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Abstract

While driver telematics has gained attention for risk classification in auto insurance, the
scarcity of observations with telematics features has been problematic, which could be owing
to either privacy concerns or adverse selection compared to the data points with traditional
features.

To handle this issue, we propose a data integration technique based on calibration weights. It
is shown that the proposed technique can efficiently integrate the so-called traditional data
and telematics data and also cope with possible adverse selection issues on the availability
of telematics data. Our findings are supported by a simulation study and empirical analysis
on a synthetic telematics dataset.

Keywords: Adverse selection; Automobile insurance; Data integration; Driver telematics;
Missing data analysis
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Chapter 1

Introduction

Insurers have been modeling data to set prices for automobile insurance products for
decades. Since the insurance industry consists of competitors with various products with
minimal differences related to automobile insurance, fair and attractive pricing of products
is beneficial for both the companies and the customers. Assessing the risk of new customers
would help insurers grow in market share while meeting the profit margins as it enables
them to set competitive premiums for policies. Over time the insurance industry has been
upgraded with different products which use new measurements about drivers and vehicles.
By now, the data collection is based not only on traditional self-reported forms and bills
but also on devices that generate data about different measurements in high frequency as
telematics devices on vehicles. Thus, these different datasets are available for the operational
purposes of the company.

As a result, insurers tend to analyze these generated datasets with large dimensions
during their operations to set the prices of their products. Hence two types of datasets are
recognized, traditional and telematics, based on the generation process, for the ratemaking.
And also analyzing these data can help to manage the risk of operations; efficiently screen
cases, evaluate those cases with accuracy, and make accurate cost predictions. Therefore such
methods used to model claim counts and the insurance products bounded with telematics
data are discussed in this chapter.

1.1 Modeling Claim Counts

Interestingly, predicting the number of claims as assessing the risk in motor insurance is
beneficial in premium calculation. There are different approaches for insurance ratemaking
and risk assessment in the actuarial literature. Among them, Generalized Linear Models
(GLMs) are widely in use as the successor of classical linear models (Haberman and Ren-
shaw (1996)). One can interpret the effects of each variable using these models without
being limited to predictions. The progression of studies shows the applicability of different
linear modeling methods in insurance ratemaking as it is explained briefly to introduce
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random effects into the Poisson model by Boucher and Denuit (2006). They compare the
parameter estimates with the fixed effects and examined the interpretation of those es-
timates. Furthermore, Denuit et al. (2007) provides a review of possible models that are
used in modeling claim counts. Later, we can recognize some studies that have introduced
alternative modeling approaches as Klinker (2010), which evaluates the use of Generalized
Linear Mixed Models (GLMMs) in ratemaking, and Heras et al. (2018), which evaluates
the use of quantile regression to estimate the aggregate claim amount.

In the actuarial literature, a set of studies tries to improve ratemaking by accounting
for different effects caused by the data. As Chapados et al. (2001) describes, modeling claim
counts accurately is a challenge when considering many features while the distribution of the
number of claims is skewed and has a point mass at zero. The study of Boucher et al. (2007)
shows approaches to model claim counts while considering the same point and Zamani and
Ismail (2013) considers the discrepancies between the observed and predicted claim numbers
with different modeling approaches. With the intuition of modeling claim count data by
estimating possibly nonlinear effects of continuous risk factors and assessing the spatial
risk variation, Denuit and Lang (2004) and Klein et al. (2014) use Generalized Additive
Model (GAMs) in a Bayesian framework which relaxes the assumption of the linearity in
the systematic component in GLM. The dependency between claim count and the claim
amount is studied to introduce a method to model aggregate claims, relying on GLMs, by
Garrido et al. (2016). This method is discussed further by Jeong et al. (2021) to fit GLMs and
GLMMs accounted for dependency between claim count and amount. Furthermore, Jeong
and Valdez (2018) uses the Least Absolute Shrinkage and Selection Operator (LASSO)
with a proposed penalty in a Bayesian framework within the same setting. Also, Bermúdez
and Karlis (2011) review multivariate methods for insurance ratemaking with dependency
between types of claims and use the Bayesian approach to fit models. Later, Fuzi et al.
(2016) use Bayesian approaches to model claim counts in a quantile regression setting as a
method to study the entire distribution of claims.

With the advancements of data collection and computation techniques, data mining or
statistical learning techniques are also being used for insurance ratemaking similar to the
explanation of Smith et al. (2000). Improving the prediction accuracy and recognizing the
variable importance are among the common motives of the researchers who have used these
techniques. The comprehensive description of risk classification and predicting claim cost
by Yeo et al. (2001) shows the transition of the ratemaking process for large data sources
in the insurance industry. From the beginning of the new millennium, most researchers
tend to evaluate common approaches and introduce statistical learning methods such as
decision trees, Support Vector Machine (SVM), boosting or even clustering methods for
insurance ratemaking and risk classification similar to Chapados et al. (2001), Yeo et al.
(2001) and Guelman (2012). Further, Sakthivel and Rajitha (2017) uses artificial neural
network in comparing the performance with zero-truncated Poisson regression model and
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hurdle model. A compact but comprehensive note on statistical learning approaches that are
used in the actuarial literature is given in Vermet (2018). Ferrario et al. (2020) provides a
complete guide in using neural network models to evaluate claim counts. Thus, it is observed
that methods to model claim counts are presented within a broad spectrum.

1.2 Telematics in Insurance

By now insurers have gained access to data that relate to driving habits and drivers’ be-
haviours on roads. Telematics is a technology that can provide data that contain such
additional information since it generates data related to many variables characterized for
each driver including but not limited to total miles driven, number of breaks or accelera-
tions, and at what time they are behind the wheel. With the technological advancements in
the automobile industry with driver telematics, as telematics service providers offer infor-
mation to users for navigation, traffic control, and location-based information, customers
who use those services can be attracted to telematics-based insurance products if it is ben-
eficial to them. Thus, the insurers can add new features to the databases in addition to the
traditional features that can be used in claim predictions and risk classifications in a unified
frame.

For example, usage-based insurance (UBI) is an innovative product in the insurance in-
dustry based on these technological advances to assess the risk profile of a driver. Tselentis
et al. (2017) provides a comprehensive review of frequently used UBI methodologies, Pay-
as-you-drive (PAYD) and Pay-how-you-drive (PHYD), showing the varieties of applicability
of telematics in insurance products. Generally, it allows drivers to be rewarded based on
driving habits as it leads to lower premiums when they meet requirements in the respective
insurance contract. Husnjak et al. (2015) states that UBI is a beneficial option for insur-
ance companies to deal with revenue loss due to inconsistent pricing with individual risk
and competitive pricing conditions in the market as well as being beneficial to the users.
Thus, telematics allows insurers to closely observe driving behaviours and set insurance
premium rates. According to Bolderdijk et al. (2011), when a discount on premium is ap-
plied, the number of times that a driver violates the defined speed limit in the contract
has been reduced. By considering a distance-based insurance product similar to Litman
(2011), it leads to a lower premium when lower mileage is achieved. Moreover, Denuit et al.
(2019) recognizes UBI products as a mechanism that leads to efficient risk evaluation and
acknowledges safer driving habits. Though there are pros and cons related to these partic-
ular UBI products, these types of products can obliquely improve road safety. Moreover, as
it is expected, UBI products create social, economical, and environmental benefits.
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1.2.1 Uses of Telematics Data

Past studies have shown that the extra value of information derived from telematics can
provide improved claims predictions, risk classification, and premium assessments. Ayuso
et al. (2014) compares driving behaviours of novice and experienced young drivers with pay-
as-you-drive policies using a few telematics variables as well as traditional variables. Here,
they have compared the vehicle usage and driving pattern by the level of experience. Further,
they analyze the relationship between the number of days and the number of kilometers to
the first accident. Furthermore, Ayuso et al. (2016) examines gender discrimination in the
risk of accidents using the same dataset. In a study to demonstrate the use of modeling
techniques for customizing insurance products based on information, Baecke and Bocca
(2017) illustrates the use of telematics variables to relate the premium to the risk. They
state that at least three months of data are enough to obtain efficient risk estimates. In the
study of Verbelen et al. (2018) which depicts the importance of telematics variables based
on driving habits and styles in predicting claim frequency, they discuss the possibilities
of PHYD policies. Gao et al. (2019) shows the predictive power of telematics covariates
extracted from speed-acceleration heat maps in claim frequency modeling and supports the
use of telematics features for insurance pricing. Accordingly, Pesantez-Narvaez et al. (2019)
tries to improve a method to recognize the effect of risk factors on the probability of claim
as a tool for regulation using the same dataset from the studies of Ayuso et al. (2014) and
Ayuso et al. (2016).

As it is mentioned in section 1.1, similar approaches are followed by researchers to model
data that contains both traditional and telematics variables. Due to the high-dimensionality
of the available data, data mining and machine learning methods are also used in predicting
claims. When briefly going through the list of studies in the literature, we can recognize
a few studies with different modeling approaches with data that contains both telematics
and traditional features. Among these studies, Ma et al. (2018) uses GLMs, Gao et al.
(2022) uses GLMs and neural network models, Verbelen et al. (2018) uses GAMs while Gao
et al. (2019) has applied GAMs but uses transformed telematics variables using Principal
Components and bottleneck neural network approaches.

Apart from such models, Denuit et al. (2019) proposes multivariate mixed models to
explore the joint distribution of telematics data and claim frequencies which can be utilized
in predicting some policy characteristics. One can incorporate insights from unsupervised
learning methods to study driving styles without discussing the risk profile of drivers as
in Wüthrich (2017) which uses k-means clustering. All of these studies have shown the
importance of telematics features in decision-making. Hence, those studies provide motives
to introduce more procedures to model claim count efficiently.
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1.2.2 Challenges

As it is mentioned earlier, insurance companies have large datasets related to policyholders
that contain traditional features, including but not limited to the driver’s age, gender, and
vehicle characteristics. On the other hand, a telematics dataset can have a smaller number
of data points with respect to the traditional dataset when the number of policyholders who
owns a policy related to telematics is low. Meyers and Hoyweghen (2020) describes a study
about a telematics insurance product that had failed to achieve the target number of par-
ticipants despite offering a discount on premium for participation. The proposed method
of Castignani et al. (2015) tries to improve the availability of telematics data by using
smartphone solutions as a remedy to the reluctance of drivers to install telematics devices
which results in an initial cost. And Ma et al. (2018) mentions that the lack of telematics
data availability is a challenge in identifying the factors of policyholder behaviour within
the actuarial pricing methods incorporated with traditional data that is easily available.
Additionally Husnjak et al. (2015) states that a method to maintain the quality of data
can be questionable as the collection process can be interrupted due to technical or envi-
ronmental impacts. Meantime, Guillen et al. (2021) uses a modeling approach for insurance
ratemaking using both traditional and telematics data but is limited to a small number of
features as available data is limited. In terms of risk classification, Tuna and Cengiz (2021)
recommends using telematics data that are observed for a predetermined short period. Fur-
thermore, they have mentioned that collecting less telematics information helps to meet the
recommendations of insurance regulators.

