
Motion Control of a Cable Robotic LED
Light Fixture with IoT Connectivity

by

Negar Tavakoli

B.Sc., Shiraz University of Technology, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Applied Science

in the
School of Mechatronic Systems Engineering

Faculty of Applied Sciences

© Negar Tavakoli 2022
SIMON FRASER UNIVERSITY

Spring 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Negar Tavakoli

Degree: Master of Applied Science (Engineering)

Title: Motion Control of a Cable Robotic LED Light
Fixture with IoT Connectivity

Committee: Chair: Behraad Bahreyni
Associate Professor, Mechatronic Systems
Engineering

Mehrdad Moallem
Supervisor
Professor, Mechatronic Systems Engineering

Ahmad Rad
Committee Member
Professor, Mechatronic Systems Engineering

Jiacheng (Jason) Wang
Examiner
Associate Professor, Mechatronic Systems Engineering

ii



Abstract

This thesis focuses on the development of an Internet of Things (IoT) based control scheme
for a 2-degree-of-freedom Cable-Suspended Parallel Robot (CDPRS) with a Light-Emitting
diodes (LED) light panel as its end effector. It is recognized that smart and intuitive mon-
itoring and control of a greenhouses is essential for a successful yield. To this end, we
developed a monitoring and control system for light fixtures that can provide a solution to
non-uniformity of light distribution for plant growth aimed while enhancing light energy
efficiency and lowering energy cost. Ideally, the height and angle of the light panel should
adjust when a physical parameter such as plant height changes. This has not been consid-
ered in conventional non-robotic lighting systems. Furthermore, conventional non-robotic
light fixture setups cannot be used to optimize light uniformity during different stages of
plant growth. The aim of this thesis is to address the above problems while developing an
interface for data acquisition and data visualization. The proposed setup contains of two
main parts: (i) Internet of Things (IoT); and (ii) Motion control unit, which is designed
to control the translational and rotational motion of the robotic light fixture. The motion
control unit consists of a Trajectory Planner, which receives the controller parameters and
desired reference values via proposed IoT platform and trajectory controller, which is DC
motor current control or DC voltage control. The trajectory is planned based on a 5th
order polynomial motion profile, which can impose kinematics constraints such as position,
velocity and acceleration. The numerical simulations of the proposed trajectory generator
and controllers (PID and state feedback) demonstrated accurate performance in generating
the trajectories that ensure kinematic constraints are met and can be accurately tracked
using a dc motor controller. A 2-degree-of-freedom Cable-Suspended Parallel Robot (CD-
PRS) prototype was built and used to validate the performance of the motion control unit.
A digital controller was implemented using Texas Instruments CC3220S-LAUNCHXL and
was programmed using Energia Integrated Development Environment (IDE) and used to
control two DC motors using current control and voltage control methods for trajectory
tracking. Based on experimental results, the motioned control unit successfully tracked
the trajectory each time a new set point was available. The controller can perform data
acquisition and data transmission to a web server with the desired frequency.

iii



Keywords: Cable-Driven Robots, Trajectory Planning, Trajectory Tracking, DC Motor
Control, Cloud data logging, Internet of Things

iv



Acknowledgements

First and foremost I am extremely grateful to my supervisor, Prof. Mehrdad Moallem for
his invaluable advice, continuous support, and patience during my study. I would also
like to express my gratitude to my father. Without his tremendous understanding and
encouragement in the past few years, it would be impossible for me to complete my study.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

1 Background and Motivation 1
1.1 Optimization of Lighting in Agricultural Greenhouses: Overview . . . . . . 1

1.1.1 Utilization of Light-Emitting Diodes (LEDs) . . . . . . . . . . . . . 2
1.1.2 Optimizing the LED Grow Lights Intensity . . . . . . . . . . . . . . 3
1.1.3 Optimizing the LED Grow Lights Distance From Plants . . . . . . . 4

1.2 IoT-based Data Logging, Data Analysis and Modeling the Greenhouses En-
vironment: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Robotic LED Fixture Design For Light Optimization in The Smart

Greenhouse Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 IoT Platform Design in The Smart Greenhouse Setup . . . . . . . . 7

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Architectural Framework For the IoT-Enabled LED Light Fixture 9
2.1 Computing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Computing Components Type Model . . . . . . . . . . . . . . . . . . 10
2.1.1.1 Type A Computing Components Used in The Proposed Pro-

totype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1.2 Type B Computing Components Used in The Proposed Pro-

totype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



2.1.1.3 Computing Resources Embedded in Sensors and Actuators
(Type C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1.4 Non-Computing Resources (Type D) . . . . . . . . . . . . 13
2.1.2 Computing Resources Models . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Data Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Information Life-cycle Management (ILM) . . . . . . . . . . . . . . . 19
2.2.3 Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 LAMP Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Insert Data Into Database Table . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Fetch Data From Database Table . . . . . . . . . . . . . . . . . . . . 22

2.4 Analytics and Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Advantage of Data Processing at The Edge of The Network (Edge

Computing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Advantage of Data Processing Power at The Cloud: Motivating Factors 24

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Trajectory Generation for Steady-State Motion 25
3.1 Review of Current Trajectory Planer Schemes . . . . . . . . . . . . . . . . . 25
3.2 Trajectory Planer Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 State-Space Representation of The Proposed Light Fixture . . . . . 27
3.2.2 Trajectory Planner For Linear Movement (x) . . . . . . . . . . . . . 31
3.2.3 Trajectory Planner For Rotational Movement (θ) . . . . . . . . . . . 33

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Trajectory Tracker Design 36
4.1 Cascaded Trajectory Tracking Design (Motor Current Control) . . . . . . . 36

4.1.1 DC Motor Current Controller or Inner Controller Design . . . . . . 37
4.1.2 Force Controller or Outer Controller Design . . . . . . . . . . . . . . 39

4.1.2.1 PD Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2.2 Optimal State-Space Control . . . . . . . . . . . . . . . . . 42

4.2 Trajectory Tracking using DC motor voltage control Design . . . . . . . . . 44
4.2.1 Definition and calculation of vx . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Definition and calculation of vθ . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Calculating motor voltage for each motor . . . . . . . . . . . . . . . 48

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Simulation Studies 49
5.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Simulation of designed trajectory planner . . . . . . . . . . . . . . . . . . . 50

vii



5.3 MATLAB Simulations for Cascaded Trajectory Tracking Design . . . . . . 52
5.3.1 MATLAB Simulation for The DC Motor Current PID Control (Inner

Controller in Cascaded Trajectory Tracking Design) . . . . . . . . . 53
5.3.2 MATLAB Simulation for The Trajectory Tracker: Cascaded PD Con-

trol and Motor Current Control . . . . . . . . . . . . . . . . . . . . . 54
5.3.3 MATLAB Simulation for The Trajectory Tracker: Cascaded State-

Space Control and Motor Current Control . . . . . . . . . . . . . . . 56
5.4 MATLAB Simulations for The Trajectory Tracker: DC Motor Voltage Control 58
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Experimental Results 61
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.1 Sensor Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 The Internet of Things Reference Model for Motion Control . . . . . . . . . 64
6.2.1 Python script: Fetch data from sensorReadings table . . . . . . . . 65
6.2.2 Python script: Add data to desiredReferencesMotionControl database

table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Motion Control Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Current Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Voltage Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Online PID Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusion 73
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

8 C Code For The Texas Instruments CC3220S-LAUNCHXL 79

9 Configuration of LAMP Server on Raspberry Pi 82
9.1 Install LAMP Server Packages . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.1 Install Apache2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.1.2 Install PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.1.3 Install MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.1.4 Install PhpMyAdmin . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.1.5 Install and setup FTP . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



List of Tables

Table 2.1 Computing components type model defined in IEEE Standard 2413-2019 10
Table 2.2 Models introduced by IEEE Standard for an architectural framework

for the IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 5.1 Motor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 5.2 Parameters of the light fixture . . . . . . . . . . . . . . . . . . . . . . 52
Table 5.3 Parameters of the motor current PID controller . . . . . . . . . . . . 53

Table 6.1 Parameters of the DC motor . . . . . . . . . . . . . . . . . . . . . . . 63

ix



List of Figures

Figure 1.1 Light spectrum output of a LED as a light source and light-wave
used by plants during different growing stage . . . . . . . . . . . . . 3

Figure 1.2 Process flow diagram of data acquisition, transmission and control
unit for the proposed IoT application . . . . . . . . . . . . . . . . . 7

Figure 2.1 Turbo Geared Motor Gearbox DC 12V Motor (40 RPM) . . . . . . 13
Figure 2.2 Computing resources model in the proposed prototype . . . . . . . 16
Figure 2.3 Flowchart of switching between WiFi clients in control unit imple-

mented on CC3220S-LAUNCHXL . . . . . . . . . . . . . . . . . . 17
Figure 2.4 Communication diagram describing the relationship between data

acquisition, transmission and controller . . . . . . . . . . . . . . . . 18
Figure 2.5 Created tables in the database . . . . . . . . . . . . . . . . . . . . . 19
Figure 2.6 Table structure of the sensorReading table . . . . . . . . . . . . . . 20
Figure 2.7 Table structure of the desiredReferencesMotionControl table . . . . 20
Figure 2.8 Software packages and communication protocols in the proposed setup 22
Figure 2.9 Desired reference values in the desiredReferencesmotionControl table 23

Figure 3.1 Free body diagram of the proposed cable-driven robotic light fixture 26
Figure 3.2 System described by state variables . . . . . . . . . . . . . . . . . . 27
Figure 3.3 Forces diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.1 Block diagram of a cascaded controller. . . . . . . . . . . . . . . . 36
Figure 4.2 Block diagram of a feedback system with a PID controller. . . . . . 37
Figure 4.3 Model of a DC motor . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 4.4 Second Controller (current control loop) in the cascaded trajectory

tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 4.5 Control values and force diagram . . . . . . . . . . . . . . . . . . . 39
Figure 4.6 Block diagram of the implementation of observer and PD force con-

trol for the trajectory tracker . . . . . . . . . . . . . . . . . . . . . 41
Figure 4.7 Block diagram of the cascaded SQL force controller and PI current

controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 4.8 The electric equivalent circuit of the armature and the free-body

diagram of the rotor . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



Figure 4.9 Motor’s angular velocity to linear velocity of the light panel conversion 45

Figure 5.1 The block diagram of the simulink’s digital clock . . . . . . . . . . 50
Figure 5.2 Trajectory planner block in Simulink . . . . . . . . . . . . . . . . . 51
Figure 5.3 Trajectory generation of a linear path from 0.5m to 0.8m . . . . . . 51
Figure 5.4 Trajectory generation of a rotational path from 0.1rad to .15rad . . 51
Figure 5.5 DC motor block diagram . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 5.6 MATLAB Simulink for close loop DC motor current control . . . . 53
Figure 5.7 Step response of DC motor PID current controller . . . . . . . . . . 54
Figure 5.8 Cascaded height and angle control: PD as the outer controller . . . 54
Figure 5.9 Trajectory tracker using cascaded PD controller and motor current

controller (Height Response) . . . . . . . . . . . . . . . . . . . . . . 55
Figure 5.10 Trajectory tracker using cascaded PD controller and motor current

controller (Angle Response) . . . . . . . . . . . . . . . . . . . . . . 55
Figure 5.11 Cascaded height and angle control: LQR as the outer controller . . 56
Figure 5.12 Trajectory tracker using cascaded LQR controller and motor current

controller (Height Response) . . . . . . . . . . . . . . . . . . . . . . 57
Figure 5.13 Trajectory tracker using cascaded LQR controller and motor current

controller (Angle Response) . . . . . . . . . . . . . . . . . . . . . . 57
Figure 5.14 MATLAB Simulink for trajectory planner and trajectory tracker:

DC motor voltage control . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 5.15 Trajectory tracker using cascaded LQR controller and motor current

controller (Height Response) . . . . . . . . . . . . . . . . . . . . . . 59
Figure 5.16 Trajectory tracker using cascaded LQR controller and motor current

controller (Angle Response) . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.1 The proposed experimental setup for motion control unit . . . . . . 61
Figure 6.2 The purposed experimental setup block diagram . . . . . . . . . . . 62
Figure 6.3 IoT platform used in the proposed setup . . . . . . . . . . . . . . . 64
Figure 6.4 IoT system block diagram used in the proposed setup . . . . . . . . 64
Figure 6.5 Python function to fetch data from sensorReadings database table 65
Figure 6.6 Python function to add data to desiredReferencesMotionControl

database table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 6.7 Desired references motion control database table with updated de-

sired values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 6.8 Circuit diagram of nand gates used to reduce number of PWM pins 67
Figure 6.9 Toshiba Quad 2 input NAND gates(74HC00AP) . . . . . . . . . . . 68
Figure 6.10 Truth table of NAND gate . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 6.11 Circuit diagram of current control: Terminal Configuration and Func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



Figure 6.12 Trajectory tracker using cascaded PD controller and motor current
controller (Height Response) . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.13 Trajectory tracker using cascaded PD controller and motor current
controller (Angle Response) . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.14 Circuit diagram of Voltage control: terminal configuration and func-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 6.15 Trajectory tracker using DC motor Voltage Control (Height Response) 71
Figure 6.16 Trajectory tracker using DC motor Voltage Control (Angle Response) 71
Figure 6.17 Database table containing updated desired PID values . . . . . . . 72

xii



Chapter 1

Background and Motivation

This chapter provides background and motivation for this study. Greenhouse farming can
increase crop production by providing optimal climate conditions needed for plant growth.
This chapter presents an introduction to the current monitoring and control methods used
in agricultural greenhouses and utilization of innovative new technologies such as robotics,
drones, LED lighting and monitoring sensors. Data acquisition is the first step of monitor-
ing and control. To address the challenges of local Data Acquisition Systems (DAS) and
accelerate the data collection, internet connectivity is employed in data acquisition appli-
cations making Internet of Things (IoT) enters agriculture field. This chapter also provides
a discussion of IoT solutions for the next generations of precision agriculture is reviewed.

1.1 Optimization of Lighting in Agricultural Greenhouses:
Overview

Greenhouses provide an infrastructure capable of protecting plants from harsh environment
and external interference. Also, it can provide a structure where environmental variables
can be logged, monitored and controlled. This results in plants growing under optimum
conditions and maximizes their growth potential. In [34] advances in greenhouse automa-
tion and controlled environment agriculture is reviewed. Automation can focus on various
areas of greenhouse management such as: (i) automatic detection of pests [25], [45] and
greenhouse pest and disease management using optimization of lighting parameters [22],
[49], (ii) auto-optimization plant watering and fertilizing [44], [48] and (iii) optimization
control for greenhouse light environment [26], [50].

The growing challenge of food security when all people have sufficient, safe and nutritious
food for an active and healthy life and the fact that Canada heavily relies on international
imports to fulfill fresh vegetable demands is resulting in the greenhouse vegetable sector
being Canada’s fastest-growing horticulture sector [23]. Artificial light is required to aug-
ment natural light for year-round greenhouse fruit and vegetable production due to the

1



poor natural light conditions throughout the winter. During times of low solar radiation,
greenhouses utilize additional lighting to increase crop production. Supplemental lighting
enhances the amount of light in the greenhouse and balances the greenhouse’s energy [16].

High-Pressure Sodium (HPS) and light Emitting Diodes (LED) are mainly studied in
greenhouses as supplements to sunlight. In [35] radiation incident to and absorbed by a leaf
under high pressure sodium and light emitting diodes with equal photosynthetic photon
flux as radiation sources is studied. Results indicate that employing LED technology will
end in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures.
In [17] an experiment is conducted to investigate the effects of far-red LED light on plant
growth and fruit yield of greenhouse tomato. This study shows beneficial effects of low
dose of far-red light in early stage of fruit production of greenhouse tomatoes grown under
HPS lighting. The fruit harvested from the plants exposed to far-red light also had higher
carotenoid content.

Optimization of lighting can increase photosynthesis rates in plants during cultivation.
In [21] two experiments were conducted to investigate the effects of photosynthetic flux
density on a dwarf tomato cultivar (’Micro-Tom’) at the vegetative growth stage. Based on
the results, higher Photosynthetic Photon Flux Density (PPFD) causes a higher dry mass
and a lower specific leaf area, but it does not affect the stem length. In [46] an experiment
is performed to quantify the effect of LED inter-light and artificial HPS top-light on fresh
and dry matter production and fruit quality of greenhouse tomatoes. The results show that
the effect of additional LED inter-light was less at higher levels of HPS top-light.

Another application of lighting control is in the area of energy management and daylight
harvesting. In [5] an optimisation process is design and implemented which significantly
decrease the energy demand of an Indoor Vertical Farms (IVF). This achieved using elec-
tricity load shifting on IVFs resulting in a 16–26% reduction of artificial lighting costs for all
months throughout the year. A review analysis presented in [11] seeks to overview current
Controlled Environment Agriculture (CEA) practices as well as potential energy efficiency
technologies that can enhance the sustainability and the profitability of the indoor farming
industry.

