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22 1. Introduction

23 The von Neumann architecture, where a computer is constructed
24 from separate units for memory, arithmetic, and program con-
25 trol to perform computations sequentially, has been the engine
26 behind the digital transformation.[1] Within this architecture,
27 computation capability is increased through running the circuits
28 at higher speeds or by adding computation cores and on-chip
29 memory. The approaching physical limits in semiconductor
30 manufacturing, the inherent requirement for sequential process-
31 ing, and suboptimal performance while implementing certain
32 algorithms, among other deficiencies, have motivated the

1research for unconventional computing
2methods such as neuromorphic or quan-
3tum computing.[2,3] Two rapidly growing
4areas that rely on unconventional computa-
5tion methods are in-sensor and near-sensor
6computing.[4] Various forms of wireless
7sensor networks, such as wearables and
8Internet-of-Things (IoT) modules, use sen-
9sors to monitor their surroundings. The
10data produced by these sensors are often
11used to create contextual information such
12as user activity or machine health monitor-
13ing. In contrast to brain simulators, cogni-
14tion in sensing applications is about
15distinguishing between a limited number
16of situations of interest. Complex machine
17learning algorithms used in these applica-
18tions need to process the mostly redundant
19data, either locally or remotely, adding a
20significant power burden during the proc-
21essing and communicating the sensor data.
22The recent efforts to develop neuromorphic
23or in/near-sensor computing methods aim
24to utilize the physics and structure of the
25materials and devices to limit the reliance
26on general-purpose processors. Besides
27the savings on energy usage, this approach enables a real-time,
28context-based response from the sensor module when needed
29without reliance on communication networks or remote
30computers.
31Reservoir computing (RC) is a computational framework that
32is well suited to physical implementations of contextual com-
33puters.[5,6] The computational core of a reservoir computer is
34made of nonlinear neurons with both feedback and feedforward
35connections, resembling a recurrent neural network (RNN). The
36connections between the (physical) neurons occur through some
37sort of information (i.e., energy) exchange between them. The
38feedback connections in RNN and RC provide a notion of time
39and memory, making them suitable for processing time-series
40data. Contrasting an RNN, the weights of the couplings between
41the neurons in an RC are fixed, and the training is conducted
42only on the weights of the output layer. This makes the training
43of RC much simpler and more robust than RNNs, typically
44requiring simple algorithms such as linear regression. Unlike
45the traditional von Neumann architectures, the merging of mem-
46ory with computation units means reservoir computers do not
47need separate memory to store or communicate data.[4] In physi-
48cal realizations of RCs, the material or device physics are
49employed to nonlinearly map input data onto a high-dimensional
50space where different events may be distinguished from each
51other. Physical RC systems have been developed based
52on mechanical oscillators,[7–9] memristors,[10–12] photonic
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3 Vast amounts of data are generated by sensors that are used to monitor people,
4 animals, plants, machines, structures, and the environment. Increasingly, this
5 data is used to create relevant context based on sophisticated pattern recognition
6 algorithms trained using past labeled data. However, most of these sensor
7 systems are severely constrained regarding their communication and compu-
8 tation capabilities due to limitations on available energy, size, or location. New
9 computational approaches are needed to overcome the limitations of existing
10 digital processors in contextual processing. This article discusses the develop-
11 ment of the first such computer that is entirely made based on common
12 3D-printing materials and techniques. It is demonstrated that a simple structure
13 printed with regular 3D printers can be driven and used with common mea-
14 surement tools to perform sophisticated contextual computations, including
15 standard benchmarks and a demonstration of user activity detection from sensor
16 data. The correlation between memory capacity, nonlinearity, and sampling rates
17 with this computer is examined. The 3D-printed structure may be used as a
18 stand-alone computer to detect patterns in general data streams. Moreover, the
19 computer can be integrated with the sensorized 3D-printed structures, leading to
20 the development of cognizant 3D-printed systems comprising sensors and
21 contextual processors.
22
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1 circuits,[13,14] carbon nanotube/polymer composites,[15,16] and
2 connected atomic switches.[17] These implementations, however,
3 rely on sophisticated interfaces and remain unsuitable for
4 widescale deployment.
5 3D printing enables rapid fabrication of complex, multilayer,
6 and even multimaterial structures at once using various printable
7 materials.[18] Advances in 3D printing technologies and additive
8 manufacturing have been utilized to develop 3D-printed sensors
9 and hence, 3D-printed smart systems (i.e., structures with
10 embedded sensing capabilities).[19] However, typical 3D-printed
11 systems, including 3D-printed sensors, are generally passive
12 components, void of computational capability. The desire to
13 add computation capability in analog or digital domains has
14 motivated the research on developing 3D-printed transistors
15 and active components.[20] Much of this research has thus far
16 focused on developing transistors for analog signal processing
17 or conventional von Neuman digital processors. However, these
18 transistors are printed at much lower densities than the existing
19 silicon microelectronic chips, severely limiting their utility as
20 computational elements. Alternatively, 3D-printed neuromor-
21 phic devices and processors have been proposed as potential
22 methods to add computing power to 3D-printed structures.[21–23]

