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Abstract

Nowadays, most intelligent systems rely on interacting with humans. Two main functionali-
ties of such systems are the ability to follow their users and to predict their future motions.
This thesis develops robust methods for a companion robot that can follow humans and
predict their motions in the future.

Predicting plausible human motion is one of the most critical and challenging parts of
human-robot interaction (HRI) applications. We can categorize human motion prediction
into probabilistic or deterministic approaches. The probabilistic approach tries to model the
multi-modality of human motion; in contrast, the deterministic approach has one output
per observation. In this thesis, we design two human motion prediction methods. One of
them utilizes the multimodality of human motion for accurate predictions, while the other
one is deterministic and fast.

Additionally, we design two human-following methods one based on reinforcement learning
and the other using a human motion prediction model. The first work investigates a hybrid
solution that combines deep reinforcement learning (RL) and classical trajectory planning
for the following in-front application. As for the second method, we design a general human-
following system with a fast non-autoregressive human motion prediction model.

Keywords: 3D human motion prediction; Human following; Companion Robot; Reinforce-
ment Learning
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Chapter 1

Introduction

The development of companion robots has revolutionized the field of human-robot interac-
tion (HRI). These robots are designed to interact with humans naturally and intuitively,
providing assistance and entertainment. Two key features of these companion robots are
human motion prediction and human following, which allow them to react to human move-
ments and engage in meaningful interactions.

3D human motion prediction has two main branches: human pose prediction and human
trajectory prediction. Human pose prediction involves determining the relative position of
each body joint with respect to the hip joint, while human trajectory prediction refers to
the path of the hip joint as the body moves in 3D space.

Human motion prediction with respect to its outputs can be categorized into probabilis-
tic and deterministic approaches. The probabilistic approach considers multiple possible
future sequences for a given observed sequence by considering the multi-modality of human
motion. This approach is favored in robotic applications as it provides more options and
adaptability. However, it also poses a more complex optimization challenge compared to de-
terministic methods. On the other hand, deterministic methods focus on predicting a single,
highly accurate future sequence based on an observed sequence. Although this approach is
simpler to optimize, it does not take into account the diverse and multi-modal nature of
human behavior, which can limit its practicality in real-world applications.

This thesis investigates human motion prediction and the development of robust human-
following strategies for companion robots. Current human motion prediction methods often
concentrate on predicting either human pose or human trajectory, which may need to be
revised for robotics applications. To address these limitations, we present two human motion
prediction methods: one that leverages the multi-modal nature of the human motion to
provide multiple precise predictions and another that prioritizes determinism and speed for
real-time robotics applications. Both methods predict human motion, including 3D pose
and trajectory, which is crucial for various robotics applications. We present these works
in two publications at the International Conference on Robotics and Automation (ICRA)
[56, 69].
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Additionally, we design two human-following methods, one based on reinforcement learn-
ing and the other using a human motion prediction model. The first method combines deep
reinforcement learning (RL) and classical trajectory planning for a following-in-front ap-
plication. The second method is a general human-following system that uses a fast non-
autoregressive human motion prediction model.
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Chapter 2

Human 3D Motion Prediction

Human motion prediction is the task of predicting the future movements of a user based on
the observed past motion. Human motion prediction can be used in various applications,
such as robotics, gaming, and animation. The goal is to model a human’s complex, multi-
dimensional motion patterns and use that information to predict future movements. This is
typically done using deep learning algorithms, such as Recurrent Neural Networks (RNNs)
or Generative Adversarial Networks (GANs), which are trained on large datasets of human
motion data.

The input to a human motion prediction model can be 2D or 3D data, for instance,
video footage or motion capture data, and the output is one or multiple predictions of the
future motion of the human. The accuracy of the prediction depends on factors such as
the quality of the training data, the choice of algorithm, and the computational resources
available.

An essential ability of an intelligent system interacting with humans is to estimate
plausible human body poses and trajectories in 3D space. The advancements in artificial
intelligence have led to numerous industrial applications for such algorithms in areas such
as human-robot interactions (HRI), autonomous driving, and visual surveillance [19, 26, 76].
In particular, precise prediction of human 3D body motion is crucial for various robotic
applications, including robot navigation and crowd control [12, 71]. Although there have
been significant advances in deep learning, predicting human motion accurately remains
challenging due to the complexity of human behavior. Some researchers focus on predicting
only human trajectory [2, 100]. Among these, Agand et al. [2] developed a probabilistic and
optimal approach for human navigational intent inference. Although these approaches are
useful for some applications, they tend to lose important information, such as the strong
correlation between human trajectory and the movement of other body parts.

In this chapter, we first conduct a comprehensive review of existing works in the field of
human motion prediction by categorizing different methods for representing human motion
into probabilistic and deterministic approaches. Then we propose two innovative solutions
for human motion prediction in robotics applications.
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The first solution, referred to as DMMGAN (Diverse Multi Motion prediction of 3D
human joints using attention-based Generative Adversarial Network), involves the devel-
opment of a deep generative architecture that predicts a diverse set of possible human
body motions. The model utilizes a transformer-based encoder and a GRU combined with
a GAN to provide multiple, accurate predictions for the 3D human trajectory and pose.
This method offers a real-time solution for diverse human motion prediction that has the
potential use case in robotics and autonomous car applications. We explore this solution in
Section 2.2.

The second solution, STPOTR (Simultaneous Prediction of Human Trajectory and Pose
with Transformers), is a non-autoregressive transformer model that simultaneously predicts
both human trajectory and body pose. It is designed to be fast and accurate and demon-
strates better performance compared to previous works for a robotics application. The model
uses the estimated human motions from images to predict future frames, and the results are
utilized in a real-world robotic scenario for the robot follow-ahead task. STPOTR, similar
to DMMGAN, simultaneously predicts human pose and trajectory and achieves acceptable
accuracy for both predictions. An ablation study also shows the benefit of the shared atten-
tion module in improving the model’s performance. As STPOTR can run four times faster
than DMMGAN, it is an excellent alternative for robotic tasks that require speed and ac-
curacy. We explore the method and its results for human motion prediction in Section 2.3,
while a separate discussion of the human-following use case of STPOTR can be found in
Section 3.3.

Both works are published at the IEEE International Conference on Robotics and Au-
tomation (ICRA) 2023 [56, 69]. This chapter is based on the research presented in these
papers.

4



2.1 Related Work

Human Motion Prediction

Observed
Sequence

Prediction
Models

Prediction
Results

Input
Deterministic

Probabilistic

Figure 2.1: 3D human motion prediction task.

The illustration of the human motion prediction task can be found in Fig. 2.1. According
to Lyu et al., it can be broken down into three key components [55]:

• Observed sequence: Human motion representation is an important part of the human
motion prediction pipeline. The understanding of human behavior can be enhanced
by using different representations.

• Prediction model: Network structure design is the second part. In the human motion
prediction task, the prediction model is the main part of most methods.

• Prediction results: Finally, the third part is the type of predictions. Human motion
prediction methods can be categorized into probabilistic or deterministic approaches.
Probabilistic methods try to model human motion similar to the real world with
multiple possibilities, while deterministic ones only output one possible outcome.

2.1.1 Observed sequence

In human motion prediction, we usually represent human motion by a skeleton kinematic
tree. This skeleton is composed of the 3D position of human joints. In this thesis, we focused
only on joints that can be detected using a motion capture system.

We must first encode human motion into an observed sequence to predict it. Here we
go over the different lines of research on the human motion concerning their input and
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how they encode human motion. In the following, we go over different types of observed
sequences based on the literature.

2.1.1.1 Human body structures

In this category, the researcher tries to learn a structure for the human body or optimize the
learning based on the human body structure. Guo et al. improve human motion prediction
by learning the local structure of the human skeleton. They divide the human skeleton into
five non-overlapping sections. Then predict the next 3D pose by learning one representa-
tion for each section [27]. As another example, Li et al. divide human motion using 1D
convolution layers. They design hierarchical convolutional layers. In each level, two neurons
are linked together if and only if they are from adjacent joints [49]. Their convolutional
hierarchical autoencoder can encode the human 3D pose based on human bone structure
constraints. In this line of work, the authors always enforce some prior knowledge related to
human body structure with a simple network structure which results in limited performance
improvements.

2.1.2 Human motion laws

In the second strategy, human motion is regarded as a movement relative to another joint.
This can include both acceleration and velocity. In [90], Wang et al. represent human motion
by velocity and acceleration instead of typical 3D position. They prove that this represen-
tation can simplify the learning of human motion prediction. Their approach is limited to
the short-term prediction of fewer than 400 milliseconds.

2.1.2.1 Mathematical representation

Researchers use the mathematical encoding of the 3D motion to encode the human mo-
tion representation better. They leverage their prior knowledge of human motion into the
training by using existing mathematical representations. Here we review the Graph, Motion
trajectory, and joint angles methods.

1. Graph: Our bone structure can easily be described as a graph with joints as vertices
and bones as the edges. This resemblance leads the researcher to use Graph representation
for human motion [57, 58]. As one illustration, Jain et al. represent the human body using a
spatial-temporal graph [38]. One of the main limitations of their work is designing the graph
manually, which limits the flexibility and advantages of their method. As an improvement,
Cui et al. designed a trainable adjacency matrix for the graph [16]. Specifically, they designed
two parameterized graphs for learning the relationship between joints in the human skeleton
and during human motion. One of the graphs learns the kinematic links between the human
skeleton, and the other graph learns the global relation. For example, when a person runs,
there is a strong correlation between the right and left hand. Their adjacency matrix is

6



Figure 2.2: Left: original human skeleton, Middle: local graph, a graph with learnable
connections initialized from the original human skeleton [16], right: global graph with
learnable connections for right knee joint [16].

part of the network parameters. Fig. 2.2 illustrates the global graph on the right and the
kinematic graph in the middle. Similarly, in [15, 83], they learn a graph without explicitly
encoding it. According to the results of these studies, graph networks can improve the
training of human motion prediction.

2. Motion trajectory: In this category, human motion trajectory is the path of human
joints. Here, researchers try to model human motion in trajectory space instead of motion
space. Many studies used trajectory space to encode human motion[57, 58]. In these works
trajectory of each joint is defined as:

Tj = (tj,1, tj,2, tj,3, . . . , tj,N ) (2.1)

Here j denotes the jth joint, and N denotes the frame number.
Parallel to this representation, Liu et al. use the displacement of frames as its trajectory

representation [52]. The authors propose to encode joints’ trajectories using a combination
of frame-wise velocity and final state information. For this task, they initialize a Graph
Convolutional Network (GCN) with connections for adjacent joints. Later using this GCN,
they learn some new implicit connections. Using this representation, their method learns
some useful cues from the velocity of joints instead of only training using the connection
between adjacent joints. The result of their work shows improvement in training with better
performance.

3. Joint Angles: Joint angle is a common representation of human body motion in
predicting human movements. A joint angle describes the angle between adjacent body
segments, while a joint 3D pose represents the 3D position of each endpoint of a joint in the
human body. Martinez et al. introduce a human motion prediction model that utilizes joint
angle representations and recurrent neural networks. The authors evaluate the effectiveness

7



of their approach on the Human 3.6M dataset [59]. Li et al. propose modifying the loss
function by directly calculating the Euclidean difference of the Euler angle [49]. This is
an improvement over a loss based on an exponential map representation of each joint as
demonstrated in previous works [25, 59]. The authors illustrate the improved performance
of their proposed approach.

2.1.3 Model and Prediction Results

In this section, we go over different models and evaluate them based on their prediction
models and the type of prediction results.

Figure 2.3: According to the type of prediction result, human motion prediction can be
categorized as probabilistic or deterministic types.

Based on the prediction type, human pose prediction methods can be categorized into
probabilistic or deterministic [55] methods. In probabilistic methods, similar to how our
brain works, they predict multiple future motion sequences for an observed motion sequence.
While deterministic methods aim to predict a single sequence more accurately, their prac-
ticality in some robotic applications is reduced because they do not consider the diversity
and multimodality of human behavior. Arguably, the probabilistic approach is preferred in
robotic applications as it provides more assurance by considering a set of possible scenar-
ios. However, probabilistic methods may reduce the accuracy of each individual predicted
sequence.

Alongside the type of prediction, we can also divide the human motion prediction task
into the human trajectory and human 3D pose. In this context, human trajectory refers
to the human’s path in 3D space, such as the path of the hip joint, and 3D pose refers to
the location of the human body’s joints relative to a fixed joint. For solving both problems,
seq2seq models have been utilized successfully with room for improvement.
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Many human trajectory prediction methods have been developed for autonomous driving
systems [1, 23, 74], in which the primary goal is to predict the future trajectory of pedes-
trians to avoid colliding with them. Recently, some works attempted to use transformers
[86] to predict multiple possible human trajectories. A limitation of current methods is
that very few of them attempt to predict both human poses and trajectories simultane-
ously. Furthermore, works on human trajectory predictions are sometimes limited due to
only considering the hip movements and ignoring other joints. However, joints can provide
valuable information about how the hip may move in the 3D space.