1.1.1 Utilization of Light-Emitting Diodes (LEDs)

Utilization of Light-Emitting Diodes (LEDs) in controlled growth environments have come
a long way in the past decade. High energy efficiency, long life time, controllable light
intensity, controllable light color and capability to employ various illumination pattern are
significant characteristics of LED-based illumination light sources. Therefore, it can be seen
that they replace incandescent and gas discharge lamps in near future especially when it
comes to vertical farming as LED’s do not generate lots of heat. In [4] spectral characteristics
of blue, green, red, far-red, and blue and red LED lights is studied during plant cultivation.
The efficiency of LED technology has been studied and demonstrated in many experimental

2



Figure 1.1: Light spectrum output of a LED as a light source and light-wave used by plants
during different growing stage

studies. In [38] an innovative supervisory and predictive control strategy to optimize the
energy performance of the artificial lights of greenhouses is introduced in which a 50W LED
is used as a light source.

Light’s features such as light intensity, light’s spectral power distribution and light
uniformity are all environmental factors affecting plant growth. According to Erik Runkle,
professor and floriculture extension specialist in the Department of Horticulture at Michigan
State University, light uniformity problems still needs to be addressed especially in indoor
and vertical farming [6]. Fig 1.1 shows the light spectrum output of a LED as a light source,
which ranges roughly between 400 and 700 nanometers in visible wavelength. Plants mostly
use the blue spectrum for the vegetation stage and the red spectrum for the flowering stage
while mostly reflecting green light.

1.1.2 Optimizing the LED Grow Lights Intensity

Photosynthesis is caused by wavelengths in the range of Photosynthetic Active Radiation
(PAR), rather than by electromagnetic radiation throughout the entire spectrum of light.
PAR is the visible spectrum of 400nm-700nm. The light density a plant receives over time is
represented by Photosynthetic Photon Flux Density (PPFD), which measures the amount
of light (PAR) a plant receives over time. PPFD is measured in micro-moles [of photons]
per square meter per second.

ppfd = µmol

meter2sec
(1.1)

PPFD heat maps usually provided by LED grow light manufacturers are used to determine
the strength of LED light by showing PPFD readings at certain spots beneath the grow
light. LED grow light’s PPFD maps for the Luxx lighting 1000w DE HPS fixture can be
seen on the product knowledge page [2]. Using an Ulbricht Sphere, measurements of 49-
point tests was logged for three different distances from crops which illustrate the reverse
relation between the distance of light source and the area to be illuminated.

3



Optimization of light intensity plays a major roll in energy optimization. Without
enough light, a plant cannot photosynthesise fast enough regardless of suitable amount of
water, carbon dioxide and other resources. Increasing the light intensity increases the rate
of photosynthesis. The maximum rate is determined by the other factors involved such as
concentration of carbon dioxide and temperature [28]. The intensity of light at different
distances from a light source can be described using the inverse square law meaning that
the intensity of light is inversely proportional to the square of the distance from the source.
Therefore, when the light is moved 2.5 times as far from the plant it will receive %16 of
the energy. Light intensity can be calculated using the formula in 1.2 where distance is
measured in metres.

LightIntensity ∝ 1
distance2 (1.2)

1.1.3 Optimizing the LED Grow Lights Distance From Plants

Light intensity is inversely proportional to square of distance from source. Hence, having a
dynamic distance from light source can play an important roll in energy and cost optimiza-
tion. Using 1.2 we can see that when the light is moved two times closer to crops, the duty
cycle of light fixture can decrease four times while providing the same light intensity. Most
LED manufactures such as Urbanvine provide the light intensity information in different
heights according to the wattage of their led grow light[1]. It should be mentioned that
LED light spectrum can be overwhelming to lots of plant species if it is too close to plants
causing light bleaching. This impacts negatively the plant’s growth. In practice, optimized
distance in which the effectiveness and safety is considered, is dynamic during plant growth.
Therefore, monitoring and controlling the LED’s distance from plants has significant effect
when it comes to energy optimization of greenhouse while making sure that plants get the
power they need for photosynthesis. Flexibility in the reflector angle of the fixture, which
can be changed to direct the light spread to the desired side of the plant canopy can be
used to address the light uniformity issue. Also, the advantages of angled indoor plant light
are emphasized in terms of eliminating light hot spot, decreasing energy consumption by
reducing light loss, which is a takeaway from being able to place the grow lamps closer to
plants without risking burning them. Some works are done regarding this solution, which
are mentioned in following paragraph.

One solution is proposed by Gualala Robotics Inc. where light sources (grow lamps)
are assembled on rails and therefore can be located anywhere along the rail enabling 30%
more area coverage per grow lamp compared to stationary light fixture. Providing light
uniformly is another achievement of using this configuration [24].

Jump Start Standing Lighting System (JSFC2KT) manufacture by Hydrofarm is an-
other product which is designed to offer flexible angle adjustment to favor one side of the
plant canopy [36]. A drawback of these systems is that the adjustment of the grow light is

4



manual, which requires the system to be unplugged. The other drawback is lack of a smart
algorithm based on sensory feedback to determine the optimized height and angle of the
light source in each grow stage while considering other environmental factors.

1.2 IoT-based Data Logging, Data Analysis and Modeling
the Greenhouses Environment: Overview

Modeling and optimization of environment in greenhouses as well as crop models are es-
sential for enhancing crop production as they have a noticeable effect on environmental
management and control efficiencies. In [8] several types of models used in greenhouse
environment’s simulation and tuning methods to compute their parameters are reviewed.
[18] has conducted a literature review on emerging areas and sophisticated controlled en-
vironment agriculture projects like the use of vertical farm and building-integrated indoor
agriculture focusing on their environmental impact, energy use and efficiency.

The process of sampling signals that measure real-world physical phenomena and convert
them into a digital is called Data Acquisition. Data Acquisition Systems (DAS) typically
convert analog profiles into digital values for processing. In [9] Methods of Manufacturing
Data Acquisition for Production Management is reviewed. Data provided by sensor stations
and Data sets with greenhouse environmental inputs such as temperature, radiation, CO2
levels, RH, and etc as quantities paired with known outputs (actual yield, growth, and water
use), are building blocks of developing greenhouses environment models. In [10] Neural
Network (NN) models were developed. Their work showed an improvement in growth
model where the current day plus the following day data where used rather than each day
separately. [33] shows the importance of having access to reliable, well stored and organized
data for imputing missing tabular data collected from greenhouses. Sensor errors and other
various data-loss conditions will end in missing data, which have a negative impact on
machine learning algorithms modeling the greenhouse micro-climate.

[42] has conducted a review centring around communication technologies, its challenges
and some specific issues associated with IoT-based smart agriculture. Mentioned paper has
proposed categories of recommendations for IoT applications in smart agriculture.Internet
of things, having both the capacity to integrate with data collection, monitoring and con-
trolling side of the automation as well as interacting with internet can open the possibilities
to improve the extracted information and enhance the understanding of the process. Inter-
net of things infrastructure makes the ideas of smart home, smart plants and other smart
services happen by connecting physical and virtual world in a reliable way. Internet of
things being a concept for getting the data from any Wireless Sensor Network through the
internet and providing real time monitoring and/or controlling has a significant place in
greenhouse environment optimization.

5



In [30] the state-of-the-art research on IoT systems for optimized greenhouse environ-
ments is reviewed. In [13] a comprehensive Survey of Internet of Things for the future
of smart agriculture is conducted. Another review is written in [39] in which a compari-
son between different wireless technologies in IoT-based environment monitoring systems
is conducted. In [29] a study is conducted to review the potential application of sensors
used in agriculture, to describe the layers of IoT in agriculture, discuss the existing sensing
approaches for monitoring the agricultural parameters effectively, and deliver the general
challenges encountered while implementing IoT systems. In [20] an emulation tool is de-
veloped which simulate the scenario in which the Kalman filter algorithm predicts the
greenhouse sensor data. Then, the optimal parameters are computed and finally, the opti-
mized parameters are utilized by the control unit to regulate the actuator’s state to meet
the desired settings in the indoor environment.

Designing accurate decision making and management algorithms resulted from sharing
and collaboration of data and other resource can be seen in different agriculture applications.
In [15] a monitoring system is proposed to detect the abnormal stress situations. [43] de-
crease the risk of agronomic and eco-nomic losses by early detection of pests by employment
of Artificial Neural Networks (ANNs) and Adaptive Neuro Fuzzy Inference System (ANFIS)
model in a rose greenhouse. In [30] a review is presented on state-of-the-art research on IoT
systems for optimized greenhouse environments.

When thinking about IoT we should consider different areas such as data acquisition,
data fusion, data storage, analytic and computing power as well as their physical location.
Connection between sensory devices, actuators, and other embedded devices located in
many physical locations to an internet network with potential of data storage, data exchange
and data analysis is the main goal of IoT.

1.3 Thesis Objectives

Optimization of lighting can increase photosynthesis rate in plants during cultivation. The
objectives of this thesis is to enable the light sources in smart greenhouses to react automat-
ically to environmental features as well as growth profile. Besides, additional IoT-enabled
feature will make it feasible for users to access the logged data for control and visualization
purposes. Cloud-based data logging and cloud-based analytical services are introduced to
monitor daily behavioral profiles.

1.3.1 Robotic LED Fixture Design For Light Optimization in The Smart
Greenhouse Setup

One important criteria of a reliable lighting system is light uniformity. The current light
fixtures used in greenhouses have a few drawbacks, which can be addressed using intelligent
systems. A drawback of these systems is that the adjustment of the grow light is manual,

6



Figure 1.2: Process flow diagram of data acquisition, transmission and control unit for the
proposed IoT application

which requires the system to be unplugged and re-adjust. Other drawback is the lack of a
smart algorithm based on sensory feedback to determine the optimized height and angle of
the light source in each grow stage.

The objectives of this research is to address these issues. Designing an IoT-based motion
control of a cable robotic LED light fixture is a solution to light optimization based on plant
grow profile.

1.3.2 IoT Platform Design in The Smart Greenhouse Setup

Smart greenhouses are responsive to the weather condition. With utilizing sensors, ac-
tuators and microchips they can collect, analyze and manage the data for visualization
and controller purpose. Achieving higher grow yield while the resources are being fully
optimized, is the main goal of automation in smart greenhouse. Smart greenhouse uses In-
ternet of things (IoT) during operation to connect a variety of subsystems, which typically
operate independently, so that these systems can share information to optimize growing
performance. Designing and implementing of an IoT platform with efficient and secure
connection between the sensory nodes, analyzing units and database plays a key role in
achieving this goal.

In the proposed system, data acquisition layer interfaces with physical sensory nodes
and transfer collected data into a web server and a data base. Collected data will fed to an
analytic unit, which outputs the desired height and angle for the light source based on the
gathered data as well as previous knowledge about plant’s grow profile. The motion control
unit will request the desired set point (with optional frequency) via Hypertext Transfer
Protocol (HTTP) request. Trajectory planer unit of the motion control unit will calculate
a motion trajectory and the control unit is in charge of tracking this trajectory.

Fig 1.2 shows the process flow diagram of the Data acquisition, transmission and control
for IoT applications.

7



1.4 Thesis Structure

This paper is consisted of seven chapters with topic related information and divided into
two main sections: (i) IoT Platform Design and (ii) Robotic LED Fixture Design for a smart
greenhouse. The First Chapter gives an overview of the thesis main goals and objectives and
methodology, as well as introduction to the concept, background and motivation. Moreover,
this chapter focuses on the introduction of some of the most important principles. A more
detailed overview of literature, research methods, and online resources used are placed in
this chapter.

In the Second Chapter, we will discuss the IoT concept and the platform design as well
as data acquisition components, data handling and data management and analysis system.
In particular, the Internet of Things section of this thesis outlines LAMP stack framework
to enable the Data Management Systems using a server to host dynamic websites in, which
the site data is stored in a MySQL database and dynamic content is processed by PHP, is
introduced.

Interaction between this IoT platform and the motion control unit is also talked about
where the server is able to provide the reference value for the motion controller via HTTP
request. The thesis presents an IoT platform to efficiently answers the queries regarding
desired values for the motion control unit.

Chapter 3 provides us with the steady-state representation of the light fixture. Theo-
retical part of Trajectory Generation for steady-state motion is provided in this section. In
the next chapter Chapter Four cascaded trajectory tracking design using DC motor current
control as the inner controller and both PD control and Optimal State control as outer con-
troller is discussed. Also a DC motor voltage control is introduced for tracking the motion
trajectory.

Chapter 5 provides us with the simulation study and Chapter 6 provides us with the
practical and experimental results. Finally, in Chapter 7, summarized theoretical and prac-
tical parts and the comparison between different trajectory tacking methods is talked about.
Information about the current challenges and issues, which technological sectors face and
what could potentially create an issue with concept implementation in the future is also
placed in this chapter.

8



Chapter 2

Architectural Framework For the
IoT-Enabled LED Light Fixture

In this chapter the concept of Internet of Things (IoT) in a greenhouse is introduced.
IoT-enabled smart greenhouse uses IoT during operation to connect its subsystems and
enabling them to share information among themselves. This will end in optimized growing
performance. This chapter introduces the subsystems used in the proposed prototype. Also,
we can see how by utilizing sensors, actuators and microchips we can collect, analyze and
manage data for visualization and control purposes.

2.1 Computing Resources

Internet of Things (IoT) is the larger vision of Machine-to-Machine (M2M) technology,
which enables devices to communicate with one another. By employing M2M, mobile
devices, embedded processors, smart sensors, actuators, and embedded processors can work
together, talk to one another, take measurements, and make decisions, often bypassing
human interaction [47]. In M2M, devices became connected, enabling IoT development and
IoT infrastructure. On this foundation, IoT is built and developed.

According to the 2020 release of IEEE standard for an architectural framework for the
Internet of Things (IoT), a simple definition of an IoT system is “a system of entities (includ-
ing cyber-physical devices, information resources, and people) that exchange information
and interact with the physical world by sensing, processing information, and actuating.”
[4]. IEEE standard 2413-2019 for an architectural framework for the internet of Things
introduces 4 computing components type and 3 computing resources model. Comput-
ing components types are type A standing for highly centralized computing components,
type B standing for computing components connected to the network, type C standing
for computing resources embedded in sensors and actuators and type D, which stands for
non-computing resources in IoT architectural framework.

9



Type Definition

Type A Highly centralized computing components such as data centers and cloud
servers

Type B Computing components (other than Type A and Type C) connected to the
network, for instance, gateways, PLCs, edge-cloud servers, and PCs

Type C Computing resources embedded in sensors and actuators
Type D Non-computing resources

Table 2.1: Computing components type model defined in IEEE Standard 2413-2019

Three computing resources models are: (i) centralized computing resources model, (ii)
distributed computing resources model and (iii) combination of the two models.

2.1.1 Computing Components Type Model

Table 2.1 illustrate the name and summarize the main definition of each of the four com-
ponent type. Details of the used components for each type are discussed in following
subsections.

2.1.1.1 Type A Computing Components Used in The Proposed Prototype

• Raspberry Pi: Raspberry Pi was created by the Raspberry Pi Foundation and
Broadcom. Although the initial objective of the Raspberry Pi project was to supply
cheap tools for educating essential computer science in schools, it became much more
well known for employments in robotic and mechanical technology. Raspberry pi is a
single-board computer with a Linux-based operating system. Raspberry pi acts as a
Type A in the presented architectural framework. The connection between Raspberry
Pi and other computing components is wireless and through internet. This is achieved
by enabling the Raspberry pi to perform as a web server.

In this thesis, LAMP stack (Linux, Apache, MySQL, PHP/Perl/Python), which is a
popular web server software is implemented on the Raspberry Pi. For a web applica-
tion to work smoothly, it has to include an operating system, a web server, a database,
and a programming language. LAMP’s components are completely interchangeable.
In the proposed stack, LAMP has Raspbian as its Linux operating system, Apache2
as its web server software , MariaDB as its database and both Hypertext Preprocessor
(PHP) and Python as the used programming language.

2.1.1.2 Type B Computing Components Used in The Proposed Prototype

The Type B component in this prototype has two role: (i) Data acquisition transmission
systems (DATS) and (ii) Controller. Data acquisition transmission systems is the layer
that interfaces with the physical sensory nodes or other data acquisition devices, which are

10



employed to measure quantities that describe different physical features in the environment
such as light intensity, temperature, pressure, force, sound etc. Collected digital or analog
raw data from sensory nodes usually in the form of electrical attributes (such as voltage,
current, resistance) are fed as input to DATS, which goes through the first layer of data
pre-processing by being converted to a manageable format.