23 3D-printed optical signal processors have been proposed to cir-
24 cumvent the challenges on the electrical side for processing large
25 quantities of input data.[24] Nonetheless, the existing solutions
26 for signal processing with 3D-printed structures either face
27 significant challenges in scaling up the computation capabilities
28 or require sophisticated tools to recover the processed data.
29 In this article, we describe the design and operating principles
30 of a contextual computer that is made through standard 3D print-
31 ing with simple electrical ports for the input and output stages.
32 Despite its simplicity, the computer can tackle complex standard
33 tests and is used to solve the practical problem of user activity
34 detection. Adding to the computational capability of the demon-
35 strated computer is simply achievable by printing additional
36 computational nodes. At a material cost of less than $1, this com-
37 puter can be used next to existing smart systems for contextual
38 signal processing. It can also be embedded within the structure
39 of 3D-printed intelligent systems, enabling the realization of
40 cognizant 3D-printed systems.

41 2. Results

42 Echo State Networks (ESN) form a particular group of RCs with
43 requirements that can be met using physical components.
44 Within an ESN, the reservoir should be built from coupled non-
45 linear nodes with fading memory.[5,25] The dynamic response of
46 physical systems often satisfies the fading memory requirement
47 for ESNs when the data are applied or collected at a sampling rate
48 proportional to the response time of the system. The coupling
49 requirement can be met by letting energy transfer from one
50 device to the others nearby. Therefore, it is possible to build phys-
51 ical RCs that utilize various forms of nonlinearity and coupling.
52 The nonlinearity in the current–voltage response of regular
53 thermistors (i.e., temperature-sensitive resistors) due to self-
54 heating is a well-known phenomenon. Within the scope of
55 RC, thermistors can be viewed as a particular form of memris-
56 tors, where the thermal response of the material affects its

1electrical behavior. Researchers recently demonstrated an RC
2that was built using off-the-shelf thermistors that provided the
3nonlinear response and fading memory requirements while
4the coupling between the elements was achieved by directional
5sharing of the electrical current.[26,27]