In what follows, we go over different network architectures to solve the human motion
prediction task for the probabilistic and deterministic prediction types.

2.1.3.1 Deterministic Prediction

Figure 2.4: Two basic types of RNN prediction methods: stack [20] and stream [59] struc-
tures.

In the past decade, with the popularity of deep learning, sequence-to-sequence (seq2seq)
prediction methods such as those involving Recurrent Neural Networks (RNN) [20, 59] have
shown promising results and have become a viable alternative to conventional human mo-
tion prediction methods [46, 79]. Many deep learning approaches use RNN-based models to
predict human motion. The preliminary use cases of RNNs in human motion predictions
can be seen in LSTM-3LR [59] and ERD [20] architectures. LSTM-3LR and ERD both have
similar network architecture. These methods both suffer from accumulated errors and dis-
continuities in the initial frames. To improve these shortcomings, Martinez et al. proposed
res-GRU [59]. In res-GRU, they define the decoder based on the combination of the velocity
of the joints and the previous predicted frame. They also add noise to the input during
the training to improve the network accuracy and to reduce drifting. Their result shows an
improvement over the previous methods for both accumulated errors and discontinuities in
the initial frames. In a more recent study, Jain et al. proposed structural RNNs(SRNNs). In
SRNNs, they hand-designed a spatial-temporal graph and combined it with RNNs. Their
structure helped to improve the prediction accuracy. Then in [22], they show how combining
a dropout auto-encoder with LSTM-3LR can mitigate the drifting problem. By adding a
dropout auto-encoder to the LSTM output, their model can reduce drift error caused by
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noisy predictions. Another interesting work in this area is Video Inference for Human Body
Pose and Shape Estimation (VIBE)[42]. Using a video sequence of someone moving, VIBE
estimates their 3D pose and shape. To exploit the nature of human motions, Vibe Frist
extracts image features using CNN and processes them using recurrent neural networks.
They train their network using a discriminator trained on distinguishing between fake and
real sequences using AMASS dataset.

All of these approaches are classified as autoregressive models, which are a type of
neural network that generates a sequence of outputs based on previous predictions. Nev-
ertheless, autoregressive models have two significant drawbacks. Firstly, they are prone to
accumulating prediction errors, meaning that any errors in prior predictions are carried over
to subsequent predictions, leading to substantial errors over time. Secondly, they are not
parallelizable, resulting in high computational requirements during testing[60]. Recently,
several methods have tried to prevent the drift issue by including adversarial losses and
enhancing prediction quality. Among these methods, [25] proposes adversarial geometry-
aware encoder-decoder (AGED) by using geodesic body measurements as an adversarial
loss. In AGED, they use two discriminators to learn both the continuity and fidelity of
the predictions. Their result improves both reducing the discontinuities and more accurate
predictions. As a result of using adversarial training, their method is difficult to train and
stabilize. Moreover, to better embed the joint dependencies, some methods combine their
algorithm with spatio-temporal modeling to better learn the relation between all the joints
in a single frame or a sequence of frames [21, 48].

With the improvement of transformer models [86], in a few studies, they have been
employed to solve the human pose prediction problem. Aksan et al. proposed an autore-
gressive transformer to learn to decouple spatio-temporal representations [3]. They achieved
acceptable results in terms of accuracy; however, the autoregressive nature caused the algo-
rithm to be slow. Conversely, González et al. proposed a non-autoregressive version called
Pose Transformer (POTR), which performed faster with lower accuracy [60]. To learn the
temporal dependencies, they use the main encoder-decoder structure of transformers [86].
Their encoder and decoder networks use GCNs and Multi-Layer Perceptron (MLP) layers
to determine spatial dependencies between joints in one frame. During training and testing,
the last observed frame is copied and used as their decoder input with a residual connection
to the decoder output. Therefore the decoder would learn the sequence offset with respect
to the last seen frame. In all methods described above, the hip joint and, sometimes, the
heading are fixed, which makes them impractical for robotic applications. The design of
our deterministic motion model is partially inspired by Pose Transformer (POTR) [60].
However, all mentioned methods consider a fixed hip joint and even, in some cases, fixed
heading, which makes them impractical for many robotic applications. Therefore, we have
made multiple improvements to the model and data structure to make it suitable for robotic
tasks.
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Figure 2.5: Overview of POTR approach. POTR is a non-autoregressive human motion
prediction method. For each pose in the input sequence, a network computes embeddings.
Then, in parallel, the Transformer processes the sequence and decodes the attention em-
beddings. Lastly, A residual network predicts the sequence [60].

2.1.3.2 Probabilistic Prediction

In this category, the future is probabilistic similar to how humans behave. Therefore,
there may be multiple predictions based on the same prior poses. Probabilistic approaches
gained popularity with the development of GANs. These methods [4, 7, 8, 50, 87] usually
use CGANs, Conditional Variational Autoencoders (CVAEs), or diffusion models. As ex-
amples of these probabilistic methods, Yan et al. [95] developed a Motion Transformation
Variational Autoencoder (MT-VAE) to generate multiple diverse and plausible motion se-
quences for facial and full-body motions from an observed sequence. More recently, Agand
et al. [2] developed a probabilistic and optimal approach for human navigational intent in-
ference. They predict the probability distribution over human kinematic states using only
trajectory and not the entire 3D pose.

As one of the first applications of GANs in human pose prediction, HPGAN [8] proposes
a sequence-to-sequence model for predicting multiple future human poses. HPGAN uses
an implementation of Wasserstein GAN with the gradient penalty. Their network train
to learn the probability distribution of its data. As a result, they can predict different
future poses using the same input sequence by changing a vector z. However, they still have
the problem of discontinuity of the motion, and they haven’t compared their result with
deterministic approaches. Similarly, BiHMP-GAN [45] tries to fix the mode collapse problem
of the GAN framework by using bidirectional GAN. BiHMP-GAN provides comparisons
with deterministic approaches, and their result shows an improvement over determinist
approaches.
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Figure 2.6: HP-GAN, predicting multiple future poses from a single input sequence by
feeding vector z [8].

Figure 2.7: DLow samples (stars) cover more modes (colored ellipses) in the latent space of a
conditional variational autoencoder (CVAE) than CVAE samples. Because of this coverage,
DLow can output a diverse future prediction in comparison to normal CVAE [97].

Most generative methods focus on learning the distribution of the dataset and not on the
diversity of the prediction. These generative models randomly sample from a Gaussian latent
space and extract motion samples from them, which may produce similar samples. As one
of the state-of-the-art methods in diverse human motion prediction, DLow [97] focuses on
improving the diversity of the samples. The authors train a mapping function that samples
diversely using a pretrained CVAE. They train a set of learnable mapping functions with
correlated latent space that uses an energy-based formulation based on pairwise sample
distance to diversify the samples. Their result shows a significant improvement over the
previous methods for both the accuracy and diversity metrics.

In a recent study, Barquero et al. suggest the use of diffusion models for human motion
prediction [7]. Previous works on human motion prediction have shifted from a determinis-
tic approach to a stochastic one, recognizing the unpredictable nature of human behavior.
However, these works have mainly focused on predicting highly diverse motion distributions,
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similar to DLow [97], which may generate fast and divergent motions while overlooking the
importance of predicting low-speed diverse motions in certain scenarios like assistive robotics
or surveillance. This bias towards fast and divergent motion can produce unnatural or in-
consistent motions. To overcome these limitations, [7] introduced the BeLFusion method,
which builds a latent space to disentangle behavior from poses and motion, thereby promot-
ing diversity from a behavioral perspective. The method uses conditional latent diffusion
models, resulting in improved performance in human motion prediction while ensuring that
the predicted motions are coherent with the immediate past and more realistic. Additionally,
the method provides complementary metrics for assessing the statistical similarities between
predicted and intrinsic dataset diversity, contributing to a more comprehensive evaluation
pipeline for stochastic human motion prediction. Overall, the BeLFusion method enhances
previous approaches to human motion prediction by promoting diversity from a behavioral
perspective and ensuring that the predicted motions are both diverse and realistic.

2.1.4 Human Motion in Animation

Human motion prediction in animation has been a fundamental problem in computer anima-
tion for decades. Various approaches have been proposed to generate realistic and purposeful
human movement. One such approach is the use of Motion VAEs, which learn data-driven
generative models of human movement using autoregressive conditional variational autoen-
coders [51]. The latent variables of the learned autoencoder define the action space for the
movement and govern its evolution over time. Planning or control algorithms can then use
this action space to generate desired motions. Another approach is the use of a neural state
machine, which is a data-driven framework to guide characters to achieve goal-driven actions
with precise scene interactions [82]. This framework enables the modeling of multi-modal
scene interaction behaviors purely from data, making it versatile for various scene interac-
tion tasks such as sitting on a chair, avoiding obstacles, opening and entering through a
door, and picking. A third approach is the use of Phase-Functioned Neural Networks, which
can produce higher quality results than time-series autoregressive models such as LSTMs
[31]. This network architecture deals explicitly with the latent variable of motion relating
to the phase, making it appropriate for controlling characters in interactive scenes such as
computer games and virtual reality systems.

In a recent study, Peng et al. generated physically simulated character animations using
adversarial imitation learning on unlabeled motion clips [72]. The resulting embeddings can
be used to learn a hierarchical skill-conditioned policy that produces versatile animations.
This framework enables characters to learn reusable skill embeddings from unstructured
datasets and apply them to new tasks. A character can use these learned skills to run to a
target and knock it over.

To the best of our knowledge, although most techniques for human motion prediction in
animation forecast both trajectory and human pose, they have not yet been applied to any
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robotics task. Certain approaches can be computationally intensive, as they do not have
any restrictions on computation, and animation generation can be time-consuming, focusing
instead on utilizing reinforcement learning or other methods to control motion prediction.
This thesis will not delve into such techniques and instead concentrate on human motion
prediction employing datasets such as Human 3.6M [36].

2.1.5 Datasets

A dataset is a crucial component of any machine learning method, particularly for deep
learning models where data plays a more significant role compared to classical approaches.
Over the past few decades, researchers have developed and released numerous datasets
to enhance our understanding of human motion. In the following, we will provide a brief
overview of four of these datasets.

2.1.5.1 Human 3.6M:

Human 3.6M is a large dataset with seven actors (four other actors without ground truth
data). It includes 3.6 Million 3D Human poses captured using four different viewpoints. For
each actor, 15 actions are recorded using a high-speed motion capture system at 50 Hz.
They also include the 3D scan of each actor and time of flight (depth) data1.

2.1.5.2 CMU motion capture:

In this dataset, they used 41 markers on their human subject and 12 infrared cameras to
record them. They recorded 144 subjects, including running, walking, basketball, etc. This
dataset has been recorded by Carnegie Mellon University 2.

2.1.5.3 The Archive of Motion Capture as Surface Shapes (AMASS):

To generate AMASS, they used 15 optical markers on the human body. It is a large dataset
containing 11265 motions and 344 subjects. It includes the parameterized human motion
model 3.

2.1.5.4 NTU RGB-D:

NTU RGB-D combines RGB videos, depth maps, 3D motion data, and depth videos using
three Kinect cameras. It has a total of 4 Million frames divided into 60 action classes 4.

1http://vision.imar.ro/human3.6m/

2http://mocap.cs.cmu.edu/

3https://amass.is.tue.mpg.de/

4https://rose1.ntu.edu.sg/dataset/actionRecognition/
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2.2 DMMGAN: Diverse Multi Motion prediction of 3D Hu-
man Joints using Attention-Based Generative Adversar-
ial Network

DMMGAN

3D Pose
Prediction

Discriminator

Hip
Prediction

Input
Motion

Diverse Motion
Prediction

Figure 2.8: Given a sequence of 3D human motions, our system generates a diverse set
of future motions. The 3D pose prediction module generates diverse 3D poses while hip
prediction module estimates the human trajectory together forming a 3D human motion.
The discriminator module distinguishes a real 3D human motion from a generated one.