Most well-known data acquisition boards can be named as: (i) Programmable Logical
Controller for industrial and harsh environment and (ii) microprocessors for lighter applica-
tions, which are able to receive raw data and convert it to digital signals, which is readable
for the processor unit. Different Sensory Network (SN) are employed in DATS based on
applications required solutions and different protocols are used to standardize the commu-
nication. Outputs from sensors (nodes) need communication interface to pass the raw data
to the central node where the pre-processing starts. Required Interface can be wired or
wireless, which categorize the network to Wire and Wireless Sensor Network (WSN) or
combination of both depends on method of sending data.

Wireless nodes are equipped with radio transceiver, which makes it possible for them to
communicate via radio waves (wireless). Wired nodes usually need two pair of wire one for
clock and one for data as they use serial communication and I2C protocol.

• SimpleLink Wi-Fi CC3220S-LAUNCHXL Wireless Microcontroller Launch-
Pad:

A SimpleLink Wi-Fi CC3220SF Wireless Microcontroller LaunchPad is a computing
component used as a type B in this prototype, which oversees data gathering and
controlling the process. This node is in the grow chamber and its I/O ports are con-
nected to affordable wired sensors such as RGB sensor, Humidity sensor, temperature
sensor, ultrasound sensor and gyroscope. In addition, wirelessly and using Represen-
tational State Transfer (REST) design the gathered sensory data is being send to the
data center every 15 minutes. This component act as a client for the LED panel as
well and continually send HTTP request to the LED panel, which have the actuators
(LEDs) embedded in it. Using multitasking feature of CC3220S-LAUNCHXL we can
send HTTP request to the LED server every 1 second and HTTP request to Database
every 15 minutes. This board have the ability to communicate with sensor nodes
through all the well known communication protocols.

– Protocols:
Protocols play important rules in data acquisition and data exchange process.
Different protocols are designed for each layer of data transaction in the network,
which act as quality assurance and practically, they are set of rules, which are
being used in data communicate. Network protocols for the Internet of things
in which embedded devices use Internet to exchange information do not need

11



to be as complex as network protocols for the Internet of people. As an exam-
ple, transport layer of TCP/IP (Protocol at the heart of the internet) has two
transport protocols, Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP), being used for human interaction and Domain Name System
(DNS and DHCP) respectively. UDP being a simpler protocol, can meet the
requirement of transport layer for IoT. It is used for sensor data acquisition and
remote control in transport layer of IP Smart Objects Protocol Suite. It is also
showing better performance for real time data applications. Internet of things’
Datalink, Network, Transport and Application Layer use sets of protocols like
IEEE 802.15.4e MAC and PHY, 6LoWPAN, IPV6/IP adapted routing protocol,
UDP, DTLS, CoAP, MQTT, JSON, XML, etc. respectively.
Criteria which are important in IoT industry’ protocols can be listed as: quick
and efficient cooperation between things, using less programming, power, mem-
ory and data transmission.

∗ Protocols for IoT’s Datalink Layer : IEEE 802, ZigBee
∗ Protocols for IoT’s Network Layer : IP version 4 (IPv4), IP version 6 (IPv6),

Thread, 6LoWPAN
∗ Protocols for IoT’s Transport Layer : UDP, DTLS
∗ Protocols for IoT’s Application Layer: CoAP, Message Queuing Telemetry

Transport (MQTT), MQTT-SN, STOMP, HTTP

2.1.1.3 Computing Resources Embedded in Sensors and Actuators (Type C)

Some sensory devices have embedded digital processor located in them, which can provide
accurate results with low latency by offloading both timing requirements and processing
power from the host processor and save valuable MIPS on the host processor for use in the
application and simplify the software architecture.

• MPU-6050 GY-521 Accelerometer and Gyroscope: As the first integrated six-
axis motion tracking device, the MPU-60X0 combines a Three-axis gyroscope and
3-axis accelerometer in a compact 4x4x0.9 mm package.

The MPU-60X0 is comprised of the key blocks and functions such as three-axis Micro
Electro-Mechanical System (MEMS) rate gyroscope sensor with 16-bit Analog-to-
Digital Converters (ADCs) and signal conditioning, Digital Motion Processor (DMP)
engine, Sensor Data Registers, Interrupts, Primary I2C serial communications inter-
faces, Auxiliary I2C serial interface for third party magnetometer and other sensors.
MPU-60X0 is equipped with a Digital Motion Processor (DMP) that handles the
computation of motion processing algorithms. DMP acquires data from accelerome-
ters, gyroscopes, and third party sensors such as magnetometers, and processes them.

12



Figure 2.1: Turbo Geared Motor Gearbox DC 12V Motor (40 RPM)

The MPU’s external pins are accessible to the DMP, which can be used for interrupt
generation. The resulting data can be read from the DMP’s registers or buffered [3].

• Time-of-Flight Ranging Unit (VL53L0X) as a Distance Sensor: Digital pro-
cessing is the last operation inside the ranging sequence that computes, validates or
rejects a ranging measurement. Part of this processing is performed internally while
the other part is executed on the host by the API. At the end of the digital processing,
the ranging distance is computed by VL53L0X. Functions such as signal value check
(weak signal), cross-talk correction (in case of cover glass), final ranging value compu-
tation, offset correction are performed on the device itself. The host can perform some
extra processing to improve range accuracy, for example, rolling average, hysteresis
or any filtering.

2.1.1.4 Non-Computing Resources (Type D)

• High Torque Turbo Geared Motor Gearbox DC 12V Motor (40 RPM):
DC motor transforms electrical energy into mechanical energy. The motor used in
prototype is Gear DC motor with micro-turbine worm in witch changing the wiring-
connection results into motor rotation change. Turbo worm geared motor with self-
lock, that is, in the case of motor without electric, the output axis is fixed. This is a
DC 12V voltage with 40rpm. The gearbox output shaft direction of the motor shaft
is arranged vertically. The body of the motor output shaft relative to the general
direction of gear motor short, Widely adapted to different installation dimensions.

• TA7291P IC Motor Driver Toshiba: The TA7291P is a Bridge Driver with output
voltage control. Bridge driver is an electronic circuit that switches the polarity of a
voltage applied to a load. It often used in robotics and other applications to allow
DC motors to run forwards or backwards.

13



• Logic ICs HD74LS00P: The HD74LS00P is a logic gate contain four independent,
2-input NAND gates. The devices perform the Boolean function Y = A.B or Y =
A + B in positive logic.

14



2.1.2 Computing Resources Models

IEEE Standard 2413-2019 introduces three computing resources models. These models and
their block diagrams are illustrated in table 2.2. Utilizing the mentioned IEEE Standard,

Model Model’s Block diagram

Centralized computing resources model

Distributed computing resources model

Combination of the two models

Table 2.2: Models introduced by IEEE Standard for an architectural framework for the IoT

the hereby prototype has adapted the combination of the centralized computing resources
model and distributed computing resources model. Fig 2.2 shows the computing resources
in our setup.

In the proposed arrangement, a CC3220S-LAUNCHXL will become a client for two web
servers. One is the web server on Raspberry Pi and the other one is the web server on the
LED light panel.

• Raspberry Pi client: Raspberry Pi client requests the references for the motion
control unit and post the sensor readings to data base for data storage.

15



Figure 2.2: Computing resources model in the proposed prototype

• LED panel client: LED panel client post desired light intensity to the LED panel

It should be mentioned that the Texas Instrument CC3220S-LAUNCHXL cannot be
the client for both servers at the same time. Fig 2.3 shows the logic flowchart for switching
between two servers. Communication diagram perfectly describes the relationship between
these computing resources (data acquisition, transmission and controller). As can be seen,
a desired value is retrieved using Raspberry Pi HTTP request and is given to the controller
to create a Pulse-width modulation (PWM) signal in order to produce desired output signal
to control the motor’s speed. PWM is a method of controlling analog devices with a digital
output. PWM simulates an analog result by applying power in pulses, or short bursts of
regulated voltage. Sensors capture physical features of the movement and environment and
transfer them to acquisition unit, which will post these readings to the Raspberry Pi web
server and database. Also, every time that there is a new light intensity value the controller
will post the updates numbers to the LED panel.

Fig 2.4 shows the computing resources and their connection to each other in a form of
a block diagram containing Data acquisition unit, transmission unit and control unit.

16



Figure 2.3: Flowchart of switching between WiFi clients in control unit implemented on
CC3220S-LAUNCHXL

17



Figure 2.4: Communication diagram describing the relationship between data acquisition,
transmission and controller

2.2 Data Storage

Data generated via one or more sensory device can be captured for the purposes of moni-
toring, decision making and information extraction in deeper processing levels. Gathering,
cleaning and storing big amount of data coming from different sensors is one of the challenges
that IoT developers try to overcome. This storing methodology should support scenarios
in, which data might import or edit by users. The challenge here is to determine the time
this data needs to be stored and kept. Keeping the data is a cost for organizations so it
is reasonable to think of it as an important element. That’s one reason data management
tools are high demand and trending. Data maintenance’s expenses grow by data growth and
backup needs and they differ by the chose of storage hardware, retrieval speed and storage
management. (To deal with data growth and keep costs manageable, many enterprises are
turning to cloud storage, which greatly increases the importance of effective cloud storage
management.

2.2.1 Data Base

A database is a collection of structured information, or data, usually stored electronically in
a computer system. In this thesis MariaDB is used, which is a commercially supported fork
of the MySQL relational database management system (RDBMS) and is an open-source
software under the GNU General Public License. MariaDB is intended to maintain high
compatibility with MySQL and exact matching with MySQL APIs and commands.

Most databases are controlled by a database management system (DBMS). Here, we
use phpMyAdmin as a tool to handle the administration of MariaDB over the Web. php-
MyAdmin is a free software tool written in PHP, which supports a wide range of operations

18



Figure 2.5: Created tables in the database

on MariaDB. Frequently used operations (managing databases, tables, columns, relations,
indexes, users, permissions, etc) can be performed via the user interface.

2.2.2 Information Life-cycle Management (ILM)

Lifecyle of data from creation and initial storage to the time when it becomes obsolete and is
deleted can be manage by taking the purpose of the creation of that data into consideration.
If the information has a finite purpose it should be deleted from storage network once it has
served its purpose. Data may be re-used, archived or shared on the course of its lifecycle
depends on the application. Not surprisingly, Data collected in the form of time series are
extremely dynamic. Attributes of each data sample update frequently, which is the nature
of the time series data. Studying the changes in these attributes over time is what makes
it possible to model the behavior of the application under study and have it analysed.

2.2.3 Data Type

In computer programming, a data type is a classification that determines what a variable or
object can store. Almost all computer programming languages, including C and C++, rely
heavily on data types. To secure the proper outcome and an error-free software, program-
mers must reference and use data types correctly while creating computer programmers.

phpMyAdmin lets us assign a type to each observation easily. This is very important as
the Type B node or CC3220S-LAUNCHXL in this prototype sends the sensor readings for
each sampling using HTTP request. Anatomy of an HTTP Request has host, method, path,
headers, HTTP version, query string, and request body. CC3220S-LAUNCHXL sends all

19



Figure 2.6: Table structure of the sensorReading table

Figure 2.7: Table structure of the desiredReferencesMotionControl table

the sensor readings in a form of one String in HTTP request body so we have to assign the
data type to each observation using the database management system. Each time a content
is being add to database table it will cast to assigned datatype.

• Time series data analysis of IoT events: Sensory nodes can read the data by
being triggered by an event. The event can be time intervals, which lead to generation
of time series data type. Data collected in the form of time series either on regular or
irregular time basis is a valuable resource for organizations as it has the potential to
be used as an input to the Machine Learning and Deep Learning algorithms.

While creating a new table we can add a column with TIMESTAMP data type. The
MySQL TIMESTAMP is a data type that holds the combination of date and time. The
format of a TIMESTAMP is YYYY-MM-DD HH:MM:SS, which is fixed at 19 characters.
This will let us have the exact time for each observation when that observation is being add

20



to the database. The alternative way to add the time is to have the source that providing
the data provide the captured time as well. In this prototype TIMESTAMP data type with
default "current timestamp" is used.

As can be seen in fig 2.5 three separate data tables are defined. The desiredReferences-
motionControl and desiredReferenceslightControl tables contains the reference values for
motion control and light control units and the sensorReadings table contains the observa-
tions gathers via sensor nodes. Fig 2.6 and 2.7 illustrate the data types chosen for variables
used in this project for sensorReadings table and desiredReferencesmotionControl table.

2.3 LAMP Stack

LAMP stack web server software commonly refers to the combination of Linux, Apache,
MySQL and PHP where P portion is usually the scripting engine used to provide content
from database tables and served through Apache. Here we use PHP scripting language
that is especially suited to web development. However, the Python programming language
is also employed for the purpose of data analysing. Python IED will act as client for the web
server even though there are installed on one hardware. It should be mentioned that the
web server and data analysis unit can be easily separated to different hardware and they are
not depended. In that case we will have two Type A in our framework. The documentation
of this server is in appendix A.

2.8 shows the software packages and communication protocols in this scenario. As can
be seen, LAMP Server Packages, which are Apache2, MySQL, PHP should be installed on
the Raspberry Pi. Also, phpMyAdmin needed to be installed to handle administration of
MariaDB over the Web.

2.3.1 Insert Data Into Database Table

In this Prototype, two sources have permission to insert data to database tables. One is ph-
pmyadmin, which handles the http requests received from CC3220S-LAUNCHXL Wireless
Microcontroller and the second one is the main Python code running locally on Raspberry
Pi.

Example for receiving new record from the python code for desired references for mo-
tion control: The main python code needs to establish a connection to database and add
a new desired height and desired angle for the motion control unit into desiredReferences-
motionControl table using Using INSERT INTO table SET SQL query, a new record will
be created with a unique ID and current time 2.9. It should be noted that the connection
between python script and database only happens if the admin password for database is
provided and it gives php permission to access and add content to the database. As an ex-
ample for receiving new record from the CC3220S-LAUNCHXL Wireless Microcontroller:
The phpmyadmin needs to establish a connection to database and add the new record into

21



Figure 2.8: Software packages and communication protocols in the proposed setup

sensorReadings table using Using INSERT INTO table SET SQL query. Variables Height,
Angle, Temperature, Humidity, R1, B1, Par1, R2, B2 and Par2 have their values being set
with the value transferred by the CC3220S-LAUNCHXL Wireless Microcontroller. Column
ID and TimeStamp get their value set automatically each time a new record is made. fig
2.6 shows the variables stored in this table.

2.3.2 Fetch Data From Database Table

As an example for fetching data from database table for the CC3220S-LAUNCHXL Wireless
Microcontroller: Each time the CC3220S-LAUNCHXL is requesting the most updated de-
sired height and desired angle for the motion control unit, Apache2 execute a php script file,
which establish a connection to the database and the desiredReferencesmotionControl.
The most Updated motion references values retrieve (Fetch) from Database and passes back
to the Apache web server to send back to the CC3220S-LAUNCHXL.

It should be noted that the connection between PHP script and database only happens
if the admin password for database is provided and it gives php permission to access and
add content to the database.

22



Figure 2.9: Desired reference values in the desiredReferencesmotionControl table

2.4 Analytics and Computing

After reading raw data from sensors, the processing step must be deployed. This processing
can happen in different level of complication from calibrating the data coming form one
sensory node to applying state of the art algorithms on the data and using them to update
trained models. Sometimes a node need data from other nodes to have its raw readings
calibrated. For example, a device used for measuring the level of salt in soil called EC
meter has its reading highly correlated with temperature. This can be also an example
of the preprocessing on data. The location of this computing node is important and can
be categorized in different group. If devises send their reading directly to the cloud the
processing is cloud computing and if a part of the processing happens where data is created
in edge devices, Edge computing is being implemented. To design the best network that
runs fast, smart and efficient, it is necessary to know the advantages and disadvantages of
having the processing power in each site. The goal here can be finding the best threshold
for dividing the Processing power between these sites.

2.4.1 Advantage of Data Processing at The Edge of The Network (Edge
Computing)

Edge computing supports the applications in, which latency can lead to serious dysfunctions.
Self driving cars can be an example in, which the decision can not wait the time needs to

23



send data to the cloud, have it processed and send back to actuators. Edge computing also
plays an important role when it comes to Data anonymization by having the data encrypted
before letting it leave the site. (Reale, 2017). Another advantage is the robust behavior
to connectivity issues. Pre-process data before it is uploaded to the core datacentre for
long-term processing is another take away of edge processing power. It is more efficient
and cost friendly to have a central node capable of receiving readings from sensors than to
have every node either sensor or actuator have the feature of sending or receiving data to
and from internet. Computing node, beside being responsible for a part of processing is in
charge of gathering the readings usually in a time series type (Team, 2018). To summarize
Edge computing comes handy when:

• It is expensive to move all the data to the cloud

• Latency requirement for fast react. Edge Computing wins out over cloud processing
when time sensitive events are happening.

