signal is analyzed and reported on. The basic premise behind Fourier transform 

is stationarity, which assumes the constituent components of the signal maintain their 

frequency structure over the transform time. This is not necessarily the case for many 

sources including biological signals. To remedy this, the signal may be analyzed in smaller 

portions, during which, signal stationarity can be assumed. One common approach is the 

application of wavelet transforms where the window kernel is imbedded in the 

decomposition as part of the transform and changes as a function of the frequency. Phase 

values for wavelet decomposition are estimates of the instantaneous angles at each time 

point. 

Wavelet transforms have been found to be particularly useful for analyzing 

aperiodic, intermittent, transient and localized discontinuities such as edges or temporary 

appearance of unrelated signals. It can simultaneously examine data in both time and 
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frequency. Wavelet transform uses localized wavelike functions known as wavelets. It can 

be manipulated through translation (time) and dilation (stretched or squeezed). It 

effectively quantifies local matching of the wavelet with the input signal at a particular 

dilation scale. There are many published wavelets that one can choose from with the 

selection criteria depending on the nature of input signal and ultimate objective of analysis. 

But irrespective of the selection, wavelets generally start with a mother wavelet with unit 

scale and no translation. The mother wavelet is the basis for all other derived wavelets 

through translation and dilation. This study focuses on gaussian-based wavelets. 

Amongst basic features of wavelets and their transforms is that Fourier transform 

of the wavelet has a finite energy and does not contain a zero-frequency. Combination of 

these two features constrains the wavelets at both ends of their spectrum and makes them 

functionally behave as bandpass filters. For applications where the input signal has an 

inherent oscillatory nature, then Morlet wavelets may be a good choice for decomposition 

and analysis of the data. Morlet wavelet is a single sinusoid that has been tapered by a 

gaussian kernel (window). Frequency of the sinusoid determines the peak (or center) 

frequency of the wavelet. For the mother wavelet, this is referred to as the characteristic 

frequency. These wavelets can localize transient oscillatory components of the input 

signal that are in the same frequency range as the peak frequency of the wavelet. We will 

see later that the peak frequency of a Morlet wavelet is proportional to the degree of 

dilation (scale) of that wavelet which re-establishes the relation between the perturbation 

period and scale of the wavelet. Representing the sinusoid in its analytic form (ei2πft) will 

introduce the imaginary components into the transform and provides an opportunity to 

extract an estimate of the instantaneous phase of the transformed signal. A basic 

restriction for the wavelet construction is that the peak frequency of a wavelet should not 

have a period that is longer than the total length of the input signal. For example, one 

cannot analyze activities at lower frequencies than 1 Hz for a signal that is only one second 

long. In practice one should allow for several cycles (> 3) of the peak frequency within the 

length of the input signal. It should also not violate the Nyquist limit as determined by the 

sample rate. 

As mentioned in previous paragraphs, Morlet wavelet uses a gaussian kernel. It is 

helpful to formulate the relationship between the kernel’s standard-deviation and its 

frequency spectrum to establish the behavior in terms of filter properties. This is why the 

length of a kernel is generally assessed in terms of its standard-deviation, even though 
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the actual window length is a multiple of the standard-deviation. Note that in practice the 

kernel is weighted by some proportion of the standard-deviation to create a unit energy 

kernel. 

Frequency spectrum of a function can be obtained through its Fourier transform as shown 

below 

𝑯(𝒇) = ∫ 𝒉(𝒕)𝒆−𝒊𝟐𝝅𝒇𝒕𝒅𝒕       (2.1) 

We can assign h(t) to be a gaussian envelope in the form of 

𝒉(𝒕) =  𝑪𝝈𝒕
 𝒆

−
𝒕𝟐

𝟐𝝈𝒕
𝟐
 

with C as the normalization factor (in reference for this study it is  
𝟏

√𝝈𝝅
𝟏

𝟒⁄
  and σt the 

standard-deviation of the kernel in time domain. 

The frequency spectrum H(f) will also be a gaussian envelope [61] of the form 

𝑯(𝒇) =  𝑲𝝈𝒇
𝒆

−
𝒇𝟐

𝟐𝝈𝒇
𝟐
 

with K as the normalization factor in terms of σf. But more importantly, in the derivation by 

Derpanis [61], replacing χ with t and ω with 2πf, the relationship between the standard-

deviation in time and frequency domain is derived to be  

𝝈𝒇 =
𝟏

𝟐𝝅𝝈𝒕
         (2.2) 

This highlights the inverse relation between the standard-deviations in time ( σt ) and 

frequency ( σf ) domain. The longer the time domain window the narrower the bandwidth 

of the filter and vise versa. 

The mother wavelet for the Morlet transform is constructed by a complex sinusoid that is 

windowed by a gaussian kernel of unit standard-deviation (scale = 1) and no translation, 

as shown below  

𝝋(𝒕) =  𝒆𝒊𝟐𝝅𝒇𝟎𝒕. 𝒆
−𝒕𝟐

𝟐  
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The frequency of the sinusoid in the mother wavelet describes the peak frequency (f0) of 

that wavelet, which is also the center frequency of the wavelet spectrum. Following the 

relationship in Equation-2.2, the frequency domain spectrum also has a gaussian form 

with the bandwidth inversely proportional to the dilation scale (a = σt) and centered at f0. 

It is important to note that f0 determines the number of cycles in the mother wavelet and 

by definition, remains constant for all derived wavelets at different scales. This is one of 

the reasons that f0 is referred to as the characteristic frequency of the Morlet wavelet. As 

the gaussian envelope is dilated (a > 1), the enveloped sinusoid is stretched while keeping 

the number of cycles constant, which effectively reduces the center frequency of the 

resulting wavelet. Conversely, contracting the gaussian envelope increases the center 

frequency of the resulting wavelet. This can be seen by replacing the time-index (t) with 

(t-b)/a to account for the dilation (a) and translation (b) of the wavelet. 

𝝋𝒂,𝒃(𝒕) = 𝝋 (
𝒕−𝒃

𝒂
) =   𝒆𝒊𝟐𝝅𝒇𝟎[(𝒕−𝒃) 𝒂⁄ ]. 𝒆

−[(𝒕−𝒃) 𝒂⁄ ]𝟐

𝟐      (2.3) 

We can now proceed with the wavelet transform in the same way as the Fourier transform, 

keeping in mind that we have to use the conjugate of the complex basis function ψ*a,b(t). 

The Morlet transform is therefore given by 

𝑻(𝒂, 𝒃) =  𝑪𝒂 ∫ 𝒙(𝒕). 𝒆
−(𝒕−𝒃)𝟐

𝟐𝒂𝟐 𝒆−𝒊𝟐𝝅(𝒇𝟎 𝒂⁄ )(𝒕−𝒃) 𝒅𝒕     (2.4) 

Equation-2.4 shows the relationship between the dilated wavelet center-frequency f in 

the analytic form in terms of the characteristic frequency f0 and the wavelet scale a (f = 

f0/a). 

There is one more point to consider here and that is the frequency spectrum of the Morlet 

wavelet itself. This is important as it shows the relationship between the bandwidth of the 

effective filter and the standard-deviation of the gaussian kernel (scale a of the wavelet). 

It also describes the dependency of the phase of the Morlet transform on the translation b 

across the input signal. Following the Fourier transform as formulated in Equation-2.1,  

∅𝒂,𝒃(𝒇) = ∫ 𝝋𝒂,𝒃(𝒕)𝒆−𝒊𝟐𝝅𝒇𝒕𝒅𝒕 =  ∫ 𝝋 (
𝒕 − 𝒃

𝒂
) 𝒆−𝒊𝟐𝝅𝒇𝒕𝒅𝒕 

Making the substitution   𝝉=(t-b)/a    and therefore     dt = a.d𝝉 
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∅𝒂,𝒃(𝒇) = ∫ 𝝋(𝝉)𝒆−𝒊𝟐𝝅𝒇(𝒂𝝉+𝒃)𝒂𝒅𝝉 

Bringing out the b term will result in 

∅𝒂,𝒃(𝒇) = 𝒂. 𝒆−𝒊(𝟐𝝅𝒇)𝒃 ∫ 𝝋(𝝉)𝒆−𝒊𝟐𝝅(𝒂𝒇)𝝉𝒅𝝉     (2.5) 

Noting the rescaled frequency (a.f) in the Fourier integral and the phase term b in the 

analytic sinusoid term outside the Fourier integral. 

Using Fourier transform, it can be seen that the frequency response of a gaussian 

envelope is in the shape of another gaussian, with its bandwidth inversely proportional to 

the standard-deviation of the kernel in time domain (Equation-2.2). The impact of changing 

the standard deviation of the gaussian kernel is the smearing in time (larger standard 

deviation) and frequency (smaller standard deviation) domain. The smearing changes as 

a function of decomposition frequency due to its relationship with the scale of the wavelet 

(Equation-2.4).The decomposition frequencies (f) are constrained by the number of cycles 

(f0) in the mother wavelet and change with the size of the gaussian kernel through the 

relationship f = f0 / a.   As a side note, it may be confusing why the literature uses the scale 

a instead of the usual σ as the descriptor for standard-deviation of the gaussian kernel. 

This is because there are other wavelets that are not described in terms of a gaussian 

kernel. Yet the concept of wavelet dilation still applies with the degree of dilation 

represented by the scale a of the wavelet.  

There are two observations to be made from the spectrum analysis of the Morlet 

wavelet as described by Equation-2.5; First, the peak frequency of the Morlet wavelet is 

shifted down in frequency with increasing scale of the wavelet. This can be seen from the 

term (af) in the analytical sinusoid inside the Fourier integral.   Second, the phase of the 

Morlet transform is centered on the translation as can be seen from the b term in the 

analytical sinusoid outside the Fourier integral. In the Morlet transform the decomposition 

sinusoids are windowed with a gaussian first and then collectively used to transform the 

input signal. The decomposition sinusoids are therefore centered at (b) and express the 

instantaneous phase angles at each time point. 

To summarize, as a Morlet wavelet is dilated, its frequency spectrum shifts to the 

lower frequencies with smaller bandwidth and as it is contracted, its frequency spectrum 
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shifts to the higher frequencies with larger bandwidth. This is because of the relationship 

between the peak frequency and scale (f=f0/a) for Morlet wavelet and the general 

relationship between the scale/size of the gaussian and the frequency bandwidth 

(σf=1/2πσt). Noting that the standard deviation of the gaussian determines the tradeoff 

between temporal and frequency precision, and the property of Morlet wavelet that the 

size of the gaussian at a particular frequency is determined by the number of cycles in the 

mother wavelet, one can rephrase the relationship to state that the number of cycles in a 

wavelet controls the tradeoff between temporal and frequency precision in the Morlet 

transform. The kernel size of the derived wavelets increases with the increasing number 

of cycles in the mother wavelet. Larger number of cycles results in a better frequency 

precision and smaller number of cycles results in better temporal precision. The temporal 

precision should not be confused with temporal resolution as the latter is entirely 

determined by the sampling rate. The fact that temporal precision of Morlet transform 

increases with frequency (at a constant number of cycles) is also conducive towards 

generating much cleaner transform plots around the nonstationary periods of the input 

signal. The frequency resolution in Morlet transform is related to the number of scales 

used for the transform and can be selected based on the amount of desired spectrum 

overlap in the scale-space.  

 

2.3.3. Functional Connectivity Measures 

Execution of motor tasks involves coordinated activities of broad areas of the brain 

[11], [63], which is generally referred to as functionally connected group of neural networks 

[15]. Empirical research with electroencephalography (EEG) has shown that engagement 

and communication between brain regions are facilitated through neuronal 

synchronization at different frequencies [16], [17], and that the synchronization parameters 

can be used as metrics to quantify FC between associated brain areas [18]. One such 

parameter is the phase of neuronal oscillations at similar frequencies, where the 

consistency of phase differences over a typical duration of hundreds of milliseconds can 

be considered as an indication of synchronized activities [64]. It is therefore reasonable to 

concentrate on frequency domain processes that can estimate the phase of these 

oscillatory behaviours. The dynamic nature of these synchronized activities dictates a 
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localized approach towards computation of phase. We have tried to facilitate this through 

the use of wavelet filters as described in the previous section. 

A popular approach for quantifying the phase synchronization between oscillatory 

signals is the measurement of coherence. Strictly speaking, the term coherence is 

commonly used to indicate the use of both amplitude and phase [62]. For example, 

spectral coherence refers to calculation of instantaneous phase differences that are 

modulated by corresponding signal amplitude. Taking power out of the equation and 

focusing only on phase-differences is commonly referred to as synchronization. For the 

sake of simplicity, we use the term coherence to refer to both cases and qualify whether 

amplitude is included or not through the specific names for each of the processing 

algorithms that are considered.  

Coherence can be viewed as a measure of variance explained between two 

signals s1(ω,t) and s2(ω,t) at a specific frequency ω over a localized period t and is 

quantified by the ratio of cross spectral density and auto spectral density (Equation-2.6). 

Its values are bounded between 0 and 1 [18]. 

𝑪𝒐𝒉𝒔𝟏𝒔𝟐
(𝝎)  =   

|
𝟏

𝒏
 ∑   |𝒔𝟏(𝝎,𝒕)|  |𝒔𝟐(𝝎,𝒕)|  𝒆𝒊∆𝝋(𝝎,𝒕)𝒏

𝒕=𝟏 |

√(
𝟏

𝒏
∑ |𝒔𝟏(𝝎,𝒕)|𝟐𝒏

𝒕=𝟏 )(
𝟏

𝒏
∑ |𝒔𝟐(𝝎,𝒕)|𝟐𝒏

𝒕=𝟏 )

     (2.6) 

∆𝝋(𝝎, 𝒕) is the phase difference between s1 and s2 at frequency ω and time point t. There 

are different versions of Equation-2.6 used to quantify coherence between signals from 

two EEG electrodes. Some of these extensions exclude the signal amplitude and focus 

on the phase component, arguing that the amplitude is a confounding factor towards 

evaluation of  phase synchronization. Although advocates of coherence as a measure of 

FC argue that random phase differences would most likely result in much smaller 

coherence, even in the presence of good amplitude correlation. Similarly, strong phase 

synchronization (consistent phase difference) would result in a large coherence despite 

small amplitude correlation. There is further assertion that larger signal amplitude would 

generally provide a better signal to noise ratio, which results in better quality of phase 

calculation and quantification of phase differences. 

We computed five different measures of coherence/synchronization for all unique 

combinations of electrode pairs and frequency points. These were used to produce non-

directional functional connectivity measures between different brain regions. 
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Spectral Coherence 

Coherence measures suffer from a common problem with EEG modality related to 

volume conduction. A signal from an electrode is a superposition of different current 

sources, some of which are due to field spread through volume conductors (brain, skull, 

and scalp) [65]. These are instantaneous components that appear in almost perfect 

synchrony at different electrodes. As such, they result in significant coherence values that 

may not be a true reflection of FC between the areas represented by those electrodes. 

One way to reduce the impact of volume conduction is to apply spatial band-pass filters 

that suppress low frequency variations across the scalp electrodes [66]. This would 

effectively increase topographical selectivity and localize the signal activities to areas 

close to each electrode. Of course, a drawback with this approach is that it equally reduces 

the impact of synchronization from widely distributed sources as well as deep sources, 

which generally appear as spatially broad activities. We used a Surface Laplacian filter 

based on spherical spline method to reduce the impact of volume conduction prior to 

coherence analysis [67]. This is a second order spatial derivative on the surface tangent 

to local scalp. Coherence is then evaluated by the ratio of cross spectral density 

normalized by auto spectral densities from each electrode as presented by Equation-2.6 

[60]. 

 

Phase Clustering 

Amplitude normalizing the components in Equation-2.6, will remove the effect of 

amplitude and evaluates coherence in terms of phase differences only [68]. Vector 

addition of these resulting phase differences over the time period of concern is referred to 

as phase clustering or phase-locking-value represented by Equation-2.7. 

𝑷𝑪𝒔𝟏𝒔𝟐
(𝝎)  =  |  

𝟏

𝒏
 ∑   𝒆𝒊∆𝝋(𝝎,𝒕)𝒏

𝒕=𝟏   |      (2.7) 

∆𝝋(𝝎, 𝒕) is the phase difference between s1 and s2 at frequency ω and time point t.  

Use of phase clustering is motivated by the claim that it is more reflective of true 

synchronization than coherence, where the latter is confounded by the measures of 
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amplitude. Phase clustering method is also impacted by volume conduction as is the case 

with coherence. Use of Surface Laplacian filters can help in this regard, with the same 

advantages and drawbacks as highlighted for coherence measures. 

 

Imaginary Part of Coherence  

Projection of the analytical representation of coherence onto the imaginary axis, or 

simply taking the imaginary part of the complex coherence, has gained traction for 

evaluation of FC [69]. It is motivated by the assumption that volume conduction is 

instantaneous and as such primarily concentrated around phase difference of 0° or 180°. 

This is represented by the real axis of the complex representation of coherence and taking 

only the imaginary part would effectively remove any synchronization measures 

associated with volume conduction. Rewriting Equation-2.6 in its cartesian form, we will 

have 

𝑪𝒐𝒉𝒔𝟏𝒔𝟐
(𝝎)  =   

|
𝟏

𝒏
 ∑   |𝒔𝟏(𝝎,𝒕)|  |𝒔𝟐(𝝎,𝒕)|  ( 𝒄𝒐𝒔(∆𝝋(𝝎,𝒕)) +  𝒊 𝒔𝒊𝒏(∆𝝋(𝝎,𝒕)) )𝒏

𝒕=𝟏 |

√(
𝟏

𝒏
∑ |𝒔𝟏(𝝎,𝒕)|𝟐𝒏

𝒕=𝟏 )(
𝟏

𝒏
∑ |𝒔𝟐(𝝎,𝒕)|𝟐𝒏

𝒕=𝟏 )

  

The imaginary part of the coherence can then be defined as 

𝑰𝑪𝒔𝟏𝒔𝟐
(𝝎)  =   

|
𝟏

𝒏
 ∑   |𝒔𝟏(𝝎,𝒕)|  |𝒔𝟐(𝝎,𝒕)|   𝒔𝒊𝒏(∆𝝋(𝝎,𝒕)) 𝒏

𝒕=𝟏 |

√(
𝟏

𝒏
∑ |𝒔𝟏(𝝎,𝒕)|𝟐𝒏

𝒕=𝟏 )(
𝟏

𝒏
∑ |𝒔𝟐(𝝎,𝒕)|𝟐𝒏

𝒕=𝟏 )

    (2.8) 

A point to note about Equation-2.8 is its dependence on the average amplitude of 

the signals. It has the effect of reducing the relative amplitude of the imaginary part in the 

presence of strong volume conduction, and as such reducing the signal to noise ratio of 

the resulting IC and the overall increase in susceptibility to system noise [70]. 

 

Phase Lag Index (PLI)  

To reduce susceptibility to noise and indirect impact of volume conduction, one 

can use the sign of the imaginary component, without the amplitude modulation. [70]. 

𝑷𝑳𝑰𝒔𝟏𝒔𝟐
(𝝎)  =    

𝟏

𝒏
 ∑  𝒔𝒊𝒈𝒏 ( 𝒔𝒊𝒏(∆𝝋(𝝎, 𝒕)) )𝒏

𝒕=𝟏     (2.9) 
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Note that PLI removes the magnitude of phase difference from the analysis, which 

effectively allows for large variance in phase difference during the analysis period. This 

may be viewed contrary to the assumption that FC is based on strong phase 

synchronization between different neuronal population. 