Indeed, consideration and collection of telematics data are relatively recent and there
are still ongoing concerns about privacy issues, which make many policyholders reluctant to
agree on the provision of their telematics data to the insurers. Duri et al. (2002) and Duri
et al. (2004) state that the success of telematics applications depends on the awareness of
service providers that the data is received accurately while assuring the privacy of end users.
And also Milanović et al. (2020) states an idea in terms of driver’s acceptance of telematics
technology which is shown to be dependent on privacy concerns. Similarly, Buxbaum (2006)
states that the policyholders willing to provide telematics data tend to have less concern
about privacy issues. With a wider perspective, Jaisingh et al. (2016) discusses the flow of
telematics data while recognizing the privacy and security issues and suggesting actions to
overcome those. Thus, all of them have proposed a framework to protect data that is based
on privacy and security technology. But the study of Eling and Kraft (2020) which pro-
vides a compact description of the insurability of risk using telematics data, also highlights
some recommendations from the literature that can improve the number of telematics-based
policyholders.

Apart from the above concerns, one can recognize that the information from available
telematics data may depend more on the type of customer. The study of Denuit et al. (2019)
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states that drivers with low risk would favor telematics insurance products. Further Duval
et al. (2022) mentions that the attraction of safer drivers is beneficial for the insurer as it
could lower the claim cost. In conclusion, all those studies have raised the fact that claim
frequency can be reduced due to the awareness of drivers about being monitored. Although
it is an economic benefit for the insurer, the insured, and society, this situation results in
missing some insights about more risky drivers in terms of an analytical point of view. But
using the explanation in the study of Cohen and Siegelman (2010) about adverse selection
in insurance, one can think of a situation where a buyer knows that he can have a lower
premium by achieving a lower claim count as a case weekly related to the adverse selection.
Thus we can consider the aforementioned situations as challenges to having a telematics
dataset as informative as the finite population of drivers.

1.3 Motivation

In this regard, it is natural to expect that an insurer need to deal with two types of datasets;
traditional datasets with fewer features and a larger number of observations, and telematics
datasets with more features and a smaller number of observations. Data integration tech-
niques enable to combine information in some data sources into one. According to Yang and
Kim (2020), using this concept in survey sampling leads to incorporating information from
different samples to obtain efficient estimators under finite population inference. Husnjak
et al. (2015) recognizes the use of telematics variables and identification of the driver’s be-
haviour as beneficial for precise ratemaking while stating the integration of telematics data
with traditional data as a way to realize the full potential of telematics data.

If a model can be formed representing all the information in these two datasets, then
it will help the insurer to evaluate the claim counts behaviour under all available features.
At the same time such a model is useful for regulators as the effects of each risk factor on
the claim counts are available. As a possible solution for considering both traditional and
telematics features simultaneously, Ayuso et al. (2019) propose an approach where a GLM
with telematics variables is improved by incorporating information in traditional variables.
Also, Gao et al. (2022) propose a two-step approach that utilizes telematics features to boost
a regression model fitted only with traditional ratemaking factors. While these approaches
are straightforward and readily available, they might be problematic when the availability
of telematics features depends on the riskiness of the policyholders due to possible adverse
selection. One can expect that due to the information asymmetry between the insurer and
the policyholder, those with less risky driving behaviours are more likely to agree with
the provision of telematics data for possible premium discounts, which is equivalent to a
non-ignorable sampling mechanism of the observations with telematics features.

Hence, the data integration techniques can be used in similar studies, not only as an
emerging research area in survey sampling but also it improves the efficiency of the resulting
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estimator. Thus, here we focus on using the propensity score estimation method proposed
by Wang and Kim (2021a) which can be used as a unified tool for combining information
from multiple datasets with the consideration of possible non-ignorable sampling bias. This
method is also similar to the data integration method given in Wang et al. (2022) where the
data integration is done by regression models using propensity score, as proposed in Wang
and Kim (2021b), to incorporate information from different data sources. It suggests a model
calibration technique to get partial information from external data sources (traditional
dataset in our case) and integrate the data sources at once.

1.4 Summary

In summary, the following objectives of the study are recognized, which will be described
appropriately in later chapters.

• Demonstrate a need for a flexible model that can deal with multiple sources of data
in insurance ratemaking due to the scarcity of telematics data compared to the tradi-
tional data and possible adverse selection regarding the availability of the telematics
data.

• Develop an algorithm to integrate a traditional insurance claims dataset and a telem-
atics dataset, using the data integration method proposed by Wang and Kim (2021a).

• Test the validity and applicability of the proposed method via a simulation study and
empirical analysis of a synthetic telematics dataset. Here, our goal is to evaluate the
performance of the proposed method in possible selection biases in the availability of
telematics data.

• Compare the performance of the proposed method with selected pre-existing methods
within the same context of selection biases.

Consequently, we expect that the proposed method can help insurance companies to
effectively utilize multiple sources of data for better risk classification and tarification.

The remaining part of this work is organized as follows. Chapter 2 provides a detailed
description of the problem and the corresponding data structure with the missing mech-
anism. In Chapter 3, the proposed method for data integration is developed based on a
calibration equation approach with information projection. Chapter 4 provides a simulation
study to assess the effects of the proposed method compared to the existing approaches.
Chapter 5 conducts an empirical analysis with a synthetic telematics data portfolio, to as-
sess the applicability of the proposed method in practice. Chapter 6 concludes the study
with some remarks.
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Chapter 2

Data structure and problem
description

As this study focuses on two data sources, describing the structure of the overall dataset
is needed since the proposed method would use these two data sources differently when
estimating parameters. Though our main objective is to propose a method to integrate
these two sources of data, we also discuss whether the proposed method is affected by the
adequacy of information in telematics data that are used to fit the model. Before introducing
the modeling technique and the evaluation methods, the data structure and the problems
that can be addressed are described briefly in this chapter.

2.1 Data Structure

When both traditional and telematics data are used for ratemaking, we can expect the
structure of the dataset to be asymmetric due to the higher number of policyholders who
provide traditional information than those who provide both traditional and telematics
information.

Let’s define the two datasets and the population as,

• S0 be a small dataset with M0 number of policyholders that contains both traditional
and telematics features.

• S1 be a large dataset with M1 number of policyholders that contains only traditional
features.

• The finite population S consists of S0 and S1 and the total number of policyholders
in S is M .

We are interested in finding the relationship of the features in S0 with the claim counts
of a certain policy by improving estimation efficiency of the model estimates through infor-
mation integrated with the features in S1.

Now the features in those two datasets are denoted as,
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• xi1 be the traditional features of the ith policyholder. Those are available in both S0

and S1.

• xi2 be the telematics features of the ith policyholder. Those are only available in S0.

• All available features in the study can be denoted as a vector, xi = (xi1, xi2).

A summary of the description of data is given in Figure 2.1 which depicts the asymmetric
structure of the full dataset in reality.

Figure 2.1: Pictorial visualization of S0, S1, xi1, and xi2

2.2 Problem Description

As in Chapter 1, our study focuses on introducing a method to efficiently model claim count
data which uses all information in S through a novel data integration technique. And we
evaluate the performance of this method and compare it with some benchmark models.
Therefore, it opens up a discussion about the available data which can be stated as the
problem of not being a representative sample of the finite population of customers that
generate telematics data.

Note that observability of xi2 might depend on the risk profile of the ith policyholder,
which could make the sampling mechanism of S0 from the population is not completely
at random. As mentioned in the previous chapter, there have been possible concerns of
providing telematics data such as privacy and security issues so that it is natural to expect
that a policyholder might not be willing to provide their telematics data to the insurer
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unless the expected benefits from the provision outweigh the possible concerns. Therefore,
one can think about the following conjectures:

• Those who are younger tend to agree provide telematics data more since they are less
reluctant to technology, which implies the sampling probability of an observation in
S0 from the population is inversely proportional to the driver’s age.

• Those who are less risky tend to agree to provide telematics data more so that the
accessibility of xi2 is prone to adverse selection, which implies the sampling probability
of an observation in S0 from the population is inversely proportional to the number
of claims (ni).

While our main task is not to detect possible selection biases in the availability of
telematics features and prove such conjectures, we consider the situations where such con-
jectures do hold and discuss the benefits of the proposed method compared to pre-existing
benchmark methods in various situations.
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Chapter 3

Methodology

With the intuition of introducing the data integration approach, we describe necessary steps
to fit a model. The general framework that we follow to estimate the model parameters using
the proposed data integration method is briefly described in this chapter.

3.1 Generalized Linear Models

The Generalized Linear Models (GLMs) enable one to fit a model by specifying the form of
the linear relationship between a function of the mean of a response variable, which is not
always from a normal distribution, and the predictor variables. The model contains three
components.

The distribution of the response variable (Yi), which is assumed to be in the natural
exponential family, is called the random component. Lets denote E(Yi) ≡ µi. Then, the
systematic component is a linear predictor which is formed with covariates and regression
coefficients as

γi =
∑

j

β∗
j xij .

Here, xij is the value of the jth covariate of the ith person where xi0 = 1 and β0 is the
intercept. Moreover, the link function describes the relationship between random and sys-
tematic components. Thus it links the µi to γi by γi = g(µi) where g(·) is a monotonic and
differentiable function.

Let us assume that we need to model the claim counts. Since it is a non-negative dis-
crete random variable where possible values are integers, it is assumed to follow a Poisson
distribution with mean µ. Let assume that N is such a random variable. If k ∈ N, then
k ∈ {0, 1, 2, ...} in general. The probability mass function of N is,

Pr[N = k] = p(k|µ) = e−µµk

k!
where p(k|µ) ≥ 0 for all k and

∑∞
k=0 p(k|µ) = 1.
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In general, we are interested in estimating β in the regression model E(Ni | x) = m(x′β),
where m(·) is a known function and β is an unknown parameter while Ni is the observed
number of claims for policyholder i.

The census estimating equation for β can be written as

M∑
i=1

{ni − m(x′
iβ)}h(x′

iβ) = 0,

for some h(·) such that the solution to this equation exists uniquely (almost everywhere)
and we can define

U(β; xi, n) = {n − m(x′
iβ)}h(x).

The proposed method is independent of the distribution of Ni as it is based on general
calibration and estimating equations. But we assume that Ni’s are independently distributed
with the Poisson distribution with mean µi in order to focus on the impact of the proposed
data integration approach. It enables one to compare the performance of selected models
in one platform. Since the Poisson is in the natural exponential family with the natural
parameter log(µi), this can be used as the link function where log(µi) is strictly monotonic
and differentiable over the range of µi. Using this canonical link function as it is given in
Agresti (2003), we can express the model which is linear in terms of regression coefficients
as

log(µi) =
∑

j

β∗
j xij = xiβ

∗.

When ti is an exposure variable associated with the ith claim count and ηi is the average
number of claims per year, we can redefine the model in terms of ηi as,

log(ηi) =
∑

j

βjxij = xiβ.

Thus, we can write this model using the definition µi = tiηi as,

log(µi) = log(ti) +
∑

j

βjxij = log(ti) + xiβ. (3.1)

where ti is the duration.
Likewise, under the Poisson regression model where an exposure variable is used, we have

m(x′
iβ) = ti exp(x′

iβ) and h(xi) = xi. Therefore, using model (3.1), the census estimating
equation for β can be written as

M∑
i=1

{ni − ti exp(x′
iβ)}xi = 0. (3.2)
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Unfortunately, we do not observe xi throughout the population. The structure of the dataset
in Figure 2.1 depicts that xi2 are not available for S1 which persuades to use the proposed
method.

3.2 Proposed Method

Keeping the GLM framework with the assumption on the distribution of Ni, we now adopt
the single sample problem in the study of Wang and Kim (2021a) into the data structure
in Section 2.1.

3.2.1 Estimation of Parameters

Let xi = (xi1, xi2) where xi2 is subject to missingness. We can define the estimating function
for β as

U(β; x, n) = {n − t exp(xβ)}x.