• Regulatory reasons when you need to process the data where its produced without
moving it off device.

2.4.2 Advantage of Data Processing Power at The Cloud: Motivating
Factors

Fore most flexibility and most options in terms of compute and operating system. Whether
or not edge computing does replace cloud computing is remained to be a subject of debate.
Another advantage can demonstrate in a scenario where loss prevention is involved. Con-
sider there is a theft of the device, so its reasonable to try to bring raw date back to the
cloud as much as possible.

2.5 Conclusion

Achieving higher grow yield while the resources being fully optimized, is the main goal of
IoT-based automation in smart greenhouse. Principle characters to enhance Industrial IoT
platform performances are device management, data management, data analysis, security,
industrial protocols, robustness, integration through development tools and APIs, predictive
maintenance, remote access and energy optimization.

As it was demonstrated in this chapter, the proposed IoT prototype integrated into the
robotic light fixture has the potential to feature all of these key players, however, in the
proposed prototype the focus is on applying industrial and reliable development tools for
data acquisition, data transmission, data logging, data analysis and remote access while
utilizing the steady connection between all the components of the framework.

24



Chapter 3

Trajectory Generation for
Steady-State Motion

In this chapter, control of a cable robotic LED light fixture is going to be discussed. A
brief review of current control methods with the focus on trajectory planer Schemes is pre-
sented. System dynamics and its mathematical description is described and a trajectory is
planned based on a five-order order polynomial motion profile, which can impose kinematics
constraints such as position, velocity and acceleration.

3.1 Review of Current Trajectory Planer Schemes

The two-DOF cable-suspended parallel robot proposed in this prototype has a light panel,
two DC motors and two cables in its structure. According to the number of cables and
degree of freedom (DOFs), proposed robot is classified as a statically determined robot [41].
Each cable has its own DC motor as an actuator, which operates under torque control or
voltage control of a proportional-integral-derivative (PID) controller. Proposed robot is
designed to place the light panel in a desired height and angel with a smooth transnational
and rotational movement while keeping the cables taut. To achieve this goal, a motion
trajectory planner is proposed, which uses fifth-order polynomial trajectory profile of motion
to impose constraints on position, velocity and acceleration. The advantages of employment
a higher-order polynomial trajectory planner can be seen in [12].

To design this trajectory a State-space representation of a system is used. State-space
representation of a system is a common and extremely powerful method of representing
a system mathematically [19]. Some of the advantages of the state-space approach are
the mathematical notation being simplified using vector equations, differential equations
in state-space format being easier to solve with a digital computer, state-space formula-
tion being applicable to both linear and non-linear systems as well as being applicable
to multiple-input-multiple-output (MIMO) system. Therefore, the mathematical model of

25



Figure 3.1: Free body diagram of the proposed cable-driven robotic light fixture

the proposed system is derived in a state-space form. A state-space feedback controller is
designed for following the desired trajectory of tension forces.

Trajectory planning and trajectory tracking control are active fields in engineering and
robotics research. In [51] a combination of sliding mode control and fuzzy logic control
is developed to perform the trajectory tracking for a Cable Parallel Manipulator. Also, a
servo controller is the employed method for tracking the designed trajectory path.

In[6] a reference trajectory describing a 21 cm by 21 cm square on a white board is
successfully tracked using a 500 Hz visual feedback implemented with a 500 frames per
second camera, an image processing algorithm using OpenCV library is proposed for a
three-dof Cable-Driven Parallel Robot (CDPRS) which is implemented on a Raspberry Pi.

In [14] generic trajectory planner is proposed and validated using experimental result on
a two-dof planar cable-suspended robot. This planner is based on a five-order polynomial
to ensures continuity up to the acceleration level and can fulfil the dynamic constraints of
the cables. Also, trajectory tracking is employed using two servo-controlled winches.

In the proposed prototype in this thesis, trajectory tracking is employed using DC
motor’s torque controller, state feedback controller and DC motor’s voltage controller.

3.2 Trajectory Planer Scheme

The schematics and free body diagram of the two-dof cable-suspended robot proposed in this
study is represented in fig 3.1. This figure illustrates the system’s fixed reference frame with
origin O, y-axis horizontal and pointing to the right, x-axis vertical and pointing downward
and z axis perpendicular to x-axis and y-axis. This robot is consists of two cables, which
connect two exit points M1 and M2 to a single end effector, which is a rectangular LED

26



panel with mass (m), width (w), height (h), length (l) as its characteristics. M1 and M2

are located at w from each other. Middle point between these two exit points is the origin
location denoted by O. X is the distance between this origin point and the center of mass of
the LED panel. Cables are parallel to each other and driven by two independent actuators,
which are mounted at M1 and M2. Each actuator is a DC motor. By controlling the
pulling force on the two cables the distance X as well as the angle of the light panel can be
controlled.

3.2.1 State-Space Representation of The Proposed Light Fixture

The concept of state of a dynamic system refers to a minimal set of variables, called state
variables, which completely describe the system and its response to a given set of input
data. An state-space model of a system has the following characteristics: (i) mathematical
description of the system in terms of the minimum set of variables xi(t), i = 1, ..., n, (ii)
knowledge of values of these variables at the initial time t0 and (iii) inputs of the system
for the time t>=t0 are sufficient to predict the future state of the system. This definition
indicates that the dynamic behavior of a state-driven system is entirely characterized by
the response of a set of n variables xi(t), where n is defined as the order of the system [37].

Figure 3.2: System described by state variables

State-space representation of the light fixture with the free body diagram shown In fig
3.1, can be obtained using the torque and tension equations. This System has two inputs
f1(t) and f2(t), and four output variables x(t), ẋ(t), θ(t), θ̇(t). Knowledge of its state
variables at the initial time t0, which comes from initial sensor reading, and the Knowledge
of inputs f1(t) and f2(t) for t t0 is sufficient to determine all future behavior of the system.
Fig 3.2 illustrates the inputs and outputs of this stead-state representation.

A standard form of equation of state is used throughout system dynamics and its mathe-
matical description expressed as a set of first-order ordinary differential equations, known as
state equations. To obtain state equations, kinematics of a two degrees of freedom (2-DOF)
planar suspended cable-driven parallel robot (CDPR) is used.

As illustrated in fig 3.3, we can see the net torque τ produced at the center of mass of
the panel is expressed as follows

27



Figure 3.3: Forces diagram.

(f1cosθ)w − (f2cosθ)w = τ (3.1)

Where τ is net torque due to forces f1, f2 acting on the light panel and w is the width
of the panel. The equation can be written as bellow:

τ = (f1 − f2)wcosθ (3.2)

Net force acting on the center of mass of the light fixture is given as bellow:

fnet = mg − f1 − f2 (3.3)

As the amount of torque required to produce an angular acceleration depends on the
distribution of the mass of the object, torque is also equal to moment of inertia times angular
acceleration.

τ = Iθ̈ (3.4)

Where I is the moment of inertia of the light fixture along y axis and is the angular
acceleration.

Newton’s second law of motion states that the time rate of change of the momentum of
a body is equal in both magnitude and direction to the force imposed on it. Therefore, we
have:

fnet = mẍ (3.5)

From 3.2 and 3.5 we have:

28



(f1 − f2)wcosθ = Iθ̈

mg − f1 − f2 = mẍ
(3.6)

States are defined as x1, x2, x3, x4, where x1 is the distance x, x2 is the rate of change
in x, x3 is the angle and x4 is derivative of θ. In 3.7 the dynamic equations for these states
are illustrated and 3.8 represents this dynamic in the Matrix form ẋ = AX + BU , which
is the state space representation of a system where X is the state vector, A is the system
matrix, B is the input matrix and U is the input vector.



ẋ1 = x2

ẋ2 = ẍ = mg−f1−f2
m = g − 1

m(f1 + f2)

ẋ3 = x4

ẋ4 = (f1−f2)wcos(x3)
I = wcos(x3)

I (f1 − f2)

(3.7)

System dynamic in a matrix form is


Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




X1

X2

X3

X4

 +


0 0

−1
m

−1
m

0 0
ω
I

ω
I


[
f1

f2

]
+


0
g

0
0

 (3.8)

Controllability and observability of this system needs to be taken into consideration. A
linear time invariant (LTI) system is controllable if we can steer any initial state x(t0) to
any final value x(tf ) in a finite time tf using a continues input u(t) where t0 ≤ t ≤ tf .
The linear system ẋ = Ax + Bu is controllable if and only if the rank of the controllability
matrix P which is defined as [B AB A2B A3B . . . An−1B] is equal to n where n is the
dimension of x. Controllability matrix of the system matrix in 3.8 is 4 therefore the system
is controllable. A linear time invariant system is observable if the state at any instant can
be determined by observing the output y over a finite interval of time. The linear system
ẋ = Ax + Bu is observable if and only if the rank of the observability matrix Q which is
defined as [C CA CA2 ... CAn−1] is equal to n where n is the dimension of x. Observability
will allow us to choose proper measurement such that the whole states can be estimated
using the limited number of measurement resources. Observability matrix of the system
matrix in 3.8 is only full rank if we consider the C matrix as C = [1 0 0 0; 0 0 1 0] and have
x and θ as the states which can be measured.

29



It should be noted that cable-suspended parallel robots use gravity to keep their cables
taut, which results in reducing the number of actuators [27]. This necessitates the satisfying
of cables working in tension only and not being able to push. Therefore, constraints must
be imposed on the cartesian trajectory prescribed at the end effector such that f1 and f2

remain positive all the time.
From 3.6, we can obtain f1 and f2 as:

f1 = 1
2[ I (̈θ)

wcosθ
+ m(g − ẍ)] (3.9)

f2 = 1
2[ −I (̈θ)

wcosθ
+ m(g − ẍ)] (3.10)

As cables should be in tension and be pulled all the time therefore f1 and f2 should be
always positive and we should plan the trajectory, which satisfy the following constraints:

m(g − ẍ) + I (̈θ)
wcosθ > 0

m(g − ẍ) − I (̈θ)
wcosθ > 0

(3.11)

Let each panel be able to tile 90°. Therefore, θd Is between 0° and 90° and we have
wCosθd > 0 and we can write:

m(g − ẍd)wcosθd + Iθ̈d > 0

m(g − ẍd)wcosθd − Iθ̈d > 0
(3.12)

Adding the two inequalities in 3.12 we can obtain that if ẍ < g the Constraints will be
satisfied and forces f1, f2 will remain positive.

ẍ < g (3.13)

This bounded acceleration will result in

θ̈d <
m(g − ẍ)

I
wcos(θd) (3.14)

Now if θ̈d=constant, we will have θ̇d = θ̈dt And θd = 1
2 θ̈dt2

a , Thus during the motion
with θ̈d , starting from θd = 0 to desired θd, with the travel time being ta. cosθd will be
minimum at ta.

θd = 1
2 θ̈dt2

a (3.15)

30



θ̈d <
m(g − ẍd)

I
wcos(1

2 θ̈dt2
a) (3.16)

Therefore,

θ̈d

wcos(1
2 θ̈dt2

a)
<

m(g − ẍd)
I

(3.17)

Satisfying this condition ensures the cables being in tension while performing dynamic
trajectories. Using 3.17, we can find the ta that satisfy 3.13 given w, m, g, ẍd, I and θ̈d.

In this application, we have two states that we need to design a trajectory for. One is
the angle of the light fixture with respect to the horizontal plane. This angle can be varying
from 0 to 90 degree. The other state is x, which is the distance between the light panel and
the top of the light fixture (where the motors are mounted). To design the trajectory the
5th order polynomial motion profile is selected for both θ and x.

3.2.2 Trajectory Planner For Linear Movement (x)

Assume a 5th order polynomial motion profile for the trajectory of x:

xd(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (3.18)

Assume the velocity and the acceleration at rest in both initial and final position. There-
fore, we have:


x(0) = x0

ẋ(0) = 0

ẍ(0) = 0

(3.19)


x(tf ) = xf

ẋ(tf ) = 0

ẍ(tf ) = 0

(3.20)

from [31] we can have the coefficients of polynomial 3.18 as follow:

31



a0 = x0 (3.21)

a1 = 0 (3.22)

a2 = 0 (3.23)

a3 = 10(xf − x0)
t3
f

(3.24)

a4 = −15(xf − x0)
t4
f

(3.25)

a5 = 6(xf − x0)
t5
f

(3.26)

Therefore, we can derive the equations for xd(t), ẋd(t) and ẍd(t) as follow:

xd(t) = x0 + 10(xf −x0)
t3
f

t3 − 15(xf −x0)
t4
f

t4 + 6(xf −x0)
t5
f

t5 (3.27)

ẋd(t) = 30(xf −x0)
t3
f

t2 − 60(xf −x0)
t4
f

t3 + 30(xf −x0)
t5
f

t4 (3.28)

ẍd(t) = 60(xf −x0)
t3
f

t − 180(xf −x0)
t4
f

t2 + 120(xf −x0)
t5
f

t3 (3.29)

Let τ = t
tf

, we have:

xd(τ) = x0 + 10(xf − x0)τ3 − 15(xf − x0)τ4 + 6(xf − x0)τ5 (3.30)

ẋd(τ) = 30(xf −x0)
tf

τ − 60(xf −x0)
tf

τ2 + 30(xf −x0)
tf

τ3 (3.31)

ẍd(τ) = 60(xf −x0)
t2
f

τ − 180(xf −x0)
t2
f

τ2 + 120(xf −x0)
t2
f

τ3 (3.32)

From 3.13 we have:

ẍd(τ) = 60(xf − x0)τ
t2
f

[1 − 3τ + 2τ2] < g (3.33)

32



To obtain the range of tf we first should find the maximum of function [τ − 3τ2 + 2τ3]
and plug it in 3.33

t2
f > 60(xf − x0)MAX(τ − 3τ2 + 2τ3)

g
(3.34)

tf >

√
60(xf − x0)MAX(τ − 3τ2 + 2τ3)

g
(3.35)

As τ = t
tf

, τ will remain between 0 and 1 (0 ≤ τ ≤ 1). Therefore we have;

MAX(τ − 3τ2 + 2τ3) = 0.0962 (3.36)

Choosing tf that fulfill the condition in 3.35 will result in having tension forces positive
between t0 and tf .

3.2.3 Trajectory Planner For Rotational Movement (θ)

Assume a 5th order polynomial motion profile for the trajectory of θ:

θd(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (3.37)

Assume velocity and acceleration at rest in both initial and final position. We have:
θ(0) = θ0

θ̇(0) = 0

θ̈(0) = 0

(3.38)


θ(tf ) = θf

θ̇(tf ) = 0

θ̈(tf ) = 0

(3.39)

from [31] we can have the coefficients of polynomial 3.37 as follow:

a0 = θ0 (3.40)

a1 = 0 (3.41)

a2 = 0 (3.42)

33



a3 = 10(θf − θ0)
t3
f

(3.43)

a4 = −15(θf − θ0)
t4
f

(3.44)

a5 = 6(θf − θ0)
t5
f

(3.45)

θd(t) = x0 + 10(θf −θ0)
t3
f

t3 − 15(θf −θ0)
t4
f

t4 + 6(θf −θ0)
t5
f

t5 (3.46)

θ̇d(t) = 30(θf −θ0)
t3
f

t2 − 60(θf −θ0)
t4
f

t3 + 30(θf −θ0)
t5
f

t4 (3.47)

θ̈d(t) = 60(θf −θ0)
t3
f

t − 180(θf −θ0)
t4
f

t2 + 120(θf −θ0)
t5
f

t3 (3.48)

Let τ = t
tf

, we have:

θd(τ) = θ0 + 10(θf − θ0)τ3 − 15(θf − θ0)τ4 + 6(θf − θ0)τ5 (3.49)

θ̇d(τ) = 30(θf −θ0)
tf

τ − 60(θf −θ0)
tf

τ2 + 30(θf −θ0)
tf

τ3 (3.50)

θ̈d(τ) = 60(θf −θ0)
t2
f

τ − 180(θf −θ0)
t2
f

τ2 + 120(θf −θ0)
t2
f

τ3 (3.51)

Where 0 ≤ τ ≤ 1. Hence the constraint on 3.17 is

θd

cos(θd) <
m(g − ẍd)

I
(3.52)

By plugging 3.51 into 3.52 we have:

1
t2
f

60τ(θf −θ0)[1−3τ+2τ2]
cos(θ0+10(θf −θ0)τ3−15(θf −θ0)τ4+6(θf −θ0)τ5) < m(g−ẍd)

I (3.53)

Choosing tf that fulfill the condition in 3.34 will result in having the tension forces
positive between t0 and tf while performing the proposed 5 order trajectory.