The prediction of 3D human motion can be separated into Human Pose Prediction and
Human Trajectory Prediction. Pose refers to the position of body joints relative to the hip
joint, while Trajectory refers to the path of the hip joint as the body moves in 3D space.
Seq2seq models have been effectively used to solve these problems, with room for improve-
ment. As we discussed earlier, the prediction of human motion can be approached either
probabilistically or deterministically [55]. Probabilistic methods predict multiple possible
future motion sequences, providing more assurance and better capturing the diverse nature
of human behavior, but potentially sacrificing accuracy; in addition, they are harder opti-
mization problems. Deep generative models, such as VAEs and GANs, have demonstrated
considerable accuracy in such methods. One notable state-of-the-art method, DLow [97],
employs deep generative models and a unique sampling technique for multi-future pose
predictions. Deterministic methods, on the other hand, aim for a more accurate single pre-
diction, but ignore the diverse and multi-modal nature of human behavior, which limits
their usefulness in some robotics applications. Additionally, human trajectory predictions
are sometimes limited in their consideration, focusing only on hip movements and disregard-
ing other joints, despite their potential to provide valuable information about hip movement
in space.

In DMMGAN, we combine the benefit of both probabilistic and deterministic methods to
provide multiple accurate predictions for both 3D human trajectory and pose. We hope this
opens doors to practical use in real robotic applications. To generate multiple future human
motions, we use a conditional generative adversarial network (CGAN) with a transformer-
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based encoder for better encoding of the observed sequence. At the end, a GRU combined
with a GAN provides multiple future predictions autoregressively.

Our contributions in DMMGAN are:

• We propose a novel deep generative architecture involving transformer-based encoders
to predict a diverse set of possible human body motions.

• We provide a real-time solution for diverse 3D human motion prediction, including
both pose and trajectory prediction, which can potentially be more suitably used for
robotics and autonomous car applications.

• In addition to providing both pose and trajectory predictions, our work achieves better
accuracy compared to the state-of-the-art models in standard evaluation metrics.

2.2.1 Problem Setup

Our framework predicts a diverse set of human motions. The input is a sequence of 3D
body motion S = {St−α, St−α+1, ..., St} of the past human’s skeleton movements captured
up to the current time t where Si ∈ R51 represents the 3D positions of 17 human joints at
time i. The outputs of our system are N possible sequences of future 3D human motion
Oγ

i = {Oγ
t+1, ..., O

γ
t+ζ} where γ ∈ 1, ..., N is the sequence number and ζ is the forecast

duration. We divide the human 3D motion into two parts so that Si = (SH
i , S

P
i ) and

Oi = (OH
i , O

P
i ). The position of the hip joint is denoted by SH and OH for input and output

hip trajectories. The relative positions of all joints with respect to the hip joint (called 3D
pose, or just pose), denoted by SP and OP for input and output 3D pose sequences.

2.2.2 Method

The overall framework of our system is summarized in Fig. 2.9. Our method learns to
generate valid and rich human motions by leveraging the Human 3.6M dataset [36]. It
divides the prediction of human 3D motion into predicting the joints motion relative to the
hip joint (3D pose) and predicting the 3D position of the hip joint in the global frame for each
predicted 3D pose (human trajectory). We estimate the human trajectory by considering
both the predicted 3D pose and the trajectory history.

Specifically, we design our model to benefit from both paired and unpaired data by in-
troducing four supervised losses and a discriminator loss respectively. Here, given a sequence
of 3D motion {St−α, . . . , St}, a transformer encoder learns representation of the input in a
latent space. Then, a generator uses this latent representation to output N future motions.
To train our system, we use 5 losses. The Best Loss finds the best match with shortest
distance to the ground truth data. The Teacher Forcing Loss improves the final prediction
by randomly feeding ground truth instead of the model prediction in the decoding phase.
Similar to the Best Loss, the Teacher Forcing Loss only applies for the output that matches
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Figure 2.9: System overview: Given a sequence of 3D human motion, our method generates
N future sequences of human 3D motion using a discriminator and four loss functions. Our
system consists of three main parts. The first part is predicting the human 3D pose (3D
Pose module) by receiving a history of the human 3D pose. The second part is the Hip
Prediction module (more details in Fig. 2.10) which predicts the future position of the hip
joint for each of the predicted human 3D poses. Finally, the discriminator module learns
the distribution of the Human 3.6M dataset by distinguishing between generated and real
data. The system uses the discriminator loss to generate sequences similar to the dataset
distribution while using four supervised loss functions to promote accuracy and diversity.
See Fig. 2.10 for Transformer Encoder architecture.

the most closely with the ground truth. The Similarity Loss promotes diversity by penaliz-
ing the pairwise distance between the N generated sequences, and lastly, we use the Joint
Loss to encourage joint length constraints. We combine these losses with the Discriminator
Loss to generate plausible sequences matching the Human 3.6M dataset [36].

2.2.2.1 Model Architecture

Our model consists of three main modules, the first module is the 3D pose module, which
generates N sequences of human 3D pose (relative to the hip joint). The second module
is the Hip Prediction module, which predicts the trajectory of the hip joint in the global
frame for each predicted human 3D pose. Finally, the last module is the Discriminator
module, which learns the distribution of the dataset by distinguishing between the real and
generated 3D sequences of human’s motion.
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1. 3D Pose Module: The 3D Pose module consists of two parts, as shown in Fig.
2.9. The first part is the encoder. Given a sequence of human 3D pose SP , it outputs a
latent representation l that encodes the past motion Pθ(lE |SP ). Our encoder network uses
a Transformer architecture, as shown in Fig. 2.10, to learn meaningful information over a
sequence of 3D poses, similar to the model introduced by Vaswani et al. [86].

The second part is the generator. It forecasts N sequences of human 3D pose OP,1, . . . , OP,N

given the past latent representation lE . Instead of using random variables as the input of
the generator to forecast the future, we design our network to learn a mapping from the
latent representation to N priors z = f(lE). Then it initializes N generator networks with
Gated Recurrent Units (GRU) [13], each of which forecasts a sequence of future 3D pose
based on their prior Pϕn(OP

n |zn), n ∈ {1, ..., N}.
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Figure 2.10: a) The Transformer Encoder [86] and b) the Hip Prediction module architec-
tures. The Hip Prediction module, estimates the hip joint positions of each predicted 3D
pose by receiving the history of the hip movements and the motion predicted by the 3D
Pose module.

2. Hip Prediction Module: The second module is the hip prediction module. Given
the 3D pose predictions OP and the trajectory history SH , it estimates the position of the
hip for each predicted 3D pose.

Fig. 2.10 shows the architecture of the Hip Prediction module. It uses two Transformer
encoders. The first one learns a representation lH from the observed hip movements SH

and the second one learns a representation lP from a predicted 3D pose sequence. If the
transformer embedding has σ dimensions and the input has a length of α frames and we
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predicted a 3D pose sequence with ζ frames, the output of SH has ασ and SP has ζσ
dimensions. The GRU gets the concatenation of lP,i, lH and the previous output of the
GRU as its input, to predict the position of the hip at time i for i = 1, ..., ζ.

3. Discriminator Module: The last module is the discriminator. Here we use a
Transformer-based Encoder architecture shown in Fig. 2.10a. The input of the discriminator
is the full human 3D motion, consisting of the hip trajectory and the 3D pose trajectory.
The discriminator needs to distinguish between the real and the generated data (Fig. 2.9).

2.2.2.2 Model Training

During training, we exploit paired data by introducing four supervised losses to promote
the diversity and accuracy of the predictions. We also benefit from unpaired data by using a
discriminator that learns to distinguish between the real and generated data. In the following
we use the ground truth, GT , term to refer to the paired data, GTP and GTH to refer to
the ground truth paired 3D pose and hip trajectory respectively.

1. Discriminator Loss: We implement the discriminator loss based on the Wasserstein
Generative Adversarial Network (WGAN) [5]. To make the training more stable we used
the Gradient Penalty (GP) version of the WGAN. If f is the discriminator network, the
GP WGAN critic’s loss function is defined as follows:

LcW GAN = E
O∼Pg

[f(O)] − E
GT ∼Pr

[f(GT )] (2.2)

LcGP = LW GAN + λ E
x̄∼Px̄

[(||∇x̄f(x̄)||2 − 1)2] (2.3)

where (2.2) is the original critic loss function of WGAN method and the last term of
(2.3) is the gradient penalty term. Consider a line connecting real (Pr) to generated (Pg)
distributions. Px̄ is the distribution of these samples and λ is the weight of the gradient
penalty.

The second part of the discriminator loss function is the generator objective. The ob-
jective of the generator is to minimize the distance between Pg and Pr by maximizing the
expectation of the generated samples:

Lg = − E
O∼Pg

[f(O)] (2.4)

2. Best Loss: Given a sequence of human’s 3D motion, our model predicts multiple
forecasts of future motions. Using the discriminator loss, these forecasts would be similar to
the distribution of the dataset. The Best Loss minimizes the distance between the closest
prediction and the GT data using mean squared error (MSE). The Best Loss is defined as
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follows:

Lbest =
t+ζ∑

T =t+1
MSE(OΓ

T , GTT ) (2.5)

where Γ = arg min
γ=1,...,N

t+ζ∑
T =t+1

D(OP,γ
T , GTP

T ) (2.6)

and D(OΓ
t , GTt) =

t+ζ∑
T =t+1

17∑
j=1

d(OΓ
t,j , GTt,j) (2.7)

Here, D is the distance between two 3D motion predictions and d is the Euclidean
distance between two joints.

3. Teacher Forcing Loss: After calculating the predicted sequence that matches with
the GT , the Teacher Forcing (TF) loss is calculated by randomly using the next frame from
the GT instead of the last prediction in the GRU (Fig. 2.9 Generator). The TF loss can be
especially useful in reducing the final displacement error as the model can learn to predict
the next frames by using a combination of the GT and its own predictions [91].

4. Similarity Loss: We define the Similarity loss to increase the variety of the model
predictions. We first find the distance between each pair of the predicted human 3D pose.
Then select the two predictions, Γ1 and Γ2, with the shortest distance.

Γ1,Γ2 = arg min
γ1∈{1,...,N},

γ2∈{1,...,N}\γ1

t+ζ∑
T =t+1

D(OP,γ1
T , OP,γ2

T ) (2.8)

We can define the distance of each two joints of Γ1 and Γ2 by:

distJointsj =
t+ζ∑

T =t+1
d(OP,Γ1

T,j , OP,Γ2
T,j ) (2.9)

Then we apply the negative of MSE to the joints that exceed the average Similarity loss
threshold of ϵ. We can define the Similarityloss as follows:

Lsimilarity = − 1
16

16∑
j=0

distPenalize2
j , where (2.10)

distPenalizej =

0 if distJointsj < ϵ

distJointsj otherwise
(2.11)

To make the training more stable we use the Similarity loss only during the first M
steps of the training.
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5. Joint Loss: As human’s bone length stay the same, joint Loss works as a regularizer
that helps the model by forcing it to keep the bone length similar over time. If V is the
set of vertices of a graph representing all human joints and E is the edges of this graph
representing all human bones, then the joint loss is defined as follows:

Ljoint =
∑

(i,j)∈E

N∑
γ=1

MSE(JP,γ
i,j , J

P,GT
i,j ) (2.12)

where JP,γ
i,j = 1

ζ

t+ζ∑
T =t+1

(d(OP,γ
T,i , O

P,γ
T,j )), (2.13)

JP,GT
i,j = 1

ζ

t+ζ∑
T =t+1

(d(GTP
T,i, GT

P,
T,j)) (2.14)

2.2.2.3 Data Prepossessing

To improve the model prediction and avoid over-fitting, we convert each 3D position in a
sequence of human motion to a relative coordinate system based on the position of the hip
joint at the time t. We also normalize each skeleton 3D pose (µ = 0, σ = 1).

2.2.2.4 Dataset

For our experiments and training, we use the Human 3.6M dataset [36]. Human 3.6M is a
large dataset with 7 actors5. For each actor, there are 15 actions that are recorded using a
high-speed motion capture system at 50 Hz. Similar to DLow [97], we use 17 joints skeleton
and train on actors S1, S5, S6, S7 and S8 while testing on S9 and S11. For future prediction,
our model observes 0.5 seconds sequence of human’s body motion to forecast the next 2
seconds.

2.2.3 Experiments and Results

Our method is specifically designed to forecast 3D motions that are suitable for autonomous
car or robotics applications. It can predict the human 3D pose (position of joints relative to
the hip joint) while predicting their trajectory (hip joint) separately. Most of the previous
works only predict the human 3D pose without the human’s hip trajectory.

Here we designed two experiments. The first one evaluates our 3D pose prediction with-
out the trajectory prediction module. Then in the second experiment, we evaluate our full
system. For both experiments, we used the same model (DMMGAN). Our model can run
at 10 frames per second (FPS) on a GeForce 1080 GPU. Since most robotics applications
require the observation to come with a frequency of fewer than 10 FPS, we train our model

5There are 4 other actors without ground truth data
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and the baselines using the Human3.6M [36] at 10 FPS. For DLow and our methods, we
predict 10 sequences per observation (N = 10).