To follow the setup of Wang and Kim (2021a), we assume that S1 with (xi1, ni) are
observed throughout the finite population. In the sample S0, we observe (xi1, xi2, ni). In
this case, we wish to construct the propensity weight ωi = ω(xi1, ni) in S0 such that

∑
i∈S0

ωiU(β; xi, ni) =
M∑

i=1

[
δiU(β; xi, ni) + (1 − δi)Ū(β; xi1, ni)

]
, (3.3)

where δi = I(i ∈ S0) and Ū(β; xi1, ni) = E{U(β; xi, ni) | xi1, ni}. Here a weighted complete
case estimator is taken through an expected estimating equation approach that computes
the conditional expectation of U(β; xi, ni). The weight is often called the propensity score
and defined as ωi = 1/Pr(δi = 1|xi, ni).

The propensity score (PS) estimating equation satisfying (3.3) is called self-efficient, as
it leads to efficient estimation of β as long as the conditional expectation E{U(β; xi, ni) |
xi1, ni} is correct.

Here, we assume that the sampling mechanism for S0 is missing at random (MAR) in
the sense of Rubin (1976). That is, we assume

δ ⊥ x2 | (n, x1).

To find ωi satisfying (3.3), we first find the basis functions satisfying

E{U(β; xi, ni) | xi1, ni} ∈ span{b1(xi1, ni), . . . , bL(xi1, ni)}. (3.4)

Here, we expect to represent the conditional expectation by a combination of basis functions
that are formed only using traditional features.
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Now, using the basis functions in (3.4), we impose

∑
i∈S0

ωi[1, b1i, · · · , bLi] =
M∑

i=1
[1, b1i, · · · , bLi] (3.5)

as a constraint for propensity weights ωi, where bli = bl(xi1, ni) for the ith individual. To be
specific, we take [1, b1i, · · · , bLi] = [1, xi1, Ni, Ni ∗xi1] in here. Therefore, L = 2∗v +1 where
v is the number of features in xi1. Constraint (3.5) is often called the covariate-balancing
property (Imai and Ratkovic, 2014) or calibration property (Deville and Särndal, 1992).

Now, as long as (3.5) is satisfied, we can express

∑
i∈S0

ωiU(β; xi, ni) =
M∑

i=1
δiωiU(β; xi, ni) +

M∑
i=1

(1 − δiωi)
L∑

k=0
αkbki

=
M∑

i=1

{
δiU(β; xi, ni) + (1 − δi)

L∑
k=0

αkbki

}

+
M∑

i=1
δi(ωi − 1)

{
U(β; xi, ni) −

L∑
k=0

αkbki

}

for any α = (α0, α1, . . . , αL). Thus, for the choice of α̂ satisfying

M∑
i=1

δi(ωi − 1)
{

U(β; xi, ni) −
L∑

k=0
α̂kbki

}
= 0, (3.6)

we can obtain

∑
i∈S0

ωiU(β; xi, ni) =
M∑

i=1

{
δiU(β; xi, ni) + (1 − δi)

L∑
k=0

α̂kbki

}
. (3.7)

Furthermore, the condition in (3.6) under model (3.4) implies that
∑L

k=0 α̂kbki is an esti-
mator of E{U(β; xi, ni) | xi1, ni}. Thus, we can see that (3.7) shows the self-efficiency in
(3.3). That is, the calibration condition (3.5) on the basis functions in (3.4) is a sufficient
condition for self-consistency.

Now, to uniquely determine ωi, we can use the information projection of Wang and Kim
(2021a) under constraint (3.5) to get

ωi = 1 + M1
M0

exp {ϕ0 + ϕ1b1i + · · · + ϕLbLi} , (3.8)

where M0 =
∑M

i=1 δi, M1 = M − M0 and ϕ = (ϕ0, · · · , ϕL) is an unknown parameter. The
exponent is the smoothed density ratio function from the information projection technique.
The parameters are estimated by solving the calibration equation in (3.5).

14



Once ϕ0, · · · , ϕL are estimated by (3.5), we can use

ω̂i = 1 + M1
M0

exp
{

ϕ̂0 + ϕ̂1b1i + · · · + ϕ̂LbLi

}
as the final propensity weights for estimating β using (3.9):

∑
i∈S

δiω̂i(ϕ)U(β; xi, ni) = 0, (3.9)

where S = S0 ∪ S1 is the combined sample. Because the propensity weights satisfy the
calibration equation in (3.5), this equation satisfies the self-efficiency without estimating
the regression coefficients α̂ in the regression model

E{U(β; xi, ni) | xi1, ni} =
L∑

k=1
αkbl(xi1, ni).

3.2.2 Standard Errors of Estimates

We are also interested in studying the standard errors of the estimates. The calculation of
the standard errors of the estimates is done according to Wang and Kim (2021a). As it is
described by Wang and Kim (2021a), there are two models in this method. One is the PS
model (with parameter ϕ) and the other is the regression outcome model (with parameter
β).

We can construct two estimating functions for estimating two parameters by defining
δi = I(i ∈ S0) as follows:

Û1(ϕ) =
∑
i∈S

{δiωi(ϕ) − 1} bi,

Û2(ϕ, β) =
∑
i∈S

δiω̂i(ϕ)U(β; xi, ni),

where bi = (1, b1i, · · · , bLi)′ and

ωi(ϕ) = 1 + M1
M0

exp {ϕ0 + ϕ1b1i + · · · + ϕLbLi} .

The final estimator β̂ is the solution to the joint estimating equations:

Û1(ϕ) = 0 and Û2(ϕ, β) = 0.
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We can treat θ′ = (ϕ′, β′) and define

Û(θ) =
(

Û1(ϕ)
Û2(ϕ, β)

)
.

The variance estimation for θ̂ can be implemented using the Sandwich formula. That is,

V (θ̂) = τ−1V (Û)τ−1′ where τ = E

{
∂

∂θ′ Û(θ)
}

.

One can use an empirical estimate of V (θ̂) as follows:

τ̃ = ∂

∂θ′ Û(θ)
∣∣∣∣
θ=θ̂

and Ṽ (Û) =
∑
i∈S

(Ũi − Ũ i)(Ũi − Ũ i)′

as a proxy of τ and V (Û), respectively, where θ̂′ = (ϕ̂′, β̂′) is the solution of the joint
estimating equation and

Ũi =


{

δiωi(ϕ̂) − 1
}

bi

δiω̂i(ϕ̂)U(β̂; xi, yi)

 , Ũ i = 1
M

∑
i∈S

Ũi.

3.3 Estimation scheme

Now, the estimation scheme for the study is listed orderly according to the requirement of
the estimation process at each step.

1. Find H = span{b1(xi1, ni), . . . , bL(xi1, ni)} such that

E{U(β; xi, ni) | xi1, ni} ∈ H,

where U(β; xi, ni) is the estimating function for β.

2. Obtain ϕ̂ by solving

∑
i∈S0

{
1 + M1

M0
exp(ϕ0 + ϕ1b1i + · · · + ϕLbLi)

}
[1, b1i, · · · , bLi] =

M∑
i=1

[1, b1i, · · · , bLi],

3. Obtain β̂ by solving ∑
i∈S

δiω̂i(ϕ)U(β; xi, ni) = 0

where ω̂i = 1 + M1
M0

exp
{

ϕ̂0 + ϕ̂1b1i + · · · + ϕ̂LbLi

}
.
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Chapter 4

Simulation study

Now, we focus on assessing the applicability of the proposed method and compare this
method with some feasible methods in claim count modeling using simulated datasets.
Here we use different hypothetical sampling schemes to incorporate the problem regarding
the availability of information in telematics data. Components of the simulation study in
generating data, applying a model, and evaluating the performance are described in this
chapter.

4.1 The Finite Population

By considering the conjectures based on the possible selection biases of the availability of
telematics data in Section 2.2, we assume three hypothetical scenarios on the sampling
mechanism of observations in S0. It will open up a more general platform to compare the
performances of the models.

Also the dataset is formed as the traditional features are fully available and the telem-
atics features are partially available as in Section 2.1.

First, we generate a finite population of size 100, 000 which contains three independent
variables and the number of claims with the following specification:

Ni ∼ P(λi)

log λi = xi1β1 + xi2β2,

β1 = (β0, βA1, βA2, βG) and β2 = βT ,

x1i = (1, xAi, x2
Ai, xGi) and x2i = xT i,

xAi ∼ U(0.18, 0.81), xGi ∼ Ber(0.6) and xT i ∼ N (0, 1),

β0 = −1.3, βA1 = −4, βA2 = 3.4, βG = 0.1 and βT = 0.5

where P, U , Ber and N refer to Poisson, uniform, Bernoulli, and normal distributions,
respectively.
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Note that, we set the duration to be 1 for all individuals to have a simplified form of
(3.1) which resulted in a model without an offset.

Furthermore, we recognize the variables as below.

• xAi refers to a traditional continuous variable with quadratic effect (e.g., driver’s age)

• xGi refers to a traditional binary variable (e.g., gender)

• xT i refers to a telematics variable of significant impact on the risk profile

Note that the driver’s age has been taken as an example of the quadratic effect by expecting
the fact that both young and old drivers can be risky due to their driving behaviours being
affected by other biological and social facts similar to Guillen et al. (2019).

Here, each feature contains 100,000 data points. Therefore, let S∗ be the generated finite
population in accordance with the notation used in Section 2.1.

4.2 Estimation Procedure

Once a finite population is generated (S∗), we use it to have a training set with the form
of the data structure of S and a test set with the form of S0.

At each round of simulation, the following scheme is applied to split the data appropri-
ately:

Step 1: Firstly, 10% of data points are set aside at random as T for out-of-sample validation,
where {Ni, xi1, xi2} are all available.

Step 2: After that, 10% of data points are set aside where {Ni, xi1, xi2} are all available, which
is equivalent to S0 in Section 2.1. Depending on the assumption about the availability
of the telematics information in Section 2.2, we applied the following three sampling
schemes of S0:

• Random selection: The data points assigned to S0 are chosen at random,

• Age selection: Each data point assigned to S0 is chosen with the sampling
probability proportional to 1/(1 + exp(3xAi)), which means those at younger
ages are more likely to provide the telematics information due to their lower
reluctance to new technologies. In this case, the sampling mechanism is MAR or
ignorable and δ ⊥ N |x1.

• Adverse selection: Each data point assigned to S0 is chosen with the sampling
probability proportional to 1/(1 + exp(2Ni)), which means those with less risky
behaviours are more likely to provide the telematics information. In this case,
the sampling mechanism is still MAR or ignorable but δ ̸⊥ N |x1.
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Step 3: The remaining 80% of data points are used as a large dataset but only with traditional
features {Ni, xi1}, which is equivalent to S1 in Section 2.1.

These data are appropriately used to fit different models. Here, we consider the following
models to estimate β1 and β2 where the appropriate partitions of the generated population,
that are used in each model, are indicated in Figure 4.1:

• Naive model: Fit a usual Poisson GLM using the data points in S0.

• Traditional model: Fit a usual Poisson GLM using only the traditional features and
the response variable {Ni, xi1} in S0 ∪ S1. As such, this model does not allow to use
the telematics information at all in the risk classification.

• Full model: It uses all the data points in S∗ − T to estimate the regression coeffi-
cients of a usual Poisson GLM, so that it is expected to provide the best estimation
performance. Note that S∗ might not be available in practice.

• Boosting model: It uses the same estimates of β1 from the traditional model and
compute η̂i = exp(xi1β̂1) for each observation i in S0. After that, another Poisson
GLM is fitted with S0 where the telematics information, xi2, is the only regressor and
log η̂i is used as an offset, to further estimate β̂2 which is mentioned as the boosting
approach in Ayuso et al. (2019).