 

Weighted Phase Lag Index  

To compensate for potential discontinuity that can arise at phase differences 

around the 0° or π° from small perturbations when using PLI, the sign of the imaginary 

component can be weighed by the amplitude of the imaginary component [71]. This is 

referred to as wPLI. Defining the imaginary part of the cross-spectrum as Im(ω,t),  we can 

rewrite PLI equation as: 

 𝑰𝒎𝒔𝟏𝒔𝟐
(𝝎, 𝒕)  =  |𝒔𝟏(𝝎, 𝒕)|  |𝒔𝟐(𝝎, 𝒕)|   𝒔𝒊𝒏(∆𝝋(𝝎, 𝒕))   

𝒘𝑷𝑳𝑰𝒔𝟏𝒔𝟐
(𝝎)  =   

 
𝟏

𝒏
 ∑  ( |𝑰𝒎𝒔𝟏𝒔𝟐

(𝝎,𝒕)|  𝒔𝒊𝒈𝒏(𝑰𝒎𝒔𝟏𝒔𝟐
(𝝎,𝒕)) )𝒏

𝒕=𝟏  

 
𝟏

𝒏
 ∑  |𝑰𝒎𝒔𝟏𝒔𝟐

(𝝎,𝒕)| 𝒏
𝒕=𝟏

    (2.10) 

The difference between 𝒘𝑷𝑳𝑰𝒔𝟏𝒔𝟐
(𝝎)  and 𝑰𝑪𝒔𝟏𝒔𝟐

(𝝎) is primarily in the denominator 

where normalization by the amplitude of the cross spectrum is not carried out, which 

removes the potential influence of volume conduction. Addition of the amplitude of the 

imaginary component in the numerator, however, biases the FC measures towards larger 

phase differences. 

 

2.3.4. Partial Least Squares Algorithm 

Unless specifically stated, details of information presented in this section can be found in 

[72] and [73]. 

We applied PLS analysis to examine the relationship between EEG functional 

connectivity and FMU. PLS is a multivariate statistical approach [74] that is well suited for 

analyzing large data sets such as electrophysiological activities, especially when the 

number of features, i.e., connectivity measures at different frequencies, are much larger 



29 

than the number of observations (participants). PLS-Correlation (PLSC) and PLS-

Regression (PLSR) are two categories of PLS analysis. They both utilize singular value 

decomposition (SVD) to decompose the covariance of brain-activities such as functional 

connectivity measures, and behavior such as motor impairment (FMU) into a set of latent 

variables (LV) at lower dimensions.  

The goal of PLSC is to analyze the percentage of variance in observations that is 

explained by the corresponding latent variables. When input variables (brain activities and 

behavior) are mean centered and normalized, then SVD can be used to analyze 

correlation between the input variables at a lower dimension as determined by the rank of 

the covariance matrix. Given that we are interested in single behavior variable (FMU), then 

the latent space for PLSC is made up of only one column over all observations. PLSC can 

therefore be used to study the manifestation of functional connectivity across specific 

frequencies and electrode-pairs [72], [73], [74], [75] to identify the contributing channels 

and frequencies towards correlation between FMU and functional connectivity indices. 

Permutation and bootstrap resampling are two computational methods of statistical 

inference for significance and robustness of contributing electrode-pairs [73] at specific 

frequencies. We applied one ‘global’ permutation-based test to evaluate the significance 

of overall correlations in PLSC and one ‘local’ bootstrap-based test to evaluate the 

robustness of contribution of individual functional connectivity measures. For permutation 

test, a new singular value sample is obtained by randomly reordering the FMU measures 

while leaving the original order of the connectivity measures. We generated a sampling 

distribution of singular values under null hypothesis through (500 to 1000) iterations. We 

then computed the p-value of the original singular value based on its location within the 

generated distribution. To obtain a measure of the robustness of contribution of 

connectivity measures, we used bootstrap-resampling to compute the standard error of 

the saliences associated with each connectivity measure. This involved sampling with 

replacement of the covariance matrix through 500 to 1000 iterations. The bootstrap ratio 

value (original saliences divided by the standard error of the corresponding bootstrap 

distributions) represents the robustness of contribution of individual EEG features to the 

overall correlations between functional connectivity and FMU and is equivalent to z-

scores. [74]. In our study, we used the terms bootstrap ratio values and z-scores 

interchangeably. 
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PLSR is an asymmetric approach that can be used to predict dependent-variables 

such as FMU from independent-variables such as connectivity measures. PLSR is well 

suited for noisy independent variables with multicollinearity. It employs Non-linear Iterative 

Partial Least Squares (NIPALS) technique to simultaneously extract latent vectors with 

maximal covariance from the dependent and independent variables [76]. The process is 

repeated iteratively until fully deflating the input variables. The latent variables are used to 

compute the regression coefficients. Overfitting is addressed by extracting the least 

number of latent vectors that account for most of the variance. The prediction quality is 

evaluated through cross-validation techniques such as leave-one-out. The quality first 

increases with increasing number of latent variables, but then starts to decrease as it 

approaches towards overfitting [76]. One method to avoid overfitting is to stop adding 

latent variables as soon as the quality starts to decrease. 

 

Overview of PLS 

PLS finds the latent variables, sometimes referred to as factors, that explain large 

portions of the variation in the input data. Latent variables are identified through Singular 

Value Decomposition (SVD) for PLSC and Non-linear Iterative Partial Least Squares 

(NIPALS) for PLSR. 

To carryout PLS analysis, we arrange the brain activities in a matrix of independent 

variables with observations (or participants) as the rows and features (functional 

connectivity measures) as the columns, and similarly the dependant variables with 

observations as rows and behaviour measures (FMU or skill) as the columns. The 

relationship between the columns of independent variables and columns of dependant 

variables can then be quantified through the dot product of respective columns. If the 

columns are centered (subtract the column mean), then the dot product produces the 

covariance between these columns. If the columns are further normalized (divided by the 

sum of the squared entries of each column), then the dot product quantifies the correlation 

between the features and behaviour columns. The correlation matrix R is then formulated 

as: 

R = XTY         (2.11) 
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where XT is the transpose of the brain activities and Y the behavior measures. Given n 

observations,  i  brain activity measures, and  j  behaviour measures, then X is an (n x i) 

matrix of brain activities and Y an (n x j) matrix of behaviours. The singular value 

decomposition of the correlation matrix is then given by: 

 R = W Δ CT         (2.12) 

W and C are the matrices of saliences for the brain activities and behaviour measures 

respectively. The number of salience (columns of W and C) are determined by the rank of 

matrix R. The latent variables (or scores) are quantified by the projection of the brain 

activities and behaviour measures (X and Y) onto their respective saliences. Each latent 

variable is a linear combination of the respective input variables from X and Y. The 

advantage of working in the latent space is the resulting reduction in the dimensionality of 

the input data. 

So far, we have explained the conventional approach of data organization and 

decomposition that is common between PLSC and PLSR. This is where the two methods 

diverge in how the projections are utilized for the purpose of determining the largest 

amount of information common to both X and Y (PLSC) or predicting Y from X (PLSR). 

 

PLSC 

As a brief recap, given that both X and Y are centred and normalized, the 

correlation matrix R is computed from X and Y using Equation-2.11. Singular value 

decomposition of R produces the matrices of saliences of X and Y represented by W and 

C respectively (Equation-2.12). Latent variables are then generated by the projection of 

the columns of X and Y onto their respective saliences as linear combination of the original 

entries. They can be used to explain the correlation between the input matrices by 

quantifying the latent vectors that exhibit the maximum covariance between the input data. 

This is symbolically represented by the following expressions [73]. The lower-case 

variables are the column vectors of the corresponding matrices represented by the upper-

case variables. 

𝑳𝑿 = 𝑿 𝑾    and    𝑳𝒀 = 𝒀 𝑪         (2.13) 
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Column vectors of LX and LY represent the latent vectors of X and Y respectively.  

𝑳𝑿,𝒍 = 𝑿 𝑾𝒍    and    𝑳𝒀,𝒍 = 𝒀 𝑪𝒍 

𝑳𝑿,𝒍
𝑻  𝑳𝒀,𝒍′ = 𝟎  for 𝒍 ≠ 𝒍′ 

𝒘𝒍
𝑻 𝒘𝒍 = 𝒄𝒍 𝒄𝒍

𝑻  = 𝟏 

𝑳𝑿,𝒍
𝑻  𝑳𝒀,𝒍 =   ∆𝒍 

The covariance is presented by the corresponding singular value from the diagonal matrix 

Δ (Equation-2.12) and are presented in a descending order of magnitude. Note that in our 

case, the behaviour matrix has a single column representing the FMU (or measure of 

motor skill), which limits the rank of the covariance matrix to 1, resulting in a single latent 

vector for the brain scores. The correlation can then be computed from  Y.LX  that is scaled 

by the number of observations. 

Computational methods such as permutation test are utilized to build a probability 

distribution which can then be used to check for significance of the latent variables in 

evaluating the correlation. A permutation sample can be generated by random re-ordering 

of the observations in X while leaving the order of the observations in Y unaltered. The 

fixed effect model of PLSC is then recalculated with the new permutation sample to 

generate new singular values. Repeating the process for several times (between 500 to 

1000) will generate the probability distribution, which can then be used to test for statistical 

significance of the original singular value. The robustness of the entries  i  of salience 

vectors 𝑤𝑙 can then be tested for reliable contribution towards correlation. This is done by 

dividing the individual elements  i  by their standard error. The standard error is calculated 

through bootstrap resampling. The process involves random resampling with replacement 

(between 500 to 1000) of the original observations of X and Y. This is similar in nature to 

evaluation of z-score for each element. 

Score = 
𝑤𝑖,𝑙

�̂�(𝑤𝑖,𝑙)⁄  where �̂�(𝑤𝑖,𝑙) is the standard error of the element  i  in 

salience 𝒘𝒍. Elements with scores larger than 3 are considered stable contributors towards 

correlation. 
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PLSR 

PLS regression is an iterative process where the latent vectors associated with the 

largest singular values are utilized to construct estimates of X and Y that are then used to 

deflate the original matrices. The process is repeated until full deflation of the input 

matrices or stopped after a limited number of latent variables based on other criteria 

related to performance of the prediction. The basic assumption is that the observations 

can be reconstructed from smaller number of latent variables. 

The process starts the same as PLSC, where matrices of the saliences of X and Y 

(W and C) are computed from the covariance matrix R=XTY (Equation-2.11 and 2.12). The 

brain and behaviour scores (LX and LY) are then computed from the projection of the X 

and Y onto their respective saliences (Equation-2.13). This is where the two processes 

part directions where for regression analysis, the first latent vectors associated with the 

largest singular value are used to reconstruct an estimate of the input matrices. The 

estimates are then used to deflate the original matrices. 

𝒕𝒍 = 𝑿 𝒘𝒍    and    𝒖𝒍 = 𝒀 𝒄𝒍       (2.14) 

𝒕𝒍  𝑎𝑛𝑑  𝒖𝒍 will be the first columns of the iteratively built latent vectors (T and U) that are 

computed from the first columns of W and C saliences. Loading of the input data onto the 

first latent variable is then computed through the projection of X onto its respective latent 

vector. These matrices of first latent vector and loadings are then used to compute the 

first estimate of the original matrix. 

𝒑𝒍 = 𝑿𝑻 𝒕𝒍          (2.15) 

�̂�𝒍 = 𝒕𝒍  𝒑𝒍
𝑻          (2.16) 

�̂�𝒍 = 𝒖𝒍  𝒄𝒍
𝑻         (2.17) 

We then make the following relationship between the latent vectors of the dependant and 

independent variables (𝒖𝒍  𝑎𝑛𝑑  𝒕𝒍 respectively) that can be used to compute the regression 

coefficients to estimate Y from X. 

𝒖𝒍 = 𝒃𝒍 𝒕𝒍  +  𝒆         (2.18) 
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Where  𝒆  is the residual which is ignored during the iterative process of computing the 

regression coefficients for each of the latent variables extracted at each iteration. We use 

the estimated values  �̂�𝒍 and �̂�𝒍  to deflate the original matrices and then repeat the 

process (Equation-2.11 and 2.12) to compute the remaining latent vectors starting with a 

new covariance matrix and singular value decomposition. Equations-2.16, 2.17 and 2.18 

can be used to relate X and Y as follows: 

�̂�𝒍  =  𝒖𝒍  𝒄𝒍
𝑻  =   𝒃𝒍 𝒕𝒍 𝒄𝒍

𝑻        (2.19) 

Equation-2.19 shows the relationship between the dependant variables and the 

latent vectors  𝒕𝒍  of the independent variables.  Using Equation-2.16, we can rewrite the 

estimate of Y as [73] 

�̂�  = 𝑿 𝑩𝒓𝒆𝒈    where  𝑩𝒓𝒆𝒈 =   𝑷𝑻+  𝑩  𝑪𝑻     (2.20) 

𝑷𝑻+ is the Moore-Penrose pseudo-inverse of 𝑷𝑻,   C  is the loading matrix built from the 

column matrices  𝒄𝒍  , and B is the diagonal matrix constructed from  𝒃𝒍s.  The obvious 

question with Equation-2.20 is the number of latent vectors (𝒍) to be used for constructing 

the matrices P, C and B.  In PLSC, we used bootstrap resampling to estimate a z-score 

for each feature of the independent variables in the latent space. This method can still be 

applied in PLSR analysis to limit the number of input features to those that consistently 

contribute towards estimation of the dependant variable and generalization of the 

regression coefficients. Another method that can help towards generalization, is the use 

of Residual Estimated Sum of Squares (RESS), along with cross validation through leave-

one-out technique [76]. The idea is to sequentially leave one observation out of the 

regression analysis, compute the regression coefficients and use them to estimate the left-

out observation. The residual errors (‖𝑌 −  �̂�‖
2
) can then be summed to get an estimate 

of the regression performance. 

Full deflation of the X matrix through iterative singular value decomposition and 

computation of latent vectors is a fixed model approach that might result in the best 

regression model for the given set of observations. This is useful when the given set of 

observations represent the complete (or majority of) experimental conditions. In general, 

however, the set of observation is a sample of much larger population that is being used 

as a random representative. In this case, using the full set of latent vectors will generally 
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result in overfitting and poor performance of estimation from new observations. One 

approach to avoid overfitting is to use leave-one-out technique at each iteration of adding 

a latent variable and assessing the resulting RESS values. The idea is to keep adding 

latent vectors as long as the RESS values continue to decrease. The idea being that the 

value of RESS will turn around when addition of latent variables steers towards fixed 

model. It is assumed that the lower the number of latent variables, the more generalized 

the regression model, but with potentially lower estimation performance. 

 

2.3.5. Model Generation Flowchart 

Error! Reference source not found. shows the processing steps involved in the g

eneration of regression models for predicting motor function from functional connectivity 

measures. The processing steps are common for all three phases of this study. 

 

 

Figure 2.2 Flowchart representation of the processing steps from EEG data 
collection to generation of prediction model for estimating motor 
function. 

 

Resting-State EEG collection 

250/500 Hz sampling frequency 

  

Band Pass Filter 

FIR 1 to 45 Hz 

Artifact Removal 

EEG-Lab: visual inspection 

Time-Frequency Filters 

Morlet Filters at canonical bands 

Delta (1-4 Hz), Theta (4–8 Hz), Alpha (8–15 Hz), 

Beta (15–30 Hz) and Gamma (30–45 Hz) 

Band Specific Phase Synchronization 

Complex Cross Spectral Density 

Non-directional 496 electrode-pairs 

Phase Lag Index: sign of imaginary part 

Functional Connectivity Measures 

PLI over 1-second intervals (epochs) 

Maximum Synchronization over 2-minutes 

496    FC-measures (channels) 

PLS Correlation 

FC-measures and Motor-Function 

Select lowest p-value at each frequency.  

Select 4 channels at highest z-scores. 

PLS Regression 

Use FC from 4 channels as predictors. 

Generate prediction models. 

Use cross validation to assess performance. 

Select model with highest 

performance. 
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2.4. Materials and Equipment 

We used a 32-electrode gel-based EEG cap (g.Nautilus, g.tec medical 

engineering, Austria) with a standard 10-20 montage, operating at 500 samples per 

second, referenced to right earlobe and common ground at midpoint between FPZ and 

FZ. A single size EEG cap was used for all participants (Figure 2.3). Cap placement was 

based on centering the CZ electrode on the mid-point between left and right Pre-Auricular, 

Nasion and Inion locations. Conductive gel was applied under each electrode to reduce 

the contact impedance below 25 K-Ohm. All collected EEG data was imported into 

MATLAB-7.8.0 (MathWorks Inc) for further processing. EEG-Lab V14.1.2 [77] was used 

to visually inspect the EEG signals for the presence and removal of artifacts. We did not 

use independent component analysis (ICA) to remove these artifacts. The decision was 

made as a compromise towards allowing more processing time for the computation of 

functional connectivity measures. This was particularly important for the third phase of our 

study with respect to real-time analysis of EEG data during neurofeedback training. 

For data collection during neurofeedback study we used a 32-electrode dry-EEG 

cap (g.SAHARA, g.tec medical engineering, Austria) with a standard 10-20 montage, 

operating at a sampling rate of 250 Hz for data acquisition (Figure 2.4). The reference 

electrode was placed on the right mastoid and the ground electrode on the left mastoid. 

Our rationale behind switching to dry caps during this phase of our study was purely for 

pragmatic considerations with respect to setup time associated with the gel-based EEG 

caps. The concern was that the long setup time could result in participant fatigue before 

the start of NFT program, which could negatively influence the participant’s focus and 

consequently the effectiveness of mental imagery. 

Implementation of all EEG preprocessing algorithms were based on excerpts 

from the on-line MATLAB scripts from Analyzing Neural Time Series Data [62]. We used 

the on-line MATLAB toolbox by McIntosh [74] for PLS processing. 
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Figure 2.3 EEG gel-based electrode cap and acquisition device.  g.tec medical 
engineering, GmbH. Brain-Computer Interfaces & Neurotechnology 

(www.gtec.at). 

 

Figure 2.4 EEG dry electrodecCap.  g.tec medical engineering, GmbH. Brain-
Computer Interfaces & Neurotechnology (www.gtec.at). 

 



38 

Chapter 3.  
 
Estimating Motor Impairment from Functional 
Connectivity Measures 

Material in this chapter is extracted, reproduced, and modified with permission from the 

following paper: 

N. Riahi, V. A. Vakorin, C. Menon, “Estimating Fugl-Meyer Upper Extremity Motor Score 

from Functional-Connectivity Measures,” IEEE transactions on neural systems and 

rehabilitation engineering, vol. 28, no. 4, pp. 860-868, Apr. 2020. 

 

3.1. Chapter Overview 

Our goal for this part of the study was to propose a method that could provide an objective 

measure of motor impairment, while addressing the challenges associated with the 

availability of trained examiners to carry out the assessments. The latter was deemed to 

be conducive towards more frequent assessment of motor function, thereby enabling the 

adjustment of rehabilitation strategies and personalization of therapeutic activities. For 

pragmatic reasons, we focused on the use of EEG-based functional connectivity for this 

purpose. We aimed to answer the research question on whether resting state functional 

connectivity was a suitable neurophysiological measure to accurately estimate motor 

impairment in stroke survivors. Our objective was to propose a method based on 

measures of functional connectivity for estimating motor impairment that was evaluated 

through Fugl-Meyer assessment. A favorable result would further motivate the appraisal 

of the performance of the proposed method based on a more objective measures of motor 

function than Fugle-Meyer, and our goal for the second phase of the study. 