63D-printed resistors exhibit interesting time-dependent, non-
7linear responses. These resistors can be made, for instance, from
8a conductive material using fused deposition modeling (FDM)
9technology. FDM is presently the most common 3D printing
10technology, where a filament of the printed material is melted
11and deposited selectively using a printer head. The nozzle tem-
12perature for printing these conductive filaments is between 120
13and 250 °C, depending on type.[28] However, printed resistors
14exhibit significant nonlinear responses due to self-heating at
15much lower temperatures (50–60 °C). Figure 1 shows the
16response of a 3D-printed resistor under different conditions.
17As can be seen, these resistors exhibit a nonlinear response
18under high currents due to self-heating. Additionally, the
19resistors exhibit a time-dependent response if the time spent
20at each current level is shorter than the time needed for reaching
21thermal equilibrium. The nonlinearity and time dependence in
22resistors’ responses make 3D-printed resistors suitable candi-
23dates for developing RC computers based on ESN topology.
24The additional requirement for coupling between the nodes
25can be achieved in electrical or thermal domains. To achieve this,
26we printed several resistors close to each other such that the heat
27generated by one would reach and affect its nearby devices. The
28reservoir structure can be interpreted as a three-layer neural net-
29work, in which the weighted connections between the neurons
30are realized through thermal coupling. Moreover, the nodes on
31each layer are electrically coupled to each other. Three layers of
32conductive traces printed of carbon–polylactic acid (PLA) com-
33posite were stacked on top of each other with a gap in between,
34filled with pure PLA as the insulating material, as shown in
35Figure 2. The nonlinear, time-dependent responses of these
36resistors and the coupling between them satisfy the require-
37ments for building an ESN. Large contact pads were used to apply
38the input signals or to read the data from specific nodes. The
39input layer is driven by an analogue shift register which shifts
40the input signal multiple times and maps the generated signals
41to the reservoir. The output layer is trained by running a linear
42regression on all the outputs from the reservoir.
43Three samples with similar lateral dimensions that differed
44only in the thickness of the conductive layers were 3D printed.
45The thicknesses of the conductive traces in samples 1–3 were 2,
461, and 0.5 mm, respectively. These structures were initially stud-
47ied to evaluate the nonlinearities and time dependences of the
48responses of neurons at different locations and the couplings
49between them. Figure 3 shows test results from these samples
50on individual neurons’ responses to electrical excitations. It
51was observed that the responses of the neurons might be affected
52by injecting a control current, IC, into different nodes in the
53structure (Figure 3c). This effect may be used to bias different
54neurons postfabrication to make them respond differently from
55other similarly fabricated devices, adding another parameter that
56can be used to enhance the reservoir complexity.
57Figure 3e demonstrates the measured electrical and thermal
58responses of a resistor on the top layer of the 3D-printed proces-
59sor over time due to a step current input. After the injection of
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1 the current, both the voltage across the resistor and its tempera-
2 ture slowly rise until thermal equilibrium with the environment
3 is reached. In this case, the resistor exhibited a thermal time
4 constant (TTC) of �62 s. The TTC will be different for different
5 neurons in the structure and will depend on the thermal bound-
6 ary conditions, such as being embedded within the structure or
7 being exposed to the environment on one or more surfaces. This
8 property, too, adds a degree of randomness and helps with using
9 the 3D-printed structure as a contextual processor.
10 Reservoir richness (i.e., the combination of the number of
11 neurons, their interconnections, and their memory capacity
12 [MC]) determines its ability to tackle complex computations.
13 The neurons in the printed reservoir exhibited both linear and
14 nonlinear responses to different ranges of input signals, as
15 expected. Figure 4 demonstrates some characterization results
16 for sample 3. A single printed computer provides numerous
17 possibilities to arrange input and output layers by applying or
18 reading signals to different contacts (Figure 4a–c). Figure 4d

1illustrates thermal images of the reservoir at different instances
2of time after the application of an input to the reservoir, showing
3the evolution of reservoir characteristics through heating and its
4subsequent effect on the I–V characteristics of the neurons.
5Figure 4e shows samples of an incoming time-series signal,
6its time-shifted copies applied to the reservoir, and finally, the
7reservoir outputs. During normal operation, the RC distin-
8guishes between different events after combining the reservoir
9outputs using weights calculated during the training stage.
10Video S1, Supporting Information, shows a thermal video of
11the computer during its operation in real time. Video S2,
12Supporting Information, includes the real-time measurements
13of the signals from the computer as it performs computations.

142.1. Performance Evaluation Based on Standard Benchmarks

15The computational capability of the proposed processor to solve a
16nonlinear problem which requires a memory of past events can

Figure 1. The current–voltage characteristic response of a free-hold 3D-printed resistor under different test conditions. In each case, the current through
the resistor was increased in steps from zero up to the maximum value Imax (indicated on the left) and back to zero. The current through the resistors was
held constant for a period of Δt (indicated at the top) before measuring the voltage across the resistor and proceeding to the next step. It is noteworthy
that under these test conditions, the resistor response is repeatable, indicating a permanent change to material response has not yet occurred.
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1 be evaluated using a nonlinear autoregressive moving average
2 (NARMA) task.[29,30] The goal of a NARMA task of order n
3 (i.e., NARMAn) is to predict the next point in a time-series signal
4 that is produced using a nonlinear combination of the past
5 events, where n indicates both the order of the nonlinearity
6 and the amount of memory required by the problem
7 (see Experimental Section). The generated dataset includes
8 360 samples. Two hundred fifty samples from this data
9 (�70%) were randomly selected and used to train the output
10 layer weights. The remainder of the dataset was used to validate
11 the computer performance. Figure 5a shows the response and
12 the analysis of the response of the 3D-printed processor to
13 NARMA tasks of varying order (n ¼ 1 : : : 10). This simple proces-
14 sor with only 18 nonlinear neurons demonstrates good perfor-
15 mance for n ≤ 7. The performance of the processor can be
16 improved through several simple approaches, including adding
17 additional computational nodes, adding complexity through vary-
18 ing the control signal, or time-multiplexing the tasks between
19 parallel computers.
20 The NARMA test also helps study the compromise between
21 the input signal’s sampling rate and retainable memory with
22 the system.[31] The system state approaches thermal equilibrium

