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Abstract 
 
In this thesis, a method for bias field correction is proposed for Optical Coherence Tomography 
Angiography (OCT-A) images. The bias field artifact is an intensity nonuniformity present on OCT-
A images caused by inaccuracies during image acquisition. The OCT volumetric data is used to 
estimate bias produced due to the tilt of the retina. Bias field correction will occur prior to a 2-D 
registration algorithm used to correct for micro-saccadic motion and construct a clear, high-quality 
image of the retina for retinal perfusion heterogeneity analysis.  
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Chapter 1: Introduction 
 

1.1 Glaucoma and Diabetic Retinopathy 
 
Vision is the primary sensory modality that humans use in all aspects of their daily lives. A loss of 
vision caused by retinal diseases such as glaucoma and diabetic retinopathy results in a severely 
decreased quality of life for these people. Glaucoma is a group of progressive eye diseases often 
associated with changes in the intraocular pressure (IOP), which results in damage to the retina 
and optic nerve [1, 2]. It is a leading cause of irreversible blindness worldwide and it is estimated 
that the number of people diagnosed with glaucoma will reach 111.8 million by 2040 [2]. The two 
main classifications are known as primary and secondary glaucoma, with both containing 
subcategories known as open-angle and closed-angle glaucoma. Glaucoma is classified as 
primary when it appears without any underlying disease, while secondary glaucoma occurs 
because of trauma or an existing medical condition. In open-angle glaucoma, the IOP increases 
gradually and there is no pain, while closed-angled glaucoma can occur suddenly and cause 
immediate negative reactions. There is also open-angle Normal Tension Glaucoma (NTG), where 
the IOP has not deviated from the normal range yet damage to the optic nerve still occurs [2].  
 
Many people with diabetes mellitus (DM) can develop diabetic retinopathy (DR), which is vision 
loss associated with damage to the retinal microvasculature due to high blood sugar levels [3]. It 
is estimated that the number of adults with DR around the world will increase from 103.12 million 
in 2020 to 160.5 million in 2045 [4]. DR is a leading cause of blindness in the adult working age 
population and can lead to other complications if left untreated [4, 5]. DR can be classified into 
two categories, the non-proliferative DR stage (NPDR) and the proliferative DR stage (PDR) [5]. 
The NPDR stage is characterised by changes in the microvasculature of the retina, resulting in 
bleeding and fluid leakage (macular edema). This causes vision distortion and if left untreated, 
DR in the NPDR stage can progress to the PDR stage. The PDR stage is associated with the 
formation of new, abnormal blood vessels in the retina. These blood vessels have weak walls and 
can leak into the vitreous, causing partial or complete blindness. The clinical examination of retinal 
blood flow is known as ophthalmic Fluorescein Angiography (FA) [6]. This procedure involves the 
injection of a dye contrast agent into the bloodstream, which will then highlight the 
microvasculature of the retina and allow for a diagnosis and continued monitoring of the DR 
disease progress. Although both glaucoma and DR are currently incurable, early detection and 
regular vison exams can slow the progression of vision loss. Figure 1 provides a visualization of 
how glaucoma and DR affects an individual’s vision.  

 

Figure 1: Images illustrating the vision seen in people with (A) normal vision, (B) diabetic 
retinopathy, and (C) glaucoma [7].  
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1.2 Optical Coherence Tomography 
 
Optical Coherence Tomography (OCT) is an imaging procedure that uses light to acquire cross-
sectional images of the retina in-vivo [8, 9]. OCT imaging allows clinicians to distinctly view the 
layers within the retina for the diagnosis of various diseases. This technique uses low powered 
laser light, is non-invasive and painless, therefore providing no risk of damage to the eye. The 
OCT imaging modality uses the concept of low coherence interferometry. A cross sectional depth 
profile of the imaged tissue layers is created by interfering a sample’s backscattered light with a 
reference reflection generated from a path of known length. Axial cross-sectional data (A-scan) 
is acquired repeatedly while scanning transversely to acquire a brightness-scan (B-scan). A single 
B-scan visualizes a cross-sectional slice of the retina. Multiple B-scans taken in the direction 
perpendicular to the B-scan axis in a pre-determined pattern are then acquired to create a high-
resolution, three-dimensional (3-D) OCT volume of the retina. Figure 2 provides an example of 
an OCT B-scan while Figure 3 provides a visualization of an OCT volume. 
 

 

Figure 2: OCT B-scan of a healthy retina [10]. 
 