This chapter explains the details of the methodology used towards selection and 

processing of neurophysiological features. Results pertaining to the performance of the 

methodology along with some limitations of the approach are presented. 
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3.2. Introduction 

Fugl-Meyer assessment is an accepted method of evaluating motor function for 

people with stroke. A challenge associated with this assessment is the availability of 

trained examiners to carry out the evaluation. Neurophysiological measures show promise 

in addressing the above impediment. Our study investigated the potential of using resting 

state electroencephalographic (EEG) functional connectivity as a Neurophysiological 

measure for estimating Fugl-Meyer upper extremity motor score (FMU) in people with 

chronic stroke. 

Prior work has shown connectivity with ipsilesional primary motor cortex (M1) to 

account for 78% of variance in motor impairment [28], addition of other measures such as 

corticospinal tract injury into the model were recommended to increase R2 to 93%. The 

need to include other measures than connectivity alone in explaining the variance with 

motor function may have been due to the exclusion of other relevant connectivity 

measures between areas that do not include M1. We therefore propose a different 

approach that eliminates the a priori restriction on connectivity measures being tied to any 

specific seed location or any particular electrophysiological frequency band. We suggest 

using coherence as a measure of functional connectivity index between brain regions and 

use statistical analysis of these indices to identify the contributing brain regions that 

correlate with FMU at different frequencies. We further propose applying the connectivity 

indices from the identified regions and frequencies as regressors for estimating FMU.  

To this end, we collected resting state EEG data from 10 individuals with stroke. 

Functional connectivity was evaluated through five different processing algorithms and 

quantified in terms of both average as well as maximum-coherence between EEG 

electrodes at 15 frequencies from 1 to 45 Hz. We applied a multi-variate Partial Least 

Squares (PLS) Correlation analysis to simultaneously identify specific connectivity 

channels (EEG electrode pairs) and frequencies that robustly correlated with FMU. We 

then applied PLS-Regression to the identified channels and frequencies to generate a set 

of coefficients for estimating the FMU. Participants were randomly assigned to a training-

set of eight and a test-set of two. Cross-validation with leave-one-out approach on the 

training-set, using Phase-Lag-Index processing algorithm, resulted in an R2 of 0.97 and a 

least-square linear fit slope of 1 for predicted versus actual FMU, with a root-mean-square 

error of 1.9 on FMU scale. Application of regression coefficients to the connectivity 
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measures from the test-set resulted in predicted FMU of 47 and 38 versus actual scores 

of 46 and 39, respectively. Our results demonstrated that the evaluation of neural 

correlates of FMU shows promise in addressing the challenges associated with the 

availability of trained examiners to carry out the assessments. 

 

3.3. Method 

3.3.1. Participants 

Ten stroke survivors volunteered for this research. EEG recordings were collected 

as part of other studies [58] and shared with us to carry out this research. Table 3.1 shows 

the demographics of the participants. Based on the date of participation, the first 8 

participants were arbitrarily allocated to a training-set and the last two participants to a 

test-set. Stroke participants were all in chronic phase with motor deficits specifically 

caused by their stroke. As part of the inclusion criteria, the participants were required to 

understand English and be able to communicate with experimenters. They were also 

required to have a minimum Montreal Cognitive Assessment Score of 23. Exclusion 

criteria included other neurological conditions besides stroke (i.e., Parkinson’s disease, 

multiple sclerosis etc.), inability to move most-affected upper extremity, known 

musculoskeletal injury or conditions that affected the upper extremities and known history 

of epilepsy or seizures. The Research Ethics Board of Simon Fraser University approved 

the protocol for this study, and all participants signed informed written consent. 

3.3.2. Protocol 

EEG data was collected on the same day and immediately after carrying out Fugl-

Meyer upper extremity motor assessment for each stroke participant. EEG recordings 

were carried out while participants were sitting comfortably upright with feet flat on the 

floor, calm, still and quiet, but awake. Participants were asked to keep their eyes closed 

while 2 minutes of resting state EEG data was collected. Participants were informed of the 

start of EEG recording. 
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Table 3.1 Demographic data for all participants. SP represent stroke 
participant. MoCA is the Montreal Cognitive Assessment Score. FMU 
is the Fugl-Meyer upper extremity motor score for the affected hand 
of stroke participants. SP5 was with aphasia. Although he was only 
able to get a score of 15 in MoCA, he was evaluated by a professional 
physical therapist, who confirmed his ability to give consent and 
follow the instructions in the protocol of this study. Therefore, he was 
also included in this study. 

Participant ID Gender Age Affected hand Years after stroke MoCA FMU 

SP1 F 62 R 5 26 41 

SP2 M 64 L 6 24 47 

SP3 M 80 R 11 23 39 

SP4 F 50 R 6 23 46 

SP5 M 39 R 11 15 18 

SP6 M 64 L 3 27 45 

SP7 M 75 R 1 25 49 

SP8 M 64 L 0.5 23 24 

SP9 M 66 L 8 24 46 

SP10 F 78 R 1 23 39 

3.3.3. EEG Data Pre-processing 

Electrode data for stroke participants with left hand impairment were left-right 

flipped prior to any processing and analysis. We applied finite impulse response filter (1 to 

45 Hz) to raw electrode data in both forward and reverse direction to obtain a zero-phase 

band-passed EEG data. The filtered data was then visually inspected in EEG-Lab V14.1.2 

for the presence of noise due to muscular activities. The first 4 seconds of all recordings 

were excluded to allow for a more stable resting state phase, reducing the total duration 

of EEG data per participant to 116 seconds. Surface Laplacian filter was then applied to 

reduce the impact of volume conduction [66]. Surface Laplacian is a spatial bandpass filter 

that reduces the effects of broad spatial activities and improves topographical localization. 

We used the spherical spline method for this purpose [67]. 

3.3.4. Band Separation and Filtering 

We used complex Morlet wavelets for bandpass filtering of EEG signals from each 

electrode. Morlet wavelet is a sinusoid wave within a Gaussian envelope. The center 
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frequency of the wavelet is determined by the frequency of the sinusoid and the bandwidth 

is determined by the standard deviation of the Gaussian envelope. The actual filtering 

process can be implemented by multiplying the Fourier Transform of the wavelet and EEG 

data from each electrode and then applying Inverse Fourier Transform to convert back to 

time domain. The resulting frequency-specific amplitude and phase information of the 

filtered EEG data can be used to compute instantaneous coherence between activities at 

different electrodes (see 2.3.2).  

We considered five canonical frequency bands defined as Delta (1-4 Hz), Theta 

(4–8 Hz), Alpha (8–15 Hz), Beta (15–30 Hz) and Gamma (30–45 Hz) in EEG research. 

We further divided each band into low, medium and high sub-bands, resulting in 15 

individual center-frequencies and 15 specific Morlet wavelets for bandpass filtering. The 

number of cycles were increased by 1 for each band, from 4 at Delta to 8 at Gamma band, 

resulting in individual bandpass filters that were approximately a bandwidth apart at 

consecutive center frequencies between 1 to 45 Hz. With 116-seconds trial at 500 Hz 

sampling rate and 15 frequencies, the filtering process generated 870,000 complex 

samples for each of the 32 electrodes. 

3.3.5. Connectivity Measures Through Coherence 

We used five different coherence algorithms to produce non-directional functional 

connectivity measures between different brain regions. Here, we assumed that each 

electrode represented the electrophysiological activities of a specific brain region. 

Implementation of all algorithms were based on excerpts from the on-line MATLAB scripts 

from Analyzing Neural Time Series Data [62]. Processing algorithms included: 

• Spectral coherence represented by the cross spectral density normalized by auto 

spectral densities from each electrode [66], [60]. 

• Phase clustering represented by the magnitude of average phase angle 

differences between two electrodes over a selected period [68]. 

• Imaginary part of coherence is the same as spectral coherence but keeping only 

the imaginary part of the complex cross spectral density. It further minimizes the 

impact of volume conduction [69]. 
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• Phase Lag Index (PLI), represented by the average of sign of imaginary part of 

cross spectral density. There is no power component in this algorithm [70].   

• Weighted Phase Lag Index is PLI that is weighted by the instantaneous distance 

of the phase differences from the real axis [71]. 

For each frequency band, we calculated non-directional coherence measures for 

all possible electrode pairings, resulting in 496 (32*31/2) connectivity channels that 

represented the complete set of electrode-pairs for a 32-electrode EEG cap. Note that in 

our study we use the terms EEG electrode pairings, connectivity channels, or simply 

channels interchangeably. We partitioned the filtered EEG data from each participant into 

1-second non-overlapping epochs before applying the above coherence algorithms at 

each frequency. We generated a single average-coherence value over the 500 samples 

in each epoch, resulting in 116 coherence measures for each channel at each frequency. 

One-second epoch was not long enough for Delta band coherence calculations. We 

therefore excluded Delta band from connectivity analysis at 1-second epochs. We did, 

however, repeat the analysis for 0.5, 2, and 4-second epochs and included the Delta band 

for 4-second epoch only. 

We considered two separate processing steps to further reduce the 116 averaged-

coherence measures to a single connectivity index for each channel and at each frequency 

for the complete 2-minute resting state trial. The first was to compute a single average 

value of the 116 coherence measures. The second was to extract the maximum value 

from all 116 measures. Thus, for each method, we generated 12 frequency-specific (Theta 

to Gamma) connectivity indices for each of the 496 channels, resulting in a total of 5,952 

connectivity indices for each participant. We repeated the connectivity-index computation 

with epochs of 0.5, 2, and 4 seconds to investigate the impact of epoch length on 

connectivity-index. 

3.3.6. PLS Analysis 

Overview 

We applied PLS analysis to examine the relationship between EEG functional 

connectivity and FMU. PLSC was used to study the manifestation of functional connectivity 

across specific frequencies and electrode-pairs (channels) [73]-[75] to identify the 
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contributing channels and frequencies towards correlation between FMU and functional 

connectivity indices. We used PLSR to predict FMU (dependent-variables) from functional 

connectivity measures (independent-variables) [76]. The latent variables were used to 

compute the regression coefficients. Overfitting was addressed by extracting the least 

number of latent vectors that accounted for most of the variance. The prediction quality 

was evaluated through coefficient of determination (R2) and root-mean-squared-error 

(RMSE) that were evaluated from cross-validated leave-one-out approach. To avoid 

overfitting, we stopped adding latent variables as soon as the quality started to decrease. 

We used the on-line MATLAB toolbox by McIntosh [74] for PLSC processing. 

Workflow of analysis and effects of noise and multi-collinearity 

Our feature space is multi-dimensional with potential multi-collinearity, for 

example, due to spatially close channels. We therefore started with a simulation process 

to assess the impact of multi-collinearity and noise on the performance of PLSR without 

any restrictions on the least-contributing channels. To achieve this, we constructed a 

feature matrix of artificial coherence measures: 8 rows (equivalent to 8 participants) and 

60 columns (60 EEG features). To introduce collinearity in the feature space, we filled the 

first 10 columns with different linear combinations of the participants’ actual FMU. We then 

applied noise by adding uniformly distributed random numbers to all 60 columns. Starting 

with only the first 10 columns (8x10 feature matrix), we calculated the R2 and slope of 

linear fit (fit-slope) between predicted and actual FMU through leave-one-out approach. 

We repeated the process for progressively larger numbers of random feature columns and 

increased the magnitude of added noise. We then carried out 500 iterations of each 

evaluation to generate a box plot of the R2 and fit-slopes. 

The connectivity channels and frequencies that contributed towards correlation 

between FMU and functional connectivity indices of stroke participants were identified 

through PLSC analysis [75]. It is worth mentioning again that connectivity channels with 

respect to seed electrode or connecting electrodes were not restricted to motor cortex. We 

started with z-scores > 2.33 and leave-one-out approach on the training set, to find the 

most common set of contributing channels and frequencies. We repeated the analysis for 

each of the four epoch lengths (0.5, 1, 2 and 4-seconds). 
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We carried out PLSR on connectivity data from the stroke participants in our 

training set, using only the most contributing connectivity channels and frequencies that 

were identified through PLSC analysis. To reduce overfitting, we stopped adding latent 

vectors when the quality of prediction from leave-one-out approach began to decrease 

[76]. Similar to our simulation stage, we assessed prediction performance of the PLSR by 

evaluating the R2 and fit-slope of predicted vs actual FMU through the leave-one-out 

approach. We also used RMSE to further qualify the fit-slope measures. Regression 

coefficients generated from the training set were then used to evaluate the FMU for the 2 

stroke participants in our test-set. To further assess the impact of additional participants 

on the regression performance, we repeated the cross-validation using leave-one-out 

approach with all 10 participants as well as iteratively swapping the two participants in the 

test-set.  

We used the on-line MATLAB toolbox from Abdi [76] for our PLSR analysis. 

 

3.4. Results 

3.4.1. Simulations: effects of noise and multi-collinearity  

Figure 3.1 shows the effect of added noise and selection of features on the 

coefficient of determination (R2) in a model used to simulate the situation wherein we 

manipulate the number of features selected for predicting FMU from EEG coherence. 

Median values of R2 changed by less than 0.01 between 20% and 200% added noise, 

irrespective of percentage of random features. Percentage of added random features 

however, had a larger impact on the regression performance with over 10% drop in the 

median values of R2 from no added random features to 80% random features. 

Figure 3.2 shows the regression performance in terms of fit-slope between the 

predicted and actual FMU. Prediction performance as measured by fit-slope decreased 

by approximately 50% from no added random features to 80% random features. Impact 

of increased levels of added noise was similar to that of R2 analysis. 
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3.4.2. FMU Correlation 

We applied PLSC analysis to assess the correlation between the connectivity 

indices and FMU at different frequencies. Note that two measures of coherence (one for 

the average and one for the maximum across EEG segments) were tested with five 

algorithms for computing coherence itself. Using the average-coherence measure as the 

connectivity index for each channel at each frequency did not produce statistically 

significant results (p > 0.05) for any of the five coherence processing algorithms. At the 

same time, using the maximum-coherence values led to statistically significant (p < 0.04) 

correlation between FMU and connectivity indices in the Alpha frequency band. 

 

Figure 3.1 Degradation in regression performance for simulated data, measured 
through R2, for increasing levels of added noise at 20% and 200%. 
Percentage of random features represents the ratio of random 
features over total number of features. Random features had larger 
impact on R2 than the level of noise. Results were generated from 500 
iterations. 
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Figure 3.2 Degradation in regression performance for simulated data, measured 
through fit-slope, for increasing levels of added noise at 20% and 
200%. Percentage of random features represents the ratio of random 
features over total number of features. Random features had larger 
impact on fit-slope than the level of added noise. Results were 
generated from 500 iterations. 

 

Figure 3.3 shows the results of PLSC analysis using PLI processing algorithm and 

a z-score threshold of 2.33. There were more than 50 functionally connected channels at 

Alpha-band with z-scores greater than 2.33 that exhibited positive correlations with FMU. 

Using only the Theta, Beta, or Gamma band in PLSC did not produce a statistically 

significant correlation (p > 0.05). 
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Figure 3.3 Correlation analysis with 500 iterations showed statistically 
significant (p < 0.04) positive correlation between FMU and over 50 
channels at 11 Hz. Number of channels (y-axis) represent the 
electrode-pairs with synchronized activities at each frequency (x-
axis) and z-score > 2.33. 

 

Correlation analysis was carried out with 1-second epochs. There was no 

statistically significant correlation with 0.5, 2, and 4-second epochs for either the average 

or maximum-coherence approach (p > 0.05).  We repeated the correlation analysis using 

leave-one-out approach and z-score threshold of 2.33 to look for the most common 

contributing channels at each frequency. We found channels F7-F3, FP2-F7, F8-C4 and 

FC2-CZ at medium Alpha frequency (11 Hz) to be the most robust (z-score > 4). 
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3.4.3. FMU Regression 

Training-set 

We used the four identified channels from our PLSC analysis and medium Alpha 

frequency (11 Hz), as regressors for our PLSR analysis. The leave-one-out approach 

provided an estimate of FMU for each stroke participant by using the regression 

coefficients produced from the remaining stroke participants. 

Figure 3.4 shows the linear fit of predicted versus actual FMU.  PLI processing 

algorithm produced the best prediction performance indicated by the combination of fit-

slope and R2 that were closest to 1 along with the lowest RMS-error, as seen from Table 

3.2. The RMS-error of 1.9 is in Fugl-Meyer upper extremity scale and is calculated using 

the differences between actual and predicted FMU for each stroke participants within the 

training set. With an R2 of 0.97, the statistical power analysis at α=0.05, 4 predictors and 

a desired power level of 0.8 indicated a minimum sample size of less than 8. This was 

consistent with the number of participants in our training-set. 

 

Table 3.2 FMU prediction results from PLSR through cross-validation using 
leave-one-out approach on the training-set. Regression coefficients 
were computed for the four connectivity channels FP2-F7, F7-F3, F8-
C4 and FC2-CZ at medium Alpha frequency (11 Hz). Fit-Slope 
represents the slope of least-square linear fit between the predicted 
and actual FMU with the corresponding RMS-errors. The latter is in 
Fugl-Meyer scale for upper extremity (maximum 66). Predicted data in 
bold-text are the best results and were obtained from PLI processing 
algorithm and maximum-coherence as a measure of connectivity 
index. 

 

 

The last step in regression analysis was to generate a set of regression coefficients 

for the four identified channels (F7-F3, FP2-F7, F8-C4 and FC2-CZ), using all stroke 

Participants SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8

Actual FMU 41 47 39 46 18 45 49 24

Processing Fit-Slope RMS-error R2

Spectral coherence 27.7 41.9 41.7 62.6 35.7 40.2 30.6 2.4 0.904 14.3 0.26

Imaginary part of coherence 66.1 37.2 63.9 48.7 -3.9 30.2 39.0 39.3 1.038 17.3 0.30

Phase clustering 12.1 39.8 58.9 44.0 35.6 29.5 45.0 20.0 0.882 15.3 0.08

Phase Lag Index (PLI) 40.8 47.2 38.5 47.5 15.8 45.8 46.7 27.8 1.002 1.9 0.97

Weighted PLI 45.1 46.3 42.6 46.6 -24.7 46.1 45.7 20.8 0.949 15.3 0.83

Predicted FMU
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participants in the training set. The corresponding regression coefficients for each of these 

channels were 88, 80, -28 and -5 respectively. 

 

 

Figure 3.4 Linear fit of predicted versus actual FMU from leave-one-out 
approach on the training-set. Predictions were obtained from PLSR 
analysis, using PLI processing and maximum-coherence measures 
as connectivity index for channels FP2-F7, F7-F3, F8-C4 and FC2-CZ 
at Alpha band (11 Hz). 

 

Test-set 

PLSR analysis on the training-set using the PLI processing algorithm and the four 

identified connectivity channels (F7-F3, FP2-F7, F8-C4 and FC2-CZ) at medium Alpha 

frequency (11 Hz) generated a set of regression coefficients that were then used to predict 

the FMU of the stroke participants in the test-set.  We applied the regression coefficients 
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to the connectivity indices of SP9 and SP10 from the same four connectivity channels and 

at the same medium Alpha band frequency, resulting in predicted FMU of 47 and 38 

compared to the actual FMU of 46 and 39 respectively. The prediction error of ±1 point on 

Fugl-Meyer scale for upper extremity was below the RMS-error of 1.9 obtained from cross-

validation on the training-set.  

 

Full participants  

Cross-validation with the same four channels (F7-F3, FP2-F7, F8-C4 and FC2-CZ) 

using all 10 participants resulted in an R2 of 0.91 and a fit-slope of 0.991. Using the 

regression coefficients from these four channels to estimate the FMU resulted in an RMS-

error of 2.1 on the Fugl-Meyer scale. Repeating the PLSC analysis with the 10 participants 

resulted in a reduced number of contributing channels that included F7-F3, FP2-F7, F8-

C4. Using only these three channels to assess the regression performance through cross-

validation with all 10 participants resulted in a similar R2 of 0.91 and a fit-slope of 0.991. 