1at a slow sampling rate (i.e., low data rate). Although the reservoir
2exhibits the most nonlinear response in this case, and hence the
3ability to solve complex problems, it may have lost information
4about distant past events. On the other hand, a fast sampling rate
5(i.e., high data rate) reduces the reservoir nonlinearity needed for
6contextual computing but helps the system retain more informa-
7tion about past events. Figure 5b,c demonstrates the perfor-
8mance of the reservoir in solving NARMA tasks of varying
9orders with different sampling rates. As can be seen, both fast
10and slow sampling rates result in larger errors. Therefore, proper
11selection of sampling frequency is essential in achieving optimal
12performance from the reservoir in terms of its accuracy.
13The performance of a contextual computer while processing
14temporal data can be quantified through a concept known as
15MC, defined as the ability of a processor to retrieve past informa-
16tion from the reservoir using the linear combinations of its inter-
17nal states. Figure 5d demonstrates how the MC of the reservoir is
18affected by the sampling frequency when solving a NARMA3
19task. As can be seen, a slow sampling rate results in the computer
20operating with the least error (because of the increased nonline-
21arity) but also a small MC (�2) because the system forgets about
22past events. On the other hand, a high sampling rate results in

Figure 2. Components of the 3D-printed computer. a) The proposed reservoir structure; b) the layer view of the 3D-printed reservoir in which the heated
conductive layers (black) allows for a thermal flow to the coupled layers through PLA (pink); c) the 3D-printed reservoir with electrical connections for
applying or reading electrical signals; d) top view of the computer with three conductive layers printed between the insulating material next to a Canadian
ℂ10 coin.
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Figure 3. Electrical response of printed structures. a) Schematic of the conductive paths in the fabricated reservoir and its close-up view; b) the nonlinear
I–V response of the reservoir obtained by sweeping a current through two one of the resistors in steps with a time delay of 10 or 50s between the steps;
c) the effect of control current, IC, on the response of a resistor; d) comparison of the I–V responses of three reservoir samples with similar lateral
dimensions but different thicknesses for the conductive traces e) Temperature and the voltage across the two electrodes over time in response to an
I ¼ 8mA step current input.

Figure 4. Electrical and thermal response of coupled components. a) I–V characteristics of various pairs of electrodes; b) the electrode labels;
c) arrangement of the electrodes in the reservoir and their functions; d) thermal image of the reservoir at different computation times; and e) a sample
time-series signal (top), its time-shifted copies applied to the reservoir input by the analogue shift register (middle), and the reservoir output (bottom).
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1 poor accuracy, but the system remembers many past events
2 (�12). For this reservoir, a balance may be struck by choosing
3 a sampling frequency around 6/TTC to achieve good computa-
4 tion accuracy with a high MC (�6).
5 In general, the optimal performance of physical computers
6 depends on the combination of network complexity, sampling
7 rate, and nonlinearity. The computers need to be designed to
8 attain a certain level of performance through their physical
9 design and optimizing dimensions, number of neurons, types
10 of materials, and other parameters that affect their nonlinearity
11 and time responses.
12 To demonstrate the need for memory integrated within the
13 reservoir, we compared the performance of the 3D-printed
14 processor with two representative regular feedforward neural
15 network (FNN) constructed in MATLAB, which lacks the ability
16 to store and retain temporal information. The results (Figure 6)
17 demonstrate that the 3D-printed processor outperformed the
18 FNN, which consisted of three hidden layers on neurons with
19 a sigmoid activation function. Two FNNs with 18 and 50 neurons
20 were built, trained, and compared with the 3D-printed computer.
21 Increasing the number of neurons in the FNN marginally
22 improves its performance, but it cannot match that of the 3D-
23 printed processor. Even though further optimization of the
24 FNNs with regard to their number of neurons, activation func-
25 tions, and number of layers is likely to improve performance, it
26 further brings up the possibility of overfitting to the data. It can
27 further be argued that the performance of the 3D-printed com-
28 puter could also be improved by optimizing it according to the

1task requirements. Nonetheless, the results emphasize the
2importance of integrated memory in processing events.