 

Figure 3: OCT volume of the retina [11]. 
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1.3 Optical Coherence Tomography Angiography 
 
Optical Coherence Tomography Angiography (OCT-A) is a technique utilizing OCT that allows for 
visualization of the retinal microvasculature without the need for a dye contrast agent, providing 
an advantage over FA [12-14]. Additionally, OCT-A provides a higher resolution and can 
differentiate between vascular layers within the retina, allowing for the study of the superficial, 
intermediate, and deep capillary plexuses [12, 13]. An OCT-A volumetric angiogram is acquired 
by collecting B-scans at the same position over a constant time interval, and then comparing the 
sequential scans to generate contrast based on the movement of blood [12-14]. Vessel locations 
that have a large variation of blood flow will result in high pixel intensity values on the OCT-A 
image, while locations that have minimal variation will have lower intensity pixels. This variation 
in blood flow can be used to analyze the microvasculature changes occurring throughout the 
layers of the retina and can be an indicator of DR and other diseases [12-15]. The foveal avascular 
zone (FAZ) is the smaller, central region of the fovea, the section of the retina with the highest 
visual acuity. The FAZ is devoid of blood vessels and will often exhibit disease features in OCT-
A images. 
 
The main drawback of OCT-A as opposed to FA is that OCT-A can suffer from motion artifacts, 
which can occur when a patient moves during the scanning procedure or from microsaccadic eye 
movements [12]. These motion artifacts can render data unusable. Figure 4 provides examples 
of OCT-A images with motion artifacts. A novel software algorithm comprising serial imaging, 
registration and averaging has been implemented to rectify the motion artifacts in the collected 
OCT-A data and construct a clear visualization of the retinal structures [16-19].  

 

 

Figure 4: OCT-A 3x3 mm images of the foveal region of the retina with motion artifacts identified. 
(A) Artifacts appear as bright white lines [16]. (B) Lateral shift artifacts indicated by the sharp 
discontinuity in the major blood vessels. 
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1.4 Bias Field Correction 
 
When an OCT-A image is acquired, there can be variations in image intensity due to flaws with 
the image acquisition process, such as incorrect focus or scan misalignment [20]. This low spatial 
frequency intensity inhomogeneity is known as a bias field and can degrade image quality, 
resulting in some structures or sections within an image appearing brighter than others. Figure 5 
visualizes the bias field from a 3x3 mm OCT-A image.  

 

Figure 5: (A) OCT-A 3x3 mm of the foveal region of the retina. (B) Bias field artifact of (A) seen 
with a Gaussian filter [21]. The bias field can be seen as a smooth variation of intensities across 
an image.  
 
The bias field intensity gradient artifact may influence the results of future analysis on the OCT-A 
images and needs to be removed, a process known as bias field correction [20-22]. Methods exist 
that perform bias field correction on magnetic resonance images [23-25], and this thesis aims to 
produce a similar algorithm to remove the bias field on OCT-A images.  The objective of this thesis 
is to remove the bias field artifact from the OCT-A images before they are sent through the 
registration and averaging algorithm and then examine the effects observed when performing 
retinal perfusion heterogeneity analysis.  
 

1.5 Thesis Organization 
 
This thesis is organized into five chapters. Chapter 1 provides an introduction to retinal diseases, 
OCT and OCT-A imaging procedures, as well as the purpose of this thesis. Chapter 2 provides 
an overview of the registration and averaging algorithm used to quantify the perfusion 
heterogeneity with OCT-A images. Chapter 3 describes the various methods used for estimation 
and correction of the bias field in OCT-A images. The engineering design specifications are 
discussed in Section 3.1. Chapter 4 examines the results of bias field correction on the retinal 
perfusion heterogeneity analysis. Chapter 5 concludes this thesis with a summary and 
suggestions for related future work.  
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Chapter 2: OCT-A Image Registration and 
Averaging Algorithm 
 
This chapter begins with a description of the data acquisition process and then explores the 
registration and averaging algorithm used to create a high-quality visualization of the retinal 
microvasculature. The chapter concludes with an explanation on how this algorithm is then used 
to examine the variation in blood flow in the retina. An overview of the algorithm is shown in the 
flowchart in Figure 6. 
 

 

Figure 6: Registration and averaging pipeline flowchart. The red box indicates the new 
preprocessing step to be included, bias field correction.  
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2.1 Data Acquisition 
 
Patient imaging sessions were performed at the Eye Care Centre (ECC) of Vancouver General 
Hospital. This thesis used OCT-A data acquired from the eyes of patients with OAG, NTG, and 
healthy controls. There were two commercialized machines available for use, the ZEISS PLEX 
Elite 9000, which utilizes Swept-Source OCT, and the TOPCON Maestro2, which uses Spectral-
Domain OCT. Both systems produce images with a high resolution at a high speed [26-28]. The 
PLEX Elite 9000 was selected for use in research studies as it has a quicker acquisition speed 
than the Maestro2 and a built-in hardware tracking function which corrects for large saccadic 
movements [27-28]. The volumetric data acquired has dimensions of 300x1536x300 voxels, 
resulting in en-face images that are 3x3 mm in size.  
 

2.2 Motion Detection 
 
As it takes several seconds to acquire an OCT-A volume, motion artifacts can occur. 
Microsaccadic eye movement during imaging can appear as bright stripes, as seen in (A) of Figure 
4. Typically, post-processing performed by commercial OCT-A machines removes these bright 
lines from images [29]. However, some motion artifacts are still present and can be more difficult 
to detect, as seen in (B) of Figure 4. A combination of automatic motion detection and manual 
correction is currently in use to identify and remove the motion artifacts.  
 