To evaluate our model versus the baselines we measure the accuracy and diversity using
the following metrics (we are using the evaluation metrics similar to [97, 98]):

1. Average Pairwise Distance (APD): Evaluates diversity among the predictions.
We calculate the APD by averaging the pairwise distance between all pairs of 3D pose
samples between the predictions. The APD is calculated as 1

N×(N−1)
∑N

i=1
∑N

j ̸=i ||OP
i −OP

j ||.
2. Average Displacement Error (ADE): Mean squared distance between the ground-

truth and the closest prediction. We define the ADE for both the 3D pose and the hip
trajectory movements. We first calculate the closest prediction index, Γ, using the 3D pose
predictions by: Γ = arg minγ=1,...,N

∑t+ζ
T =t+1D(OP,γ

T , GTP
T ). Then use this index to calculate

the ADE for both the 3D pose and the trajectory: ADEp =
∑t+ζ

T =t+1D(OP,ΓT , GTP
T ) and

ADEh =
∑t+ζ

T =t+1D(OH,ΓT , GTH
T ).

3. Final Displacement Error (FDE): Mean squared distance between the final
ground-truth and the closest final prediction. Similar to ADE, we first calculate the clos-
est final prediction index by ג = arg minγ=1,...,N D(Oγ,t+ζ , GTt+ζ). Then we calculate the
FDE for both the 3D pose and the trajectory: FDEp = D(OP,ג

t+ζ , GT
P
t+ζ) and FDEh =

D(OH,ג
t+ζ , GT

H
t+ζ).

4. Multi-modal ADE (MADE): To evaluate our system’s ability to generate multi-
modal predictions, we used the multi-modal version of ADE [97, 98]. The MADE uses multi-
modal GT future motions by grouping similar past motions.

5. Multi-modal FDE (MFDE): Similar to MADE, The MFDE is the multi-modal
version of FDE [97, 98].

2.2.3.1 3D Pose Experiment

In the first experiment, we evaluate our 3D Pose generation module. Here, we compare our
method against two baselines. The first one is DLow [97], the state-of-the-art in diverse
human 3D pose forecasting which outperforms all the currently known methods to the best
of our knowledge. The authors of DLow [97] provide detailed comparisons to several other
state-of-the-art methods and show that DLow outperforms them. We will omit comparisons
to these other methods and compare directly with Dlow. The second baseline is STPOTR
[56], our other work focuses on 3D human motion prediction for robotics applications.
STPOTR predicts only one future motion so we cannot use it for multi-modal evaluation.
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Approach APD ADE FDE MADE MFDE
↑ (m) ↓ (m) ↓ (m) ↓ (m) ↓

DMMGAN (Ours) 5.81 0.44 0.52 0.54 0.60
DLow 5.53 0.48 0.61 0.55 0.63

STPOTR NA 0.50 0.75 NA NA

Table 2.1: Comparison of our systems versus two baselines for the 3D Pose experiment.
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Figure 2.11: Qualitative results of 3D pose predictions comparing our method, DMMGAN,
to DLow in terms of diversity.

Table 2.1 shows the results of this experiment. Our method outperforms both of the
baselines and achieves the highest diversity while keeping both ADE and FDE lowest. Our
method also has the highest coverage of the multi-modal ground-truth (MADE and MFDE).
Also, we visually evaluate our method against DLow, in Fig. 2.11, we visualize the 10 end
poses of our predictions versus the DLow for 2 random samples. In both methods, we can
see a comparable accuracy against the ground-truth data (GT). Although the diversity of
our method is close to DLow, closer examination of Seq 1 shows that our method predicted
sitting down, crouching, lying down, walking left and right, while DLow has qualitatively
less diverse samples.

2.2.3.2 Full 3D Motion Experiment

The second experiment evaluates our full system. In order to compare our system with a
state-of-the-art diverse 3D motion model, we repurposed and retrained DLow [97] to forecast
the human’s trajectory by adding the hip joint to the joints Adapted DLow predicts. We
also compare our system (DMMGAN) with STPOTR [56], which is one of the few works
that provides full 3D motion (pose and hip) prediction. We also include two variations of
our models as an ablation study. The first model is MMGAN which is our full system

23



trained without the similarity loss and the second one is called HipOnly which is our Hip
Prediction module without the 3D pose prediction inputs. The HipOnly model evaluates
the impact of the predicted 3D pose data on the accuracy of the trajectory estimation. (Fig.
2.10b without the right 3D pose Transformer encoder).
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Figure 2.12: Qualitative results of 3D motion predictions comparing our method, to DLow
in terms of diversity.

Approach APD ↑ ADE (m) ↓ FDE (m) ↓ MADE (m) ↓ MFDE (m) ↓
Pose Trajectory Pose Trajectory Pose Trajectory Pose Trajectory

Adapted DLow 5.55 0.483 0.195 0.621 0.457 0.563 0.306 0.649 0.553
STPOTR NA 0.507 0.139 0.758 0.277 NA NA NA NA

ours:
DMMGAN (ours) 5.81 0.443 0.122 0.520 0.228 0.540 0.192 0.597 0.342

MMGAN 2.01 0.422 0.104 0.494 0.190 0.589 0.198 0.665 0.360
HipOnly NA NA 0.156 NA 0.306 NA NA NA NA

Table 2.2: Comparison of our systems versus two baselines for the full 3D motion experiment.

Based on the result of this experiment (Table 2.2), our method outperforms the baselines
by achieving the highest diversity while keeping the ADE and FDE lowest. In Fig. 2.12,
we compare our prediction versus Adapted DLow and the ground-truth (GT) qualitatively
6. In these examples, Adapted DLow predicted only walking movement while DMMGAN
could capture more diverse motions.

The HipOnly model achieved a higher FDE and ADE compared to our model, which
shows the benefit of using an attention-based 3D pose generator during trajectory fore-
casting. The results also highlight the impact of the similarity loss on the diversity of the
predicted 3D motions. Our model without the similarity loss, MMGAN, achieved APD of 2
versus 5.8 for our full system. It is interesting to note that by removing the similarity loss,
the model achieves a lower ADE and FDE with the cost of less diverse predictions.

6Please refer to https://youtu.be/osJuFbtJsMg for more examples.
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2.2.4 Conclusion

We proposed DMMGAN, a novel method to predict diverse human motions. DMMGAN
combines a generative adversarial network with Transformer based encoders to generate
both the trajectory and the 3D pose of human motions. DMMGAN is capable of simulta-
neously predicting multiple plausible future human motions.

Our implementation outperformed the previous state of the art in diverse human 3D
pose prediction while also predicting the human’s trajectory.
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2.3 STPOTR: Simultaneous Prediction of Human Trajectory
and Pose with Transformers

Figure 2.13: Robot follow-ahead via human motion prediction

In the second human motion prediction work, we introduce an accurate and fast non-
autoregressive transformer for simultaneous prediction of human trajectory and body poses.
We expand the capability of robots to perform the follow-ahead task and variations of this
task through development of a neural network model to predict future human motion from
an observed human motion history.

We propose a non-autoregressive transformer architecture to leverage its parallel nature
for easier training and fast, accurate predictions at test time. The proposed architecture
divides human motion prediction into two parts: 1) the human trajectory, which is the hip
joint 3D position over time, and 2) the human pose which is the 3D position of all other
joints over time with respect to a fixed hip joint.

We propose to make the two predictions simultaneously, as the shared representation
can improve the model performance. Therefore, the model consists of two sets of encoders
and decoders. First, a multi-head self-attention module is applied to encoder outputs to
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improve the human trajectory. Second, another multi-head self-attention module is applied
to encoder outputs concatenated with decoder outputs to facilitate the learning of temporal
dependencies. Our model is well-suited for robotic applications in terms of test accuracy and
speed, and compares favorably with respect to state-of-the-art methods in terms of other
metrics. We demonstrate the real-world applicability of our work via the Robot Follow-
Ahead task, a challenging yet practical case study for our proposed model. We go over
these results in Section 3.3. Our code and data are available at the following Github page:
https://github.com/mmahdavian/STPOTR

In summary, our contributions are as follows:

• We solve the robot follow-ahead task with better performance with respect to previous
methods and demonstrated multiple benefits for taking human body pose into account in
the robot follow-ahead task, including new following behaviors that were not previously
possible.

• To the best of our knowledge, we are the first to simultaneously predict human pose and
trajectory and utilize the results in a real-world robotic scenario.

• We achieve a reasonable accuracy for both human trajectory and body pose predictions
with respect to the state-of-the-art methods.

• Using ablation studies, we show that our proposed shared attention module allows human
body pose information to improve human trajectory prediction.

• We demonstrate our method in numerous human-following tasks on a real robot.
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2.3.1 Methodology
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Figure 2.14: Our model structure. It simultaneously predicts human poses and trajectories
from an observed 3D human joints sequence. It is constructed from two non-autoregressive
transformers for pose and trajectory predictions as well as a Shared Attention module to
share knowledge between the two for better predictions. An End Attention module is added
to the end of each decoder for better modeling of the temporal dependencies. The blue-
colored frames show the input sequence or frame and the red ones show the output. The
rectangular frames show that the same frame (last input pose) is copied and used as the
decoder input sequence and as a residual for decoder output.

We divide the prediction task into two interdependent parts. The first part is to predict
the future 3D hip trajectory, OH

t+1:t+ζ , from previously observed ones, SH
t−α:t The hip is the

standard joint position for representing the 3D human position purpose [1, 23, 74]. Next,
as the second part of the problem, we aim to predict the future 3D human pose sequence,
OP

t+1:t+ζ , from the observed ones, SP
t−α:t. Here a 3D human pose is defined as all joints’

relative 3D position with respect to the fixed hip joint. The superscript H and P denote the
human trajectory and pose sequence, and ζ is the forecast duration. We aim to solve the two
parts simultaneously, as the features transferred in between can improve the predictions.
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In this work, we propose to solve this problem by conditional sequence modeling where
the goal is to train the set of parameters of a non-autoregressive transformer.

In our model, we follow the main structure of the autoregressive [86] and non-autoregressive [60]
transformers with multiple improvements and adjustments. Fig. 2.14 shows the structure of
our model architecture. The model simultaneously predicts the human pose (upper section)
and trajectory (lower section). The encoders and decoders are composed of L layers, each
with the structure in [86], containing multi-head, self- or encoder-decoder attention layers
as well as fully-connected layers. The encoders receive a sequence of 3D human poses SP

t−α:t

or hip trajectory SH
t−α:t, and generate the two sequences of embeddings ZP

t−α:t and ZH
t−α:t.

While the main structure of the transformer model learns the temporal dependencies, two
networks are added (ϕ and ψ) as pose encoder (GCN-based) and pose decoder (MLP-based)
to identify the spatial dependencies between the joints in each frame. The pose and trajec-
tory encoding networks, ϕP and ϕH , are GCNs that learn the spatial relationship between
the body joints.The weight of the graph edges represented by the adjacency matrix is used
to compute embeddings of dimension D for the human pose and human trajectory vectors
in the input sequences SP

t−α:t and SH
t−α:t. In order to modify the model to perform in a non-

autoregressive manner, the last frame of input sequences, SP
t and SH

t , were copied and used
as query sequences for decoders input. The model generates pose and trajectory predictions
OP

t+1:t+ζ and OH
t+1:t+ζ , in parallel using the networks ψP and ψH , from the decoder outputs

and a residual connection containing the query sequences. Therefore, the decoders learn the
offsets with respect to the last seen frame.

One of the benefits of our architecture is that we can share the representation between
human pose and trajectory prediction modules. In order to fully benefit from the combi-
nation of human poses and hip trajectory, we have added a multi-head attention module
called Shared Attention to apply attention between pose and trajectory encoder outputs as
shown in the middle of Fig. 2.14. First, we apply a linear layer to the pose encoder embed-
ding, ZP

t−α:t, to change the dimension from pose to trajectory embedding size. Then, we pass
it with a copy as well as the trajectory encoder embedding, ZH

t−α:t, to the multi-head atten-
tion module. We then add the multi-head attention output, ZP H

t−α:t, with the hip trajectory
encoder output to use it in the hip trajectory decoder. The added multi-head attention can
improve the hip trajectory prediction compared to solely relying on hip trajectory history,
since the human pose changes are related to how humans move overall. In Section 2.3.2.7
we investigate how this attention module can help our model predict more accurately.