32.2. Near-Sensor Data Processing

4The 3D-printed computer was employed to process data from a
5wearable device to detect the type of user activity as a demonstra-
6tion of its real-life utility. In this case, the data from a 3-axis accel-
7erometer on a wearable device worn on the wrist of a user during
8different activities were collected. There is a strong correlation
9between the acceleration data from the three different axes
10(ax , ay, az). To simplify the problem, the acceleration data from
11the three axes were combined to produce an equivalent signal

aeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y þ a2z

q
(1) Q3

12This signal was then used to extract features provided to the
133D-printed computer for activity detection.
14The incoming data were studied in 5 s time frames. The mean,
15standard deviation, root mean squared value, and the number of
16peaks of aeq in each time frame were calculated and normalized.
17These features were then converted into analogue voltage signals
18and applied to the 3D-printed computer as features of user
19activity data in that time frame. The training was based on
20196 instances of labeled user activity. The weights of the output
21layer were determined through linear regression. The
22performance of the computer was evaluated using 60 additional

Figure 5. Assessment of the computer performance to solve computational tasks with varying orders of nonlinearity and memory. a) The reservoir
response to predicting a time-series input produced by varying orders of NARMA task with f S ¼ f S3. b,c) Comparison of the reservoir performance
when solving NARMA tasks of different orders with different sampling frequencies. d) Demonstration of the dependence of reservoir memory capacity,
RMSE, and R2 to sampling frequency when solving a NARMA5 task. The graph at the top shows a typical step response of one of the nonlinear neurons in
the reservoir which is used to estimate TTC and set sampling frequencies.
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1 instances of labeled activities that were excluded from the
2 training dataset (i.e., validation set).
3 The results of this experiment are shown in Figure 7.
4 Figure 7a shows a sample of raw data collected from the accel-
5 erometers (aeq) as well as features extracted from 5 s timeframes
6 for different activities. Figure 7b shows the performance of the
7 3D-printed computer in detecting patterns in the data after train-
8 ing. As seen, the processor performs the data processing with
9 93.3% accuracy, and 92.5%, 92.8%, and 100% sensitivity in deter-
10 mining whether the user is in an elevator, stationary, or walking,
11 respectively. Note that the sampling period, in this case, is 5 s,

1corresponding to a sampling frequency of about 12/TTC. This
2level of performance for such a limited set of input features is
3on par with the performance of typical machine learning
4algorithms on the same data.

53. Conclusion

6We demonstrated the first 3D-printed physical computer that
7was built based on the concept of RC. In an RC, the responses
8of nonlinear, coupled physical elements are used to create

Figure 6. Comparison of the performance of the 3D-printed processor against feedforward neural networks. Two FNN were constructed and trained on
the same data as the 3D printed sensor; their performances were compared by solving NARMAn tasks with varying orders of nonlinearity and memory,
represented by n on the horizontal axes: a) The 3D printed NN has large amount of memory; b) 3D printed NN has enough amount of memory; c) 3D
printed NN has small amount of memoryQ4 .

Figure 7. Performance of the computer in recognizing user activity from sensor data. a) Sample raw sensor data and normalized extracted features for
different activities; b) performance of the 3D-printed computer in user activity detection based on acceleration data.
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1 context from incoming time-series data. The earlier work by
2 several research groups had demonstrated the possibility of
3 using reservoir computers based on photonic components,
4 memristors, and many other physical systems. However, most
5 of the reported physical RCs require sophisticated measurement
6 systems or highly specialized manufacturing processes that often
7 counteract the benefits offered by the approach. We demon-
8 strated the computational capabilities of our printed computer
9 using standard tasks and also used it to solve a real-life problem.
10 3D-printed computers based on our reported approach can be
11 designed and fabricated in any facility with access to regular 3D
12 printers that can print with both conductive and insulating fila-
13 ments. Even in the current first-attempt form, numerous ways
14 exist to increase the computer’s computational capability without
15 significant practical barriers. Sample approaches include modu-
16 lating control signals, increasing the number of printed neurons,
17 increasing the number of layers, adjusting the lateral and vertical
18 distances between the neurons (and hence their coupling), and
19 varying trace widths. An optimal design of similar computers
20 should seek a balance between the aforementioned parameters.
21 Additionally, the presented work paves the way for the
22 realization of fully 3D-printed intelligent systems that combine
23 3D-printed sensors with a 3D-printed contextual computer
24 to instantly extract context from environmental changes.
25 Furthermore, the principles may be applied to other manufactur-
26 ing techniques, for instance, by using coupled temperature-
27 sensitive resistors on silicon chips to process data from
28 micromachined sensors and create context without digital
29 computations.