In the current processing pipeline, the implementation of a cross-correlation algorithm is used to 
identify motion artifacts in OCT-A images [30]. Briefly, cross-correlation is a measure of the 
similarity between a vector and a shifted version of a different vector and is commonly used for 
motion measurement. The cross-correlation of adjacent B-scans is calculated across the OCT-A 
image, with the maximum peaks and minimum valleys indicating the presence of a motion artifact 
for removal.  
 

2.3 Registration and Averaging   
 
After image acquisition, all of the serially acquired images need to be registered and averaged. 
Registration is the process of aligning multiple images in space through a series of spatial 
transformations [31]. In the existing registration algorithm, the first step is to identify a template 
image from the batch of acquired images. The template image should be the image with the 
highest quality and the least number of motion artifacts. Once the template image is selected, all 
images will be manually reviewed and subdivided into strips if any motion artifacts are present. 
Figure 7 showcases the subdivision of Figure 4 into individual strips. 
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Figure 7: Figure 4 OCT-A subdivided into strips for registration with the removal of motion 
artifacts. 
 
Once all images have been reviewed and subdivided into strips, they will undergo cross-
correlation translational registration, affine rigid registration, and non-rigid registration with the 
template [16, 17]. Cross-correlation translational registration is used to determine the x and y 
translation shifts that will result in the position where the strip will best match the template. Next, 
rigid registration is performed using a combination of the Binary Robust Invariant Scalable 
Keypoints (BRISK) and Speeded-Up Robust Features (SURF) algorithms. Shared keypoints 
between the template image and strip identified using both algorithms are considered true and 
used to estimate an affine transformation function. This type of geometric transformation 
preserves points, straight lines and planes using translations and rotations. The result of this step 
is the alignment of the largest blood vessels between the template and strip. Non-rigid registration 
is then applied to correct for localized vessel mismatch and improve the alignment of finer 
features. Figure 8 visualizes the result of a strip overlaid with the template before and after 
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registration. After registration is complete, the final stack of images is averaged together to 
produce a high-quality OCT-A image, as seen in (B) of Figure 9.  
 

 

Figure 8: (A) Strip overlaid with the template prior to registration. (B) Strip overlaid with the 
template after all registration is complete. Green and magenta indicate vessel misalignment while 
white indicates correct alignment.   
 

2.4 Vessel Segmentation 
 
After registration, the averaged OCT-A image will be given as input into a deep neural network 
(DNN) to isolate the microvasculature from the background. The DNN used in this algorithm has 
been shown to outperform other segmentation methods [18]. The output of the DNN, as seen in 
(C) of Figure 9, will be a probability map with values between 0 and 1, where 1 indicates a high 
probability of the pixel belonging to a vessel. A mask is then created by thresholding the probability 
map at a value of 0.5, indicating where the DNN has 50% confidence that each pixel belongs to 
a blood vessel. The mask is then multiplied to the stack of registered strips to reduce the noise. 
These noise-reduced strips are then used to calculate the pixel intensity coefficient of variation.  
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Figure 9: (A) A single OCT-A image with motion artifacts visible. (B) The result of 16 registered 
images averaged together, producing a high-quality image with clear vessels. (C) The averaged 
image (B) vessel segmented using a DNN. 



10 
 

2.5 Coefficient of Variation 
 
The methods described in the previous sections are implemented to ensure that acquired OCT-
A en-face images are correctly registered and segmented. This registered strip data can then be 
used to quantify the retinal perfusion heterogeneity through the calculation of the pixel intensity 
coefficient of variation (CoV). CoV measures the variability of the vascular signal between all of 
the serially acquired and registered OCT-A images at each pixel location. The input into each 
CoV calculation is an array with the total number of intensity values at each pixel across all the 
strip images. The CoV is calculated as: 
 

                                                          𝐶𝑜𝑉 = 𝑠𝑡𝑑(𝑥)
𝑚𝑒𝑎𝑛(𝑥)

                                 (1) 

 
A CoV map can be generated that displays the variation in the microvasculature, as seen in (A) 
of Figure 10. The CoV calculation results are thresholded at 0.5 and linearly scaled between 0 
and 1, where 1 represents the highest variation and 0 represents the lowest variation. CoV values 
in the range from [0 0.3] are considered to have low variation and are typically seen in the large 
superficial vessels. CoV values in the range from (0.3 0.6) have an intermediate amount of 
variation while values from [0.6 1] have high variation, typically signifying blinking vessels. Clinical 
professionals can use the CoV maps and calculations to investigate the differences in retinal 
perfusion for various diseases [19].  
 
There are some imaging artifacts that can present themselves in CoV maps. Firstly, there can be 
vertical strips of colour variation in the CoV signal which does not indicate perfusion 
heterogeneity. These strips are actually artifacts from the strip-based registration processing, and 
an example is highlighted in (B) of Figure 10. There can also be black regions which is an indicator 
of a lack of registered strips in an area. CoV measurements are extremely sensitive to artifacts, 
so it is important to ensure that all processing is done correctly. 