• Proposed model: It follows the estimation procedures of parameters and standard
errors described in Section 3.

After all models are fitted, the regression estimates from these models were used to find
the predictive value N̂i for ith policyholder in the out-of-sample validation set T . Since these
models use the generated data differently, a summary of estimating and predicting for each
model is given in Table 4.1.

4.3 Evaluation Procedure

Note that generation of the finite population (S∗), data split, estimation, and prediction
are repeated R = 1, 000 times with different random seeds. This enables us to evaluate
and compare these methods comprehensively. First, we discuss about in-sample estimation
using Bias, root mean-squared error (RMSE) and 90% confidence interval coverage (CI) of
βj . Let these statistics be defined as follows:

Biasj = 1
R

R∑
r=1

(βj − β̂
(r)
j ),

RMSEj =

√√√√ 1
R

R∑
r=1

(βj − β̂
(r)
j )2,
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Figure 4.1: Pictorial visualization of data structure considered in each the model

CIj = 1
R

R∑
r=1

1{|βj−β̂
(r)
j |<1.645·SE(β̂)(r)

j },

where β̂
(r)
j is the estimate of βj for the rth simulation, and SE(β̂)(r)

j is the estimated standard
error of β̂

(r)
j .

After the estimation performance of each model is assessed, we use the out-of-sample
validation set Tr for each r = 1, . . . , R to compare their predictive performance. The out-
of-sample validation is based on the prediction RMSE (pRMSE) and the Poisson deviance
statistic (DEV), defined as follows:

Avg_pRMSE(k) = 1
R

R∑
r=1

pRMSE(r;k),

pRMSE(r;k) =
√√√√ 1

|Tr|
∑
i∈Tr

(N (r)
i − N̂

(r;k)
i )2,

Avg_DEV(k) = 1
R

R∑
r=1

DEV(r;k)

DEV(r;k) = 2
|Tr|

∑
i∈Tr

[
N

(r)
i log(N (r)

i /N̂
(r;k)
i ) + (N (r)

i − N̂
(r;k)
i )

]
,

(4.1)

where |Tr| is the number of observations in Tr and the predicted value N̂
(r;k)
i is generated

using model k with the rth simulation sample.
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Model Parameter estimation equation Prediction

Naive
∑

i∈S0 U(β; xi, ni) = 0 N̂i = exp(xi1β̂1 + xi2β̂2)

Traditional
∑

i∈S U(β1; xi1, ni) = 0 N̂i = exp(xi1β̂1)

Full
∑

i∈S∗ U(β; xi, ni) = 0 N̂i = exp(xi1β̂1 + xi2β̂2)

Boosting
∑

i∈S U(β1; xi1, ni) = 0 N̂i = η̂i exp(xi2β̂2)∑M0
i=1{ni − η̂i exp(x′

i2β2)}xi2 = 0 where η̂i = exp(xi1β̂1)

where η̂i = exp(xi1β̂1): i in S0 and i in T

Proposed
∑

i∈S δiω̂i(ϕ)U(β; xi, ni) = 0 N̂i = exp(xi1β̂1 + xi2β̂2)

where ω̂i(ϕ) - propensity weights

and δi = I(i ∈ S0)

Table 4.1: Summary of models

4.4 Results

As a summary, Table 4.2 shows estimation results of the regression coefficients under dif-
ferent model specifications and sampling schemes. Here N, T, B, F, and P refer to Naive,
Traditional, Boosting, Full, and Proposed models, respectively.

It is clearly observed that if the sampling mechanism of S0 is purely random, then the
use of the naive model is innocuous in terms of estimation performance. While the full
model shows the best performance in the estimation performance followed by the proposed
model, the boosting model (and correspondingly the traditional model) suffers from the
biases in β̂0 and β̂T . But the naive model is less efficient compared to the full and proposed
models, by having a larger RMSE of the estimated regression coefficients.

When the sampling mechanism is age selection, it is shown that the naive model is
still unbiased and less efficient compared to the full and proposed models. Beyond the
changes of bias of the naive model, one can hardly observe a noticeable difference in the
performance of models within both random and age selection results. On the other hand,
if the sampling mechanism of S0 is prone to adverse selection, then the differences in the
estimation performance are more dramatic. Unlike the random sampling case, naive model
severely suffers from lack of fit and biases in the estimates, since S0 is not a representative
sample of the finite population anymore.
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Furthermore, it is observed that only the full and proposed models provide acceptable
ranges of estimates as the CI values are near 0.9 more often. Note that the efficiency gain
in the estimation of β2 = βT via the proposed model is no better than the naive model
unlike in the cases of β1 = (β0, βA1, βA2, βG). It is reasonable since there is no information
to borrow from S1 to better estimate β2 in the proposed model. And also it is obvious that
the proposed model performs better than the boosting model.

Bias RMSE CI

N T B F P N T B F P N T B F P

Random selection

β0 0.009 -0.121 -0.121 0.005 0.005 0.208 0.140 0.140 0.071 0.083 0.915 0.474 0.474 0.890 0.892

βA1 -0.019 -0.016 -0.016 -0.019 -0.018 0.944 0.316 0.316 0.313 0.359 0.897 0.897 0.897 0.911 0.904

βA2 0.017 0.017 0.017 0.019 0.018 0.962 0.320 0.320 0.316 0.361 0.891 0.896 0.896 0.907 0.905

βG -0.001 -0.001 -0.001 -0.001 -0.001 0.056 0.020 0.020 0.020 0.023 0.925 0.896 0.896 0.905 0.895

βT 0.000 0.049 0.000 0.000 0.030 0.055 0.010 0.030 0.899 0.384 0.899 0.898

Age selection

α0 0.013 -0.121 -0.121 0.005 0.004 0.194 0.140 0.140 0.071 0.082 0.898 0.474 0.474 0.890 0.890

α1 -0.040 -0.016 -0.016 -0.019 -0.014 0.929 0.316 0.316 0.313 0.359 0.896 0.897 0.897 0.911 0.900

βA2 0.034 0.017 0.017 0.019 0.014 0.998 0.320 0.320 0.316 0.367 0.909 0.896 0.896 0.907 0.910

βG -0.001 -0.001 -0.001 -0.001 -0.001 0.060 0.020 0.020 0.020 0.024 0.894 0.896 0.896 0.905 0.898

βT -0.001 0.048 0.000 -0.001 0.028 0.053 0.010 0.030 0.902 0.350 0.899 0.907

Adverse selection

β0 1.515 -0.121 -0.121 0.005 -0.008 1.581 0.140 0.140 0.071 0.097 0.027 0.474 0.474 0.890 0.856

βA1 -0.271 -0.016 -0.016 -0.019 -0.018 2.054 0.316 0.316 0.313 0.383 0.902 0.897 0.897 0.911 0.870

βA2 0.257 0.017 0.017 0.019 0.017 2.069 0.320 0.320 0.316 0.381 0.898 0.896 0.896 0.907 0.870

βG -0.002 -0.001 -0.001 -0.001 0.000 0.125 0.020 0.020 0.020 0.025 0.911 0.896 0.896 0.905 0.848

βT 0.005 0.351 0.000 0.031 0.059 0.351 0.010 0.073 0.910 0.000 0.899 0.820

Table 4.2: Estimation performance with the simulated data

Then, the predictive performance of these models can be discussed based on the out-
of-sample validation using prediction RMSE (pRMSE) and the Poisson deviance statistic
(DEV). Table 4.3 showcases the out-of-sample validation performance of the aforementioned
models. As in Table 4.3, the uses of naive and boosting models are more vulnerable when
the availability of telematics information is prone to adverse selection. It depicts that the
proposed model is as good as the full model. It is also shown that the predictive performance
of the traditional model is usually inferior to the other models since it completely ignores
the impacts of the available telematics information. It highlights an advantage of using
telematics features in modeling claim counts.
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Naive Traditional Boosting Full Proposed

Random selection
Avg_pRMSE 0.3435 0.3493 0.3437 0.3434 0.3435

Avg_DEV 0.4965 0.5255 0.4977 0.4960 0.4961

Age selection
Avg_pRMSE 0.3435 0.3493 0.3437 0.3434 0.3435

Avg_DEV 0.4965 0.5255 0.4977 0.4960 0.4962

Adverse selection
Avg_pRMSE 0.3588 0.3493 0.3466 0.3434 0.3436

Avg_DEV 0.6586 0.5255 0.5106 0.4960 0.4967

Table 4.3: Out-of-sample validation performance with the simulated data

Thus the above results provide these insights from the results by comparing the pro-
posed model with the benchmark models in both in-sample estimation and out-of-sample
prediction performance. If the drivers selected UBI products randomly, then one can ana-
lyze S0 for ratemaking purposes. Otherwise, the use of the proposed model is beneficial in
recognizing the impacts of risk factors on the claim experience.
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Chapter 5

Data analysis

We evaluated and compared the proposed method with four other methods using a hypo-
thetical finite population where all observations have the same distribution. In this chapter,
we use a synthetic dataset to evaluate and compare the same set of methods by drawing
bootstrap samples to assure that observations have the same empirical distribution. We
obey a similar procedure as in Chapter 4 and proffer the description within this chapter.

5.1 Data description

To assess the validity and applicability of the proposed method, we use a synthetic dataset,
which is emulated using an actual dataset, from the study of So et al. (2021) with 11
traditional features, 39 telematics features, and the response variable. While the available
features in the dataset are already in summarized forms compared to the raw data directly
obtained from the telematics device, it is still high-dimensional. For example, one of the
“traditional” features is Region, which is a categorical variable with 55 categories. Therefore,
one needs a statistical method that can deal with such high dimensionality.

The proposed data integration approach, however, is based on estimating equations and
GLMs so it lacks the ability to handle high-dimensionality on its own, unlike neural network
models or tree-based models. Also the interpretation of parameter estimates would become
difficult due to the existence of variables that are alike. In this regard, some of the available
features were pre-processed in Jeong (2022) by using the territorial embedding and principle
component analysis (PCA) for telematics variables where the approach is discussed in here
concisely.

First, a feed-forward neural network (FNN) was used with three hidden layers, which
depends on traditional features and the response variable for territorial embedding. It even-
tuated a score to represent all 55 categories, which was named as TerritoyEmb. Then, four
clusters of telematics variables were recognized based on definitions and PCA was applied
to each cluster to recognize possible representative variables from each cluster. As a result
Pct.drive.rush.am, Pct.drive.rush.pm, Accel.06miles, Brake.06miles, Left.turns

24



and Right.turns were selected to represent three clusters out of four (i.e. two features for
each cluster) while all the variables in the remaining cluster were used without representa-
tives.

After the data pre-processing, the study retained the following variables which are used
in our analysis and described in Table 5.1. Hence this is a dataset with reduced dimensions.
For more details about the data pre-processing, see Jeong (2022).

Type Variable Description

Traditional Duration Duration of the insurance coverage of a given policy, in
days

Insured.age Age of insured driver, in years
Insured.sex Sex of insured driver (Male/Female)
Car.age Age of vehicle, in years
Marital Marital status (Single/Married)
Car.use Use of vehicle: Private, Commute, Farmer, Commercial
Credit.score Credit score of insured driver
Region Type of region where driver lives: rural, urban
Annual.miles.drive Annual miles expected to be driven declared by driver
Years.noclaims Number of years without any claims
TerritoryEmb Embedded value from the territorial location of vehicle

Telematics Annual.pct.driven Annualized percentage of time on the road
Total.miles.driven Total distance driven in miles
Pct.drive.xxx Percent of driving day xxx of the week: mon/tue/. . .