Using the regression coefficients from these three channels to estimate the FMU resulted 

in an RMS-error of 2.0 on the Fugl-Meyer scale. Further limiting the channels to F7-F3 

and FP2-F7 resulted in better prediction at the lower extremes of motor scores (prediction 

of 17.7 for an actual FMU of 18,). Iteratively swapping the two participants in the test-set 

resulted in a similar R2 of 0.91 and a fit-slope of 0.99. It is noteworthy that a statistical 

power analysis with a reduced R2 of 0.91 resulted in a similar minimum sample size of 8 

for a desired power level of 0.8 with 4 predictors.   

 

3.5. Discussion 

The main objective of this study was to investigate the suitability of resting state 

functional connectivity measures as biomarkers for predicting FMU. Using the primary 

motor cortex as the seed location for connectivity analysis, Wu et al [28] showed good 

prediction performance from ipsilesional M1–Premotor connectivity measures within Beta 

band. For our investigation however, we proposed carrying out a global consideration of 

functional connectivity that was not restricted to motor areas of the brain as the seed 

location. Nor did we want to limit our search to Beta band as the primary frequency of 
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interest. We selected PLSR for predicting FMU based on its performance in the presence 

of multicollinearity and noise [76]. Through simulation, we showed that PLSR was 

sensitive to large numbers of random features and that its performance degraded with 

increasing numbers of unrelated functional connectivity measures. This was an inherent 

challenge with our suggestion of using global functional connectivity measures that were 

not restricted to a priori selection of seed location and frequency bands. We showed that 

PLSC was a suitable approach [74] to identify the contributing channels and frequencies 

that correlated with FMU, thereby allowing us to exclude the unrelated features that were 

unfavorable to the performance of regression. Using only the four identified contributing 

channels and frequencies for our PLSR analysis on the training-set, we found cross-

validated prediction performance with R2 of 0.97, and linear fit-slope of 1 between the 

predicted and actual FMU, and an RMS-error of 1.9 on Fugl-Mayer scale. The RMS-error 

was below the minimum detectable change of 3 for Fugl-Meyer upper extremity motor 

assessment [9]. Using all 10 participants resulted in a slight reduction in cross-validated 

R2 to 0.91 and a fit-slope to 0.99 but also a reduction in the number of contributing 

channels to 3. Using the regression coefficients from these three channels to estimate the 

FMU resulted in an RMS-error of 2.0. Iteratively swapping the two participants in the test-

set resulted in similar fit-slope of 0.99 and R2 of 0.91. We argue that our proposed 

approach has merit in not only improving the prediction performance but is also informative 

in identifying brain regions that could have been overlooked through a priori restriction of 

seed locations. 

There are two impacting factors at play when using PLSC to identify the 

contributing brain regions and frequencies; one is the selection of features that might 

corelate with FMU and the second is the robustness of the correlating features in 

explaining the covariance. Our study was focused on resting state functional connectivity 

index as the feature of interest. The index, however, can be computed in different ways. 

We implemented a two-stage computation of index. First, we calculated the average 

coherence in each epoch. For the second stage, we implemented two different 

approaches; one was to average over all epochs [38] and the other was to use the 

maximum-coherence from all epochs. We are not aware of any current publications that 

use this second method. Permutation test on the results of PLSC analysis showed 

statistically significant correlation (p < 0.04) for Alpha band with the maximum-coherence 

method under our experimental setup of 1-second non-overlapping epochs. In this study, 
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we did not investigate the reasoning behind significant correlation at 1-second epochs 

only. We speculate that coherence occurs in bursts of certain duration and increasing the 

epoch size would reduce the maximum-coherence through the process of averaging within 

each epoch. Smaller epochs have the opposite effect, by reducing the signal to noise ratio 

and potentially more spurious maximum-coherence. Our interest was to find robust 

synchronization between regions and not necessarily long duration of synchronization. 

Permutation test with 0.5, 2 and 4-second epochs did not produce statistically significant 

results (p > 0.05).  

Robustness of contributing features in PLSC analysis can be examined through 

bootstrapping and the resulting z-score for each channel at specific frequencies [75]. 

Using leave-one-out approach during PLSC analysis and inspecting the most common 

channels and frequencies along with the corresponding z-scores can help select the 

predictors for regression analysis. Using this approach, we found that a z-score ≥ 4 

identified the most robust contributing channels and frequencies. Considering our 

consistent results from the experimental approach, there may be merit in further research 

on an analytical method of choosing a threshold for the z-scores to find the corresponding 

contributing channels from the training-set. 

We found F7-F3, FP2-F7, F8-C4, FC2-CZ and the central frequency of the alpha-

band as the most robust contributing factor towards a correlation between the connectivity 

indices and FMU, under our experimental conditions. The corresponding regression 

coefficients for each of these channels were 88, 80, -28 and -5 respectively. We can make 

several observations about the channels and corresponding coefficients. The first 

observation is the strong positive influence of increased connectivity index between F7 

and both F3 and FP2 towards higher FMU. This is interesting when considering the 

general approach of constraining the seed region for connectivity measures to primary 

motor cortex [28]. If we had followed that initial constraint, we would have missed these 

two channels as predictors of FMU. Furthermore, assuming the ipsilesional primary motor 

cortex to be represented by C3, then contribution of connectivity with this motor area at 

Alpha band under our experimental conditions was less relevant to FMU prediction than 

the connectivity between prefrontal and frontal areas. The second observation is the 

interhemispheric nature of FP2-F7 channel. Higher level of interhemispheric functional 

connectivity in the prefrontal areas seems to contribute to higher FMU. This relationship 

appears to agree with published studies [12], [78], although not specific to primary motor 
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cortex. The third observation is the negative regression coefficient associated with higher 

contralesional functional connectivity with motor areas (F8-C4). At first glance, this seems 

confusing when considering that PLSC analysis did not produce robust negative 

correlation between F8-C4 channel and FMU. One explanation is that the covariance of 

connectivity index from this channel with FMU exhibits positive correlation, meaning that 

connectivity index varies in unison with FMU, but that its influence as a regressor is more 

inhibitory towards the other channels and regulates the extent of increase in FMU due to 

increase connectivity index between F7, F3 and FP2. One last observation is the positive 

influence of the ipsilesional functional connectivity in the frontal area (F7-F3) towards 

higher FMU. It will be interesting to understand the importance of this observation from a 

neuroscientific point of view. It is noteworthy that the topmost robust contributing channels 

(F7-F3, FP2-F7, F8-C4) were consistently identified through PLSC analysis when 

increasing the number of training set to 10 participants. 

With respect to clinical relevance and applicability, identification and elimination of 

least-contributing channels from FMU prediction has a favorable impact on cost and setup 

time of the EEG system. We estimate that an upper extremity motor function assessment 

could be completed in less than 15 minutes when using a 7-electrode EEG system to 

collect 2 minutes of resting state data. Moreover, resting state analysis is a preferential 

strategy due to its least dependence on the physical abilities of individuals with stroke, 

especially when suffering from severe motor impairment [14]. Furthermore, use of 

biomarkers can reduce the possible subjectivity of assessments, remove the potential 

complications associated with language barriers, and minimize the requirement for 

examiners’ subject matter expertise. When considering these factors, then our proposed 

approach (if proved consistent through further research with a larger number of 

participants) would provide significant incentives for clinical use. The EEG system can be 

operated with minimal training and at a capital cost that could potentially be recovered 

after a limited number of assessments in a clinical setting or at the point of care. A limitation 

of this study is that participants were all in the chronic phase of stroke. Further research 

with individuals in acute and sub-acute phases is necessary to explore the implications on 

the contributing channels or regression coefficients.  

Our study was a proof of concept with limited number of participants and no 

information on the extent of structural damage to the brain. The only available information 

on the stroke participants were related to the affected hand. The latter was used to swap 
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the EEG measures between the two brain hemispheres. Lack of information on the extent 

and location of structural damage could play a biasing role with respect to potential 

subgroups within the stroke participants. FMU measures had a mean of 38.6, median of 

40, minimum 18 and maximum 49 on FMU scale. A training set with more stroke 

participants at the extreme ends (FMU < 25 and FMU > 50) would be beneficial towards 

a more informed statistical analysis. There are different views of the extent of floor and 

ceiling effect at these extreme ends. Previous work has shown floor and ceiling effect 

when using FMU for stratification or to predict outcome [9]. In this study, using the 

maximum-coherence as a measure of connectivity index does have the potential to 

introduce ceiling effect and needs to undergo further research with more participants at 

the upper ends of FMU (> 50 ). If further work at the upper end of motor scores point to a 

ceiling effect, then separate regression models could be applied for the upper extremes of 

FMU. Our analysis also revealed larger RMS-error at the lower extremes of FMU, 

especially when iteratively swapping the participants in the test-set. The error at the lower 

extremes between actual and predicted FMU was reduced (actual=18, predicted=17.7) 

when we applied a different regression model that only used the first two contributing 

channels, namely F7-F3 and FP2-F7. These results may indicate the need for using 

different models for the lower extremes, middle and upper extremes of FMU. 

This study did not investigate the minimum detectable change that is achievable 

through Partial Least Squares approach for predicting FMU. This is an important topic for 

future research on this approach. If minimum detectable change with PLS approach is 

smaller than that of Fugl-Meyer assessment, then the former will have the potential for 

use in monitoring the efficacy of rehabilitation at shorter intervals and personalizing the 

techniques as need be. This is a plausible prospect, since a measure of motor deficit that 

is independent of physical motion may provide a higher resolution of assessment and 

deliver intermediate and non-visually-observable appraisal of motor function. 

To summarize, we investigated the potential of applying resting state functional 

connectivity measures as biomarkers for estimating Fugl-Meyer upper extremity motor 

scores. We selected maximum-coherence as a measure of connectivity index and 

employed Partial Least Squares Correlation to identify the electrode pairs and frequencies 

that correlated with motor scores. We then used Partial Least Squares Regression to 

generate coefficients for predicting the motor scores. Regression coefficients were 

generated from 8 stroke participants in our training-set and applied to 2 stroke participants 
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in our test-set for predicting their motor score. Application of regression coefficients to the 

connectivity indices from the test-set resulted in predicted scores of 47 and 38 versus 

actual Fugl-Meyer upper extremity motor scores of 46 and 39, respectively. 
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Chapter 4.  
 
Estimating Longitudinal Change in Motor Skill from 
Individualized Functional Connectivity Measures 

Material in this chapter is extracted, reproduced, and modified with permission from the 

following papers: 

N. Riahi, R. D’Arcy, C. Menon, “A Method for Estimating Longitudinal Change in Motor 

Skill from Individualized Functional-Connectivity Measures,” Sensors 2022, DOI: 

10.3390/s22249857. 

4.1. Chapter Overview 

In the first phase of our study, we introduced a method based on PLS analysis of rsFC for 

estimating motor impairment in stroke survivors. We argued that addressing the 

challenges associated with the availability of trained examiners, ease of use, and the 

accuracy of estimation could be conducive towards frequent assessments of motor 

impairment and personalization of therapeutic activities. However, there is little incentive 

for frequent assessments if they can only measure large changes in motor function, which 

might take a long time to achieve. FMU is an example of such assessments, where a point 

change in FMU score would correspond to a large change in function. Performance of our 

proposed method was quantified based on its accuracy in estimating FMU. To gain a 

better understanding of the estimation accuracy of the method, its performance needed to 

be evaluated against a more objective measure of motor function that could be quantified 

at small incremental changes as compared with FMU. The second phase of our study 

aimed to answer the research question on whether rsFC could be used to estimate small 

incremental changes in motor function. Our focus was on individualized approach as a 

precursor towards application of neurofeedback for skill improvement, and the last phase 

of our research. 

This chapter presents the design of an objective motor skill training and assessment 

program, along with the performance of Individualized models in estimating the resulting 

longitudinal change in motor skill. 

https://www.mdpi.com/1424-8220/22/24/9857
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4.2. Introduction 

Pragmatic, objective, and accurate motor assessment tools could facilitate more 

frequent appraisal of longitudinal change in motor function and subsequent development 

of personalized therapeutic strategies. Brain functional connectivity (FC) has shown 

promise as an objective neurophysiological measure for this purpose. Longitudinal motor 

learning studies with healthy participants using functional magnetic resonance imaging 

showed that some areas of the brain exhibited a transient change in FC while other areas 

showed a more lasting change towards consolidation and long-term retention [31], [32], 

[79]. This persistent change in FC has the potential for quantifying, and subsequently 

estimating the change in motor skill. Prior work using EEG modality showed correlation 

between rsFC and motor learning [33], with several studies focusing on the ability of 

generalized global configuration of FC to estimate skill acquisition in healthy participants 

[34], [35], [36], [37], [38], [39]. The authors showed interaction between a wide range of 

brain networks at different synchronization frequencies for motor learning. Involvement of 

different networks and frequencies along with differences across subjects due to age or 

existing capabilities, motivates an individualized approach towards evaluation of 

correlating FC measures. We advocate the use of EEG-based resting-state FC (rsFC) 

measures to address the pragmatic requirements. Pertaining to appraisal of accuracy, we 

suggest using the acquisition of motor skill by healthy individuals that could be quantified 

at small incremental change. Computer-based tracing tasks are a good candidate in this 

regard when using the spatial error in tracing as an objective measure of skill.  

In this study we explored a longitudinal motor skill training program involving a 

computer-based tracing task, in which healthy participants used a computer mouse with 

their non-dominant hand to trace a predetermined and non-trivial pattern on a computer 

screen. The aim was to improve motor skill by attempting to reduce tracing error over a 

period of six to eight training sessions spread over as many days. Tracing error was used 

as an objective measure of behavioral performance that could be quantified at small 

incremental change. Resting state EEG data were collected before and after each training 

session and used for evaluation of rsFC. We then investigated the accuracy of an 

individualized PLS method in estimating longitudinal change in tracing error from changes 

in rsFC. Longitudinal data from participants yielded an average accuracy of 98.2% 

(standard deviation of 1.2%) in estimating tracing error. The results show potential for an 
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accurate individualized motor assessment tool that reduces the dependence on the 

expertise and availability of trained examiners, thereby facilitating more frequent appraisal 

of function and development of personalized training programs 

 

4.3. Method 

4.3.1. Study Design 

Workflow 

Figure 4.1 shows the experimental workflow for data collection and analysis. 

Tracing errors during physical training were used to appraise the change in acquired 

motor skill. 

Setup 

We used a 32-electrode gel-based EEG cap (g.Nautilus, g.tec medical 

engineering, Austria) operating at a sampling rate of 250 Hz, and OpenVibe v2.2 for data 

acquisition and storage. The reference electrode was placed on the right earlobe with the 

ground electrode located midway between FZ and FPZ. We applied enough conductive 

gel to maintain contact impedance below 30 K-Ohm. Recorded EEG data were imported 

into MATLAB-7.8.0 (MathWorks Inc) for signal processing and analysis. 

Python 3.7 was used to create our experimental track patterns on a computer 

screen. We opted for elliptical trajectories instead of straight lines [36] to increase the 

degree of difficulty for tracing tasks. The track was constructed from eight quarter-

ellipses that were arranged to form a four-section curved-pattern as shown in the inset 

(top-left corner) of Figure 4.2. In this figure, the green dot represents the starting point for 

the placement of the mouse pointer, before tracing the corresponding track towards the 

red dot. Selection of the active track section was controlled through the program as 

explained later in the protocol. Total position-error while tracing a track section was 

determined by the area (in pixels) between the actual pointer trajectory (Trace) and the 

desired track path (Track) as shown in Figure 4.2. 
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Figure 4.1 Experimental workflow for data collection and analysis. 
 

-Resting-State EEG collection 

-Physical training 

(motor skill) 

-Resting-State EEG collection 

-Repeat for 7 sessions 

(spread over 7 days) 

 

-EEG band separation (1-45 Hz) 

-Phase synchronization (FC) 

-PLS Correlation analysis 

(based on lowest p-values) 

-FC channel selection 

(robust channels from bootstrapping) 

 

-PLS Regression (generate models) 

-Model selection 

(FC from selected channels only) 

-Eliminate least contributing channel 

(lowest regression coefficient) 

-Repeat until statistical power ≥ 0.8 

(α=0.05, at respective R2 and samples) 

 

-Repeat for each participant separately 

(develop individualized models) 

-Evaluate variance in models’ performances 
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Participants 

Seven healthy right-handed participants, HP1 through HP7, (Mean Age=38.7, 

SD=21.5, 3 females) volunteered for the research study. Participants had no known 

neurological conditions, artifact inducing implants, or physical condition that would exclude 

them from the study. The Research Ethics Board of Simon Fraser University approved the 

protocol for this study, and all participants signed informed written consent forms. 

 

 

Figure 4.2 Participant’s tracing trajectory over a track section. The position-error 
is the total area between the Trace (red) and Track (blue) section. The 
inset at the top-left corner shows the complete track pattern. The 
green and red dots identify the active track to be traced. Axes are in 
units of screen pixels. 

 

Track 

Trace 
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Protocol 

Every participant completed a longitudinal experiment that included 7 sessions, limited to 

a single session per day over two weeks. Each session consisted of four phases. There 

were no breaks in between or during each phase unless the participant specifically asked 

for one due to fatigue. 

• Phase-1: The pre-training 5-minutes resting state EEG data collection. Participants 

were asked to sit comfortably upright with their feet flat on the floor, still and quiet with 

their eyes closed, but awake. Participants were notified of the start of EEG recording.  

• Phase-2: an 8-trial test, with each trial including a tracing task with the right hand 

(dominant hand). Data from Phase-2 were collected but not used in this study.  

• Phase-3: 90-trial training, with each trial including a tracing task with the left hand (non-

dominant hand). These trials were over a randomly selected section of track and 

direction of tracing. Participants were asked to move the mouse on the table using 

only their arm and not their torso.  Participants were prompted to move the mouse-

pointer to the vertex identified by the green dot and instructed to trace the track towards 

the vertex with the red dot (Figure 4.2). They were asked to trace quickly and 

accurately, without compromising one for the other. To complete each trial, 

participants had to keep the pointer at the destination vertex for one second. This 

would penalize performance indicators when moving too fast to stop at the destination 

vertex.  

• Phase-4: post-training 5-minutes resting state EEG data collection.  

Each session lasted between 70 to 90 minutes depending on EEG setup time and the 

participants’ tracing speed during Phase-3. 

 

4.3.2. Tracing Performance 

Position-error between the participants’ tracing trajectory and the intended track 

pattern was selected as one of the performance indicators. Time taken to trace each 

section (trial) was selected as another indicator. Total position-error during a trial was 

determined by the area between the trace and track trajectories (Figure 4.2). To 

discourage participants’ attempt to reduce position-error by tracing slower, we used each 
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trial time as a penalizing (multiplication) factor to inflate the respective position-error. 

Conversely, to discourage participants’ attempt to reduce trial time by moving the mouse 

too quickly to stop at the destination vertex, we accumulated positional offsets from the 

track endpoint until the pointer came to rest at the destination vertex. 

We used both accumulated position-error as well as the accumulated product of 

position-error and its corresponding tracing time from each trial, as two separate indictors 

of tracing performance. Changes in motor skill between sessions were reflected in 

variations in the magnitude of one or both of these measures. Selection of two metrics 

was our attempt in addressing the differences in participants that were more focused on 

tracing error rather than the tracing speed (or vice versa). We speculate that these may 

involve different interacting brain regions. Participants were updated on their tracing 

performance after each training session. Position-error was measured in units of pixels-

squared, representing the area between the track and trace trajectories, and converted to 

spatial units of squared-centimetres (cm2) based on an estimated coverage of 0.25 mm2 

per pixel. The product of position-error and its associated tracing time was measured in 

units of cm2seconds.  