 
Figure 10: (A) An excellent quality CoV map. (B) A poor quality CoV map with a black region and 
vertical strip of colour variation highlighted. The color bar indicates the variation from dark blue 
through to red.  
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2.6 Summary 
 
In this chapter, the averaging and registration algorithm was introduced, and each component of 
the pipeline was discussed. The final averaged image can then be used to visualize the retinal 
perfusion heterogeneity with the use of CoV maps. We may now develop the new preprocessing 
step in the algorithm, bias field correction.      
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Chapter 3: Methods for Bias Field Correction 
 
The inclusion of bias field correction in the registration and averaging algorithm described in 
Chapter 2 will further improve the quality of the OCT-A data for retinal perfusion heterogeneity 
analysis. This chapter discusses the engineering design specifications for bias field correction 
and continues with an exploration of each correction approach. 
 

3.1 Bias Field Engineering Design Specifications 
 
Due to the influence of the bias fields present on the OCT-A images, the CoV calculations are 
affected and will include the presence of the bias artifact. Bias field correction will be the new 
preprocessing step in the registration and segmentation algorithm towards generating the CoV 
map. It is hypothesized that successful bias field correction will reduce the variation in the CoV 
maps, therefore increasing the contrast of regions with actual spatial and temporal flow 
heterogeneity. There is no universal validation assessment to determine the success of bias field 
correction. In this thesis, it will be determined through the qualitative and quantitative analysis of 
the CoV calculations and maps before and after bias field correction. The objective of bias field 
correction is to change the CoV calculation by 2%.  
 

3.2 Bias Field Design Overview 
 
Many imaging modalities produce the nonuniform intensity illumination due to the imperfect image 
acquisition process. The consensus for medical images is that the bias field can be thought of as 
a low frequency artifact and visualized as a smooth intensity varying function across the image 
[20]. The typical MRI models assume that the image acquired has a bias field that is either 
multiplicate or additive to it, plus the addition of a noise component. However, for most OCT-A 
bias field models, there is only a multiplicate component, with an example seen in Equation (2) 
[21]. 
 

                                          𝑫′(𝒙, 𝒚) = 𝑫(𝒙, 𝒚) ∗ 𝑴𝒆𝒂𝒏(𝑮(𝑺))
𝑮(𝑺(𝒙,𝒚))

 (𝒙 = 𝟏, 𝟐, 𝟑, … 𝑿; 𝒚 = 𝟏, 𝟐, 𝟑, … 𝒀)                 (2) 

 
In Equation (2), D(x, y) is the original en-face angiogram and D’(x, y) is the corrected image. 
G(s) is the bias field and x and y are the pixel locations of the images of size X and Y.  
 
The bias field may be different in the sequential volumes of a patient, and therefore affects the 
CoV measurement. The bias field contributes noise to the pixel intensities, and therefore affects 
the standard deviation and the mean in Equation (1). This can cause artifactual changes in the 
CoV maps that do not indicate the perfusion in the microvasculature. 
 
There are two classifications for the approaches that are used for correcting the bias field artifact, 
prospective or retrospective methods [20, 25]. Prospective correction methods attempt to reduce 
the bias field by minimizing the inaccuracies during the image acquisition process. Retrospective 
correction methods aim to reduce the bias field using the characteristics of the medical images 
and typically involve a two-step process. The first step is estimation of the bias field, and the 
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second step is a division, multiplication or addition to remove the bias field [20-25]. Bias field 
correction will result in enhanced OCT-A images and an increased accuracy for the perfusion 
heterogeneity analysis. The following subsections of this chapter describe the initial bias field 
design attempts, the problems encountered with each approach and revisions performed to reach 
the final design.   
 

3.3 Bias Field Correction Using the En-Face OCT-A Images 
Produced by the Zeiss Plex Elite 9000 
 
The first method of bias field correction utilizes the two-dimensional (2-D) en-face OCT-A images 
directly downloaded from the Zeiss Plex Elite 9000. The images have a pixel dimension of 
1024x1024, so there is post-processing performed by the device which increases the size of the 
image compared to the original volume data. Equation (3) showcases the 2-D Gaussian filter [32]. 
The variables x and y represent the distances from the horizontal and vertical axes respectively, 
while σ is the standard deviation of the Gaussian function. 
  
      𝒈(𝒙, 𝒚) = 𝟏

𝟐𝝅𝝈𝟐 𝒆−(𝒙𝟐+𝒚𝟐)/ (𝟐𝝈𝟐)                                             (3) 
 
This type of filter is a convolution operation that is typically used to remove noise and detail from 
an image with a burring effect. In the first method of bias correction, an illumination bias field was 
produced by applying a Gaussian filter with a pixel standard deviation that was 10% of the image 
size in pixels. Figure 11 showcases the results of bias field correction with the gaussian filter using 
Equation (1). 
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Figure 11: Bias field correction using OCT-A images. (A) Original OCT-A 3x3 mm image acquired 
from the ZEISS PLEX Elite 9000. (B) Bias field artifact of (A) seen with a Gaussian filter [21]. (C) 
Corrected OCT-A image with the bias field removed. (D) Overlay of (A) and (C) visualizing the 
intensity differences after the bias field is removed. 
 