/sun
Pct.drive.rush.am Percent of driving during am rush hours
Pct.drive.rush.pm Percent of driving during pm rush hours
Avgdays.week Mean number of days used per week
Accel.06miles Number of sudden acceleration 6mph/s per 1000miles
Brake.06miles Number of sudden brakes 6mph/s per 1000miles
Acbr.others Total number of sudden acceleration and brakes 8/9/. . .

/14 mph/s per 1000miles
Left.turns Number of left turn per 1000miles with intensity greater

than equal to 8
Right.turns Number of right turn per 1000miles greater than equal

to 8

Response NB_Claim Number of observed claims

Table 5.1: Variable names and descriptions of the pre-processed dataset

5.2 Estimation and Evaluation

The results from the data analysis are summarized appropriately to depict the fact that
the proposed model is an improved version of the naive model for a dataset with both
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traditional and telematics features, but a relatively small number of observations, which
incorporates the information in the traditional dataset.

5.2.1 Estimation

Here we treat the pre-processed dataset as the finite population and use bootstrap samples
for the analysis to ensure each observation has the same empirical distribution as the finite
population. Thus, we take a bootstrap sample, T , of size 100,000 for out-of-sample validation
at random. Another bootstrap sample of size 100,000 is taken as S0 subjected to sampling
probabilities that are listed in Chapter 4. After that, a bootstrap sample of size 800,000 is
taken as SB subjected to the complement of respective sampling probabilities of S0. Finally,
S1 is taken by eliminating telematics features from SB.

For the convenience of calculations, we use sampling schemes with a slight change as
follows:

• Random selection: The data points assigned to S0 are chosen at random.

• Age selection: Each data point assigned to S0 is chosen with the sampling probability
proportional to 1/(1 + exp(0.03Insured.agei)).

• Adverse selection: Each data point assigned to S0 is chosen with the sampling
probability proportional to 1/(1 + exp(NB_Claimi)).

Likewise, we repeat the process of fitting and testing these five models as in Chapter 4 for
R = 500 times to compare the estimation and predictive performance under each sampling
method. Note that all data points in S0 ∪ SB are used to estimate the coefficients in the full
model.

5.2.2 Evaluation

To assess the in-sample estimation performance, we compare the estimated regression coeffi-
cients from each method and sampling scheme with the estimated regression coefficients ob-
tained from the finite population as in Chapter 4. More specifically, bias, root mean-squared
error (RMSE), and 90% confidence interval coverage (CI) of the regression coefficients are
defined as follows:

Biasj = 1
R

R∑
r=1

(β̃ − β̂
(r)
j ),

RMSEj =

√√√√ 1
R

R∑
r=1

(β̃ − β̂
(r)
j )2,

CIj = 1
R

R∑
r=1

1{|β̃j−β̂
(r)
j |<1.645·SE(β̂)(r)

j },
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where β̃j and β̂
(r)
j are the estimates of βj using the finite population and the rth bootstrap

sample, respectively. SE(β̂)(r)
j is the estimated standard error of β̂

(r)
j . Note that we prefer

a method with biases closer to 0, smaller RMSEs, and/or CIs closer to the theoretical
benchmark, 90%.

On top of the estimation performance, out-of-sample validation performance are assessed
using

Avg_pRMSE(k) = 1
R

R∑
r=1

pRMSE(r;k),

Prop_pRMSE(k) = 1
R

R∑
r=1

I
(
pRMSE(r;k) > pRMSE(r;proposed)

)
,

Avg_DEV(k) = 1
R

R∑
r=1

DEV(r;k),

Prop_DEV(k) = 1
R

R∑
r=1

I
(
DEV(r;k) > DEV(r;proposed)

)
,

where pRMSE(r;k) and DEV(r;k) are defined in equation 4.1. Based on the above definition,
we prefer a model with lower Avg_pRMSE, Prop_pRMSE, Avg_DEV, and/or Prop_DEV.

Finally, the results are visualized using proportional improvements of pRMSE and DEV
which are calculated by comparing the proposed models to the naive model. One can use
these values to compare and contrast the modeling approaches in three different sampling
schemes by favouring methods with larger and positive improvements. Here the proportional
improvements in pRMSE or DEV with rth bootstrap sample are defined as:

Prop_Imp_pRMSE = 100
(

1 − pRMSE(r;proposed)

pRMSE(r;naive)

)
,

Prop_Imp_DEV = 100
(

1 − DEV(r;proposed)

DEV(r;naive)

)
.

5.3 Results

With the intuition of discussing the in-sample estimation performance, Tables A.1, A.2 and
A.3 in appendix A is used which shows the estimation results of the regression coefficients
under different model specifications and sampling schemes of the bootstrap samples from
the pre-processed synthetic data. These values are also visualized in Figures 5.1, 5.2, and
5.3, where a model with biases closer to 0, smaller RMSEs, and/or CIs closer to 90% is
given a higher rank for each covariate using an ordinal scale of 1, 2, 3 and 4. Note that the
estimated coefficients from the traditional model were omitted as they are only available
for the traditional features and are identical to those from the boosting model.
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Implications of the in-sample estimation results, under each sampling mechanism, with
the actual data are as follows:

• In the case of random selection, only the boosting model suffers from the biases of
the regression coefficients and there are no big differences in the estimation perfor-
mance between the naive and proposed models. It implies that as long as the sampling
mechanism of S0 (a small dataset with both traditional and telematics features) from
the finite population is purely random, one can ignore S1 (a large dataset only with
traditional features) and analyze S0 for ratemaking purpose.

• In the case of age selection, the naive model is more biased in the estimation of
the traditional covariates (especially the intercept term), compared to the proposed
model. It implies that if the observability of the telematics features depends on the
traditional features, then the proposed approach might be helpful to better understand
the underlying impacts of the covariates on the claim experience.

• Lastly, in the case of adverse selection, the proposed model is no more unbiased but
the naive model is still more biased in the estimation of the regression coefficients.
Thus, if the accessibility of the telematics features is affected by adverse selection,
then it is recommended to integrate two data sources to handle the missingness of the
telematics features.

Such differences are also visualized in Figures 5.1, 5.2, and 5.3. It is consistently observed
that in the case of either age or adverse selection, the proposed model is the second-best,
following the full model that is unattainable in practice. Furthermore, it is visible that
the proposed model is performing better than the boosting model despite the sampling
mechanism. Though CI values do not suggest a clear winner in the comparison of the
ranges of estimates, the boosting model tends to have more out of range estimates than
other models.

To discuss the out-of-sample validation performance, we use Table 5.2 which shows that
the proposed model is the only comparable model to the full model in terms of pRMSE
and DEV on average, especially when the observability of telematics features is prone to
adverse selection. It is also observed that the naive, traditional, and boosting models do
not outperform the proposed model in most of the bootstrap samples as shown in the
values of Prop_pRMSE and Prop_DEV, regardless of the selection scheme. Therefore, the
proposed approach is a reasonable alternative in the absence of a finite population with
both traditional and telematics features or the sample with both types of features is not
representative. And also it depicts that the out-of-sample performance of the traditional
model does not change with sampling schemes. It is a sign of the importance of information
that telematics data care about the risk of a driver.
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Naive Traditional Boosting Full Proposed

Random selection
Avg_pRMSE 0.2117 0.2162 0.2119 0.2116 0.2116
Prop_pRMSE 0.666 1.000 1.000 0.302 -

Avg_DEV 23.8921 26.7414 24.0736 23.8700 23.8811
Prop_DEV 0.914 1.000 1.000 0.048 -

Age selection
Avg_pRMSE 0.2117 0.2162 0.2120 0.2116 0.2116
Prop_pRMSE 0.558 1.000 1.000 0.268 -

Avg_DEV 23.9139 26.7414 24.0748 23.8701 23.8828
Prop_DEV 0.982 1.000 1.000 0.040 -

Adverse selection
Avg_pRMSE 0.2138 0.2162 0.2137 0.2116 0.2121
Prop_pRMSE 0.804 1.000 0.878 0.176 -

Avg_DEV 25.3604 26.7415 25.3503 23.8702 24.2426
Prop_DEV 0.890 1.000 0.850 0.012 -

Table 5.2: Out-of-sample validation performance with bootstrapping from the actual data

Furthermore, Figure 5.4 showcases the distributions of proportional improvements of
pRMSE and DEV. It is shown that while the proportional improvements of pRMSE are
symmetric and centered at 0 with the random or age selection, the proportional improve-
ments of DEV are symmetric and almost centered at 0. But they are clearly positive with
the adverse selection which also supports the usefulness of the proposed method upon the
existence of adverse selection in the provision of telematics features.
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Figure 5.1: Ranks of the models in estimation performance with random selection

30



Figure 5.2: Ranks of the models in estimation performance with age selection
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Figure 5.3: Ranks of the models in estimation performance with adverse selection
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Figure 5.4: Proportional improvements in pRMSEs and DEVs
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Chapter 6

Conclusions

Insurers have been using models to set vehicle insurance rates which enable them to evalu-
ate the risk profile of drivers. Though using datasets with traditionally collected features is
a common practice, using telematics features increases the efficiency of these models. Due
to privacy and resistance to the new technology, the availability of telematics features in
automobile insurance datasets is often limited and the insurers need to deal with two types
of claim datasets where one dataset contains only traditional features with more observa-
tions and the other one contains both traditional and telematics features but with fewer of
observations.

To handle such an issue, we proposed a data integration approach to effectively con-
sider both telematics and traditional data, where the availability of telematics features for
a policyholder is not completely at random. This method is independent of the distribution
of the response variable. It turns out that the proposed method could achieve satisfactory
performance both on in-sample estimation and out-of-sample prediction, compared to the
existing benchmarks for automobile insurance ratemaking practices. Especially, the pro-
posed method has performed well when the availability of telematics data is subjected to
adverse selection which occurs due to the tendency of subscribing to UBI products by less
risky drivers. Moreover, it can also be useful when there is evidence that being a subscriber
depends on their age.