Each training session consisted of 90 tracing trials, generating 90 intermediate 

performance values. We used two different approaches to produce a measure of tracing 

performance for each session: First, a single value corresponding to the median of all 90 

trials (single-median option), and second, the median of the first 30 trials as a measure of 

performance before training, and the median of the last 30 trials as a measure of 

performance after training (dual-median option). The two measures allowed for separate 

evaluation of consolidated and short-term learning. 

 

4.3.3. EEG Data Processing and PLS Analysis 

Longitudinal EEG data from each participant were processed independently of the 

other participants, making this an individualized assessment rather than a cross-sectional 

or inter-participant analysis. We used an EEG sampling frequency of 250 Hz and a 

frontend finite impulse response bandpass filter of 1-45 Hz. We defined five canonical 

frequency bands specified as Delta (1-4 Hz), Theta (4–8 Hz), Alpha (8–15 Hz), Beta (15–
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30 Hz) and Gamma (30–45 Hz) for our second stage filters and band separation. We 

further divided each band into low, medium, and high sub-bands, resulting in 15 distinct 

center-frequencies and 15 different Morlet wavelets for bandpass filtering [62]. Center-

frequencies were approximately one bandwidth apart. We used coherence as a measure 

of functional connectivity and evaluated the instantaneous coherence through five different 

algorithms, namely Phase-Clustering, Spectral Coherence, Imaginary part of Coherence, 

Phase Lag Index (PLI) and weighted PLI [62]. Coherence was evaluated for every 

combination of electrode-pairs (496 channels) at each of the 15 center frequencies. 

Resulting coherence measures from each algorithm were then separately averaged over 

1-second non-overlapping epochs, generating a total of 300 samples for each channel 

and at each frequency. We used only a 2-minute section starting at an offset of 30 seconds 

from the beginning of EEG data for PLS analysis. We used peak-detection over the 2-

minute window to generate a single connectivity index for each channel. Both single-

median and dual-median behavioral measures were used for correlation analysis with the 

connectivity indices. We selected the median of all 90 trials for each session as the 

behavior data (tracing performance) associated with that session for the single-median 

option. These were used for correlation analysis with connectivity indices from both the 

pre- and post-training EEG data separately. For the dual-median option, correlation 

analysis was carried out between the median of the first 30 trials and the connectivity 

indices from the pre-training EEG, and the median of the last 30 trials with that of post-

training EEG.  

PLS Correlation (PLSC) was used to identify the most robust channels and 

frequencies that contributed  towards correlation between the connectivity indices and the 

selected measure of tracing performance [73]. We selected the options with the lowest p-

values for this purpose. We repeated the process 50 times for each participant and 

selected the channels that were consistently present in over 80% of the repetitions and at 

the same level of robustness. We used permutation for quantifying the p-values and 

bootstrap to test for robustness. The resulting connectivity indices for the identified 

channels and frequencies were then used in PLS-Regression (PLSR) to produce a model 

for estimating the corresponding tracing performance. The estimation accuracy was 

examined through a cross validated leave-one-out approach over the seven training 

sessions and quantified by the root-mean-square-error (RMSE) in estimation. The 

estimation error was presented as a percentage of the average tracing error obtained from 
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the selected single- or dual-median option. The ratio of estimation RMSE over average 

tracing error allowed for comparison between estimation accuracy from different tracing 

performance measures obtained through position or position-time error. Data from 

participants with multiple combinations of contributing channels and frequencies were 

passed through iterative PLSR analysis. The goal was to find the specific combination that 

resulted in the smallest RMSE in estimating the tracing performance with the lowest 

number of contributing channels that resulted in a statistical power of 0.8 at α=0.05 for the 

number of available samples for each participant. 

 

4.4. Results 

4.4.1. Data Collection 

We carried out 53 training sessions, collected over 500 minutes of EEG data and 

4700 tracing trials from seven participants. Data from 4 sessions were discarded due to 

external noise and technical recording issues. Except for HP1 and HP2, all other 

participants had 7 training sessions with 70 minutes of EEG data and 630 tracing 

performance measurements for each participant. Participant HP2 had to stop after 6 

sessions and participant HP1 volunteered for 8 sessions. 

 

4.4.2. Tracing Performance 

Figure 4.3 shows the results of longitudinal training for participant HP1 with position 

error (blue bars) and position-time error (red bars) from all 90 tracing trials. The bullseye 

represents the median value. The results for the first and last 30 tracing trials were similar 

in nature and were omitted for the sake of clarity and space. Note that a change in one 

metric without a corresponding change in the other, could be used to identify and isolate 

the active metric. For example, a participant that focuses primarily on the position error 

may achieve a change in this measure of performance by slowing the speed of tracing. 

This could potentially appear as very little overall change in position-time measures. The 

opposite situation would correspond to a participant that focuses primarily on speed with 
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less attention to positional error. These activities may involve different groups of interacting 

brain areas, resulting in different models for predicting the tracing performance. Figure 4.4 

shows the longitudinal training results for the remaining participants HP2 to HP7 but limited 

to the final selection of the position or position-time errors after PLSR analysis (Table 4.1). 

 

 

Figure 4.3 Longitudinal tracing performance for HP1 during 8 sessions of 
physical training program with 90 trials in each session. Performance 
is in terms of position error (blue bars) and product of position error 
and time (red bars). The bullseye indicates the median value. 
Corresponding results from the first and last 30 trials were similar in 
nature and were excluded for the sake of clarity. 
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Figure 4.4 Longitudinal tracing performance in terms of Position Error (blue 
bars) or Position-Time Error (red bars) for participants HP2 to HP7. 
Selection of performance measure is based on the final PLS analysis 
as shown in Table 4.1. 
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4.4.3. PLS Analysis 

Synchronization values using the PLI algorithm, averaged over 1-second non-

overlapping epochs, and peak-detected across a 2-minute EEG interval at a start-offset of 

30-seconds, resulted in strong correlation (p < 0.05 uncorrected) between the tracing 

performance and connectivity indices. For most participants, PLSC analysis generated 

multiple combinations of promising correlation between rsFC extracted from pre- or post-

training EEG data and different tracing performance measures. We used bootstrapping to 

identify the most robust channels and center frequencies that contributed towards the 

correlation with tracing performance. PLSR analysis was constrained to these channels 

and frequencies. We generated a regression model for each combination and applied 

cross-validated leave-one-out approach to evaluate the estimation RMSE, which was 

subsequently used to represent the estimation accuracy. We then selected the model with 

the lowest RMSE as the best performing estimator of the change in motor skill for that 

participant. RMSE was presented as a percentage of the average tracing error for the 

respective participant. This allowed for comparison between estimation accuracy from 

different tracing performance measures obtained through position or position-time error. 

Table 4.1 PLS analysis of the rsFC from pre- or post-training EEG data. PLSC 
was used to identify the contributing channels and frequency bands 
that correlated with the tracing performance at p-val < 0.05 
(uncorrected). Selection of channels were based on robustness of 
contribution, evaluated through bootstrapping. PLSR was used to 
generate the estimation model. The number of channels were further 
reduced iteratively to obtain a statistical power of 0.8 at α=0.05 for the 
estimation model. RMSE is calculated through cross-validated leave-
one-out approach for each model. 

Participant EEG Freq. Band Tracing Performance Channels R2 RMSE (%) 

HP1 Pre-training Beta-High (27 Hz) Single-median Pos-time 5 0.988 4.29 

HP2 Post-training Alpha-High (13 Hz) Dual-median Pos-only 3 0.987 1.06 

HP3 Pre-training Beta-Med (21 Hz) Single-median Pos-only 2 0.868 1.81 

HP4 Post-training Beta-Med (21 Hz) Single-median Pos-time 4 0.996 1.15 

HP5 Pre-training Beta-Low (16 Hz) Dual-median Pos-time 4 0.997 0.98 

HP6 Pre-training Beta-Low (16 Hz) Dual-median Pos-time 4 0.984 1.60 

HP7 Pre-training Beta-High (27 Hz) Single-median Pos-only 3 0.955 2.98 
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Figure 4.5 Linear fit of the estimated versus actual tracing performance from 
cross-validated leave-one-out approach for each participant. 
Estimations were obtained from PLSR analysis, using PLI processing 
and peak-coherence measures as connectivity index (rsFC). 

 

Regression coefficients represent the contribution of corresponding channels 

(predictors) at the identified frequency bands towards estimating the tracing performance 

(behavior) from rsFC indices. The small number of training sessions (samples) for each 

participant has a negative impact on the statistical power of our analysis. We therefore 

aimed to reduce the number of predictors to counter the effects of our small sample size. 

The goal was to reduce the channel count to the maximum number of predictors that 

resulted in a statistical power of greater than 0.8 at α=0.05, and the R2 and the number of 

samples (sessions) for the respective participant. To achieve this, we iteratively removed 

the channel with the lowest regression coefficient, based on the argument that these 

channels would have less impact on the overall estimation accuracy compared to the 

channels with the higher regression coefficients. Table 4.1 shows the channel count and 

the corresponding R2 that resulted in a statistical power of greater than 0.8. Figure 4.5 

shows the results of the cross-validated leave-one-out approach in graphical form. The 

linear-fit in each graph was generated by the line-of-best-fit using least-squares method. 

We set the y-intercept to 0 under the assumption that the line should pass through the 
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origin. Mean slope of the Linear-fit was at 0.997. Removing this constraint did not introduce 

a change in mean slope of the Linear-fit. 

 

4.5. Discussion 

The primary objective in this study was to investigate the accuracy of a proposed 

individualized method for estimating modest incremental changes in motor skill from 

objective neurophysiological measures. The methodology was expected to address the 

technical and pragmatic challenges associated with appraisal of motor function to facilitate 

more frequent assessments. rsFC was selected as the objective neurophysiological 

measure to allow for the evaluation of wide-ranging network interactions while eliminating 

the need for execution of physical tasks during assessments. We focused on EEG 

systems as the measurement modality of choice due to their portability, relative low cost, 

and requiring a minimal level of the examiners’ expertise and time. These were critical 

design requirements for a tool that could potentially facilitate more frequent individualized 

assessments of motor function and subsequent development of personalized intervention 

strategies. We opted to use computer-based tracing tasks to evaluate spatial error in 

tracing as an objective measure of motor skill that could be quantified in small incremental 

changes. PLSC analysis was applied to limit the number of contributing EEG channels for 

estimating change in skills, followed by PLSR analysis to build a model for estimation. We 

further reduced the number of predictors (channels) in our estimation model to maintain a 

statistical power of ≥ 0.8. The proposed approach resulted in an average estimation 

accuracy of 98.2% with a standard deviation of 1.2%. At this level of accuracy in estimating 

objective measures of behavior, the proposed method may have the potential to provide 

intermediate valuations of motor function from subjective measures of behavior that 

inherently have larger margins of error [28], [55], [9]. 

PLSC analysis resulted in multiple combinations of behavioral and 

neurophysiological measures for each participant. The identified channels (electrode-

pairs) for each participant were more consistent for rsFC at similar frequency bands and 

using the same tracing performance option (Pos-only or Pos-time). The latter may indicate 

the involvement of different brain areas when combining the precision of tracing (Pos-only 

error) with corresponding speed of tracing (Pos-time error) as a measure of change in 
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motor skill. Similarly, synchronization at different frequency bands may indicate an 

alternative group of neural networks associated with different aspects of skill 

improvements [16, 80, 81, 64]. However, our assessment was focused on evaluating the 

estimation accuracy of the proposed method rather than identifying the contributing brain 

areas. Source localization algorithms may have to be applied to better understand the 

relationship between synchronization frequency and contributing brain areas [16, 82]. 

Prior studies with healthy participants had shown rsFC as a predictor of skill acquisition 

and the extent of global connectivity as indicators of future motor performance [36, 38]. 

This is consistent with our results with per-training rsFC as predictors of tracing errors. We 

expected that training related changes in rsFC would consolidate several hours after the 

training session [63, 83] and would therefore relate to the next pre-training tracing 

performance. We can see this from the results in Table 4.1 for five of the participants. The 

relationship with post-training performance (HP2 and HP4) might be worth further 

investigation in future studies with larger number of participants. 

Concerning the measure of tracing performance, we selected the first and last 30 

trials to quantify the pre- and post-training skill levels. This was done based on a cursory 

examination of the variance in tracing performance over the course of all training sessions.  

Our analysis revealed larger variation in tracing performance for smaller number of trials 

(< 30) during the earlier sessions than later in the training program. We used the ratio of 

the standard deviation of tracing performance over the corresponding median of those 

trials (SD-Ratio) for this analysis. This indicated that during earlier sessions when tracing 

skill was less developed, we needed more trials to get a reasonable estimate of tracing 

performance. But as training progressed towards later sessions, the participants could 

trace more consistently, thereby requiring smaller number of trials. The change in SD-

Ratio between 30 and a lower number of trials during these later sessions were relatively 

small, and as such, we opted to use the first 30 trials as a more stable measure to evaluate 

the pre-training tracing performance throughout the training program. To maintain 

consistency, we used the last 30 trials to measure the tracing performance for post-

training. It should be noted that in some cases, we observed a reduction in tracing 

performance during the last 30 trials despite having practiced over the prior 60 trials. This 

may reflect a confounding factor related to fatigue. A more comprehensive assessment of 

performance variation over different trial-count selections for pre- and post-training may 
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reveal additional information and is warranted for future studies specific to motor skill 

improvement. 

Our objective for this study did not necessitate a trendline for changes in motor 

skill, nor a statistically significant change in the acquired skill throughout the physical 

training sessions. Our aim was to investigate the presence of a relationship between rsFC 

and motor skill (measured through median tracing performance) and whether the 

relationship could be captured with a regression model to accurately estimate the 

individuals’ tracing performance from their respective rsFC. We also did not carry out any 

cross-participant analysis of motor performance, as our objective was to develop an 

individualized assessment method and not a generalized model to investigate 

commonality between participants. We speculated that the ability to acquire motor skill 

was highly individualized and expected to see large differences between participants with 

respect to the extent and rate of change in skill. The results in Figure 4.4 are in line with 

this speculation and support our motivation for development of individualized models for 

estimating motor skill. 

Inherent in our analysis is the dependence on passage of time. The stable changes 

in functional connectivity have been attributed to the development of specialized neural 

circuits for fast and efficient execution of tasks. These changes are not necessarily all 

associated with an increase in recruitment but also the opposite, indicating that some 

networks may have become either more efficient or less important for the respective motor 

skill acquisition [32, 13]. We can make similar interpretations about the sign of regression 

coefficients in our study to indicate an increase or decrease in network recruitment. The 

longitudinal impact of contributing channels is expected to change as motor skill improves 

over time. Having a simple and cost-effective tool might facilitate an opportunity to monitor 

and track the individualized time dependent changes in contributing channels by 

examining the change in their respective regression coefficients. We expect these 

changes to be gradual and suggest that new individualized models could be developed 

based on a rolling reassessment of the rsFC as new longitudinal samples become 

available. This will also allow for the progressive exclusion of older samples and the 

associated channels that are less contributing towards the regression model, thereby 

maintaining the statistical power of the regression analysis. It may also be possible to 

expedite this temporal change in the regression models by influencing the synchronization 
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levels of the contributing channels through brain stimulation, be it external or through 

endogenous techniques such as mental imagery and real-time neurofeedback. 

To summarize, we investigated the accuracy of an individualized PLS processing 

technique for estimating an objective measure of change in motor skill. We used resting-

state EEG to evaluate functional-connectivity indices and position errors from computer-

based tracing tasks as a measure of motor skill. We carried out a longitudinal motor skill 

training program in which seven right-handed healthy participants used a computer mouse 

with their non-dominant left hand to trace a pattern on a computer screen. Each participant 

went through six to eight training sessions spread over as many days. We used PLSC to 

identify the contributing channels specific to each participant and PLSR to develop an 

individualized model for estimating the longitudinal change in motor skill of the respective 

participant. Using leave-one-out cross validation technique, we observed an average root-

mean-square estimation error of 1.8% corresponding to an average estimation accuracy 

of 98.2% (standard deviation 1.2%). Considering the pragmatic advantages of using EEG-

based resting-state functional connectivity measures for estimating longitudinal change in 

motor skill, the proposed method shows potential towards an objective and accurate motor 

assessment tool. 
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Chapter 5.  
 
Using Neurofeedback to Guide Mental Imagery for 
Improving Motor Skill 

Material in this chapter is extracted, reproduced, and modified with permission from the 

following papers: 

N. Riahi, W. Ruth, R. D’Arcy, C. Menon, “A Method for Using Neurofeedback to Guide 

Mental Imagery for Improving Motor Skill,” IEEE transactions on neural systems and 

rehabilitation engineering 2022, DOI: 10.1109/TNSRE.2022.3218514. 

 

5.1. Chapter Overview 

The second phase of our study established the performance of the proposed method in 

estimating small longitudinal change in motor skill. We argued that the accuracy of the 

method showed promise for frequent assessment of motor function and personalization of 

rehabilitation strategy. It also showed potential for monitoring short-term incremental 

interactions between changes in FC and motor skill. Our focus thus far was on quantifying 

the change in FC as a consequence of change in motor function. The next step was to 

consider the reverse relationship and assess the impact of changing FC towards inducing 

a change in motor function. This was inline with our research aspiration for using this 

method to facilitate a complementary therapeutic activity and our objective to Investigate 

the prospects of influencing the individualized FC measures through MI for improving 

motor function.  

This chapter details a process for the selection of individualized FC channels and real-

time monitoring of instantaneous FC  measures. A method for utilization of neurofeedback 

to guide mental imagery as an endogenous brain stimulation is then presented. The 

chapter concludes with the results from applying the proposed individualized method for 

improving motor skill. 

 

https://doi.org/10.1109/TNSRE.2022.3218514
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5.2. Introduction 

Mental imagery (MI) is gaining attention as a strategy towards endogenous brain 

stimulation for improving motor skill. Neurofeedback (NF) is commonly used to guide MI 

in order to activate the relevant brain networks.  

Specific to motor function, prior work showed change in motor skill by influencing 

regional brain activities [45], [46], [47], [48], [49], [50]. In these studies, the focus was to 

regulate the sensorimotor rhythms (SMR) through MI, based on the hypothesis that 

modulating a specific band power over motor areas would influence the related motor 

behavior. NF on the instantaneous strength of SMR was used to inform the participants 

about the impact of their MI. However, studies using functional magnetic resonance 

imaging have shown that MI can result in overlapping activation of different brain areas 

including primary motor, premotor, supplementary motor, and parietal areas that include 

the sensorimotor and posterior parietal lobe [19]. It has therefore been argued that 

analysis of network interactions might be a more wholistic approach for NF implementation 

[42], [51], [52].  In a study with both healthy participants [53] and stroke survivors [54], the 

authors showed that an NF protocol based on increasing the global alpha-band FC with 

the primary motor cortex resulted in improvement in motor function. These are significant 

findings and encouraging results in favor of using NF to facilitate an endogenous self 

stimulation of brain towards improving motor skill. The targeted frequency band and brain 

networks for FC analysis is not limited to alpha-band or motor areas. Prior study with 

healthy participants showed interaction between networks at both alpha and beta-band 

that included FC with prefrontal cortex [57] for motor learning. Involvement of different 

brain networks and synchronization frequencies along with differences across subjects 

due to age or existing capabilities, motivates an individualized approach towards NF 

training [55], [56]. We therefore investigated an NF training method based on 

individualized FC analysis between different brain networks at multiple frequencies.   