34



3.3 Conclusion

This chapter proposed a cable robotic LED light fixture and its mathematical representation
in a State-Space form. Using this representation a trajectory planner with five-order order
polynomial motion profile is proposed. This mathematics shows the feasibility of controlling
the proposed robotic system in order to place the light panel in a desired height and a desired
angel with a smooth transnational and rotational movement while keeping the cables taut.
The limitation and considerations for choosing the duration of trajectory is also provided.

35



Chapter 4

Trajectory Tracker Design

In this chapter, a DC motor current controller (cascaded control) and a DC motor voltage
controller are proposed as the trajectory tracker unit. To precisely track specified trajecto-
ries, or be able to follow more general trajectories, many tracking control algorithms have
been proposed. A robotic trajectory control has either electric motors and solenoids or it
uses hydraulic system as actuator. Trajectory tracker controller calculates the control sig-
nal for the actuators based on their mathematical model usually in a form of an electrical
signal. Actuators will convert the electrical signal into kinetic energy (rotational or linear
motion) for the practical operations. Trajectory tracking controllers used in this chapter
are proposed to make sure that the desired trajectory is being followed.

4.1 Cascaded Trajectory Tracking Design (Motor Current
Control)

In a cascade control arrangement, there are two (or more) controllers with the output of
the outer controller (first controller) providing the set point for the inner controller (second
controller), the feedback loop for one controller nestling inside the other [7]. Fig 4.1 shows
the block diagram for the cascade controller.

Figure 4.1: Block diagram of a cascaded controller.

In the previous chapter desired reference value in each step can be calculated by the
trajectory planner. If we define hr, ḣr, θr and θ̇r as the reference for desired height, desired

36



Figure 4.2: Block diagram of a feedback system with a PID controller.

rate of change for height, desired angle θ and desired rate of change for θ respectively,
we can form our desired state vector Xd. Using the readings from distance sensor, gyro
sensor and an observer we can calculate the error for all the states at each step time.
First controller unit will calculate the torque and current needed for each motor. Second
controller calculates the control signal to achieve that torque and current at each time step.

4.1.1 DC Motor Current Controller or Inner Controller Design

Speed control of the motor is required for tracking the desired current resulting in tracking
the desired height and angle trajectory. These two controllers in charge of height/angle
control and motor speed control are in series and cascaded. The proportional integral
subsidiary controller (PID controller) has been broadly utilized for monitoring the armature
current and controlling the DC motor speed. fig 4.2 illustrate the feedback PID Controller
diagram, which generally utilized as a part of mechanical control frameworks. PID controller
fundamentally analyze the error signal between measured control value and desired value
and this error signal is used to calculate the control command. In this controller, reference
point fed to controller. Using sensory feedback, the real control value will be monitored
and its distance from desired value e, error over time integrale and rate of change in the
error ė will gain the desired gain based on the desired respond and fed to the plant as the
control input. equation 4.1 shows the mathematical expression of a PID controller.

U = P + I
1
s

+ D
N

1 + N 1
s

(4.1)

Where P, I and D denote the coefficients for the proportional, integral, and derivative
terms respectively.(tuning of the PID parameters using experimental techniques)

In the proposed control design here, motors current controller is a PID controller, which
will be the second controller in the cascaded design in 4.1 Model of a DC motor is shown
in fig 4.3.

37



Figure 4.3: Model of a DC motor

The model for a DC-motor in frequency domain is derived as below: We have armature
circuit as:

Ia(s) = 1
Ra + Las

(Ea(S) − Eb(s)) (4.2)

where Ia is the armature current,Ra and La are is the armature resistance and inductance
respectively and applied voltage is Ea and Back EMF is Eb. Connection between mechani-
cal/electrical parts are motor torque and back EMF as bellow:

T (s) = Kτ Ia(s) (4.3)

Eb(s) = KbΩ(s) (4.4)

we have mechanical load as

Ω(s) = 1
Js + B

(T (s) − TL(s)) (4.5)

Angular position will be

Θ(s) = 1
s

Ω(s) (4.6)

Having the above equations we can achieve the block diagram of DC Motor and so we
have the inner feedback loop, which is a motor speed control. the desired Current for each
motor will come from the first controller in the cascaded scheme.

38



Figure 4.4: Second Controller (current control loop) in the cascaded trajectory tracker

4.1.2 Force Controller or Outer Controller Design

4.1.2.1 PD Control

A PD controller can calculate the desired current for each motor, which will be fed to the
current control loop of each motor.

Figure 4.5: Control values and force diagram

Lets define ux as bellow

ux = f1 + f2 (4.7)

Using 3.6, we can write:

mẍ = mg − ux (4.8)

39



if we define vx as below

vx = g − ux

m
(4.9)

Then we have,

ẍ = vx (4.10)

ẍ − vx = 0 (4.11)

Lets define vx as a quadratic equation

vx = ẍr + kdx(ẋr − ẋ) + kpx(xr − x) (4.12)

so we have,

(ẍr − ẍ) + kdx(ẋr − ẋ) + kpx(xr − x) (4.13)

Therefore, by defining ex = xr − x, we have:

ëx + kdxėx + kpxex = 0 (4.14)

using 4.9 we can find ux as bellow:

ux = g − m(ẍr + kdx(ẋr − ẋ) + kpx(xr − x)) (4.15)

Lets define

uθ = (f1 − f2) cos(θ) (4.16)

Using 3.6, we can write:

Iθ̈ = cos(θ)wuθ (4.17)

if we define vθ as below

vθ = w cos(θ)
I

uθ (4.18)

then,

θ̈ = vθ (4.19)

40



θ̈ − vθ = 0 (4.20)

Lets define vθ as a quadratic equation

vθ = θ̈r + kdθ(θ̇r − θ̇) + kpθ(θr − θ) (4.21)

so we have,

(θ̈r − θ̈) + kdθ(θ̇r − θ̇) + kpθ(θr − θ) (4.22)

Therefore, by defining eθ = θr − θ, we have:

ëθ + kdθėθ + kpθeθ = 0 (4.23)

using 4.18 we can find uθ as bellow:

uθ = I

w cos(θ)vθ (4.24)

uθ = I

w cos(θ)(θ̈r + kdθ(θ̇r − θ̇) + kpθ(θr − θ)) (4.25)

Figure 4.6: Block diagram of the implementation of observer and PD force control for the
trajectory tracker

next we need to calculate desired motor current id1 and id2 using ux and uθ. We have
defined ux = f1 + f2 and uθ = (f1 − f2) cos(θ) in the previous subsections, therefore, we
can find f1 and f2 using these two equations. Fig 4.6 shows the block diagram of the
implementation of observer and PD force control for the trajectory tracker.

41



ux = f1+f2

uθ = cos(θ)(f1 − f2)
(4.26)

Therefore,

f1 = 1
2(uxcos(θ) + uθ)

f2 = 1
2(uxcos(θ) − uθ)

(4.27)

having the desired force we can calculate the desired current for each motor at given
time step.id1 = f1

α

id2 = f2
α

(4.28)

Where id1 is the desired current for M1 and id2 is the desired current for M2. α is a
constant value of motor. These desired current will be fed into the current loop control of
each motor, which is described in the following sections.

4.1.2.2 Optimal State-Space Control

For designing the State-Space Controller, first we should talk about the controllability
and observability of the system. A linear time invariant (LTI) system is controllable if
we can steer any initial state x(t0) to any final value x(tf ) in a finite time tf using a
piece-wise continues input u(t) where t0 < t ≤tf . The linear system ẋ = Ax + Bu is
controllable if and only if the rank of the controllability matrix P, which is defined as[
B AB A2B A3B . . . An−1B

]
is equal to n where n is the dimension of x. Con-

trollability matrix of the system matrix in 3.8 is 4 therefore the system is controllable. A
linear time invariant system is observable if the state at any instant can be determined
by observing the output y over a finite interval of time. The linear system ẋ = Ax + Bu

is observable if and only if the rank of the observability matrix Q, which is defined as[
C CA CA2 . . . CAn−1

]′
is equal to n where n is the dimension of x. Observability

will allow us to choose proper measurement such that the whole states can be estimated
using the limited number of measurement resources. Observability matrix of the system
matrix in 3.8 is only full rank if we consider the C matrix as bellow to have x and θ as the
states, which can be measured.

42



Figure 4.7: Block diagram of the cascaded SQL force controller and PI current controller

C =
[
1 0 0 0
0 0 1 0

]
(4.29)

To control the characteristics of the response of the system, a Full state feedback (FSF),
or pole placement method is employed to place the closed-loop poles of a plant in desired
locations in the s-plane. The system must be considered controllable in order to implement
this method. As the Two-DOF Cable-Suspended Parallel Robot with given dynamics is
controllable, we can place the poles in desired location and have the desired close loop
characteristic equation.

Pole Placement based on LQR: The linear quadratic regulator (LQR) is a well-known
design technique that provides practical feedback gains. It will help the designer achieve a
compromise between good regulation and reasonably sized inputs. In other worlds Optimal
control means finding the control law that minimizes the given performance index. For
state regulator problem, performance index may be J =

∫
(xtqx + utru) dt So, we must find

u(t) that minimizes J. Using these errors the LQR controller can calculate the forces needed
for each motor for trajectory tracking. Fig 4.7 shows the control block diagram of these
cascaded controllers.

Pole Placement based on time response: In a second-order system with transfer
function H(s), s2 + 2ξωns + ω2

n = 0 will give two dominant poles s1 and s2.

43



Figure 4.8: The electric equivalent circuit of the armature and the free-body diagram of the
rotor

4.2 Trajectory Tracking using DC motor voltage control De-
sign

Schematic of electromechanical system can be seen in fig 4.8. For this electromechanical
model, we will assume that the armature inductance is neglectable (L ≈ 0). To do so, the
current in the armature should be able to build up quickly as the current in the armature
winding reverses based on the commutator segment the specific coil is touching at that
moment and it makes it look have AC voltage source although The supply is DC voltage.

Mathematical modeling of DC motor having voltage source v as input will be as follow:

v = ri + eb (4.30)

Where i is armature current, v is input voltage, r is armature resistance and eb is the
back-emf. Back emf eb is the generator output of a motor, and is proportional to the motor’s
angular velocity ω.

eb(t) = kb
dθm(t)

dt
= kbωm(t) (4.31)

eb(t) ∝ ω(t) (4.32)

Motor’s angular velocity will be converted to linear velocity of the light panel ẋ using
a cord, which is wrapped around the rim as can be seen in fig 4.9. Therefore, back emf of
the motor is proportional to the LED panel’s linear velocity.

eb ∝ ẋ (4.33)

Here we have two DC motor in, which we assume the coefficients between eb and ẋ are
the same and are a constant α/2. This constant depends on motor constant, gear efficiency

44



Figure 4.9: Motor’s angular velocity to linear velocity of the light panel conversion

and gear ratio. Therefore we have:

eb = α

2 ẋ (4.34)

We also assume that both motors have the same parameters. Equation 4.30 for the two
motor we have in this proposed setup will be as below:

v1 = ri1 + α
2 ẋ1

v2 = ri2 + α
2 ẋ2

(4.35)

In the previous section, the desired reference value for the distance of the LED panel
from the top of the structure where motors are mounted as well as its angle can be calculated
in each step, which are xr(t) as the reference for height and θr(t) as the reference for θ. We
can calculate the error for all the states at each step time. Using these errors a pi controller
can calculate the desired current for each motor, which will be fed to the current control
loop of each motor States will be updated using the reading from distance and gyro sensor
as well as an observer.

sine function gives the ratio of the length of the opposite side to the length of the
hypotenuse.

As can be seen in 4.5 and using the trigonometric functions x2-x1 has direct relationship
with the sin of rotational movement.

x2 − x1 = w sin θ (4.36)

45



The Maclaurin expansion (the Taylor expansion about 0) of the sin trigonometric func-
tion is

sin θ = θ − θ3

6 + θ5

120 − θ7

5040 + · · · (4.37)

Where θ is the angle in radians. The angles at, which the relative error is less than 1%
for sin function are θ < 0.2441 radians (13.99◦). Therefore for any angle less than 13.99◦,
we can approximate sin θ with θ. (sinθ ≈ θ). So, 4.38 can be approximated as follows

x2 − x1 ≈ wθ (4.38)

Also we have:

x = x1 + x2
2 (4.39)

In 4.5 using Newton’s second law of motion, we can write:

ẍ = g − f1 + f2
m

(4.40)

Iθ̈ = (f1 − f2)w cos(θ) (4.41)

By adding the equations in 4.59 we have:

v1 + v2 = r(i1 + i2) + α

2 (ẋ1 + ẋ2) (4.42)

v1 + v2 = rβ(f1 + f2) + αẋ (4.43)

v1 − v2 = rβ(f1 − f2) − α

2 (ẋ2 − ẋ1) (4.44)

Considering 4.38, we can write:

v1 − v2 = rβ(f1 − f2) − α

2 ωθ̇ (4.45)

46



By plugging 4.40 and 4.43 we can write

ẍ = g − 1
m

1
rβ

(v1 + v2 − αẋ) (4.46)

ẍ − α

mrβ
ẋ = g − 1

mrβ
(v1 + v2) (4.47)

By plugging 4.41 and 4.45 we can write

Iθ̈ = 1
rβ

(v1 − v2 + α

2 ωθ̇)ω cos θ (4.48)

Iθ̈ − αω2

2rβ
θ̇ cos θ = ω cos θ

rβ
(v1 − v2) (4.49)

if cos θ ≈ 1 then

θ̈ − αω2

2rβ
θ̇ = ω

rβI
(v1 − v2) (4.50)

4.2.1 Definition and calculation of vx

Lets define v1 + v2 = vx

ẍ − α

mrβ
ẋ = g − 1

mrβ
vx (4.51)

Lets define vx as a quadratic equation as bellow

vx = −mrβ(ẍd + kdx(ẋd − ẋ) + kpx(xd − x) + kix

∫ t

0
(xd − x)dt − g − α

mrβ
ẋ) (4.52)

Then equation 4.51 can be re-written as bellow

(ẍd − ẍ) + kdx(ẋd − ẋ) + kpx(xd − x) + kix

∫ t

0
(xd − x)dt = 0 (4.53)

Therefore, by defining ex = xd − x, we have:

ëx + kdxėx + kpxex + kix

∫ t

0
exdt = 0 (4.54)

4.2.2 Definition and calculation of vθ

let v1 − v2 = vθ

47



θ̈ − αω2

2rβ
θ̇ = ω

rβI
vθ (4.55)

Lets define vθ as a quadratic equation as bellow

vθ = rIβ

ω
(θ̈d + kdθ(θ̇d − θ̇) + kpθ(θd − θ) + kiθ

∫ t

0
(θd − θ)dt − αω2

2rIβ
θ̇) (4.56)

Then equation 4.55 can be re-written as bellow

(θ̈d − θ̈) + kdθ(θ̇d − θ̇) + kpθ(θd − θ) + kiθ

∫ t

0
(θd − θ)dt = 0 (4.57)

Therefore, by defining eθ = θd − θ, we have:

ëθ + kdθėθ + kpθeθ + kiθ

∫ t

0
eθdt = 0 (4.58)

4.2.3 Calculating motor voltage for each motor

v1 = vx+vθ
2

v2 = vx−vθ
2

(4.59)

These desired voltages will fed into the voltage loop control of each motor.

4.3 Conclusion

In this section, tracking of the trajectory in a 2-DOF robotic manipulator is presented.
Tracking time, initial and final positions co-ordinates are specified. Three control methods
are is used to track the initial to final angular position of the joint generated by the trajectory
generator. Simulations results show that controller control the end-effector effectively, and
end-effector reaches from initial to final coordinates effectively.

48



Chapter 5

Simulation Studies

For evaluating the performance of the purposed trajectory planner and trajectory trackers,
simulation studies were conducted and the results are demonstrated. The control systems
are designed and evaluated via employment of MATLAB/Simulink software. In this chapter,
the simulation studies for validating the control systems mentioned in previous chapters are
going to be presented.

5.1 Discretization

For digital implementation, Simulinks’ Digital Clock block 5.1, which Outputs simulation
time at specified sampling interval is used. This block outputs the simulation time only at
the specified sampling interval. Other times, the block holds the output at the previous
value. This can simply digitally discretized the time domain. In time-domain, a general
dynamic system is expressed as follows

ẋ(t) = f(t, u, x)

y = g(t, u, x) (5.1)

where x is the state of the system, u is the input of the system and y is the output of
the system.

In (5.1), the dynamic system is described by sets of states expressed by first order
differential equations. This dynamic system is then discretized digitally by approximating
the continuous-time differential equations in discrete time as follows

xn+1 = f ′(tn, un, xn)

yn = g′(tn, un, xn) (5.2)

49



Figure 5.1: The block diagram of the simulink’s digital clock

where n is an integer representing the discretized time, f ′ and g′ are the approximation
to calculate the next value of the state. The most important aspect of discretizing the
control system is to make sure the method can accurately approximate the continuous
dynamics. Here, The specified sampling interval of 10 millisecond is chosen to make the
simulation as close as possible to the experimental setup in which the lowest response time
amongst the sensors is 10 millisecond.