In conclusion, though the proposed method has preformed to the expectation, it can
possibly be extended in two-fold. Firstly, the proposed data integration approach relies on
the assumption in (3.4) so it might not work well if the basis function of E{U(β; xi, ni) |
xi1, ni} is not correctly specified. To tackle such an issue, one can implement a doubly robust
calibration approach that only requires either the basis function of the outcome variable
or the propensity score to be correctly specified. Secondly, the proposed approach can be
extended to data integration for mixed effects models where a policyholder is observed over a
period of time, so that the proposed framework also considers random effects for experience
ratemaking, as well as the fixed effects.
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Appendix A

Results

Bias RMSE CI

N B F P N B F P N B F P

Random selection
(Intercept) -0.0405 5.0136 -0.0024 -0.0282 0.4781 5.0138 0.1548 0.4568 0.926 0.000 0.928 1.000
Insured.age 0.0001 -0.0011 0.0000 0.0000 0.0020 0.0013 0.0006 0.0008 0.852 0.444 0.878 0.992
Insured.sexFemale 0.0012 0.0639 -0.0002 0.0003 0.0309 0.0647 0.0096 0.0123 0.900 0.000 0.926 0.918
Car.age 0.0001 -0.0079 0.0000 0.0000 0.0041 0.0081 0.0014 0.0018 0.900 0.000 0.902 0.960
MaritalSingle -0.0001 -0.0111 -0.0008 -0.0004 0.0333 0.0158 0.0108 0.0138 0.884 0.754 0.916 0.994
Car.useCommercial -0.0003 0.1796 0.0006 -0.0008 0.0851 0.1818 0.0272 0.0390 0.902 0.000 0.904 0.916
Car.useCommute 0.0014 0.0340 0.0006 0.0000 0.0382 0.0361 0.0126 0.0184 0.914 0.114 0.912 0.916
Car.useFarmer -0.0038 -0.0966 0.0007 0.0033 0.2240 0.1230 0.0755 0.0811 0.890 0.618 0.892 0.900
Credit.score 0.0000 -0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.900 0.588 0.922 1.000
RegionRural 0.0003 -0.0374 -0.0008 -0.0005 0.0454 0.0399 0.0145 0.0202 0.880 0.146 0.900 0.904
Annual.miles.drive 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.928 0.000 0.916 0.972
Years.noclaims -0.0001 -0.0042 0.0000 0.0000 0.0018 0.0042 0.0006 0.0008 0.874 0.000 0.868 0.980
TerritoryEmb 0.0018 0.0964 0.0008 0.0007 0.0527 0.0982 0.0185 0.0239 0.914 0.000 0.888 0.924
Annual.pct.driven -0.0016 -0.2028 -0.0004 -0.0014 0.0635 0.2114 0.0212 0.0633 0.932 0.062 0.922 0.920
Total.miles.driven 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.924 0.712 0.912 0.908
Pct.drive.mon 0.0422 -4.8503 0.0013 0.0425 0.5805 4.8601 0.1906 0.5759 0.928 0.000 0.942 1.000
Pct.drive.tue 0.0023 -4.2238 0.0052 0.0024 0.5058 4.2324 0.1770 0.5011 0.950 0.000 0.944 1.000
Pct.drive.wed 0.0582 -3.9782 0.0083 0.0581 0.5863 3.9932 0.1997 0.5848 0.936 0.000 0.934 1.000
Pct.drive.thr 0.0267 -4.2842 0.0020 0.0274 0.5169 4.2923 0.1652 0.5152 0.950 0.000 0.954 1.000
Pct.drive.fri 0.0002 -4.3588 0.0046 -0.0007 0.5889 4.3733 0.1849 0.5844 0.928 0.000 0.930 1.000
Pct.drive.sat 0.0606 -6.5212 0.0119 0.0597 0.7305 6.5303 0.2349 0.7269 0.912 0.000 0.926 1.000
Pct.drive.rush.am 0.0016 0.0384 -0.0031 0.0011 0.2363 0.2321 0.0732 0.2355 0.908 0.904 0.924 0.940
Pct.drive.rush.pm 0.0092 -0.4859 0.0012 0.0088 0.2622 0.5506 0.0886 0.2627 0.896 0.386 0.888 0.912
Avgdays.week 0.0010 -0.0817 -0.0001 0.0009 0.0163 0.0829 0.0052 0.0160 0.928 0.000 0.942 1.000
Accel.06miles 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0001 0.0003 0.936 0.928 0.918 0.920
Brake.06miles 0.0000 -0.0003 0.0000 0.0000 0.0002 0.0004 0.0001 0.0002 0.930 0.624 0.908 0.904
Acbr.others 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 1.000 0.996 0.998 0.912
Left.turns 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.980 0.976 0.986 0.930
Right.turns 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.948 0.936 0.956 0.926

Table A.1: Estimation performance with the bootstrap samples of the actual data in random
selection
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Bias RMSE CI
N B F P N B F P N B F P

Age selection
(Intercept) 0.7642 5.0119 0.0006 0.0132 0.8879 5.0121 0.1477 0.4860 0.520 0.000 0.922 1.000
Insured.age -0.0015 -0.0011 0.0000 -0.0001 0.0025 0.0012 0.0006 0.0009 0.794 0.428 0.902 0.990
Insured.sexFemale -0.0074 0.0640 0.0000 0.0004 0.0301 0.0649 0.0105 0.0129 0.880 0.000 0.902 0.918
Car.age -0.0058 -0.0080 0.0000 -0.0001 0.0073 0.0081 0.0014 0.0019 0.586 0.000 0.932 0.972
MaritalSingle 0.0189 -0.0103 0.0001 0.0007 0.0352 0.0150 0.0106 0.0131 0.838 0.746 0.916 0.998
Car.useCommercial -0.0485 0.1778 -0.0002 -0.0018 0.0982 0.1801 0.0282 0.0401 0.820 0.000 0.896 0.940
Car.useCommute 0.0194 0.0338 0.0009 0.0009 0.0423 0.0358 0.0126 0.0178 0.864 0.134 0.902 0.926
Car.useFarmer 0.0835 -0.0978 -0.0009 -0.0030 0.2614 0.1223 0.0738 0.1055 0.838 0.638 0.904 0.916
Credit.score -0.0001 -0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.818 0.586 0.922 1.000
RegionRural -0.0378 -0.0361 0.0006 0.0010 0.0573 0.0386 0.0140 0.0207 0.744 0.152 0.892 0.892
Annual.miles.drive 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.854 0.000 0.910 0.956
Years.noclaims -0.0001 -0.0042 0.0000 -0.0001 0.0019 0.0042 0.0006 0.0008 0.882 0.000 0.890 0.990
TerritoryEmb -0.0398 0.0949 -0.0003 -0.0008 0.0665 0.0966 0.0176 0.0244 0.796 0.000 0.924 0.918
Annual.pct.driven -0.0031 -0.1495 0.0002 0.0004 0.0633 0.1609 0.0210 0.0680 0.934 0.226 0.940 0.924
Total.miles.driven 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.920 0.774 0.930 0.916
Pct.drive.mon -0.5396 -5.0628 0.0000 0.0040 0.7701 5.0713 0.1833 0.5986 0.830 0.000 0.952 1.000
Pct.drive.tue -0.3614 -4.2563 -0.0058 -0.0068 0.6034 4.2634 0.1554 0.5145 0.882 0.000 0.962 1.000
Pct.drive.wed -0.2120 -3.9631 0.0033 0.0316 0.5749 3.9763 0.1943 0.5880 0.922 0.000 0.938 1.000
Pct.drive.thr -0.3349 -4.3216 0.0091 0.0027 0.5905 4.3301 0.1593 0.5242 0.898 0.000 0.960 1.000
Pct.drive.fri 0.1410 -3.8190 0.0112 -0.0169 0.5937 3.8345 0.1819 0.6254 0.906 0.000 0.944 1.000
Pct.drive.sat -0.6626 -6.6750 0.0087 -0.0077 0.9514 6.6827 0.2300 0.7456 0.776 0.000 0.934 1.000
Pct.drive.rush.am -0.1887 -0.0888 -0.0104 -0.0061 0.2802 0.2224 0.0754 0.2231 0.804 0.916 0.898 0.964
Pct.drive.rush.pm -0.1683 -0.4243 -0.0039 -0.0096 0.2845 0.4831 0.0892 0.2701 0.826 0.426 0.880 0.898
Avgdays.week -0.0440 -0.1032 -0.0003 -0.0005 0.0468 0.1040 0.0056 0.0172 0.158 0.000 0.930 0.998
Accel.06miles 0.0001 0.0001 0.0000 0.0000 0.0003 0.0003 0.0001 0.0003 0.880 0.876 0.900 0.910
Brake.06miles 0.0001 -0.0001 0.0000 0.0000 0.0002 0.0002 0.0001 0.0002 0.820 0.890 0.924 0.900
Acbr.others 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 1.000 0.994 1.000 0.922
Left.turns 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.958 0.948 0.982 0.918
Right.turns 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.586 0.600 0.944 0.878

Table A.2: Estimation performance with the bootstrap samples of the actual data in age
selection
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Bias RMSE CI
N B F P N B F P N B F P

Adverse selection
(Intercept) -0.7202 5.0047 -0.0210 -0.1607 0.9774 5.0049 0.1532 0.7302 0.730 0.000 0.934 1.000
Insured.age -0.0018 -0.0011 0.0000 -0.0005 0.0032 0.0012 0.0006 0.0017 0.808 0.424 0.886 0.898
Insured.sexFemale -0.0186 0.0640 -0.0002 -0.0037 0.0472 0.0649 0.0105 0.0241 0.854 0.000 0.888 0.840
Car.age -0.0040 -0.0079 0.0000 -0.0011 0.0073 0.0081 0.0014 0.0038 0.812 0.000 0.900 0.870
MaritalSingle 0.0041 -0.0105 -0.0001 0.0001 0.0427 0.0151 0.0105 0.0257 0.930 0.748 0.924 0.932
Car.useCommercial -0.0278 0.1780 0.0000 -0.0051 0.1287 0.1802 0.0279 0.0731 0.868 0.000 0.902 0.830
Car.useCommute 0.0047 0.0331 0.0000 0.0029 0.0528 0.0353 0.0125 0.0320 0.890 0.156 0.906 0.832
Car.useFarmer -0.0296 -0.0986 -0.0016 -0.0965 0.3330 0.1224 0.0726 0.2635 0.882 0.632 0.916 0.778
Credit.score 0.0000 -0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.912 0.616 0.912 1.000
RegionRural 0.0014 -0.0356 0.0011 0.0021 0.0625 0.0383 0.0143 0.0346 0.880 0.174 0.882 0.786
Annual.miles.drive 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.836 0.000 0.912 0.862
Years.noclaims 0.0006 -0.0042 0.0000 0.0001 0.0025 0.0042 0.0006 0.0015 0.876 0.000 0.894 0.908
TerritoryEmb -0.0145 0.0948 -0.0002 -0.0024 0.0767 0.0964 0.0170 0.0445 0.894 0.000 0.932 0.812
Annual.pct.driven 0.1005 -0.1345 0.0019 0.0361 0.1369 0.1589 0.0213 0.1090 0.744 0.566 0.946 0.860
Total.miles.driven 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.862 0.806 0.916 0.838
Pct.drive.mon 0.1079 -5.6398 0.0125 0.0158 0.7713 5.6574 0.1859 0.7892 0.952 0.000 0.932 1.000
Pct.drive.tue 0.2735 -4.6950 0.0068 0.0874 0.7326 4.7089 0.1630 0.7013 0.942 0.000 0.958 1.000
Pct.drive.wed 0.1171 -4.6281 0.0080 0.0654 0.7818 4.6530 0.1965 0.7957 0.934 0.000 0.926 1.000
Pct.drive.thr 0.3401 -4.7322 0.0149 0.0989 0.7467 4.7442 0.1642 0.6974 0.936 0.000 0.952 1.000
Pct.drive.fri -0.0218 -5.1114 0.0157 -0.0569 0.7816 5.1338 0.1834 0.8020 0.930 0.000 0.942 1.000
Pct.drive.sat 0.2341 -7.4253 0.0244 0.0884 1.0088 7.4406 0.2410 1.0133 0.904 0.000 0.924 1.000
Pct.drive.rush.am -0.0411 0.0900 -0.0089 -0.0256 0.3083 0.3084 0.0736 0.3269 0.908 0.890 0.924 0.936
Pct.drive.rush.pm -0.2780 -0.7399 -0.0012 -0.0994 0.4381 0.8164 0.0895 0.3984 0.816 0.284 0.878 0.868
Avgdays.week -0.0018 -0.0875 0.0005 0.0003 0.0236 0.0895 0.0054 0.0233 0.908 0.004 0.926 1.000
Accel.06miles 0.0000 -0.0001 0.0000 -0.0001 0.0004 0.0004 0.0001 0.0004 0.958 0.952 0.908 0.910
Brake.06miles -0.0001 -0.0004 0.0000 -0.0001 0.0003 0.0005 0.0001 0.0003 0.944 0.690 0.910 0.900
Acbr.others 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 1.000 0.998 1.000 0.922
Left.turns 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.946 0.962 0.984 0.914
Right.turns 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.920 0.916 0.962 0.888