In addition, we have added a multi-head attention layer to the end of each decoder
called End Attention. This module can help the model to better learn the temporal de-
pendencies between all frames. We concatenate the pose and trajectory encoders output
with decoders output and apply a self-attention module. Then we output the last encoded
features with the same length as the target sequence length. To convert them to the actual
sequence of future 3D human pose OP

t+1:t+ζ and hip trajectory OH
t+1:t+ζ , the model uses a
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Table 2.3: Analytical comparisons between our developed model and the baselines intro-
duced in [97] and [69] in terms of ADE and FDE for both human pose and trajectory
predictions and Inference Duration (ID)

Method ADEP ose FDEP ose ADET raj FDET raj ID
(m) (m) (m) (m) (msec)

DLow [97] 0.48 0.62 0.19 0.45 20
DMMGAN [69] 0.44 0.52 0.12 0.23 100

HipOnly [69] NA NA 0.15 0.30 18
Ours 0.50 0.75 0.13 0.27 25

pose and trajectory decoder (ψ). We discuss the impact of this module in the ablation study
presented in Section 2.3.2.7.

2.3.2 Human Motion Prediction Experiments

In this section, we first describe the dataset used to train our model, implementation details,
baselines, and metrics. Then, we show the performance of our human motion prediction
method with respect to baselines. Finally, we present the results of ablation studies to
demonstrate the effectiveness of different parts of our proposed architecture.

2.3.2.1 Dataset

To train the human motion prediction model, we used the well-known and standard Hu-
man3.6M dataset [35]. It contains the 3D joint position of seven actors performing 15
activities, including walking, sitting, and smoking. Traditionally, this dataset has been used
as a benchmark for human pose prediction [55], but we utilize it for human trajectory pre-
diction as well. As explained before, we extracted the hip trajectory of each actor for the
human trajectory prediction and all other joints’ relative position with respect to the fixed
hip for human pose prediction. Conventionally, for this dataset, one reduces the frame rate
from 50 Hz to 25 Hz [3, 60, 97]; however, we used 10 Hz, a more suitable frame rate for
robotic purposes as it is fast enough, reduces the complexity of our model, and speeds up
predictions at test time. Also, we followed the standard input and output duration of our
human pose prediction baseline, DLow [97] which are 0.5 sec (5 frames) for input and 2 sec
(20 frames) for the output.

2.3.2.2 Training

We used Pytorch as our deep learning framework. The model was trained with AdamW [53]
for 250 epochs with a learning rate of 10−4 and a batch size of 16. The model was trained
after 50K steps with warm-up scheduled in the first 10K steps. During warm-up, the learning
rate gradually increases from zero to 10−4 which increases training stability.
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2.3.2.3 Model Hyperparameters

Based on experience, we set the embedding dimensions to DP ose = 512 for pose predic-
tion and DT raj = 64 for trajectory prediction. Also, the fully-connected dimension in our
encoders and decoders was set to 2048. The encoders and decoders each contain four lay-
ers of pre-normalized [94] multi-head attention modules with eight attention heads. Here,
“pre-” or “post-normalized” refers to whether the normalization layer is the first layer in
the multi-head attention module or the last one.

2.3.2.4 Baselines

As our baselines, we compared our work with two state-of-the-arts in human pose and tra-
jectory predictions suitable for robotic purposes. We used DLow [97] as our first baseline
as a fast and accurate method in human pose prediction. This method has the best perfor-
mance for pose prediction out of all other methods except for DMMGAN [69]. Since this
method only predicts human poses at 25 Hz, we retrained it for simultaneous human pose
and hip trajectory predictions at 10 Hz with hip joint motion added to the predictions to be
able to compare directly. As a more accurate but slower method, we compared our results
with DMMGAN [69] that simultaneously predicts human pose and trajectory for robotic
purposes. As another baseline for trajectory predictions, we compare our method with a
simple GRU-based method called Hip Only introduced as a trajectory prediction baseline
in [69]. In this baseline, a GRU is applied to the human trajectory after passing through a
transformer encoder. To the best of our knowledge, these are the only available methods to
compare with simultaneous human pose and trajectory predictions suitable for real-world
robotic purposes. Other prior methods – and DLow [97] without any modifications – either
only predict human body pose relative to the fixed hip or heading [3, 60] without predicting
the hip trajectory in 3D space or are not fast enough.

2.3.2.5 Metrics

In order to compare our results with the baselines, we use the conventional Average Dis-
placement Error (ADE) and Final Displacement Error (FDE) [55] metrics. ADE is the
average of the L2 distance over all time steps between ground truth and prediction. FDE
is the L2 distance between the last ground truth and predicted frames. We compared both
metrics for both pose and trajectory predictions. As another important factor for real-time
robotic purposes, we compared the algorithms’ speed at test time.

2.3.2.6 Results

Table 2.3 quantitatively compares our method to the baselines. The achieved ADEP ose is
comparable to the state-of-the-art DLow [97] paper and DMMGAN [69]. Also, we have
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achieved better results for trajectory prediction with respect to DLow and Hip Only [69].
All training and testing were done on a laptop with an Intel CPU Core i9-9980HK CPU
and RTX 2080 Max-Q GPU. Due to the non-autoregressive nature of our method, we were
able to achieve much better computation speed at test time compared to DMMGAN, and
similar computation speed compared to DLow. However, our method has slightly worse but
comparable ADEP ose and FDEP ose with respect to DLow and ADET raj and FDET raj

with respect to DMMGAN [69]. This result was expected as discussed in [60]: The non-
autoregressive nature of the model reduces the model’s capability in modeling correlation
between frames which increases model error. Another reason is that DLow and DMMGAN
predict multiple possible predictions for an input sequence and ADEP ose and FDEP ose

are calculated for the most similar predicted sequence to the ground truth; thus, they are
somewhat similar to ensemble methods in spirit.

Note that for our robotic follow-ahead task, to work smoothly, we need to make the pre-
dictions, pre-processing (3D human pose estimation) and post-processing (robot trajectory
planning) in less than 100 msec as the frame rate of the model input is 10 Hz. Therefore,
the DMMGAN [69] was not a suitable choice for this task. On the other hand, DLow’s
trajectory prediction accuracy was not adequate. Therefore, our method provided the most
suitable model in terms of both accuracy and speed. For robotic purposes, our accuracy
is adequate as demonstrated in Section 3.3.2, and the fast computation speed at test time
as needed. Also, Fig. 2.15 qualitatively shows three samples of the predicted motion with
respect to the ground truth.

Figure 2.15: Three samples of the predicted motion vs. ground truth. On each couple of
figures (a to c) the left one shows the predicted motion given an observed sequence and the
right one shows the ground truth. The blue-colored skeletons show the input sequence and
the red and green ones show the model predictions and ground truth, respectively. Also,
the trajectory of the hip is shown with dashed black lines.

2.3.2.7 Ablation Study

We performed an ablation study to evaluate the training process and the effectiveness of
different modules used in our model. To show one of the major advantages of our method,
we discuss the effect of the Shared Attention module used for better trajectory predictions.
We compare the current results with the cases that 1) no such module is applied (No Shared
Attn) and 2) the shared attention module is applied only for pose predictions (Shared Attn-
Pose Only). Also, we study the effect of the End Attention module added to the end of
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Table 2.4: Our ablation study analytical comparisons

Model ADEP ose FDEP ose ADET raj FDET raj

(m) (m) (m) (m)
No Shared Attn 0.50 0.75 0.16 0.33

Shared Attn-Pose Only 0.51 0.76 0.16 0.33
No End Attn 0.52 0.77 0.18 0.33

Post Normalized 0.51 0.76 0.17 0.32
Ours 0.50 0.75 0.13 0.27

each decoder which aims to better model temporal dependencies by removing this module
(No End Attn). Finally, we compare the achieved accuracy with the post-normalized [94]
multi-head attention modules.

As one can see in Table 2.4, the shared attention module has improved the trajectory
prediction by incorporating the human pose representation while predicting trajectory. The
same module degraded the pose prediction and we believe there are two reasons for it.
First, in some of the dataset motions, the body limbs have random movements, such as
random hand waving during walking, which makes the predictions harder. Second, while
the body pose can be informative for predicting the hip trajectory, the reverse may not
be true, as given a hip trajectory, there are often still a lot of degrees of freedom for the
body pose. Also, the end attention module applied to concatenation of encoder and decoder
outputs improved the model performance by better modeling the temporal dependencies
between input and output frames. In addition, the post-normalized structure for multi-head
attentions was not able to perform as well as the current pre-normalized version.

2.3.3 Conclusion

Our work on STPOTR focused on real-world robotic applications of simultaneous human
trajectory and motion prediction. We utilized two parallel non-autoregressive transformers,
which we modified for our specific purposes. Through evaluation against various baselines,
we obtained promising results in terms of speed, and the accuracy of human motion predic-
tion, which suggests that our method is well-suited for robotic purposes. In particular, our
use of the non-autoregressive method led to a 4x increase in speed performance compared
to DMMGAN. A section of the upcoming chapter will focus on a real world application of
STPOTR and compare its performance with the current state of the art.
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2.4 Conclusion

In this Chapter, we design two human motion prediction models for robotics applications.
The first model is designed to address the issue of multimodality in human motions, while
the second one is focused on improving the speed of the prediction process and making it
suitable for various robotics applications.

The first model, DMMGAN, is a new approach to predicting diverse human motions. It
uses a combination of a generative adversarial network and Transformer-based encoders to
generate both the 3D pose and trajectory of human motion. Our implementation outper-
formed the previous state of the art, DLow [97], in diverse human 3D pose prediction while
also predicting the human’s trajectory.

In the second model, STPOTR, a simultaneous human trajectory and motion predic-
tion was presented for real-world robotic applications. The model utilizes two parallel non-
autoregressive transformers, which were modified for this purpose. The results showed a
reasonable level of performance in terms of speed, pose, and trajectory prediction compared
to other baselines, making it suitable for use in robotics applications.
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Chapter 3

Human Following

Rapid technical developments will bring robots into our everyday lives. There are various
applications where robots could usefully follow a human user around to assist them, for
example, a golf caddy or self-driving luggage. Notably, Boston Dynamics’ LS3 legged robots
(unpublished, derived from BigDog [92]) had a well-developed person-following capability
to act as load-carrying mules.

In human-robot interaction, robots are often required to stay close to a human user.
This is necessary for a variety of situations, such as capturing physical activity on video
or monitoring elderly individuals. Different methods of following a human include following
from behind, following in front, and following side by side [29, 32]. While following from
behind is a well-studied area, following a user from the front presents a greater challenge.
To follow a person from behind, one can use a Proportional Integral Derivative (PID)
controller to keep the person at the center and maintain a safe distance [47]. In contrast,
following a person from the front requires the robot to predict the person’s future trajectory
and navigate to a point on that trajectory while keeping a safe distance.

Research shows that in following scenarios, the user often glances behind for reassurance
that the robot is within a safe distance. On the other hand, being in front of the user can
provide benefits such as improved safety and more convenient interaction. This is seen in
applications such as autonomous shopping carts, self-driving luggage, and autonomous guide
dogs.

In our research, we propose two methods for human following. The first method is a hy-
brid solution that combines deep RL and classical trajectory planning for the front-following
application. Our deep RL module makes high-level decisions by implicitly estimating the
human trajectory and producing short-term navigational goals. The trajectory planner then
executes these goals at a low level to smoothly navigate the robot in front of the user. We
use curriculum learning in the deep RL module to achieve high returns efficiently. The sec-
ond method is a general human-following system that uses a fast non-autoregressive human
motion prediction model to learn the human’s goals explicitly. In STPOTR, we decouple
the robot’s decision-making process from human motion prediction, whereas in LBGP, we
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adopt a one-shot approach that simultaneously calculates the robot’s goal and performs
human motion prediction.

This chapter is based on the two papers we published at the IEEE International Con-
ference on Robotics and Automation (ICRA 2021 and ICRA 2023) [56, 71]
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3.1 Related Work

3.1.1 Categorize of human following

Person following has been studied for ground [68, 73, 89], aerial [33, 54] or even underwater
environments [37, 99]. Following from behind is the dominant scenario in these studies.

In classical methods, the person following problem has been broken down into three
sub-modules: localization of the user, pathfinding, and trajectory tracking [47, 88]. Recent
years have seen a rise in the popularity of learning to perform navigational tasks directly
from sensor inputs [73]. These techniques involve learning the task in simulation first and
then possibly transferring the policy to the real world or generalizing the policy to unseen
environments [24].