5.2 Simulation of designed trajectory planner

As it was described in chapter three motion profile for the trajectory of x and θ are

xd(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (5.3)

θd(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 (5.4)

The coefficients of the polynomial can be calculated using initial value, desired final
value, the duration of the motion and the sampling time (t). Digital Clock provides t for
each step. Using a MATLAB function, which gets these values as input, and outputs system
states x, ẋ, θd, θ̇d, we can have the desired motion as the reference to trajectory tracker.
5.2 illustrate this subsystem in MATLAB.

An example of trajectory planner for translational motion from 0.5 meter to 0.8 meter
and rotational motion from 0.1 radian to 0.15 radian during 20 second are illustrated in 5.3
and 5.4 respectively.

50



Figure 5.2: Trajectory planner block in Simulink

Figure 5.3: Trajectory generation of a linear
path from 0.5m to 0.8m

Figure 5.4: Trajectory generation of a rota-
tional path from 0.1rad to .15rad

51



Figure 5.5: DC motor block diagram

Motor Parameters Value
Kb 0.01 N.m/A
Ka 1.2 N.m/A
R 10 Ω
L 0.008 H
J 0.001 Kgm2/rad
B 0.001 Kgm2/rad

Table 5.1: Motor parameters

5.3 MATLAB Simulations for Cascaded Trajectory Tracking
Design

Simulation of the DC motor is a crucial part in trajectory tracking simulation. The model
for a DC-motor in frequency domain mentioned in Chapter 4.1.1 4.2 is used to simulate the
DC motor, which is used as actuator in the process Fig 5.5. DC motor’s Parameters are
shown in table 5.1

To be able to simulate the LED light panel its physical attributes are measured and
illustrated in table 5.2.

Parameters Quantity Simulation Value
m (Kg) mass of the light panel 5
w (m) Width of the light panel 1.2
h (m) Height of the light panel 0.04
l (m) length of the light panel 0.4
I kg ∗ m2 Moment of Inertia (Rectangle parallel to y-axis) m*(h2 + l2)/12

Table 5.2: Parameters of the light fixture

52



Figure 5.6: MATLAB Simulink for close loop DC motor current control

5.3.1 MATLAB Simulation for The DC Motor Current PID Control (In-
ner Controller in Cascaded Trajectory Tracking Design)

The Simulink model of a DC motor current control system using PID controller is shown in
fig 5.6. For evaluating the PID controller we use a PID controller block (P + I 1

s + D N
1+N 1

s

).
P, I and D are proportional, integral and derivative gain constants respectively. Performance
of the PID current controller purposed in Chapter 4.1 4.1 is demonstrated in this section.

To check the controller design, a step change in the current reference is used. This is
implemented via a constant and step source blocks. The value of Kpi, Kii and Kdi in
MATLAB prompt are tuned and shown in table 5.3.

Parameters of PID controller Values
Kp 10
Ki 200
Kd 0

Table 5.3: Parameters of the motor current PID controller

Simulation has been ran for a reference current of 1A (for 3 sec, time step 1e-4). The
response of the system to the step change in the reference current and its transient perfor-
mance is shown in Fig 5.7.

53



Figure 5.7: Step response of DC motor PID current controller

5.3.2 MATLAB Simulation for The Trajectory Tracker: Cascaded PD
Control and Motor Current Control

Proposed cascaded control in 4.1 is simulated using MATLAB Simulink. Fig 5.11 shows
the MATLAB Simulink design of the outer loop in the Cascaded control design. This PD
controller outputs the control command, which is the desired force for each motor f1 and
f2. The desired motor force will convert to the desired current for the motor, which will
be the input to the motor current PID control. The output of DC motor current controller
will convert to force and feedback to the model of the LED plan and observer M1f1 and
M2f2. Simulation has been ran for a translational motion from 0.5 meter to 0.8 meter

Figure 5.8: Cascaded height and angle control: PD as the outer controller

54



and rotational motion from .1 Radian to .15 Radian during 20 second. The result of the
simulation of the system is shown in Fig 5.9 and 5.10 for translational and rotational motion
respectively.

Figure 5.9: Trajectory tracker using cascaded PD controller and motor current controller
(Height Response)

Figure 5.10: Trajectory tracker using cascaded PD controller and motor current controller
(Angle Response)

55



Figure 5.11: Cascaded height and angle control: LQR as the outer controller

5.3.3 MATLAB Simulation for The Trajectory Tracker: Cascaded State-
Space Control and Motor Current Control

In this subsection proposed cascaded control in first section of Chapter Four is simulated
using MATLAB Simulink. Fig 5.11 shows the MATLAB Simulink design of the outer loop
in the Cascaded control design. This PD controller outputs the control command, which is
the desired force for each motor.

The main idea in LQR control design is to minimize the quadratic cost function of∫
(xT Qx + uT Ru)dt. It turns out that regardless of the values of Q and R, the cost function

has a unique minimum that can be obtained by solving the Algebraic Riccati Equation.
The parameters Q and R can be used as design parameters to penalize the state variables
and the control signals. The larger these values are, the more you penalize these signals.
Basically, choosing a large value for R means you try to stabilize the system with less
(weighted) energy. This is usually called expensive control strategy. On the other hand,
choosing a small value for R means you don’t want to penalize the control signal (cheap
control strategy). Similarly, if you choose a large value for Q means you try to stabilize the
system with the least possible changes in the states and large Q implies less concern about
the changes in the states.

Since there is a trade-off between the two, we keep R as I (identity matrix) and only
alter Q. Klqr is calculated using a function in MATLAB (lqr(A,B,Q,R)) and the result is
as follows:

Klqr = 1.0e + 04 ∗
[
−5.0000 −0.0290 0.0007 0.0007
−5.0000 −0.0290 −0.0007 −0.0007

]
(5.5)

Simulation has been ran for a translational motion from 0.5 meter to 0.8 meter and
rotational motion from .1 Radian to .3 Radian during 20 second. The result of the simu-

56



lation of the system is shown in Fig 5.15 and 5.16 for translational and rotational motion
respectively.

Figure 5.12: Trajectory tracker using cascaded LQR controller and motor current controller
(Height Response)

Figure 5.13: Trajectory tracker using cascaded LQR controller and motor current controller
(Angle Response)

57



Figure 5.14: MATLAB Simulink for trajectory planner and trajectory tracker: DC motor
voltage control

5.4 MATLAB Simulations for The Trajectory Tracker: DC
Motor Voltage Control

Voltage control strategy is proposed to lower the prototype cost by eliminating current
sensors and their amplifiers. Moreover, we can cut out four tuning parameters of gain and
reference voltage for each low current sensors. Proposed DC motor voltage control in the
Chapter 4.2 is simulated using MATLAB Simulink. Fig 5.14 shows the MATLAB Simulink
design of the voltage control. This controller outputs the control command, which is the
desired voltage for each transnational and rotational motion vθ and vx.

Simulation has been ran for a translational motion from 0.5 meter to 0.4 meter and
rotational motion from 0.1 Radian to 0.15 Radian during 20 second. The result of the
simulation of the system is shown in Fig ?? and ?? for translational and rotational motion
respectively.

58



Figure 5.15: Trajectory tracker using cascaded LQR controller and motor current controller
(Height Response)

Figure 5.16: Trajectory tracker using cascaded LQR controller and motor current controller
(Angle Response)

59



5.5 Conclusion

In this section, simulation for generating a trajectory and tracking of the trajectory in
a 2-DOF robotic manipulator is presented. Three control methods being: (i) cascaded
PD control and motor current control, (ii) cascaded state-space control and motor current
Control and (iii) DC motor voltage control are simulated. Tracking time, initial and final
positions for each scenarios as well as controller parameters and their values are specified.
Simulations results show that controller control the end-effector effectively, and end-effector
reaches from initial to final coordinates effectively.

60



Chapter 6

Experimental Results

In this chapter, the purposed control system in Chapter Two and Chapter Three of this
thesis are experimentally evaluated and the results are presented. A flexible robotic tracking
control test bed has been developed, which allows the implementation of various schemes.

Mobile robots have two mechanical subsystems: (i)actuators and sensors, and (ii) me-
chanical design. The control of these subsystems requires two electronic power stage as well
as acquisition and control stage. The interaction between these stages is the controlling
factor of a mobile robot [40].

Figure 6.1: The proposed experimental setup for motion control unit

61



6.1 Experimental Setup

The purposed experimental setup, which is shown in fig 6.1 is designed to examine the
proposed trajectory planer and trajectory tracker. This setup supports the LED panel,
actuators and sensory devices. A set of two DC motors are located on the bar at the middle
of the fixture’s top. The LED panel is connected to these motors via two cable, The TOF
sensor was mounted on another metal bar parallel to the motor bars to allow a distance
between motros and sensor, which will lessen the noise coming from motors and effecting I2c
Bus. The TOF sensor should be facing the LED panel. The MPU6050 was placed on the
LED panel wad connected to the CC3220S-LAUNCHXL’s I2C bus with wire. The Texas
Instrument CC3220S-LAUNCHXL was used as controller, which have a PWM frequency
of 100k. The block diagram in fig 6.2 shows the experimental setup and the parts used as
actuators and sensors.

Figure 6.2: The purposed experimental setup block diagram

The dimension of the fixture is 200 cm, 200 cm by 200 cm for height, width and length
respectively. The inner radius of the rim is 1 cm.

6.1.1 Sensor Nodes

I2C (Inter-Integrated Circuit) is a synchronous, multi-master, multi-slave, packet switched,
single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is
widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in
short-distance, intra-board communication [32]. this communication interface is used for
all the following sensors.

1. Height Measurement: To measure the distance between the LED panel and rims a
M5Stack Time-of-Flight Ranging Unit (VL53L0X) is used, which is capable of Mea-
suring absolute distances up to 2m with High precision. ToF sensors use a tiny laser
to fire out infrared light where the light produced out will bounce off any object and
return to the sensor. Based on the time difference between the emission of the light

62



Parameters Quantity Simulation Value
R (ohm) Armature resistance 4.33
L (H) Armature inductance 2.34e-3
i (A) Armature current 0
e (v) Back electromotive force 0
v (v) Input voltage 0
J (Kg.m2) Inertia torque of motor 0.08
B (N.m.s/rad) Motor friction constant 0.001
Km(N.m.s/rad) Motor torque constant 2.18e-2
Kb(V.s/rad) electromotive force constant 0
η(Nm) Motor torque 0.9
n Motor friction constant 6.3
r (m) Radius of motor shaft 0.025

Table 6.1: Parameters of the DC motor

and its return to the sensor after being reflected by an object, the sensor is able to
measure the distance between the object and the sensor. The VL53L0X integrates a
leading-edge SPAD array (Single Photon Avalanche Diodes) and embeds ST’s second
generation Flight SenseTM patented technology. By integrating a 940 nm VCSEL
emitter (Vertical Cavity Surface-Emitting Laser) and infrared filters, the VL53L0X
will achieve longer ranges, better immunity to ambient light, and robustness toward
glass optical crosstalk.

2. Angle Measurement: Gyro + accelerometer gy-521 (mpu-6050)-built on the basis of
the chip mpu6050. The module board also contains the necessary mpu6050 strapping,
including the I2C interface pull-up resistors. The gyroscope is used to measure linear
accelerometer speeds, and accelerometer-angular speeds. Sharing accelerometer and
gyro allows you to determine the movement of the body in three-dimensional space.

3. Light Measurement: TCS34725 series Light, Color Sensor Sensor Evaluation Board,
which has RGB and Clear light sensing elements. An IR blocking filter, integrated
on-chip and localized to the color sensing photodiodes, minimizes the IR spectral com-
ponent of the incoming light and allows color measurements to be made accurately.

6.1.2 Actuators

Two identical high torque turbo geared DC 12V Motor with 40 RPM with characteristic
shown in table 6.1 are used in this prototype.

63



6.2 The Internet of Things Reference Model for Motion Con-
trol

Figure 6.3: IoT platform used in the proposed setup

Figure 6.4: IoT system block diagram used in the proposed setup

Proposed IoT platform’s performance is evaluated in this section. Fig 6.3 and 6.4 illus-
trate the IoT platform and IoT system block diagram.

64



6.2.1 Python script: Fetch data from sensorReadings table

Python script can request the data from sensor readings table where all the observations
are stored. First, a connection is established between Python script and database using
admin username and password. The host will be localhost by default as we are running
the database on the same system. Second, using SQL SELECT command we can retrieve
data. As an example the SQL query "SELECT R1 FROM sensorReadings ORDER BY
Time DESC LIMIT 1" will bring back the latest record for the variable R1, which is the
light intensity red captured with first RGB sensor. Fig 6.5 shows the SQL queries, database
connection, courser connection and courser execute in this process.

Figure 6.5: Python function to fetch data from sensorReadings database table

6.2.2 Python script: Add data to desiredReferencesMotionControl database
table

Python script can add data to desiredReferencesMotionControl table table where all the
desired values for the motion control unit is being stored. First, a connection is established
between Python script and database using admin username and password. The host will

65



be localhost by default as we are running the database on the same system. Second, using
SQL INSERT command we can add data. As an example the SQL query "SELECT R1
FROM sensorReadings ORDER BY Time DESC LIMIT 1" will add desired Height. Fig
6.5 shows the function "add-data", which takes two inputs desired height and desired angle
and add them to desiredReferencesMotionControl table.

Figure 6.6: Python function to add data to desiredReferencesMotionControl database
table

Fig 6.7 shows that after calling add − data(60, 15), value 60 for height and 15 for angle
are added to the desiredReferencesMotionControl table.

Figure 6.7: Desired references motion control database table with updated desired values

66



6.3 Motion Control Results

The digital implementation of the continuous controller used in this prototype was explained
in the last chapter. This discrete algorithms are implemented with the Texas Instrument
CC3220S-LAUNCHXL Experimenter Kit, which has maximum clock speed of 80MHz. To
program the controller in this MCU, Energia software is used.

The estimated parameters by the control loop were read using serial communication
(SCI) with the Micro-controller. The data was read in the computer using serial port and
sent to web server to store as well.

6.3.1 Current Controller

Fig 6.11 illustrate the circuit diagram of motor current control. One MPU6050 and one
Ultrasonic Ranger are connected to I2C bus and digital input to measure LED panel’s
angle and distance respectively. Toshiba TB6568KQ Full-Bridge DC Motor Driver IC is
used because current for motor cannot be supplied to the motors from the microprocessor.
Microprocessors operate at low voltages and require a small amount of current to operate
while the motors require a relatively higher voltages and current. Motor Driver IC PWM
control enables driving DC motors with high thermal efficiency. Four operating modes are
selectable via IN1 and IN2: clockwise (CW), counterclockwise (CCW), Short Brake and
Stop. To be able to use only one PWM port of the microprocessor for each motor, we can
use the bellow design:

Figure 6.8: Circuit diagram of nand gates used to reduce number of PWM pins

TOSHIBA TC74HC00A digital integrated circuit with quad high speed 2-input NAND
gate The TC74HC00A is used to implement this design sown in fig 6.9 and its truth table
is shown in fig 6.10.

Proposed design makes it possible to configure one PWM pin for each motor (p17 for
motor 1 and p64 for motor2). Also p16 and p53 are configured as output pins for controlling
the direction of motor 1 and 2 respectively where HIGH is clockwise direction and LOW is
counter clockwise direction. Analog input pins are used for current sensors. p59 for motor
1 and p58 for motor2 are configured as 10-bit ADC for analog inputs.

67



Figure 6.9: Toshiba Quad 2 input
NAND gates(74HC00AP)

Figure 6.10: Truth table of
NAND gate

For each motor three pins for PWM, direction and current sensor are assigned at initial-
ization (initMotor(structmotor ∗ motor − t, intpwm, intdir, intcurrentSensorP in)). Fig
6.14 illustrates the circuit diagram of Proposed current control.

Figure 6.11: Circuit diagram of current control: Terminal Configuration and Functions

Applying the trajectory generator and running the proposed Cascaded PD Control and
Motor Current Control for linear path from 0.4 meter to 0.6 meter and rotational path from
0 degree to -10 degree yielded the results shown in Fig 6.12 and Fig 6.13 respectively. Fig
fig: shows the Circuit for the current control of DC motor.