Using this approach, we can see that the bias field is heavily influenced by the FAZ, as seen in 
(B) of Figure 11. This type of bias correction increases the intensities of the vessel regions in the 
FAZ relative to the intensities everywhere else, as seen in the intensity overlay plot shown in (D) 
of Figure 11. The drawback with only using OCT-A images is that they are susceptible to variation 
in intensity and artifacts can appear due to various ocular conditions as well as defocus. Shadows 
and signal loss due to floaters, cataracts and other media opacities can appear on the images 
and are not representative of perfusion loss in vessels [33-34].  
 

3.4 Bias Field Correction Using En-Face Images Produced 
from the Raw OCT-A Volume Data 
 
The previous section discussed a bias field correction method using the 2-D en-face images 
produced by the Zeiss Plex Elite 9000. The preliminary results demonstrated the issue and 
showed proof of concept results. However, further improvements can be achieved by iterating on 
the algorithm. Firstly, it is unknown what processing is performed on the volume by the proprietary 
algorithms of the Zeiss device to extract and visualize the images. Additionally, there is no 



15 
 

noticeable intensity variation across the 2-D Zeiss produced images when visually examining 
them. This section will discuss a method to correct for the bias directly from the OCT-A volumetric 
data.   
 
Using the OCT volume which contains anatomical structural data, bias fields will be estimated 
that represent the intensity changes due to the tilt of the retina. The tilt is related to the focal 
position, and hence is a systematic cause of bias that needs to be corrected. Two bias fields will 
be created, one in the fast scan direction and the other in the slow scan direction. These bias 
maps will then be applied to the en-face images produced from the OCT-A vasculature data to 
remove the bias field artifact. Figure 12 provides a visualization of the mean en-face projection of 
the entire OCT volume as well as a B-scan in the fast scanning and slow scanning directions. The 
axial mean of the pixel intensities in the fast-scan B-scan represents a column in the mean en-
face projection, signified with the red line in (C) of Figure 12.  The axial mean of the pixel intensities 
in the slow-scan B-scan represents a row in the mean en-face projection, represented by the 
green line in (C) of Figure 12.  
 

 

Figure 12: (A) Fast-scan B-scan of the OCT volume. (B) Slow-scan B-scan of the OCT volume. 
(C) Mean en-face projection of the OCT volume.  
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The initial attempt at generating the mean en-face OCT-A projection used the entire A-scan depth 
when calculating the axial mean value at each location. However, this deteriorated the signal 
quality by including measurements of noise as well as the bright back-scattered signal from the 
choroid, so segmentation of retinal layers was required. To generate the en-face OCT-A images 
from the raw OCT-A data, the following processing steps are performed. Three-dimensional 
bounded variance smoothing is applied to the OCT volume to enhance the boundaries between 
retinal layers and reduce the effect of speckle. The retinal layers of the smoothed OCT volume 
are then segmented using a MATLAB 3-D graph-cut algorithm [35, 36]. Figure 13 showcases the 
difference in an OCT B-scan before and after smoothing, while Figure 14 provides a B-scan with 
the retinal layers identified [37]. The internal limiting membrane (ILM), the external limiting 
membrane, the photoreceptor layer boundary and Bruch’s membrane are the layers of interest 
segmented. The ILM to ELM region identified on the OCT volume is used to generate the en-face 
OCT-A image from the raw OCT-A volume data. The region between the ELM and Bruch’s 
membrane will allow for the estimation of the bias field. The ELM-BM region contains the 
photoreceptor cells, light sensitive cells with a strong contrast visible on an OCT B-scan.  

 

Figure 13: OCT B-scan before (A) and after (B) 3-D bounded variance smoothing. 
 

 

Figure 14: Retinal layer subdivisions on an OCT B-scan. 
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After segmentation is performed, the region between the ELM and Bruch’s membrane will allow 
for the estimation of a bias field. For the fast-scan and slow-scan B-scans, the average pixel 
intensities between the PR-BM region for each A-scan will be calculated. This process is repeated 
across all of the B-scans in the volume in both scanning axes, resulting in two 300x300 averaged 
matrices. The matrices are then averaged to create two 1x300 vectors, representing the intensity 
tilt across the retina for both the fast-scan and slow-scan directions. Using the method of least 
squares, polynomial regression curve fitting is then applied to fit the average intensity plot to a 
polynomial function. The polynomial function approximation is of the form  
 
                                                                             ∑ 𝒘𝒋𝒙𝒋𝑴

𝒋=𝟎                                                                         (1) 
 
where M is the order of the polynomial, xj denotes x raised to the power of j and w is the polynomial 
coefficient. Initially, a higher degree polynomial was estimated to best fit the data. However, after 
testing with varying degrees, a polynomial of degree 1 was selected to exclude intensity variations 
due to shadows and other artifacts that reduce the intensity over a range of A-scans throughout 
multiple B-scans. Figure 15 showcases an example of shadows which project into the region used 
for bias field estimation.  
 