One branch of human following deepening on the social force model (SFM) introduced by
Helbing and Molnar in [28]. SFM models human motion in terms of attractive and repulsive
forces. In SFM, repulsive forces refer to forces created by other people or environmental
obstacles, while attractive force is toward the user’s desired goal. A line of work in the human
following is based on the SFM idea. [18] is one of the first examples of human following
that incorporates the SFM concept. Their work considers forces between human-human,
human-robot, and human-obstacle. A genetic optimization algorithm is used to learn the
parameters of the human-robot forces. Their assumptions include knowing pedestrians’ and
robots’ goals. Repiso et al. improve this model by using a predictive model to predict the
desired goal of the robot using an SFM [78]. They calculate the desired goal based on the
person’s movement, the group’s movement, and the other people around (moving obstacles).
Their model attempts to learn a human’s desired goal by combining the companion force
and hand-picked environment structure that may not always hold. For example, it can never
model the multi-modality of human behavior or be generalizable to different environments.

Figure 3.1: Depending on the robot’s local position relative to the human, the person fol-
lowing can be categorized into (a) “behind the leader”, (b) “side-by-side”, (c) “in front of
the leader” [29].

Ho et al. [29] divide the person following into three categories based on the robot’s local
position with respect to the human: 1) following behind the leader, 2) side-by-side with the
leader, and 3) ahead of the leader. An implementation of the following behind the leader
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can be accomplished with a simple proportional controller that attempts to keep the person
at a fixed distance and in the middle of the sensor field of view. The other two tasks are
considerably more challenging as they require prediction of the user’s movements [64]. For
example, for smooth following-ahead through an intersection, the robot needs to predict
which direction the user will take. In the following, we go over these three categories.

3.1.1.1 Following behind

Most of the previous work on the person following has involved following a user from behind.
In [47], Leigh et al. present a human-centered tracking framework that classifies laser data
as human or not human. The detected person positions are tracked using a Kalman Filter,
and then they apply separate PID controllers to obtain the angular and linear velocities
of the robot. An interesting resource-limited example is Yao et al. [96], where the Georgia
Tech Miniature Autonomous Blimp detects and follows a person using a monocular camera.
They use a Haar face detector and a KLT feature tracker to track the user. In another work,
Sun et al. [84] present a following behind the leader behavior by using an SFM based on
the human goal, wall, other pedestrians, and other obstacles forces. In spite of the fact that
their model is capable of factoring in pedestrian comforts using SFM, they assume a really
simplistic model of a pedestrian that would not be applicable in real-world scenarios.

3.1.1.2 Following ahead

Behavioral experiments suggest that in following behind scenarios, the user frequently looks
behind out of curiosity or to ensure the robot is within a safe distance [39]. Conversely,
following in front can assist a person in different applications. Consider an autonomous
shopping cart, self-driving luggage, or autonomous guide dog; in all these applications, it is
best if the robot is in front of the user. The user not only feels safer but also can interact
with the robot more conveniently.

Figure 3.2: In [70], via an EKF approach and hand-designed human models, they designed
a following ahead system.
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In one of the first efforts, Ho et al. [30] assumed a nonholonomic human model and esti-
mated the human’s linear and angular velocity via a Kalman filter. Their proposed motion
planner did not perform well for some relatively complex scenarios. Cifuentes et al. [14] pro-
pose an approach based on a human gait model that uses a wearable Inertial Measurement
Unit (IMU) for estimating orientation. In [29], they calculate human orientation using a
Kalman filter with a nonholonomic human model for estimating human linear and angular
velocities. At the same time, a special-purpose robot motion controller aims to align the
human-robot poses such that the robot follows from the front. Eui-Jung et al. [39] present
a holonomic motion model for tracking a human while staying ahead. In [85], Tominaga et
al. present another front-following system using simple visual servoing that tries to keep a
person (marked with an AR tag) in the center of the robot’s view. The person’s heading
is not considered, and the robot can easily lose the person at sharp turns. A more recent
work by Moustris et al. [64] describes a front-following model that uses a modified dynamic
window planner without considering the current heading of the person, which is important
information when predicting motion relatively far into the future. Their method is extended
in [65], where they assume that the user’s relative heading can be estimated by how far the
user is offset from the middle of the robot’s field of view. Although this cue may often be
helpful, it cannot predict how the user’s heading will change due to interactions with walls
and other obstacles.

The authors in [70] developed an Extended Kalman Filter (EKF) approach by combin-
ing 2D Lidar and a fish-eye camera to detect and track a person. A velocity-based heading
estimator and human model that accounted for obstacles helped to correct the EKF pre-
dicted position. However, this method did not account for human body pose and thus are
limited in its use cases. For example, the EKF method cannot perform well when the human
is nearly stationary.

3.1.1.3 Follow side-by-side

The last category of human following is side-by-side following. It is not uncommon for people
to walk side-by-side in a group of people since they communicate together [63]. Walking
side-by-side can facilitate communication while providing personal space and eye contact.
In comparison to following behind, making a social companion robot that follows side-by-
side can be an excellent alternative. For example, for a companion robot in a shopping mall
or at an elderly care center, it is expected that the robot talks to people while they are
heading to their destination. In the same way as following ahead, following side-by-side is
challenging as the robot must know or predict the user’s trajectory, and if the prediction is
incorrect, the robot will be stuck behind the user.

An early version of the side-by-side following is introduced in [41]. They projected their
future position based on the person’s current velocity and orientation. The technique works
well for walking straight but can fall apart if people change their directions. Morales et al.
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provide a follow side-by-side model that combines the planning of the human and robot [62].
A major shortcoming of their work is that the robot must know the human’s destination,
which is not known in real life. Similarly, in [61], they have a side-by-side following method
for a shopping environment. They also assume to know the destination of the human.
Murakami et al. propose to use a two-state model for an indoor laboratory environment [66].
Their environment only includes one intersection with four predefined sub-goal positions.
Their method simply moves forward and, as soon as it gets to the intersection, uses an
angle-based method to pick one of the predefined goals. Their method can only work for
simple scenarios and cannot scale to real-world cases. They perform a follow-up study in
[40] to remove the need to know the predefined goals. They use the method proposed by
[34] to find the position of sub-goals using trajectories of the pedestrians. These sub-goals
are calculated statistically for their environment using offline data from 6088 trajectories.
But still, their method is pretty limited and cannot scale well to the different environments
as it requires offline data of trajectories for each environment. They also use hand-picked
features to pick these sub-goals, which may not hold well for different environments.

Figure 3.3: An intersection with two people walking side-by-side. a) going straight, b) leader
guiding, c) inferring routes [40].

In a recent study, Gil et al. propose combining SFM with RL. They calculated the
robot’s linear and angular velocities by combining the velocity of an RL agent with an SFM
model. Here they use the SFM to have human-aware navigation by considering moving
pedestrians and obstacles in their environment. The RL agent performs two tasks: point-
to-point navigation and path following. In this case, they use DDPG as the RL agent and
use the SFM only to avoid large obstacles since the repulsive force is around zero when the
robot is far from them. Both tasks assume the robot knows the human’s destination, which
simplifies solving the problem and makes it less applicable to a real world application.
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3.1.2 Human following using RL

In recent years, a variety of research shows the capability of deep reinforcement learning
(RL) to solve challenging game problems [10, 80]. Applying it to robotic problems can
help to address navigational tasks while considering the user intents [11, 44]. Deep RL can
implicitly account for robot dynamics and enable a continuous interaction between the robot
and its environment. In the staying-in-front problem, deep RL can also implicitly predict
a person’s future trajectory and continuously update the predictions to provide a smooth
real-time experience for the user.

Several studies used deep RL for related navigational tasks. Dewantara et al. proposed
a guiding behavior that optimizes parameters of a social force model using Q-Learning
[17]. In [11], Chen et al. presented a relational graph deep RL approach for robotic crowd
navigation [11]. Using this relational graph, they encoded higher-order interactions between
agents and used it to anticipate the future. Besides, A curriculum learning approach has been
used to increase the efficiency of RL training. Narvekar and Stone formulated a curriculum
sequencing problem as a Markov Decision Process [67]. They show how curriculum learning
can reduce training time. Kulhanek et al. presented another RL-based navigation agent [44],
which learns to navigate in an environment using only the raw images. They proposed pre-
training the network by transferring the learned policies from one environment to another
and gradually increasing the environment’s complexity. Bansal et al. proposed a navigational
framework for combining optimal control and learning [6]. Their learning-based perception
module produces a series of way-points that guides a robot toward the goal. In a recent study,
we propose the Learning Based Goal Planning (LBGP) approach to address the problem of
staying in front of the user. LBGP is a hybrid approach that combines deep RL and classical
trajectory planners. Our results show that combining deep RL with classical methods can
greatly improve performance while maintaining its safety. Additionally, we demonstrate the
benefits of using curriculum learning to train the agent on increasingly challenging human
motions. This method is more efficient and achieves higher returns compared to training
without a curriculum.
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3.2 LBGP: Learning Based Goal Planning Approach for Au-
tonomous Following in Front

Figure 3.4: A mobile robot following-ahead of a user. The robot must predict the user’s
trajectory to stay in the correct relative position. In each time step in our proposed approach,
the robot considers previous states of the joint system to generate a goal (blue dot). Then
a trajectory planner navigates the robot towards the goal (green line).

In our first work on the human following, we propose the Learning Based Goal Planning
(LBGP) approach to address the problem of staying in front of the user. LBGP is a hybrid
approach that uses the combination of deep RL and classical trajectory planners (see Figure
3.4). Our results show that combining deep RL with classical methods can greatly improve
performance while maintaining its safety. We also show the benefits of using curriculum
learning to train the agent on increasingly challenging human motions. Compared to training
without a curriculum, our method trains the policy more efficiently while achieving a higher
return. To generalize our model to unseen and real world inputs, we add a Gaussian noise
to our observations.

We demonstrate favorable results in simulation and real world experiments compared
to previous work. Our ablation studies show the benefits of our hybrid approach and cur-
riculum. In particular, we show the effectiveness of our hybrid approach through zero-shot
transfer of the policy trained in simulation to the real world. Example of our system can be
find in the supplementary video1. In summary, our main contributions are as follows:

• We combine a classical robotic trajectory planner with deep RL to improve the safety
and generalizability of our system.

• We use curriculum learning to reduce the training time while improving the final
return.

1https://youtu.be/XSOUdPFPMmA
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• By evaluating our system in the simulation using a Clearpath Jackal robot and in the
real world using a Turtlebot 2 robot, we show that our system can be more reliable and
efficient for front-following compared to an End-to-End learning or a purely classical
hand-crafted approach.

• We demonstrate that unlike the End-to-End learning approach, the policy trained
using our method can directly transfer to the real world without any re-training.

Figure 3.5: Our relative coordinates system

3.2.1 Problem Setup

In this work, we study the problem of keeping an autonomous robot in front of a walking per-
son. We assume an obstacle free environment in which the robot should avoid collision with
the human. We represent the global state of the human and robot with (Xh
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To make our approach transferable to real world and avoid over-fitting we use a relative
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For the purpose of calculating rewards, we define αt = arctan (yr
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angle.
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We also define a similar notation for the ith previous state of the human relative to
their current state at time t:

zh
t−i : (xh

t−i, y
h
t−i, φ

h
t−i) (3.2)

where
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As part of the observation, we consider a history of relative coordinates for both the robot
and human. These relative coordinates are all respective to the latest position of the human.
This relative system is visualized in Figure 3.5.

3.2.2 Method

Our key insight in this work is to combine a deep RL module with a classical trajectory
planner. The agent uses our implementation of Deep Deterministic Policy Gradient (D4PG)
[9] algorithm to generate a short-term navigational goal. A Time Elastic Bands (TEB)
motion planner is used to navigate toward this goal, while treating the person as a dynamic
obstacle. Crucially, our approach differs from typical policies trained with RL, which directly
output an agent’s actions.

3.2.2.1 Observations and Navigational Goals

The observation is a stack of robot and human relative states (zr
t , z

h
t−1, z

r
t−1, . . . , z

h
t−9, z

r
t−9),

with t being the current time step (see equations (3.1) and (3.2)). We stack states up to the
last 10 frames (at 5 FPS).

The quantities are continuous and scaled to [−1, 1]. In simulation, we capture all the
variables from Gazebo simulator. In real world, it can be obtained by a motion capture
system or human detection algorithms (e.g. YOLOv2 [77]) with RGB-D inputs (this ap-
proach was previously used in [68]). To improve the transferability of our approach to the
real world, we add Gaussian noise to the observations in simulation.

The output of our policy network is a target position relative to the person. This position
is a short-term navigational goal based on the implicitly estimated path of the user. We
feed this output to the TEB local planner to navigate the robot in a smooth trajectory.