68



Figure 6.12: Trajectory tracker using cascaded PD controller and motor current controller
(Height Response)

Figure 6.13: Trajectory tracker using cascaded PD controller and motor current controller
(Angle Response)

69



6.3.2 Voltage Controller

Fig 6.14 illustrate the circuit diagram of motor voltage control. One MPU6050 and one
VL53L0X are connected to I2C-SCL and I2C-SDA to measure Led panel angle and distance
respectively. For each motor there is are assigned Pins for PWM and direction. Toshiba
TB6568KQ Full-Bridge DC Motor Driver IC is used and TOSHIBA TC74HC00A Digital
Integrated Circuit with Quad high speed 2-Input NAND Gate The TC74HC00A is used to
implement this design illustrated in fig 6.9.One PWM pin for each motor (p17 for motor 1
and p64 for motor2) is configured. For each motor, one GPIO is configured as output pin
for controlling the direction (p16 for motor 1 and p53 for motor2) where HIGH is clockwise
direction and LOW is counter clockwise direction. For each motor two pins for PWM and
direction are assigned at initialization (initMotor(structmotor∗motor−t, intpwm, intdir)).
Fig 6.14 illustrates the circuit diagram of Proposed voltage control.

Figure 6.14: Circuit diagram of Voltage control: terminal configuration and functions

Applying the trajectory generator and running the proposed DC Motor voltage Control
for linear path starting from 0.6 meter to 0.5 meter and rotational path from 15 degree to 0
degree yielded the results shown in Fig 6.15 and Fig 6.16 respectively. Fig fig:circuitVoltage
shows the Circuit diagram for the voltage control of DC motor.

70



Figure 6.15: Trajectory tracker using DC motor Voltage Control (Height Response)

Figure 6.16: Trajectory tracker using DC motor Voltage Control (Angle Response)

71



6.4 Online PID Tuning

A modification is added to the system to enable online system tuning. In the proposed
voltage control we have to tune 6 PID parameters. As can be seen in 4.2, calculating vx

needs 3 PID parameters 4.53 and calculating vθ needs another 3 PID parameters 4.57.
These values are provided to motion control unit upon request from server. In the database
another table is configured to store the PID parameters. A Python function is responsible
to add the most updated values to this table. Each time the motion control unit is triggered,
It will request the latest PID values and updates the values in its PID structures. Fig 6.17
shows the SQL table containing PID parameters.

Figure 6.17: Database table containing updated desired PID values

6.5 Conclusion

In this section, experimental result for generating a trajectory and tracking of the trajectory
in a 2-DOF robotic manipulator is presented. Two control methods being: (i) cascaded
PD control and motor current control and (ii) DC motor voltage control are implemented.
Circuit diagrams of both control methods are provided in which the connection of all sensory
units and actuators to the processing unit and the wiring diagram is presented.

Tracking time, initial and final positions for each motion scenario are specified. Ex-
perimental results show that although both controller control the end-effector so that it
can reaches from initial to final coordinates effectively, DC motor voltage control performs
smoother. It can be as a result of having less parameters to tune when it come to DC
motor voltage control. Also it can be the result of using the low current version of the
SparkFun current sensor breakout and the Texas Instruments CC3220S-LAUNCHXL. The
current sensor board provides higher sensitivity to current by using an op-amp providing
a voltage range of 0 to 5 volt as its output. But, the CC3220S-LAUNCHXL’s analog to
digital pins can not tolerate a voltage more than 1.8v and will cap the signal at 1.4v making
it impossible to use the full potential of the low current sensor.

72



Chapter 7

Conclusion

It was shown that the interest in greenhouse energy management has increased recently by
improvements in crop growth monitoring and light intensity control. The main integration
challenge of these light intensity control is maintaining the optimized light intensity for each
plant growth stage by performing advanced monitoring and control strategies. The control
algorithm should react according to the environmental features to ensure the reliable and
optimized control.

In this thesis, the performance of the IoT based two Degree of freedom robotic LED
light fixture is analyzed. Using a mathematical model, the state-state presentation of a
cable robotic LED light fixture is proposed. Also, feasibility of using IoT connectivity to
enhance the data logging process as well as using cloud computing for advanced decision
making for motion control reference values is discussed.

First, IoT framework is proposed and configured. The main purpose of this subsection
is to provide the desired values for the motion control unit. The motion control unit have
a trajectory planner, which accurately plans the linear and rotational movement for the
LED light panel. Propose IoT platform is based on a web server which is implemented on
a Raspberry Pi board. Web server uses Apache2 to handle HTTP requests coming from
motion control unit which is implemented on a Texas Instruments CC3220S-LAUNCHXL
board. All the desired values for motion control get stored in a database table. The database
and its tables are managed phpMyAdmin and are password protected. The IoT framework
can be used to store records and environmental features provided using sensors. In this
prototype the CC3220S-LAUNCHXL is also in charge of data logging and data transfer to
database.

Second, simulation for generating a trajectory and tracking of the trajectory is pre-
sented. Three control methods being: (i) cascaded PD control and motor current control,
(ii) cascaded state-space control and motor current Control and (iii) DC motor voltage
control are simulated. Tracking time, initial and final positions for each scenarios as well as
controller parameters and their values are specified. Simulations results show that controller

73



control the end-effector effectively, and end-effector reaches from initial to final coordinates
effectively.

And finally, the experimental result for fetching data from the webserver is provided.
Having an updated value for either desired height or desired angle will trigger the motion
control unit. Motion control unit will first create the coefficient of a fifth order polynomial.
It will provide a new reference value for motor control unit at each sample time. Two control
methods for DC motor are proposed and implemented on a test bed setup: (i) cascaded
PD control and motor current control and (ii) DC motor voltage control. Experimental
results show that although both controller control the end-effector so that it can reaches
from initial to final coordinates effectively, DC motor voltage control performs smoother.

It should be mentioned that simulations were performed by Matlab/Simulink and ex-
perimental setup was developed and build in the SFU’s mechatronic systems engineering
lab to validate the performance of the purposed IoT-based control system. Circuit diagrams
of both control methods are provided using Circuit-Diagram online tool in which the con-
nection of all sensory units and actuators to the processing unit and the wiring diagram is
presented.

7.1 Future Work

This work can be further developed in the future as suggestion in the followings

1. Upgrading the actuator: Using motor with encoder for accurate position feedback.

2. Upgrading the sensors: This work can be further improved using sensors with
higher refresh rate.

3. light prediction: This work can be further improved to be able to utilize light sensors
and weather forecast for determination of desired angle for light panel.

4. Image processing: This work can be further improved to be able to utilize image
processing in tracking the plant growth and calculating the desired height for light
panel.

74



Bibliography

[1] 11 core guidelines to know before buying grow lights. https://www.urbanvine.co.

[2] Dimlux vs luxx: Which is the best 1000 watt grow light. https://www.
dimluxlighting.com/knowledge.

[3] Mpu-6000 and mpu-6050 product specification ps-mpu-6000a-00. (PS-MPU-6000A-00),
8 2013. Rev. 3.4.

[4] Ieee standard for an architectural framework for the internet of things (iot). IEEE Std
2413-2019, pages 1–269, 2020.

[5] Dafni Despoina Avgoustaki and George Xydis. Energy cost reduction by shifting elec-
tricity demand in indoor vertical farms with artificial lighting. Biosystems Engineering,
211:219–229, 2021.

[6] Jeremy Begey, Loic Cuvillon, Maximilien Lesellier, Marc Gouttefarde, and Jacques
Gangloff. Dynamic control of parallel robots driven by flexible cables and actuated by
position-controlled winches. IEEE Transactions on Robotics, 35(1):286–293, 2018.

[7] William Bolton. Instrumentation and control systems. Newnes, 2021.

[8] J Boaventura Cunha et al. Greenhouse climate models: An overview. In Efita 2003
conference, pages 823–829. Citeseer, 2003.

[9] Grzegorz Ćwikła. Methods of manufacturing data acquisition for production
management-a review. In Advanced Materials Research, volume 837, pages 618–623.
Trans Tech Publ, 2014.

[10] David L Ehret, Bernard D Hill, Tom Helmer, and Diane R Edwards. Neural network
modeling of greenhouse tomato yield, growth and water use from automated crop
monitoring data. Computers and electronics in agriculture, 79(1):82–89, 2011.

[11] Nicholas Engler and Moncef Krarti. Review of energy efficiency in controlled environ-
ment agriculture. Renewable and Sustainable Energy Reviews, 141:110786, 2021.

[12] Ben Ezair, Tamir Tassa, and Zvi Shiller. Planning high order trajectories with general
initial and final conditions and asymmetric bounds. The International Journal of
Robotics Research, 33(6):898–916, 2014.

[13] Othmane Friha, Mohamed Amine Ferrag, Lei Shu, Leandros A Maglaras, and Xiaochan
Wang. Internet of things for the future of smart agriculture: A comprehensive survey
of emerging technologies. IEEE CAA J. Autom. Sinica, 8(4):718–752, 2021.

75

https://www.urbanvine.co
https://www.dimluxlighting.com/knowledge
https://www.dimluxlighting.com/knowledge


[14] Clement Gosselin, Ping Ren, and Simon Foucault. Dynamic trajectory planning of
a two-dof cable-suspended parallel robot. In 2012 IEEE International conference on
Robotics and Automation, pages 1476–1481. IEEE, 2012.

[15] Ping Guo, Puwadol Oak Dusadeerungsikul, and Shimon Y Nof. Agricultural cyber
physical system collaboration for greenhouse stress management. Computers and elec-
tronics in agriculture, 150:439–454, 2018.

[16] X. Hao. Latest development in lighting greenhouse vegetables. 2019.

[17] X Hao, C Little, JM Zheng, and R Cao. Far-red leds improve fruit production in
greenhouse tomato grown under high-pressure sodium lighting. In VIII International
Symposium on Light in Horticulture 1134, pages 95–102, 2016.

[18] E Iddio, L Wang, Y Thomas, G McMorrow, and A Denzer. Energy efficient operation
and modeling for greenhouses: A literature review. Renewable and Sustainable Energy
Reviews, 117:109480, 2020.

[19] Birgit Jacob and Hans J Zwart. Linear port-Hamiltonian systems on infinite-
dimensional spaces, volume 223. Springer Science & Business Media, 2012.

[20] Faisal Jamil, Muhammad Ibrahim, Israr Ullah, Suyeon Kim, Hyun Kook Kahng, and
Do-Hyeun Kim. Optimal smart contract for autonomous greenhouse environment based
on iot blockchain network in agriculture. Computers and Electronics in Agriculture,
192:106573, 2022.

[21] Xinglin Ke, Hideo Yoshida, Shoko Hikosaka, and Eiji Goto. Optimization of photo-
synthetic photon flux density and light quality for increasing radiation-use efficiency in
dwarf tomato under led light at the vegetative growth stage. Plants, 11(1):121, 2022.

[22] H Marjolein Kruidhof and Wade H Elmer. Cultural methods for greenhouse pest and
disease management. In Integrated Pest and Disease Management in Greenhouse Crops,
pages 285–330. Springer Dordrecht, The Netherlands, 2020.

[23] Gabriel LaPlante, Sonja Andrekovic, Robert G Young, Jocelyn M Kelly, Niki Bennett,
Elliott J Currie, and Robert H Hanner. Canadian greenhouse operations and their
potential to enhance domestic food security. Agronomy, 11(6):1229, 2021.

[24] lightrail3. How does angled indoor plant light change grow results? URL:
https://www.lightrail3.com/angled-indoor-plant-light-change-grow-results/.

[25] Matheus Cardim Ferreira Lima, Maria Elisa Damascena de Almeida Leandro, Con-
stantino Valero, Luis Carlos Pereira Coronel, and Clara Oliva Gonçalves Bazzo. Au-
tomatic detection and monitoring of insect pests—a review. Agriculture, 10(5):161,
2020.

[26] Tan Liu, Qingyun Yuan, and Yonggang Wang. Hierarchical optimization control based
on crop growth model for greenhouse light environment. Computers and Electronics
in Agriculture, 180:105854, 2021.

76



[27] Jordan M Longval and Clément Gosselin. Dynamic trajectory planning and geometric
analysis of a two-degree-of-freedom translational cable-suspended planar parallel robot
using a parallelogram cable loop. Journal of Mechanisms and Robotics, 11(2):020903,
2019.

[28] Fangfang Ma, Lara J Jazmin, Jamey D Young, and Doug K Allen. Isotopically nonsta-
tionary 13c flux analysis of changes in arabidopsis thaliana leaf metabolism due to high
light acclimation. Proceedings of the National Academy of Sciences, 111(47):16967–
16972, 2014.

[29] R Madhumathi, T Arumuganathan, and R Shruthi. Internet of things in precision
agriculture: A survey on sensing mechanisms, potential applications, and challenges.
In Intelligent Sustainable Systems, pages 539–553. Springer, 2022.

[30] Chrysanthos Maraveas and Thomas Bartzanas. Application of internet of things (iot)
for optimized greenhouse environments. AgriEngineering, 3(4):954–970, 2021.

[31] F Merat. Introduction to robotics: Mechanics and control. IEEE Journal on Robotics
and Automation, 3(2):166–166, 1987.

[32] Adrianus PMM Moelands and Herman Schutte. Two-wire bus-system comprising a
clock wire and a data wire for interconnecting a number of stations, August 25 1987.
US Patent 4,689,740.

[33] Taewon Moon, Joon Woo Lee, and Jung Eek Son. Accurate imputation of greenhouse
environment data for data integrity utilizing two-dimensional convolutional neural net-
works. Sensors, 21(6):2187, 2021.

[34] Redmond R Shamshiri, Fatemeh Kalantari, KC Ting, Kelly R Thorp, Ibrahim A
Hameed, Cornelia Weltzien, Desa Ahmad, and Zahra Mojgan Shad. Advances in
greenhouse automation and controlled environment agriculture: A transition to plant
factories and urban agriculture. 2018.

[35] Wesley C Randall and Roberto G Lopez. Comparison of bedding plant seedlings grown
under sole-source light-emitting diodes (leds) and greenhouse supplemental lighting
from leds and high-pressure sodium lamps. HortScience, 50(5):705–713, 2015.

[36] JSFC2KT Instructions revised. Jump start t5 24w 2’ standing lighting sys-
tem. URL: https://www.hydrofarm.com/p/jump-start-t5-24w-2-standing-lighting-
system/jsfc2kt, 2016.

[37] Derek Rowell. State-space representation of lti systems. URL: http://web. mit.
edu/2.14/www/Handouts/StateSpace. pdf, 2002.

[38] Gianluca Serale, Luca Gnoli, Emanuele Giraudo, and Enrico Fabrizio. A supervisory
control strategy for improving energy efficiency of artificial lighting systems in green-
houses. Energies, 14(1):202, 2021.

[39] Snehal R Shinde, AH Karode, and Dr SR Suralkar. Review on-iot based environment
monitoring system. International Journal of Electronics and Communication Engi-
neering and Technology, 8(2):103–108, 2017.

77



[40] Ramón Silva-Ortigoza, C Márquez-Sánchez, Mariana Marcelino-Aranda, Magdalena
Marciano-Melchor, Gilberto Silva-Ortigoza, R Bautista-Quintero, ER Ramos-Silvestre,
JC Rivera-Díaz, and D Muñoz-Carrillo. Construction of a wmr for trajectory tracking
control: Experimental results. The Scientific World Journal, 2013, 2013.

[41] Lewei Tang, Xiaoqiang Tang, Xiaoling Jiang, and Clement Gosselin. Dynamic trajec-
tory planning study of planar two-dof redundantly actuated cable-suspended parallel
robots. Mechatronics, 30:187–197, 2015.

[42] Wen Tao, Liang Zhao, Guangwen Wang, and Ruobing Liang. Review of the internet
of things communication technologies in smart agriculture and challenges. Computers
and Electronics in Agriculture, page 106352, 2021.

[43] Ahmad Tay, Frédéric Lafont, and Jean-François Balmat. Forecasting pest risk level in
roses greenhouse: Adaptive neuro-fuzzy inference system vs artificial neural networks.
Information Processing in Agriculture, 8(3):386–397, 2021.

[44] Pradyumna K Tripathy, Ajaya K Tripathy, Aditi Agarwal, and Saraju P Mohanty. My-
green: An iot-enabled smart greenhouse for sustainable agriculture. IEEE Consumer
Electronics Magazine, 2021.

[45] Tomáš Tureček, Pavel Vařacha, Alžběta Turečková, Václav Psota, Peter Jank, Vít
Štěpánek, Adam Viktorin, Roman Šenkeřík, Roman Jašek, Bronislav Chramcov, et al.
Scouting of whiteflies in tomato greenhouse environment using deep learning. In Agri-
culture Digitalization and Organic Production, pages 323–335. Springer, 2022.

[46] Michel J Verheul, Henk FR Maessen, Martina Paponov, Anush Panosyan, Dmitry
Kechasov, Muhammad Naseer, and Ivan A Paponov. Artificial top-light is more efficient
for tomato production than inter-light. Scientia Horticulturae, 291:110537, 2022.