 

Figure 15: Shadow regions shown in the red boxes can decrease the intensity of the A-scan 
position, so a linear polynomial approximation was selected to minimize this affect.  
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The method described in this section aims to correct for the bias produced by the intensity tilt of 
the retina. However, using the individual segmentations of the retinal layers will result in an 
inaccurate en-face image and can decrease the accuracy of the bias field estimations. This issue 
would be caused by a different number of A-scan pixels between the segmentation boundaries 
and would not represent the bias that this approach would be correcting. The en-face image would 
have averaging related shadows artifacts and the bias estimation would have a fluctuating plot. 
The solution chosen for this problem was to accurately segment the BM boundary and then 
vertically shift the segmentation upwards, ensuring the shift is the same throughout all B-scans. 
Figure 16 showcases the region used for bias field estimation while Figure 17 visualizes the en-
face angiogram produced from the raw volume data between the shifted BM boundaries. Figure 
18 provides the average intensity plot in blue and the polynomial approximation in red for both 
the fast-scan and slow-scan directions.  
 

 

Figure 16: (A) Fast-scan view and (B) slow-scan view showing the BM and shifted BM 
segmentation boundaries. 
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Figure 17: Shifted segmentation of the BM overlaid on (A) an OCT B-scan and (B) an OCT-A B-
scan. (C) OCT-A en-face image produced from the averaged intensity values in the axial direction 
between the layers shown in (B). 
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Figure 18: (A) Fast-scan averaged intensity plot and linear polynomial approximation. (B) Slow-
scan averaged intensity plot and linear polynomial approximation.  
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A B 

The polynomial approximation is repeated across a matrix to produce the bias fields seen in 
Figure 19. Before correcting the original image, the fast scan bias field must be rotated 90° to 
ensure that it is applied to the correct axis. The bias fields are then applied to the en-face image 
using Equation (2). The uncorrected and bias corrected OCT-A images are then normalized, with 
an example seen in Figure 20 below.  
 
 

 
 
Figure 19: (A) Rotated fast-scan and (B) slow scan bias field estimations from the polynomial 
approximations in Figure 18.  
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Figure 20: A rotated single en-face image normalized (A) before bias correction and (B) after bias 
correction using Equation (2). (C) Intensity difference of (A)-(B). 
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The 2-D OCT-A images produced by the Zeiss Plex Elite 9000 images will be processed through 
the registration and averaging pipeline. The registration transformations that occur on these 
images will also be applied to the normalized en-face images produced from the raw OCT-A 
volume data. Before this can happen, the en-face images need to be rotated 90 degrees and 
resized to 1024x1024 from the current 300x300 pixel dimensions. Resizing the images will use 
the method of bilinear interpolation, where the value to be calculated is a weighted average of the 
of pixels in the nearest 2-by-2 neighborhood.    
 
There are three approaches to visualize the CoV maps for the en-face images produced from the 
OCT-A volume. The first option involves using the DNN to segment the averaged images directly. 
However, as the DNN was created using the 2-D Zeiss images, the results of the network on the 
volume produced images is quite poor. Figure 21 displays the DNN output on the 2-D Zeiss and 
volume produced en-face OCT-A images. The second approach is to display the CoV maps 
without the background noise component removed. In Figure 22, a CoV map with the background 
included is shown, but it would be difficult to make any meaningful conclusions of the retinal 
perfusion from this map. The third method involves using the DNN output and mask produced for 
the 2-D Zeiss averaged image and multiplying it to the averaged en-face image created from the 
volume. Before this can occur, the 2-D Zeiss averaged image and the volume-produced averaged 
image must be overlaid to ensure that there is good pixel to pixel correspondence, as seen in 
Figure 23. After verification, the mask can be multiplied to the image and the CoV calculated. This 
is the method that was used for the remainder of the processing and the results as described in 
the next chapter.  
 

 

Figure 21: Comparison between the result of the DNN for vessel segmentation on (A) the 2-D 
OCT-A image from the Zeiss device and (B) the OCT-A image produced from the volume.  
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Figure 22: CoV map with the inclusion of the background component. 
 

 

Figure 23: Averaged en-face OCT-A image from (A) the 3-D volume data and (B) the 2-D Zeiss 
data. (C) The overlay between (A)and (B) ensuring pixel to pixel correspondence.  
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3.5 Changes to CoV Map Visualization 
 
In the current algorithm, the CoV values are thresholded at 0.5 and scaled between 0 and 1 for 
display using CoV maps. However, because this is performed individually for each dataset, the 
colour classification range of the CoV values shown is not accurate when comparing the maps 
for subjects with different diseases. Instead, we should determine the maximum CoV value across 
all of the datasets in the study and then set the value as the maximum colour in the display range. 
This should amplify the changes seen in the microvasculature when comparing the maps between 
different subjects in the study. One issue with this approach is that if there are any registration 
artifacts, which can occur particularly around the edges of the averaged image due to a minimal 
number of strips, they can skew the maximum range with a high CoV value. A solution to this is 
to limit the CoV values used to find the maximum range to the FAZ region across all datasets, 
with an example seen in Figure 24. One downside to this approach is that if we have a blinking 
vessel outside of the FAZ, it would not be included when deciding the maximum CoV value.  
 