3.2.2.2 Reward

We define the reward function such that the agent receives a higher reward if it stays in
front of the person at a desired distance of 1.5 m and negative reward if it is far away, too
close or behind the person. The reward is scaled to [−1,+1]. Figure 3.6 shows the reward
function based on relative coordinates of the robot to human. Mathematically, the agent
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Figure 3.6: Reward based on the robot’s relative position to the person. Increasing from
black (-1) to white (+1).

reward R consists of two parts, Rd for person-robot distance and Ro for person-robot angle,
defined as follows:

Rd =



−1, D < 0.5 or 5 < D

−(1 −D), 0.5 < D < 1

0.5(0.5 − |D − 1.5|), 1.0 < D < 2

−0.25(D − 1) 2 < D < 5

Ro =

0.5((25 − |α|)/25), |α| < 25

−0.25|α|/180, |α| > 25

R = min(max(Ro +Rd,−1), 1)

where D is the distance between the robot and the person, and α is the angle between
the person-robot vector and the person-heading vector (person-robot angle, in short). We
terminate the episode if the agent is too close (D < 0.5 m) or far away (D > 5 m).

3.2.2.3 Policy Training Environment

Our LBGP system is implemented in ROS [75] and trained in the Gazebo robot simulator
[43]. We use a Turtlebot 3 burger robot to represent the person and a Clearpath Jackal robot
as the robot. The person is controlled using our person motion model. We design a world
in the Gazebo simulator with four replicas of an environment each containing one learning
agent. Three of agents explore the environment while the last one exploits the policy. This
setup is arranged to mitigate the exploration exploitation trade-off. The simultaneously
collected trajectory data are added to replay buffer to update the model weights.
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3.2.2.4 Curriculum Learning

To improve learning efficiency, we employ curriculum learning to train the agent in a series
of tasks with increasing difficulty. These tasks are defined based on the human trajectory.
We start with a straight line and move to more difficult trajectories as we go further in the
training. In our curriculum, there are four difficulty levels: straight, circles, smoothed curves
and simulated human trajectories explained below (see Figure 3.7). At each difficulty level,
the robot is randomly spawned at positions between 1 to 2.5 meters away from the person
with uniformly random orientations. The details of each difficulty level is elaborated below.

1. Straight: The person moves with an initial random linear velocity throughout the
episode.

2. Circles: The person moves in a circle with a different radius each time. We create
the circular motion by selecting a random initial linear velocity in the range [0.2, 0.6] m/s
and a random angular velocity in the range [0.3, 0.8] rad/s.

3. Smoothed curves: The person moves in random curves generated by following
linear velocities V t

l and angular velocities V t
a with initial values similar to those in the

Circles difficulty:
V t

l = V t−1
l − (V t−1

l −Rt−1
1 )/3.

V t
a = V t−1

a − (V t−1
a −Rt−1

2 )/3.

where R1, R2 are random numbers between [0, 1] and [−1, 1] respectively.
4. Simulated trajectories: We first arbitrarily “draw” trajectories by moving a robot

using a joystick in Gazebo to cover the space while recording robot coordinate points in 10
different occupancy grid map. The total length of all trajectories is roughly 50 meters. To
add variety to the data, we add the reverse of each trajectory to the library of trajectories as
well. During training, the person starts at a random point and tracks the above trajectories
using a proportional integral derivative (PID) controller.

Figure 3.7: Visualization of person motion model. From left to right: moving straight, in
different circles, in smoothed curves and using annotated simulated path of a human.

3.2.3 Simulated Experiments

In this section, we present our experiments in simulation. We compare LBGP (our system)
with two baselines: the state-of-the-art Hand Crafted Following Ahead (HC) method in
[68] and an End-to-End learning Following Ahead (E2E) approach. The HC system exploits
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EKF to predict the position of the user and then navigates to a point ahead of the predicted
position using a trajectory planner. For sake of consistency, we use the same TEB motion
planner as in HC. For E2E approach, we use the same D4PG implementation with cur-
riculum leaning, but instead of a navigational goal, the policy directly outputs the robot’s
linear and angular velocities scaled to [−1, 1] m/s and [−2, 2] rad/s, respectively.

We conduct three experiments with different human trajectories. In each experiment,
we report the mean person-robot angle α, the mean robot-user distance D and the episode
accumulated reward. The results of all the three experiments are included in Table 3.1. In
all experiments, the robot has no prior knowledge of the planned trajectory of the human.
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3.2.3.1 Straight

Human Approach Distance Orientation Reward
Trajectory mean ± std mean ± std

Straight
ahead

LBGP 1.53 ± 0.2 7.1 ± 6.7 28.31
HC 1.35 ± 0.2 −1.1 ± 1.6 33.44
E2E 1.75 ± 0.3 8.9 ± 7.2 27.50

Straight
behind

LBGP 1.59 ± 0.2 64.3 ± 62.6 10.50
HC 1.10 ± 0.2 86.1 ± 66.6 1.30
E2E 1.54 ± 0.5 91.8 ± 63.1 −3.13

Turning
ahead

LBGP 1.90 ± 0.3 −5.7 ± 10.3 24.96
HC 1.04 ± 0.2 −12.6 ± 11.6 20.20
E2E 1.96 ± 0.3 −7.5 ± 4.6 22.44

Turning
behind

LBGP 1.69 ± 0.3 81.7 ± 67.8 0.40
HC 1.07 ± 0.3 83.9 ± 83.4 −5.03
E2E 1.62 ± 0.5 55.1 ± 81.1 0.17

Turning
inside

LBGP 1.72 ± 0.3 1.6 ± 23.6 23.04
HC 0.98 ± 0.3 3.6 ± 24.1 8.37
E2E 2.11 ± 0.5 −1.5 ± 18.7 11.36

Turning
outside

LBGP 1.56 ± 0.2 −33.1 ± 19.8 13.97
HC 1.07 ± 0.2 −22.8 ± 18.7 13.68
E2E 1.32 ± 0.2 56.3 ± 72.1 2.53

Trajectory
one

LBGP 1.37 ± 0.3 10.4 ± 15.4 27.17
HC 1.09 ± 0.3 −8.8 ± 34.8 0.91
E2E 1.65 ± 0.2 22.9 ± 42.4 16.60

Trajectory
two

LBGP 1.54 ± 0.2 −4.7 ± 62.2 15.86
HC 1.12 ± 0.4 −57.0 ± 45.8 −5.83
E2E 1.62 ± 0.2 −1.7 ± 72.4 10.99

Trajectory
three

LBGP 1.59 ± 0.3 12.6 ± 81.0 11.79
HC 1.15 ± 0.4 6.2 ± 75.8 −8.02
E2E 1.92 ± 0.3 11.0 ± 80.1 2.15

Table 3.1: Comparison of our systems versus two baselines for all simulation trajectories.
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The first experiment was conducted on straight human motion trajectory to compare the
behaviour of the three methods. The human simply starts moving forward with a constant
linear velocity of 0.6 m/s. We spawn the robot relative to person in two initial settings,
Ahead: (D = 1.5m, α = 0◦) and Behind: (D = 1.5m, α = 180◦).

We compare our results with HC and E2E (Table 3.1). For the Ahead setting, HC
achieves the highest return. HC can achieve a better results as the incorporated EKF relies
on linearity of human motion and it can optimally follow the straight line. In LBGP training,
we apply Gaussian noise thus the robot may slightly deviate to the sides. In the Behind
setting, our approach achieves the highest reward as it has learned to keep a safe distance
with the human by setting further navigational goals for TEB compared to HC.

3.2.3.2 Turning

We assess different approaches with turning trajectories. In this case, the person moves with
a linear velocity of 0.3 m/s and angular velocity of 0.3 rad/s. To cover a large variety of initial
conditions, we evaluate four positions of the robot relative to person, Ahead: (D = 1.5m,
α = 180◦), Behind: (D = 1.5m, α = 0◦), Ahead-inside-the-turn: (D = 1.5m, α = 45◦)
or Ahead-outside-the-turn: (D = 1.5m, α = −45◦). The result of this experiment shows
that our LBGP achieves the highest return in all the settings (Table 3.1).

3.2.3.3 Simulated trajectories

We designed three simulated trajectories to further evaluate our system. Similar to the
training phase, we employ PID controllers for the simulated human to follow totally unseen
trajectories, and the learning agent attempts to stay in front of the simulated human. Figure
3.8 shows the robot’s trajectories corresponding to the three different human trajectories. In
this experiment, we can see a more noticeable difference in performance of LBGP compared
to both baselines (Table 3.1). Compared to E2E, our method likely performs better as the
usage of a trajectory planner abstracts navigation to predicting a goal, while the E2E method
needs to implicitly learn the dynamics of the system. Learning accurate dynamics can be
challenging and may expose the E2E to over-fitting. Our method, LBGP, also outperforms
the HC system, since LBGP predicts a goal based on a history of the human trajectory as
opposed to using a linear human motion model as in HC.

3.2.3.4 Ablation Study

We performed an ablation study to evaluate the effectiveness of different modules and
training procedures of our LBGP approach. We compare the performance of our approach
to two variants of it: 1) without curriculum learning (LBGP-no-curriculum), and 2) without
a trajectory planner (E2E, same as described in Section 3.2.3). As shown in Figure 3.9, both
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Trajectory one Trajectory two Trajectory three

LBGP

E2E

HC

Figure 3.8: Visualize the trajectory of robot (arrows) and human (triangle) during the
simulated trajectory experiment for our system (LBGP) and two baselines, HC and E2E.

LBGP-no-curriculum and E2E have slow learning curves and reach a lower discounted
cumulative reward bound compared to LBGP, our proposed method.

3.2.4 Real World Experiments

We test LBGP on a TurtleBot 2 hardware testbed, and evaluate the transferability of the
policy trained in simulation, using our approach, to the real world. We also compare our
method’s sim2real ability with the two baselines, HC and E2E, defined in Section 3.2.3.
We performed three experiments each with 4 different initial relative states. In short, our
approach demonstrates successful zero-shot sim2real transfer of the policy.

To keep the experiments consistent between different approaches, all the initial states
of human and robot along with the trajectory of human are marked on the ground with
color tapes. In each experiment, we report the total discounted cumulative reward, the
mean person-robot angle (α) and the mean person-robot distance (D) as a measures of the
follow-ahead quality. To make the accumulated reward a fair evaluation, we keep a constant
number of time step for each setting. We use a motion capture system to record the robot
and person’s states. For all the experiments we use the policies we trained in simulation
with no changes. In each setting, we terminated the experiment as soon as the robot hits
the person or gets more than three meters away from the person. As with the simulations,
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Figure 3.9: Discounted cumulative rewards during training averaged over five runs for LBGP
with or without curriculum and E2E. The shaded area represents half a standard deviation.

in every real world experiment, the robot has no knowledge of the planned trajectory of the
human.

3.2.4.1 Straight Trajectory

In this experiment, the initial positions of robot relative to human are as follows: Ahead:
(D = 2m, α = 0◦,), Ahead-right: (D = 1.5m, α = 45◦ ), Ahead-left: (D = 1.5m,
α = −45◦) and Behind: (D = 1.2m, α = 180◦). In each setting, the person intends to
navigate with a constant forward speed toward a goal located at 7 meters of its initial
position. The four settings along with the result of the Straight experiment is reported
in Table 3.2. In this experiment the EKF model of HC can correctly predict the human
trajectory and it achieves the highest reward only for the Ahead setting. For all the other
settings, our LBGP method achieves the highest performance. It is likely because the policy
in LBGP is trained to keep the safety distance with the human. E2E failed to accomplish
the following ahead task due to collision with person (Ahead and Ahead-right settings) or
drifting away in reverse direction (Behind setting). Likely, E2E learns to navigate only with
the specific simulated robot dynamics and unable to generalize to a new robot dynamics in
the real world experiments.
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Human Approach Distance Orientation Reward
Trajectory mean ± std mean ± std

LBGP 1.63 ± 0.4 −8.4 ± 26.6 27.42
HC 1.24 ± 0.6 −11.8 ± 16.4 26.31
E2E Failed Failed Failed

LBGP 1.24 ± 0.3 2.1 ± 14.5 40.92
HC 1.14 ± 0.2 0.5 ± 3.0 61.08
E2E 1.14 ± 0.3 −0.1 ± 10.0 h41.59

LBGP 1.61 ± 0.4 30.2 ± 34.6 15.68
HC 1.28 ± 0.7 16.8 ± 21.6 14.24
E2E Failed Failed Failed

LBGP 1.85 ± 0.3 34.0 ± 95.2 −6.79
HC 1.73 ± 0.3 −105.7 ± 51.0 −15.69
E2E Failed Failed Failed

Table 3.2: Comparison of our systems versus two baselines for Straight trajectory.