[47] David S Watson, Mary Ann Piette, Osman Sezgen, and Naoya Motegi. Machine to ma-
chine (M2M) technology in demand responsive commercial buildings. River Publishers,
2020.

[48] You Wu, Shicheng Yan, Junliang Fan, Fucang Zhang, Wenju Zhao, Jing Zheng, Jin-
jin Guo, Youzhen Xiang, and Lifeng Wu. Combined effects of irrigation level and
fertilization practice on yield, economic benefit and water-nitrogen use efficiency of
drip-irrigated greenhouse tomato. Agricultural Water Management, 262:107401, 2022.

[49] Jihong Zhang, Huyin Li, Maorong Liu, Huan Zhang, Hai Sun, Hongtuo Wang, Lin
Miao, Miaomiao Li, Ruihao Shu, and Qilian Qin. A greenhouse test to explore and
evaluate light-emitting diode (led) insect traps in the monitoring and control of tri-
aleurodes vaporariorum. Insects, 11(2):94, 2020.

[50] Kai Zhang, Jihua Yu, and Yan Ren. Research on the size optimization of photovoltaic
panels and integrated application with chinese solar greenhouses. Renewable Energy,
182:536–551, 2022.

[51] Bin Zi, Baoyan Duan, Jingli Du, and Yuanying Qiu. Trajectory tracking sliding mode
control of a cable parallel manipulator based on fuzzy logic. In 2006 6th World Congress
on Intelligent Control and Automation, volume 2, pages 9203–9207. IEEE, 2006.

78



Chapter 8

C Code For The Texas Instruments
CC3220S-LAUNCHXL

In this section, the Energia code used to implement the purposed motion control unit is
provided. This sample code only shows the sequence and logic used in the microprocessor
and the libraries, modules, variables, structures and functions are not included for simplic-
ity. It should be noted that the C is used to implement the controller.

1 // Include libraries here. For simplicity, this part is removed.
2 // Put all the variables, structures and IP addresses here. For

simplicity, this part is removed.
3
4 void setup() {
5 // point to the light panel which we want to control
6 led_t = &led1;
7
8 Wire.begin(); // initiate the Wire library and join the I2C bus
9

10 WiFi.begin(ssid, ssid_password); // attempt to connect to WiFi
11
12 initGyroscope(); // initialize the gyroscope
13
14 // initialize motors and assign pwm and direction pins to them
15 // initMotor(struct motor *motor_t, int pwm, int dir)
16 initMotor(&motor1, 31, 32);
17 initMotor(&motor2, 29, 28);
18
19 httpRequest_delay_ms = millis(); // start timer for HTTP

request
20 sendingToDB_delay_ms = millis(); // start timer for data

logging
21 }
22 void loop() {

79



23 MPU6050Readings(); // read gyroscope
24 VL53L0XReadings(); // read distance
25
26 // connect to web server
27 if (client_RPi.connect(RpiServer, 80)) {
28 // fetch the desired motion values from Phpmyadmin Database
29 fetchingDesiredMotionValuesFromPhpmyadminDatabase();
30 } else {
31 Serial.println("mysql connection failed");
32 }
33
34 // if we have an updated value, run the motion control

algorithm
35 if(incomingFloatAngle != lastIncomingFloatAngle ||

incomingFloatHight != lastIncomingFloatHight){
36 lastIncomingFloatAngle = incomingFloatAngle;
37 lastIncomingFloatHight = incomingFloatHight;
38 heightTrajectoryArray.readyForInitialization = true;
39 }
40
41 if (heightTrajectoryArray.readyForInitialization) {
42
43 // Initializing trajectoryArray profile. This function runs

only once each time a new trajectoryArray is needed.
44 initTraj(&heightTrajectoryArray, incomingFloatHight,

trajectoryDuration);
45 led_t->x = heightTrajectoryArray.state;
46
47 initTraj(&thetaTrajectoryArray, incomingFloatAngle,

trajectoryDuration);
48 led_t->theta = thetaTrajectoryArray.state;
49
50 // assign the home values
51 x[0] = led_t->x;
52 xdot[0] = 0;
53 theta[0] = led_t->theta;
54 thetadot[0] = 0;
55 X << x[0], xdot[0], theta[0], thetadot[0];
56 }
57 if (heightTrajectoryArray.initialized) {
58 // reset initialized flags
59 heightTrajectoryArray.readyForInitialization = false;
60 heightTrajectoryArray.initialized = false;
61 thetaTrajectoryArray.initialized = false;
62 t = 0;
63 while (t <= trajectoryDuration) {
64 whileloopStartTime = millis();

80



65 trajectoryArrayPlanner(&heightTrajectoryArray);
66 trajectoryArrayPlanner(&thetaTrajectoryArray);
67
68 // update the reference vector (assumed to be of the same

dimension as the observation y)
69 r << heightTrajectoryArray.position, heightTrajectoryArray.

velocity, thetaTrajectoryArray.position,
thetaTrajectoryArray.velocity;

70
71 // call voltage control unit
72 voltageController(&pidX, &pidTheta);
73
74 // update states
75 X << led_t->x, led_t->xdot, led_t->theta, led_t->thetadot;
76
77 stopMotor(&motor1); stopMotor(&motor2);
78 led_t->xKm1 = led_t->x; // save last distance state
79 VL53L0XReadings(); // read distance
80 led_t->thetaKm1 = led_t->theta; // save last theta state
81 MPU6050Readings(); // update theta in radian
82 velocityObserver(); // update xdot and thetadot
83
84 // create pwm signal
85 pwmGenerator(&motor1, vm1);
86 pwmGenerator(&motor2, vm2);
87
88 // next time step
89 t = t + samplingTime;
90
91 // wait for sampling time to reach its value
92 while (millis() - whileloopStartTime < samplingTime) {}
93 }
94
95 // stop the motors
96 stopMotor(&motor1); stopMotor(&motor2);
97
98 // disable the motion tracing unit
99 heightTrajectoryArray.initiolized = false;

100 }
101 }

81



Chapter 9

Configuration of LAMP Server on
Raspberry Pi

9.1 Install LAMP Server Packages

Update Raspbian Sudo apt-get update Sudo apt-get upgrade –y

9.1.1 Install Apache2

Sudo apt-get install apache2 –y //-y flag will automatically install required and suggested
apache 2 packages Sudo a2enmod rewrite Sudo service apache2 restart Allow .htaccess
overrides in the /var/www directory Sudo nano /etc/apache2/apache2.conf Change “Al-
lowoverride None” to “AllowOverride All” and restart apache service Sudo service apache2
restart Find your ip address using “ifconfig” it will be 192. 75.X.X. Using any device, you
will see the apache page if you enter this ip address in your browser.

9.1.2 Install PHP

Sudo apt-get install php libapache2-mod-php –y Now delete the default Apache2 Debian
page and restart apache service Sudo rm index.html Sudo service apache2 restart

9.1.3 Install MySQL

Sudo apt-get install mariadb-server mariadb-client php-mysql -y Sudo service apache2
restart

82



9.1.4 Install PhpMyAdmin

Sudo apt-get install PhpMyAdmin –y • Automatic configuration? Choose apache2 with
spacebar, hit Tab then Enter • Configure database for PhpMyAdmin with dbconfig-common?
Yes • PhpMyAdmin application password -[Enter new password] [confirm new password]

9.1.5 Install and setup FTP

Install and setup VSFTPD and lock-down user pi to the /var/www folder. sudo apt-get
install vsftpd -y // Install the FTP service Open the sudo nano /etc/vsftpd.conf file and
comment out the following two options:

1 local_enable=YES change to: #local_enable=YES
2 ssl_enable=NO change to: #ssl_enable=NO

Then add this code to the very bottom of the file:

1 # CUSTOM
2 ssl_enable=YES
3 local_enable=YES
4 chroot_local_user=YES
5 local_root=/var/www
6 user_sub_token=piftp
7 write_enable=YES
8 local_umask=002
9 allow_writeable_chroot=YES

10 ftpd_banner=Welcome to my Raspberry Pi FTP service.

Now we need to add a dedicated FTP user called piftp, so we enter the following commands
and answer the questions as shown:

1 sudo adduser piftp
2 [enter password]
3 [confirm password]
4 Full Name: [type your name]
5 Room Number: [press enter]
6 Work Phone: [press enter]
7 Home Phone: [press enter]
8 Other: [press enter]
9 Is this information correct?: y [press enter]

10 Important Note:
11 password:
12 PiftpRamzeoboor68
13 FullName =Negar
14 Room=1
15 work=2
16 Home=3

83



We also need to add user piftp to the www-data group, give ownership of the /var/www
folder to www-data user and group, change user piftp’s home folder to same, and loosen
some permissions on the /var/www folder:

1 sudo usermod -a -G www-data piftp
2 sudo usermod -m -d /var/www piftp
3 sudo chown -R www-data:www-data /var/www
4 sudo chmod -R 775 /var/www
5 Restart the VSFTPD service:
6 sudo service vsftpd restart
7 Login to FTP (VSFTPD) Service
8 Sudo apt-get install filezilla

Open the filezilla by opening the aplication menu in Raspberry Pi , selecting internet, then
FileZilla In FileZilla go to File tab, then site manager, new site and insert bellow:

1
2 Host 192.xxx.x.xxx (IP address of your Pi with no prefix)
3 Port 21
4 Protocol FTP (File Transfer Protocol)
5 Encryption Use explicit FTP over TLS if available
6 Logon Type Normal (username & password)
7 Username piftp
8 Password [enter password]

Make a table in mysql Go to phpmyadmin make a table with all the needed variables.
Here, I named the table sensorReadings. after opening the table, you may see this warning:
Warning in ./libraries/sql.lib.php613 count(): Parameter must be an array or an object
that implements Countable to solve this:

1 sudo sed -i "s/|\s*\((count(\$analyzed_sql_results\
2 [’select_expr’\]\)/| (\1)/g" /usr/share/phpmyadmin/libraries/sql.

lib.php

Finally, put all the php files in the /var/www/html folder (Fig 9.1).

Figure 9.1: PHP files in /var/www folder

84



Here we can see the PHP file for sensor readings:

1 <?php
2 class sensorReadings{
3 public $link =’’;
4 function __construct($Height, $Angle, $Temperature, $Humidity,

$R1, $B1, $Par1, $R2, $B2, $Par2){
5 $this->connect();
6 $this->storeInDB($Height, $Angle, $Temperature, $Humidity, $R1,

$B1, $Par1, $R2, $B2, $Par2);
7 }
8 function connect(){
9 $this->link = mysqli_connect(’127.0.0.1’,’admin’,’

RamzeoboorAdmin’) or die(’cannot connect to the BD’);
10 mysqli_select_db($this->link, ’phpmyadmin’) or die(’cannot

connect to the BD’);
11 }
12 function storeInDB($Height, $Angle, $Temperature, $Humidity, $R1

, $B1, $Par1, $R2, $B2, $Par2){
13 $query = "insert into sensorReadings set Height=’".$Height."’,

Angle=’".$Angle."’, Temperature=’".$Temperature."’, Humidity
=’".$Humidity."’, R1=’".$R1."’, B1=’".$B1."’, Par1=’".$Par1.
"’, R2=’".$R2."’, B2=’".$B2."’, Par2=’".$Par2."’";

14 $result = mysqli_query($this->link, $query) or die(’Errant
query: ’.$query);

15 }
16 }
17 if($_GET[’Height’] != ’’ and $_GET[’Angle’] != ’’ and $_GET[’

Temperature’] != ’’ and $_GET[’Humidity’] != ’’ and $_GET[’R1’
] != ’’ and $_GET[’B1’] != ’’ and $_GET[’Par1’] != ’’ and
$_GET[’R2’] != ’’ and $_GET[’B2’] != ’’ and $_GET[’Par2’] != ’
’){

18 $sensorReadings = new sensorReadings($_GET[’Height’], $_GET[’
Angle’], $_GET[’Temperature’], $_GET[’Humidity’], $_GET[’R1’
], $_GET[’B1’], $_GET[’Par1’], $_GET[’R2’], $_GET[’B2’],
$_GET[’Par2’]);

19 }
20 ?>

Here we can see the PHP file for PID values:

1 <?php
2 $con=mysqli_connect("127.0.0.1","admin","RamzeoboorAdmin","

phpmyadmin");
3 // Check connection
4 if (mysqli_connect_errno()) {
5 echo "Failed to connect to MySQL: " . mysqli_connect_error();
6 }

85



7 $query = "SELECT x_kp, x_ki, x_kd, theta_kp, theta_ki, theta_kd
FROM desiredPIDvalues ORDER BY Time DESC LIMIT 1";

8 $result = mysqli_query($con,$query);
9

10 while($row = mysqli_fetch_array($result)) {
11 echo ",";
12 echo $row[’x_kp’];echo ",";
13 echo $row[’x_ki’];echo ",";
14 echo $row[’x_kd’];echo ",";
15 echo $row[’theta_kp’];echo ",";
16 echo $row[’theta_ki’];echo ",";
17 echo $row[’theta_kd’];
18 }
19 ?>

Here we can see the PHP file for desired motion values:

1 <?php
2 $con=mysqli_connect("127.0.0.1","admin","RamzeoboorAdmin","

phpmyadmin");
3 // Check connection
4 if (mysqli_connect_errno()) {
5 echo "Failed to connect to MySQL: " . mysqli_connect_error();
6 }
7 $query = "SELECT desiredAngle, desiredHeight FROM

desiredReferences_motionControl ORDER BY Time DESC LIMIT 1";
8 $result = mysqli_query($con,$query );
9

10 while($row = mysqli_fetch_array($result)) {
11 echo $row[’desiredAngle’];
12 echo $row[’desiredHeight’];
13 }
14 ?>

86


	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Background and Motivation
	Optimization of Lighting in Agricultural Greenhouses: Overview
	Utilization of Light-Emitting Diodes (LEDs)
	Optimizing the LED Grow Lights Intensity
	Optimizing the LED Grow Lights Distance From Plants

	IoT-based Data Logging, Data Analysis and Modeling the Greenhouses Environment: Overview
	Thesis Objectives
	Robotic LED Fixture Design For Light Optimization in The Smart Greenhouse Setup
	IoT Platform Design in The Smart Greenhouse Setup

	Thesis Structure

	Architectural Framework For the IoT-Enabled LED Light Fixture
	Computing Resources
	Computing Components Type Model
	Type A Computing Components Used in The Proposed Prototype
	Type B Computing Components Used in The Proposed Prototype
	Computing Resources Embedded in Sensors and Actuators (Type C)
	Non-Computing Resources (Type D)

	Computing Resources Models

	Data Storage
	Data Base
	Information Life-cycle Management (ILM)
	Data Type

	LAMP Stack
	Insert Data Into Database Table
	Fetch Data From Database Table

	Analytics and Computing
	Advantage of Data Processing at The Edge of The Network (Edge Computing)
	Advantage of Data Processing Power at The Cloud: Motivating Factors

	Conclusion

	Trajectory Generation for Steady-State Motion
	Review of Current Trajectory Planer Schemes
	Trajectory Planer Scheme
	State-Space Representation of The Proposed Light Fixture
	Trajectory Planner For Linear Movement (x)
	Trajectory Planner For Rotational Movement ()

	Conclusion

	Trajectory Tracker Design
	Cascaded Trajectory Tracking Design (Motor Current Control)
	DC Motor Current Controller or Inner Controller Design
	Force Controller or Outer Controller Design
	PD Control
	Optimal State-Space Control


	Trajectory Tracking using DC motor voltage control Design
	Definition and calculation of vx
	Definition and calculation of v
	Calculating motor voltage for each motor

	Conclusion

	Simulation Studies
	Discretization
	Simulation of designed trajectory planner
	MATLAB Simulations for Cascaded Trajectory Tracking Design
	MATLAB Simulation for The DC Motor Current PID Control (Inner Controller in Cascaded Trajectory Tracking Design)
	MATLAB Simulation for The Trajectory Tracker: Cascaded PD Control and Motor Current Control
	MATLAB Simulation for The Trajectory Tracker: Cascaded State-Space Control and Motor Current Control

	MATLAB Simulations for The Trajectory Tracker: DC Motor Voltage Control
	Conclusion

	Experimental Results
	Experimental Setup
	Sensor Nodes
	Actuators

	The Internet of Things Reference Model for Motion Control
	Python script: Fetch data from sensor Readings table
	Python script: Add data to desired References Motion Control database table

	Motion Control Results
	Current Controller
	Voltage Controller

	Online PID Tuning
	Conclusion

	Conclusion
	Future Work

	Bibliography
	C Code For The Texas Instruments CC3220S-LAUNCHXL
	Configuration of LAMP Server on Raspberry Pi
	Install LAMP Server Packages
	Install Apache2
	Install PHP
	Install MySQL
	Install PhpMyAdmin
	Install and setup FTP