To this end we used a longitudinal physical motor skill training (PT) program 

involving a computer-based tracing task. We then investigated an individualized EEG-

based method for NF through broad consideration of interactions between different brain 

networks. We selected the change in brain functional connectivity (FC) as an objective 

neurophysiological measure of change in motor skill during a longitudinal PT program. 
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Digital tracing tasks were developed for skill training and the spatial error in tracing was 

used to gauge the change in skill. 

Spontaneous FC was estimated from coherence measures [18] using resting state 

EEG data collected as part of the physical training program. We used partial least squares 

algorithms [38], [73] to find the most robust contributing networks (EEG electrode-pairs  or 

channels) towards correlation between the resting state FC and the acquired motor skill. 

We used the network with the largest margin for increasing FC as the candidate for NF 

training while experimenting with MI during a neurofeedback training program. The 

participant was informed of the changes in instantaneous FC through real-time audio 

feedback to help guide volitional control of the connectivity indices with the goal of 

improving motor skill without execution of additional physical training. We showed over 

20% reduction in tracing error through neurofeedback training alone, without any 

additional physical training. We also showed retention of improvement in skill for several 

days after the completion of neurofeedback training. Our proposed methodology shows 

promise for a highly individualized approach towards improvement in motor skill. Given 

that EEG is an accessible health and wellness technology, such a method could provide 

a practical complementary option towards personalized therapeutic strategies to improve 

motor function. 

5.3. Method 

5.3.1. Study Design 

Workflow 

Figure 5.1 shows the experimental workflow for data collection and analysis. The 

three motor skill assessments after the end of physical training program were carried out 

to appraise any change in skill without physical training. Similarly, the four assessments 

after the end of neurofeedback training were carried out to test for retention of 

improvement in motor skill. We balanced the requirements of quality data collection with 

the participant engagement and optimal performance. The latter was an important 

condition with respect to NF, as task demands have direct impact on the success of MI 

(e.g., attention/distraction). The different repetition numbers during successive stages of 
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this study were selected to address practical training requirement that balanced the trade-

off between optimal learning and fatigue. 

 

Setup 

We used a 32-electrode dry-EEG cap (g.SAHARA, g.tec medical engineering, 

Austria) operating at a sampling rate of 250 Hz for data acquisition. The reference 

electrode was placed on the right mastoid and the ground electrode on the left mastoid. 

Our rationale behind switching to dry caps during this phase of our study was purely for 

pragmatic considerations with respect to setup time associated with the gel-based EEG 

caps. The concern was that the long setup time could result in participant fatigue before 

the start of NFT program, which could negatively influence the participant’s focus and 

consequently the effectiveness of mental imagery.  

Python 3.7 was used to create elliptical track patterns on a computer screen as 

depicted in the inset of Figure 5.2. Participant was asked to use the computer mouse to 

trace the track section between the vertices identified by the green and red dots, 

respectively. The active track was selected randomly as explained later in the protocol. 

Distance between opposing tips of the track pattern was arranged to be approximately 35 

cm of mouse travel across the torso (x-axis: left to right) and 25 cm away from the torso 

(y-axis: top to bottom). The rationale was to deliver large physical movements that 

engaged multiple arm joints without the need to involve the torso. Motor skill was 

measured in terms of position error between the track and the participant’s tracing 

trajectory, as well as the time taken to complete the corresponding tracing task. Position 

error for each tracing task was quantified as the area, in pixels, between the active track 

and tracing trajectory as shown in Figure 5.2.  

 

Participant 

A healthy right-handed 61-year-old female volunteered in order to test the 

methodological feasibility for this study. The participant had no known neurological or 

physically limiting conditions, and no implants. The Research Ethics Board of Simon 



78 

Fraser University approved the protocol for this study, and the participant signed an 

informed written consent form. 
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Figure 5.1 Experimental workflow for data collection and analysis. 

 

-Resting-State EEG collection 
-Physical training (motor skill) 

-Motor skill assessment 
-Repeat for 7 sessions 

-Motor skill assessment 
(no physical training) 

-Repeat for 3 sessions 

-EEG band separation (1-45 HZ) 
-Phase synchronization (FC) 

-PLS Correlation analysis 
-FC channel selection 

-PLS Regression (generate models) 
-Model selection  

(largest margin to improve FC) 

-Real-time EEG processing 
(FC for selected channels only) 

-MI neurofeedback training 
(audio feedback on instantaneous FC) 

-Motor skill assessment 
-Repeat for 11 sessions 

-Motor skill assessment 
(no neurofeedback  training) 

-Repeat for 4 sessions 
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Figure 5.2 Participant’s tracing trajectory over a track section. The position-error 
is the total area between the trace (red) and track (blue) section. The 
inset at the top-left corner shows the complete track pattern. The 
green and red dots identify the active track to be traced. Axes are in 
units of screen pixels. 

 

Protocol 

The participant completed a longitudinal PT program that included 7 training 

sessions, limited to a single session per day. Each session consisted of 8 tracing trials 

with the right hand followed by 90 tracing trials with the left hand. A trial was defined as a 

tracing task over a track section, where the specific track and direction of tracing was 

randomly selected by the program. The rationale behind using the left (non dominant) 

hand for tracing was to induce motor learning effect [79] thereby increasing the potential 

Track 

Trace 
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for larger changes in FC during a short PT program. Data for the right hand were collected 

but not used in this study. We collected 5 minutes of pre- and post-PT resting state EEG 

data in each session. Each session lasted approximately 50 minutes. 

The protocol for assessment of motor skill was like that of PT but limited to only 30 

tracing trials for the left hand. We carried out three motor assessments over three 

consecutive days after the end of PT program to obtain a baseline for skill level before the 

start of the neurofeedback training (NFT) program. Three assessments were the minimum 

number of samples needed to determine a trend and measurements’ deviation around 

that trend. Our goal was to minimize the number of sessions before NFT to reduce the 

potential for fatigue in our participant. We also carried out four motor assessments over 

four days after the completion of the NFT program to test for retention of the acquired skill. 

We had planned to obtain more than the minimum samples after the NFT program, but 

the participant could only partake in 4. 

NFT started after the completion of the PT program. EEG data were acquired at 1-

second intervals and processed in real-time to calculate the instantaneous FC measures 

and generate the subsequent audio feedback. Volume of the audio feedback was 

proportional to the magnitude of the FC measures. Each NFT session lasted 5 minutes. 

Depending on the participants level of fatigue, we carried out at least two sessions, and 

at most, five sessions in each day of the NFT program. There were a few minutes break 

between each session to document the participant’s recollection of MI in the preceding 

session and the strategy, if any, for the next session. We also collected 5 minutes of 

resting-state EEG data before the start, and after the end of all NFT sessions in each day. 

 

5.3.2. Measure of Motor Skill 

We evaluated two measures of performance indicators, namely the accumulated 

position error during each tracing task, and the product of the accumulated position error 

and the time taken to complete the corresponding track (position-time error). The latter 

brought the tracing speed into consideration. Position error was calculated from the total 

area between the track and tracing trajectory (Figure 5.2) and converted to spatial units of 
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squared centimeter (cm2) based on an approximate conversion factor of 0.25 mm2 per 

square pixel. Position-time error was in units of cm2seconds. 

We generated three separate measures of motor skill for each session. 1) A single 

value corresponding to the median error of all 90 tracing trials, referred to as  single-

median option. 2) Median error of the first 30 trials to represent the tracing performance 

before PT, and 3) that of the last 30 trials for performance after PT, referred to as dual-

median option. The process was carried out for both position and position-time errors. 

These were used to evaluate four distinct FC corelates of motor skill as explained in the 

signal processing section. 

For assessments of motor skill associated with NFT, a single set of 30 tracing trials 

was carried out before the NFT sessions and another 30 tracing trials after the completion 

of all NFT sessions on that day. Motor skill before and after NFT was quantified by the 

median of the respective tracing errors. We also used 30 tracing trials for each skill 

assessment after the completion of PT and NFT programs. 

 

5.3.3. Signal Processing and Analysis 

EEG preprocessing 

Recorded resting state EEG data were imported into MATLAB-7.8.0 (MathWorks 

Inc) for signal processing and analysis during the PT program. We applied a frontend 

bandpass filter of 1-45 Hz using a finite impulse response digital filter. The filtered data 

was then visually inspected in EEG-Lab V14.1.2 to select a 2-minute continuous section 

with minimal amount of interference from muscular activities. The frequency range was 

further divided into five canonical bands of Delta (1-4 Hz), Theta (4–8 Hz), Alpha (8–15 

Hz), Beta (15–30 Hz) and Gamma (30–45 Hz), each with three additional sub-bands of 

low, medium, and high frequencies. This was the design criteria for the 15 distinct Morlet-

wavelet filters with center frequencies that were approximately one bandwidth apart [62]. 

We used coherence between EEG electrode pairs (channels) at each of the 15 

frequencies as a measure of functional connectivity at that frequency and evaluated the 

instantaneous coherence through Phase Lag Index (PLI) algorithms [62]. 
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Motor skill correlates 

With the 32 electrode EEG, coherence had to be evaluated for each of the 496 

non-directional channels. The individual coherence samples from each channel were 

averaged over a one-second non-overlapping epoch, resulting in 120 coherence 

measures in each of the 15 frequency bands. We used the maximum coherence in each 

band as an index of FC at the corresponding center frequency, resulting in an array of 

7,440 indices for PLS analysis [55]. We used single-median tracing performance for 

correlation analysis between FC indices from both the pre- and post-PT EEG data 

separately. For the dual-median option, we used the pre-PT tracing performance (median 

of the first 30 trials) for correlation analysis with FC indices from pre-PT EEG data, and 

post-PT tracing performance (median of the last 30 trials) for correlation analysis with FC 

indices from post-PT EEG data. 

We screened for promising channels and frequencies by selecting those with 

strong correlation (p < 0.05) with each of the single- and dual-median tracing 

performances using PLS correlation (PLSC) analysis [73]. We carried out 50 iterations of 

the correlation analysis to identify the channels that were present in at least 80% of the 

repetitions, and at the same level of robustness. We used bootstrapping to quantify 

robustness [73]. We then used PLS-Regression (PLSR) to generate a model for estimating 

the tracing performance from the FC indices of the identified channels. The error in 

estimation was quantified by root-mean-square-error (RMSE) using leave-one-out cross-

validation over the seven PT sessions. The RMSE was presented as a percentage of the 

average tracing error obtained from each of the single- and dual-median options. This 

allowed for comparison between models for position or position-time tracing 

performances. 

 

Neurofeedback training program 

EEG data during NFT program were acquired at one-second intervals and 

processed in real-time using C++ programming under Microsoft Visual Studio 2019 

environment. Coherence was only evaluated for the channels and frequency bands that 

were identified through PLSR analysis during the PT program. The instantaneous 
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coherence measures were averaged over the one-second epoch for each channel and 

subtracted from a baseline threshold separately. The threshold was selected from the 

minimum FC index at each of the channels in the regression model. The resulting data 

were then used to adjust the volume of an audio feedback. The participant was advised 

to finetune their metal imagery with the goal of increasing the volume of the audio 

feedback. 

 

5.3.4. Participant 

A healthy right-handed 61-year-old female volunteered in order to test the 

methodological feasibility for this study. The participant had no known neurological or 

physically limiting conditions, and no implants. The Research Ethics Board of Simon 

Fraser University approved the protocol for this study, and the participant signed an 

informed written consent form. 

 

5.4. Results 

5.4.1. Physical Training  

The participant completed seven tracing sessions as part of the PT program. 

Tracing was done with the left hand and repeated for 90 trials over randomly selected 

track sections and directions of movement. Figure 5.3 shows the resulting position error 

(blue bars) and position-time error (red bars) for the first 30 tracing trials during the seven 

sessions of the PT program. The results for the last 30 and all 90 tracing trials were similar 

in nature and were omitted for the sake of clarity and space. Note that the position-time 

error has two degrees of freedom, where a change in its value without a corresponding 

change in position error is also an indication of change in skill due to the tracing speed. 

The red asterisk indicates significant (p < 0.05) change in position-time performance over 

the PT program. Statistical analysis of the change in motor skill is explained later in this 

section. 
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5.4.2. PLSC Analysis 

FC indices from 496 EEG channels at 15 center frequencies for each of the pre- 

and post-PT data were separately used in correlation analysis with each of the position 

(Pos-only) and position-time (Pos-time) assessments of motor skill. Each skill assessment 

was quantified through a single- or dual-median approach. The latter was represented by 

the median of the first and last 30 tracing trials and were used in conjunction with the pre- 

and post-PT EEG data, respectively. This resulted in four separate PLSC analysis for each 

of the pre- and post-PT EEG data. Table 5.1 shows the results of the PLSC analysis that 

generated promising correlations (p < 0.05 uncorrected). We used bootstrapping to 

identify the most robust channels and center frequencies that contributed towards the 

correlation with tracing performance [55]. PLSR analysis was constrained to these 

channels and frequencies as described in the next section. 

 

5.4.3. PLSR Analysis 

We generated a separate regression model for each of the entries in Table 5.1. 

Predictors of the models were limited to the most robust channels and frequencies that 

were identified from PLSC analysis.  Regression coefficients in each model represented 

the contribution from the identified channels (predictors) at the specific frequency sub-

band towards valuation of the tracing performance (behavior) from FC indices (objective 

measures). We used leave-one-out cross-validation to quantify the RMSE in estimating 

tracing performance. Estimation error was represented as the ratio of the RMSE and the 

average of all 7 tracing performances. The small number of behavior samples had an 

unfavorable impact on the statistical power of our regression analysis. To counter the 

effects of the small sample size, we reduced the number of predictors to achieve a 

statistical power of 0.8 at α=0.05 and R2 of the respective regression model. This was 

done by removing the predictor with the lowest regression coefficient and generating a 

new model through iterative PLSR analysis. Our rationale for this approach was the 

argument that these channels would have less impact on the overall estimation error 

compared to those with higher regression coefficients. PLSR columns in Table 1 show the 

results of this iterative process with the final number of channel counts and corresponding 

RMSE ratio. The statistical power for Option-D was well above 0.8, but we could only 
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achieve a power of 0.78 for Option-B as we reduced the number of channels to 4 and less. 

The R2 for options A and C were too low and became worse for lower number of channels, 

resulting in a best-case power of 0.57 and lower. We therefore excluded options A and C 

and only focused on Option-B and D for neurofeedback training. 

 

 

Figure 5.3 Longitudinal tracing performance during physical training in terms of 
position error (blue bars), and product of position error and time (red 
bars). The bullseye indicates the median value. Corresponding 
results from all 90 and last 30 trials were similar in nature and were 
excluded for the sake of clarity. (*) indicates significant (p < 0.05) 
change in tracing performance. 
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Table 5.1 Results of PLS analysis for FC indices from EEG data collected before 
(pre-PT) and after (post-PT) physical training. Input data consisted of 
496 EEG channels at 15 center frequencies, using Single- or Dual-
median assessments for position (Pos-only) or position-time (Pos-
time) tracing errors. Only four combinations (Option-A to D) met our 
screening criterion for strong correlation (p < 0.05 uncorrected), 
shown in descending order of coefficients (Corr. Coeff.). Channels 
represent the final number of predictors used in the regression model 
from PLSR analysis. R2 is the coefficient of determination. Model 
performance is determined by the ratio of RMSE over the average 
tracing errors from all 7 PT sessions. 

Input PLSC     Results PLSR     Results 

Option EEG Freq. Band (center) 
Tracing 

Performance 
p-value 

Corr. 
Coeff. 

Channels R2 
RMSE 

(%) 

A Pre-PT Beta-Med (21 Hz) 
Single-median  

Pos-only 
0.008 0.999 4 0.879 3.04 

B Pre-PT Beta-Low (16 Hz) 
Dual-median  

Pos-time 
0.019 0.999 4 0.945 2.51 

C Post-PT Beta-Low (16 Hz) 
Single-median  

Pos-only 
0.001 0.998 4 0.908 2.81 

D Post-PT Beta-Low (16 Hz) 
Dual-median  

Pos-only 
0.020 0.998 4 0.974 2.13 

 

5.4.4. Neurofeedback Training 

The regression models for estimating tracing error had both positive and negative 

coefficients. This meant that an increasing FC in channels with negative coefficients 

resulted in a reduction in tracing error, or an improvement in motor skill. Increasing FC in 

channels with positive coefficients had the opposite effect. We only provided feedback on 

FC of channels that were conducive towards a reduction in tracing error. The volume of 

the audio feedback was proportional to the increase in FC above a baseline threshold. We 

selected the baseline threshold to be the smallest FC index for the corresponding channel 

during the PT program. The indices of the channels with negative regression coefficients 

for Options B and D are shown in Figure 5.4(a) and (b), respectively. Options A and C 

were not used for neurofeedback, due to their low statistical power of the regression 

model. Bearing in mind that the maximum value of an FC index is limited to 1, we looked 

for the regression model that provided the largest potential for increasing FC through 

neurofeedback. Option-B was the only model that showed an opportunity for the 
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participant to increase the FC indices of both contributing channels (B1 and B2) by over 

0.12 (~ 14% of the last reading). Option-D was limited to 0.05 and only available for one 

contributing channel (D2).  

We carried out three assessments of tracing performance between the end of PT 

and start of the NFT program. Motor skill assessments were also done for each of the 

eleven NFT days. After the completion of the NFT program, the participant went through 

an additional four tracing assessments to examine the short-term retention of acquired 

motor skill. Figure 5.5 shows the results of all the motor skill assessments in terms of the 

tracing error specific to Option-B in Table 5.1. Impact of guided MI on the resting state FC 

of selected channels during the NFT program is shown in Figure 5.6. FC indices are from 

resting state EEG data collected before the NFT sessions. The corresponding FC indices 

during the PT program are also included in Figure 5.6 (dashed lines) to provide a reference 

for relative changes in individual FC indices. 
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Figure 5.4 FC indices for (a) EEG data from Option-B in Table 1, and (b) those of 
Option-D. Only the two channels with negative regression coefficients 
are shown. These channels were selected for neurofeedback training. 
Option-B provided a larger potential margin for increasing FC indices 
as compared with option-D. 
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Figure 5.5 Motor assessments for Option-B with Dual-median Position-time 
selection. (*) indicates significant (p < 0.05) change in tracing 
performance. 
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Figure 5.6 Resting state FC indices in channels from Option-B. Processing was 
done on pre-training EEG data for both PT and NFT program. B1 and 
B2 are the channels with negative regression coefficients. Data from 
both PT (dashed lines) and NFT (solid lines) are included for 
comparison. (*) indicates significant (p < 0.05) change in FC indices. 

 

5.4.5. Statistical Analysis 

We began our analysis by testing for the presence of a significant (p < 0.05) change 

in motor skill during each of the PT and NFT programs. We also investigated the 

manifestation of discernable structure in the way motor skill changed during the NFT 

program. Statistical analysis was done using version 4.2.1 of R (R Core Team, 2022). 
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We fit a simple linear regression model to the motor skill assessments during the 

PT program. The slope of this regression model was significantly different from 0 (p = 

0.048) and indicated a decrease in mean tracing errors across PT sessions. Next, we fit a 

linear regression model to the motor assessments scores during the NFT program, which 

also showed a significant (p = 8.5 × 10−5) decrease in mean tracing errors. We also 

considered higher-order polynomial regression models using standard information criteria 

[84] and found that a linear fit was most appropriate.  

We probed the motor assessment scores during the NFT program for a possible 

substantive change in the relationship between motor skill and NFT sessions. This was 

done to explore the presence of change-points in the regression models, indicating 

different phases in the way NFT influenced motor skill. Processing was done by performing 

a structural change analysis using the ‘strucchange’ package in R [85]. The three F-

statistic based tests gave inconsistent conclusions (p-values: supF = 0.064, aveF = 0.073, 

expF = 0.04). Repeating this analysis using quadratic regression models gave similar 

results. We therefore concluded that there was insufficient evidence to suggest a structural 

change during the NFT program. 