Table A.3: Estimation performance with the bootstrap samples of the actual data in adverse
selection
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Appendix B

Code

Code for Simulation Study

library(Matrix)
library(nleqslv)
#function for deviance
Poisson.Deviance <- function(pred, obs){

200*(sum(pred)-sum(obs)+sum(log((obs/pred)^(obs))))/length(pred) }
###########data
J = 1000 # of total sampling
RMSEs <- matrix(nrow=J, ncol=6)
MAEs <- matrix(nrow=J, ncol=6)
DEVs <- matrix(nrow=J, ncol=6)

colnames(RMSEs) <- c("naive-10K","traditional-90K","full-90K","proposed-10K","boosting-10K")
colnames(MAEs) <- c("naive-10K","traditional-90K","full-90K","proposed-10K","boosting-10K")
colnames(DEVs) <- c("naive-10K","traditional-90K","full-90K","proposed-10K","boosting-10K")

naive_coef <- matrix(nrow=J, ncol=5)
prop1_coef <- matrix(nrow=J, ncol=5)
prop2_coef <- matrix(nrow=J, ncol=5)
full_coef <- matrix(nrow=J, ncol=5)
boost_coef <- matrix(nrow=J, ncol=5)
trad_coef <- matrix(nrow=J, ncol=5)

naive_stde <- matrix(nrow=J, ncol=5)
prop1_stde <- matrix(nrow=J, ncol=5)
prop2_stde <- matrix(nrow=J, ncol=5)
full_stde <- matrix(nrow=J, ncol=5)
boost_stde <- matrix(nrow=J, ncol=5)
trad_stde <- matrix(nrow=J, ncol=5)

system.time(
for (j in 1:1000) {

print(j)
set.seed(j)
I <- 100000
x1 <- runif(I,0.18,0.81)
x2 <- x1^2
x3 <- rbinom(I, 1, 0.6)
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x4 <- rnorm(I)
lambda <- exp(-1.3-4*x1 + 3.4*x2 + 0.1*x3 + 0.5*x4)
NB_Claim <- rpois(I, lambda)
Duration <- rep(1, I)
fdata <- as.data.frame(cbind(x1, x2, x3, x4, Duration, NB_Claim))

#for testing
set.seed(j+1000)
test_ind <- sample(1:nrow(fdata), 10000)
forr.data<-fdata[ test_ind,]
trtt.data<-fdata[-test_ind,]
#sampling- when using a specific sampling method, comment other two sampling sections.
##################################################RS
set.seed(j+2000)
tele_ind <- sample(1:90000, nrow(fdata)*0.1)
ntr <- length(tele_ind)
###################################################NIS(advsel)
#set.seed(j+2000)
#dz <- 1/(1+exp(2*trtt.data$NB_Claim))
#dz <- dz/mean(dz)/9
#dzz <- rbinom(90000, 1, dz)
#tele_ind <- (1:90000)*(dzz==1)
#rm(dz, dzz)
#tele_ind <- tele_ind[tele_ind!=0]
#ntr <- length(tele_ind)
###################################################MAR(agesel)
#set.seed(j+2000)
#dz <- 1/(1+exp(3*trtt.data$x1))
#dz <- dz/mean(dz)/9
#dzz <- rbinom(90000, 1, dz)
#tele_ind <- (1:90000)*(dzz==1)
#rm(dz, dzz)
#tele_ind <- tele_ind[tele_ind!=0]
#ntr <- length(tele_ind)
####################################################
S0 <- trtt.data[ tele_ind, ]
# A small dataset that contains both telematics and traditional features
S1 <- trtt.data[-tele_ind, c(1:3, 5:6)]
# A large dataset that contains only traditional features
S1s <- trtt.data[-tele_ind, ]
# A large dataset that contains both telematics and traditional features
S <- rbind(S0,S1s)
rm(trtt.data)
#### Preliminary analysis ####
#naive model
glm.freq.naive <- glm(NB_Claim ~ .-Duration, data=S0, family=poisson())
#full model
glm.freq.full <- glm(NB_Claim ~ .-Duration, data=S , family=poisson())
#traditional model
glm.freq.trad <- glm(NB_Claim ~ .-Duration, data=S[, c(1:3, 5:6)], family=poisson())

#update coefficients and SE from model summaries
naive_coef[j,] <- summary(glm.freq.naive)$coefficients[,1]
naive_stde[j,] <- summary(glm.freq.naive)$coefficients[,2]
full_coef[j,] <- summary(glm.freq.full)$coefficients[,1]
full_stde[j,] <- summary(glm.freq.full)$coefficients[,2]

#basis fuctions
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b_S0 <- as.matrix(cbind(S0[,c(5,1:3)], S0[,6]*S0[,c(5,1:3)]))
b_S <- as.matrix(cbind(S[ ,c(5,1:3)], S[ ,6]*S[ ,c(5,1:3)]))

#function for optimize using nleqslv()
cal_eqn <- function(parm) {

result <- colSums(as.vector(1+nrow(S1)/nrow(S0)*exp(parm%*%t(b_S0)))*b_S0)-colSums(b_S)
return(result) }

#find for parameters of basis functions
fit2 <- nleqslv(rep(0,8), cal_eqn)

#calculate weights from information projection
w3 <- 1+nrow(S1)/nrow(S0)*exp(b_S0 %*% fit2$x)
#############################
#combine weights to S0
SS6<-cbind(S0,w3)

#fitted the model with ws
glm.freq.S3 <- glm(NB_Claim ~ .-Duration-w3,offset=log(Duration),

weights= w3, data=SS6, family=poisson())
x_S0 <- model.matrix(glm.freq.S3)

#coef of proposed model
prop2_coef[j,] <- summary(glm.freq.S3)$coefficients[,1]

# sandwich formula for variance estimation
Ui <- cbind(c(as.vector(w3)-1, rep(-1, nrow(S1)))* b_S,

c(w3*(SS6$NB_Claim-fitted(glm.freq.S3)), rep(0, nrow(S1)))*as.matrix(S[,c(5,1:4)]))

Ui <- Ui - rep(colMeans(Ui), each=nrow(S))
V_U <- ( t(Ui) %*% Ui)
tau <- rbind(cbind(t(b_S0) %*% (as.vector(w3-1)*b_S0),

matrix(0, ncol=ncol(x_S0), nrow=ncol(b_S0))),
cbind(t(x_S0) %*% (as.vector(w3-1)*(SS6$NB_Claim-fitted(glm.freq.S3))*b_S0),

-t(x_S0) %*% (as.vector(w3*fitted(glm.freq.S3))*x_S0) ))
invtau <- solve(tau)
prop2_stde[j,] <- sqrt(diag(invtau %*% V_U %*% invtau))[-(1:ncol(b_S0))]
##########################boosting model
glm.freq.boost <- glm(NB_Claim ~ x4-1,data=S0,

offset=log(Duration)+predict(glm.freq.trad, S0), family=poisson())
#coefficients and SE
boost_coef[j,] <- c(summary(glm.freq.trad )$coefficients[,1],

summary(glm.freq.boost)$coefficients[,1])
boost_stde[j,] <- c(summary(glm.freq.trad )$coefficients[,2],

summary(glm.freq.boost)$coefficients[,2])
################################try forecast
pred.naive <- predict(glm.freq.naive, newdata = forr.data, type="response")
pred.full <- predict(glm.freq.full , newdata = forr.data, type="response")
pred.S3 <- exp(as.matrix(forr.data[,c(5,1:4)]) %*% prop2_coef[j,])
pred.trad <- predict(glm.freq.trad , newdata = forr.data, type="response")
pred.boost <- pred.trad * exp(coef(glm.freq.boost)*forr.data$x4)

#remove datasets for this split
rm(tele_ind, test_ind)

#RMSE
RMSEs[j,-4] <- sqrt(c(

mean((forr.data$NB_Claim-pred.naive)^2),
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mean((forr.data$NB_Claim-pred.trad )^2),
mean((forr.data$NB_Claim-pred.full )^2),
mean((forr.data$NB_Claim-pred.S3 )^2),
mean((forr.data$NB_Claim-pred.boost)^2)))

#MAE
MAEs[j,-4] <- c(

mean(abs(forr.data$NB_Claim-pred.naive)),
mean(abs(forr.data$NB_Claim-pred.trad )),
mean(abs(forr.data$NB_Claim-pred.full )),
mean(abs(forr.data$NB_Claim-pred.S3 )),
mean(abs(forr.data$NB_Claim-pred.boost)))

#DEV
DEVs[j,-4] <- c(

Poisson.Deviance(pred.naive, forr.data$NB_Claim),
Poisson.Deviance(pred.trad , forr.data$NB_Claim),
Poisson.Deviance(pred.full , forr.data$NB_Claim),
Poisson.Deviance(pred.S3 , forr.data$NB_Claim),
Poisson.Deviance(pred.boost, forr.data$NB_Claim))

})

#summarizing the outputs
colMeans(RMSEs)
colMeans(MAEs)
colMeans(DEVs)

#true coeffients used for data generation
true_coef <- c(-1.3, -4, 3.4, 0.1, 0.5)

#bias of each estimator
bias_naive <- true_coef - colMeans(naive_coef)
bias_trad <- true_coef - colMeans(trad_coef)
bias_prop2 <- true_coef - colMeans(prop2_coef)#proposed
bias_boost <- true_coef - colMeans(boost_coef)
bias_full <- true_coef - colMeans(full_coef)

#RMSE of estimates
rmse_naive <- sqrt(colMeans((naive_coef-rep(true_coef, each=J))^2))
rmse_trad <- sqrt(colMeans((trad_coef -rep(true_coef, each=J))^2))
rmse_prop2 <- sqrt(colMeans((prop2_coef-rep(true_coef, each=J))^2))#proposed
rmse_boost <- sqrt(colMeans((boost_coef-rep(true_coef, each=J))^2))
rmse_full <- sqrt(colMeans((full_coef -rep(true_coef, each=J))^2))

#CI of estimator
naive_90CI <- colMeans((naive_coef-1.645*naive_stde<rep(true_coef, each=J))*

(naive_coef+1.645*naive_stde>rep(true_coef, each=J))*1)
trad_90CI <- colMeans((trad_coef -1.645*trad_stde<rep(true_coef, each=J))*

(trad_coef +1.645*trad_stde>rep(true_coef, each=J))*1)
prop2_90CI <- colMeans((prop2_coef-1.645*prop2_stde<rep(true_coef, each=J))*

(prop2_coef+1.645*prop2_stde>rep(true_coef, each=J))*1,
na.rm=TRUE)#proposed

boost_90CI <- colMeans((boost_coef-1.645*boost_stde<rep(true_coef, each=J))*
(boost_coef+1.645*boost_stde>rep(true_coef, each=J))*1)

full_90CI <- colMeans((full_coef -1.645*full_stde<rep(true_coef, each=J))*
(full_coef +1.645*full_stde>rep(true_coef, each=J))*1)