3.2.4.2 S shaped Trajectory

In the second experiment, we evaluate our system for an S shaped trajectory. The initial
relative position of robot is exactly similar to the Straight trajectory. The user deliberately
follows a S shape path for all the settings. As shown in Table 3.3, LBGP achieves the
highest return in all four settings. When the person travels along an S shaped trajectory, it
is important to consider a history of the person to predict its future trajectory and a simple
EKF as in HC cannot correctly predict the complexity of this motion. Figure 3.10 visualizes
examples of the robot and human trajectories for Ahead-right and Behind settings. Similar
to the Straight experiment, E2E failed three out of four settings by colliding with the user.
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Human Approach Distance Orientation Reward
Trajectory mean ± std mean ± std

LBGP 2.09 ± 0.3 −4.9 ± 26.7 2.30
HC 1.14 ± 0.5 −14.2 ± 78.4 −9.42
E2E Failed Failed Failed

LBGP 1.86 ± 0.4 16.9 ± 28.3 5.15
HC 1.04 ± 0.3 38.9 ± 60.3 −6.83
E2E 1.41 ± 0.4 −35.4 ± 53.0 3.45

LBGP 1.81 ± 0.6 35.8 ± 33.1 11.74
HC 1.60 ± 0.8 65.3 ± 50.0 −9.29
E2E Failed Failed Failed

LBGP 1.30 ± 0.2 38.2 ± 70.9 7.84
HC 1.69 ± 0.4 12.2 ± 151.6 −18.64
E2E Failed Failed Failed

Table 3.3: Comparison of our systems versus two baselines for S shape trajectory.

3.2.4.3 U-turn Trajectory

Lastly, we evaluate the LBGP when the person perform a U-turn. The initial positions of
robot relative to human are as follows: Ahead: (D = 1.7m, α = 0◦), Ahead-left (D = 2m,
α = −55◦), Ahead-far-left (D = 3.6m, α = −75◦) and Behind (D = 1.2m, α = 180◦).
Table 3.4 shows the four settings along with the result of the U-turn experiment, and
LBGP consistently accumulates the highest reward. For a challenging U-turn trajectory, it is
important for the robot to “notice” these specific walking patterns and react spontaneously.
This cannot be done in HC method as HC anticipate future based on the heading of the
person. Examples of robot and human trajectories for Ahead-left and Behind settings is
visualized in Figure 3.10. For instance, in the Ahead-left setting, LBGP predict the turn
early and avoid getting far away from the person. On the other hand, E2E has trouble
transferring the policy to the real world.
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Human Approach Distance Orientation Reward
Trajectory mean ± std mean ± std

LBGP 1.99 ± 0.2 −16.8 ± 18.6 14.91
HC 1.01 ± 0.5 −55.2 ± 57.0 −11.33
E2E Failed Failed Failed

LBGP 1.34 ± 0.4 20.9 ± 37.8 18.73
HC 1.15 ± 0.3 −28.7 ± 98.1 −8.09
E2E 1.75 ± 0.4 43.3 ± 26.7 10.63

LBGP 1.91 ± 0.7 36.2 ± 36.3 16.52
HC 1.31 ± 0.9 −6.1 ± 43.8 −13.14
E2E Failed Failed Failed

LBGP 1.53 ± 0.3 44.5 ± 58.5 20.03
HC 1.12 ± 0.3 −1.7 ± 120.3 −11.83
E2E 1.82 ± 0.3 67.7 ± 45.4 −7.43

Table 3.4: Comparison of our systems versus two baselines for U-turn trajectory.

3.2.5 Discussion

3.2.5.1 Comparison to the Hand Crafted method

Our results show that our proposed hybrid approach for following ahead outperforms the
HC method in both the simulation and real world. LBGP is able to create a complex model
of the environment with a better abstraction of the human motion model as opposed to a
linear EKF in the HC. Another advantage of RL is the large amount of training data that
can be obtained in a simulated environment. This allows LBGP to better predict human
trajectories (implicitly) compared to a hand-crafted method.

3.2.5.2 Comparison to the End-to-End method

Although E2E achieves a comparable performance in simulation, it is unreliable in the real
world. Using E2E, the robot collided with the user in all three real world experiments.
We also saw the robot shaking a lot when we used E2E. After investigating, we identified
the dynamics of the real world robot differ from the simulated one, which prevents E2E
from extending the learned behaviour to the real world. In contrast, LBGP overcomes this
model mismatch by abstracting away the dynamics using the TEB trajectory planner. This

54



LBGP HC

Figure 3.10: real world Examples: the robot (in arrows) and user (in triangles) trajectories
is depicted. Row 1 and 2, S shape experiment in ahead-right and behind settings. Row 3
and 4: U-turn experiment in ahead-left and behind settings.

planner also helps our system to avoid any collision with the person while staying at a safe
distance.

3.2.6 Conclusion

We propose LBGP, a follow-ahead method that uses both reinforcement learning and point
based navigation. We address the limitations of classical methods and end-to-end approaches
by combining Deep RL and a classical motion planner. Our implementation outperforms
previous work in an obstacle-free environment [68]. To train our deep RL model, we used
curriculum learning by gradually increasing the difficulty of the person motion model to
learn a robust policy for front following. Our results show that using a planner improves
the generalizability and safety of the trained policy compared to an End-to-End method
and allows us to perform zero-shot sim2real transfer successfully.
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3.3 Human Following using STPOTR

Figure 3.11: Robot follow-ahead via human motion prediction in the U-Shaped scenario
using the STPOTR model. Opacity increases with time.

In this section, we demonstrate the real world application of the STPOTR [56]. We use
STPOTR trained model to perform the challenging task of robot follow-ahead and compare
our method’s performance with a hand-crafted (HC) [70] and our RL-based (LBGP) [71]
methods.

The primary difference between STPOTR and LBGP lies in their strategy for predicting
human motion during human following. LBGP employs a one-shot approach that predicts
both robot goals and human motion, whereas STPOTR uses a two-shot approach that
first predicts human motion and then calculates the robot’s goal based on that prediction.
Decoupling the robot’s decision-making and motion prediction can improve the approach’s
generalizability and reduce the need for retraining when switching between different types
of human following. For example, LBGP can only be used for following ahead since we only
train the RL agent in this scenario, and to apply it to other scenarios, retraining is required.
To demonstrate this benefit of STPOTR, we conducted a real-world experiment involving
various human following scenarios, including sit-to-stand and follow-beside.

We test the same scenarios in the two baselines that are follow-ahead on a Straight line
and S-Shaped and U-Shaped curves. Similarly, the robot starting points are on four sides of
the user’s initial location (left, right, in front, and behind). In order to evaluate the follow-
ahead task, a reward function similar to [71] based on the relative position of the robot and
the human is used.
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3.3.1 Robot Follow-Ahead via Human Motion Predictions

In order to use the trained model for the robot follow-ahead task in the real world, it was
retrained with Gaussian noise added to the input sequence to improve the robustness to
noisy inputs. A ZED2 camera was used as a 3rd person viewer for human pose estimation
and a turtlebot2 [81] robot was used as the testing platform. We used a 3rd person camera
to abstract away hardware complications such as limited field of view. Our focus is on
demonstrating that the trained model for human motion prediction is useful for the follow-
ahead task. At each moment, the ZED2 camera captured an image and estimated the current
human body 3D joints’ positions. Then we sent the last 0.5-second frames (5 frames) to
the STPOTR model and predicted the user’s motion in the next 2 seconds (20 frames). We
calculated the future human heading using the line created by the left and right hip joints
positions on the 20th frame, and chose the point 1.5 meters in front, oriented in the same
direction as the robot goal pose (position and orientation). Then we used the Time Elastic
Band (TEB) trajectory planner [93] to move the robot toward the goal pose. This planner
also helps our follow-ahead system to stay a safe distance from the person at all times to
avoid any collisions with the person while staying at a safe distance.

3.3.2 Real World Experimental Results

Table 3.5 compares the achieved reward by our robot follow-ahead method with respect to
our baselines [70, 71]. The reported rewards are the average reward values of two tests on
two different users. We were able to achieve a much higher reward in the S-Shaped scenarios
which is a complicated motion and comparable results in other ones. Our method only
performed poorly when the robot was placed on the human’s left side during U-Shaped
motion which can be due to the far distance between the human and robot during the
initial periods of the motion. Fig. 3.13 shows a few of the follow-ahead motions in different
scenarios.

Crucially, note that the LBGP [71] used a motion capture system for localizing the
human and robot, which greatly simplifies the human-following problem, whereas we present
a more realistic method that uses the much noisier 3D human pose estimation of the ZED2
camera.
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Table 3.5: Robot follow-ahead comparative results for three tested scenarios.

Human Method Reward Human Method Reward
Trajectory Trajectory

Ours 25.94 Ours 13.11
LBGP 27.42 LBGP 14.91
HC 26.31 HC −11.33

Ours 25.31 Ours 8.89
LBGP 40.92 LBGP 18.73
HC 61.08 HC −8.09

Ours 7.62 Ours −10.92
LBGP 15.68 LBGP 16.52
HC 14.24 HC −13.14

Ours −5.14 Ours 7.37
LBGP −6.79 LBGP 20.03
HC −15.69 HC −11.83

Ours 22.02 Ours 24.15
LBGP 2.30 LBGP 5.15
HC −9.42 HC −6.83

Ours 14.33 Ours 8.28
LBGP 11.74 LBGP 7.84
HC −9.29 HC −17.64

Figure 3.12: Sit-to-Stand (A) and Stand-to-Sit (B) use cases of STPOTR. Opacity increases
with time.
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Perhaps most importantly, we were also able to account for much more detail in the
human motion for the follow-ahead task. This enables our system to easily generalize to
many different scenarios involving different human motions such as Sit-to-Stand and Stand-
to-Sit (illustrated in Fig. 3.12), as well as to different variations of human following such
as follow-beside or keeping a variable distance with the human depending on the human
walking speed or surrounding environment. These are very difficult, if not impossible, sce-
narios and tasks for our baselines. For example, the RL-based LBGP [71] method would
require retraining of the policy for every variation of the human-following task. LBGP also
does not account for the human body pose, and the HC [70] method, in addition, does
not consider the human heading. The application of our algorithm in these different sce-
narios and task variations can be found at https://www.youtube.com/playlist?list=

PLuLzEWWNu1_p1bjUHhWUHRMFOLmLpUCpM

Figure 3.13: Three samples of the robot follow-ahead tasks for U-Shaped, S-Shaped and
straight line scenarios. The triangle and arrows show the human and robot motions, respec-
tively.

3.3.3 Conclusion

Our work showcased the efficacy of STPOTR in predicting human motion in a real world
robotics task involving the robot follow-ahead, where we obtained results that were either
better or comparable to those achieved by previous methods.

One significant advantage of our method is its potential for generalizability. By pre-
dicting human motion, our method can be adapted for various types of human following,
including following ahead, or side-by-side, making it more versatile than current state-of-
the-art methods. This opens up new possibilities for applications in various areas, such as
service robots, autonomous vehicles, and augmented reality.

Overall, our results demonstrate the potential of STPOTR to enhance human-robot
interaction by accurately predicting human motion and enabling robots to follow humans
more effectively in various scenarios.
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3.4 Conclusion

In this Chapter, we introduce two approaches to the human following, one that utilizes Re-
inforcement Learning (RL) to implicitly learn the human’s goal and the other that employs
a human motion prediction model to explicitly forecast the human’s future movements.

Our first approach, LBGP, combines reinforcement learning and point-based navigation.
We addressed the shortcomings of traditional methods and end-to-end approaches by inte-
grating Deep RL with a classical robotics planner. Our implementation outperforms prior
work in an obstacle-free environment and uses curriculum learning to train the deep RL
model. Our results indicate that using a classical robotics planner enhances the generaliz-
ability and safety of the policy compared to end-to-end methods, and enables us to perform
zero-shot sim2real transfer effectively.

In our second approach, we utilize our implementation of STPOTR to predict the user’s
future 3D motion, which results in improvement over existing follow-ahead methods. Ad-
ditionally, we demonstrate the applicability of this method to various human following
categories.
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Chapter 4

Future work

This thesis has presented promising approaches for human motion prediction and human-
following for a companion robot. However, there are still several areas for future work in
this field.

Firstly, we can investigate the integration of additional sensory information, such as
visual or auditory cues, to enhance the accuracy and robustness of the developed human
motion prediction methods. Additionally, we can explore the use of more advanced machine
learning techniques, such as diffusion models, to model the complex and dynamic nature of
human motion.

Secondly, we can extend the developed human-following methods to different scenarios
and environments, such as crowded areas or dynamic environments, and evaluate their
performance in these settings. Furthermore, we can investigate the development of human-
robot interaction strategies that enable natural and intuitive communication between the
companion robot and humans, which can enhance the overall user experience and acceptance
of the technology.

Finally, we can investigate the development of multi-agent systems that enable multiple
robots to collaborate and coordinate with each other for human-following tasks, which can
have significant implications for future robotics applications.
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