Using a two-sample T-test, we found a significant (p = 7.19 × 10−7) difference 

between the mean tracing performance in motor skill assessments before the start of the 

NFT program to that of post NFT assessments (Figure 5.5). The 95% confidence interval 

reported that mean performance was lower by between 9.3 and 12.3 cm2sec after the 

completion of the NFT program. To analyze the impact of the NFT on resting state FC, we 

used an exact permutation test to check if the mean FC index was increased in the 

channels that were the focus of MI (Figure 5.6). Computation was done using the 

‘EnvStats’ package in R [86]. A preliminary investigation did not find evidence of strong 

heteroscedasticity, and permutation tests found a significant increase in peak resting state 

FC of both channels (p = B1: 0.047, B2: 0.0016 with 31,824 permutations). 

 

5.5. Discussion 

Prior research has characterized the relationship between MI, NF, and motor skill.  

Motor learning is associated with repetitive activation of relevant neural networks [87], with 
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similar structures being involved for real and imagined actions [88]. This is the rationale 

for using MI as an adjunct for acquisition of skill [89] and NF to guide the MI for activation 

of the relevant networks [90]. Our last objective in this study was to investigate the causal 

effects of changing FC on motor skill based on individualized selection of brain networks 

and synchronization frequencies. We built on the results from our objective-1 in this study 

that showed encouraging performance in estimating motor function from connectivity 

measures based on global consideration of brain areas. To this end, we chose a 

longitudinal motor skill training program for an initial identification of EEG channels that 

exhibited strong correlation between their respective FC and the change in motor skill. 

The identified channels were then specifically targeted to induce a change in their 

connectivity indices. We selected MI as a non-invasive and pragmatic technique to 

influence FC and chose neurofeedback to guide the MI that had the highest impact on the 

FC indices of the identified channels. Our results showed over 20% improvement (p = 7.19 

× 10−7) in motor skill at the end of the NFT program as compared with the skill assessment 

after PT. The results also indicated a retention of the motor skill that was measured 

through assessments spread over five days after the completion of the NFT program. This, 

however, needs to be better evaluated in future studies. 

A cursory look at the tracing performance during the NFT program (Figure 5.5) 

seems to indicate an initial learning period of about five days that did not result in a major 

improvement in motor skill. Additional NFT sessions showed a gradual decrease in tracing 

error over the subsequent NFT days. But statistical analysis of this data pointed towards 

insufficient evidence for a structural change in the regression model during the NFT 

program. However, all three F-statistic tests exhibited p-values near our significance 

threshold (p = 0.05), suggesting that future research with a larger cohort may identify a 

more complicated relationship than a single linear model. Similar learning periods were 

observed in other neurofeedback studies, but the authors did not consider the 

observations conclusive [89]. Such a structural change in how motor performance 

improves would provide consequential information for future adoption of NFT as a 

complementary therapeutic activity. Knowing that there may be a learning period during 

which a major change in skill is not to be expected can help limit the discouraging 

psychological effects from lack of progress.  

Our proposed approach is contingent on an initial physical training program that 

triggers measurable change in motor function to enable the identification of contributing 
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channels and synchronization frequencies. This may appear as an impediment towards 

the application of our methodology for individuals with limited ability to partake in the 

physical training. In such cases, we believe that the alternative approach of neurofeedback 

on generalized areas of interest, such as global connectivity with motor areas, may be an 

appropriate strategy for inducing an initial level of improvement [54]. The latter would still 

require the collection of EEG data and assessment of motor function, which could then be 

used for subsequent PLS analysis and identification of relevant channels. A shift in 

strategy from a generalized to an individualized approach can then follow these initial 

intervention steps with the potential to expedite or possibly increase further improvements 

in function [56]. Concerning the clinical application of our proposed method, resting state 

EEG data can be collected without major hindrance during the initial therapeutic activities 

as the individuals improve their motor function. Individualized contributing channels and 

frequencies can then be identified and used for NF training as a complementary activity to 

the ongoing physical therapy. 

In our design of the experiment, we used the error in tracing as a measure of motor 

skill. This represents an inverse relationship between the regression model and behavior, 

meaning that a decrease in tracing error signifies an improvement in skill. Consequently, 

increasing the FC in channels with negative regression coefficients resulted in a better 

tracing performance. This was equivalent in effect to decreasing FC in channels with 

positive regression coefficient. We could not, however, propose a mechanism to guide 

specific MI that would reduce the peak FC in a particular channel. We therefore focused 

on providing neurofeedback on channels with negative regression coefficients to help the 

participant identify the MI that resulted in an increase in FC. The model represented by 

Option-D (Table 5.1) had the lowest RMSE in estimating the tracing performance and was 

therefore the preferred model for NFT. But an examination of the maximum resting state 

FC in the channels with negative regression coefficients (Figure 5.4(b)) showed a small 

margin for increasing FC. The latter represents a ceiling effect for our models and the 

reasoning behind the selection of our second candidate model, despite its lower 

performance in estimating skill (higher RMSE ratio). Option-B provided a better 

opportunity for inducing a larger range of change in FC (Figure 5.4(a)). This ceiling effect 

might be a limiting factor for individuals without multiple options for predictive models. 

Future work in this area should investigate the proportion of participants that exhibit this 

limitation. 
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The positive regression coefficients in our model may imply a gradual development 

of specialized networks for efficient execution of motor tasks, thereby requiring a 

decreasing recruitment of those networks to perform the respective tasks [32], [13]. This 

represents an inherent dependence of our approach on the passage of time, where 

alternative networks start to contribute more towards further improvements in skill. A 

continuous development of alternative regression models as new data samples become 

available may be conducive towards indirect circumvention of the ceiling effect, by 

introducing new contributing channels with potentially larger margins for increasing FC. 

This dynamic evolution of predictive models may help extend further improvements in skill. 

It is important to clarify that we are not arguing for targeted brain stimulation through 

neurofeedback as a replacement for physical therapy or training. We instead propose our 

approach as a complementary activity that could potentially enhance and finetune the 

efficacy of established intervention strategies. This study shows promise for individualized 

targeted endogenous brain stimulation that is optimized through the use of neurofeedback. 

We are hopeful that our results would encourage a more comprehensive study of this 

methodology with a sufficiently larger number of participants and under controlled 

experimental conditions. The objective would be to investigate the potential of 

individualized stimulation in expediting or possibly increasing the effect of MI, as compared 

with the conventional approach of mental practice that focuses on the SMR activities or 

generalized connectivity measures with motor areas only. 

To summarize, we investigated the effect of individualized approach towards 

improving motor skill through influencing FC in EEG channels that were not constrained 

to the motor areas. We selected coherence at specific synchronization frequencies 

between electrode pairs (channels) as a measure of FC and used peak resting state FC 

as an objective measure for estimating change in motor skill through physical training. We 

applied PLSC analysis to detect the contributing channels and PLSR to generate a model 

for estimating change in motor skill. We then used MI as an endogenous brain stimulation 

mechanism to influence the FC in the contributing channels of the regression model. We 

provided real time feedback on the instantaneous FC in the identified channels to guide 

the MI in a way that was conducive towards improvement in skill. We showed over 20% 

improvement in motor skill through neurofeedback training alone, without any additional 

physical training. We also showed retention of improvement in skill for several days after 

the completion of NF training. 
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Chapter 6.  
 
Concluding Remarks 

Material in this chapter is extracted, reproduced, and modified with permission from the 

following papers: 

N. Riahi, V. A. Vakorin, C. Menon, “Estimating Fugl-Meyer Upper Extremity Motor Score 

from Functional-Connectivity Measures,” IEEE transactions on neural systems and 

rehabilitation engineering, vol. 28, no. 4, pp. 860-868, Apr. 2020. 

N. Riahi, R. D’Arcy, C. Menon, “A Method for Estimating Longitudinal Change in Motor 

Skill from Individualized Functional-Connectivity Measures,” Sensors 2022, DOI: 

10.3390/s22249857. 

N. Riahi, W. Ruth, R. D’Arcy, C. Menon, “A Method for Using Neurofeedback to Guide 

Mental Imagery for Improving Motor Skill,” IEEE transactions on neural systems and 

rehabilitation engineering 2022, DOI: 10.1109/TNSRE.2022.3218514. 

 

6.1. Chapter Overview 

Chapter 6 summarizes the research goals and the proposed method in achieving the 

resulting objectives. It presents the potential approach for implementation of the proposed 

methodology as well as future work to address the limitations and areas for improvement. 

 

6.2. Summary 

A large percentage of stroke survivors endure functional inadequacies throughout 

the chronic phase with psychological and financial impact to both the stroke survivors and 

their caregivers [2]. There is evidence that continual adjustment of rehabilitation strategy 

and therapeutic activities is conducive towards further recovery of function during chronic 

phase [4]. Accurate and frequent assessment of motor function would contribute towards 

https://www.mdpi.com/1424-8220/22/24/9857
https://doi.org/10.1109/TNSRE.2022.3218514
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modification of rehabilitation strategies and personalization of therapeutic activities [5]. 

Frequency of assessments, however, is hampered by the availability and expertise of 

trained examiners. This motivated our investigation for a cost-effective assessment tool 

and a complementary therapeutic activity that could help with further recovery of function 

during chronic phase. 

For pragmatic reasons, we focused on investigating the potential use of EEG-

based resting state FC for assessment, monitoring, and influencing motor function. As 

such, our study aimed to address three research questions: 

1. Is EEG-based rsFC a suitable neurophysiological measure to accurately estimate 

motor impairment in stroke survivors,  

2. can rsFC be used to estimate small incremental changes in motor function, and 

3. can we induce a change in motor function by influencing individualized FC channels 

through MI? 

and the subsequent objectives: 

1. Propose a method for estimating FMU from rsFC measures. 

2. Test the performance of the proposed method in estimating small incremental changes 

in motor function. 

3. Investigate the prospects of influencing the individualized FC measures through MI for 

improving motor function. 

The first phase of our research attempted to answer the question on suitability of 

rsFC for accurate estimation of  motor impairment in stroke survivors. In chapter 3 we 

described a method for estimating FMU from rsFC measures. We selected spectral 

coherence as a measure of FC and applied PLS algorithms to identify contributing 

connectivity channels and generated models for estimating FMU. Cross-validation 

resulted in an R2 of 0.97 and a root-mean-square error of 1.9 on FMU scale. We argued 

that the ease of use and the accuracy of estimation reduced the dependency on the 

availability of trained examiners and was conducive towards frequent assessments of 

motor impairment and personalization of therapeutic activities. 

A limitation of the resulting method from the first phase of our research was that its 

accuracy was evaluated against FMU, which measures relatively large changes in motor 
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function. Gaining large improvements in function could take a long time to achieve, which 

weakens the incentive for more frequent assessments. The second phase of our research 

aimed to address the question on whether rsFC could be used to estimate small 

incremental changes in motor function. In chapter 4 we described an objective measure 

of motor skill that could be quantified at small longitudinal changes and tested the 

performance of the proposed method in estimating incremental changes in motor skill of 

healthy participants. Our rationale for using healthy participants was that incremental 

changes in motor skill of healthy individuals were assumed to be much smaller than 

functional improvements associated with a point change in FMU. We presented a 

computer-based tracing task for motor skill training and used the spatial error in tracing as 

an objective measure of motor function. The results yielded an average accuracy of 98% 

(standard deviation of 1.2%) in estimating tracing error. Our focus was on individualized 

approach as a precursor towards application of neurofeedback for skill improvement and 

the last phase of our research. 

The ability to estimate small longitudinal changes in motor skill at short intervals 

paved the way for an investigation into bidirectional interactions between skill and FC. Our 

focus in the previous two phases was on quantifying the change in FC as a consequence 

of change in motor function. Our goal for the third phase of this study was to examine the 

reverse relationship and assess the impact of changes in FC on motor function. This was 

inline with our research aspiration for using this method to facilitate a complementary 

therapeutic activity and our objective to investigate the prospects of influencing the 

individualized FC measures through MI for improving motor function. In chapter 5 we 

described a process for the selection of individualized FC channels and real-time 

monitoring of instantaneous FC measures in those channels. Digital tracing tasks were 

used for skill training and assessment. PLS algorithms identified the most robust 

contributing channels towards correlation between the resting state FC and the acquired 

motor skill. A method for utilization of NF to guide MI as an endogenous brain stimulation 

was presented. We showed over 20% reduction in tracing error through NF training alone, 

without any additional physical training. 

Our proposed method shows promise in facilitating an individualized approach 

towards improvement of motor function that could complement the conventional 

therapeutic activities. It also has the potential for providing an accurate assessment of 
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motor impairment while addressing the challenges associated with the availability of 

trained examiners. 

6.3. Discussion 

We focused on FMU as a widely accepted assessment tool and proposed EEG-

based rsFC as an objective neurophysiological measure for estimating FMU. We used 

PLS algorithms to limit the number of EEG channels for evaluation of rsFC and the 

subsequent estimation of motor impairment. Our goal was to propose a methodology that 

not only resulted in an objective and accurate estimation of motor function, but also 

addressed the pragmatic requirements associated with cost, portability, and ease of use 

while requiring minimal operator expertise.  

We argued that our proposed approach using EEG-based rsFC could meet the pragmatic 

requirements, when considering the following:  

• EEG systems   

o require minimal amount of training to setup and operate,  

o are relatively inexpensive and can be purchased with lower number of electrodes, 

thereby making them more cost effective, and  

o are portable, which addresses some of the mobility challenges associated with 

stroke survivors.  

• Reducing the number of EEG electrodes for data collection can decrease the setup 

time, which combined with resting state analysis, can reduce the overall assessment 

time to less than 20 minutes, and potentially 15 minutes when using Dry-EEG caps. 

• Use of resting state data for estimating motor function can further improve the 

applicability of the proposed method when considering the stroke survivors’ potential 

challenges in  

o performing physical tasks that may be required for motor assessment, and 

o comprehension of instructions.  

In summary, and specific to clinical relevance and applicability, our proposed method 

may motivate more frequent assessments of motor function, thereby facilitating a 
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continual adjustment of rehabilitation strategy and therapeutic activities at shorter 

intervals. Considering these factors and a capital cost that could potentially be recovered 

after a limited number of assessments in a clinical setting, or at the point of care, the 

advantages of the proposed method may provide significant incentive for adoption and 

use. 

Another factor that influences the frequency of motor assessments is the resolution 

of assessment scores in quantifying the change in motor function. Given proper training 

of the examiners and following standardized approach, the minimum detectable change 

for FMU can be reduced to approximately 3 points, which is just under 5% of maximum 

scale for FMU assessment [9]. This is exacerbated by the subjectivity of the evaluation, 

which can cause variability in the final assessment scores [91]. Furthermore, every point 

change in FMU score corresponds to large changes in function and as such may not 

contribute towards assessment of small incremental improvements in execution of motor 

tasks [92]. This would further discourage frequent assessments since achieving a 

minimum detectable change in FMU score might take a long time to accomplish. The 

accuracy of our proposed method was evaluated by its ability to estimate FMU. It showed 

good performance with an RMSE of about 1.9 on FMU scale. The measure of accuracy 

for the method, however, is still subjective in nature as it is estimated with respect to a 

subjective assessment. We therefore proposed appraising the accuracy against a more 

objective measure of motor function that could be evaluated at modest incremental 

changes. We opted to use computer-based tracing tasks to evaluate spatial error in 

tracing. This was an objective measure of individualized longitudinal change in motor skill 

that could be quantified at small increments for healthy participants. The proposed method 

resulted in an average estimation accuracy of 98.2% (SD 1.2%). Incremental changes in 

motor skill of healthy individuals were assumed to be much smaller than functional 

improvements associated with a point change in FMU. We consequently argued that at 

this level of accuracy in estimating objective measures of behaviour, the proposed method 

might have the potential to provide intermediate valuations of change in motor function 

that are less than the minimum detectable change by FMU assessments. It may therefore 

justify more frequent assessment with the expectation of detecting changes in assessment 

scores before any discernible change in motor function. This might therefore present a 

potential for finetuning therapeutic activities at shorter intervals. Specific to clinical 

relevance and applicability, the time/resources needed for the initial collection of data 
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towards developing the individualized models may seem impractical. But upon closer look 

at the sequence of events during a therapy session, one could realize minimal impact to 

the flow of activities. The generalized model could initially be used to produce a baseline 

assessment of impairment for stratification, development of rehabilitation strategy, and 

selection of therapeutic activities. The only additional activity during the subsequent 

therapy sessions is the collection of 2-minutes resting state EEG data, which could be 

completed in 5 to 10 minutes when using dry caps. The physiotherapist provides an 

assessment of change in function that would be used along with the EEG data to produce 

the individualized model after 7 therapy sessions. The model could subsequently be used 

for more frequent objective assessments that would help the therapist to adjust and 

finetune the therapeutic activities, or potentially augment them with the application of NFT 

as a complementary approach along with the prescribed physical therapy. 

Inherent in our analysis of motor skill improvement is the dependence on passage 

of time. The stable changes in functional connectivity have been attributed to the 

development of specialized neural circuits for fast and efficient execution of tasks. These 

changes are not necessarily all associated with an increase in recruitment but also the 

opposite, indicating that some networks may have become either more efficient or less 

important for the respective motor skill acquisition [13, 32]. We can make similar 

interpretations about the sign of the regression coefficients from PLSR models to indicate 

an increase or decrease in network recruitment. The longitudinal impact of the contributing 

channels is expected to change as motor skill improves over time. Having a simple and 

cost-effective tool could facilitate an opportunity to monitor and track the time dependent 

changes in contributing channels. We expect these changes to be gradual and suggest 

that new individualized models could be developed based on a rolling reassessment of 

the FC as new samples become available. This longitudinal view of individualized 

assessments and continual adjustments of regression models might be conducive towards 

extending the improvement in motor skill through application of mental imagery (MI) and 

real-time neurofeedback. 

Specific to the use of MI as a complementary therapeutic activity, our objective 

was to investigate the causal effects of changing FC on motor skill based on individualized 

selection of brain networks and synchronization frequencies. We used a longitudinal 

physical training (PT) program for the initial identification of EEG channels that exhibited 

strong correlation between their respective FC and the change in motor skill. The identified 
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channels were then specifically targeted to induce a change in their connectivity indices. 

We selected MI as a non-invasive and pragmatic technique to influence FC and chose 

neurofeedback to guide the MI that had the highest impact on the FC indices of the 

identified channels. The approach, however, is contingent on an initial physical training 

program that triggers measurable change in motor function to enable the identification of 

contributing channels. This may appear as an impediment towards the application of the 

methodology for individuals with limited ability to partake in the physical training. In such 

cases, it is clearly better to stay with the traditional approach of applying well established 

conventional rehabilitation strategies. However, we recommend collection of resting state 

EEG data during these initial therapeutic activities without major hindrance on the 

prescribed rehabilitation strategy. The proposed method can then be used to identify 

Individualized contributing channels that correlate with the improvement in function as a 

consequence of the initial intervention activities. These FC channels can then be 

employed for NF training to provide a complementary therapeutic activity along with the 

ongoing physical therapy. Our study was not based on any a priori selection of specific 

brain areas, which allowed us to use the algorithms to identify the contributing channels 

at the sensor level. For applications where hypothesis is based on influencing specific 

brain areas for the purpose of improving function, then source level functional connectivity 

analysis would be preferred and deemed necessary to facilitate stimulation of the correct 

brain networks. 

Our approach generated multiple potential models, some of which exhibited a 

small margin for increasing FC. This represents a ceiling effect for the respective models. 