 
Figure 24: Grayscale visualization of the CoV values. The red box contains the maximum CoV 
value, while the green box indicates the suggested region to select the maximum CoV value from.  
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3.6 Bias Field Correction Pipeline Flowchart 
 
Figure 25 below provides an overview of the bias field correction pipeline described in this chapter.  
 
   

 
 
Figure 25: Bias field correction pipeline flowchart. 
 

3.7 Summary 
 
This chapter discussed the need for bias field correction as the new preprocessing operation in 
the registration and averaging algorithm. The final method of bias field correction was achieved 
after an iterative design process, and another approach for visualizing the CoV maps was 
introduced.  We may now review the results of this work in the next chapter. 
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Chapter 4: Results 
 
This chapter examines the impact of the developed bias field correction method on the 3x3 mm 
en-face OCT-A images produced from the raw volumetric data. This chapter will visually compare 
and quantify the differences in the uncorrected and bias corrected averaged OCT-A images and 
CoV maps.      
 

4.1 Visual Comparison of Uncorrected vs. Bias-Corrected 
OCT-A Images 
 
To correct for the brightness inhomogeneity produced by the tilt of the retina, the method in the 
previous chapter was employed. The averaged OCT-A images produced from the volume are 
created using the same registration transformations applied to the 2-D Zeiss processed images. 
For each dataset, an averaged image and CoV map were produced for the uncorrected and bias 
corrected en-face OCT-A images produced from the raw volume data.  
 
The processed images of three subjects are shown in this chapter. Column (A) of Figure 26 shows 
little observable intensity changes across a single image after bias correction, however, the 
averaged images in column (B) showcase a greater change. This is the expected result as 
multiple bias corrected volumes have been registered and averaged together. Figure 27 and 
Figure 31 provide a comparative visual assessment of the uncorrected and bias field corrected 
CoV maps for Subject 1 and Subject 3, respectively. The highlighted sections in these figures 
show an increase in the variability of the microvasculature, with less dark blue being visible after 
bias correction. The opposite affect can be seen in Figure 29 for Subject 2, with more blue 
becoming prominent after bias field correction.  
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Figure 26: Column (A) showcases a single image before and after bias correction for Subject 1 
OD, a male with NTG. Column (B) showcases the averaged images before and after bias 
correction.  
 

 

Figure 27: CoV maps for Subject 1 (A) before bias correction and (B) after bias correction.  
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Figure 28: Column (A) showcases a single image before and after bias correction for Subject 2 
OS, a male with POAG. Column (B) showcases the averaged images before and after bias 
correction. 
 

 

Figure 29: CoV maps for Subject 2 (A) before bias correction and (B) after bias correction 



30 
 

 

Figure 30: Column (A) showcases a single image before and after bias correction for Subject 3 
OD, a healthy male. Column (B) showcases the averaged images before and after bias correction. 
 

 

Figure 31: CoV maps for Subject 3 (A) before bias correction and (B) after bias correction 
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4.2 Quantitative Comparison of Uncorrected vs. Bias-
Corrected OCT-A Images 
 
Table 1 provides the CoV calculations for the three subjects before and bias correction. The 
results seen in the previous section qualitatively can also be interpreted from the CoV 
calculations. For Subject 1, an increase in the whole image CoV value from 0.1762 to 0.1802 
represents a decrease in the blue coded vessels. The whole image CoV for subject 2 has 
decreased after bias correction, while Subject 3 has increased. The CoV calculations are also 
determined for each quadrant and a 1.5mm square centered around the FAZ, as seen in Figure 
32. 
 

Subject Bias 
Correction 

Quadrant 
1 

Quadrant 
2 

Quadrant 
3 

Quadrant 
4 

Whole 
Image 

1.5mm 
FAZ 

Subject 1 
Male OD, 
NTG 

Uncorrected 0.1767 0.1677 0.1900 0.1714 0.1762 0.1857 
Corrected 0.1773 0.1670 0.1954 0.1821 0.1802 0.1892 

Subject 2 
Male OS, 
POAG 

Uncorrected 0.2221 0.2226 0.2324 0.2210 0.2245 0.2410 
Corrected 0.2083 0.2146 0.2304 0.2162 0.2173 0.2334 

Subject 3 
Male OD, 
Control 

Uncorrected 0.1798 0.1708 0.1674 0.1639 0.1706 0.1806 
Corrected 0.1807 0.1701 0.1708 0.1666 0.1721 0.1827 

Table 1: CoV calculations before and after bias correction. 
 