45



Code for Empirical Analysis

# data is available from http://www2.math.uconn.edu/~valdez/data.html
# it has been cleaned by using territory embedding and PCA for telematics variables
########################data
fdata <- read.csv("ffdata.csv")# load rawdata
J = 500 # of total sampling
RMSEs <- matrix(nrow=J, ncol=5)
DEVs <- matrix(nrow=J, ncol=5)

colnames(RMSEs) <- c("naive-10K", "traditional-90K", "full-90K", "proposed-10K", "boosting-10K")
colnames(DEVs) <- c("naive-10K", "traditional-90K", "full-90K", "proposed-10K", "boosting-10K")

naive_coef <- matrix(nrow=J, ncol=29)
propd_coef <- matrix(nrow=J, ncol=29)
full_coef <- matrix(nrow=J, ncol=29)
boost_coef <- matrix(nrow=J, ncol=29)
trad_coef <- matrix(nrow=J, ncol=13)

naive_stde <- matrix(nrow=J, ncol=29)
propd_stde <- matrix(nrow=J, ncol=29)
full_stde <- matrix(nrow=J, ncol=29)
boost_stde <- matrix(nrow=J, ncol=29)
trad_stde <- matrix(nrow=J, ncol=13)

system.time(
for (j in 1:J) {

set.seed(j+1000) #for testing
test_ind <- sample(1:100000, 100000, replace=T)
forr.data<-fdata[ test_ind,]
#sampling- when using a specific sampling method, comment other two sampling sections.
############################################RS
set.seed(j+2000)
tele_ind <- sample(1:100000, 100000, replace=T)
trad_ind <- sample(1:100000, 800000, replace=T)
ntr <- length(tele_ind)
##############################################NIS(advsel)
#set.seed(j+2000)
#dz <- 1/(1+exp(1*fdata$NB_Claim))#adjusted
#dz <- dz/mean(dz)/10
#tele_ind <- sample(1:100000, 100000, replace=T, prob= dz)
#trad_ind <- sample(1:100000, 800000, replace=T, prob=1-dz)
#ntr <- length(tele_ind)
############################################MAR(agesel)
#set.seed(j+2000)
#dz <- 1/(1+exp((3*fdata$Insured.age/100)))#adjusted
#dz <- dz/mean(dz)/10
#tele_ind <- sample(1:100000, 100000, replace=T, prob= dz)
#trad_ind <- sample(1:100000, 800000, replace=T, prob=1-dz)
#ntr <- length(tele_ind)
##########################################################
S0 <- fdata[ tele_ind, ]
# A small dataset that contains both telematics and traditional features
S1 <- fdata[ trad_ind, c(1:13, 30)]
# A large dataset that contains only traditional features
S1s <- fdata[ trad_ind, ]
# A large dataset that contains both telematics and traditional features
S <- rbind(S0,S1s)#entire train set
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#### Preliminary analysis ####
#naive model
glm.freq.naive <- glm(NB_Claim ~ .-Duration,offset=log(Duration),data=S0, family=poisson())
#full model
glm.freq.full <- glm(NB_Claim ~ .-Duration,offset=log(Duration),data=S , family=poisson())
#traditional model
glm.freq.trad <- glm(NB_Claim ~ .-Duration,offset=log(Duration),

data=S[, c(1:13, 30)], family=poisson())

#update coefficients and SE from model summaries
naive_coef[j,] <- summary(glm.freq.naive)$coefficients[,1]
naive_stde[j,] <- summary(glm.freq.naive)$coefficients[,2]
full_coef[j,] <- summary(glm.freq.full)$coefficients[,1]
full_stde[j,] <- summary(glm.freq.full)$coefficients[,2]
trad_coef[j,] <- summary(glm.freq.trad)$coefficients[,1]
trad_stde[j,] <- summary(glm.freq.trad)$coefficients[,2]

#basis fuctions
b_S0 <- as.matrix(cbind(rep(1,length(S1$Duration)),S0[,c(30,2:13)], S0[,30]*S0[,c(2:13)]))
b_S <- as.matrix(cbind(rep(1,length(S$Duration)),S[ ,c(30,2:13)], S[ ,30]*S[ ,c(2:13)]))

#function for optimize using nleqslv()
cal_eqn <- function(parm) {

result <- colSums(as.vector(1+nrow(S1)/nrow(S0)*exp(parm %*%t(b_S0)))*b_S0)-colSums(b_S)
return(result) }

#find for parameters of basis functions
fit2 <- nleqslv(rep(0,26), cal_eqn, method = "Newton",

control = list(allowSingular=TRUE, xtol=1e-15,ftol=1e-8))
#calculate weights from information projection
w3 <- 1+nrow(S1)/nrow(S0)*exp(b_S0 %*% fit2$x)
#############################
SS6<-cbind(S0,w3)#combine weights to S0

#fitted the model with ws
glm.freq.S3 <- glm(NB_Claim ~ .-Duration-w3,offset=log(Duration),

weights= w3, data=SS6, family=poisson())
x_S0 <- model.matrix(glm.freq.S3)

#coef of proposed model
propd_coef[j,] <- summary(glm.freq.S3)$coefficients[,1]

# sandwich formula for variance estimation
Ui <- cbind(c(as.vector(w3)-1, rep(-1, nrow(S1)))* b_S,

c(w3*(SS6$NB_Claim-fitted(glm.freq.S3)), rep(0, nrow(S1)))*as.matrix(S[,c(1:29)]))

Ui <- Ui - rep(colMeans(Ui), each=nrow(S))
V_U <- ( t(Ui) %*% Ui)
tau <- rbind(cbind(t(b_S0) %*% (as.vector(w3-1)*b_S0),

matrix(0, ncol=ncol(x_S0), nrow=ncol(b_S0))),
cbind(t(x_S0) %*% (as.vector(w3-1)*(SS6$NB_Claim-fitted(glm.freq.S3))*b_S0),

-t(x_S0) %*% (as.vector(w3*fitted(glm.freq.S3))*x_S0) ))
invtau <- solve(tau)
propd_stde[j,] <- sqrt(diag(invtau %*% V_U %*% invtau))[-(1:ncol(b_S0))]
##########################boosting model
glm.freq.boost <- glm(NB_Claim ~ Annual.pct.driven+Total.miles.driven+Pct.drive.mon

+Pct.drive.tue+Pct.drive.wed+Pct.drive.thr+Pct.drive.fri
+Pct.drive.sat+Pct.drive.rush.am+Pct.drive.rush.pm+Avgdays.week
+Accel.06miles+Brake.06miles+Acbr.others+Left.turns+Right.turns-1,

47



data=S0, offset=log(Duration)+predict(glm.freq.trad, S0)
, family=poisson())

#coefficients and SE
boost_coef[j,] <- c(summary(glm.freq.trad )$coefficients[,1],

summary(glm.freq.boost)$coefficients[,1])
boost_stde[j,] <- c(summary(glm.freq.trad )$coefficients[,2],

summary(glm.freq.boost)$coefficients[,2])
################################try forecast
pred.naive <- predict(glm.freq.naive, newdata = forr.data, type="response")
pred.full <- predict(glm.freq.full , newdata = forr.data, type="response")
pred.S3 <- exp(as.matrix(forr.data[,c(2:29)]) %*%

propd_coef[j,2:29]+propd_coef[j,1]+ log(forr.data[,1]))
pred.trad <- predict(glm.freq.trad , newdata = forr.data, type="response")
pred.boost <- pred.trad * exp(as.matrix(forr.data[14:29])%*%coef(glm.freq.boost))

#remove datasets for this split
rm(tele_ind, test_ind)

#RMSE
RMSEs[j,] <- sqrt(c(

mean((forr.data$NB_Claim-pred.naive)^2),
mean((forr.data$NB_Claim-pred.trad )^2),
mean((forr.data$NB_Claim-pred.full )^2),
mean((forr.data$NB_Claim-pred.S3 )^2),
mean((forr.data$NB_Claim-pred.boost)^2)))

#DEV
DEVs[j,] <- c(

Poisson.Deviance(pred.naive, forr.data$NB_Claim),
Poisson.Deviance(pred.trad , forr.data$NB_Claim),
Poisson.Deviance(pred.full , forr.data$NB_Claim),
Poisson.Deviance(pred.S3 , forr.data$NB_Claim),
Poisson.Deviance(pred.boost, forr.data$NB_Claim))

})
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Appendix C

Basic Setup of Proposed Method

The basic setup of the proposed method is listed in Wang and Kim (2021a). We are in-
terested in estimating β as the unique solution to E{U(β; N, X1, X2)} = 0 where X2 is
subjected to missingness where U is a smooth function of β with non singular gradient
matrix E{∂βU(β)}.

Now we can denote the actual dataset as {(ni, xi1, δixi2, δi) : i = 1, ..., M)}, where δi is the
sampling indicator variable defined as

δi =
{

1, if xi2 is observed,

0, otherwise

Considering f(.) as the density function, let fj(n, x1, x2) be the conditional density of
(N, X1, X2) given δ = j for j = 0, 1. Then the density ratio function is defined as r(n, x1, x2) =
f0(n, x1, x2)/f1(n, x1, x2).

By Bayes theorem, we obtain

P(δ = 0|n, x1, x2)
P(δ = 1|n, x1, x2) = P(δ = 0)

P(δ = 1) × r(n, x1, x2).

Assuming c = P(δ = 0)/P(δ = 1) is known, we can express

1
P(δ = 1|N, X1, X2) = 1 + c × r(N, X1, X2). (C.1)

and use
ωi = 1

P(δi = 1|ni, xi1, xi2) = 1 + c × r(ni, xi1, xi2).

as the propensity score for the ith policyholder with deltai = 1. Thus this problem can be
considered as a density ratio function estimation problem. And we can take ĉ = M1/M0,
M0 =

∑N
i=1 δi and M1 = M − M0.
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Under the assumption of MAR, we consider

δ ⊥ X2|(N, X1). (C.2)

Under (C.2), the density ratio function can be written as r(n, x1, x2) = r(n, x1).

Now a vector of integrable functions of (n,x) are taken as b(n, x1) = (b1(n, x1), ..., bL(n, x1)).
Then, we assume that

δ ⊥ X2|b(N, X1). (C.3)

Using b(n, x1) satisfying (C.3), a smoothed density ratio function is defined as

r∗(n, x1) = E{r(n, x1)|b(n, x1), δ = 1}, (C.4)

and it satisfies

1
M0

M∑
i=1

δir
∗(ni, xi1)b(ni, xi1) = 1

M1

M∑
i=1

(1 − δi)b(ni, xi1) (C.5)

at least approximately.

Then we can use r∗(n, x1) in (C.4) to construct a smoothed propensity score estimating
function of β as follows:

ÛSP S(β) = 1
M

M∑
i=1

δi
{
1 + M1

M0
r∗(ni, xi1)

}
U(β; ni, xi1, xi2). (C.6)

Furthermore, since r(n, x1) is a function of (n, x1) only, we obtain

E{r(n, x1)|b(n, x1), xi2, δ = 1} = E{r(n, x1)|b(n, x1), δ = 1} (C.7)

Then the results (C.7) implies that

E{ÛP S(β)|b(n, x1), xi2, δ} = ÛSP S(β),

where

ÛP S(β) = 1
N

M∑
i=1

δi
{
1 + M1

M0
r(n, xi1)

}
U(β; ni, xi1, xi2)

.

Therefore, the following result is established.

Under (C.2), we obtain
E{ÛP S(β)} = E{ÛSP S(β)} (C.8)

and
V{ÛP S(β)} ≥ V{ÛSP S(β)}. (C.9)

Then the relationships in (C.8) and (C.9) imply that the solution to (̂U)SP S = 0 is more
efficient than the solution to ÛP S(β) = 0.
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