A continuous development of alternative regression models as new data samples become 

available may be conducive towards indirect circumvention of this ceiling effect, by 

introducing new contributing channels with potentially larger margins for increasing FC. 

This dynamic evolution of predictive models may help extend further improvements in skill. 

It is important to clarify, however, that we are not arguing for targeted brain stimulation 

through neurofeedback as a replacement for physical therapy or training. We instead 

propose our approach as a complementary activity that could potentially enhance and 

finetune the efficacy of established intervention strategies. 
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6.4. Limitations 

A major limitation of our study is the small number of observations for PLS analysis. 

Although data from 10 stroke survivors showed promising results in estimating FMU, the 

reliability of the regression model is a concern for PLS analysis with less than 30 

observations [72]. This is further exacerbated by the distribution of FMU scores that 

covered a broad range of impairments from a minimum score of 18 to the maximum of 49 

on FMU scale. Prior publications have shown second degree polynomial (with an inverted 

U-shape) relationship between the baseline FMU score and treatment gain [9]. This may 

be indicative of the need to develop separate models for baseline FMU scores of less than 

25 and greater than 50 [9]. The number of participants in our study did not allow for 

separation into different groups. Our study is therefore inconclusive with respect to the 

estimation performance of these group-specific models. An obvious dilemma with the use 

of different models is that the selection of a specific model depends on the score it is trying 

to estimate. We speculate that the generic model described in this study might be an 

adequate starting point to provide a high-level estimate of motor function that could guide 

the selection criteria for the more appropriate baseline dependant model. 

The limitation associated with the number of observations can be extended to the 

second phase of our research with respect to appraisal of estimation accuracy against 

objective measures of motor function. Our study with stroke survivors had identified a 

minimum of 3 connectivity channels for estimating FMU. Given the expected R2 values 

and the required statistical power of 0.8 with 3 predictors (channels), we proposed 7 

observations as the minimum number of sessions required for estimating motor skill. To 

increase the reliability of our regression models, we needed more sessions per participant. 

This, however, proved very challenging under the environmental conditions at the time. 

The impact of lower number of observations per participant may have manifested itself 

through higher p-values from permutation test. Although all p-values were less than 0.05, 

only three were at 0.01 and remaining four were closer to 0.04. This may not have been a 

problem for FMU analysis, but it is a concern for motor skill study because of multiple 

comparison. Our study was exploratory in nature and as such, we considered calculating 

the tracing error from either 30 trials (dual median option) or 90 trials (single median 

option). This is a problem for the participants with p-values of 0.04, since the corrected 

significance threshold is now at 0.025, which makes the appraisal of estimation accuracy 
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from those participants less reliable. The reasoning can be further extended to include the 

measure of skill (position-only or position-time), which would further reduce the 

significance threshold to 0.0125. But this is debatable since the two measures of skill might 

involve different networks in the brain, which effectively separates the independent 

variables. Although these higher thresholds of significance could influence our conclusions 

related to the statistical analysis of the contributing channels, it did not have a material 

impact on our conclusions with respect to the outcome of selecting those channels for the 

purpose of NFT. If the identified channels were random, then influencing their FC 

measures would most likely not have induced a significant change in motor skill. 

Nevertheless, excluding the results from four of the participants reduces our trust in the 

average estimation accuracy across the participants. We believe higher number of 

observations per participant, as well as larger number of participants for this analysis 

would have been informative towards reliability of our conclusions. Interestingly enough, 

focusing only on the results from the three participants with p-values of 0.01, increases 

the average estimation accuracy to 98.5% (from 98.2%) and reduces the standard 

deviation to 0.4% (from 1.2%). This is speculatively encouraging as it could point towards 

an expectation to have higher estimation accuracy with more reliable (lower p-values) 

individual measurements. However, deciding the required number of observations 

remains a challenge due to dynamic dependence of regression models on the passage of 

time. 

In our design of experiment for an objective assessment of motor function, we used 

the error in tracing as a measure of motor skill. This represents an inverse relationship 

between the regression model and behavior, meaning that a decrease in tracing error 

signifies an improvement in skill. Consequently, increasing FC in channels with negative 

regression coefficients would result in a better tracing performance. Conversely, 

decreasing FC in channels with positive regression coefficients would also result in 

improvement in performance. We could not, however, propose a mechanism to guide 

specific MI that would reduce the peak FC in a particular channel. Being able to devise a 

process by which the peak FC could be manipulated in a descending trajectory would 

considerably increase the dynamic range of NF guided MI. This seems intuitively 

challenging, since not recruiting a network during a prescribed NF training session might 

not be equivalent to intentionally using that network at a lower capacity or more efficiently 

(lower FC index). Being restricted to only using the channels with negative regression 
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coefficients can limit the potential application of our proposed method, since it is not 

guaranteed that such channels with enough margin for increasing peak FC can be 

identified. Specific to the limitation of this study with respect to the efficacy of targeted MI 

through NF for improving motor function, we did not have the opportunity to design a 

control condition into our experiment. This would have strengthened our claim against a 

potential placebo effect. We did, however, take steps to mitigate this through multiple 

assessments of skill without any accompanying physical or neurofeedback training. Our 

analysis of change in skill during a physical training program (phase-2 of our study) did 

not show significant change in skill during a 30-trial portion of training. It also had 

reasonably less variance compared with 15 or 8-trial assessments. We therefore limited 

our skill assessment sessions to 30 trials. We carried out assessment of skill between PT 

and NFT programs, and after the completion of NFT program, without any accompanying 

physical training. These assessments did not present any significant change in skill [Figure 

5.5], which was an indication of retention of acquired skill, be it after PT or NFT. We 

therefore concluded that the change in skill during NFT was primarily due to the application 

of MI on the selected EEG channels. However, further research under strict experimental 

conditions with the inclusion of a control group/condition that would receive NFT from 

unrelated channels is warranted and recommended for future work. 

 

6.5. Future Work 

We identified the number of observations (number of stroke survivors or number 

of skill improvement sessions) as a major limitation of this study. Assuming that the starting 

point for the recommended future work is the repeat of analysis with larger number of 

observations, we can list a few related investigations that could be informative towards 

further development of the proposed methodology. 

 

6.5.1. Regression Models 

There are two distinct characteristics of observations that need to be considered 

when generating the regression models: 



106 

• Observations that represent static measures of motor function across different stroke 

survivors, where each observation corresponds to a separate individual, and 

• Observations that represent longitudinal measures of motor function for one stroke 

survivor, where each observation is a temporal snapshot of impairment from the same 

individual.  

The former represents a cross-participant analysis with no temporal component, whereas 

the latter represents an individualized longitudinal analysis that may not apply to other 

participants. 

 

Cross Participant Analysis 

In the case of FMU, we carried out cross participant analysis with no temporal 

dependence between observations. Grouping of participants could be based on the 

population characteristic that is determined by the baseline appraisal of motor function. 

This poses no obvious constraint on the number of observations, meaning that more 

observations would result in a better representation of the populations, and presumably a 

more reliable conclusion of analysis. Here, the limitation is related to the selection of 

boundary between different populations and the resulting criteria for generation of different 

estimation models. We can use the baseline FMU scores as the ‘separation-threshold’, 

where the expected level of improvement is the deciding criteria for grouping of population 

subsets [9]. Prior studies point towards FMU scores of 25 and 50 as two intermediate 

thresholds, resulting in three separate populations and our subsequent suggestion for 

three separate regression models. Here we hypothesize that the separation of population 

based on the baseline FMU scores would result in better performing regression models 

and is warranted for further investigation with larger number of participants and wide range 

of impairment. 

Another approach for the selection of boundary between different populations is 

an empirical search for separation-thresholds. Baseline FMU measures could be 

sequentially assigned to prospectus separation-threshold in an ascending order. The 

process would be iterative, where separate models are generated for the observations on 

each side of the threshold. We speculate that the performance of the model corresponding 



107 

to the lower FMU scores will initially increase with the progressive inclusion of 

observations at higher baseline FMU scores. The score at which the performance of the 

model starts to plateau, or decrease, would represent the lower score threshold. The 

process can be repeated towards discovery of subsequent thresholds at higher FMU 

scores. The approach can be constrained to selection of two thresholds corresponding to 

the lower and upper separation boundaries, much the same as the recommendations 

based on the margin for potential improvement in function [9]. The selection of thresholds 

can also be further finetuned to include multiple separation-thresholds. We believe this to 

be a well worth study, not only to improve the performance of the proposed assessment 

method, but also informative towards the relationship between potential gain in function 

and baseline assessment of impairment. 

On a related note, our study did not have any information on the details of structural 

damage to the brain. The only available information on the stroke survivors were related 

to the affected hand, which was used to swap the EEG measures between the two brain 

hemispheres. There is merit in extending the grouping of stroke survivors to include the 

location and extent of damage to the brain. The resulting models may highlight potential 

correlation between the contributing FC channels and the structural damage.  

It is worth revisiting the dilemma associated with the selection of an appropriate 

model for assessment of impairment, where selection of the model would be based on the 

score it is designed to estimate. There are two perspectives related to this dilemma; 1) 

using the proposed method as an assessment tool in a clinical setting for patient 

stratification, and 2) using the proposed method to facilitate more frequent assessments 

towards development of individualized rehabilitation strategy. 

1) Development of a generalized model that covers a broad range of FMU scores, be it 

at a lower accuracy, may address this problem. Having a large number of observations 

can help gain a better understanding of the validity of this approach. It is worth noting 

that our analysis with 10 stroke survivors generated a better estimation of the lower 

FMU scores, when we attempted to generalize the model by reducing the number of 

predictors (contributing channels) to the two channels with the highest regression 

coefficients. This is encouraging results with respect to the development of a 

generalized model that could be used to provide an initial estimate of the FMU score 
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(at a lower accuracy) that could then be used to select a more appropriate model to 

generate the final (and presumably better) estimate of motor impairment. 

2) We can handle this perspective in a similar manner, whereby the final estimate of the 

impairment is evaluated in a two-step approach. The first step can be either through a 

generalized model (as in case-1 above), or through conventional FMU assessment, 

which will help select the appropriate model that could then be used as frequently as 

needed to personalize the therapeutic activities. Note that the two-step approach does 

not actually impact the length of each assessment. The models were presumably 

generated during the research phase with large number of participants and are simply 

applied to the same two-minutes of resting state EEG data collected from the stroke 

survivor. 

 

Longitudinal Analysis 

As part of developing a model for estimating the change in motor skill, each 

participant was asked to go through a longitudinal physical training program (tracing 

tasks). Objective measures of change in skill (tracing error) were used to build a regression 

model based on their correlation with changes in FC. We speculate that the sign of 

regression coefficients is indicative of the temporal change in functional recruitment and 

contribution of networks towards the change in skill. It is therefore plausible to assume 

that contribution of some networks diminishes throughout the training program. It is also 

plausible to assume further training introduces new contributing networks towards 

improvement of skill. This presents an inherent temporal variability in the regression 

models, meaning that some predictors can be taken out of the model while new predictors 

enter the equation. It therefore seems reasonable to expect the need to generate new 

regression models at some intervals during the progression of change in motor skill. The 

limits for these predictors are the maximum FC for negative regression coefficients 

(ceiling) and minimum FC for positive regression coefficients (floor). We speculate that 

once the predictors reach their limits of FC measures, the estimation accuracy of the 

corresponding model starts to decrease with any further improvements in skill. This 

introduces a conflicting requirement on the number of observations for the appraisal of the 

estimation accuracy. Generalization of approach towards the selection of optimal number 

of observations would be a topic that warrants future experimental study and investigation. 
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Complications with the number of new observations, however, is not necessarily 

problematic when using the regression models for the purpose of channel selection in 

neurofeedback. The available margin for increasing FC (ceiling effect) limits the number 

of new observations that can be used with the existing model before having to initiate the 

generation of a new model. The challenge in this case is the decision on the number of 

older observations to exclude before generating a new model as new samples become 

available. An interesting question is how the PLSC algorithms might deal with this temporal 

change in the contributing channels. The ceiling effect reduces the contribution of a 

channel towards change in motor function. The behaviour of this channel would therefore 

appear transitory when considering the addition of new observations without excluding the 

older samples. The transitory behaviour may reduce the robustness (z-score) of these 

channels’ contribution towards correlation with change in motor function. We evaluate the 

z-scores through bootstrap resampling and exclude channels at lower z-scores before 

using the remaining channels to generate the regression models. Investigating the validity 

of this speculated behaviour of PLSC, through simulation, can be very informative towards 

the development of algorithms for the rolling generation of new models without having to 

exclude any of the collected samples. 

The motivation for a rolling generation of new regression models is to extend the 

longitudinal lifecycle of the neurofeedback approach as a complementary therapeutic 

activity towards improvement of motor function. Generation of new models is an indirect 

circumvention of ceiling effect due to the limited margin for increasing FC. Our analysis, 

however, was only focused on channels with negative regression coefficients (-tiveCH), 

primarily because of our inability to propose an algorithm for using the FC from channels 

with positive coefficients (+tiveCH). In this study, we did not examine the auxiliary effect 

of MI on the FC of +tiveCH while reaching the maximum FC in -tiveCH.  An auxiliary 

reduction in the FC of +tiveCH would effectively increase the overall dynamic range of the 

model by the available margin for the +tiveCH (addition of floor effect), thereby extending 

the impact of targeted mental imagery beyond the ceiling effect. Study of the auxiliary 

effects of MI on the channels that were not directly targeted by NF can be informative in 

this regard. It is noteworthy that the results may also indicate a general limit for the use of 

neurofeedback as a complementary approach towards improvement of motor function. 

This is plausible, as it is intuitively unreasonable to expect a continual and unlimited 

amount of improvement in function through neurofeedback.  
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Related to the prospects of longitudinal improvements in motor function from the 

application of guided mental imagery, is the management of expectations. We have 

already touched on factors such as ceiling effect, and availability of models with enough 

margin for increasing FC. But there is another factor related to the rate of improvement in 

function during the course of NFT. A cursory look at the tracing performance during the 

NFT program (Figure 5.5) seems to indicate an initial learning period of about five days 

that did not result in a major improvement in motor skill. Additional NFT sessions showed 

a gradual decrease in tracing error over the subsequent NFT days. But statistical analysis 

of this data pointed towards insufficient evidence for a structural change in the rate of 

change in skill during the NFT program. However, the test statistics exhibited p-values 

near our significance threshold (p = 0.05), suggesting that future research with larger 

number of participants may identify a more complicated relationship than a single linear 

model. Such a structural change in how motor performance might improve, would provide 

consequential information for future adoption of NFT as a complementary therapeutic 

activity. Knowing that there may be a learning period during which a major change in skill 

is not to be expected can help limit the discouraging psychological effects from lack of 

progress. It is noteworthy that similar learning periods were observed in other 

neurofeedback studies, but inline with our study, the authors did not consider the 

observations conclusive [89].  

 

6.5.2. Hybrid Approach from Generalized to Individualized 

We already touched on the combined use of generalized and individualized models 

to assess motor impairment for the purpose of stratification. We can extend this approach 

to the implementation of NFT for intervention and therapeutic activities. As mentioned 

before, the neurofeedback approach is contingent on an initial physical training program 

that triggers measurable change in motor function to facilitate the identification of 

contributing channels and synchronization frequencies. This may appear as an 

impediment towards the application of the methodology for individuals with limited ability 

to partake in the physical training. In such cases, we believe that the alternative approach 

of neurofeedback on generalized areas of interest may be an appropriate strategy for 

inducing an initial level of improvement [54]. Continual collection of resting state EEG and 

conventional assessment of motor function could then be used for subsequent PLS 
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analysis and identification of relevant channels for generation of individualized estimation 

models. A shift in strategy from a generalized to an individualized approach can then follow 

these initial intervention steps with the potential to expedite or possibly increase further 

improvements in function [56]. Our study was a proof of concept that used only one 

participant, which makes the hybrid use of generalized and individualized strategy a 

speculation on our part. Investigation of the validity of such approach with a large number 

of stroke survivors will be informative towards the clinical application of our proposed 

method. 

 

6.5.3. Miscellaneous investigations 

In this study we used phase synchronization between different neural populations 

as a measure of functional connectivity between the respective networks. We partitioned 

the filtered EEG data from each participant into 1-second non-overlapping epochs before 

applying PLI algorithm to quantify synchronization. We averaged the instantaneous phase 

synchronization measures over each epoch and selected the peak value as a 

representative of overall synchronization (FC index). The regression model for estimating 

FMU was based on this selection of 1-second epochs. We repeated the procedure for 

different selection of epochs at 0.5-, 2-, and 4-seconds durations, none of which resulted 

in statistically significant correlation between the FC indices and FMU. We did not 

investigate the reasoning behind significant correlation at 1-second epochs only. We 

speculate that coherence occurs in bursts of certain duration and increasing the epoch 

size would reduce the maximum-coherence through the process of averaging within each 

epoch. Smaller epochs have the opposite effect, resulting in a reduction of the signal to 

noise ratio and potentially more spurious maximum-coherence. Temporal distribution of 

instantaneous synchronization measures prior to averaging may be informative towards 

understanding the relationship between the length of the epochs and the final connectivity 

index. This may also provide information on any existing relationship between the bursts 

of synchronization in the identified FC channels and whether there is an underlying 

dynamic temporal relationship between the activities of these channels. It is worth 

mentioning again that we used Morlet filters for computation of synchronization as a 

measure of Functional Connectivity, which is inherently a non-directional analysis. For 
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applications requiring directional analysis (e.g., Effective Connectivity) other wavelet 

options such as Dual Tree Complex Wavelet Transform [93] may be more appropriate.  

We did not investigate the minimum detectable change that is achievable through 

PLS approach for predicting FMU. This is an important topic for future research on this 

approach and its efficacy as an assessment tool for stroke survivors. Our expectation is 

that a measure of motor deficit that is independent of physical tasks may provide a higher 

resolution of assessment and deliver intermediate appraisal of motor function that is not 

considered to be clinically insignificant. Although the ultimate goal is to induce clinically 

significant change in function, the availability of reliable intermediate appraisal would be 

conducive towards personalization of rehabilitation strategy. A follow up study using a new 

design of experiment with objective measures of behavior that might include time, range, 

or accuracy of movement with stroke survivors might be informative in this regard. 

In closing, the large number of EEG channels and temporal samples makes neural 

networks an attractive candidate for EEG signal processing and analysis. Our choice of 

Functional Connectivity as the attribute of interest, increases the number of input features 

by more than an order of magnitude. This along with a variety of potential processing 

algorithms, makes a future investigation with deep learning (DL) approach a worthwhile 

study. Prior study using multilayer convolutional neural network with preprocessed EEG 

data (spectral and phase information) from a tapping task showed promising results in 

predicting FMU scores in 14 stroke survivors [58]. But the study did not venture into the 

interpretation of extracted features in the network. These features would be informative 

towards selection of stimulation activities for improving motor function, which was the 

focus of our study. At the time of this report, majority of DL studies had focused on 

applications that were specific to classification of EEG data for Brain Computer Interface, 

not prediction of function [94]. Use of DL for different stages of EEG processing may be a 

viable approach, focusing on improvement of signal to noise ratio, artifact removal, and 

feature extraction [95].  End-to-end processing with DL to cover artifact removal, signal 

preprocessing, feature extraction, and classification is also a desirable prospect where 

one could primarily concentrate on a single optimization model [96]. There are, however, 

pitfalls with this end-to-end approach. Without an understanding of the behavior of the 

model and what DL has learnt and used for making the respective classifications, we 

would not know whether artifacts were removed or incorporated into the optimization 

model. Interpretability would be an important aspect of future studies [97], [98], [99] for 
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applications such as the one described in this study, where the learnt features need to be 

used for development of strategies towards improving motor function. 
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