 

Figure 32: CoV map depicting regions for calculation boundaries.  
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4.3 CoV Map Comparisons 
 
The CoV maps shown in Sections 4.1 and 4.2 use the method of visualization for the CoV maps 
described in Section 2.5, while this section uses the method described in Section 3.5. When 
examining the CoV values in the FAZ region, the maximums for Subjects 1, 2 and 3 are 0.6371, 
0.7515, and 0.6889 respectively. The CoV value of 0.7515 was selected and used as the 
maximum value for the colour range of the CoV maps, as seen in Figure 33 below. The CoV maps 
shown have a large number of blue vessels due to the limited number of datasets used in this 
thesis. Processed results with a larger number of datasets may yield a different maximum CoV 
value and adjust the visualization of the CoV maps accordingly.  
 

 

Figure 33: CoV maps of (A) Subject 1, (B) Subject 2 and (C) Subject 3 after bias correction 
using the visualization method discussed in Section 3.5. 
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4.4 Summary 
 
This chapter has presented the results of the bias field correction algorithm from three subjects 
through qualitative examination of the CoV maps and quantitative review of the CoV values. 
Additionally, an updated method for the visualization of the CoV maps was discussed. Chapter 5 
will conclude this thesis with a discussion of the results.   
.
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Chapter 5: Conclusion 
 
This chapter will provide a discussion of the results of the bias correction algorithm and conclude 
with recommendations for future work.  
 

5.1 Discussion 
 
To obtain the most accurate diagnosis, a high standard of image processing must always be met 
in the medical industry. The registration and averaging algorithm discussed in Chapter 2 was 
initially implemented on the 2-D Zeiss OCT-A images to generate a high-quality image. Upon 
review and analysis of the 2-D Zeiss images compared to the images produced from the raw 
volume data, it was clear that there was preprocessing performed on the 2-D images by the Zeiss 
device which modified the intensities across the image. These unknown processes make these 
images unreliable for CoV analysis. The new approach involved putting both the 2-D Zeiss and 
raw volume produced images through the registration and averaging pipeline. The 2-D images 
have higher vessel intensities across the image, which allows for higher quality vessel 
segmentation with the DNN compared to the application of the DNN on the volume produced 
images. This means that we can use the en-face image generated from the raw volume data for 
the most accurate intensities, and the DNN mask produced from the 2-D image pipeline result to 
generate the CoV maps. However, before the 3D images can be processed through the pipeline, 
they must undergo additional preprocessing of bias field correction.  
 
The bias field intensity nonuniformity present in OCT-A images results in a decreased image 
quality and can affect subsequent analysis with the images. Correcting the intensity variation is 
essential as it is not representative of the changes that are occurring with the CoV. The final bias 
field correction algorithm was produced after an iterative design process, with an overview of this 
pipeline seen in Figure 25. The results show an increase in CoV of 0.4% for Subject 1 and 0.15% 
for Subject 3, and a decrease in CoV by 0.72% for Subject 2. These are below the 2% change in 
CoV that was to be deemed successful after bias field correction. The results are not as expected 
for the subjects and do not allow us to conclude that the bias field algorithm implemented 
corrected the intensity variation. However, there are several limitations that need to be addressed 
for future designs.  
 

5.1 Limitations and Future Work 
 
One limitation of this thesis is that the number of datasets processed is small. This is due to the 
fact that each dataset is quite large and takes a significant amount of time to process. Applying 
the developed bias field correction algorithm to a larger number of samples will allow for a more 
robust evaluation of its success. Additionally, the registration transformations applied to the 
images are not saved for future use. Any time a modification to the bias field correction algorithm 
was performed, the images had to be sent through the registration and averaging pipeline again. 
Future work should include modifying the registration algorithm to store the transformations for 
each dataset.    
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A significant limitation in the current bias field correction algorithm is the reliance on an accurate 
segmentation of the BM boundary. When reviewing the results for several volumes, the 
segmentation did not accurately follow the layer boundary. Reprocessing of the volumes with 
modified parameters allowed for a correction of these segmentation inaccuracies. However, this 
is not a viable solution in the long-term as it requires manual review, a time-consuming process. 
Future work can involve improving the accuracy of the layer segmentation with the use of a DNN.  
Another limitation is the requirement for a smoother OCT volume for the input into the Graph-cut 
segmentation algorithm. Currently in use is a 3-D bounded variance procedure to smooth the 
OCT volume, but this is time and computationally expensive. Incorporating a simpler filtering 
method can remedy these issues. 
 
A major future design change to the bias field correction algorithm could be to remove 
segmentation entirely and estimate the bias fields using the entire OCT volume projection. This 
approach can be compared to the method described in this thesis to determine if the results 
produced more uniform intensities across the averaged image.  
 
In conclusion, the algorithm described in this thesis has demonstrated that bias field correction 
for retinal perfusion heterogeneity analysis did not provide significant changes in the CoV results. 
Bias field correction has the potential to improve the variation in the OCT-A images but requires 
further development to provide more reliable results to clinical professionals during the 
investigation of retinal diseases.  
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