30 4. Experimental Section

31 D Printing Setup: FDM is the most widely used 3D printing technology.
32 It uses a filament spool fed to an extrusion head with a heated nozzle.
33 Once the extrusion head heats, it softens and lays down the heated mate-
34 rial at set locations, where it cools to create a material layer. The nozzle
35 then moves down to deposit the next layer. We used a double extrusion 3D
36 printer (Ultimaker 3) to print the reservoir.[32] The material is printed with a
37 default nozzle size of 0.4mm. The printer settings were adjusted to have a
38 layer height of 0.1 mm for each printed layer and a wall thickness of
39 0.8mm. Thus, the minimum feature size for the conductive trace is
40 1.6 mm in the x and y directions, while it is 0.1 mm in the z-direction.
41 The key strength of FDM is the availability of a wide range of materials,
42 including thermoplastics such as PLA, a vegetable-based, biodegradable
43 thermoplastic. PLA is an electrical insulator, so it was used as the substrate
44 and insulating material between the conductive layers. Conductive traces
45 were printed using carbon–PLA composite filaments. We used 2.85mm
46 pure PLA filament (Ultrafuse series from BASF) for the main structure
47 and 2.85mm carbon–PLA composite (RM-PL0100 from Lulzbot) for
48 the conductive segments. Before 3D printing, the conductive PLA filament
49 has a volume resistivity of 15Ω cm. A 3D-printed structure printed in the
50 x- or y- directions has a resistivity of 30Ω cm, whereas 3D-printed layers
51 printed in the z-direction have a resistivity of 115Ω cm. Multilayer resistors
52 offer higher conductivity as more conduction paths will be possible due to
53 the increased connections between carbon elements within this structure.
54 Silver conductive paste/epoxy was used to attach wires to the printed
55 contacts, which were cured on a hot plate at 50 °C for 1 h.
56 The lateral dimensions of the 3D-printed reservoir are 3.9 cm� 3.5 cm,
57 while its height depends on the thickness of the traces (i.e., the number of
58 printed layers). Conductive trace thicknesses vary from 0.5 to 2 mm, the
59 width of the conductive traces is 1.6 mm (the minimum feature size), and
60 the gap between the traces (layers) is set to 0.2 mm.

1Data Collection Setup: For I–V characteristics, we swept the current
2passing through the NTC forward and backward and measured its voltage
3after various time intervals by Keysight 2901A precision source/measure
4unit (SMU). The input signals and output data were collected using a
5National Instruments PXIe-6363 I/O module through a LabVIEW interface
6at a rate of one sample per second. The data for user activity detection
7were collected using the SensorTile kit from STMicroelectronics, which
8includes a pair of microcontrollers, a 3-axis accelerometer, and other
9sensors.[33] Training and test data were collected by attaching the module
10to a user’s wrist and recording data during different activities.
11The input layer uses an analogue shift register to apply the signal and its
12past three samples (i.e., uðnÞ, uðn� 1Þ, uðn� 2Þ, and uðn� 3Þ) to the
13reservoir. The readout layer runs a linear regression on the six signals
14acquired from the reservoir in MATLAB.
15NARMA Task: The nonlinear autoregressive moving average (NARMA)
16is a discrete-time temporal task with an nth-order time lag. The NARMA
17time series is given by[34]

yðtÞ ¼ α yðt� 1Þ þ β yðt� 1Þ
Xn
i¼1

yðt� iÞ þ γ uðt� nÞuðt� 1Þ þ δ (2)

18where α ¼ 0.3, β ¼ 0.05, γ ¼ 1.5, and δ ¼ 0.1. The dependence of
19NARMA on its nonlinearity and long time lags makes it a challenging
20problem for any computational system. Calculating NARMAn task requires
21a device capable of algorithmic programming and perfect memory of the
22input and the outputs of up to n previous time steps.
23MC: The short-term MC of the RC system is important in applications
24requiring memory of past events. To evaluate the short-term MC, the
25τ-delay MC (MCðτÞ) is calculated from[34]

MCðτÞ ¼ Cov2ðuðt� τÞ, yτðtÞÞ
σ2ðuðtÞÞ⋅σ2ðyτðtÞÞ

(3)

26where uðt–τÞ is a τ-step delayed input, yτðtÞ ¼ uðt–τÞ is its reconstruction
27at the output, Covð⋅, ⋅Þ is the covariance of the two time-series signals, and
28σ2ð⋅Þ is the variance of a signal. The overall short-term MC is then
29approximated as

MC ¼
X∞
τ¼1

MCðτÞ (4)
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